2,342 research outputs found

    Function Approximation Using Probabilistic Fuzzy Systems

    Get PDF
    We consider function approximation by fuzzy systems. Fuzzy systems are typically used for approximating deterministic functions, in which the stochastic uncertainty is ignored. We propose probabilistic fuzzy systems i

    Usage of Simplified Fuzzy ARTMAP for improvement of classification performances

    Get PDF
    This study presents a simplified fuzzy ARTMAP (SFAM) for different classification applications. The proposed SFAM model is synergy of fuzzy logic and adaptive resonance theory (ART) neural networks. SFAM is supervised network consisting of two layers (Fuzzy ART and Inter ART) that build constant classification groups in answer to series of input patterns. Fuzzy ART layer takes a series of input patterns and relate them to output classes. Inter ART layer functions in such a way that it raises the vigilance parameter of fuzzy ART layer. By combining this two layers, SFAM is capable to perform classification very efficiently and giving very high performances. Lastly, the SFAM model is applied to different simulations. The simulation results obtained for the three different datasets: Iris, Wisconsin breast cancer and wine dataset prove that SFAM model has better performance results than other models for these classification applications

    Survey on Classification Algorithms for Data Mining:(Comparison and Evaluation)

    Get PDF
    Data mining concept is growing fast in popularity, it is a technology that involving methods at the intersection of (Artificial intelligent, Machine learning, Statistics and database system), the main goal of data mining process is to extract information from a large data into form which could be understandable for further use. Some algorithms of data mining are used to give solutions to classification problems in database. In this paper a comparison among three classification’s algorithms will be studied, these are (K- Nearest Neighbor classifier, Decision tree and Bayesian network) algorithms. The paper will demonstrate the strength and accuracy of each algorithm for classification in term of performance efficiency and time complexity required. For model validation purpose, twenty-four-month data analysis is conducted on a mock-up basis. Keywords: Decision tree, Bayesian network, k- nearest neighbour classifier

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    Unsupervised learning of relation detection patterns

    Get PDF
    L'extracció d'informació és l'àrea del processament de llenguatge natural l'objectiu de la qual és l'obtenir dades estructurades a partir de la informació rellevant continguda en fragments textuals. L'extracció d'informació requereix una quantitat considerable de coneixement lingüístic. La especificitat d'aquest coneixement suposa un inconvenient de cara a la portabilitat dels sistemes, ja que un canvi d'idioma, domini o estil té un cost en termes d'esforç humà. Durant dècades, s'han aplicat tècniques d'aprenentatge automàtic per tal de superar aquest coll d'ampolla de portabilitat, reduint progressivament la supervisió humana involucrada. Tanmateix, a mida que augmenta la disponibilitat de grans col·leccions de documents, esdevenen necessàries aproximacions completament nosupervisades per tal d'explotar el coneixement que hi ha en elles. La proposta d'aquesta tesi és la d'incorporar tècniques de clustering a l'adquisició de patrons per a extracció d'informació, per tal de reduir encara més els elements de supervisió involucrats en el procés En particular, el treball se centra en el problema de la detecció de relacions. L'assoliment d'aquest objectiu final ha requerit, en primer lloc, el considerar les diferents estratègies en què aquesta combinació es podia dur a terme; en segon lloc, el desenvolupar o adaptar algorismes de clustering adequats a les nostres necessitats; i en tercer lloc, el disseny de procediments d'adquisició de patrons que incorporessin la informació de clustering. Al final d'aquesta tesi, havíem estat capaços de desenvolupar i implementar una aproximació per a l'aprenentatge de patrons per a detecció de relacions que, utilitzant tècniques de clustering i un mínim de supervisió humana, és competitiu i fins i tot supera altres aproximacions comparables en l'estat de l'art.Information extraction is the natural language processing area whose goal is to obtain structured data from the relevant information contained in textual fragments. Information extraction requires a significant amount of linguistic knowledge. The specificity of such knowledge supposes a drawback on the portability of the systems, as a change of language, domain or style demands a costly human effort. Machine learning techniques have been applied for decades so as to overcome this portability bottleneck¿progressively reducing the amount of involved human supervision. However, as the availability of large document collections increases, completely unsupervised approaches become necessary in order to mine the knowledge contained in them. The proposal of this thesis is to incorporate clustering techniques into pattern learning for information extraction, in order to further reduce the elements of supervision involved in the process. In particular, the work focuses on the problem of relation detection. The achievement of this ultimate goal has required, first, considering the different strategies in which this combination could be carried out; second, developing or adapting clustering algorithms suitable to our needs; and third, devising pattern learning procedures which incorporated clustering information. By the end of this thesis, we had been able to develop and implement an approach for learning of relation detection patterns which, using clustering techniques and minimal human supervision, is competitive and even outperforms other comparable approaches in the state of the art.Postprint (published version
    corecore