112 research outputs found

    Co-design of human-centered, explainable AI for clinical decision support

    Get PDF
    eXplainable AI (XAI) involves two intertwined but separate challenges: the development of techniques to extract explanations from black-box AI models, and the way such explanations are presented to users, i.e., the explanation user interface. Despite its importance, the second aspect has received limited attention so far in the literature. Effective AI explanation interfaces are fundamental for allowing human decision-makers to take advantage and oversee high-risk AI systems effectively. Following an iterative design approach, we present the first cycle of prototyping-testing-redesigning of an explainable AI technique, and its explanation user interface for clinical Decision Support Systems (DSS). We first present an XAI technique that meets the technical requirements of the healthcare domain: sequential, ontology-linked patient data, and multi-label classification tasks. We demonstrate its applicability to explain a clinical DSS, and we design a first prototype of an explanation user interface. Next, we test such a prototype with healthcare providers and collect their feedback, with a two-fold outcome: first, we obtain evidence that explanations increase users’ trust in the XAI system, and second, we obtain useful insights on the perceived deficiencies of their interaction with the system, so that we can re-design a better, more human-centered explanation interface

    Demographics imputation in marketing sector by means of machine learning

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe goal of this project is to develop a predictive model in order to impute missing values in data collected through surveys (demographics data) and evaluate its performance. Currently there are two existing issues: demographics data for each user is either incomplete or missing entirely. Current POC is an attempt to exploit the capabilities of machine learning in order to impute missing demographics data. Data cleaning, normalization, feature selection was performed prior to applying sampling techniques and training several machine learning models. The following machine learning models were trained and tested: Random Forest and Gradient Boosting. After, the metrics appropriate for the current business purposes were selected and models’ performance was evaluated. The results for the targets ‘Ethnicity’, ‘Hispanic’ and ‘Household income’ are not within the acceptable range and therefore could not be used in production at the moment. The metrics obtained with the default hyperparameters indicate that both models demonstrate similar results for ‘Hispanic’ and ‘Ethnicity’ response variables. ‘Household income’ variable seems to have the poorest results, not allowing to predict the variable with adequate accuracy. Current POC suggests that the accurate prediction of demographic variable is complex task and is accompanied by certain challenges: weak relationship between demographic variables and purchase behavior, purchase location and neighborhood and its demographic characteristics, unreliable data, sparse feature set. Further investigations on feature selection and incorporation of other data sources for the training data should be considered

    Metadata-driven computational (meta)genomics. A practical machine learning approach

    Get PDF
    Rumming M. Metadata-driven computational (meta)genomics. A practical machine learning approach. Bielefeld: Universität Bielefeld; 2018.A vast amount of bacterial and archaeal genomic sequences have been generated in the past decade through single cell sequencing and in particular binning of metagenomic sequences, but a detailed characterization of the functional features and observable phenotypes of such novel genomes is mostly unknown and thus missing. Machine learning models are trained on previously annotated organisms in relation to the mentioned traits and can be used for the characterization of so far undiscovered novel microbial organisms. The metadata is also used to enrich microbial community profiles with this kind of information, and a client-side webtool has been developed for comparative visualizations of these profiles

    A machine learning personalization flow

    Get PDF
    This thesis describes a machine learning-based personalization flow for streaming platforms: we match users and content like video or music, and monitor the results. We find that there are still many open questions in personalization and especially in recommendation. When recommending an item to a user, how do we use unobservable data, e.g., intent, user and content metadata as input? Can we optimize directly for non-differentiable metrics? What about diversity in recommendations? To answer these questions, this thesis proposes data, experimental design, loss functions, and metrics. In the future, we hope these concepts are brought closer together via end-to-end solutions, where personalization models are directly optimized for the desired metric

    Analysis of group evolution prediction in complex networks

    Full text link
    In the world, in which acceptance and the identification with social communities are highly desired, the ability to predict evolution of groups over time appears to be a vital but very complex research problem. Therefore, we propose a new, adaptable, generic and mutli-stage method for Group Evolution Prediction (GEP) in complex networks, that facilitates reasoning about the future states of the recently discovered groups. The precise GEP modularity enabled us to carry out extensive and versatile empirical studies on many real-world complex / social networks to analyze the impact of numerous setups and parameters like time window type and size, group detection method, evolution chain length, prediction models, etc. Additionally, many new predictive features reflecting the group state at a given time have been identified and tested. Some other research problems like enriching learning evolution chains with external data have been analyzed as well

    Assesing Completeness of Solvency and Financial Condition Reports through the use of Machine Learning and Text Classification

    Get PDF
    Text mining is a method for extracting useful information from unstructured data through the identification and exploration of large amounts of text. It is a valuable support tool for organisations. It enables a greater understanding and identification of relevant business insights from text. Critically it identifies connections between information within texts that would otherwise go unnoticed. Its application is prevalent in areas such as marketing and political science however, until recently it has been largely overlooked within economics. Central banks are beginning to investigate the benefits of machine learning, sentiment analysis and natural language processing in light of the large amount of unstructured data available to them. This includes news articles, financial contracts, social media, supervisory and market intelligence and regulatory reports. In this research paper a dataset consisting of regulatory required Solvency and Financial Condition Reports (SFCR) is analysed to determine if machine learning and text classification can assist assessing the completeness of SFCRs. The completeness is determined by whether or not the document adheres to nine European guidelines. Natural language processing and supervised machine learning techniques are implemented to classify pages of the report as belonging to one of the guidelines

    Otimização multi-objetivo em aprendizado de máquina

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Regressão logística multinomial regularizada, classificação multi-rótulo e aprendizado multi-tarefa são exemplos de problemas de aprendizado de máquina em que objetivos conflitantes, como funções de perda e penalidades que promovem regularização, devem ser simultaneamente minimizadas. Portanto, a perspectiva simplista de procurar o modelo de aprendizado com o melhor desempenho deve ser substituída pela proposição e subsequente exploração de múltiplos modelos de aprendizado eficientes, cada um caracterizado por um compromisso (trade-off) distinto entre os objetivos conflitantes. Comitês de máquinas e preferências a posteriori do tomador de decisão podem ser implementadas visando explorar adequadamente este conjunto diverso de modelos de aprendizado eficientes, em busca de melhoria de desempenho. A estrutura conceitual multi-objetivo para aprendizado de máquina é suportada por três etapas: (1) Modelagem multi-objetivo de cada problema de aprendizado, destacando explicitamente os objetivos conflitantes envolvidos; (2) Dada a formulação multi-objetivo do problema de aprendizado, por exemplo, considerando funções de perda e termos de penalização como objetivos conflitantes, soluções eficientes e bem distribuídas ao longo da fronteira de Pareto são obtidas por um solver determinístico e exato denominado NISE (do inglês Non-Inferior Set Estimation); (3) Esses modelos de aprendizado eficientes são então submetidos a um processo de seleção de modelos que opera com preferências a posteriori, ou a filtragem e agregação para a síntese de ensembles. Como o NISE é restrito a problemas de dois objetivos, uma extensão do NISE capaz de lidar com mais de dois objetivos, denominada MONISE (do inglês Many-Objective NISE), também é proposta aqui, sendo uma contribuição adicional que expande a aplicabilidade da estrutura conceitual proposta. Para atestar adequadamente o mérito da nossa abordagem multi-objetivo, foram realizadas investigações mais específicas, restritas à aprendizagem de modelos lineares regularizados: (1) Qual é o mérito relativo da seleção a posteriori de um único modelo de aprendizado, entre os produzidos pela nossa proposta, quando comparado com outras abordagens de modelo único na literatura? (2) O nível de diversidade dos modelos de aprendizado produzidos pela nossa proposta é superior àquele alcançado por abordagens alternativas dedicadas à geração de múltiplos modelos de aprendizado? (3) E quanto à qualidade de predição da filtragem e agregação dos modelos de aprendizado produzidos pela nossa proposta quando aplicados a: (i) classificação multi-classe, (ii) classificação desbalanceada, (iii) classificação multi-rótulo, (iv) aprendizado multi-tarefa, (v) aprendizado com multiplos conjuntos de atributos? A natureza determinística de NISE e MONISE, sua capacidade de lidar adequadamente com a forma da fronteira de Pareto em cada problema de aprendizado, e a garantia de sempre obter modelos de aprendizado eficientes são aqui pleiteados como responsáveis pelos resultados promissores alcançados em todas essas três frentes de investigação específicasAbstract: Regularized multinomial logistic regression, multi-label classification, and multi-task learning are examples of machine learning problems in which conflicting objectives, such as losses and regularization penalties, should be simultaneously minimized. Therefore, the narrow perspective of looking for the learning model with the best performance should be replaced by the proposition and further exploration of multiple efficient learning models, each one characterized by a distinct trade-off among the conflicting objectives. Committee machines and a posteriori preferences of the decision-maker may be implemented to properly explore this diverse set of efficient learning models toward performance improvement. The whole multi-objective framework for machine learning is supported by three stages: (1) The multi-objective modelling of each learning problem, explicitly highlighting the conflicting objectives involved; (2) Given the multi-objective formulation of the learning problem, for instance, considering loss functions and penalty terms as conflicting objective functions, efficient solutions well-distributed along the Pareto front are obtained by a deterministic and exact solver named NISE (Non-Inferior Set Estimation); (3) Those efficient learning models are then subject to a posteriori model selection, or to ensemble filtering and aggregation. Given that NISE is restricted to two objective functions, an extension for many objectives, named MONISE (Many Objective NISE), is also proposed here, being an additional contribution and expanding the applicability of the proposed framework. To properly access the merit of our multi-objective approach, more specific investigations were conducted, restricted to regularized linear learning models: (1) What is the relative merit of the a posteriori selection of a single learning model, among the ones produced by our proposal, when compared with other single-model approaches in the literature? (2) Is the diversity level of the learning models produced by our proposal higher than the diversity level achieved by alternative approaches devoted to generating multiple learning models? (3) What about the prediction quality of ensemble filtering and aggregation of the learning models produced by our proposal on: (i) multi-class classification, (ii) unbalanced classification, (iii) multi-label classification, (iv) multi-task learning, (v) multi-view learning? The deterministic nature of NISE and MONISE, their ability to properly deal with the shape of the Pareto front in each learning problem, and the guarantee of always obtaining efficient learning models are advocated here as being responsible for the promising results achieved in all those three specific investigationsDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/13533-0FAPES

    Automated energy compliance checking in construction

    Get PDF
    Automated energy compliance checking aims to automatically check the compliance of a building design – in a building information model (BIM) – with applicable energy requirements. A significant number of efforts in both industry and academia have been undertaken to automate the compliance checking process. Such efforts have achieved various levels of automation, expressivity, representativeness, accuracy, and efficiency. Despite the contributions of these efforts, there are two main gaps in existing automated compliance checking (ACC) efforts. First, existing methods are not fully-automated and/or not generalizable across different types of documents. They require different degrees of manual efforts to extract requirements from text into computer-processable representations, and matching the concept representations of the extracted requirements to those of the BIM. Second, existing methods only focused on code checking. There is still a lack of efforts that address contract specification checking. To address these gaps, this thesis aims to develop a fully-automated ACC method for checking BIM-represented building designs for compliance with energy codes and contract specifications. The research included six primary research tasks: (1) conducting a comprehensive literature review; (2) developing a semantic, domain-specific, machine learning-based text classification method and algorithm for classifying energy regulatory documents (including energy codes) and contract specifications for supporting energy ACC in construction; (3) developing a semantic, natural language processing (NLP)-enabled, rule-based information extraction method and algorithm for automated extraction of energy requirements from energy codes; (4) adapting the information extraction method and algorithm for automated extraction of energy requirements from contract specifications; (5) developing a fully-automated, semantic information alignment method and algorithm for aligning the representations used in the BIMs to the representations used in the energy codes and contract specifications; and (6) implementing the aforementioned methods and algorithms in a fully-automated energy compliance checking prototype, called EnergyACC, and using it in conducting a case study to identify the feasibility and challenges for developing an ACC method that is fully-automated and generalized across different types of regulatory documents. Promising noncompliance detection performance was achieved for both energy code checking (95.7% recall and 85.9% precision) and contract specification checking (100% recall and 86.5% precision)

    Nephroblastoma in MRI Data

    Get PDF
    The main objective of this work is the mathematical analysis of nephroblastoma in MRI sequences. At the beginning we provide two different datasets for segmentation and classification. Based on the first dataset, we analyze the current clinical practice regarding therapy planning on the basis of annotations of a single radiologist. We can show with our benchmark that this approach is not optimal and that there may be significant differences between human annotators and even radiologists. In addition, we demonstrate that the approximation of the tumor shape currently used is too coarse granular and thus prone to errors. We address this problem and develop a method for interactive segmentation that allows an intuitive and accurate annotation of the tumor. While the first part of this thesis is mainly concerned with the segmentation of Wilms’ tumors, the second part deals with the reliability of diagnosis and the planning of the course of therapy. The second data set we compiled allows us to develop a method that dramatically improves the differential diagnosis between nephroblastoma and its precursor lesion nephroblastomatosis. Finally, we can show that even the standard MRI modality for Wilms’ tumors is sufficient to estimate the developmental tendencies of nephroblastoma under chemotherapy
    • …
    corecore