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Abstract

Information extraction is the natural language processing area whose goal is to obtain
structured data from the relevant information contained in textual fragments.

Information extraction requires a significant amount of linguistic knowledge. The specificity
of such knowledge supposes a drawback on the portability of the systems, as a change of
language, domain or style demands a costly human effort. Machine learning techniques have
been applied for decades so as to overcome this portability bottleneck—progressively reducing
the amount of involved human supervision. However, as the availability of large document
collections increases, completely unsupervised approaches become necessary in order to mine
the knowledge contained in them.

The proposal of this thesis is to incorporate clustering techniques into pattern learning
for information extraction, in order to further reduce the elements of supervision involved
in the process. In particular, the work focuses on the problem of relation detection. The
achievement of this ultimate goal has required, first, considering the different strategies in which
this combination could be carried out; second, developing or adapting clustering algorithms
suitable to our needs; and third, devising pattern learning procedures which incorporated
clustering information.

By the end of this thesis, we had been able to develop and implement an approach for
learning of relation detection patterns which, using clustering techniques and minimal human
supervision, is competitive and even outperforms other comparable approaches in the state of
the art.

Resum

L’extracció d’informació és l’àrea del processament de llenguatge natural l’objectiu de la
qual és l’obtenir dades estructurades a partir de la informació rellevant continguda en fragments
textuals.

L’extracció d’informació requereix una quantitat considerable de coneixement lingüístic.
La especificitat d’aquest coneixement suposa un inconvenient de cara a la portabilitat dels
sistemes, ja que un canvi d’idioma, domini o estil té un cost en termes d’esforç humà. Durant
dècades, s’han aplicat tècniques d’aprenentatge automàtic per tal de superar aquest coll d’am-
polla de portabilitat, reduint progressivament la supervisió humana involucrada. Tanmateix, a
mida que augmenta la disponibilitat de grans col·leccions de documents, esdevenen necessàries
aproximacions completament no-supervisades per tal d’explotar el coneixement que hi ha en
elles.

La proposta d’aquesta tesi és la d’incorporar tècniques de clustering a l’adquisició de patrons
per a extracció d’informació, per tal de reduir encara més els elements de supervisió involucrats
en el procés En particular, el treball se centra en el problema de la detecció de relacions.
L’assoliment d’aquest objectiu final ha requerit, en primer lloc, el considerar les diferents
estratègies en què aquesta combinació es podia dur a terme; en segon lloc, el desenvolupar o
adaptar algorismes de clustering adequats a les nostres necessitats; i en tercer lloc, el disseny
de procediments d’adquisició de patrons que incorporessin la informació de clustering.

Al final d’aquesta tesi, havíem estat capaços de desenvolupar i implementar una aproxi-
mació per a l’aprenentatge de patrons per a detecció de relacions que, utilitzant tècniques de
clustering i un mínim de supervisió humana, és competitiu i fins i tot supera altres aproxima-
cions comparables en l’estat de l’art.
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pogut viure el present—i ja fins i tot de mirar al futur—amb una dona com la Laia al meu costat.
Sé que haver de compartir-me amb el Processament de Llenguatge Natural sovint se li fa difícil.
Però també sé que, quan el deixo de banda, sempre trobo la seva mà, que agafa la meva i no la
deixa anar, sigui on sigui que decidim d’anar plegats.
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1
Introduction

At first the names he read were meaningless to him, as
deeply anonymous as their phone numbers. The only
distinction a name had was its accidental yet ineluctable
place in the alphabetical order, and then whatever idiot
errors the computer could dress it in, which Smoky was paid
to discover. (That the computer could make as few errors as
it did impressed Smoky less than its bizarre witlessness; it
couldn’t distinguish, for instance, when the abbreviation
"St." meant "street" and when it meant "saint," and
directed to expand these abbreviations, would without a
smile produce the Seventh Saint Bar and Grill and the
Church of All Streets.)

John Crowley
Little, Big

T he amount of information produced and stored in the World is increasing every day at
a strenuous rate. Lyman and Varian () already talk about information explosion, and
estimate that “new stored information grew about % a year between  and ”. How-

ever, although in terms of bits information consumption is still rising fast in developed countries,
this increment mainly comes from the improvements in transmission quality. In terms of words,
consumption is going up at a much slower pace, as it is “constrained by human physical limits,
including the length of a day and reading speed ”, and its growth “will never exceed a few percent per
year ” (Bohn and Short, ).

The mismatch between information production and consumption growth rates creates an ex-
panding gap between them, and has spurred the development of information-processing systems.
These systems monitor, filter, analyze, route and/or integrate the produced information, with the
common ultimate goal of making it reach, in a more or less processed form, its potential consumers.
A number of systems focus on textual information, and we can hence talk of text-processing systems
and text-processing tasks.

. Information Extraction

Appelt and Israel () consider a small subset of these text-processing tasks, which is detailed
in Table .. As seen in the table, between generic file manipulation, in which text documents
are treated as opaque sequences of bytes, and full text understanding, as (hopefully) performed
by humans, an spectrum of tasks exists, which require different intermediate levels of linguistic
understanding.

In some cases, only simple text manipulation is involved, comparable to that performed by Unix
utilities as grep or wc. While this kind of tools have been widely used since the early seventies,
especially with the rise of the Unix family (which was initially designed as a “word-processing
system”; Ritchie, ), it was not until the early eighties that more complex systems (in text-
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A text document. . .

. . . is a sequence of bytes. File manipulation

. . . is a sequence of characters. Text manipulation

. . . is a sequence of words (perhaps meaningful
units).

Information retrieval

. . . contains meaningful phrases/clauses, rele-
vant to a particular topic.

Information extraction

. . . is an article, an essay, a story, a novel. . . Text understanding

Table .: Text-processing tasks (adapted from Appelt and Israel, )

Figure .: Information extraction from a sample sentence

processing terms) began to be developed. The purpose of those first text-based intelligent (TBI)
systems was to automatically obtain information by manipulating documents, instead of relying
on manual introduction of knowledge by human experts (Jacobs, ). At that time, roughly two
major TBI areas were considered and distinguished: information retrieval (IR) and information
extraction (IE).

IR techniques aim at retrieving the documents from a collection which satisfy a given set of
restrictions, defined by means of a query. The documents that are judged relevant according to
the query can be directly provided to the human user, or alternatively be used as input to an
information acquisition process. The prototypical, and so far most usual, setting for IR is that of
finding those documents containing a number of keywords; and even if there exists a wide variety
of IR systems, the use of linguistic knowledge and technologies within them has been marginal, and
much controversial (Spärck-Jones, ; Smeaton, ; Voorhees, ).

On the contrary, IE technology aims at a deeper understanding of the texts, to identify the
relevant content within the relevant documents and extract it in a structured way, suitable for human
inspection, insertion in a structured database, or further automatic processing. Text documents
used in IE usually belong to a restricted domain, and there exists an a priori definition of the set
of concepts which are considered relevant: the so-called scenario of extraction. The goal of IE is
to extract instances of these concepts occurring in the documents. In order to do so, IE systems
require significant amounts of linguistic knowledge (Muslea, ). For this reason, IE is universally
considered to be part of the much broader area of natural language processing (NLP).

The concepts defined for extraction can differ enormously from scenario to scenario. However,
even if the semantics are varied, the nature of the involved concepts is usually restricted, being:

• entities having an identity in the real world,

• relations between these entities, either binary or n-ary;

• and events in which these entities are involved.

An example of the information which may be extracted from a sample sentence, at each one of
these three levels, is shown in Figure .. Other scenarios may require the detection of different
types of entities, relations and events; but the fact that concepts belonging to these three kinds
have to be detected will remain.

The identification of each kind of information may require different strategies, and this has
resulted in the crystallization of entity, relation and event recognition as separate tasks within the
full IE problem. The distinction has been acknowledged by researchers, who have built IE systems
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(a) Passage, entities and relations

(b) Tabular view

Figure .: Relation extraction from a sample passage

which solve only one of these problems, or more than one but independently; and by evaluation
organizers, who have defined separate entity, relation and event recognition tracks in the major IE
evaluations carried out so far (Chinchor, ; Doddington et al., ).

A number of variations on these and other tasks have been defined through the years, and new
challenges for researchers in IE appear every year.

.. Relation Extraction

Among the three presented IE tasks, relation extraction has been chronologically the last one to be
considered. Even though IE evaluations were already being held in the late eighties, and the entity
and event recognition problems were distinguished no later than , the first major evaluation to
feature a separate relation recognition track did not take place until  (Chinchor, ).

However, relations are a cornerstone of human cognitive processes, and have been acknowl-
edged as such since early times. Aristotle himself includes the relatives (τ¨vα πρ ¨vος τι, things toward
something) as one of the ten basic categories of speech (τ¨vα λεγόμενα, things that are said) in his
homonymous work Categories, written in the th century BCE. Hence, the ability to capture
relational information is tantamount to the development of useful IE systems.

In more modern terms, the definition of relation in IE follows its mathematical use, and is that of
a set of n-tuples of entities (whichever entities are defined in the scenario of extraction). Figure .a
shows the results of relation extraction on a sample passage in which the entities had been previously
recognized, and figure .b contains the same information in tabular form, a representation which
emphasizes the tuple-like nature of relations.

Even if the term relation detection has sometimes been used as a synonym of relation extrac-
tion (e.g., by Zhao and Grishman, ), in this document we will use its more constrained meaning,
as the task of identifying the tuples of entities which are related in some way. Relation extraction
can then be seen as the task which encompasses both the detection and the classification of the
relations into a set of categories—predefined or not.

. Machine Learning for Adaptive Information Extraction

As mentioned in Section ., IE requires a significant amount of specific linguistic knowledge. At
the core of most IE systems lies a set of linguistic patterns which are used to extract the concepts
present in the text, and which are highly language-, domain- and style-specific. A change of a single
one of these factors often render the patterns ineffective. Moreover, the manual acquisition, or adap-
tation, of these patterns—and other required linguistic knowledge—can become highly expensive,
demanding human experts on the extraction scenario to undertake a lengthy involvement.
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The specificity of the knowledge required for IE hence supposes a drawback on the portability
of IE systems. This portability bottleneck of IE, as well as the success of machine learning (ML) and
corpus-based approaches in producing competitive systems in many NLP tasks—and at a lower cost
than their hand-crafted equivalents—has encouraged research in the application of ML techniques
to the construction of adaptive IE systems, which could be easily ported to other domains, styles
and languages. During the last two decades, a plethora of such adaptive IE systems have been
developed (Turmo et al., ).

.. Towards Unsupervised Information Extraction

ML approaches allow the acquisition of knowledge for IE at a lower cost than those based on manual
introduction by a human expert. However, in many cases the burden of the acquisition task still
falls mostly on the expert, as she is responsible for feeding the ML system the examples from which
to learn. Traditional supervised systems demand hand-annotated corpora; and even if techniques
such as active learning (in which the system interactively demands the annotation of those examples
from which it expects to learn the most) can reduce the required volumes of data, the production
of such corpora remains a strenuous endeavour.

For this reason, efforts have been devoted to remove elements of supervision in ML processes in
general, and in that of extraction pattern learning in particular. This has given birth to a number of
weakly supervised methods for IE pattern acquisition, which have successively reduced the elements
of human involvement in the process. Weakly supervised methods can benefit from unannotated
text collections, and may only require from the expert:

• a definition of the domains present in the collection;

• and/or the classification of a small set of documents (the seed documents) into the differ-
ent domains, or, alternatively, a small set of patterns representative of these domains (seed
patterns).

Nevertheless, this decrease in human supervision presents a drawback: the more reduced the
input from the expert, the more sensitive to it the learning process. Human decisions can hence
introduce a strong bias in weakly supervised approaches. To minimize the impact of such decisions
at an early stage, it may be necessary to browse a significant fraction of the documents in the
collection. However, this becomes not only expensive, but even unfeasible, when trying to exploit,
for instance, the huge textual databases that are becoming increasingly available.

Additionally, the fact that the selection of relevant seed documents or patterns demands an a
priori definition of the domains reduces the utility of IE as an exploratory tool for new and unknown
domains.

It remains an open issue, hence, how we can exploit, in an exploratory and unbiased manner,
large document collections, which may come, partially or wholly, from unfamiliar domains. Or,
otherwise stated: how we can build a system which achieves unsupervised information extraction.

. Clustering

Data clustering can be traced back to the first half of the twentieth century (Tryon, ), and can
be defined as “the organization of a collection of patterns [. . . ] into clusters based on similarity.
Intuitively, patterns within a valid cluster are more similar to each other than they are to a pattern
belonging to a different cluster ” (Jain et al., ).

The utility of clustering techniques as an automatic tool for exploratory analysis of data col-
lections is well-known (Hartigan, ; Dubes and Jain, ; Dimitriadou, ). Clustering has
been successfully used in areas as diverse as image segmentation (Silverman and Cooper, ),
bridge building (Reich and Fenves, ) or genetics (Eisen et al., ).

In particular, the application of clustering to fields such as genetics is of particular interest to our
discussion because of the challenges they pose. The volumes of data involved are huge, and there is
often ignorance about what these data might contain. Unsupervised approaches are indispensable
in this context, a fact which is acknowledged for instance by Eisen et al. (): “As we have little a
priori knowledge of the complete repertoire of expected gene expression patterns for any condition,
we have favored unsupervised methods or hybrid (unsupervised followed by supervised) approaches”.
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Moreover, the presence of noisy or just irrelevant data also poses problems of its own. In this
context, traditional clustering methods may need to be replaced by robust clustering (Davé and
Krishnapuram, ) and minority clustering (Ando and Suzuki, ) ones.

. Our Proposal

The starting point of this thesis are the two facts we have exposed in the last two sections:

• Weakly supervised approaches for IE pattern acquisition are unsuitable for exploration of
large document collections from unfamiliar domains. Elements of supervision strongly bias
the learning process, and avoiding them requires comprehensive examination of the data, with
increasing human costs (Section ..).

• Unsupervised clustering techniques have been successfully applied in areas involving huge
collections of data whose contents were mostly unknown (Section .).

It seems thus reasonable to think that clustering techniques can effectively help to overcome the
limitations of weakly supervised approaches, and push the state of the art of IE pattern acquisition
one step closer to the goal of unsupervised information extraction.

In this thesis, we propose the incorporation of clustering techniques into the process of IE pattern
learning, to effectively remove elements of human supervision. We believe that guiding the whole
process of pattern learning by an automatic analysis of the data, without an explicit human bias,
will avoid the drawbacks of existing seed-based approaches.

Our goal is hence to develop a methodology that, from a completely unannotated collection of
documents, and without the need of any kind of expert-given seed documents or patterns, produces
good quality patterns, useful for IE and possibly other NLP tasks. And our proposal to achieve
this goal is to enhance the pattern generation process with clustering techniques.

A graphical representation of the differences between existing approaches and the one we propose
is depicted in Figure .. As mentioned in Section .. weakly supervised approaches often require
manual selection of a set of seeds from which to start the pattern learning process (Figure .a).
Our proposal is to remove this process of manual seeding with the help of clustering techniques.

We conceive at least three different ways in which clustering and pattern learning can be com-
bined:

• Figure .b shows clustering and pattern learning as independent processes in a sequential
combination, the latter taking as input the output of the former. This is the simplest approach.

• Figure .c shows clustering and pattern learning as independent collaborative processes, each
one receiving input from and giving output to the other.

• Figure .d shows clustering and pattern learning as a unique joint process. Clusters and
patterns are learned at the same time by a single learner.

The feasibility of enhancing pattern learning by clustering depends on the availability of suitable
clustering methodologies. For this reason, in a first step our primary focus of research has been
clustering, and then shifted towards the application of this newly developed clustering methodologies
to enhance the pattern learning process.

In order to concentrate our efforts, we have deliberately chosen to focus our research only on
relation detection patterns (Section ..). However, we believe that the same or similar techniques
can be successfully applied to entity and event extraction.

. Overview of this Document

The rest of this document is organized as follows. Chapter  contains a historical review, up to
the state of the art, of the development of weakly supervised pattern acquisition approaches for
relation extraction. Chapter  is the first one to consider the problem of clustering, focusing on
the task in its usual setting, and Chapter  incorporates the techniques studied therein to devise
and evaluate pattern learning approaches using sequential and collaborative schemes. Chapter 
also deals with clustering, but considers the alternative setting of minority clustering. Minority
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(a) Pattern learning with manual seed selection

(b) Sequential clustering and pattern learning

(c) Collaborative clustering and pattern learning

(d) Joint clustering and pattern learning

Figure .: Approaches for IE pattern learning
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clustering techniques are key to the development of learning approaches based in a joint scheme,
which are described and evaluated in Chapter . Finally, Chapter  summarizes all work done,
draws conclusions from it, and sketches possible future lines of research.

A number of appendices, with supplementary material not included within the body of the
thesis for fluidity of the exposition, are included at the end. Appendix A provides the definitions
of common mathematical concepts which are used through the document. Appendix B contains
the formal proofs of secondary propositions which are omitted in the main text; and Appendix C
contains, in a diagrammatic fashion, the evolution of the entity and relation type hierarchies used
in the ACE evaluations—the main IE framework which we have used for our evaluation. Finally,
Appendix D lists the publications which have been produced with the research in this thesis.





2
State of the Art

Qui oblidi els mestres està destinat a la mediocritat i a la
repugnància artística.

Arnau Tordera

This chapter presents an overview of the state of the art in weakly
supervised approaches to pattern acquisition for relation extraction.

Section . contains a historical perspective of the development
of IE, centered around the evaluations that have shaped it. Next, Sec-
tion . focuses on the approaches which have been proposed for weakly
supervised relation extraction, and Sections . and . provide an
overview at the elements of supervision and pattern formalisms which
have been used within these approaches, respectively. Last, Section .
discusses the issue of IE evaluation, and the proposals which have been
made regarding it.

O ne of the first reported IE systems operating on texts of unrestricted topic was imple-
mented by de Jong (, ). His FRUMP system monitored a newswire using simple
scripts to cover news stories. Sager () mentions an even earlier project, before ,

directed by Sager herself, from the Linguistic String Project Group at New York University. Spon-
sored by the American Medical Association, the work sought to convert patient discharge sum-
maries (filled out in English) into a structure for a traditional database management system.

. Development of Information Extraction

Nevertheless, the development of IE is clearly tied to the series of evaluations which, sponsored
by the Defense Advanced Research Projects Agency (DARPA) of the United States government,
have been defining IE tasks and assessing the performance of IE systems since : the Mes-
sage Understanding Conference (MUC), Automatic Content Extraction (ACE) and Text Analysis
Conference (TAC) series. Even if other conferences have held IE evaluations, those in the MUC-
ACE-TAC triad have undoubtedly been the longest lasting and most influential ones.

Figure . contains a timeline of the IE evaluations which took place between  and ,
showing the various relations between the tasks therein defined. Solid arrows denote continuity in
a task; whereas dashed arrows denote the incorporation of elements or ideas from previous tasks.

Next Sections .. to .. give a historical overview of the periods spanned by the MUC, ACE
and TAC evaluations, respectively, and detail the various IE tasks that were considered at each
time.
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Figure .: Timeline of tasks in IE evaluations

Coreference Resolution (CO), Coreference Resolution in Multiple Languages (COML), Entity Detection and

Recognition (EDR), Entity Detection and Tracking (EDT), Global Entity Detection and Recognition (GEDR),

Global Relation Detection and Recognition (GRDR), Knowledge Base Population (KBP), Local Entity Detection

and Recognition (LEDR), Language-Independent Named Entity Recognition (LINER), Local Relation Detection

and Recognition (LRDR), Machine Learning for Information Extraction (ML IE), Modelling Unrestricted Corefer-

ence in OntoNotes (MUCO), Named Entity (NE), Relation Detection and Recognition (RDR), Relation Detection

and Characterization (RDC), Scenario Template (ST), Template Element (TE), Time Expression Recognition

and Normalization (TERN), Template Filling (TF), Template Relation (TR), Value Detection and Recogni-

tion (VAL), Event Detection and Recognition (VDR)
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.. Message Understanding Conference Era

The Message Understanding Conferences (MUC) were started in  by the US Navy (the Naval
Ocean Systems Center, San Diego). They soon attracted the attention of DARPA, which decided,
in , to start the TIPSTER text program to fund the research efforts of several of the MUC par-
ticipants. The program, in addition to IE, promoted research in IR and automatic summarization,
and also launched, in parallel, the Text Retrieval Conferences (TREC) to spur the development of
these two technologies.

The first five editions of MUC, held between  and , focused on the Template Filling (TF)
task: a certain domain was considered (Naval tactical operations, Latin American terrorism, joint
ventures ormicroelectronics), and for each occurrence of an event within a predefined set, a template
with a number of slots had to be filled, capturing its information. Whereas the MUC- organizers
did not define the slots in the template nor any evaluation metrics, by MUC- two sets of object-
oriented templates were being used, and the evaluation included the classical precision, recall and
F metrics, as well as an alternative set of error-oriented ones (see Section .).

From the experience in previous evaluations, in  the organizers of MUC- decided to split
Template Filling into a number of subtasks, with three main goals in mind:

• Identifying domain-independent components among those which were being developed. To meet
this goal, the organisers proposed the Named Entity (NE) subtask, which involved recognizing
and classifying entities (organizations, people, locations), temporal expressions (dates, times)
and quantities (monetary values, percentages).

• Focusing on the portability of the IE task to different event classes. The organization proposed
to standardize low-level objects (people, organizations. . . ) since they were involved in many
different types of events. The Template Element (TE) subtask was proposed with this aim.
The old-style MUC task of detecting the events in which the template elements were involved
was named Scenario Template (ST) task.

• Encouraging work on deeper understanding. Three more subtasks were proposed with this
goal, namely Coreference Resolution (CO), Word Sense Disambiguation (WSD) and Pred-
icate-Argument Syntactic Structuring (PASS). Finally, due to lack of agreement about the
definition of the other two, only the first task was evaluated.

The final installment of the MUC series, MUC-, held in , continued the  tasks evaluated
in MUC-, and added that of Template Relation (TR), which required the identification of relations
such as location-of, employee-of and product-of holding between template elements.

It is interesting to mention that, by that time, the conferences were no longer solely focused on
the English language: From MUC- on the evaluations contained subtasks in Japanese, and MUC-
also contained a Chinese subtask. Moreover, MUC- and MUC- were held jointly with the two
editions of the Multilingual Entity Task (MET) conference, which included an NE evaluation on
Japanese, Chinese and Spanish documents.

.. Automatic Content Extraction Era

At the end of TIPSTER, DARPA decided to launch the Translingual Information Detection, Ex-
traction and Summarization (TIDES) program, which focused on making information in other
languages accessible to English speakers. TIDES continued the TREC conferences; and held be-
tween  and  the Document Understanding Conference (DUC) series, which evaluated
automatic summarization systems.

Regarding IE, the main evaluation vehicle of TIDES were the Automatic Content Extrac-
tion (ACE) evaluations, organized by the National Institute of Standards and Technology (NIST).
In addition to the stronger emphasis on multilinguality (the English, Chinese and Arabic languages
were included), ACE also differed from MUC on the sources of the used documents: in addition to
newswire text, the first ACE corpora included broadcast news and newspaper text, both manually
and automatically transcribed. The aim was to study the drop in performance experimented by IE
systems when processing degraded inputs.

Even if OCR versions of newspaper were dropped in ACE-, and ASR versions of broadcast
news in ACE-, this last evaluation incorporated in their place documents coming from broadcast
conversations, conversational telephone speech, Usenet groups, and weblogs.



 CHAPTER . STATE OF THE ART

The first sketches of the ACE evaluation plan were written in , and at that time a MUC-
style NE task was considered, including as subtasks proper named entities (persons, locations,
organizations), temporal expressions and quantities. However, by the time the first pilot ACE
evaluation was held the next year, there had been a significant change with respect to previous tests.
In the ACE evaluations “the research objectives are defined in terms of the target objects (i.e., the
entities, the relations, and the events) rather than in terms of the words in the text” (Doddington
et al., ). This distinction between the objects and the mentions to the objects lead to the
definition, in most ACE evaluations, of diagnostic tasks at the mention level, in parallel to the
corresponding main tasks at the object level.

The tasks that were considered during the lifespan of ACE were the following:

• The Entity Detection and Tracking (EDT) task, introduced in , focused only on the
entity subtask from the  NE task. The fact that it was object- rather than mention-based
implied that systems had to incorporate some kind of coreference resolution so as to merge
the mentions corresponding to the same discourse entity. It was hence related to the NE, TE
and CO tasks from MUC. The task was renamed to Entity Detection and Recognition (EDR)
for ACE-.

• The Relation Detection and Characterization (RDC) task, introduced in , required the
identification of explicit and implicit relations between the found entities, and was hence an
extension of the TR task from MUC. The task was also renamed to Relation Detection and
Recognition (RDR) for ACE-.

• The Event Detection and Recognition (VDR) task, introduced in  but not evaluated
until , required the identification of events in which the found entities were involved.
However, the concept of event was simpler than that in ST from MUC, being always expressed
by means of a trigger word.

• The Time Expression Recognition and Normalization (TERN) task, also introduced in ,
required the detection of time, date and duration expressions, as defined in the TIMEX
standard (Mani et al., ). It was the extension of the time subtask from the  NE task.

• The Value Detection and Recognition (VAL) task, introduced in , required the detection
of non-entity values which were involved in any of the events from VDR. It was an ad hoc
extension of the quantity subtask from the  NE task, biased towards the type of events
that were to be recognized in the evaluation.

For each object and mention which was detected, a number of attributes had to identified. In
particular, several two-level hierarchies of types and subtypes were used for entities, relations and
events in the successive evaluations.

The only edition in the series to differ significantly from this evaluation scheme was the last one.
For ACE-, the organizers dropped all tasks but EDR and RDR, and incorporated two corre-
sponding tasks of Global Entity Detection and Recognition (GEDR) and Global Relation Detection
and Recognition (GRDR), in which mentions of entities and relations had to be merged across sev-
eral documents. The previous document-wise tasks were retronymly renamed Local Entity Detection
and Recognition (LEDR) and Local Relation Detection and Recognition (LRDR).

During the timespan of ACE, another two IE-related evaluations were carried out. The first one
of them was the Language Independent Named Entity Recognition (LINER) shared task, organized
within the CoNLL conference in  and . The task required the identification of non-nested
proper named entities in Spanish, Dutch, English and German, and was more ML- than IE-oriented.

The second one was the  Pascal Challenge Machine Learning for Information Extraction,
organized by the Dot.Kom European project. Several tasks were defined according to the conditions
in which the learning was performed, but they all required slot filling from semi-structured English
documents containing calls for workshops. The detection of workshop events was implicit, in the
sense that every document contained one and only one of them, and of a single type (the one-
per-document assumption, usual in this and related domains; Freitag, ; Califf, ). This
evaluation, too, was more a testbed for ML algorithms than an actual IE task.
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(Byrne and Dunnion, ) • · · • · · · · · • · · · • · · ·

(Castelli et al., ) • · • · · • • · · · · · • • · · ·

(Chada et al., ) • · • · • • · · · · · · · · · • ·

(Chen et al., ) • · • · · · • • · • • • · · • · •

(Chrupała et al., ) · • • · · · · • · · · · · • · · ·

(Gao et al., ) • · · • · · • · · · · · · • · · ·

(Grishman and Min, ) · · • · • · · · • · · · · • · · ·

(Intxaurrondo et al., ) · · · · · · · • · · · · · • · · ·

(Lehmann et al., ) • · • · · • • · · • · • · • · · ·

(Nemeskey et al., ) · · · · · · · • · · · · · · · · ·

(Song et al., ) • · · · · · · • · · · · · · · · ·

(Surdeanu et al., ) · • · · · · · • · · · · · • · · ·

(Varma et al., ) · · · • · · · · · · · · · · · · ·

(Yu et al., ) • • · • · · · · · · · · · · · · ·
Only for the Surprise Slot-Filling task.
With manual post-edition.

Table .: Systems taking part in TAC-KBP 

.. Text Analysis Conference Era

In , NIST decided to merge three evaluations, which up to that moment had been being held
separately, under the common umbrella of a new Text Analysis Conference (TAC): the Question
Answering (QA) track from TREC, the summarization exercises from DUC, and the Recognizing
Textual Entailment (RTE) challenge, which had been organized since  by the Pascal Network.
In , the QA task was replaced by Knowledge Base Population (KBP), which was more IE-
oriented and hence absorbed the ACE evaluations.

KBP combines in a single task elements that had been considered in isolation in previous
evaluations. The goal is expanding a given reference knowledge base, in which (possibly incomplete)
information about a number of entities is already present. This requires linking entities present in
a document collection to the ones in the base, as well as merging additional attributes and relations
that can be extracted from the documents. Wikipedia infoboxes have been used in all evaluations
so far as reference knowledge base—even if exact compliance with Wikipedia is not intended.

The task thus presents elements of entity, time, value, relation and event detection, as well
as cross-document coreference resolution. Additional complexities arise from the need to combine
information coming from several extractions, which may contain contradictions or redundancies
with one other or with the reference knowledge base. We can hence consider systems participating
in the KBP task as the cutting edge of IE technology.

Table . contains an overview of the systems that took part in the KBP evaluation in year
, focusing on whether they use (•) or not (·) of a number of different technologies. As we
can see, the contending systems are in most cases fairly complex, and integrate components and
methods from areas as diverse as:
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Prc Rec F Prc Rec F

(Chada et al., ) 66.8 64.8 65.8 (Gao et al., ) 14.0 14.4 14.2

Human 70.1 54.1 61.1 Median 21.4 10.5 14.1

(Surdeanu et al., ) 54.0 59.6 56.7 (Chrupała et al., ) 20.1 10.3 13.7

(Chen et al., ) 28.0 44.3 34.3 (Varma et al., ) 36.3 5.4 9.4

(Byrne and Dunnion, ) 66.6 18.7 29.2 (Nemeskey et al., ) 4.1 4.7 4.4

(Castelli et al., ) 31.0 25.9 28.2 (Song et al., ) 1.3 1.4 1.4

(Lehmann et al., ) 44.9 19.4 27.1 (Intxaurrondo et al., ) 4.6 0.5 0.9

(Grishman and Min, ) 28.0 26.0 27.0 (Yu et al., ) 0.3 2.4 0.5

Table .: Performance of systems presented at TAC-KBP 

• information retrieval, including query expansion and trigger word insertion;

• information extraction, including:

– manually built patterns, of shallow, syntactic and semantic nature,
– automatically learned patterns, acquired using supervised or unsupervised (distant su-

pervision, bootstrapping) approaches;

• inference, including validation by external databases, re-ranking and probabilistic reasoning.

Table . contains a summary of the results obtained by the presented systems, in terms of
precision, recall and F score (see Section .). For each one, the run with the highest F score
is reported. As can be seen, although the top-ranking systems significantly stand out from the
rest (even exceeding the reported human performance on the task), the majority of the F scores
lie in the -% range. Until the proceedings of the last KBP  evaluation become available,
these figures give a measure of both the difficulty of present-time IE tasks, and of the power of the
systems which are attempting to solve them.

Finally, despite not being IE-oriented, in these last years two evaluations on the related task
of coreference resolution have been performed: the  SemEval-/Senseval- Coreference Reso-
lution in Multiple Languages (COML) task, which required the detection of full coreference chains
between named entities, pronouns and full noun phrases in Catalan, Dutch, English, German,
Italian and Spanish; and the CoNLL- shared task on Modelling Unrestricted Coreference in
OntoNotes (MUCO), which presented a similar challenge, but in English only, and on the OntoNotes
corpus.

At the view of all this IE research frenzy, we believe that, well into the second decade of the
st century, the field seems to be in really good shape: new challenges are appearing every year,
and its research community is more active than ever—and willing to take them.

. Weakly Supervised Relation Extraction

The first IE systems that took part in the MUC evaluations, and still many of them nowadays,
had their knowledge hand-coded by human experts. As mentioned in Section ., this supposes a
drawback on the portability of IE systems to other languages, domains and writing styles.

To reduce this cost, two different strategies have been considered: the development of supporting
tools to aid the human experts in the task of adaptation (e.g., Yangarber and Grishman, ),
and the use of machine learning techniques to acquire the required knowledge. We will focus here
on the second approach. Research on ML for IE has been encouraged by the success of corpus-
based approached in other NLP tasks (Young and Bloothoft, ; Manning and Schütze, ). A
number of surveys of the application of ML methods to IE can be found in the literature (Cardie,
; Yangarber and Grishman, ; Turmo et al., ).

Most of the approaches proposed so far have been based on supervised learning methods. In
them, the learning process requires a corpus where relevant concepts are annotated. The applica-
bility of these approaches depends on the availability of such resources; and in order to stimulate
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research on IE, the organizers of evaluations like MUC or ACE would provide this kind of corpora
to the groups taking part in them. Supervision can also be online, if the system requests examples
to the user as the learning progresses (e.g., within the active learning framework).

However, this dependence on the examples to learn from, in turn, constitutes a bottleneck of
supervised pattern learning methods, as annotating a corpus requires a significant human effort.
Weakly supervised approaches seek to lower the costs of learning by reducing the supervision
required from the user. In this way, the overall cost is also reduced. Additionally, most of these
approaches can benefit from completely unannotated data. In a world in which the availability
of large amounts of textual information is unlimited in practice, these approaches are extremely
attractive for adaptive IE.

Next Sections .. to .. give a brief exposition of some among these weakly supervised
approaches, roughly grouped by the kind of strategies they use. A summary of all such systems is
presented in Table .. Given the aim of this thesis, we will focus on relation extraction systems, but
weakly supervised approaches have been proposed for other related tasks such as entity extraction
(Collins and Singer, ; Riloff and Jones, ; Yangarber et al., ; Davidov and Rappoport,
), event extraction (Basili et al., ; Harabagiu and Maiorano, ), or semantic relation
extraction (Chklovski and Pantel, ; Turney, ), just to name a few.

.. Statistical Approaches

A number of approaches for weakly supervised relation extraction can be considered statistical in
the sense that they gather diverse statistics from a corpus and determine the related entities and
the relevant patterns from the collected information. They often perform a single pass over that
dataset, a property that can make them more scalable to large collections than other approaches.
However, it also limits the range of techniques they can incorporate.

AutoSlogTS The first IE pattern learning approach not to require complete supervision was
AutoSlogTS (Riloff, ). It did require however, the classification of all documents in the training
set as either relevant or non-relevant to the extraction task. AutoSlogTS follows a two-step scheme:
in a first pass, one or multiple patterns are generated for every noun phrase in the corpus. The kind
of patterns that are generated is determined by a set of meta-patterns, manually built to capture
usual grammatical constructions. In a second pass, frequency statistics are gathered for each
generated pattern. They are used to determine their relevance rate, found as the ratio between the
number of occurrences of the pattern in the relevant documents and those in the overall collection.
The relevance rate is scaled by the logarithm of the absolute frequency of the pattern, and the
highest ranked ones according to this score are then reviewed and annotated, for use within the
CIRCUS IE system (Lehnert, ).

DIRT The system proposed by Lin and Pantel (), Discovery of Inference Rules from
Text (DIRT), takes as input a syntactic path expressing a relation between two entities, and pro-
duces a set of paths which express the same relation—in most cases, paraphrases of the original
one. The assumption behind it is what the authors call the extended distributional hypothesis:
“If two paths tend to occur in similar contexts, the meanings of the paths tend to be similar ”. The
system works by finding all paths in a corpus which satisfy a small set of constraints, and ranking
them according to the mutual information between the distributions of the words in their slots and
of those of the original path. A number of heuristics are incorporated to further prune the search
space.

Sudo et al. , ODIE Sudo et al. () describe an approach in which the user provides the
system a set of narrative sentences describing an scenario, and the system gives as output a set of
extraction patterns. From the scenario description, a query is constructed for an IR engine. After
syntactic parsing of the retrieved documents, all syntactic subtrees from the parse trees therein are
indexed using a frequent tree mining algorithm (Abe et al., ), and sorted according to their
tf-idf scores. Finally, the highest ranked ones are taken as extraction patterns.

Extraction of relations between concepts in an ontology instead of relations between entities.
As a generalization of the original distributional hypothesis of Harris ().
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Sekine () extends this approach by incorporating information from a paraphrase database
built offline (Sekine, ). In the resulting On-Demand Information Extraction (ODIE) system,
the found extraction patterns are merged into pattern sets, according to whether they have been
found to be paraphrases of each other. After generation, these patterns are applied again on the
corpus and the extracted entity pairs for each pattern set are integrated into tables, for later human
inspection or automated use.

KnowItAll Etzioni et al. () present a detailed description and evaluation of KnowItAll, a
complex system which is mainly devised for extraction of facts (lists of entities belonging to a certain
class), but which is also capable of extracting binary or n-ary relations. The input of KnowItAll is
the information focus: a description of the extraction task which contains, for the target relations
and the types of the entities involved, a number of keywords which may act as triggers for them.

In a first phase, these keywords are applied within a number of domain-independent templates
to obtain extraction patterns (used to locate the candidates within sentences) and assessment
patterns (used to query search engines and validate the extracted facts). The best assessment
patterns for each pair are determined using a bootstrapping loop (see Section ..), and used as
features for a naive Bayes classifier.

After the bootstrapping phase, the obtained extraction patterns are applied on the corpus
sentences to obtain entity candidates, and the naive Bayes classifier is used to discriminate these
candidates and reject spurious extractions. After the entities are extracted, the same process is
repeated to find the relations existing between them.

A number of extensions are proposed to this basic scheme (pattern learning, subclass extraction
and list extraction), but they deal mainly with the entity extraction task and will hence be omitted
here for brevity.

Hassan et al.  Starting with a pair of entity types provided by the user, the first step of
the approach of Hassan et al. () is to gather POS n-gram frequencies from a corpus, and to
generate a Markov model from these statistics. Among all the POS sequences up to a certain length
and which contain the two demanded types, those which are assigned a highest probability by the
model are selected as patterns.

After the patterns are applied to the corpus and the matched entity tuples are collected, assess-
ment of the confidence of both patterns and tuples is found using the HITS algorithm (Kleinberg,
). Optionally, to improve the matching process, the entity tuples can be previously clustered,
using the Markov cluster algorithm (van Dongen, ).

URES The proposal of Rosenfeld and Feldman () is Unsupervised Relation Extraction Sys-
tem (URES), a system which takes as input a description and a set of seed tuples for the target
relation.

In a first step, the description is used to generate a query for an IR engine. The seed tuples are
then searched across the retrieved documents, and the contexts in which they co-occur are taken
as positive examples for the pattern learner. Positive examples for other relations are taken as
negative examples, as well as pairs formed with other entities which co-occur in the same sentence
with a seed tuple. The patterns are generated by generalization of all pairs of positive contexts,
using optimal string alignment, and the negative contexts are then used to assess their precision.
Patterns whose precision falls below a certain threshold are removed.

The found patterns are then applied on all the sentences in the corpus, using one of two extrac-
tion engines: a simple one which uses a shallow parser to determine the possible entities, and a
full-fledged generic one (TEG; Rosenfeld et al., ).

TextRunner, O-CRF Banko et al. () start by identifying heterogeneity and efficiency as
the main problems to deal with by unsupervised IE systems processing large corpora, such as the
Web, and propose TextRunner. In order to deal with the former, no named entity recognition

To reduce supervision, the authors suggest the use of a high-precision and low-recall unsupervised IE system,
specifically KnowItAll, to provide the seeds. In that case, the supervision requirements become those of the seeding
system.

The use of named entity recognition within this engine is studied by Feldman and Rosenfeld ().
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component is incorporated, and all noun phrases are considered as entities instead. To achieve the
latter, the algorithm performs the extraction task in a single pass over the data corpus.

In a first phase, TextRunner takes a small sample of the input corpus and performs self-
supervised learning : the sentences therein are parsed, and for every pair of co-occurring entities,
they are considered related if the parse tree containing them satisfies a number of predefined condi-
tions, and unrelated otherwise. The dataset thus generated is used to train a naive Bayes classifier.
However, to avoid dependency on a parser, which are known to suffer from brittleness over hetero-
geneous document collections, the model uses form- and POS-based features only.

After the classifier is learned, extraction is performed on the whole corpus, collecting all entity
pairs which are judged related by it. To increase recall, the contexts are simplified using chunk-
based rules (e.g., removal of adverbial and prepositional phrases). The relatedness of the collected
entity pairs is finally assessed using a probabilistic redundancy model (Downey et al., ), and
those considered related are indexed to allow for future user queries.

Later, Banko and Etzioni () proposed O-CRF, which follows the same scheme but replaces
the naive Bayes classifier by a conditional random field, and uses Resolver (Yates and Etzioni, )
to find relation synonyms. The work also contains a proposal for combination of unsupervised and
supervised relation extraction learners, using stacking (Wolpert, ).

.. Clustering Approaches

Given the unsupervised nature of the clustering task, clustering techniques are a natural choice as
the backbone of weakly supervised relation extraction approaches. The main assumption behind
these approaches is that entity pairs with similar syntactic contexts will be similarly related, so
groups (clusters) of similar contexts (patterns) will contain pairs bound by the same relation.
However, the determination of a suitable similarity metric is crucial to the performance of these
approaches, and their larger computational requirements with respect to the previously presented
simpler statistical methods can become an issue when facing large document collections.

Hasegawa et al. , Zhang et al.  In the work of Hasegawa et al. (), the authors
present a purely clustering-based approach for the construction of tables of related entity pairs
in a corpus. After named entity recognition, all pairs of co-occurring entities are collected, and
the intervening words in all these co-occurrences are merged into a single context vector for each
pair. The entity pairs are clustered with the hierarchical agglomerative clustering algorithm (HAC;
Murty and Krishna, ), using the cosine distance, the complete-link criterion, and a manually
set merging threshold. Small clusters are discarded from the resulting clustering, and each one
among the remaining ones is labelled with the most frequent context words in it, as an indicator of
the relation existing between its entity pairs.

The approach of Zhang et al. () follows the same scheme with minor changes. It uses the
minimum spanning parse trees between the entity pairs instead of a bag-of-words vector to represent
their context, and a tree kernel is defined to replace the cosine in the similarity calculations. Group-
average is used instead of complete-link within the agglomerative algorithm, and the most frequent
root of the context parse trees is used as relation label.

Chen et al.  The approach proposed by Chen et al. () requires two entity types as
input. All pairs of entities belonging to one type each and co-occurring in the same sentence are
collected. Similarly to previous work, the words appearing in their contexts are used to generate a
dataset of bag-of-words vectors, which are then clustered using k-means. However, this approach
uses a joint strategy, based on resampling, to determine both the optimal feature subset and number
of clusters (Levine and Domany, ). After clustering, discriminative category matching (Fung
et al., ) is used to determine a relation name from each one of the clusters.

Unrestricted Relation Discovery Shinyama and Sekine () present Unrestricted Relation
Discovery, a more complex approach in which clustering is used at two different levels, and which
tries to solve the task of preemptive information extraction, i.e.: “[the creation] of all feasible IE
systems in advance without human intervention”.

The system is tailored for news articles. After web crawling across a number of online news
providers, the collected articles are clustered to form basic clusters, each one hopefully containing
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articles related to a single event. This clustering is performed using tf-idf scores of the bag-of-words
in each document, cosine similarity, and an incremental clustering algorithm (similar to Nearest
Neighbour Clustering; Lu and Fu, ). The named entities present across the basic clusters are
linked using single- and cross-document coreference chains.

For each document, a semantic graph representation of its sentences is then built (GLARF;
Meyers et al., ), and basic patterns, corresponding to subgraphs within it, are detected. Finally,
all mappings between the entities of every two basic clusters are considered, and the similarity of the
two clusters according to each mapping is calculated. If the similarity exceeds a certain threshold,
the basic clusters are merged to form meta-clusters. Finally, the entity tuples in each meta-cluster
are collected in tables: each one of these tables will correspond to a single relation.

URIES Rozenfeld and Feldman () and Rosenfeld and Feldman () extend the previously
presented URES approach, using clustering to provide the required seed tuples. This new approach
is named Unsupervised Relation Identification and Extraction (URIES) by the authors.

Similarly to URES, in the unsupervised relation identification phase no named entity recognition
is performed and instead all noun phrases which are judged to contain a proper noun are taken as
entities. All contexts in which any two such entities co-occur are gathered. The Apriori association
rule mining algorithm (Agrawal and Srikant, ) is used to obtain URES-style patterns to be
used as features, and an entropy-based criterion (Dash et al., ) is used to perform selection
among them.

Once the data is gathered and the feature set determined, HAC with single-link clustering and
cosine similarity is used to obtain clusters and the clusters whose size fall below a threshold are
pruned. The remaining clusters can then be used as seeds for URES, which will proceed up to the
obtainment of the extracted relations.

Andrews and Ramakrishnan  The approach of Andrews and Ramakrishnan () al-
lows the simultaneous unsupervised detection of domain entities and relations from large corpora,
starting from a small set of seed entities. Focusing of the relation detection phase, their procedure
starts by gathering all contexts in which two entities co-occur, representing them as a tf-idf bag-
of-words. This context dataset is clustered according to the cosine similarity between them, using
the affinity propagation algorithm (Frey and Dueck, ). Clusters which are deemed too small,
or whose elements correspond mostly to contexts of a single entity pair are pruned as irrelevant.
The remaining ones will correspond to relations present in the domain.

IDEX Eichler et al. () proposes another clustering-based approach, IDEX, whose input is an
IR-style query. After retrieval, the sentences in the obtained documents which contain at least two
entities are parsed, and for each entity pair, its parse skeleton (parse link chain) is found. As the
work focuses only on verb relations, only those skeletons in which the root is a verb and either the
subject or the object is an entity are considered.

The obtained skeletons are clustered using the single-pass leaders algorithm (Hartigan, ),
and a combination of parse, coreference and semantic (via WordNet) information as similarity
measure. As usual, the resulting clusters correspond to different relations present in the corpus.

Yan et al.  A recent system which benefits from the special features of Wikipedia with
respect to other Web sources used as a corpus (much cleaner text, and heavy cross-linking between
documents; Giles, ; Gabrilovich and Markovitch, ) is that of Yan et al. (). Starting
from a set of Wikipedia article texts (e.g. all those belonging to a certain category) the sentences
are scanned for co-occurrences of a reference of the entitled concept and an outgoing link. The
entities referenced by the links are likely to share a relation with the one described in the article.

For each one of these concept pairs, additional documents from the Web are obtained using a
search engine, and the relational terms (those which express the relation between the two entities)

The similarity function is complex, and details of its calculation can be found in the original paper. For our
purposes, it suffices to say that it involves finding the similarity between entities mapped to each other, as a function
of the basic patterns they appear on; as well as the similarity between the documents, as a function of the words
they contain.

The authors also experimented with other linkage policies, as well as with k-means, but obtained the best results
with single-link.
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are detected using an entropy-based approach (Chen et al., ). The surface patterns (sequences
of words containing the related terms, relational terms and functional words) in these Web doc-
uments are then collected. With regard to the original Wikipedia articles, dependency patterns
are generated from the parse trees of the sentences which contain the related entity pairs, using a
frequent tree mining algorithm (Zaki, ).

The clustering of the concept pairs is then performed in two steps. First, they are clustered
according to the dependency patterns they share, using a k-means-style algorithm enhanced with a
similarity threshold, which provides good precision clusters. To improve recall, the same algorithm
is applied to refine the existing clustering, but using similarity between the surface patterns in the
pairs. Each cluster will now contain concept pairs from a single relation, which is labeled using its
centroid.

Yao et al.  The work of Yao et al. () proposes a triad of generative models of increasing
complexity, similar to latent Dirichlet allocation (LDA; Blei et al., ). In them, the occurrence of
a relation within a document is regarded as a generative process in which the relation type, the entity
types (optionally), and the linguistic features are successively drawn from conditional multinomial
distributions. The model parameters and the values of the hidden variables (relation and entity
types) are estimated from the observed data using expectation-maximization (EM; Dempster et al.,
), with Dirichlet distributions as priors for all multinomials. After estimation, the inferred
relation type variable is used to obtain clusters, which will contain entity pairs related by the same
relation.

The features used in the model include the dependency path between the two entities and the
form of the entities themselves—as well as their types, the forms and POS of the words in the
context, and the presence of trigger words.

.. Bootstrapping Approaches

Bootstrapping (Yarowsky, ; Abney, ) is a meta-algorithm which uses a supervised learning
algorithm (the base learner), a reduced set of labeled data, and a (usually much larger) set of
unlabeled data. It is an iterative procedure in which, at each step, the base learner is trained using
the labeled data, and the learned model is used to classify the unlabeled data. Those unlabeled
samples which are classified with the highest confidence are then added to the labeled dataset, and
the process is repeated.

A popular variation on this scheme is co-training (Blum and Mitchell, ), in which it is
assumed that two different views (e.g., representations using different features) of the dataset are
available, and two base learners are used, each one considering only one of the views.

The task of weakly supervised relation extraction fits quite naturally into this framework, and
a significant number of approaches have hence appeared which apply bootstrapping techniques.
However, even if bootstrapping is popular, it presents some drawbacks: for instance, the use of
small seed sets implies that these seeds introduce a large bias on the learning process, and the lack
of a stopping criterion means that the results often start degrading after a number of iterations.

DIPRE, Snowball Brin () presents one of the first bootstrapping-based approaches for
relation extraction. His Dual Iterative Pattern Expansion (DIPRE) is a system for extraction from
Web documents which is based on the pattern-relation duality : “given a good set of patterns, we
can build a good set of tuples [. . . ] given a good set of tuples, we can build a good set of patterns”.
Starting from a small number of sample tuples belonging to the target relation, all their occurrences
in the collection are found. Patterns are then acquired by simple generalization from the occurrence
contexts, and applied again on the data. The occurrences of the tuples extracted by the newly found
patterns can then be used to find new patterns, in an iterative fashion, until desired.

Agichtein and Gravano ()’s Snowball is an extension to DIPRE which incorporates a number
of enhancements over the previous work. First, a Named Entity tagger is incorporated, and the
named entity class of the two related entities is included in the patterns to improve their precision.
Second, the generalization process is performed using a single-pass clustering algorithm. As a
result, the contexts in the patterns are the centroids of these clusters, instead of being exact

More precisely, the cosine distance between the bag-of-patterns representation of each pair is used.
In this case, the sum of Levenshtein distances in a minimal matching of the two surface pattern sets is used.
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sequences of tokens, and the matching of patterns and document text is performed by calculating
and thresholding the similarity between the two. Lastly, the confidence of patterns and tuples is
estimated in a recursive way (that of the former determined that of the latter, and vice-versa), and
smoothed across the iterations of the algorithm.

ExDisco Yangarber et al. () propose another bootstrapping approach. ExDisco starts from a
number of seed patterns. The patterns induce a split on the document collection: those documents
which contain at least one pattern will be deemed relevant to the relation, whereas those who do
not will be non-relevant. All sentences in the corpus having been converted to patterns, these
patterns are ranked according to how much their distribution across the collection correlates with
the relevance of the documents. The highest ranked patterns are then selected, and the process can
be iterated, starting with a new split.

Yangarber () presents an enhancement over this basic scheme, with the goal of removing
one of its main drawbacks, namely, the terminating condition. To achieve it, not only one but a
number of different relations are learned at the same time, using ExDisco. The tuples learned by
the other (competing) learners provide negative evidence for the target relation, and can hence be
used to estimate the precision of the patterns.

Yangarber () coins the term counter-training to denote this learning framework.

Zhang b, Qian et al. , Qian and Zhou  The proposal for weakly supervised
relation extraction of Zhang (b) is based on support vector machine bootstrapping. A compar-
ison of three different approaches to achieve it is presented: self-bootstrapping, in which the whole
input dataset is used; bagging-based bootstrapping, in which a number of datasets are generated
from the input using bagging (Breiman, ); and bootstrapping using random feature projection,
in which the datasets are generated by selecting a subset of the input features at random and
projecting the input over these dimensions.

However, Zhang (b) only apply their method on the relation classification task, i.e., the
entity pairs in the dataset are known to be related, and it is the nature of this relation which has
to be established.

Qian et al. () extend this approach using stratified sampling : the ratio of relation classes
in the unlabeled samples which are incorporated at each iteration is constrained to be the same as
that in the domain, yet the approach remains a relation classification, not a relation extraction,
one.

However, knowledge of the distribution of all relation classes is not always available. In order
to overcome this limitation, Qian and Zhou () proposes to extend the previous approach,
using clustering to partition the unlabeled data, and using clusters instead of classes as strata for
sampling.

Stevenson , Stevenson and Greenwood , Greenwood and Stevenson 
The approach of Stevenson () is based on semantic similarity between patterns: starting from
a number of seed patterns, at every step the candidate patterns which are the most similar to the
already learned ones are incorporated. Thresholds are used to discard too frequent and too rare
patterns, and the similarity measure of Lin () is used, applied over the WordNet hypernymy
hierarchy.

Stevenson and Greenwood () present a minor modification of the previous work, in which
the similarity measure of Jiang and Conrath () is used instead; and Greenwood and Stevenson
() also extend the approach, replacing the simple subject-verb-object patterns by dependency
chains between the related entities. A modified version of the parse tree kernel of Culotta and
Sorensen () is used as similarity function.

Tplex McLernon and Kushmerick () propose a system which differs from the other reviewed
approaches in the fact that it is tailored for tasks with the aforementioned one-per-document as-
sumption. As a result, Tplex detects text fragments which correspond to fields, and it uses patterns
to detect fragment boundaries (i.e., their beginning and end) instead of the fragments themselves.

From a number of seed documents, in which these fragments have been annotated, the system
generates a starting set of boundary patterns, which are generalized and applied on the unannotated
documents. New patterns are obtained from the new boundaries therein detected, but they are not
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relaxed in order to avoid overgeneralization. After the patterns and boundaries are detected, their
scores are assigned iteratively. Finally, the assembly of fragments from the detected boundaries is
performed using beam search.

Surdeanu et al.  The approach of Surdeanu et al. () uses patterns to solve a task of
document classification into different domains, with the assumption that those patterns which are
relevant for classification will express relations particular to each one of the domains.

The acquisition is performed using co-training between a word-based naive Bayes probabilistic
model (Nigam et al., ) and a pattern-based decision list (Yarowsky, ). Different criteria for
the selection of the patterns into the list are explored. After convergence, the top-ranked patterns
are selected.

.. Other Approaches

A number of the approaches proposed in the literature do not fit neatly into any of the aforemen-
tioned families, or even use completely different strategies. Some of the most relevant among these
alternative schemes are described below.

Label Propagation Chen et al. () propose a graph-based approach for weakly supervised
relation extraction. Each entity pair co-occurring in the documents is mapped to a vertex of the
graph, and edges are weighted according to the similarity between the contexts in which the pair
occurs. Pairs which are given as seeds are assigned a label corresponding to their relation type, and
a complete labelling is inferred using the label propagation algorithm (Zhu and Ghahramani, ).
A number of different feature sets and similarity metrics for context representation are compared.

(Zhou et al., ) merges the ideas from this work and the previously presented bootstrapping
using random feature projection of Zhang (b), to devise a scheme in which only those examples
which have been deemed crucial by the bootstrapping procedure (i.e., those selected as support
vectors) are used as labelled data for the label propagation step.

However, and also similarly to Zhang (b), both approaches only deal with the relation
classification task.

Multiple Instance Learning Differing from other ML settings, in multiple instance learn-
ing (Dietterich et al., ) examples for each class come grouped in two sets or bags: a positive
bag, which is ensured to contain at least one positive example, and a negative bag, which is ensured
to contain only negative examples.

Bunescu and Mooney () propose an unsupervised relation extraction approach within this
framework. The system requires a set of input tuples, both positive and negative, and looks for
sentences in which these entity pairs co-occur. Given a large enough input corpus, it is likely that
there exists at least one sentence in which each positive seed pair occurs and the relation between
them is expressed, so one can construct positive bags from then. Sentences which contain negative
seed pairs can be used to build negative bags.

After the bags are built, the multiple instance learning problem is reduced to a standard su-
pervised learning one (Ray and Craven, ), and solved with a support vector machine using a
subsequence kernel (Bunescu and Mooney, ).

In order to reduce the burden of the user, the number of seed tuples should be low, and so will
be the number of bags. This poses special problems in the context of multiple instance learning,
and a word weighting scheme is required within the subsequence kernel to avoid biases.

Distant Supervision A more recent approach, which benefits from the growth of online freely-
available structured databases (such as Freebase, or the Wikipedia infoboxes) is that proposed by
Mintz et al. (), and which the authors name distant supervision.

For each pair of entities which appears in the database tables for the target relation types, all
sentences in which the pair co-occur are collected. The context of each occurrence is represented
using a window of words, POS and syntactic dependencies, and all contexts for a single pair are
aggregated into one feature vector. Negative examples are generated by randomly taking pairs of
entities which do not appear in any of the target relations.
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The generated dataset is used to train an ML classifier, more specifically, a multinomial logistic
regression model. To find relations in new data, the contexts in which all entity pairs in the new
documents appear are collected. Each one of their aggregated contexts is then fed to the classifier,
so as to determine the nature of their relation, if any.

Despite being supervised—albeit not in the usual sense—we have included this approach in our
review as a number of groups (Chen et al., ; Chrupała et al., ; Intxaurrondo et al., ;
Nemeskey et al., ; Song et al., ; Surdeanu et al., ) used different variations on it to
participate in the TAC KBP  evaluation (see Section ..).

. Elements of Supervision

After the review of the presented approaches to weakly supervised relation extraction, it is clear
that the elements of supervision vary significantly both in terms of nature and volume across them.

Language Bias One particular element which is implicitly present in all proposed approaches is
the language bias imposed by the used pattern formalism (see next Section .). The relations the
different approaches will extract are only those whose grammatical condition can be captured by
the considered patterns. A few approaches go one step further, and restrict the possible patterns
using meta-patterns (i.e., patterns on the patterns; Riloff, ; Etzioni et al., ). However,
even if these are the only works for which the meta-patterns are explicitly mentioned as user input,
in many other cases restrictions on the patterns do exist, but are an internal part of the algorithm
not available for change (e.g., Lin and Pantel, ; Banko et al., ; Yao et al., ).

Document Relevance An element of supervision that a number of approaches require to differ-
ent degrees is the relevance of the documents in the corpus to the extraction scenario. Even if the
first approaches to weakly supervised extraction needed the user to classify all documents of the
collection as relevant or irrelevant (Riloff, ), this requirement was soon lifted, and now often
only a user query, to be used with an IR system, is demanded (Sudo et al., ; Rosenfeld and
Feldman, ; Sekine, ; Eichler et al., ). In other cases, it is tacitly assumed that the
whole corpus is relevant to the task, as the system works in an exploratory fashion (e.g., Hasegawa
et al., ; Hassan et al., ).

Seeds However, the most usual form of supervision for weakly supervised systems in this task
is that of seeds: a small set of elements that are taken as prototypical example of their class. All
bootstrapping approaches, by definition, require it, and some other statistical or clustering ones also
do. However, the nature of the seeds differs from system to system—they may be documents (Sur-
deanu et al., ), patterns (e.g., Yangarber et al., ; Stevenson, ), entities (Andrews and
Ramakrishnan, ), tuples (pairs of related entities; e.g., Brin, ; Agichtein and Gravano,
) or contexts (sentences in which the relation between a pair of related entities is expressed;
e.g., Zhang, b). In most of the cases, only positive seeds are needed, but a few approaches
require both positive and negative seeds as input (Bunescu and Mooney, ).

Other Forms of Supervision Some approaches may only require a pair of entity types: the
relations between entities belonging each to one of the types will be extracted (Chen et al., ;
Hassan et al., ). Finally, it is common for approaches which are tailored for some subtask of
relation extraction to require particular elements of supervision: systems requiring trigger words
for the target relations (Etzioni et al., ), Wikipedia pages (Yan et al., ) or even a complete
database of relations (Mintz et al., ) can be counted among them.

. Pattern Formalisms

The kind of patterns used for relation extraction also varies across the different approaches. Fig-
ure . contains a sample sentence and sample patterns, using different pattern formalisms, that
could capture the relation therein expressed.
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. . . when Company Co. appointed John Doe as president.
(a) Sentence

<X: ORG> appointed <Y: PER> ∗ president .
(b) Word sequence (with wildcards)

(when∶ .05) <X: ORG> ( appointed∶ .3
nominated∶ .7) <Y: PER>

⎛
⎜
⎝

as∶ .8
CEO∶ .3

president∶ .7

⎞
⎟
⎠

(c) Bag-of-words

<X: ORG> VBD <Y: PER> IN NN .
(d) POS sequence

(S: <X: ORG>, V: appoint, O: <Y: PER>, IO: president)
(e) Parse dependencies

<X: ORG> appointed <Y: PER>

SBJ OBJ

(f) Parse link chain

<X: ORG> appointed <Y: PER> as president

SBJ OBJ

VMOD

PMOD

(g) Parse subtree

<X: ORG> appointed <Y: PER> as president

SBJ OBJ

COMP

SENT

SBJ

(h) Semantic graph (GLARF)

Figure .: Comparison of extraction pattern formalisms
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Word Sequences One of the first and still most popular formalisms are word sequence patterns,
in which the context of the entity pair is split into left, middle and right contexts (according to
whether the words are found before the first entity in the pair, between the first one and the
second one, or after the second one), and each partial context is matched against fixed sequences
of word forms. A number of devices have been incorporated to this base formalism to increase
its flexibility. We can name among them the use of optional words and wildcards (Rosenfeld and
Feldman, ) or the replacement of a word by its semantic class (either automatically inferred
or assigned by a named entity recognizer; Etzioni et al., ; Andrews and Ramakrishnan, ).
In those approaches where the calculation of similarity between this kind of patterns is required,
subsequence kernels (Bunescu and Mooney, ) or the Levenshtein distance (Yan et al., )
have been used.

A similar formalism is that of bag-of-words, in which the ordering of words within each partial
context is lost, and the contexts for several occurrences may be aggregated. Each one of the partial
contexts thus contains the relative frequencies of occurrence of several words. These bags-of-words
are usually the result of generalization or, in particular, clustering of individual contexts (Agichtein
and Gravano, ; Hasegawa et al., ).

A last formalism related to word sequences is that of POS sequences, in which the contexts are
matched using fixed sequences of POS (Hassan et al., ).

Syntactic Patterns Even if deemed as unsuitable for use in heterogeneous domains such as the
Web by some (e.g., Banko et al., ), a number of approaches use patterns based on the syntactic
representation of contexts between entities. According to the amount of syntactic context of the
individual occurrences that is preserved in the patterns, we can speak of different formalisms.

The simplest of them only preserves parse dependencies, i.e., the dependencies of certain fixed
elements in the parse tree, which are used as anchor. A particular case of this are predicate-argument
tuples (as introduced by Yangarber et al., ), consisting of a (verbal) predicate, together with
the heads of its subject, object and/or prepositional complement (and hence also called, because of
their subject-verb-object structure, SVO patterns). The main—and obvious—drawback of this kind
of patterns is their inability to capture relations that are not expressed by means of the selected
anchors.

Other syntactic formalisms allow for arbitrary subtrees of the parse tree to be matched against
the pattern. However, we can distinguish between the parse link chain model (also called simply
path or chain model; Lin and Pantel, ; Sudo et al., ), in which only the dependencies
directly joining the two entities are considered, and the full parse subtree model, in which sibling
nodes can be present and influence the matching process. A comparison of the performance of the
three presented syntactic models is found in Sudo et al. (). The conclusion drawn by its authors
is that the subtree model allows a gain in recall with respect to the other two, while preserving
high precision.

A related formalism is that used in Shinyama and Sekine (), in which patterns are expressed
according to a semantic graph representation of the sentences. More specifically, the GLARF
framework (Meyers et al., ) is used in this work (see Section ..).

Complex Feature Sets At this point of the exposition, one may argue that the formalisms
presented so far are all rather lightweight, and wonder why experimentation with complex feature
sets—incorporating lexical, syntactic and even semantic information at the same level, and common
in other NLP tasks (in particular, in supervised relation extraction; Kambhatla, ; Zhao and
Grishman, ; Surdeanu and Ciaramita, )—has not been thoroughly performed.

However, there is one factor that has to be taken into account in unsupervised learning settings
in general, and it is that unsupervised methods can easily falls prey of the so-called ugly duckling
theorem of Watanabe (): “Insofar as we use a finite set of predicates that are capable of
distinguishing any two objects considered, the number of predicates shared by any two such objects
is constant, independent of the choice of objects” (Watanabe, ). For the task of clustering, Jain
et al. () state that “this implies that it is possible to make any two arbitrary patterns equally
similar by encoding them with a sufficiently large number of features”. Without the bias provided
by supervision, the incorporation of new features will not always cause an increase in performance–
on the contrary, it may produce a significant drop. For this reason simpler representations may
outperform more complex ones in unsupervised tasks.
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As a result, so far only approaches which transform the problem into a supervised learning one,
and use supervised learning methods such as support vector machines (Zhang, b; Qian et al.,
; Qian and Zhou, ) or logistic regression (Mintz et al., ), have used complex pattern
feature sets similar to those used in supervised relation extraction.

Named Entities Finally, it is interesting to note that, even if standard named entity recognition
methods have also been criticised for being non-portable to heterogeneous corpora (Downey et al.,
), most weakly supervised relation extraction approaches incorporate named entity information
in their patterns. Some systems use predefined named entity hierarchies, such as those of the
MUC (e.g., Yangarber et al., ) or ACE evaluations (e.g., Zhang et al., ), or the one
proposed by Sekine et al. () (Sudo et al., ); whereas other use entity classes and instances
also determined in a weakly supervised way (Etzioni et al., ; Andrews and Ramakrishnan,
).

. Evaluation

The evaluation of weakly supervised relation extraction approaches, in particular those that acquire
knowledge from large corpora such as the Web, presents some challenges of its own.

In this, as in other tasks, we can distinguish two main families of evaluation strategies. Some of
them are directly related to the target task (i.e., relation extraction) and can hence be qualified as
direct or intrinsic evaluations. Alternative indirect or extrinsic evaluations can also be considered,
in which the acquired knowledge is incorporated in a system for a different task. In this second
case, the quality of the extraction approach is measured by the performance of this later system,
using the metrics proper of the task.

The next two Sections .. and .. describe some of the strategies in the direct and indirect
families, respectively, which have been used so far to assess the quality of weakly supervised relation
extraction approaches.

.. Direct or Intrinsic Evaluation

Pattern Evaluation Few approaches have chosen to carry out direct evaluations of the acquired
patterns. This kind of evaluation is necessarily manual, and properties that human reviewers need
to assess may include their correctness (Lin and Pantel, ) or their relevance (Riloff, ;
Surdeanu et al., ). However, this is a costly process, which becomes impractical as the size of
the learning corpora and the number of learned patterns increases, and the evaluation needs to be
restricted to the highest ranked patterns or to random samples. In addition, the task of deciding
whether a pattern is correct (cfr. relevant) or not for a given domain is not trivial, mainly due to
the ambiguity of the patterns. Thus, the process must be carried by more than one judge, so that
the judgements for ambiguous patterns can be agreed upon.

Relation Mention Extraction It is hence much more usual to evaluate the acquisition process
by the output of the extraction phase. Nevertheless, a number of different tasks can be considered
at this step.

One possibility is the evaluation of relation mention extraction, i.e., the determination of whether
two entities, in a certain context, are related or not, and the nature of this relation mention. This
task is the one which is most similar to that presented in IE evaluations, and hence the authors
which choose to perform it usually use a subset of the MUC (Riloff, ; Yangarber et al., ) or
ACE (Chen et al., ; Hassan et al., ; Zhou et al., ) corpora as evaluation data. These
corpora provide a gold standard, and MUC-style metrics of precision, recall and F score (Chinchor,
) are commonly used in this context.

Given that this is the main evaluation scheme we will be following (see Sections .. and ..),
a number of results reported using it are shown in Table .. Both weakly supervised and super-
vised approaches have been included. Nevertheless, it is important to note that the differences in
evaluation conditions and corpora do not allow for any kind of comparison of the results across

An alternative set of metrics was proposed for the ACE evaluations, but their complexity has hampered their
spread, and they have seldom been used outside the competition.
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multiple works. These figures are thus only included for information, and we refer to the original
papers for details.

Beyond this setting, other approaches perform the extraction in domains where the one-per-
document assumption holds (McLernon and Kushmerick, ), whereas a third group assume the
mention detection step is solved, and focus on the relation classification phase only (e.g., Zhang,
b; Chen et al., ).

Relation Extraction A slightly different approach for evaluation is that of a relation extraction
task. In this case, the aim is the determination of the relatedness of two entities globally (without
reference to a certain sentence where that relation is expressed). This evaluation scheme is certainly
popular, and there are several ways in which the extraction performance can be quantified. A
common one is the comparison of the extracted pairs of related entities to a gold standard list—
even if the construction of such lists is a problem by itself. For small or medium domains, manual
lists can be collected on purpose (Hasegawa et al., ; Zhang et al., ), or derived from online
resources (Wikipedia, IMDB, Freebase. . . ; Agichtein and Gravano, ; Etzioni et al., ; Yao
et al., ), and precision/recall metrics are used. In other cases, manual evaluation is required,
and, given the potentially huge size of the extracted tuple sets, the evaluation can only be performed
on a random subsample of the collection. Concepts such as correctness (Brin, ; Lin and
Pantel, ; Sekine, ; Banko et al., ), fitness to table (Shinyama and Sekine, ) or
precision (Rosenfeld and Feldman, ) have been used by human judges to assess the quality of
the extractions. The number of obtained tuples has also been used as an indicator of quality (and
even been improperly misnamed recall ; Rozenfeld and Feldman, ).

.. Indirect or Extrinsic Evaluation

A common indirect approach to relation extraction evaluation is to use the detected patterns for
text filtering, and evaluate the classification of the documents in a collection which is induced by
the patterns, using standard classification metrics like precision/recall (Yangarber et al., ; Yan-
garber, ; Stevenson, ; Surdeanu et al., ). However, this kind of evaluation is assuming
that the obtained patterns correspond to domain-specific entities, relations and events. Some ap-
proaches go beyond, and extend this document filtering approach to sentence filtering (Stevenson
and Greenwood, , using a version of the MUC- corpus which had been annotated with events
at sentence level by Soderland, ).

Potentially, the use of indirect evaluations could open the door to uncountable and more or less
ad hoc methods to assess the quality of the extraction process. However, among those which have
been used in the approaches compared in this chapter, only the use of relation extraction patterns
to detect entities involved in events in a certain domain (Sudo et al., ) remains to be mentioned.

For reasons of brevity, we have chosen not to include results for any other among the presented approaches.
Moreover, the differences in task, conditions, data, metrics and protocol would render their fair comparison impos-
sible.
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Corpus Prc Rec F

AutoSlog TS (Riloff, ) MUC-/TST   

ExDisco (Yangarber et al., ) MUC-   

(Hassan et al., ) ACE    

TextRunner (Banko et al., ) B&M,    

(Andrews and Ramakrishnan, ) AIMED   

CB   

O-CRF (Banko and Etzioni, ) B&M,    
 As reported by (Banko and Etzioni, )

(a) Weakly supervised approaches

Corpus Prc Rec F

AutoSlog (Riloff, ) MUC-/TST   

(Zelenko et al., ) Newswire   

(Kambhatla, ) ACE    

(Zhao and Grishman, ) ACE   

(Zhou et al., ) ACE   

(Culotta et al., ) Wikipedia   

(Surdeanu and Ciaramita, ) ACE    

(Zhou et al., ) ACE    

ACE    
 As reported by (Hassan et al., )

(b) Supervised approaches

Table .: Published relation mention extraction results



3
Clustering

In one case out of a hundred a point is excessively discussed
because it is obscure; in the ninety-nine remaining it is
obscure because it is excessively discussed.

Edgar Allan Poe

This chapter presents our experiments on the task of clustering. Our
work has focused on the problem of document clustering using un-
supervised ensemble methods. More specifically, we have performed
a comparison of two strategies for generation of the ensembles, both
between them and against individual algorithms.

Section . introduces the problem of unsupervised clustering and
motivates the use of ensemble methods. An overview of related work is
presented in Section .. Section . presents our formalization of the
problem of clustering. Section . describes the compared approaches,
and Section . presents a summary of the experiments performed
and the results obtained with each one of the considered approaches.
Lastly, Section . extracts conclusions from the evaluation.

Parts of this work are also described in (Gonzàlez and Turmo,
, b,a).

C luster analysis lies at the core of most unsupervised learning tasks. Tasoulis and Vrahatis
() define clustering as “the process of partitioning a set of patterns into disjoint and
homogeneous meaningful groups, called clusters”, and Jain et al. () state that “intuitively,

patterns within a valid cluster are more similar to each other than they are to a pattern belonging
to a different cluster ”. In addition to pattern, each element to be clustered has also received the
names of “object, record, point, vector, [. . . ] event, case, sample, observation, or entity” (Tan et al.,
, Ch. ). To avoid confusion (for instance, with extraction patterns) we will stick to the term
object thorough this and following chapters.

. Unsupervised Ensemble Clustering

Research on clustering is active in the field of pattern recognition. Several surveys of clustering
methods, whose reading also provides a historical perspective of the evolution of the field, have been
successively elaborated by Dubes and Jain (), Jain et al. () and Xu and Wunsch ().

Even if clustering is mainly an unsupervised task, elements of supervision remain in many
clustering methods. The number of clusters k is often required to be provided by the user or by
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external sources. Additionally, they may depend on a set of starting conditions to which their
output is sensitive.

A number of authors have aimed at reducing or completely removing these elements of super-
vision, and have thus emphasized the unsupervised in the titles of their works: we can find articles
about unsupervised cluster analysis (Roberts, ), unsupervised learning of models (Figueiredo
and Jain, ; Zivkovic and van der Heijden, ), unsupervised classification (Essaqote et al.,
), or unsupervised cluster discovery (Sakai et al., ). In these works, unsupervised clus-
tering is defined as the clustering task in which “the ‘optimal’ number of partitions is unknown a
priori ” (Roberts, ); and an unsupervised clustering algorithm, as one which “is capable of select-
ing the number of components [(clusters)] ”, and “does not require careful initialization” (Figueiredo
and Jain, ). For the purpose of our discussion, we will speak of supervised clustering when
referring to the task and the algorithms which do not fulfill this definition: in particular, to those
situations in which the number of clusters is known in advance.

A common approach to unsupervised clustering is to repeatedly apply a supervised clustering
algorithm, with different numbers of clusters and starting conditions, and then choose the best
one among the obtained clusterings using a model selection criterion (Milligan and Cooper, ).
Other approaches are able to automatically estimate the number of clusters in a preliminary or
final phase, or to increase or decrease it during the clustering process itself (see Section ..).

However, each one of these methods has intrinsic and particular biases (implicit or explicit,
and of selection, language or search type; Whigham, ), uses a certain data representation, and
depends on a document similarity measure. All these assumptions guide the clustering process, and
lead it to a particular solution that may not be the most suitable one for all datasets.

The limitations of individual algorithms have long since been identified in supervised learning
scenarios too, and combination methods have been shown to outperform single-classifier approaches.
One of the first works in that direction was that of Hansen and Salamon (), who, inspired by
fault-tolerant software engineering methods (Eckhardt and Lee, ), proposed a neural network
ensemble architecture, in which a number of feed-forward neural networks are trained to solve
the same problem, and their outputs are combined for classification. Other popular approaches
to combination of several classifiers trained on the same data (or subsamples of it) include boost-
ing (Schapire, ) and bagging (Breiman, ); whereas Kittler et al. () propose a theoretical
framework for combination of learners which use different underlying representations of the data.

Spurred by the success of aggregation methods in supervised learning, recent research has pro-
duced a number of clustering combination approaches. From a general point of view, the problem
of clustering combination can be defined as: “Given multiple clusterings of the data set, find a
combined clustering with better quality” (Topchy et al., ). In the scenario where combination
takes into account the clusterings only, without accessing the representation (or representations) of
the data, it is usual to refer to the problem as ensemble clustering (Strehl and Ghosh, ).

Ensembles have been proven to outperform their individual components in terms of clustering
quality and robustness, as well as to provide a useful framework for applications such as knowl-
edge reuse, or distributed and privacy-preserving clustering (Strehl and Ghosh, ). A number
of clustering combination algorithms have been proposed, as well as methods for generating the
clustering ensembles to be later combined (see Section ..).

.. Document Clustering

Within the NLP area, document clustering is a basic task which can be useful both by itself or
as a first step towards further linguistic processing. Besides, the task has often been used as a
testbed for experimentation on clustering methods over linguistic data. A number of clustering
algorithms have been applied to document datasets, and empirical comparisons between them have
been published—such as those of Zhong and Ghosh () on generative-model-based algorithms,
and of Ghosh and Strehl () on distance-based ones.

Incidentally, some works have considered a semi-supervised clustering task, in which more supervision is in-
corporated, usually in the form of pairwise constraints between element which should or should not be clustered
together (Grira et al., ). In this context, a different usage of unsupervised clustering exists, as the term is
employed in contraposition to this semi-supervised clustering, and refers to all unconstrained clustering methods,
without regard to their supervision or non-supervision in the previous sense. Given that semi-supervised clustering
is outside the scope of this thesis, we will disregard this usage without danger of confusion, and henceforth stick to
the most habitual meaning of unsupervised clustering.
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However, given the availability of unsupervised clustering methods, both individual and ensem-
ble-based, a comparison of the performance of different approaches when applied over document
collections was required. More specifically, we considered that the following two questions remained
unanswered:

• How well do ensemble methods perform for unsupervised document clustering?
Unsupervised methods had not been tested thoroughly on document collections.

• How well do different individual clustering strategies perform in the context of
unsupervised ensemble document clustering? The influence of the strategy used to find
individual clusterings to be later combined had often been overlooked. Different strategies
needed to be compared.

Our work on clustering attempts to answer both questions. We have evaluated non-parametric
clustering algorithms on a variety of real-world document collections; and we have performed an
empirical comparison of the effectiveness of two different strategies for the generation of clustering
ensembles: one relying on massive randomization of a single algorithm, and another relying on few
but heterogeneous different algorithms.

As will be seen later, the conclusions drawn at the light of the results of this evaluation sig-
nificantly influenced the path of further research, especially in the task of minority clustering (see
Chapter ).

. Related Work

Clustering algorithms have been traditionally split into two major families: that of hierarchical
algorithms, which produce a sequence of partitions with hierarchically nested clusters (usually
represented as a tree-like structure, the dendrogram, which has a single cluster with the whole
dataset as root, and the set of singleton clusters for each object as leaves); and that of partitional
algorithms, which produce a single partition

Hierarchical Clustering Hierarchical agglomerative clustering (HAC; Murty and Krishna, )
is by far the most popular hierarchical algorithm. In HAC, every object starts in a cluster of its
own, and at every step the two closest clusters are merged. A number of different rules for updat-
ing the distances from this new cluster to the other ones exist; among the most used ones we can
mention single-link (Sneath and Sokal, ), complete-link (King, ) and UPGMA (Sokal and
Michener, ). Being supervised, a number of devices have been incorporated to allow HAC to
detect the number of clusterings. Some of them are stop rules, i.e., they give a criterion to stop the
cluster merging process. Other approaches obtain a dendrogram up to the single-cluster root, and
the use of a selection criterion to determine the most suitable partition therein. A comparison of
the performance of  such stop rules and criteria for HAC was carried out over synthetic datasets
by Milligan and Cooper ().

Partitional Clustering Within partitional algorithms, we can also distinguish two families:
those which provide a hard clustering of the data, in which each object belongs to a single cluster;
and those which perform soft clustering, and allow for each object to belong, with a certain grade
of membership, to several clusters. Because of its connection to fuzzy sets (Zadeh, ), soft
clustering is often also named fuzzy clustering.

Among the most widely used partitional algorithms, we can mention the distance-based hard k-
means (MacQueen, ) and its soft counterpart c-means (Dunn, ). The algorithm is iterative
in nature, and successively refines a starting clustering by assigning each object to the cluster whose
centroid is closest (resp., assigning a soft membership to each cluster inversely proportional to the
distance to its centroid), and then updating the centroids to become the average (resp., the weighted
average by grade of membership) of the objects in their cluster.

Expectation-maximization (EM; Dempster et al., ) is a general algorithm, also of iterative
refinement nature, to fit probabilistic models using incomplete data which has also found large
applicability as a natural method for model-based clustering. For instance, mixtures of Gaus-
sian (Zhuang et al., ) or multinomial (Meilă and Heckerman, ) distributions have been
successfully used for this task.
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Banerjee et al. () present a theoretical framework for clustering, based on Bregman diver-
gences (Bregman, ). The authors derive two generic algorithms, one for hard clustering and
another one for soft, and prove that several previously proposed ones, including k-means and EM
with distributions from the exponential family, are particular cases of them.

.. Unsupervised Clustering

A number of strategies have been considered to remove the elements of supervision present in
existing clustering algorithms—or to altogether devise new approaches without them. Some of the
explored directions are listed below.

Model Selection As mentioned in the introduction, unsupervised clustering can be performed
with supervised algorithms by generating multiple clusterings of the dataset, using different condi-
tions, and choosing one among them according to some model selection criteria. We might name
this the generate-and-select strategy.

This scheme has been applied to partitional clustering algorithms (e.g., k-means; Peña et al.,
) and to hierarchical ones (e.g., HAC; Milligan and Cooper, ). For the latter, instead of
generating multiple dendrograms, the selection is often performed among the cuts obtained at each
level of the dendrogram.

A considerable number of selection criteria have been proposed, including probabilistic ones,
such as minimum message length (MML; Boulton and Wallace, ), Akaike information crite-
rion (AIC; Akaike, ), minimum description length (MDL; Rissanen, ), or Bayesian infor-
mation criterion (BIC; Schwartz, ); and distance-based ones, including Caliński and Harabasz’
index (Caliński and Harabasz, ), or Silhouette (Rousseeuw, ).

Direct Estimation Among the approaches which are able to estimate the number of clusters
from properties of the data in advance to the clustering process itself, we can mention those of
Girolami () and Li et al. (a). In both cases, the eigenvalue decomposition of the kernel
matrix of the dataset (containing the dot products of each pair of objects) is found: if the data
naturally contain k clusters, the k largest eigenvalues of the matrix will be significantly larger than
the rest. Hence, a significant drop in the magnitude of the sorted sequence of eigenvalues can be
used to detect the value k.

On the flipside, in mean-shift clustering (Fukunaga and Hostetler, ), objects are iteratively
shifted towards their cluster representatives, so after convergence the number of clusters is deter-
mined by the number of different representatives obtained. Another approach which also defers
cluster number detection to the end of the process, support vector clustering (SVC; Ben-Hur et al.,
), starts by finding a hypersphere in an implicit high-dimensional space (as defined by a kernel
function) which includes the images of all objects in the dataset. Afterwards, a connectivity graph
is found: a pair of objects is deemed connected if the image of the path between them is completely
contained within this hypersphere. Clusters will correspond to connected components in this graph.

Hybrid Combination A number of authors have experimented with combined hierarchical and
partitional clustering algorithms to obtain unsupervised methods. For instance, the method of
Fraley and Raftery () starts by applying HAC to the dataset. It then uses the successive
partitions inferred by the top-level branches of the dendrogram as starting clusterings for EM, and
selects one among them using BIC. Surdeanu et al. () also propose the use of HAC to obtain an
initial clustering for EM, but their method is based on detecting subtrees in the dendrogram which
are particularly tight and can hence be used as seeds for EM. A similar idea had been previously
presented by Pantel and Lin ()—in this case, the sets of closely-related objects from which to
start the clustering receive the name of committees.

Model Updating Finally, as also mentioned before, algorithms which are able to increase or
decrease the number of clusters during the clustering process itself have also been proposed. This
is often done by incorporating parsimony terms to optimization-based clustering algorithms. For
instance, Frigui and Krishnapuram () add a regularization term to the c-means objective
function, whereas Figueiredo and Jain () incorporate the MML criterion within the inner loop
(not only as a final step) of an EM algorithm for finite mixture models.
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.. Ensemble Clustering

The application of ensemble clustering to practical problems requires the development both of
strategies to generate the clusterings in the ensemble, and of algorithms to combine them into a
final consensus clustering. During the last decade, a number of approaches, both supervised and
unsupervised, have been proposed for each one of these two steps.

... Combination Methods

The problem of clustering combination has been formulated using a number of different paradigms.

Co-Association Matrices One of the first approaches to clustering combination was that pro-
posed by Fred and Jain (). Their evidence accumulation framework introduced the concept of
co-association matrix, containing, for each pair of objects, the fraction of input clusterings which
assign them to the same cluster. After the co-association matrix is constructed, the single-link HAC
algorithm, with a merging threshold of 0.5, is applied to obtain the consensus clustering. Fern and
Brodley () present a modification of the previous work which allows soft clusterings in the
input ensemble.

A number of later works have also used the concept of co-association matrix. For instance, Li
et al. (b) derive coefficients for an integer lineal programming problem from whose solution a
consensus clustering can be constructed; and Gionis et al. () reformulate ensemble clustering
in terms of correlation clustering over this same matrix—and give a triad of methods to solve the
problem. Moreover, one of the three methods proposed by Nguyen and Caruana () uses its
entries as similarity metric for a version of k-means (equivalent to kernel k-means; Girolami, ).
Finally, Li et al. () gives a proof that ensemble clustering can be reduced to non-negative
matrix factorization of the co-association matrix.

Reclustering A second common strategy is that of generating a new feature set for the objects
to be clustered, using the labels assigned to them by each one of the input clusterings. Categorical
algorithms can then be applied on this dataset to obtain the final clustering. In this direction,
Topchy et al. () show that using k-means on the binarized and standardized form of this matrix
maximizes the proposed criterion of partition utility, whereas Topchy et al. () model this new
dataset using a mixture of multivariate multinomial distributions, one for each output cluster, which
is then fitted using EM. Also, Nguyen and Caruana (), in addition to the aforementioned co-
association-based method, propose two iterative refinement schemes which depend on Hamming
distances using this feature representation.

Graph Reduction A third family of combination approaches is that of graph-based methods.
The seminal work in this group is due to Strehl and Ghosh (). The authors propose two direct
reductions of the ensemble clustering problem to graph or hypergraph partitioning, respectively, as
well as a third and more complex transformation which also includes graph partitioning at one step.
Fern and Brodley () propose a fourth different reduction to graph partitioning, and Punera and
Ghosh () present generalizations to soft clustering ensembles of the methods in the previous
works.

Voting The last major group of ensemble clustering approaches is that of voting strategies. Dim-
itriadou et al. () and Sevillano et al. () propose two merging-and-voting methods which
present a number of similarities between them. In both, clusters are aligned across different clus-
terings, and the membership of objects to the sets of aligned clusters (which become the clusters
of the consensus clustering) is found using voting. Boulis and Ostendorf () take a different
approach, and solve the alignment problem using either linear programming or singular value de-
composition. A final clustering stage is applied to obtain the output clustering, using the aligned
cluster memberships as features.

Other Approaches In addition to the aforementioned ones, researchers have considered a num-
ber of alternative frameworks to solve the problem of clustering combination. For instance, some
authors have also experimented with simulated annealing (Filkov and Skiena, ), or genetic
algorithms (Faceli et al., ).
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Weighted Ensembles Finally, it is worth mentioning that weighted ensemble clustering al-
gorithms, able to determine the confidence of each input clustering in an unsupervised fashion,
and to produce an output clustering biased towards agreement with more confident clusterings,
have appeared recently. For instance, Li et al. () incorporate weighting to their own previous
method (Li et al., b), whereas Gullo et al. () propose a weighting scheme that may be
used to enhance a wide variety of existing combination algorithms.

... Ensemble Generation Strategies

Regarding the generation of the ensemble of clusterings to be later combined, a number of strategies
have been distinguished:

Plain Some stochastic element of an individual clustering algorithm (such as the starting centroids
of k-means) is repeatedly seeded with different values (e.g., Fred, ).

Random-k A supervised clustering algorithm is repeatedly run, requiring different numbers of
clusters in the output. This may be used in combination with the previous strategy (e.g.,
Fred and Jain, ).

Random-k+ Similar to random-k, but using a number of cluster deliberately larger than the
one expected to be present in the dataset (e.g., Ghosh et al., ).

Random projection Data are linearly projected to a lower dimensional space, using randomly
generated projection matrices (Fern and Brodley, ; Topchy et al., ).

Random subspacing A particular case of random projection, in which the projection is per-
formed by selecting a subset of the original dimensions (Greene et al., ).

BaggingMimicking bagging in supervised learning, clusterings are repeatedly built on random
subsamples of the dataset (Leisch, ).

Artificial data Additional data is artificially generated, and the obtained extended datasets are
clustered (Luo et al., ).

Heterogeneousness Instead of relying on a single clustering algorithm, the data are clustered
using a heterogeneous set of them (Strehl and Ghosh, ). A variation on this approach is
to use a single algorithm, but several data representations (Li et al., b; Sevillano et al.,
).

A few authors have tried to compare the effectivity of these heuristics. For instance, Had-
jitodorov and Kuncheva () use genetic algorithms to determine which combination of heuris-
tics produced the best results across a collection of  datasets—as well as the minimum required
ensemble size for these results to stabilize.

. Problem Definition

In accordance to its subjective nature (Dubes and Jain, ), we give here an intentional (one
may even say anthropic) definition of clustering: a clustering differs from an arbitrary partition of
a dataset in the fact that it has been generated with the aim to maximize a criterion function F
(e.g., similarity of objects within a cluster, for a particular similarity function)—even if it does not
actually maximize it.

.. Partitional Clustering

Assume we have a dataset X = {x1 . . . xn}. We can then define:

Definition . (Hard partitional clustering)
A hard (partitional) clustering Π of dataset X is a partition Π = {π1 . . . πk} of X whose
aim is to maximize a certain criterion function F . Each one of the subsets πc ∈ Π is a hard
cluster.

Adapted from Greene et al. ().
Following the usual set-theoretical definition (see Definition A. in Appendix A.).
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Remark Because of the bijection between partitions and equivalence relations, a hard clus-
tering infers an equivalence relation xi

Π∼ xj between elements of X :

xi
Π∼ xj ←→ ∃πc ∈ Π ∶ xi ∈ πc ∧ xj ∈ πc

We will read xi
Π∼ xj as xi and xj are clustered together in Π. When the clustering Π is

clear from the context, the lighter xi ∼ xj notation will be used instead.

Definition . (Soft partitional clustering)
A soft (partitional) clustering Π of dataset X is a fuzzy pseudopartition Π = {π1 . . . πk}
of X whose aim is to maximize a certain criterion function F . Each one of the fuzzy subsets
πc ∈ Π is a soft cluster.

Remark A hard clustering can be seen as a particular case of soft clustering where the grade
of membership of a certain xi to the πc is zero for all but exactly one cluster, for which the
grade is one.

Definition . (Clustering cardinality)
The cardinality of a hard of soft clustering is the number of clusters it contains.

Remark Being sets of clusters, this definition of cardinality is nothing but the usual set-
theoretical one.

Definition . (Partitional clustering problem)
Given

• a dataset X

• a criterion function F

• a hypothesis space for hard/soft clusterings ΩΠ

the partitional clustering problem is that of finding the clustering Π ∈ ΩΠ which maximizes
the value of F (Π).

Remark If the hypothesis space is restricted to contain clusterings with a fixed number k of
clusters, we will talk of the supervised partitional clustering problem. Otherwise, the
name unsupervised partitional clustering problem will be used.

.. Hierarchical Clustering

It is also possible to define:

Definition . (Subsumption tree)
A subsumption tree Ψ over a dataset X , of cardinality n = ∣X ∣, is a sorted sequence of sets
Ψ = (ψ1 . . . ψd) such that:

• The length d of the sequence is d = 2n − 1

• The first n sets are singletons containing all the objects in X :

∀j ∈ {1 . . . n} ∶ ∃xi ∈ X ∶ ψj = {xi} ∀xi ∈ X ∶ ∃j ∈ {1 . . . n} ∶ ψj = {xi}

• The next n − 1 sets are the union of two preceding sets:

∀j ∈ {n + 1 . . . d} ∶ ∃a, b < j ∶ a ≠ b ∧ ψj = ψa ∪ ψb

We shall say in this case that ψj directly subsumes or is the parent of ψa and ψb,
which are its children. The sets ψa and ψb can thus be referred to as siblings.

Following the definitions of Bezdek () and Klir and Yuan () (see Definition A. in Appendix A.).
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• All sets but the last are directly subsumed by exactly one succeeding set:

∀j ∈ {1 . . . d − 1} ∶ ∃m > j ∶ ψj ⊂ ψm
∀j ∈ {1 . . . d − 1} ∶ /∃m,m′ > j ∶ ψj ⊂ ψm ∧ ψj ⊂ ψm′ ∧m ≠m′

• The last set ψd is equal to the complete dataset: ψd = X .

Remark The sets within the subsumption tree, linked by the direct subsumption relation,
form a rooted tree structure when regarded a directed graph. We can thus name each set a
node of the tree; the first n sets, the leaves; and the next n − 1, the branches—with the
particular case of the last ψd being the root.

Definition . (Node level)
Given a subsumption tree Ψ of dataset X , of cardinality n, the level of a node ψj is

level(ψj) = { n if j ∈ {1 . . . n} (the node is a leaf)
2n − j if j ∈ {n + 1 . . .2n − 1} (the node is a branch)

In particular, the root of the tree is at level 1.

Definition . (Tree cut)
Given a tree Ψ over dataset X , of cardinality n, a cut of the tree at level l ∈ {1 . . . n} is the
set of nodes at level larger or equal than l, and which are not subsumed by another node at
level larger or equal than l.

cut(Ψ, l) = {ψj ∣ ψj ∈ Ψ ∧ level(ψj) ≥ l ∧ (/∃ ψm ∈ Ψ ∶ level(ψm) ≥ l ∧ ψj ⊂ ψm ∧ ψj ≠ ψm)}

It can be proved that:

Proposition .
A cut of tree Ψ over dataset X at any valid level l is a partition of X .

Proof See Appendix B. ∎

We may then proceed to additionally define:

Definition . (Dendrogram/hierarchical clustering)
A dendrogram or hierarchical clustering Ψ of a dataset X is a subsumption tree Ψ =
(ψ1 . . . ψd) whose aim is to maximize a certain criterion function F when cut at every level.
Each one of the nodes ψc ∈ Ψ is an internal cluster.

Definition . (Hierarchical clustering problem)
Given

• a dataset X

• a criterion function F

• a hypothesis space for dendrograms ΩΨ

the hierarchical clustering problem is that of finding the dendrogram Ψ ∈ ΩΨ which max-
imizes the value of F (Ψ, l)) at every level l.

This is a consequence of the previous properties (see proof in Appendix B).
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.. Ensemble Clustering

Finally, we can define:

Definition . (Clustering ensemble)
A hard/soft clustering ensemble E for dataset X is a set of hard/soft clusterings E =
{Π1 . . .Πr} of X (with corresponding criterion functions {F1 . . . Fr}, equal or different).

Definition . (Consensus clustering problem)
Given

• a dataset X

• a consensus function G

• a clustering ensemble E

• a hypothesis space for hard/soft clusterings ΩE

the consensus clustering problem is that of finding the clustering ΠE ∈ ΩE which maxi-
mizes the value of G(ΠE ;E,X ).

Remark Similarly to Definition ., the names supervised consensus clustering prob-
lem or unsupervised consensus clustering problem can be used, according to whether
the hypothesis space is restricted or not to contain clusterings with a fixed number k of
clusters.

Definition . (Ensemble clustering problem)
If the consensus function G does not access the original features of dataset X , the consensus
clustering problem receives the name of ensemble clustering problem.

The names supervised ensemble clustering problem or unsupervised ensemble
clustering problem are also correspondingly defined.

.. Clustering Model

Some algorithms are only devised to build a clustering of a input dataset, and do not provide any
device to determine the hypothetical assignments of new objects to one of the obtained clusters.
This is the case, for instance, of most hierarchical (including HAC) and ensemble clustering (such as
Ghosh et al., ; Gionis et al., ) algorithms. However, most popular partitional methods—
starting with k- and c-means, and continuing with all probabilistic mixture algorithms—provide,
as a byproduct of the clustering process, a clustering model which may then be later used as a
classification model for new data, after identifying the obtained clusters with classes.

If the dataset X used to construct a partitional clustering Π is drawn from a domain X—i.e.,
X ⊂X—we can define:

Definition . (Hard partitional clustering model)
A hard (partitional) clustering model M for a hard clustering Π over the domain X is
a function from X to Π.

Remark The image M(xx) = πx of an object xx is the cluster in Π to which the object
would belong, should it had been included in the dataset used to generate the clustering.

Definition . (Soft partitional clustering model)
A soft (partitional) clustering modelM for a soft clustering Π, with k clusters, over the
domain X is a function from X to the k-simplex ∆k.

Remark The elements in the imageM(xx) = δx = (δx1 . . . δxk) of an object xx are the grades
of membership to each one of the clusters in Π that the object would have had, should it had
been included in the dataset used to generate the clustering.

The conditions stated in these remarks should be regarded with caution. The inclusion of an extra object in
the dataset might radically change the clusterings produced by the algorithm. One possible way to specify these
functions more precisely is to require their output to be the cluster of the object in the closest clustering (according
to some clustering distance function inherent to the algorithm and model) such that the assignment of all objects in
the starting dataset X remains the same as in Π.
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Figure .: Hybrid unsupervised clustering method (Surdeanu et al., )

. Unsupervised Clustering Approaches

This section describes the components of the unsupervised clustering approaches we have considered
for our comparison. More specifically, Section .. describes the set of unsupervised clustering
algorithms we have used; and Section .. is concerned with ensemble clustering, including both
the combination method and the generation strategies.

.. Individual Approaches

As mentioned in the chapter introduction, the particular biases of individual clustering methods,
as well as the kind of object representation and similarity measure used by these methods, imply
a different point of view over the datasets to be clustered. We have considered a heterogeneous set
of individual unsupervised clustering methods:

• The hybrid method of Surdeanu et al. (), which has been shown to obtain good results
in unsupervised document clustering of different real world data.

• An adaptation of the previous hybrid method using information theoretical components.

• A generate-and-select method, which combines a hierarchical algorithm with a model selection
criterion.

A detailed description of each one of them follows.

... Geometric Hybrid Method

The motivation behind the system of Surdeanu et al. () is that, among partitional clustering
algorithms, “iterative refinement clustering techniques are extremely popular due to their good per-
formance, relative simplicity, and good theoretical foundations”. However, they present two obvious
drawbacks: first, being supervised, they require the number of clusters to be given a priori; and,
second, they are sensitive to the choice of the initial model parameters.

The proposal of the authors is graphically depicted in Figure ., and starts by using a hier-
archical clustering algorithm to obtain a dendrogram of the dataset. According to a number of
heuristics, several subsets of nodes in the dendrogram are selected as initial model candidates. A
criterion function is used to choose a single one among them, and it is this best candidate which is
finally used as initial model for the iterative algorithm.

Although this scheme admits several algorithms and measures, Surdeanu et al. give a concrete
implementation, using a geometric approach. The implementation is described in detail below, as
it is the basis for our own information theoretical approach (Section ...).

We will henceforth refer to this method as Geo.

Document Representation Documents are represented using the popular bag-of-words formal-
ism. Given a dictionary Ω = (ω1 . . . ωz), a document xi is represented as a vector x⃗i = (xi1 . . . xiz),
where xiw ∈ N is the number of occurrences of word ωw in document xi (also known as term
frequency).

Similarity between documents is quantified by the cosine of their vector representations. To
avoid the predominance of frequent words in the calculation, the usual tf-idf weighting is applied:
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each term frequency (tf) is multiplied by the inverse document frequency (idf) of the term (Spärck-
Jones, ). The measure is then effectively calculated as:

sim(xi, xj) = ∑zw=1 (xiw ⋅ idfw) × (xjw ⋅ idfw)√
∑zw=1 (xiw ⋅ idfw)2 ×∑zw=1 (xjw ⋅ idfw)2

idfw = − log
∣{xi ∣ xi ∈ X ∧ xiw > 0}∣

∣X ∣

In situations where a dissimilarity (distance) instead of a similarity is required, cosine distance
is used:

dist(xi, xj) = 1 − sim(xi, xj)

Hierarchical Clustering In order to obtain a dendrogram Ψ of the dataset, the authors resort
to HAC. The algorithm starts assigning each object to a singleton cluster. It then iteratively
merges, at every step, the two most similar clusters, and replaces them with their union, up to the
point where a single cluster with the whole dataset remains.

Similarity between clusters is defined using the UPGMA rule:

simU(πc, πd) =
1

∣πc∣ ⋅ ∣πd∣
∑
xi∈πc

⎛
⎝ ∑
xj∈πd

sim(xi, xj)
⎞
⎠

Candidate Generation After the dendrogram Ψ is found, the initial model candidates can be
generated. The intuition here is to look for internal clusters in the dendrogram which are tight (i.e.,
the distances between objects within the cluster are small) and separated (i.e., the distances to
objects outside the cluster are large). Surdeanu et al. determine four functions which quantify to
which extent nodes in the dendrogram possess these properties:

Within distances (W) Nodes ψc corresponding to tight clusters should have small pairwise
distances within the objects in them:

W(ψc) =
1

∣ψc∣ ⋅ (∣ψc∣ − 1) ∑
xi,xj∈ψc

dist(xi, xj)

Between distances (B) Nodes ψc corresponding to separated clusters should have large dis-
tances between their objects and those in the rest of the dataset:

B(ψc) =
1

∣ψc∣ ⋅ (∣X ∣ − ∣ψc∣)
∑
xi∈ψc

∑
xj∈X /ψc

dist(xi, xj)

Neighbourhood distances (N) Nodes ψC corresponding to separated clusters should, in par-
ticular, have large distances with respect to their neighbours. This function tries to minimize
the effect large groups of distant objects on the B function, and is defined as the UPGMA
distance between the node and its sibling in the dendrogram:

N(ψc) = distU(ψc, sibling(ψc))

Growth (G) Nodes ψc corresponding to tight clusters should have been produced by merging
two nodes that were already close. This function tries to avoid the bias exhibited by the other
three functions towards small clusters. The proposed way to quantify it is the node growth,
defined as the expansion at the union which generated node ψc (i.e., the UPGMA distance),
relative to the internal density of its two children ψa and ψb:

G(ψc) = distU(ψa, ψb)
density(ψa, ψb)

density(ψa, ψb) =
∑xi,xj∈ψa dist(xi, xj) +∑xi,xj∈ψb dist(xi, xj)

∣ψa∣ ⋅ (∣ψa∣ − 1) + ∣ψb∣ ⋅ (∣ψb∣ − 1)
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W 1/(W(ψc)) GW 1/(G(ψc) ⋅W(ψc))
WB B(ψc)/(W(ψc)) GWB B(ψc)/(G(ψc) ⋅W(ψc))
WN N(ψc)/(W(ψc)) GWN N(ψc)/(G(ψc) ⋅W(ψc))

Table .: Cluster quality measures (Surdeanu et al., ).

Six cluster quality measures, which are combinations of these four functions, are proposed to score
the nodes. Their exact formulae are described in Table ..

For each cluster quality measure, the procedure starts by ranking the internal clusters in the
dendrogram with respect to it. An additional coverage parameter γ ∈ (0 . . .1) is considered at this
point, with the aim of taking only the most confident objects: the topmost ranked nodes which
do not include more objects than a fraction γ of the dataset size are selected. Nodes subsumed
by other nodes in the set are removed, and the remaining ones become clusters of an initial model
candidate.

The number of clusters is thus determined as a byproduct, being equal to the number of nodes
in this set. It is also important to note than, because of the candidate generation process, some
objects will not belong to any cluster in the candidate—i.e., the candidates are partial clusterings.

The process is performed for all six cluster quality measures and for different coverage values γ.
As a result, a pool of initial candidates candidates is obtained.

Candidate Selection To select the best clustering candidate within the pool, the authors propose
the use of a global quality measure. Following the results of the comparison of criterion functions
reported by Milligan and Cooper (), Caliński and Harabasz’ index is used. The index is a
normalized ratio of between distances (i.e., distances between objects belonging to different clusters)
and within distances (i.e., distances between objects belonging to the same cluster).

If we define the centroid x̄c of a cluster πc as the average of all objects xi ∈ πc, and the
metacentroid x̄ of a dataset X as that of all objects xi ∈ X :

x̄c =
∑xi∈πc xi

∣πc∣
x̄ = ∑xi∈X

xi

∣X ∣

The Caliński and Harabasz index C can then defined as:

C(Π ;X ) = CB(Π ;X )
CW(Π ;X ) ×

∣X ∣ − ∣Π∣
∣Π∣ − 1

CB(Π ;X ) = ∑
πc∈Π

dist(x̄c, x̄)

CW(Π ;X ) = ∑
πc∈Π

∑
xi∈πc

dist(xi, x̄c)

where CB contains the between distances and CW the within ones.
The selection is then performed in a two-step procedure: first, for each cluster quality measure,

the last local maximum of the C index for increasing values of coverage γ is found using grid search;
and, second, the maximum of all measure-wise local maxima is finally selected as initial model.

Partitional Clustering In the last step, that of iterative partitional clustering, the selected
candidate is used as initial model to fit a generative probabilistic model. In particular, a mixture
of multinomial distributions is used. This model was proposed for document clustering by Meilă
and Heckerman (), but it is identical to the one previously used for document classification by
Nigam et al. ().

The considered model uses a mixture of k components, each one of them corresponding to a
cluster. Withing each component, the occurrence of a word in is modelled using a multinomial dis-
tribution, and each occurrence is considered independent of the others given the component (naive
Bayes assumption). For each object xi, a hidden (unknown) variable yi ∈ {1 . . . k} will contain the
component which generated it.
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The resulting model can be formulated as:

p(xi ; Θ) =
k

∑
c=1

p(yi = c ; Θ) ⋅ p(xi ∣ yi = c ; Θ)

p(yi = c ; Θ) = αc

p(xi ∣ yi = c ; Θ) =
z

∏
w=1

p(xiw ∣ yi = c ; Θ)

=
z

∏
w=1

ϑcw
xiw

The {αc} and {ϑcw} are the parameters of the model, which, additionally, should accomplish the
restrictions:

k

∑
c=1

αc = 1 ∀c ∈ {1 . . . k} ∶
z

∑
w=1

ϑcw = 1

i.e., the {αc} and each set of {ϑcw} must belong to a simplex.
Both maximum likelihood (ML) and maximum a posteriori (MAP) estimations of parameters,

Θ̂, can be found using the EM algorithm. Given that, as mentioned, the model parameters fall
inside an simplex, a Dirichlet distribution can be used as conjugate prior. In particular, a symmetric
Dirichlet distribution with a parameter value of 1 has been used—under these conditions, MAP
estimation is equivalent to Laplace smoothing (Manning and Schütze, ).

To obtain the clustering from the estimated model Θ̂, each component is mapped to a cluster,
and each object is assigned to the cluster whose component has the largest probability of having
generated it:

Π = {π1 . . . πk}
πc = {xi ∣ xi ∈ X ∧ arg max

d
p(yi = d ∣ xi ; Θ̂) = c}

... Information-Theoretical Hybrid Method

The field of information theory (IT) goes back to the seminal work of Shannon (). Given
the attention devoted in the last decade to its application to the task of document clustering
(Slonim and Tishby, ; Gokcay and Principe, ; Dhillon et al., ), we propose a different
implementation of the aforementioned hybrid method using information-theoretical components,
which we describe below.

We will henceforth refer to this method as Info.

Document Representation As IT is mainly concerned with probability distributions, the most
natural, and usual, document representation in this framework is that of documents as discrete con-
ditional probability distributions. Given, as in Section ..., a dictionary of words Ω = (ω1 . . . ωz),
we can define two random variables, Y on Ω and X on X , whose joint distribution can be decom-
posed as:

p(ωw, xi) = p(ωw ∣ xi) ⋅ p(xi)
Each document xi is thus represented as the conditional distribution p(ω ∣ xi). It is often assumed
that all documents have the same a priori probability:

∀xi ∈ X ∶ p(xi) =
1

∣X ∣

Using maximum likelihood estimation, it is possible to obtain the conditional distribution from the
bag-of-words representation as:

p(ωw ∣ xi) =
xiw

∑zw=1 xiw

However, other forms of estimation, such as maximum a posteriori, are also sometimes used within
IT-based algorithms (Dhillon and Guan, ).

For the sake of fluency, the definitions of common IT concepts (e.g., entropy, divergence. . . ) are omitted from
the presentation. They are however fully detailed in Appendix A..
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Hierarchical Clustering The generation of the dendrogram Ψ from dataset X is accomplished
using the agglomerative information bottleneck algorithm (aIB; Slonim and Tishby, ).

The authors observe that a clustering Π over a dataset X defines a new random variable X̃ on
Π, where:

X̃ = πc ←→ X = xi ∧ xi ∈ πc

The aim of aIB is to find the clustering Π̂ for which X̃ preserves the maximum mutual information
between the random variables Y and X:

Π̂ = arg min
Π

I(Y ;X) − I(Y ; X̃)

= arg max
Π

I(Y ; X̃)

Similarly to HAC, aIB is agglomerative in nature (i.e., constructs the dendrogram in a bottom-up
fashion), but instead of using cosine similarity, it merges, at each step, the two clusters whose
weighted Jensen-Shannon divergence (Lin, ) is minimal:

JSW (x̃i, x̃j) = (p(x̃i) + p(x̃j)) × JS(p(ω ∣ x̃i) ∥ p(ω ∣ x̃j))

The process is iterated until only one cluster remains, containing the whole dataset.

Candidate Generation The candidate generation process mimics the one devised by Surdeanu
et al.. The only difference is our adaptation of the six proposed cluster quality metrics, replacing
cosine distance by an IT-based dissimilarity measure.

In particular, our proposal is to use Jensen-Shannon divergence between the word conditional
distributions of the documents:

dist(xi, xj) = JS(p(ω ∣ x̃i) ∥ p(ω ∣ x̃j))

Other measures exist, coming from information theory and which could be useful as object dis-
similarity, such as Kullback-Leibler divergence (Kullback and Leibler, ) or even mutual in-
formation (Shannon, ). However, on the contrary of Jensen-Shannon divergence, they are
not symmetric, and require absolute continuity of one distribution with respect to the other—two
properties that make them unsuitable for our purposes.

Candidate Selection We tried to adapt Caliński and Harabasz’ index to also use Jensen-
Shannon divergence—but we found, in preliminary experiments, its performance to be surpassed
by that of a more IT-motivated criterion that we present here.

For a given dataset X and clustering Π, the proposed criterion function is calculated as the
sum of between cross-entropies (i.e., cross-entropies between the centroid of each cluster and the
metacentroid of the dataset) and within cross-entropies (i.e., cross-entropies between the objects in
each cluster and the corresponding centroid), normalized by the number of objects in the dataset:

H(Π ;X ) = HB(Π ;X ) +Hw(Π ;X )
∣X ∣

HB(Π ;X ) = ∑
πc∈Π

H×(p(ω ∣ x̄c), p(ω ∣ x̄))

HW(Π ;X ) = ∑
πc∈Π

∑
xi∈πc

H×(p(ω ∣ xi), p(ω ∣ x̄c))

where, H×(p, q) represents the cross-entropy between the two probability distributions p and q. In
order to select the best candidate, the clustering Π for which the normalized sum of cross-entropies
H(Π ;X ) is minimum is chosen.

Minimization of cross-entropy has been previously used as selection criterion in IT settings. In
particular, proper minimum cross-entropy (originally proposed as minimum discrimination infor-
mation by Kullback, ) is a theoretically sound framework which has been successfully applied

We have diverted from the standard notation H(p, q) for cross-entropy, in order to avoid the clash with the use
of the same representation to denote the related, but different, measure of joint entropy.
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for classification and clustering tasks (Shore and Gray, )—and which includes the popular
maximum entropy framework (Jaynes, ) as a particular case.

Additionally, by the Kraft-McMillan theorem (Kraft, ; McMillan, ), it can be proved
that the value of the cross-entropy between distributions p and q is equivalent to the average length
of coding a signal whose distribution is p using the optimal code derived from distribution q. Hence,
the proposed criterion is related to the length, normalized by the number of objects, of sending the
dataset using a two-step procedure:

. Send the distribution of words in the centroid of each cluster, using a code derived from the
overall distribution of the collection (i.e., the metacentroid).

. Send the distribution of words in each document, using a code derived from the distribution
in of the centroid of its cluster.

This fact allows us to establish a connection with other classical information theoretical model
selection criteria, such as minimum message length and minimum description length (see Sec-
tion ..)—which we could not use at this stage because of their requiring a probabilistic model.

The criterion is also appealing because it includes an implicit measure of the goodness of the
number of clusters: a larger number of clusters implies a larger HB(Π ;X ) but a smaller HW(Π ;X )
and vice-versa, so both subestimations and overestimations of this number are penalized.

Partitional Clustering Finally, the iterative refinement algorithm applied to the selected can-
didate is divisive information theoretical clustering (DITC; Dhillon and Guan, ).

Similarly to aIB, the algorithm tries to find the clustering Π̂ which minimizes the loss of mutual
information. The barebones version of DITC, as proposed by Dhillon et al., iteratively reestimates
the distribution of words in each cluster from the current assignment, and then assigns each docu-
ment to the cluster with which it has the smallest Kullback-Leibler divergence on word distributions,
until convergence:

pt+1(ω ∣ x̄c) =
∑xi∈πtc p(xi) ⋅ p(ω ∣ xi)

∑xi∈πtc p(xi)
πt+1
c = {xi ∣ xi ∈ X ∧ arg min

d
KL(p(ω ∣ xi) ∣ pt+1(ω ∣ x̄d)) = c}

However, Dhillon and Guan state that the performance of the algorithm degrades when faced to
high-dimensional and sparse data, such as document collections. For instance, sparsity can produce
infinite values of Kullback-Leibler divergence, because of the absolute continuity requirement im-
posed by this measure. Additionally, the increase in dimensionality makes it easier for the algorithm
to get trapped in local maxima.

In order to reduce the impact of these phenomena, the authors propose two enhancements to
the basic scheme:

Priors Instead of ML, use MAP for the estimation of the conditional words distributions of the
documents, with a symmetric Dirichlet distribution as prior—so as to avoid the problems
caused by sparsity.

Local search After convergence of the iterative refinement procedure, perform a local search
step—so as to step out of the local maxima caused by high dimensionality. The hill climbing
procedure uses as search operator chains of successive moves of a single object to a different
cluster, of up to a certain fixed length.

The resulting procedure alternatively performs iterative refinement and local search, until conver-
gence. At every iteration, the value of the parameter of the prior distribution is decreased, reducing
its influence (in a fashion similar to the temperature parameter in simulated annealing; Kirkpatrick
et al., ).

... Hierarchical Method

The third and last considered individual unsupervised clustering method is a simple two-stage
generate-and-select approach, consisting of a hierarchical algorithm and a model selection criterion.
More specifically:
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(a) Heterogeneous Generation

(b) Randomized Generation

Figure .: Unsupervised ensemble clustering

. A dendrogram is built using aIB over the conditional distribution representations of the
documents.

. The Caliński and Harabasz’ index is found for every level of the dendrogram, using the cosine
distance between the bag-of-words representations of the document.

The lowest level at which a local maximum of the index occurs is selected, and the dendrogram
is cut at that level.

Despite being simple, we believe the method is interesting because it combines information from
several sources by decoupling the clustering and selection representations.

We will henceforth refer to this method as Hi.

.. Ensemble Approaches

As mentioned in Section .., the use of ensemble clustering methods requires both a strategy to
generate an ensemble, and a method to combine the clusterings in this ensemble into a consensus
one.

We have considered two different strategies for ensemble generation, which are graphically de-
picted in Figure .:

(a) a heterogeneous generation strategy, which performs a single run of multiple unsupervised
clustering algorithms;

(b) and a randomized generation strategy, which performs multiple runs of a single supervised
clustering algorithm.

These two strategies come from opposite decisions in the informedness versus cost trade-off:
the former generates a reduced number of clusterings coming from informed, and hence potentially
expensive, unsupervised algorithms; whereas the latter, as the set of random initializations of an
algorithm is virtually unlimited, allows the generation of a much larger number of clusterings.

Sections ... and ... describe these two strategies, respectively.
Regarding the combination method, we have implemented the three algorithms proposed by

Gionis et al. (), which are based on the reduction of ensemble clustering to the correlation
clustering problem. All three algorithms are unsupervised, and hence able to detect the number of
clusters in the final clustering.

Section ... presents an overview of the used combination methods.



.. UNSUPERVISED CLUSTERING APPROACHES 

Algorithm . Minor ensemble strategy

Input: A dataset X
Input: A set of unsupervised clustering functions (algorithms) F = {f1 . . . fR}
Output: A clustering ensemble E

: Initialize the ensemble E to the empty set

E ← ∅

: For r = 1 . . .R do
: Apply fr to X , to obtain clustering Πr

Πr = fr(X )

: Append the obtained clustering Πr to the ensemble E.

E ← E ∪ {Πr}

: Return the ensemble E

... Heterogeneous Generation

The heterogeneous generation strategy simply applies, in turns, a number of individual unsupervised
clustering algorithms to the dataset, and returns the ensemble of clusterings produced by each one
of them. This scheme was identified by Greene et al. () as heterogeneous ensembles (see
Section ...), and its procedural description is presented in Algorithm ..

For our experiments, we have used the three algorithms presented in Section .. (Geo, Info
and Hi) to generate the ensembles by this strategy. Because of the more reduced number of
clusterings that are generated using this strategy, we will henceforth refer to it as Minor.

... Randomized Generation

In opposition to Minor, the randomized generation strategy seeks to obtain diversity within an
ensemble by repeatedly applying a supervised and stochastic (i.e., non-deterministic) algorithm—
such as k-means or EM.

In particular, the randomized strategy can be used with a computationally undemanding algo-
rithm to obtain large ensembles in an inexpensive way, albeit consisting of much less individually
informed clusterings. Such ensembles of weak (i.e., slightly better than random) clusterings were
first proposed by Topchy et al. (). However, combinations of weak learning algorithms have
long since been used in supervised learning (Freund and Schapire, ).

Even if multiple randomized schemes are possible, our proposal focuses on refinement clustering
algorithms, and hence consists of generating a number of starting clusterings at random, and then
using each one of them as input for the supervised algorithm. To generate the starting clusters,
first the number of clusters and then a number of seed objects to be used as centroids are selected.

The selection of the number of clusters is done in a completely uninformed way, selecting a
number at random up to a user-given kmax. The strategy hence falls within the random-k category
of Greene et al. (see Section ...).

A more detailed procedural description of this process is given in Algorithm .. As described
therein, to generate each clustering in the ensemble the first step is the selection of the effective
number of clusters in the clustering, kr (line ). Any discrete distribution between 2 and kmax,
such as the uniform distribution, can be used. Then a subset X̂r of size kr is selected at random
from X (line ). We shall name this subset the seed subset, and each one of their members will be
a seed.

The seed subset is extended to a clustering Π0
r, which contains a singleton cluster for each

one of the seeds (line ); and this clustering is then used as input to a refinement clustering
algorithm (line ). The resulting clusterings Πr are finally collected to generate the output ensemble
E (line ).
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Algorithm . Major ensemble strategy

Input: A dataset X
Input: An ensemble size R
Input: A maximum number of clusters kmax
Input: A refinement clustering function (algorithm) f
Output: A clustering ensemble E

: Initialize the ensemble E to the empty set

E ← ∅

: For r = 1 . . .R do
: Draw a number of clusters kr at random from the range {2 . . . kmax}

kr ∈ {2 . . . kmax}

: Select a subset X̂r of kr seeds from X

X̂r = {x̂r1 . . . x̂rkr} ⊂ X

: Generate a starting clustering Π0
r, with a singleton cluster π0

rc for each seed x̂rc ∈ X̂r

Π0
r = {π0

r1 . . . π
0
rkr} π0

rc = {x̂rc}

: Apply f to X , using Π0
r as initial clustering, to obtain clustering Πr

Πr = f(X ; Π0
r)

: Append the obtained clustering Πr to the ensemble E.

E ← E ∪ {Πr}

: Return the ensemble E

The strategy has a number of parameters, namely, the ensemble size R, the maximum number
of clusters kmax, and the used refinement clustering algorithm. Regarding the last one, in our
experiments we used again EM with the mixture model of Meilă and Heckerman (), as described
in Section .... Regarding R and kmax, we have experimented with several values in the ranges
R ∈ {10 . . .50} and kmax ∈ {5 . . .50}. The experimental section will shed light on the question of its
influence on the quality of the output clustering (Section ...)

Because of the potentially large number of clusterings that can be generated using this strategy,
we will henceforth refer to it as Major.

... Unsupervised Combination

As mentioned before, Gionis et al. () propose three unsupervised methods for ensemble cluster-
ing, based on reduction to the problem of correlation clustering. In order to perform the reduction,
all three methods start by finding the co-association matrix C(E) = [cij] of the elements in X ,
whose entries cij are the fraction of the total of clusterings in the ensemble E = {Π1 . . .ΠR} in
which the objects xi and xj are clustered together:

cij =
∣{Πr ∈ E ∣ xi ∼ xj}∣

∣E∣
A dissimilarity matrix D(E) = [dij] can be found from C(E) as:

dij =
∣{Πr ∈ E ∣ xi ≁ xj}∣

∣E∣ = 1 − cij

It can be proved that its entries satisfy the triangle equality, and it is hence correct to talk of the
distance matrix D(E).
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After the co-association matrix is built, the problem of ensemble clustering can be reduced
to correlation clustering : a variant of the partitional clustering problem in which, instead of a
dataset and a similarity function, the input is a matrix (or, equivalently, an undirected weighted
graph) containing the particular similarity values for each pair of objects (Bansal et al., ).
More specifically, the objective of correlation clustering is that of finding the clustering Π̂ which
minimizes the correlation cost function CC(Π):

Π̂ = arg min
Π

CC(Π) CC(Π) = ∑
xi,xj∈X

xi∼xj

dij + ∑
xi,xj∈X

xi≁xj

(1 − dij)

Even if the correlation clustering problem is known to be NP-complete (Bansal et al., , §),
Gionis et al. propose three different algorithms to find approximate solutions:

Agglomerative (Agglo) applies the HAC algorithm with UPGMA rule on the distance matrix.
The dendrogram is then cut at the level where the distance between the two merged nodes is
larger than 0.5, in order to obtain the output clustering.

Balls (Balls) is the only one of the three methods to require an input parameter, α. The
algorithm starts by sorting the objects in decreasing order of their sum of distances to all
other objects in the dataset. It then takes each object xi in turn and, if not already clustered,
the following steps are taken:

. The set Xi of unclustered objects whose distance to the current one xi is less than 1
2
are

collected.

. If the average distance between the objects is Xi and xi is less than α, a new cluster
πc = {xi}∪Xi is created; otherwise, xi is added to the clustering as a singleton πc = {xi}.

Even if the output of the algorithm is sensitive to the value of the parameter α, the authors
provide a theoretical proof of its approximation ratio for the particular case α = 1

4
, which is

the one we have used in our experiments.

Furthest (Furth) is a divisive algorithm, which starts by placing all objects in the same cluster.
The pair of objects with the largest distance between them are selected as cluster centroids,
and the remaining objects are reassigned to the cluster to whose centroid the distance is
minimal.

The process is repeated, at every step selecting as centroid of a new cluster the object whose
sum of distances to the previous centroids is maximal, and reassigning the objects for which
this new centroid has become the closest one. The decrease of the correlation clustering cost
function CC(Π) is used as terminating condition: when the newly found clustering presents a
cost larger than the previous one, the process is stopped, and the latter is returned as output
clustering.

Additionally, Gionis et al. propose the use of a local search procedure (Local) on the output from
the three methods, in order to refine the obtained clustering. The procedure performs hill climbing
to minimize the correlation clustering cost function CC(Π), using the movement of a single object
to another cluster as search operator.

We will denote the output from the combination of Agglo, Balls or Furth with Local as
Agglo+L, Balls+L and Furth+L.

. Evaluation

In order to assess and compare the performance of the different clustering methods and strategies
for ensemble generation presented in the previous section, we have performed a series of experiments
on real-world data.

Next sections give details about the evaluation procedure. Section .. describes the used
datasets. Next Section .. describes the evaluation protocol, including the considered metrics,
and, finally, Section .. exposes and discusses the obtained results.
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Collection Docs. Cats. Terms Collection Docs. Cats. Terms

Apw 5,000 11 27,366 Reu 2,545 10 6,734
Efe 1,979 6 10,334 Smt 5,467 4 11,950
Lat 5,000 8 31,960 Swb 2,682 22 11,565

Table .: Clustering collection sizes

APW

EFE

LAT

REU

SMT

SWB

Figure .: Distribution of categories within collections

.. Data

Six different real-world English document collections have been used in our experiments:

APW The Associated Press (year ) subset of the AQUAINT collection. The document
category assignment is indicated by a CATEGORY tag.

EFE A collection of newswire documents from year  provided by the EFE news agency.

LAT The Los Angeles Times subset of the TREC- collection. The categories correspond to
the newspaper desk that generated the article, as done by Zhao and Karypis ().

REU A subset of the Reuters- text categorization collection, including only the ten most
frequent categories. Similarly to previous work, we used the test partition of the ModApte
split (Surdeanu et al., ).

SMT A collection previously developed and used for the evaluation of the SMART information
retrieval system.

SWB A subset of the Switchboard conversational speech corpus, which contains the  topics
which were treated in more than fifty conversations. Each side of the conversation was con-
sidered a separate document.

Following other works (Zhao and Karypis, ; Surdeanu et al., ), the documents were pre-
processed by discarding stop words and numbers, converting all words to lower case, and removing
terms occurring in a single document. Table . lists relevant collection characteristics after this
preprocessing step (number of documents, categories and terms).

Figure . contains a graphical representation of the distribution of documents in categories
within each collection. We can see how, especially in Apw, Lat and Reu, there is set of few
categories which covers most of the documents, whereas other categories have a rather marginal
presence; and how, on the contrary, Smt and Swb presents almost-equally represented categories—
the latter, in particular, containing a large number of them.

Due to memory limitations in our test machines, the collection was reduced to the first  documents.
For the same reason as in APW, again only the first  documents were selected.
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.. Protocol

The quality of the clusterings produced by the different approaches is measured using the metrics
of purity, inverse purity and F. These metrics have been widely used to evaluate the performance
of document clustering algorithms (Zhao and Karypis, ), and are based in comparing the
clustering to a gold standard, i.e., a partition which is considered the true one. Meilă () refers
to their use as evaluation “by set matching”.

Given a gold partition Π̂ of the objects in X into k̂ categories Π̂ = {π̂1 . . . π̂k̂}, these metrics can
be defined as:

Purity (Pur) evaluates the degree to which each cluster contains objects from a single category.
The purity of a cluster is the fraction of the cluster size which its dominant category (i.e.,
the one to which the most objects in the cluster belong) represents. The overall purity of a
clustering is the average of all cluster purities, weighted by cluster size (Zhao and Karypis,
):

Pur(πc ; Π̂) =
maxπ̂d∈Π̂ ∣πc ∩ π̂d∣

∣πc∣

Pur(Π ; Π̂) = ∑πc∈Π ∣πc∣ ⋅Pur(πc ; Π̂)
∑πc∈Π ∣πc∣

Inverse Purity (IPur) evaluates the degree to which the objects from a category are together in
a single cluster. The inverse purity of a category is the fraction of the category size which its
dominant cluster (i.e., the one which contains the most objects from the category) represents.
The overall inverse purity is the average of all category inverse purities, weighted by category
size.

IPur(Π ; π̂d) = maxπc∈Π ∣πc ∩ π̂d∣
∣π̂d∣

IPur(Π ; Π̂) =
∑π̂d∈Π̂ ∣π̂d∣ ⋅ IPur(Π ; π̂d)

∑π̂d∈Π̂ ∣π̂d∣

F tries to be a global performance score, and is calculated as the harmonic mean of purity and
inverse purity (van Rijsbergen, ):

F1(Π ; Π̂) = 2 ⋅Pur(Π ; Π̂) ⋅ IPur(Π ; Π̂)
Pur(Π ; Π̂) + IPur(Π ; Π̂)

Following common practice, the figures for these metrics will always be presented as percentages.
Among the proposed components, only the Major generation strategy is non-deterministic. In

order to reduce the impact of randomness in its judgements, we have carried out  different runs
for each configuration and dataset, and reported the average measures.

Given that direct commensurability of results across different collections cannot be assumed,
we have also considered relative performance metrics. To this end, the clustering with the best F
score has been identified in each collection, and the precision, recall and F values of each method
have been divided by those of this reference one. The mean of these relative values is reported.

Nevertheless, relative metrics are only shown in an informative fashion. For statistical sound-
ness, method performance comparison across multiple datasets is carried out using the Bergmann-
Hommel non-parametric hypothesis test (Bergmann and Hommel, ). Being non-parametric,
the test judges the relative performances of the different methods with respect to each other, rather
than their absolute scores or score differences. Recently, works such as that of Demšar ()
have advocated for non-parametric tests to assess significance in machine learning tasks, as the
assumption of metric commensurability across datasets, required by usual parametric tests such as
Student or ANOVA, is often broken. The use of the Bergmann-Hommel test in particular has been
recommended by García and Herrera ().

The graphical presentation of the significance tests is that introduced by Demšar (): meth-
ods are placed along the horizontal axis according to their average ranks across datasets, and those
for which no statistically significant difference can be found are joined by thick bars.
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.. Results

Three series of experiments have been carried out in order to assess different aspects of the clustering
and ensemble generation process. The next three sections, ... to ..., describe each one of
them.

... Generation Parameters

The first series of experiments performed had as goal to determine the influence of the parameters
R and kmax on the performance of clustering using the ensembles generated by theMajor strategy.
With this purpose, ensembles were generated using the values:

R ∈ {10,20,30,40,50} kmax ∈ {5,10,20,50}

and combined using the three combination methods (Agglo, Balls, Furth), enhanced by Local
search. The plots for the three considered measures, as a function of the parameter values and
relative to the best clustering, are shown in Figure ..

On the one hand, plots (a), (c) and (e) show the influence of the number of clusterings in the
ensemble, R, in the measures of purity, inverse purity and F of the final clustering. It can be
observed how the influence of this parameter is small: even if there is a slight increase in both
purity and inverse purity—and hence also in F—at the low end of the curves, around R = 30 the
results are already quite stable, and do not show significant changes before reaching R = 50. It thus
seems that, once a sufficient number has been reached, an increase of the number of clusterings
does not produce significant changes on the quality of the output.

On the other hand, plots (b), (d) and (f) show the influence of the maximum number of clusters,
kmax, on the final clustering. The picture here is radically different, as the results change dramati-
cally with the value of kmax. More specifically, purity increases and inverse purity decreases with
larger values of kmax.

The most immediate interpretation of these trends is the fact that larger values of kmax will
allow larger numbers of clusters kr in each one of the clusterings in the ensemble. The kr do tip
the scales in the purity–inverse purity trade-off: a clustering with more clusters will tend to favour
purity, and a less fragmented one, inverse purity. Even if the use of combination methods reduces
the effect of the tuning of this parameter on the final clustering, it is clear that it does not remove
its influence completely.

Globally, the maximum value in terms of F is achieved at the relatively low value of kmax = 10.
However, Figure . contains two additional plots, that put into relief the dependency of kmax on
the data to be clustered. Plot (a) contains the values for F as a measure of kmax for clusterings over
each one of the six considered document collections (using the value R = 50 for the other parameter,
and the Agglo+L method). It can be observed how not only the location of its maximum, but
also the behavior of F as a function of kmax, changes significantly from collection to collection.
Plot (b) further illustrates this, showing the correlation between the number of categories in the
collection, k̂, and the optimal value of kmax in terms of F.

These results seem to contradict previous works (e.g., Ghosh et al., ), in which ensembles of
clusterings with a much larger number of clusters than those actually present in the data have been
used successfully. However, we believe that one possible explanation to this behavior may lie in the
fact that we are using EM as weak clustering algorithm: the number of parameters in the mixture
model increases with the number of clusters, and hence their estimation by the EM algorithm
becomes less accurate as this number increases, degradating the clustering quality (a particular
case of the “curse of dimensionality”; Bellman, ). The obtained clusterings are hence rendered
less useful for combination within an ensemble. However, it is interesting to note that these results
do agree with those reported by some other authors—such as Topchy et al. (), who, when
generating weak clustering ensembles using k-means, did not consider values of kmax beyond the
interval kmax ∈ {2 . . .10}.

The determination of a suitable value of kmax hence seems to remain the main drawback of
the Major strategy—at least, when using EM as inner clustering algorithm. For the rest of this
section, the results presented for Major will be those using the parameter setting which obtains
the best F measures, namely R = 50, kmax = 10.
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(c) Inverse purity by R
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(d) Inverse purity by kmax
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Figure .: Influence of ensemble generation parameters in document clustering results
(Major strategy)

... Combination Method

The second group of experiments attempt to determine the ensemble combination method which
is the most suitable to our purposes. Their results are summarized in Table ., which contains
the purity, inverse purity and F values obtained, on each collection, by the three combination
methods (Agglo, Balls, Furth), with and without Local. Following the choice taken at the
end of the previous section, the ensembles were generated using Major with parameters R = 50
and kmax = 10.

The first clear conclusion at the light of these results is that Local does improve the results
obtained by the combination methods alone: in all cases, Local improves or does not significantly
change the purity scores, and in most cases it also improves inverse purity. Overall, only in the case
of Furth over Efe the F measure is lower with Local than without it. This is in agreement
with the results obtained by Gionis et al. ().

On the other hand, the performances of Agglo, Balls and Furth are much more similar

Similar results were obtained using the Minor ensemble generation strategy.
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Figure .: Optimal values of kmax per collection
(Major strategy, R = 50, Agglo+L method)

- +Local

Pur IPur F Pur IPur F

Apw Agglo 76.8 70.0 73.2 79.5 70.1 74.5
Balls 78.5 67.5 72.4 79.6 70.1 74.5
Furth 52.8 88.8 66.1 80.7 70.1 75.0

Efe Agglo 74.7 51.9 61.1 75.4 52.6 62.0
Balls 75.3 48.7 59.0 75.5 51.6 61.2
Furth 59.4 72.5 65.2 75.4 52.6 61.9

Lat Agglo 68.9 77.5 72.9 73.3 78.6 75.6
Balls 67.7 80.0 73.0 68.4 77.0 72.3
Furth 52.4 90.3 66.2 66.9 75.3 70.7

Reu Agglo 84.4 89.9 87.1 85.5 90.1 87.8
Balls 85.9 85.2 85.5 85.6 89.8 87.7
Furth 71.9 91.3 80.4 85.1 90.0 87.5

Smt Agglo 90.3 87.8 89.0 93.4 92.1 92.7
Balls 87.8 82.9 85.3 93.4 92.1 92.8
Furth 71.7 96.6 82.3 89.7 93.3 91.2

Swb Agglo 28.4 97.4 43.8 28.6 96.9 44.1
Balls 28.0 94.7 42.9 31.0 97.0 46.7
Furth 17.2 96.1 28.9 26.4 96.7 41.3

Table .: Comparison of ensemble combination methods for document clustering
(Major strategy, R = 50, kmax = 10)

between them. Without Local, Furth tends to obtain better inverse purity than the other two
methods, at the expense of worse purity and, often, F. However, after applying Local, the
differences become much dimmer, and only in Lat and Swb do they exceed a %-gap between the
lowest and the highest F scores—but never going beyond the %-difference.

The Bergmann-Hommel significance tests for each metric, displayed in Figure ., confirm these
trends. As seen in plot (a), all differences in purity are significant, except that between Agglo+L
and Balls+L. The two methods, as well as their Local-less counterparts, do not show significant
differences in terms of inverse purity, but plot (b) shows how they fall behind Furth and Furth+L.
Overall, plot (c) depicts how the thee Local-enhanced methods obtain the best F values with
no significant differences between them, but with a significant improvement with respect to the
Local-less ones.

At the light of the outcome of the significance tests, among the best performing methods we
will use Agglo+L for the rest of our experiments—being the algorithm which achieves the best



.. EVALUATION 

6 5 4 3 2 1

Furth

Agglo

Balls Furth+L

Balls+L

Agglo+L

(a) Purity

6 5 4 3 2 1

Agglo

Balls

Agglo+L Balls+L

Furth+L

Furth

(b) Inverse purity

6 5 4 3 2 1

Furth

Agglo

Balls Furth+L

Balls+L

Agglo+L

(c) F

Figure .: Bergmann-Hommel tests for the proposed combination methods

purity and F score.

... Overall Comparison

The third and last group of experiments provide an overall comparison of the performance of both
individual and ensemble-based methods. Their results can be seen in Table ..

Concerning individual methods, we can see how, firstly, methods Geo and Info tend to find
clusterings with more purity than inverse purity, whereas Hi tends to favour inverse purity above
purity. Globally, the best results are obtained with Geo in all collections but Efe, followed by Hi
and, last, Info, which in some cases shows a significantly lower performance (e.g., collections Apw
and Smt).

Regarding the ensemble methods, Major outperforms Minor in almost all collections and
measures. Only in the Swb collection do the results of the former fall significantly behind those of
the latter, because of an underestimation of the number of clusters which causes an exceedingly low
value of purity. In the rest of the cases, the measures obtained by Major are always a few points
above those of Minor, short of purity in the Lat collection—which, however, Minor obtains at
the expense of a much larger decrease in inverse purity and F.

Overall, the best two methods are Major and Geo, which obtain the best values of F in most
of the collections, followed after a small gap by Minor. Methods Hi and Info fall much behind
the performance of the other approaches, mostly because of their bad results in terms of purity and
inverse purity, respectively. In the case of the former, this low purity is caused by its too shifted
trade-off for inverse purity; but in the latter, the low inverse purity does not come with high values
of purity—so the conclusion is that the approach is flawed at some point.

It is also interesting to note that, even if only one of the clusterings in the ensemble (namely,
that produced by Geo) consistently provides good quality clusterings across all collections, the
results of Minor are either better or only slightly below those of Geo in most of the cases. Only
on the Apw and Swb collections do the values of F for Minor fall more than 1% below those of
Geo.

The Bergmann-Hommel significance tests for each metric are displayed in Figure .. In this
case, the relatively low number of collections makes the tests less informative than those in the
previous section—only the differences in purity between Hi and each one of Major, Minor and
Geo, as well as that in F between Major and Info, are statistically significant.

Finally, it is worth to notice that the number of clusters in the output clustering, k, often differs
considerably from the number of categories in the collection, k̂, without this having an impact in
the clustering quality in terms of the considered metrics. This is caused by two factors:

• On the one hand, and as mentioned in Section .., the Apw, Efe, Lat and Reu collections
contain a few large categories and many small ones. In these cases, the descent in purity
caused by merging small categories with a large one will be small. This explains, for instance,
why Geo obtains a good purity value in Reu, in spite of generating a clustering with a
number of clusters k = 6 instead of the correct number of categories k̂ = 10.
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Pur IPur F k k̂

Apw Geo 78.2 72.7 75.3 10 11
Info 72.3 56.1 63.1 8
Hi 63.2 88.3 73.7 3

Minor 74.1 69.7 71.8 19.0
Major 79.5 70.1 74.5 60.6

Efe Geo 73.5 52.2 61.1 12 6
Info 63.9 52.7 57.8 5
Hi 59.7 63.3 61.4 4

Minor 69.8 52.6 60.0 14.0
Major 75.4 52.6 62.0 69.0

Lat Geo 77.7 59.3 67.3 14 8
Info 75.4 60.9 67.4 7
Hi 66.4 68.0 67.2 6

Minor 79.0 59.3 67.7 40.0
Major 73.3 78.6 75.6 27.2

Reu Geo 84.4 92.5 88.2 6 10
Info 77.0 75.7 76.4 6
Hi 73.0 85.8 78.9 4

Minor 85.0 89.4 87.1 13.0
Major 85.5 90.1 87.8 18.2

Smt Geo 91.6 79.8 85.3 6 4
Info 89.4 58.4 70.6 9
Hi 70.6 96.8 81.6 3

Minor 92.6 89.8 91.2 18.0
Major 93.4 92.1 92.7 20.6

Swb Geo 68.9 93.7 79.4 15 22
Info 37.9 90.7 53.4 8
Hi 15.2 91.9 26.1 3

Minor 53.0 88.9 66.4 22.0
Major 28.6 96.9 44.1 10.4

Table .: Overall comparison of methods for document clustering

• On the other hand, the ensemble method tends to detect a large number of small clusters.
These clusters will correspond in most cases to outliers—i.e., objects which “[appear] to deviate
markedly from other members of the sample in which [they occur] ” (Grubbs, ). Because
of the small size of the outlier clusters, their separation from the other objects to whose
category they belong does not produce a drop in inverse purity. This explains why the
clustering obtained by Major on Apw and Efe has a much larger number of clusters than
those of other methods (k = 60.6 and k = 69.0, respectively), yet obtains comparable values of
inverse purity.

In fact, given the attention deserved to the problem of outlier detection (Hodge and Austin,
), we believe the identification of such outlier clusters should not be seen as a drawback,
but rather as a feature, of the combination algorithm.

. Conclusions

In this chapter, we have introduced the problem of clustering, and reviewed some of the most
prominent works for the particular task of unsupervised clustering.
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Figure .: Bergmann-Hommel tests for the proposed clustering methods

In order to perform a comparison between individual and ensemble methods for unsupervised
document clustering, as well as of ensemble generation strategies, we have formalized the core
concepts related to clustering, and presented a number of approaches to solve the problem. We
have then been able to carry out a number of experiments to assess the performance of the different
methods over several real-world document datasets. At the light of the obtained results, we believe
there is a number of relevant conclusions that can be drawn.

The main conclusion of our work is that ensemble methods do perform competitively for un-
supervised document clustering. In particular, combination of large ensembles obtained through
randomization of a supervised clustering algorithm (what we have named the Major strategy) out-
perform individual approaches (Geo, Info and Hi), as well as a combination of a reduced ensemble,
containing few but better informed unsupervised clustering algorithms (Minor strategy).

However, Major depends on the tuning of two parameters: the number of clusterings in the
ensemble, R, and the maximum number of clusters per clustering, kmax. The experiments have
assessed the robustness of the strategy with respect to the former, but also stated its sensitivity on
the latter. Nevertheless, using a fixed rule-of-thumb value of kmax = 10 has produced clusterings
whose quality is above that of all other compared methods.

As mentioned in the introduction, the conclusions of our work on unsupervised document clus-
tering have significantly influenced the path of further research, especially in the task of minority
clustering. Chapter  will delve into this problem, and will provide insights of how this influence
has crystallized.





4
Collaborative Learning

“They’re trying to kill me,” Yossarian told him calmly.
“No one’s trying to kill you,” Clevinger cried.
“Then why are they shooting at me?” Yossarian asked.
“They’re shooting at everyone,” Clevinger answered. “They’re
trying to kill everyone.”
“And what difference does that make?”

Joseph Heller
Catch-

This chapter presents an empirical validation of the sequential and
collaborative schemes of clustering and IE pattern learning combina-
tion. With this goal, we start by reviewing an existing manually-seeded
weakly supervised approach, and then make a two-fold proposal to, on
the one hand, reduce its supervision using clustering techniques, and,
on the other, replace the used pattern formalism by a higher-coverage
and more flexible one.

Section . starts by giving a motivation of the ideas behind our
work, and Section . states the problem of relation detection as we
consider it in this and following chapters. The proposed approaches
to solve the problem are described in detail in Section .. To de-
termine their validity, we have carried out two different evaluations.
Section . presents the first one, indirect and through the task of text
categorization; Section . presents the second one, direct and on an
actual relation detection task. Finally, Section . draws conclusions
of our work.

A fter developing and evaluating a small panorama of unsupervised clustering methods
in the previous chapter, we are now in a position to use clustering techniques to tackle the
problem of learning for IE. Following the polytomy presented in Section ., in this chapter

we propose and evaluate two approaches to pattern learning for relation detection—a sequential
one and a collaborative one—which incorporate clustering as a central component.

. Collaborative Clustering and Pattern Learning

The natural scheme for collaborative and sequential combination of clustering and pattern learning—
i.e., the interleaving of document clustering and pattern acquisition—is based on the assumption
that there does exist a mapping from extraction patterns to document categories (or clusters). In
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particular, the patterns must extract entities, relations or events which are specific to scenarios oc-
curring in a single domain. The one-domain-per-pattern requirement has been previously assumed
by a number of authors (e.g., Yangarber et al., ; Stevenson, ; Surdeanu et al., ), in
particular, to justify indirect IE pattern evaluation through text classification: “we can judge the
quality of [a] pattern set based on the quality of the documents that the patterns match” (Yangarber,
).

Even though this assumption can hold in the case of domain-specific relations (such as those in
the MUC scenarios that the mentioned works consider), it may on the contrary become unrealistic
when trying to recover more general binary relations, which can be transverse to any categorization
of the documents containing them. The goal of this chapter is hence not only the validation of a
particular approach to combine clustering and pattern learning, but also of the whole framework
which depends on this assumption.

In order to have an unsupervised collaborative approach—on which to perform our validation—
at our disposal, we have decided to build one based on top of the previously reviewed weakly
supervised system of Surdeanu et al. (). Recalling Section .., this approach requires a
document collection, unannotated but for a small number of seed documents—i.e., documents
which have been judged relevant to each one of the domains present in the collection. These seed
documents are then used to bootstrap a co-training loop between an iterative clustering algorithm
and a decision-list learner, which use the words and patterns present in the documents, respectively,
to cluster them. After a number of iterations, patterns which have been selected as features by the
decision list learner are returned—as they will hopefully express entities, relations or events specific
to their domain. In particular, predicate-argument patterns are used, as proposed by Yangarber
et al. ().

In the work of Surdeanu et al., this co-training approach is compared with a straight bootstrap-
ping of the decision-list learner on the given manual seeds, using self-learning (à la Yarowsky, ).
This sequential approach, and the co-training or collaborative one, are depicted in Figures .a
and .b, respectively. We believe this architecture can be enhanced to build an unsupervised
system by replacing the initial step by an unsupervised document clustering process, thus lifting
its dependency on a manual set of seeds. The resulting sequential and collaborative schemes are
graphically represented in Figures .c and .d, respectively.

Moreover, the use of predicate-argument tuples restricts the capturable relations to those ex-
pressed using verbal grammatical constructions. Given that, for instance, only 21.2% of the relation
mentions annotated on the ACE- corpus follow a verbal lexical condition, this restriction effec-
tively cramps the approach, lowering its recall. Our proposal becomes two-fold, as we additionally
propose to replace the predicate-argument tuples by a more expressive formalism, based on con-
junctions of binary features.

. Problem Definition

As already presented in Section .., the problem of relation detection is that of identifying the
tuples of entities occurring in a document which are linked by some kind of relation at the instance
level. In particular, in this work we have focused on binary relations between pairs of entities.

Our approaches to relation detection are all based on the transformation of the task into a
binary decision problem: “Given a pair of entities E1 and E2 which co-occur in a sentence, are
they related or unrelated? ”. This framework is depicted in Figure .. Even if it suffers from
the obvious drawback that it is unable to capture relations between entity mentions occurring in
different sentences, such inter-sentence relation mentions are rare, and can therefore be disregarded
without a significant loss in detection recall. We thus believe the scheme to be powerful enough for
our purposes.

Following ACE terminology (see Section ..), we will be evaluating the task at the mention
level. The problem will hence be determining if there is a relation expressed between two entity
mentions (i.e., references in a linguistic fragment)—as opposed to the task of determining whether
such relation exists between the actual entities (considered as the elements outside the discourse to
which the mentions refer). The distinction is important because, occasionally, a pair of entities may
be linked at the entity level, but not at the mention level. Those are cases in which the linguistic
context surrounding the mentions does not allow inferring the existence of the particular relation
between them.
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(a) Sequential pattern learning with manual seed selection (Yarowsky, )

(b) Collaborative pattern learning with manual seed selection (Surdeanu et al., )

(c) Sequential pattern learning with clustering

(d) Collaborative pattern learning with clustering

Figure .: Approaches for decision-list-based IE pattern learning
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Figure .: Relation detection as a binary decision problem

(a) Relation detection using predicate-argument structures

(b) Relation detection using binary feature conjunctions

Figure .: Approaches for relation detection

. Our Approaches

In the approaches in this chapter, the relatedness classification problem is solved using a pattern
base, whose patterns are to be matched against the context in which the considered pair occurs.
For the case of predicate-argument structures, this matching is determined from properties of the
sentence parse tree (Figure .a); whereas for binary feature conjunctions, it is a function of the
set of predefined binary features which are active in the context (Figure .b). In the case in which
at least one of the patterns matches, we consider the pair of entities to be related; otherwise, they
are deemed unrelated. The process of sequential or collaborative clustering and pattern learning
has as a goal the construction of one such pattern base.

Next sections detail each one of the components involved in the learning process, starting with
candidate pattern generation in Section ... Next Section .. describes the collaborative and
sequential learners we have employed. Finally, Sections .. and .. describe the considered
clustering and decision-list learning algorithms, respectively.

.. Candidate Pattern Generation

The first step of both approaches is the generation of the candidate patterns. Being unsupervised,
the procedure considers all sentences in the corpus, and gathers all entity pairs which co-occur in
it. All possible patterns within the considered formalism that join the pair are added to form the
candidate set. However, given that relations are usually expressed using short-distance construc-
tions, in the learning step only those pairs whose distance, measured in tokens between them, is
less than a certain threshold are considered.

Additionally, during pattern generation a bag-of-patterns representation of the documents is
built, analogous to the bag-of-words one (see Section ...) but using the candidate pattern set
as dictionary. In this view, a document will hence be represented by the frequency of each one of
the candidate patterns—i.e., the number of entity pairs in the document which are linked by the
pattern.

For instance, in more than 95% of the annotated relation mentions in the ACE-, ACE- and ACE-
corpora the two entity mentions are separated by less than  tokens.

It is important to note that this threshold is only used during the learning step, and not when classifying new
entity pairs.
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<X: PER> has been appointed by <Y: ORG> as president

SBJ VC VC

VMOD

PMOD

VMOD

PMOD

(a) Original sentence

<X: PER> has been appointed by <Y: ORG> as president

OBJ

VC
VC NMOD

SBJ

VMOD

PMOD

(b) Normalized sentence

sv:ORG:appoint
svo:ORG:appoint:PER

svoio:ORG:appoint:PER:as:president
svio:ORG:appoint :as:president

vo :appoint:PER
voio :appoint:PER:as:president
vio :appoint :as:president
(c) Generated predicate-argument structures

Figure .: Passive voice and perfect tense normalization

Due to computational issues, this conceptually simple scheme cannot be directly applied to the
two considered formalisms used in our experiments. Next two Sections ... and ... describe
each one of them in detail, and discuss the restrictions and changes that have been needed in order
to render the process computationally feasible.

... Predicate-Argument Structures

Predicate-argument structures are tuples whose slots contain, for a given verbal predicate, which
word acts as predicate verb, and which words or entities are the predicate arguments. The structures
considered by Surdeanu et al. () involve subjects (s), objects (o) and indirect objects (io;
actually, any prepositional complement) for a given verb (v). For this last argument type, the
preposition linking the argument to the verb also takes part in the pattern.

The candidate generation step only needs to consider entity pairs where both entities are direct
arguments of the same verbal predicate. However, also following Surdeanu et al., a number of
syntactic normalizations are applied to the dependency parse tree of the sentences before pattern
generation and matching. In our experiments, the normalization process follows a number of hand-
written rules which account for perfect and continuous verbal tenses, modal verbs and passive
constructions. The goal of these transformations is to place the verb which carries the semantics
of the predicate, rather than the aspect, in its main position, as well as to take into account the
subject-object inversion of the passive voice. An example of the effect of such normalizations is
represented in Figure ..

After parse-tree normalization, for each verb in the sentence all possible structures are generated.
In them, if the corresponding arguments are an entity, the slots are filled with the entity type;
otherwise, the word lemma is used. Figure .c contains the patterns that are generated from the
sample sentence of Figure .a.

We will refer to the feature set generated by these predicate-argument structures as p:a.
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w:
t

c:
l

w:
t+
c:
l

Structure-based

Distance between the pair is %d words • • •
Distance between the pair is %d chunks · • •
Left/rightmost entity is of type %t • • •

Word-based

Word %d positions before/after the left/rightmost en-
tity. . .
. . . has POS tag %t • · •

Chunk-based

Chunk %d positions before/after that containing the
left/rightmost entity. . .
. . . has type %t · • •
. . . has a head with lemma %l · • •

Table .: Feature patterns used by feature sets

Word <X: PER> has been appointed by <Y: ORG> as president

Position left
after:left:1 after:left:2 after:left:3 after:left:4

right after:right:1 after:right:2before:right:4 before:right:3 before:right:2 before:right:1

Tr.+Val. type=PER tag=VBZ tag=VBN tag=VBN tag=IN type=ORG tag=IN tag=NN

dist=5, left/type=PER, after:left:1/tag=VBZ, before:right:4/tag=VBZ, after:left:2/tag=VBN,
Features before:right:3/tag=VBN, after:left:3/tag=VBN, before:right:2/tag=VBN, after:left:4/tag=IN,

before:right:1/tag=IN, right/type=ORG, after:right:1/tag=IN, after:right:2/tag=NN

Figure .: Binary features generated by the w:t patterns for a sample sentence

... Binary Feature Conjunctions

The alternate formalism we propose represents detection patterns as conjunctions of binary features,
which capture lexical and syntactic properties of the context in which pairs of entities co-occur.

The generation of the binary features is performed according to a number of feature patterns
defined a priori, and which consider traits such as the POS and lemmas of the linguistic elements
(words, chunks. . . ) in a window around the considered pair. Each feature will be composed of (at
most) three parts:

• a position, which is the direction (before/after) and distance from the involved element
to one (left/right) of the two entities in the pair;

• a trait, which is the property (tag, lemma. . . ) of the element that the feature regards;

• the value of the trait of the element in that position.

Some structural features, such as the distance between the entities, consist of only the trait and
value parts, but in all other cases, this triplet scheme is followed.

We have considered three feature sets for our experiments:

w:t A syntax-oriented feature set which, in addition to the entity types and distance, only con-
siders the POS tags of the words in the context.

c:l A lexicon-oriented feature set which, in addition to the entity types and distance, only considers
the lemmas of the heads of the chunks in the context.

This formalism will be revisited in Section .., where more feature patterns will be considered.
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w:t+c:l The union of the previous two feature sets.

The specific patterns used to generate them are listed in Table .. Following Hassan et al. (),
before pattern generation, entities are replaced by a single token with the entity type as POS. An
example of the nature of the features that would be active for a given sentence can be found in
Figure ..

Given that the number of patterns which can be generated from a certain context grows ex-
ponentially with the number of active features in it, an explicit enumeration of them, as done for
p:a structures, is no longer possible. Instead, the process of candidate generation is split into three
steps:

. In a first pass over the corpus, the vectors of features which are active in each entity pair
context are generated and collected.

. Next, a frequent-itemset-mining algorithm is used to find all maximal conjunctions of features
whose frequency is above a certain threshold.

. Finally, the frequent itemsets found in the previous step are matched against the features
active in each context, in order to build the bag-of-patterns representation of the documents.

Among the different algorithms that have been proposed for frequent-itemset mining, we have
implemented the one of Bayardo () for our experiments.

.. Combination Schemes

As mentioned in previous sections, the combination of clustering and pattern learning using the
components proposed in this chapter can be achieved using two different schemes: a sequential one
and a co-training collaborative one. Next Sections ... and ... describe each one of them,
respectively.

... Sequential Combination (Self-Training)

The simpler sequential combination approach closely follows the self-training bootstrapping scheme
proposed by Yarowsky (), represented procedurally in Algorithm ..

The algorithm first applies a clusterer, and then learns a decision-list classifier L, bootstrapping
it from the obtained clustering. The former uses only bag-of-words features, whereas the latter uses
the bag-of-patterns representation of the document collection X (built from the generated pattern
candidates).

The first step of the procedure is thus performing the starting clustering step (line ). As the
list is built in an incremental fashion, the next step is its initialization to an empty set (line ).
The main loop (line –) then consists in performing a rule acquisition step to update the decision
list (line ) and refining the clustering using the newly found rules (line ). This loop is iterated
until convergence (line ).

Pattern acquisition is a byproduct of decision-list learning: in a final step, the features which
have been used as antecedent in the decision list rules are collected and returned (line ).

We will denote the results obtained using a given seed set and the sequential learning scheme
using the /S suffix appended to the seeds’ name.

... Collaborative Combination (Co-Training)

The considered co-training scheme is a standard one, following Blum and Mitchell (), and
interleaves the training of two classifiers on different views of the dataset. The specific procedure
for the task at hand is shown procedurally in Algorithm ..

In this case, the algorithm is simultaneously training a probabilistic clustering model Θ and
a decision-list L. The former regards the considered document collection X using only bag-of-
words features, whereas the latter only considers the bag-of-patterns view (built from the generated
pattern candidates).

Similarly to the sequential algorithm, the procedure begins by finding the starting cluster-
ing (line ) and initializing the decision list to an empty set (line ). The main loop (line –) is
split in two halves. The first one consists in using an algorithm to fit a clustering model from the
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Algorithm . Sequential clustering and decision-list learning

Input: A word-based view of the dataset Xw
Input: A pattern-based view of the dataset X p
Output: A set of extraction patterns P

: Find the starting clustering Π
Π← clusterst(Xw)

: Initialize the decision list L
L← ∅

: While ¬ converged do
: Perform a decision-list learning step, and append the obtained rules to the decision list

L
L← L ∪DL(Π,X p)

: Apply the decision list to update clustering Π

Π← update(Π,X p ;L)

: Return the set of patterns that have been used as antecedent in the decision list rules P

P = ⋃
(pa→πc)∈L

pa

Algorithm . Collaborative clustering and decision-list learning

Input: A word-based view of the dataset Xw
Input: A pattern-based view of the dataset X p
Output: A set of extraction patterns P

: Find the starting clustering Π
Π← clusterst(Xw)

: Initialize the decision list L
L← ∅

: While ¬ converged do
: Perform a clustering step to obtain a model Θ

Θ← cluster(Π,Xw)

: Apply the clustering model to update clustering Π

Π← update(Π,Xw ; Θ)

: Perform a decision-list learning step, and append the obtained rules to the decision list
L

L← L ∪DL(Π,X p)
: Apply the decision list to update clustering Π

Π← update(Π,X p ;L)

: Return the set of patterns that have been used as antecedent in the decision list rules P

P = ⋃
(pa→πc)∈L

pa
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Figure .: Hybrid unsupervised seed generation method (Geo.Seeds)

current clustering (line ) and applying this model to update it (line ). After this, the second one
is shared with the sequential approach, and includes a rule acquisition step to update the decision
list (line ) and the refinement of the clustering using the newly found rules (line ). The loop is, in
this case, iterated until convergence of both learners. Finally, as in the sequential case, the patterns
to be returned are gathered from the antecedents of the decision list rules (line ).

To denote the results obtained using this collaborative scheme, we will use the /C suffix following
the name of the used seeds.

.. Clustering

As previously mentioned, clustering is used in our approaches in two different phases: first, the
documents are clustered before the co-training loop so as to substitute manual seeding; second,
there is a clustering step within the main co-training loop, interleaved with decision-list learning.

Regarding the initial phase, we have considered the use of the Geo and Major methods
presented in the previous chapter (Sections ... and ..., respectively) to obtain a starting
clustering of the document collection. We have chosen these methods as they were the ones to obtain
the best results, in terms of purity and F, in our document clustering evaluation (Section .).

Additionally, given that the pattern extraction loop only requires a set of seeds as input, we
have considered an alternative Geo.Seeds method: a variation of Geo in which the final iterative
clustering step is omitted, and which is depicted in Figure .. Given that the initial model
candidates are built from tight and separated groups of objects, we believe these groups can fulfill
the requirements to act as a replacement of manual seeds.

With respect to the iterative clustering step, we have followed Surdeanu et al., and used the
EM algorithm to fit a mixture of multinomial distributions. This is, again, the same algorithm we
had already resorted to for the final iterative clustering step of Geo.

However, in order to improve the interleaving of the decision-list learning and clustering pro-
cesses, Surdeanu et al. make a recommendation regarding the update of the clustering using the
probabilistic model. As in classification EM (Celeux and Govaert, ), hard assignment is used
at each iteration. However, instead of directly assigning objects to the component with the largest
a posteriori probability of having generated them, the authors recommend preserving the cluster
assignments from the previous iteration, only updating the clustering of those documents for which
this most probable component has generated them with a probability beyond a given threshold (set
in their—and our—experiments to 0.95).

.. Decision List Learning

The rule learning procedure follows the scheme of Yarowsky (). Formally, given a pattern dic-
tionary Ωp = (p1 . . . pz), the algorithm requires the bag-of-patterns representation of the document
collection, X p = {x⃗1 . . . x⃗n}—where each xiw in x⃗i = (xi1 . . . xiz) contains the number of occurrences
of pattern pw in document xi—and a hard clustering Π = {π1 . . . πk}; and outputs a decision list
with simple rules of the type pa → πc.

Each learning iteration is then a two-step process in which all antecedent patterns pa are scored
with respect to each potential consequent cluster πc, and then the best ranked pattern-cluster pairs
are acquired as rules. Among the different scoring functions proposed by Surdeanu et al., we have
used those of Riloff () and Collins and Singer (). Both criteria start by finding the precision

The best-performing settings of kmax = 10 and R = 50, with the Agglo+L combination algorithm, have been
used (see Section ..).
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of the patterns over each cluster:

prec(pa ;πc) =
freq(pa ∧ πc)

freq(pa)
= ∣{xi ∈ πc ∣ xia > 0}∣

∣{xi ∈ X ∣ xia > 0}∣

The patterns for which the precision is above a certain threshold are then scored using a criterion-
specific formula, whereas those falling below are assigned a zero score. In the case of Collins and
Singer’s criterion, the score is the absolute frequency of the pattern in the whole collection:

scoreCo(pa ;πc) = { freq(pa) if prec(pa ;πc) > TCo
0 otherwise

whereas for Riloff’s the product of precision and log-frequency of the pattern over the cluster is
used:

scoreRi(pa ;πc) = { prec(pa ;πc) ⋅ log freq(pa ∧ πc) if prec(pa ;πc) > TRi
0 otherwise

We have chosen these particular criteria as they were the ones reported to obtain the best results by
the authors. The suggested values of TCo = 0.95 and TRi = 0.5 for the respective precision thresholds
have also been preserved.

The selected rules are appended to build a decision-list classification model (Rivest, ). In
order to classify a document x′ using this model, all rules are checked and the consequent of the
highest-precision matching rule is returned as prediction.

In order to allow the bootstrapping of the learner (sequential combination) and the interleaving
of the decision-list learning and clustering processes (collaborative combination), Surdeanu et al.
recommend selecting the rules for different clusters independently, taking the  highest scored rules
in each one of them at every acquisition iteration.

We will refer to the results obtained with Collins and Singer’s and Riloff’s criteria using the :Co
and :Ri suffixes, respectively, appended to the seeds’ name and combination scheme.

. Text Categorization Evaluation

The first of the two evaluations we have carried out on the proposed approaches aims at comparing
the performance of the clustering-seeded pattern learning method with that of the manually seeded
one. With this purpose, we have replicated the evaluation presented by Surdeanu et al. ().
In their work, the authors use an indirect evaluation scheme, applying the obtained decision list
classifier for text categorization, and evaluating the performance of their method on this task.

The text categorization task “(a.k.a. text classification, or topic spotting), [is] the activity of
labeling natural language texts with thematic categories from a predefined set” (Sebastiani, ).
Text categorization has been a typical testbed for ML methods, and several comprehensive com-
parisons of their performance, as well as surveys on the topic, have been published elsewhere (e.g.,
Yang, ; Sebastiani, ).

Given that the core of our pattern acquisition approaches is the learning of a decision list
for document clustering, it is quite straightforward to apply the obtained classifier on a new set
of documents, and then assess the quality of the obtained patterns by their performance on the
categorization of this test data. Nevertheless, it is important to bear in mind that, as mentioned
in the chapter introduction, evaluation of IE is based on the one-domain-per-pattern assumption.

Next sections give more details about the way this indirect evaluation has been performed. The
data collections we have used are described in Section ... Section .. describes, in turn, the
protocol and metrics used. Finally, Section .. discusses the obtained results.

.. Data

For the text categorization evaluation, we have used a subset of the real-world English datasets to
which we had previously resorted for evaluation of clustering approaches (Section ..). Specifically,
we have used the Apw, Lat, Reu and Smt collections. The choice comes from the fact that these
are the datasets used by Surdeanu et al. in their evaluation. The preprocessing applied to the
documents is the same as in the previous chapter.
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.. Protocol

In order to assess the quality of the text categorizations produced by the compared methods, the
standard metrics of micro-averaged precision, recall and F have been used. Their usage for text
categorization is common (e.g., Lewis, ) and, similarly to those considered for clustering, they
are based on comparing the system output to a gold standard. However, given that the decision
list classifier may not be able to assign a category to all test documents, they take into account the
fact that some among them may remain unclassified.

An extra consideration which has to be taken into account comes from the fact that, in difference
from manual seeds, there need not be a direct correspondence between the clusters found by the
clustering methods and the categories in the gold standard. Because of this, the evaluation requires
a cluster-to-category mapping to be found. For our purposes, we have allowed clusters to be mapped
to the category with which they have the most documents in common.

Formally, given the partial partition of the test set produced by the decision list classifier
Π = {π1 . . . πk} (where ⋃πc ⊆ X ) and the gold partition Π̂ = {π̂1 . . . π̂k̂}, the cluster-to-category
mapping from Π to Π̂ is thus defined as the function ϕ ∶ Π→ Π̂ such that

ϕ(πc) = arg max
π̂d∈Π̂

∣πc ∩ π̂d∣

The cluster-to-category mapping is not necessarily injective, and hence not necessarily invertible.
However, an inverse category-to-clusters mapping ϕ̄ can also be defined, as the union of the category
inverses under ϕ:

ϕ̄(π̂d) = ⋃
ϕ(πc)=π̂d

πc

Once these two mappings are found, we can calculate micro-averaged precision, recall and F, which
are defined as:

Precision (Prc) measures the degree to which the objects assigned to a cluster belong to the
category to which the cluster is mapped. The precision of the cluster is the fraction of its
size which the objects in this category represent. The overall micro-averaged precision of a
categorization is the average of all cluster precisions, weighted by cluster size.

Prc(πc ; Π̂) = ∣ϕ(πc) ∩ πc∣
∣πc∣

Prc(Π ; Π̂) = ∑πc∈Π ∣πc∣ ⋅Prc(πc ; Π̂)
∑πc∈Π ∣πc∣

Recall (Rec)measures the degree to which the objects from a category are assigned to clusters
mapped to that category. The recall of the category is the fraction of its size which the objects
in these clusters represent. The overall micro-averaged recall of a categorization is the average
of all category recalls, weighted by category size.

Rec(Π ; π̂d) = ∣ϕ̄(π̂d) ∩ π̂d∣
∣π̂d∣

Rec(Π ; Π̂) =
∑π̂d∈Π̂ ∣π̂d∣ ⋅Rec(Π ; π̂d)

∑π̂d∈Π̂ ∣π̂d∣

F tries to be a global performance score, and is calculated as the harmonic mean of precision
and recall:

F1(Π ; Π̂) = 2 ⋅Prc(Π ; Π̂) ⋅Rec(Π ; Π̂)
Prc(Π ; Π̂) +Rec(Π ; Π̂)

As customary, the values for these metrics will always be expressed as percentages.
The evaluation is performed using -fold cross-validation. For each fold, the clustering and pat-

tern learning steps are performed on the training partition, and the obtained decision-list classifier
is then applied on the test one. Text categorization performance is then measured on the test data.
The sole exception is the Reu collection, in which a training and test partition was already defined,
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Figure .: Categorization precision-recall curves per collection (I)

and a single evaluation fold has been carried out. The assignment of documents to training and
test sets for each one of the folds, as well as the selection of those to be used as manual seeds, was
the same used by Surdeanu et al..

Precision, recall and F measures are regarded as functions of the number of co-training itera-
tions. When finding mean performance across folds, it is the values for the same number of iterations
which are averaged. Additionally, for the Major clustering method,  runs of the method have
been considered for each fold, and the averages across all folds and runs are presented.

It is important to note that Surdeanu et al. did not propose any terminating condition for the
acquisition procedure. As hypothesis testing requires the determination of a cutoff point, we have
opted to report the results for the iteration where the Best value of F is achieved. Similarly to
the protocol used for clustering evaluation (Section ..), Bergmann and Hommel hypothesis tests
are applied on these results to assess their statistical significance.

Finally, given that Surdeanu et al. used only predicate-argument structures (p:a), the exper-
iments in this section are all performed within this pattern family. We postpone to the relation
detection evaluation, to be discussed in Section ., a comparison of this and the competing binary
feature conjunction formalism.

.. Results

... Precision-Recall Curves

Figures . and . contain the precision-recall curves for the proposed approaches over the four
considered document collections. The left column shows the results obtained with the Co selection
criterion; and the right one, those with Ri. In all plots, the corresponding curves for the opposite
criterion are depicted in dotted lines to ease the comparison.

Overall, the plots put into relief three main trends in the results: first, the improvement produced
by the use of a collaborative instead of a sequential combination scheme; second, the difference in
precision-recall trade-offs of the two rule selection criteria Co and Ri; and third, the competitive
performance of clustering-seeded approaches with respect to the manually seeded one.

Delving more into the detail of the first phenomenon, the plots show how, for Manual and
Geo.Seeds, the collaborative process positively improves the results obtained by the sequential one.
Only in Reu, the curve of Geo.Seeds/C is, for larger values of recall, below that of Geo.Seeds/S
in terms of precision. Regarding Geo and Major, the fact that a complete clustering solution is
being fed as input to the co-clustering loop limits the influence of the decision-list learner, and the

We would like to thank Surdeanu, Turmo, and Ageno for providing us these and all the code and data we
required to be able to faithfully replicate their results.
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(b) Lat collection, Ri criterion
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(c) Reu collection, Co criterion

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70

P
rc

Rec

Manual/S:Ri
Manual/C:Ri

Geo.Seeds/S:Ri
Geo.Seeds/C:Ri

Geo/S:Ri
Geo/C:Ri

Major/S:Ri
Major/C:Ri

(d) Reu collection, Ri criterion
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Figure .: Categorization precision-recall curves per collection (II)
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partition is dominated by the starting clustering step. As a result, in these cases co-clustering is
rendered equivalent to the much simpler sequential combination, and no differences are observable
between the results of the sequential and collaborative approaches. Nevertheless, in all cases pattern
learning via co-clustering can be said to be more or equally effective than the sequential scheme. This
is in complete agreement with the results previously reported, using Manual seeds, by Surdeanu
et al. ().

Regarding the two different rule selection criteria, the general observed tendency is that Co
shows a stronger preference for precision than Ri, which is more geared towards extraction recall.
Hence, for the same seeds, the curves for Ri appear below and to the right of those for Co. Only
the results on the Reu collection using Geo.Seeds show a different picture—Ri there obtains both
larger precision and recall values, and its curves dominate those of Co. These results are consistent
with the differences in parameter setting recommended by the authors of the two criteria. As
mentioned in Section .., Collins and Singer recommend a precision threshold of TCo = 0.95,
whereas Riloff sets it to TRi = 0.5. Therefore, in order to obtain a more confident classifier, the
former prunes a large number of lower-precision candidate rules—which, on the contrary, will be
eventually accepted by the latter and allow it to achieve a larger recall.

Finally, considering the differences between seeding strategies, the results of the clustering-
seeded approaches, even within a sequential scheme, are seen in the plots to match those of the
manually seeded ones in terms of precision and recall. This is particularly true on the Apw and
Lat collections using any of the Geo.Seeds, Geo and Major starting clustering methods; and
on all collections using Major and, to a lesser degree, Geo.

Overall, the patterns obtained using clustering-seeded approaches achieve a level of precision
beyond 90 or 80%, depending on the selection criterion, on their most confident documents; and
one around 70% for values of recall larger than 50%. This is clearly good news: the results certify
the validity of the clustering-based seeding strategy as a replacement to manual seeds. With the
former, we have been able to reduce the level of supervision of the process, yet obtained a system
whose results are comparable, or even better—for the text categorization task—than those of the
more supervised one which requires the latter.

... Hypothesis Tests

Table . contains the values of precision, recall and F obtained at the Best iteration for each col-
lection, seed and combination strategy. The results for Geo/C:Co and Major/C:Co are shaded
as a visual reminder that they are equal to those of Geo/S:Co and Major/S:Co, respectively.

The figures here do nothing but confirm the conclusions drawn from the observation of the
precision-recall curves. In particular, it is interesting to note how, effectively, for the same collections
and seed sets, the approaches using the Ri criterion tend to solutions with higher recall—and, in
fact, with a better balance of the two measures. Also, it can be seen how collaborative combination
improves the precision and, more often than not, the recall of their sequential equivalents. Overall,
the F score achieved by the former is always higher than that of the latter, except for the case of
the Reu collection when using Geo.Seeds. Therein, the drop in recall and, especially, precision
between Geo.Seeds/C:Ri and Geo.Seeds/S:Ri is remarkable. This can also be told from the
difference of the right ends of the corresponding curves in Figure .d.

The statistical significance of all these comparisons can be confirmed by the corresponding
Bregman-Hommel tests. The first group of them tries to assess the differences in performance of
combination strategies and selection criteria over all collections and seed sets, and its outcomes
are collected in Figure .. Collaborative approaches obtain better results in all metrics than
their sequential homologues (except for precision when using the Ri criterion), but the differences
are not statistically significant. However, the differences between Co- and Ri-based approaches
are significant, favouring the former in the case of precision, and the latter in the case of recall.
Overall, it is the collaborative C:Ri which achieves the best F scores (Figure .c), followed by
its counterpart S:Ri and then the Co-based approaches. The difference between C:Ri and S:Co
is statistically significant. As the two strategies using the Ri criterion obtain better average ranks
than those with Co, we will henceforth focus our discussion on the results obtained using this first
criterion. However, it can be checked how the results are, in broad outlines, similar enough in both
cases.

For parsimony, equivalent results obtained using a simpler approach should be preferred.
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S:Co C:Co

Best Best

Prc Rec F Prc Rec F

Apw Manual 63.49 53.01 57.78 73.74 60.94 66.72
Geo.Seeds 72.60 58.92 65.04 73.63 59.16 65.60
Geo 75.57 61.87 68.03 75.57 61.87 68.03
Major 78.74 62.52 69.69 78.74 62.52 69.69

Lat Manual 61.63 38.82 47.63 68.35 46.47 55.33
Geo.Seeds 67.09 40.63 50.57 67.62 40.57 50.67
Geo 68.86 43.39 53.21 68.86 43.39 53.21
Major 69.76 41.23 51.81 69.76 41.23 51.81

Reu Manual 74.15 45.54 56.43 77.44 46.80 58.34
Geo.Seeds 59.72 30.18 40.09 57.53 28.53 38.14
Geo 74.76 45.15 56.30 74.76 45.15 56.30
Major 80.69 47.42 59.73 80.69 47.42 59.73

Smt Manual 69.33 34.86 46.39 81.64 37.53 51.40
Geo.Seeds 74.72 25.68 37.98 77.97 25.77 38.49
Geo 79.63 27.75 40.72 79.63 27.75 40.72
Major 80.75 35.33 49.10 80.75 35.33 49.10

S:Ri C:Ri

Best Best

Prc Rec F Prc Rec F

Apw Manual 50.95 44.81 47.68 56.30 51.16 53.61
Geo.Seeds 59.77 53.89 56.67 59.31 56.61 57.93
Geo 66.01 62.67 64.30 66.01 62.67 64.30
Major 72.82 71.57 72.19 72.82 71.57 72.19

Lat Manual 59.87 35.08 44.23 56.56 49.23 52.64
Geo.Seeds 55.58 49.00 52.08 56.40 51.18 53.66
Geo 58.39 53.00 55.56 58.39 53.00 55.56
Major 64.22 57.85 60.87 64.22 57.85 60.87

Reu Manual 69.28 48.92 57.35 73.16 47.98 57.95
Geo.Seeds 71.57 50.26 59.05 57.04 41.22 47.86
Geo 72.81 52.30 60.87 72.81 52.30 60.87
Major 78.03 55.50 64.86 78.03 55.50 64.86

Smt Manual 52.34 41.43 46.25 63.20 52.61 57.42
Geo.Seeds 58.40 46.46 51.73 60.67 47.43 53.21
Geo 64.59 49.55 56.02 64.59 49.55 56.02
Major 65.29 53.86 59.03 65.29 53.86 59.03

Table .: Comparison of pattern acquisition strategies, evaluated on text categorization
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Figure .: Bergmann-Hommel tests for text categorization (all criteria)
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Figure .: Bergmann-Hommel tests for text categorization (Ri criterion)

The second group of Bergmann-Hommel tests, represented in Figure ., were performed to
establish the significance of the observed differences within the approaches using the Ri criterion.
It is interesting to note how the results obtained using Major/S and Geo/S seeds achieve the
first and second, respectively, best average ranks in all three metrics, always exceeding the results
of Manual/C. Actually, Major/S has an average rank of —i.e., it obtains the best results in
all cases. This again confirms the validity of the clustering-seeded strategy, and how it is not only
competitive but even able to outperform the manually seeded one. Regarding the sequential and
collaborative combinations using Geo.Seeds, they fall between Manual/C and Manual/S in
terms of performance.

Nevertheless, similarly to the case of our clustering evaluation (Section ..), the reduced
number of available data collections prevents the Bergmann-Hommel tests from detecting but a
small number of statistically significant differences. Only that in the precision between using seeds
Major/S and all other sources except Manual/C and Geo/S, and that in the recall and F
between Major/S and Manual/S are judged so.
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Docs. Words Docs. Words

<bn> Broadcast news 147 38,298 220 69,547
<nw> Newswire 105 67,100 223 101,109
<ts> Telephone speech - - 8 14,937

<all> TOTAL 252 105,398 451 185,593

 TOTAL

Docs. Words Docs. Words

<bc> Broadcast conversation 60 46,587 60 46,587
<bn> Broadcast news 226 62,820 593 170,665
<nw> Newswire 106 54,766 434 222,975
<ts> Telephone speech 39 48,901 47 63,838
<un> Usenet groups 49 42,084 49 42,084
<wl> Weblogs 119 42,316 119 42,316

<all> TOTAL 599 297,474 1,302 588,465

Table .: ACE subcollection sizes

... Conclusions

Overall, the results of the indirect evaluation look promising, as clustering-seeded approaches match
or outperform manual ones. In particular, the acquisition process using the Ri rule selection
criterion and the seeds provided by the Major and Geo clustering methods allows the obtainment
of patterns which, when applied on a text categorization task, exceed the results of all other
compared approaches in terms of precision, recall and F.

However, the fact that this is an indirect evaluation, and that the approaches—and the frame-
work itself—are hence still in need of direct validation on a real extraction task, must be remem-
bered. The evaluation in next section is specifically devised to fill in this gap.

. Relation Detection Evaluation

Once the feasibility of replacing manual seeding by a clustering process has been ascertained, it
becomes necessary to carry out a direct evaluation of the considered approaches on an actual IE
task—in particular, the relation detection task.

The details of the evaluation are given in the following sections. Section .. describes the
employed data collection, and Section .., the protocol and metrics. Section .. discusses the
obtained results.

.. Data

In order to evaluate the proposed approaches on a relation detection task, we have used the English
training data provided by the organizers of the ACE-, ACE- and ACE- evaluations.
The collection consists of , documents coming from a variety of heterogeneous sources (broad-
cast news and conversations, newswire text, telephone speech, and Usenet and weblog posts) and
contains a total of around k words. Table . contains a more detailed description of the number
of documents and words (after preprocessing with our tools) in each one of the considered ACE
subcollections.

The data contain annotations regarding the entities, relations, events and mentions of them
present in the documents. Given that we are focusing on the relation detection task, we have

The ACE- dataset was used for the ACE-, ACE- and ACE- competitions, making the consid-
ered collection embrace  years of IE evaluation.
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(a) Entities

(b) Relations

Figure .: Entity and relation types in the ACE – evaluations (fragment)

disregarded event annotations. Moreover, in order to isolate our evaluation from issues related to
entity detection, we have used the annotated gold entity mentions for our experiments. In total,
the corpus contains , entity mentions and , relation mentions between them.

The type and subtypes of the entities and relations annotated—and hence to be extracted—in
the different ACE evaluations kept changing from one installment of the series to the next one (see
ACE, , , a). Figure . contains diagrams of two fragments of the entity type and
subtype hierarchies, as they evolved through ACE-, ACE- and ACE-. An arrow
between two subtypes expresses the transformation of one into the other during the change of
annotation scheme. Both hierarchies are complex and, especially in the case of relations, were
the object of significant restructuring from year to year. Nevertheless, it is interesting to note
that, despite possible changes in type or subtype, entities and relations which were or were not
annotated in one evaluation usually remained so the following year. The only significant change
was the introduction of the Vehicle and Weapon types in the  evaluation, together with relation
types in which entities of these types might be involved. As in the detection task the concrete

Appendix C contain the diagrams for the complete hierarchies.
The correspondences are established by ourselves after comparison of the annotation guidelines, and do not

necessarily correspond to the official view of the ACE organizers.
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(a) Promoted (b) Direct

Figure .: Promoted and direct relations in the ACE corpus (adapted from ACE, b)

relation type and subtype are irrelevant, we believe we can use the three datasets as a single, and
homogeneous enough, collection.

It is also interesting to observe how, a number of the relation types in ACE can be consid-
ered generic—i.e., they express knowledge which may be of interest across different and unrelated
domains: such as location, part-of, employment or social relations, just to name a few.

Impact of unannotated relations The main problem associated to the use of the ACE data for
evaluation is that, by following the ACE annotation guidelines, we will be considering as non-related
those entity pairs which are linked by some relation not included in them. Given the unsupervised
nature of the approaches considered in this thesis, it is likely that instances of relations beyond
the ACE types be discovered—and by using the ACE data as gold, we will judge them as false
positives.

In addition, following the guidelines, those relations which are promoted through taggable enti-
ties should also be omitted from the annotation: “if [. . . ] one of the Entity Mentions to be used as
an argument is embedded in some other (Simple) Entity Mention, then that Entity Mention is not
accessible and the potential Relation is not taggable” (ACE, b). Similarly to the previous case,
this will cause these relations to be judged as false positives if detected by the systems.

As an example (also adapted from the guidelines), there does exist a relation between “Smith”
and “Brazil ” in the sentence shown in Figure .a. However, “a hotel in Brazil ” is itself annotated as
an entity, and there exist relations between “Smith” and “hotel ”, and between “hotel ” and “Brazil ”—
and, as a result, the previous relation is considered promoted and hence not annotated as such.
The interaction of this criterion with those of entity annotation causes that for the similar sentence
shown in Figure .b, on the contrary, the relation between “Smith” and “Brazil ” be annotated. In
this case, “conference” does not belong to any taggable entity type, and the relation is direct—and
hence annotated.

Despite these drawbacks, the corpus provides us a convenient gold standard, created following
a consistent set of criteria. Moreover, assuming that all methods will have a similar tendency to
detect these unannotated relations, the issue will have a uniform impact across them, and will not
affect the assessment of their relative performance—even if it will alter the absolute performance
measurements. For these reasons, we have decided to stick to the ACE data as is in order to
compare the performance of the several methods. However, the issue of unannotated relations must
be kept in mind and, after presenting the considered performance metrics in next Section .., we
will briefly discuss the impact it may have in them.

.. Protocol

So as to numerically assess the system performance on relation detection, we have used once more
corresponding versions of the standard metrics of precision, recall and F. This choice is common
in binary classification problems in which the class distribution is considerably unbalanced, such
as information retrieval (Raghavan et al., ) or gene identification (Bockhorst and Craven,
). They have also been previously used in evaluations of IE tasks and, in particular, relation
detection (Zelenko et al., ; Bunescu and Mooney, ).

For the purpose of formalization, it will be convenient to regard relation detection as the deter-
mination of a binary partition Π of the set of contexts of co-occurring entity mention pairs, between
related and unrelated ones. We will also refer to these two sets as the positive and the negative
sets, and use the notation π+ and π− for them, respectively. For evaluation, we will require the gold
partition Π̂, which will contain the set of real positive π̂+ and real negative π̂− contexts.

We can then define:
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Precision (Prc) measures the degree to which the contexts classified positive are really positive,
and is defined as the ratio between true positives and the sum of true positives and false
positives:

Prc(Π ; Π̂) = ∣π+ ∩ π̂+∣
∣π+ ∩ π̂+∣ + ∣π+ ∩ π̂−∣

= ∣π+ ∩ π̂+∣
∣π+∣

Recall (Rec)measures the degree to which the positive contexts are classified so, and is defined
as the ratio between true positives and the sum of true positives and false negatives:

Rec(Π ; Π̂) = ∣π+ ∩ π̂+∣
∣π+ ∩ π̂+∣ + ∣π− ∩ π̂+∣

= ∣π+ ∩ π̂+∣
∣π̂+∣

F tries again to be a global performance score, and is calculated as the harmonic mean of
precision and recall:

F1(Π ; Π̂) = 2 ⋅Prc(Π ; Π̂) ⋅Rec(Π ; Π̂)
Prc(Π ; Π̂) +Rec(Π ; Π̂)

As usual, percentages will be used to express the values of these metrics.
Additionally, to evaluate the performance of the pattern learning, isolating it from any suit-

able stopping criterion, we have also included information about Receiver Operator Characteristic
(ROC) curves, more specifically, the Area Under the ROC Curve (AUC, Fawcett, ). The re-
lation of dominance between ROC curves has been proved equivalent to that of precision/recall
curves (Davis and Goadrich, ), and they are less sensitive to variances of the class skew. After
having been employed for decades in other fields like signal detection, psychology and medicine,
Spackman () first introduced the use of ROC for evaluation of ML systems.

If we have a certain parameter t ∈ T which determines a decision threshold or a stopping criterion
(e.g., the number of learning iterations in our methods), we can regard the system partition Π as
a function of this parameter t. The positive and negative sets will hence be functions π+(t) and
π−(t). We can define the true positive rate tpr(t) and false positive rate fpr(t) as:

tpr(t) = ∣π+(t) ∩ π̂+∣
∣π̂+∣

fpr(t) = ∣π+(t) ∩ π̂−∣
∣π̂−∣

It can be noted how the true positive rate is equivalent to recall for a fixed value of the parameter t.
The ROC curve is then defined as the set of points {(tpr(t), fpr(t)) ∣ t ∈ T}. The area under this
curve will be:

AUC = ∫
T

tpr(t + dt) + tpr(t)
2

(fpr(t + dt) − fpr(t)) dt

Despite its apparent complexity, for classifiers in which the threshold value for a prediction can be
obtained easily, the ROC curve and the area under it can be estimated efficiently (Fawcett, ).
In our case, it is easy to provide the iteration number in which the most confident pattern matching
a context was learnt, so AUC values are simple to obtain.

One must keep in mind that, because of the unannotated relations present in the gold standard
(Section ..), the values for these metrics are biased. Thus, whereas the measured values of
recall will be close to the actual ones (one can expect a similar fraction of true positives and false
negatives to be considered false positives and true negatives, respectively), the obtained precision,
F and AUC values will be pessimistic estimations, and would be higher if the gold standard
were extended to include those relations beyond the ACE hierarchy (a number of instances will
be considered false positives instead of true ones). However, as mentioned previously, this will not
affect the comparisons of relative performance between different approaches—only their absolute
values.

Last, in order to quantify the degree to which document clustering can be used to acquire knowl-
edge about relations—with independence of any particular employed method—we have decided to
use normalized mutual information as defined by Strehl and Ghosh (, §.). For each related
entity pair in π̂+, we have considered a random variable T+ which contains the annotated subtype
in the ACE hierarchy, and a random variable Π+ which contains the cluster to which the containing
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document belongs. The normalized mutual information Ī(T+ ; Π+) between T+ and Π+ is then de-
fined as the quotient of the mutual information of the variables and the square root of the product
of their entropies:

Ī(T+ ; Π+) =
I(T+ ; Π+)√

H(T+) ⋅H(Π+)
Strehl and Ghosh state that, for all pairs of random variables X and Y , 0 ≤ Ī(X,Y ) ≤ 1, with
Ī(X,Y ) = 1 if and only if X = Y . Given that its range is thus constrained, values of normalized
mutual information can be compared across different random variable pairs. In particular, they
can be compared across different sets of seeds.

Strictly regarding the experimentation protocol, we will report the results obtained for each of
the four considered pattern families (p:a, w:t, c:l and w:t+c:l), and each of the seeding strategies
(Geo.Seeds, Geo and Major). For Geo.Seeds, the sequential and collaborative approaches are
compared—for Geo and Major, only the former is included, following the observation in the text
classification evaluation that there is no difference in behaviour between the two. Only the results
obtained with the Ri selection criterion of Riloff are reported, given that it clearly outperformed
Co with respect to F values in the previous evaluation.

Additionally to the sequential and collaborative pattern learning approaches, a baseline Fre-
quent method has been included in the evaluation. It selects the patterns in decreasing order
of absolute frequency in the dataset. Moreover, in order to obtain an upper-bound of the system
performance, we have considered an Optimal pattern set, incrementally built by selecting, at every
step, the pattern which provides the largest F value.

Regarding the particular case of predicate-argument structures (p:a), given that the task is
the extraction of binary relations between two entities, only those patterns which contain at least
two slots filled with an entity have been generated (extra slots may be filled with either entities or
non-entities).

Finally, and similarly to the previous section, we have followed a -fold cross-validation scheme
for the evaluation, with  runs for the Major seeds. Again, clustering and pattern learning
are performed on the training partition; relation detection is evaluated on the test partition; and
precision, recall and F values for a given feature set, method, and number of iterations are averaged.

.. Results

Figure . contains the precision-recall curves for the four different pattern feature sets, using the
different learning approaches. The plots use a logarithmic scale in both the precision and recall
axes.

The first obvious impression is that the landscape that these plots draw is radically different
from that sketched at the light of the results of the text categorization evaluation. Overall, one
could say that the performance is dramatically poor. A number of major problems can be identified:

• The precision of all the obtained approaches is low: the curves do not surpass the 20%
threshold, even at their lowest-recall ends. For the case of feature sets p:a and w:t, the
performance of clustering-based approaches falls even below that of the simple Frequent
baseline.

• The usual precision-recall trade-off is lost, as the curves exhibit a flat slope, rather than the
expected decreasing one.

• In the case of p:a, the recall is also extremely low. This formalism is only capable of capturing
1.37% of the relations present in the corpus—a figure much lower than even the 21.2% fraction
of mentions with a lexical condition annotated as verbal. The presence of linguistic phenomena
like coordination or ellipsis, or the location of the verb in a position other than the sentence or
clause root, cause the potential relation mentions therein expressed to be missed, and harshly
cut down the recall of the detection process.

In the particular case of Geo.Seeds, we have only considered related pairs inside the seed documents, so Π+

will always be defined.
For the definitions of entropy and mutual information, see Definitions A. and A. in Appendix A..
The name Optimal is a misnomer, as the obtained pattern set may not strictly the global optimum. However,

the outlined greedy procedure will converge to a local optimum, which we believe will be useful enough as an upper
bound of the system performance.
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Figure .: Relation detection precision-recall curves (logarithmic plots)
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Figure .: Relation detection precision-recall curves (Geo.Seeds/C:Ri method)
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S:Ri C:Ri

Best Best

AUC Prc Rec F AUC Prc Rec F

p:a Geo.Seeds 0.501 11.92 0.62 1.17 0.501 12.15 0.69 1.30
Geo 0.501 12.15 0.72 1.35 0.501 12.15 0.72 1.35
Major 0.501 12.47 0.66 1.26 0.501 12.47 0.66 1.26

Frequent 0.503 12.82 1.31 2.38 - - - -
Optimal 0.503 39.81 1.36 2.64 - - - -

w:t Geo.Seeds 0.596 12.41 59.45 20.54 0.600 12.56 61.01 20.84
Geo 0.592 12.28 58.65 20.31 0.592 12.28 58.65 20.31
Major 0.563 11.18 46.20 18.00 0.563 11.18 46.20 18.00

Frequent 0.655 14.66 81.82 24.87 - - - -
Optimal 0.840 50.02 64.40 56.31 - - - -

c:l Geo.Seeds 0.633 13.01 65.36 21.69 0.635 13.13 66.54 21.93
Geo 0.633 13.24 64.66 21.98 0.633 13.24 64.66 21.98
Major 0.596 12.60 44.83 19.67 0.596 12.60 44.83 19.67

Frequent 0.657 15.42 89.72 26.32 - - - -
Optimal 0.888 55.49 71.19 62.37 - - - -

w:t+c:l Geo.Seeds 0.593 12.06 61.07 20.14 0.596 12.14 61.29 20.26
Geo 0.568 11.32 47.43 18.22 0.568 11.32 47.43 18.22
Major 0.525 9.70 24.49 13.85 0.525 9.70 24.49 13.85

Frequent 0.653 15.39 89.43 26.26 - - - -
Optimal 0.877 50.25 65.20 56.76 - - - -

Table .: Comparison of pattern acquisition strategies, evaluated on relation detection

Figure . contains, with both logarithmic and linear axis scales, the precision-recalls plots for
all feature sets using the Geo.Seeeds/C:Ri method, which is the one to obtain the best peak F
values. Even if the results remain low, it is interesting to note how that, for any given level of recall,
the best results in terms of precision (and, hence, the overall F) are obtained with the c:l feature
set: patterns using c:l+w:t features obtain a lower performance, comparable to that of w:t alone.
Again this is a consequence of the ugly duckling theorem of Watanabe (): in unsupervised
learning settings, the addition of new features does not always come with an improvement of the
recognition performance (see Section .). Overall, and despite the bad results, it is clear that there
is an improvement on the usage of feature-conjunction patterns with respect to predicate-argument
structures, and we will hence favour the former in following experiments.

Finally, Table . contains the exact precision, recall and F values at the Best iteration, as
well as the AUC values, for all feature sets and methods. The figures confirm the observations from
Figures . and .: how precision at the Best iteration is, for both sequential and collaborative
approaches and features, around the 12%–15% level; or how recall using feature set p:a is extremely
low.

The achieved AUC values are also poor. In the case of p:a, due to its low recall, the val-
ues barely exceed the lower bound random classification value of 0.500. Regarding the feature-
conjunction patterns, they climb a few more points, but remain always surpassed by the baseline
Frequent pattern selection strategy—which also outperforms them in terms of F. Only the re-
sults of Geo.Seeds/C:Ri using c:l patterns are comparable, albeit still lower, to this Frequent
baseline. In all cases, the upper bound performance of Optimal is completely out of reach.

The results of this evaluation can be considered devastating, and seem to clearly contradict those
of our previous text categorization evaluation. Nevertheless, it must be kept in mind that indirect
evaluations are not perfect substitutes of direct ones, and their results may hence disagree—a reason
why the latter should be preferred if they are possible.

Moreover, one of the keys towards understanding the observed behaviour may be found in
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H(Π+) H(T+) I(Π+ ;T+) Ī(Π+ ;T+)
Geo.Seeds 2.078 3.335 0.591 0.224
Geo 2.192 3.359 0.390 0.144
Major 3.144 3.359 0.671 0.206

Table .: Average relation-cluster entropies and mutual information for the different seeds

Table ., which contains the normalized mutual information between the relation types and the
clustering—which is used as seeds for the pattern learning process—obtained using each one of the
three methods.

As seen therein, the mutual information between document clusters and relation types is par-
ticularly low: the normalized values are found in the 0.14–0.22 range. This means that correlation
between the category (cluster) and relation distributions is small, and that the type of relations
that are defined in the ACE evaluations—and which we are trying to detect—are likely to be mostly
transverse to text categories. Relation mentions for a single relation type are possibly spread across
documents from multiple clusters—and, in turn, the same spreading may also be happening for the
linguistic constructions which express this relations. Overall, everything points towards the fact
that the one-domain-per-pattern assumption is certainly broken—and that, hence, the proposed
combination of document clustering and pattern learning is not suitable for the task at hand.

This lack of correlation between relation types and clusters also accounts for the divergence
between the text categorization evaluation and this one. The obtained patterns may be suitable
for detecting hypothetical relations specific of the domains found by clustering algorithms, which
is what the text categorization evaluation measured—but may be useless when trying to identify
generic and non-domain-specific ones, which is what the relation detection assesses.

. Conclusions

In this chapter, we have explored sequential and collaborative schemes for the combination of
document clustering and IE pattern learning, with the ultimate goal of building unsupervised
pattern learning approaches.

We have in particular explored bootstrapping-based schemes, which had been successfully used
for weakly supervised systems, and replaced the manual supervision present in them by a document
clustering process. The results over an indirect text categorization evaluation show the effectiveness
of this replacement, as clustering-seeded approaches match or surpass manually seeded ones on the
task.

However, and to our disappointment, when evaluated on an actual relation detection task, the
proposed approaches obtain more than modest results, even being outperformed by a frequency-
based baseline approach. Nevertheless, the low correlation between the sought relation types and
the domains detected by text clustering algorithms points towards the violation of the one-domain-
per-pattern assumption as the culprit of these results, and suggests that combination of document
clustering and pattern learning may not be the most suitable framework for detection of generic
and transverse relations.

At the same time, we have explored a pattern formalism based on conjunctions of binary features,
as an alternative to the previously used predicate-argument structures. We have also proposed the
application of frequent-itemset mining algorithms to cope with the combinatorial explosion they
introduce, and render its use computationally feasible. Despite the overall bad performance on the
task, we believe that these patterns represent an improvement over predicate-argument structures
and that, hence, their use should be preferred.

At the light of these results, we believe that, among the three combination schemes sketched
in Section ., the sequential and collaborative ones may not be suitable to solve our problem–
and that, hence, exploration of the remaining one becomes necessary. A joint combination may
be useful in decoupling pattern learning from document clustering, and in building unsupervised
systems which extract useful generic relations. Nevertheless, the clustering setting which occurs in
this joint learning process differs from classical clustering settings, such as the document clustering
ones we have been facing so far. It is for this reason that we will wholly devote next Chapter 
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to this alternative—and often disregarded—clustering task, before proceeding to develop our joint
clustering and pattern learning approach in Chapter .





5
Minority Clustering

“In almost all textbooks, even the best, this principle is
presented so that it is impossible to understand.” (K. Jacobi,
Lectures on Dynamics, -). I have not chosen to
break with tradition.

Vladimir Igorevich Arnold
Mathematical Methods of Classical Mechanics

This chapter presents our experiments on the task of minority cluster-
ing. Inspired by the success of ensemble methods in clustering prob-
lems (confirmed by our experiments in previous Chapter ) we have
developed a novel ensemble approach to the problem, Ewocs, and
evaluated its different components to assess its validity.

Section . introduces the task of minority clustering, putting
into relief its differences with respect to the usual clustering task and to
other similar problems. Section . gives an overview of related work
in the area. Next, Section . contains a description of Ewocs—
including the derivation of a minority clustering algorithm whose
properties are theoretically proved under a set of conditions. The
obtained algorithm has a number of components which allow differ-
ent implementations: Sections . and . give details on the specific
weak clustering algorithms and threshold score determination meth-
ods we have used, respectively. Section . contains the details and
results of an empirical evaluation of the proposed approaches. Finally,
Section . draws conclusions of our work.

Part of this work is described in (Gonzàlez and Turmo, ).

I n the last two chapters we have explored the problem of clustering, focusing on the
task of unsupervised clustering in particular, and developing a clustering-based method for IE
pattern learning. In the presented setting, which is by far the most common, it was assumed

that all objects belonged to some cluster. Even the diverse surveys that have so far reviewed the
vast literature on clustering methods (the previously mentioned ones of Dubes and Jain, ; Jain
et al., ; Xu and Wunsch, ), have all focused on this standard task, which can be named
all-in clustering.
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. Minority Clustering

There is a number of situations in which the data are known not to fit neatly within this all-in
assumption. In such cases, we know there is a fraction of data which are neither similar to one
another nor to the data within the clusters. Often, these data will correspond to a certain form
of noise and should hence be separated from the sought regular clusters, which constitute the
signal. Within this alternative setting, a number of different tasks can be identified according to
the characteristics of the data and the aim of the task itself.

In one of these tasks, the all-in clustering goal is preserved, but the data are known to contain
a small fraction of noise. This has been called the robust clustering task (Davé and Krishnapuram,
). To solve it, some authors have proposed changes to standard clustering methods to make
them more robust to the presence of noise. The replacement of the centroid calculation in k-
means by that of medoids in the k-medoids or partitioning about medoids (PAM; Kaufman and
Rousseeuw, , Ch. ) algorithm, or the use of mixtures of Student t distributions instead of
Gaussian ones (Peel and McLachlan, ) are examples of work in this direction.

In other approaches to the task, robustness is increased by explicitly incorporating a noise
cluster, often with different properties from the regular signal clusters. For instance, distance-based
methods have been extended to incorporate an ideal noise prototype, “a universal entity such that
it is always at the same distance from every point in the data-set” (Davé, ); and model-based
clustering methods have been proposed which incorporate, among a mixture of otherwise Gaussian
components, an extra one with a Poisson (Banfield and Raftery, ) or uniform (Guillemaud and
Brady, ; Biernacki et al., , §..) distribution to account for noise.

A last family of approaches is that of algorithms specifically devised for robust clustering, such
as BIRCH (Zhang et al., ) or DBSCAN (Ester et al., ).

It is worth noticing that there is a number of related tasks which share this setting, such as
one-class classification or learning (Moya et al., ; Schölkopf et al., ; Tax and Duin, )
and outlier detection (Hodge and Austin, ; Chandola et al., ). In both cases, there is also
a dataset containing both signal and a fraction of noise objects. However, the focus of these tasks
shifts away from that of clustering, becoming the estimation of a model which covers the signal
objects in the former, and the detection of the objects that significantly deviate from the rest in
the latter.

Nevertheless, there is still another setting to be considered. In some cases, there will only be a
minority of signal objects, standing against the majority of noise. Most often, the signal objects
will be embedded within the noise ones, becoming respectively foreground and background objects,
and the distinction between the former and the latter must be done on grounds of density criteria.
In the literature, this task has been compared to “clustering needles in a haystack ” (Ando, ),
and has received names such as one-class clustering (Crammer and Chechik, ), density-based
clustering (Gupta and Ghosh, ) or minority detection (Ando and Suzuki, ). As a catchall
term, in this paper we will refer to this setting and task as minority clustering.

Even if this new task is related to the previously presented ones, the reversal of the signal-to-
noise ratio can make existing approaches unsuitable. For instance, Crammer and Chechik ()
give insights into why existing one-class classification approaches, which are tailored to finding
large-scale structures, may be unable to identify small and locally dense regions embedded in
noise. Empirical comparisons have also stated the low performance exhibited by all-in and robust
clustering methods in the minority clustering task (Gupta and Ghosh, ).

However, to the best of our knowledge, all the methods proposed so far require as an input the
distribution of the foreground clusters or both the foreground clusters and the background noise,
either in the form of a probability distribution or, equivalently, of a divergence metric. This can
become a significant issue when facing large amounts of data coming from a new and unexplored
domain, whose distribution may be completely unknown.

.. Ensemble Minority Clustering

As mentioned in Chapter , in the context of supervised learning, combination methods have been
successfully used to overcome the limitations of individual algorithms. They provide a way to
obtain distribution-free learners able to perform competitively across a wide spectrum of learning

A Bregman divergence induces a probability distribution of the exponential family (Banerjee et al., )
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Figure .: Sample Toy minority clustering dataset

problems, even from the combination of the outputs of weak learning algorithms (Freund and
Schapire, ). Section .. also described how, more recently, a number of combination methods
have appeared for all-in clustering (e.g., Strehl and Ghosh, ; Topchy et al., , ; Gionis
et al., )—and how, among them, Topchy et al. () introduced the idea of using an ensemble
of weak, almost random, clusterings to obtain a high-quality consensus clustering.

In this chapter, we make a three-fold proposal:

• First, we propose an unsupervised minority clustering approach, Ensemble Weak minOrity
Cluster Scoring (Ewocs), based on weak-clustering combination. In it, a number of weak
clusterings is generated, and the information coming from each one of them is combined to
obtain a score for each object. A threshold separating foreground from background objects
is then inferred from the distribution of these scores. We have been able to find a theoretical
proof of the properties of the proposed method, and we consider a number of criteria by which
the threshold value can be determined.

• Second, we propose Random Bregman Clustering (Rbc), a weak clustering algorithm based
on Bregman divergences, for use within Ewocs ensembles; as well as an extension of the
Random Splitting (RSplit) weak clustering algorithm of Topchy et al. ().

• Third, we propose an unsupervised procedure to determine a set of suitable scaling parameters
for a Gaussian kernel, to be used within Rbc.

We have implemented a number of approaches built from the proposed components, and eval-
uated them on a collection of datasets. The results of the evaluation show how approaches based
on Ewocs are competitive with respect to—and even outperform—other minority clustering ap-
proaches in the state of the art, in terms of F and AUC measures of the obtained clusterings.

. Related Work

One of the first works to identify the minority clustering task in opposition to that of one-class
classification is that of Crammer and Chechik (). The authors formalize the problem in terms
of the Information Bottleneck principle (IB; Tishby et al., ), and provide a sequential algorithm
to solve this one-class IB problem. Given a Bregman divergence (Bregman, ) as a generalized
measure of object discrepancy, and a fixed radius value, the OC-IB method outputs a centroid
for a single dense cluster. The foreground cluster consists of the objects which fall inside the
Bregmanian ball of given radius centered around the given centroid. More recently, Crammer et al.
() propose a different algorithm for the same model, based in rate-distortion theory and the
Blahut-Arimoto algorithm (Blahut, ; Arimoto, ), and extend it to allow for more than one
cluster.
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In a different direction, Gupta and Ghosh () reformulate the problem in terms of cost,
defined as the sum of divergences from the cluster centroid to each sample within it, and extend
the OC-IB method to avoid local minima. A triad of methods (HOCC, BBOCC and Hyper-
BB) is proposed. However, the requirement of an a priori determination of the cluster radius (or
equivalently, size) is not removed, and the output remains a single ball-shaped cluster.

To overcome this second limitation, Gupta and Ghosh () propose Bregman Bubble Clus-
tering (BBC), as a generalization of BBOCC to several clusters. However, the number of such
clusters must still be given a priori, as well as the desired joint cluster size. The authors also
propose a soft clustering version of BBC, as well as a unified framework between all-in Bregman
clustering (Banerjee et al., ) and BBC, in all their hard and soft versions.

The work of Ando and Suzuki () is similar to previous ones in that it also uses the In-
formation Bottleneck principle as a criterion to identify a single minority cluster. However, the
method is more general in the sense that it allows arbitrary distributions, not only those induced
by Bregman divergences, as foreground and background. Ando () extends this last proposal,
allowing multiple foreground clusters, and also provides a unifying framework of which not only the
task of minority clustering, but also those of outlier detection and one-class learning, are particular
cases.

. Ewocs

This section presents our Ensemble Weak minOrity Cluster Scoring (Ewocs) algorithm to solve
the task of minority clustering.

First Section .. defines our setting for the task of minority clustering. Section .. presents,
from a theoretical point of view, the scoring scheme that lies at the core of our method. Sections ..
and .. then study the conditional probability distributions of the assigned scores: the first one on
a single dataset; the second, across multiple dataset samplings. Next, Section .. introduces the
concept of consistent clustering, and shows how, when using clustering functions from a consistent
family, an inequality on the score expectations for foreground and background objects can be
established. This inequality will allow us to obtain as a corollary, in Section .., a generic
algorithmic procedure for minority clustering, based on the proposed scores. Finally, it is also
possible to obtain a clustering model using this algorithm: its construction and application is
described in the last Section ...

.. Task Setting

Assume we have a finite set of k̂ generative distributions or sources Ψ = {ψ1 . . . ψk̂}, with a priori
probabilities {α1 . . . αk̂}. Assume we also have a dataset X = {x1 . . . xn} of size n, which has been
sampled from Ψ. Each object xi will be generated by one of the sources in Ψ, and we can hence
consider a set Y of hidden variables, with each yi ∈ Ψ containing the source which generated the
corresponding xi.

Without loss of generality, we will name the first of those sources, ψ1, the background source; and
the objects generated by it, the background objects. The rest of sources and objects shall be named
the foreground sources (whose set will be denoted as Ψ+) and the foreground objects, respectively.

In the setting we are interested in, we can make two assumptions which can be stated as follows:

Density Foreground sources are dense, i.e., objects generated by the same foreground source are
more similar to each other than to those generated by the background source.

Locality Foreground sources are local, i.e., objects generated by different foreground sources are
as similar to each other as they are to those generated by the background source

These assumptions are similar to those in other works, for instance, those of atypicalness and local
distribution defined by Ando ().

We can now recall the definitions of hard and soft clustering presented in Section ., as they
remain valid in this setting, and assume we have a (possibly infinite) family of clustering functions
F . From them, a sequence of functions (f1 . . .) are independently drawn at random, with a certain
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probability density. When applied to the dataset, each fr will produce a soft clustering Πr =
{πr1 . . . πrkr} with a number kr of clusters.

.. Per-Clustering Scoring

After clustering function fr is applied, the cluster size and object scores can be calculated from the
output clustering Πr.

Definition . (Cluster size)
The size of cluster πrc is the sum of the grade of membership to the cluster of all objects in
the dataset:

size(πrc) = ∑
xi∈X

grade(xi, πrc) (.)

Definition . (Object score)
The score of an object xi by clustering function fr is

sri = ∑
πrc∈Πr

grade(xi, πrc) ⋅ size(πrc) (.)

i.e., the sum of the sizes of the output clusters, weighted by the grade of membership of xi to
each one of them.

An additional concept will turn out to be of much importance later.

Definition . (Co-occurrence vector)
The co-occurrence vector for object xi and clustering function fr is c⃗ri = [cri1 . . . crin]T ,
where each component crij is

crij = ∑
πrc∈Πr

grade(xi, πrc) ⋅ grade(xj , πrc) (.)

Remark Using the co-occurrence vector, the score of object xi by clustering function fr can
be written as

sri = ∑
πrc∈Πr

grade(xi, πrc) ⋅ size(πrc)

= ∑
πrc∈Πr

grade(xi, πrc) ⋅ ∑
xj∈X

grade(xj , πrc)

= ∑
πrc∈Πr

∑
xj∈X

grade(xi, πrc) ⋅ grade(xj , πrc)

= ∑
xj∈X

∑
πrc∈Πr

grade(xi, πrc) ⋅ grade(xj , πrc)

= ∑
xj∈X

crij

From its definition, we can infer that the co-occurrence vector will satisfy the following property:

Proposition .
The values of the entries crij in the co-occurrence vector belong to the interval [0,1].

Proof By the properties of fuzzy pseudopartitions, and hence of soft clusterings, we know
that

∀xi ∶ ∑
πrc∈Πr

grade(xi, πrc) = 1

The result is also valid for hard clustering families, being a particular case of soft clustering (see Definition .).
See Definition A. in Appendix A..
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The product of two of these terms, which will also be equal to 1, can be expressed as

1 =
⎛
⎝ ∑
πrc∈Πr

grade(xi, πrc)
⎞
⎠
⋅
⎛
⎝ ∑
πrc∈Πr

grade(xj , πrc)
⎞
⎠

= ∑
πrc,πrc′∈Πr

grade(xi, πrc) ⋅ grade(xj , πrc′)

= ∑
πrc∈Πr

grade(xi, πrc) ⋅ grade(xj , πrc) + ∑
πrc,πrc′∈Πr
πrc≠πrc′

grade(xi, πrc) ⋅ grade(xj , πrc′)

= crij +▽crij

Given that the grade of membership is by definition non-negative, all pairwise products of
grades will also be non-negative—and, being sums of pairwise products, both crij and ▽crij
will at their turn be non-negative too: 0 ≤ crij ,▽crij .

Finally, given that crij and ▽crij are two non-negative terms adding up to 1, it is clear
that neither of them can exceed this value: crij ,▽crij ≤ 1. Hence, as we wanted to prove,
0 ≤ crij ≤ 1 ∎

Rather than considering a single application of one clustering function fr ∈ F on X , we will
mainly be concerned with aggregating the results over a number R of repetitions of the process. In
this context, we can define:

Definition . (Average co-occurrence vector)
The sequence of average co-occurrence vectors for object xi is (c⃗⋆1i . . .), where each com-
ponent of c⃗⋆Ri = [c⋆Ri1 . . . c⋆Rin]T is

c⋆Rij =
1

R

R

∑
r=1

crij (.)

Definition . (Average score)
The sequence of average scores of object xi is (s⋆1i, s⋆2i . . .), where each s⋆Ri is

s⋆Ri =
1

R

R

∑
r=1

sri (.)

Remark Using average co-occurrence vectors, the average score of object xi can be expressed
as

s⋆Ri =
1

R

R

∑
r=1

sri =
1

R

R

∑
r=1

∑
xj∈X

crij = ∑
xj∈X

1

R

R

∑
r=1

crij = ∑
xj∈X

c⋆Rij

It is interesting to note that

Proposition .
The sri are linear transformations of c⃗ri, and the s⋆Ri are linear transformations of c⃗⋆Ri.

Proof Using an all-ones vector,

sri = 1⃗T ⋅ c⃗ri = [ 1 1 ⋯ 1 ] ⋅ [ cri1 cri2 ⋯ crin ]T = ∑
xj∈X

crij

s⋆Ri = 1⃗T ⋅ c⃗⋆Ri = [ 1 1 ⋯ 1 ] ⋅ [ c⋆Ri1 c⋆Ri2 ⋯ c⋆Rin ]T = ∑
xj∈X

c⋆Rij

See Definition A. in Appendix A..
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.. Dataset-Conditioned Distribution

The dataset X and clustering function fr uniquely determine the values for the co-occurrence vectors
c⃗ri, and hence for all other values considered in the previous Section. However, as the selection of fr
is not deterministic, the crij can be regarded as random variables, and their conditional distribution
across clustering functions, given a certain dataset X , can be considered.

As the selection of each fr is independent from the others, the values of the crij for different r
will also be. The c⃗ri for different r will hence be independent and identically distributed random
vectors, with a common expectation vector µ⃗i and covariance matrix Σi. We will refer to each
element, µij , of µ⃗i as the affinity of xi and xj .

Definition . (Object affinity)
The affinity of objects xi and xj is the conditional expectation of crij given X ,

µij = E[crij ∣ X ] (.)

Remark Being the expectations of the crij , with crij ∈ [0,1], the affinities µij will also fall
in the [0,1] interval.

We can additionally define

Definition . (Object expected score)
The expected score of object xi is the conditional expectation of sri given X ,

µi = E[sri ∣ X ] (.)

It is then easy to successively prove that

Proposition .
The value of the expected score µi of object xi is

µi = E[sri ∣ X ] = ∑
xj∈X

µij (.)

Proof As sri is the sum of the crij , its conditional expectation is

µi = E[sri ∣ X ] = E[ ∑
xj∈X

crij ∣ X ] = ∑
xj∈X

E[crij ∣ X ] = ∑
xj∈X

µij

Remark Being the sum of n = ∣X ∣ terms within the interval [0,1], the value of µi will fall in
the interval [0, n]. In order to make scores across differently-sized datasets comparable, we
will also consider a normalized expected score µ̄i, defined as µ̄i = µi/n.

Proposition .
As the number of repetitions R increases, the conditional distributions of the average co-
occurrence vectors c⃗⋆Ri approach a multivariate Gaussian distribution with expectation µ⃗i and
covariance matrix Σi/R.

Proof As the crij are independent and identically distributed for different r, by the multi-
variate central limit theorem we know that the sequence

√
R( 1

R

R

∑
r=1

c⃗ri − µ⃗i) =
√
R (c⃗⋆Ri − µ⃗i)

converges in distribution to a multivariate Gaussian distribution with expectation µ⃗i and
covariance matrix Σi. Hence, for large enough R,

√
R (c⃗⋆Ri − µ⃗i) ≈ N (0,Σi)

c⃗⋆Ri − µ⃗i ≈ N (0,Σi/R)
c⃗⋆Ri ≈ N (µ⃗i,Σi/R)
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Proposition .
As the number of repetitions R increases, the conditional distributions of the average scores
s⋆Ri approach a Gaussian distribution with expectation µi.

Proof Being linear transformations of random vectors c⃗⋆Ri approaching a multivariate Gaus-
sian distribution, the s⋆Ri also approach a Gaussian distribution

s⋆Ri = 1⃗T ⋅ c⃗⋆Ri ≈ N (1⃗T ⋅ µ⃗i, (Σ⋆
Ri)

2)

with a certain variance (Σ⋆
Ri)

2. The conditional expectation of these variables hence converges
to

lim
R→∞

E[s⋆Ri ∣ X ] = 1⃗T ⋅ µ⃗i = ∑
xj∈X

µij = µi

.. Sampling Distribution

We can now proceed to consider the distribution of the scores across multiple samplings of the
dataset X . In particular, we will first focus on the distribution of the affinity µij between objects
xi and xj , conditioned to their being respectively generated by a certain pair of sources ψs and
ψt—a measure which we shall name the affinity of the two sources, ζst.

Definition . (Source affinity)
The affinity of sources ψs and ψt is the conditional expectation of the object affinity µij,
given that yi = ψs and yj = ψt, across all datasets X sampled from Ψ:

ζst = E[µij ∣ yi = ψs, yj = ψt]

A particular case of affinity is that of ψt = ψs, which we shall name the self-affinity ζss of source ψs.
We can now also consider the conditional expectation of the normalized expected scores µ̄i for

objects from source ψs.

Definition . (Source normalized expected score)
The normalized expected score of a source ψs is the conditional expectation of the nor-
malized expected score µ̄i of objects xi generated by ψs, across all datasets X sampled from
Ψ:

ζs = E[µ̄i ∣ yi = ψs]

This newly defined score satisfies that:

Proposition .
The value of the normalized expected score ζs for a source ψs is

ζs = ∑
ψt∈Ψ

αt ⋅ ζst

Proof The value of µ̄i is

µ̄i =
1

n
µi =

1

n
∑
xj∈X

µij

The conditional expectation of µ̄i across samplings of X for which ∣X ∣ = n can then be found
as

E[µ̄i ∣ yi = ψs, ∣X ∣ = n] = E

⎡⎢⎢⎢⎢⎣

1

n
∑
xj∈X

µij

RRRRRRRRRRRR
yi = ψs, ∣X ∣ = n

⎤⎥⎥⎥⎥⎦

= 1

n
E

⎡⎢⎢⎢⎢⎣
∑
xj∈X

µij

RRRRRRRRRRRR
yi = ψs, ∣X ∣ = n

⎤⎥⎥⎥⎥⎦
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Assuming the xj ∈ X are independent and identically distributed, and using the law of total
expectation, this can be expressed as

E[µ̄i ∣ yi = ψs, ∣X ∣ = n] = 1

n
∑
xj∈X

E [µij ∣ yi = ψs, ∣X ∣ = n]

= 1

n
∑
xj∈X

∑
ψt∈Ψ

P (yj = ψt) ⋅E [µij ∣ yi = ψs, yj = ψt, ∣X ∣ = n]

= 1

n
∑
xj∈X

∑
ψt∈Ψ

αt ⋅E[µij ∣ yi = ψs, yj = ψt, ∣X ∣ = n]

= 1

n
∑
ψt∈Ψ

αt ⋅E[µij ∣ yi = ψs, yj = ψt, ∣X ∣ = n] ⋅ ∑
xj∈X

1

= 1

n
∑
ψt∈Ψ

αt ⋅E[µij ∣ yi = ψs, yj = ψt, ∣X ∣ = n] ⋅ n

= ∑
ψt∈Ψ

αt ⋅E[µij ∣ yi = ψs, yj = ψt, ∣X ∣ = n]

Finally, assuming independence of normalized expected scores and source affinities with re-
spect to dataset size n, and plugging the definition of the latter into the above formula, we
obtain the desired result:

E[µ̄i ∣ yi = ψs, ∣X ∣ = n] = ∑
ψt∈Ψ

αt ⋅E[µij ∣ yi = ψs, yj = ψt, ∣X ∣ = n]

ζs = E[µ̄i ∣ yi = ψs] = ∑
ψt∈Ψ

αt ⋅E[µij ∣ yi = ψs, yj = ψt] = ∑
ψt∈Ψ

αt ⋅ ζst

.. Consistent Clustering

We will now impose some conditions on the used clustering families, with respect to how they
preserve the density and locality of the sources in Ψ. We will start by considering the detectability
of a source by a clustering family:

Definition . (Source detectability)
Given a set of sources Ψ and a clustering family F , a foreground source ψs ∈ Ψ+ is detectable
by F if and only if its normalized expected score ζs is larger than that ζ1 of the background
source ψ1.

Proposition . (Detectability criterion)
Given a set of sources Ψ and a clustering family F , a foreground source ψs ∈ Ψ+ is detectable
by F if and only if:

αs ⋅ (ζss − ζ1s) > α1 ⋅ (ζ11 − ζs1) + ∑
ψt∈Ψ+
ψt≠ψs

αt ⋅ (ζ1t − ζst)

Proof From the definition of detectability and Proposition .,

ζs > ζ1

∑
ψt∈Ψ

αt ⋅ ζst > ∑
ψt∈Ψ

αt ⋅ ζ1t

αs ⋅ ζss + α1 ⋅ ζs1 + ∑
ψt∈Ψ+
ψt≠ψs

αt ⋅ ζst > αs ⋅ ζ1s + α1 ⋅ ζ11 + ∑
ψt∈Ψ+
ψt≠ψs

αt ⋅ ζ1t

αs ⋅ (ζss − ζ1s) > α1 ⋅ (ζ11 − ζs1) + ∑
ψt∈Ψ+
ψt≠ψs

αt ⋅ (ζ1t − ζst)
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Remark This arrangement of the terms in the difference ζs − ζ1 is intended to capture the
degree to which the clustering family captures the density and locality properties of the data
in the minority clustering setting:

• For dense sources, self-affinity should be much larger than affinity to the background
source. Therefore, the value of the left-side term should be large.

• For local sources, affinity to the background source and to other foreground sources
should not be much different than their affinity to the background source itself. There-
fore, the value of the right-side term should be small.

If a clustering family respects the density and locality of all foreground sources in a set, all of
them will be detectable. In this case, the family is said to be consistent with the source set:

Definition . (Clustering family consistency)
Given a set of sources Ψ, a clustering family F is consistent with Ψ if and only if all
foreground sources ψs ∈ Ψ+ are detectable by F .

The importance of detectable sources and consistent families lies in the fact that:

Theorem .
Given a dataset X sampled from a set of sources Ψ and a consistent clustering family F ,
for a sufficiently large number of repetitions R, the expected value of the average score s∗Ri of
objects xi generated by a foreground source ψs ∈ Ψ+ is larger than the expected value of the
average scores s∗Rj of objects xj generated by the background source ψ1.

Proof Using n = ∣X ∣, replacing the definitions of the different used quantities, and applying
properties of the expectation, we know that, if ψs is detectable,

ζs > ζ1

n ⋅ ζs > n ⋅ ζ1
n ⋅E[µ̄i ∣ yi = ψs] > n ⋅E[µ̄j ∣ yj = ψ1]

Assuming independence on the size of the dataset X ,

n ⋅E[µ̄i ∣ yi = ψs, ∣X ′∣ = n] > n ⋅E[µ̄j ∣ yj = ψ1, ∣X ′∣ = n]
n ⋅E[µi/n ∣ yi = ψs, ∣X ′∣ = n] > n ⋅E[µj/n ∣ yj = ψ1, ∣X ′∣ = n]

n ⋅E[E[s⋆Ri ∣ yi = ψs,X ′, ∣X ′∣ = n]]/n > n ⋅E[E[s⋆Rj ∣ yj = ψ1,X ′, ∣X ′∣ = n]]/n
E[s⋆Ri ∣ yi = ψs,X ′, ∣X ′∣ = n] > E[s⋆Rj ∣ yj = ψ1,X ′, ∣X ′∣ = n]

which, assuming independence again, leads to

E[s⋆Ri ∣ yi = ψs,X ] > E[s⋆Rj ∣ yj = ψ1,X ]

.. Algorithm

A corollary of this last Theorem . is

Corollary .
Given a dataset X sampled from a set of sources Ψ, and using a clustering family F which
is consistent with Ψ, we can devise an algorithmic procedure to obtain a minority clustering
of X .

Proof Given a dataset X , we can apply a sequence of clustering functions fr, drawn from
F , and find the average score s⋆Ri for each object xi ∈ X . The expected value of the average
scores of the background objects will be lower than that of the foreground ones. If a suitable
threshold value is determined, we will be able to discriminate most foreground and background
objects according to their score. ∎
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Algorithm . Ensemble Weak minOrity Cluster Scoring (Ewocs)
Input: A dataset X
Input: A consistent clustering family F
Input: An ensemble size R
Output: A hard minority clustering Π of X
: Initialize the accumulated scores of all objects xi to zero,

s+i = 0

: For r = 1 to R do
: Draw a clustering function fr at random from F ,

fr ∈ F

: Apply fr to obtain clustering Πr,
Πr = fr(X )

: Find cluster sizes,
size(πrc) = ∑

xi∈X

grade(xi, πrc)

: Update the accumulated scores of each object,

s+i ← s+i + sri = s+i + ∑
πrc∈Πr

grade(xi, πrc) ⋅ size(πrc)

: Find the final average scores of each object,

s⋆Ri =
s+i
R

: Determine a threshold s⋆th separating the scores,

s⋆th = find_threshold(s⋆R1 . . . s
⋆
Rn)

: Create the foreground and background clusters, πf and πb,

πf = {xi ∣ s⋆Ri ≥ s⋆th}
πb = {xi ∣ s⋆Ri < s⋆th}

: Return The minority clustering Π = {πb, πf}

The resulting algorithm, which we have named Ensemble Weak minOrity Cluster Scoring
(Ewocs), is described in Algorithm ..

The first step of Ewocs is the initialization of an auxiliary array, which will contain the accu-
mulated scores s+i of all objects, to zero (line ). The main loop is then entered (lines –). The
number of iterations of this loop, R, determines the ensemble size and is a user-supplied parameter.
Larger values of R are expected to yield better results, but at the expense of a larger computational
cost.

At each iteration, a clustering function fr is drawn at random from family F (line ) and is then
applied to dataset X to obtain a clustering Πr (line ). The size of each cluster πrc in clustering
Πr is then found (line ), and then the score of each object, as defined in Equation ., is found
and added to the accumulated score s+i (line ).

When the main loop is over, the final average score of each object, s⋆Ri is found from the final
accumulated score s+i and the ensemble size R (line ). From the distribution of these scores s⋆Ri,
a threshold value s⋆th which separates the scores of the foreground and the background objects is
inferred (line ). At this point, the only steps that remain are separating the objects according
to their scores into a foreground and a background cluster (line ) and returning the resulting
clustering (line ).
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Algorithm . Classification using an Ewocs clustering model
Input: An Ewocs minority clustering modelME = ({Mr},{size(πrc)}, s+th)
Input: An object xx
Output: The cluster πx ∈ {πb, πf} to which xx would belong

: Initialize the accumulated score of the object xx to zero,

s+x = 0

: For r = 1 to R do
: Apply the clustering modelMr to obtain the grade of membership of xx to each πrc

(grade(xx, πr1) . . .grade(xx, πrkr)) =Mr(xx)

: Update the accumulated score of the object

s+x ← s+x + srx = s+x + ∑
πrc∈Πr

grade(xx, πrc) ⋅ size(πrc)

: Find the final average score of the object

s⋆Rx =
s+x
R

: Assign the object to the foreground or background cluster, πf or πb, according to the relation
between its average score and the separating threshold

πx = { πf if s⋆Rx ≥ s⋆th
πb if s⋆Rx < s⋆th

: Return The object cluster πx

The obtained Ewocs algorithm has a number of components which allow different implementa-
tions: neither the consistent clustering function family F (line ) nor the method for the determi-
nation of the threshold score separating foreground and background objects (line ) are specified.
As mentioned in the introduction, the following two sections, . and ., give insights into each
one of these two issues, respectively.

.. Clustering Model

As mentioned in Section .., most clustering algorithms provide, in addition to an output cluster-
ing, a clustering model which allows the (hard or soft) assignment of new objects to the obtained
clusters. In the case of Ewocs, if the functions in the used family F provide models together with
the clusterings when applied to dataset X , these individual models can be extended to obtain an
aggregated minority clustering model.

More specifically, if the application of fr ∈ F to X produces clustering Πr and clustering model
Mr, after Algorithm ., an Ewocs minority clustering modelME can be constructed, containing:

• the inner clustering modelsMr,

• the size of each cluster πrc in the clusterings Πr,

• and the threshold value s⋆th which separates foreground and background objects.

The process of classifying a new object xx using the obtained model M is described in Algo-
rithm .. It follows the main steps of the previous Algorithm ., but replacing the application of
new clustering functions fr ∈ F , by that of the previously obtained clustering modelsMr (line ).
After all models have been applied, the average score of the object is found (line ), and the object
is deemed to belong to the foreground or background cluster according to whether its score exceeds
the previously found threshold (line ).



.. WEAK CLUSTERING 

. Weak Clustering

As stated in Section .., the theoretical properties of the Ewocs algorithm depend only on the
condition of the used clustering family being consistent. We believe that the requirements for
being consistent, according to Definition ., should be fairly loose—and that, hence, the Ewocs
algorithm is suitable for use with weak clustering algorithms.

In this context, a clustering function family F is a clustering algorithm which includes elements
of randomness. Each sequence of random values will determine a member function of the family.
From a conceptual point of view, drawing a function fr from the family F will hence correspond
to drawing a sequence of random values to be later used by the algorithm. From a computational
one, it can correspond, for instance, to choosing a seed value for the algorithm’s internal random
number generator.

The two weak clustering algorithms that are used in the work of Topchy et al. are based on either
splitting the dataset using random hyperplanes, or on clustering projections of the data on random
subspaces. We found the first of them particularly convenient for our purposes, and extended it.
Section .. reviews this our extension of the random splitting algorithm.

However, even if these methods have been proved to produce clusterings useful for combination
within an ensemble, they both perform linear mappings of the data and, hence, are based on the
notion of linear separation. Although non-linearly separable clusters can be successfully identified
by linear separators, non-linear weak separators have not been thoroughly explored. Besides, linear
methods depend on the data being expressible as feature vectors, and hence cannot directly deal
with structured objects such as sequences or trees.

Our proposal in this direction is a new weak clustering algorithm based on Bregman diver-
gences, which allows non-linear splitting boundaries and, through the use of kernels, can deal with
structured data. This proposed Random Bregman Clustering is described in Section ...

Later, Section ... will provide an estimation of the consistency of the proposed cluster-
ing families over a number of datasets. The results shall provide an empirical assessment of the
suitability of these two families for use within Ewocs.

.. Random Splitting

The random splitting algorithm presented in Topchy et al. () performs only binary bisections
of the objects in the dataset. Our Random Splitting algorithm (RSplit) is a generalization of this
algorithm, which allows an arbitrary number of clusters k.

For this algorithm we require the objects in dataset X to be expressible as z-dimensional real
vectors (i.e., X ⊂ Rz). To account for multiple clusters, we have adopted the same representation of
hyperplanes as in the Multi-Class Support Vector Machines of Crammer and Singer (): each
splitting hyperplane is defined by a weight vector ωc = (ωc1 . . . ωcz) and an offset δc, and objects
belong to the cluster (class in the original formulation) from whose hyperplane they are separated
by the largest margin.

Similarly to Topchy et al., in a clustering ensemble setting, the number of clusters k does not
need to be given a priori, but is rather drawn at random between  and a user-supplied value kmax.

This idea leads to the simple procedure described in Algorithm .. The algorithm takes three
sequential steps. The first of them is the selection of the effective number of clusters k (line ). Any
discrete distribution between  and kmax, such as the uniform distribution, can be used. For each
cluster πc, random weights ωc and offsets δc (line ) are then generated. Again, we have stuck to
the uniform distribution from all the possible continuous distributions within the [−1 . . .1] range.

Once these values are generated, the margin of each object xi with respect to the hyperplanes
is found as the dot product between the object xi and the hyperplane’s weight vector ωc, shifted
by the latter’s offset δc. Each object is assigned to the cluster induced by the hyperplane to which
its margin is maximal (line ). The resulting clustering can then be returned (line ).

The time complexity of this algorithm is dominated by the calculation of the margin in step
(line ), and is hence in the order of O(kmax ⋅ z ⋅ ∣X ∣).

We will henceforth refer to this algorithm as RSplit, and to its application within Ewocs as
Ew-RSplit.
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Algorithm . Random Splitting (RSplit)
Input: A dataset X
Input: A maximum number of clusters kmax
Output: A hard all-in clustering Π of X
: Draw a number of clusters k at random from the range {2 . . . kmax}

k ∈ {2 . . . kmax}

: Generate a weight vector ωc = [ωc1 . . . ωcz] and an offset δc at random for each
c ∈ {1 . . . k}

ωc1 . . . ωcz, δc ∈ [−1 . . .1]
: Assign each object xi to the cluster πc whose hyperplane gives the largest margin

πc = {xi ∈ X ∣ arg max
q

ωq ⋅ xi + δq = c}

: Return The clustering Π = {π1 . . . πk}

.. Random Bregman Clustering

As stated in the introduction to Section ., two desirable properties of weak clustering algorithms,
but to which few attention has been devoted so far, are, first, the ability to find non-linear bound-
aries in vectorial data, and, second, the possibility to deal with non-vectorial and/or structured
data. Kernel methods have a long story of successes across a wide spectrum of machine learning
tasks (Shawe-Taylor and Cristianini, ) and, specifically, they are known for their capability to
address both of these issues. The use of kernel functions allows to separate non-linearly separable
classes, even with linear methods (Freund and Schapire, ); and kernels have been devised and
successfully applied for non-vectorial objects such as word sequences (Cancedda et al., ) or
parse trees (Collins and Duffy, ).

It is interesting to note that kernel functions induce a distance metric between objects. As proved
by Mercer (), any kernel function Kφ is equivalent to an inner product in a high-dimensional
space, onto which there will exist a certain mapping φ. Hence, if φ(x) and φ(y) are, respectively,
the images of two objects x and y in this space, Kφ(x, y) = φ(x) ⋅ φ(y). Their squared Euclidean
distance on the mapped space, Dφ(x, y), can then be found as:

Dφ(x, y) = ∥φ(x) − φ(y)∥2

= (φ(x) − φ(y)) ⋅ (φ(x) − φ(y))
= φ(x) ⋅ φ(x) + φ(y) ⋅ φ(y) − 2 ⋅ φ(x) ⋅ φ(y)
= Kφ(x,x) +Kφ(y, y) − 2Kφ(x, y) (.)

This transformation is the basis for existing kernel-based all-in clustering algorithms, such as
kernel k-means (Girolami, ). In our case, given that these squared Euclidean distances will
be, by construction, Bregman divergences, we can join Mercer kernel theory and that of Bregman
clustering and devise a weak all-in clustering procedure. The idea is to randomly select a number of
objects which can act as seeds for the clustering, and then define clusters according to the divergence
from these seeds of the objects in the dataset. The resulting Random Bregman Clustering (Rbc)
method is described in Algorithm ..

Rbc is thus a seed-based algorithm, and in this sense is similar to the Major clustering gen-
eration strategy presented in Section .... Given dataset X , a Bregman divergence D and a
maximum number of clusters kmax, the first step of Rbc is selecting the effective number of clus-
ters in the clustering, k (line ). Any discrete distribution between  and kmax, such as the uniform
distribution, can be used. A subset X̂ of size k is then selected at random from X (line ). We
shall name this subset the seed subset, and each one of their members will be a seed. Each seed will
induce a cluster in the output clustering.

The output clustering is constructed following the theoretical framework provided by Bregman
clustering (Banerjee et al., ). First, the distance of each object xi ∈ X to the seeds x̂c ∈ X̂ is
found. If a hard clustering is desired, each object is then assigned to the cluster induced by its
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Algorithm . Random Bregman Clustering (Rbc)
Input: A dataset X
Input: A Bregman divergence D
Input: A maximum number of clusters kmax
Output: A (hard or soft) all-in clustering Π of X
: Draw a number of clusters k at random from the range {2 . . . kmax}

k ∈ {2 . . . kmax}

: Select a subset X̂ of k seeds from X

X̂ = {x̂1 . . . x̂k} ⊂ X

: If Hard clustering desired then
: Assign each object xi to the cluster πc induced by its nearest seed x̂c,

πc = {xi ∈ X ∣ arg min
x̂q∈X̂

D(x̂q, xi) = x̂c}

: Else
: Find membership grade for each object xi and cluster πc,

grade(xi, πc) =
e−D(x̂c,xi)

∑kq=1 e
−D(x̂q,xi)

: Return The clustering Π = {π1 . . . πk}

nearest seed (line ). If, instead, a soft clustering is desired, the grade of membership of each object
to each cluster is proportional to the exponential of the negated divergence from the seed of the
latter to the former (line ). In both cases, the only remaining step is then returning the resulting
(hard of soft) clustering (line ).

The construction of the hard clustering is hence equivalent to a single assignment step of Breg-
man hard clustering; and that of the soft clustering is equivalent to a single expectation step of
Bregman soft clustering, with a uniform a priori probability of membership to all clusters.

The time complexity of the Rbc algorithm is dominated by the clustering construction step
(line  or ), and, as long as the kernel computation does not depend on the maximum number of
clusters kmax or on the size of the dataset ∣X ∣, it is in the order of O(kmax ⋅ ∣X ∣). This is comparable
to the cost of RSplit, so the increase in expressiveness of the algorithm does not come at the
expense of an increase in computational complexity. The algorithm hence remains inexpensive, and
suitable for use in a weak clustering ensemble.

We will henceforth refer to the hard and soft versions of this algorithm as HRbc and SRbc,
respectively, and to their application within Ewocs as Ew-HRbc and Ew-SRbc.

We have explored the use of two different families of Bregman divergences at the core of the
Rbc algorithm presented above. The first one is the well-known Mahalanobis distance, whereas the
second one is that of Gaussian-kernel-based distances. The following Sections ... and ...,
respectively, describe each one of them in more detail.

... Mahalanobis Distance

Mahalanobis distance was first introduced by Mahalanobis (), and can be regarded as a version
of standard Euclidean distance normalized for a particular dataset. Being µ the mean vector of
the considered dataset, and Σ its covariance matrix, the squared Mahalanobis distance DM(x, y)
between two objects x and y is:

DM(x, y) = (x − µ)TΣ−1(y − µ) (.)

Mahalanobis distance is a common choice for clustering tasks, and it has specifically been reported
to give the best results within previous approaches to minority clustering (Gupta and Ghosh, ,
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(d) Gaussian, γ = 2.0

Figure .: Comparison of Euclidean distances induced by different kernels

).
We will henceforth refer to the Mahalanobis distance as Mah.

... Gaussian-Kernel Distance

Gaussian kernels are used in a wide variety of classification and clustering tasks. Given that they
have been successfully applied in non-parametric (i.e., distribution-free) clustering algorithms, such
as mean shift (Fukunaga and Hostetler, ; Cheng, ), they are a sensible choice for use within
unsupervised clustering ensembles.

The Gaussian kernel Kφ(x, y) between two objects x and y is defined as the exponential of the
negated squared Euclidean distance between them, with two additional scaling parameters α and
γ:

Kφ(x, y) = α ⋅ e−γ∥x−y∥
2

(.)

By Equation ., their induced squared Euclidean distance mapped space, Dφ(x, y), can be found
as:

Dφ(x, y) = Kφ(x,x) +Kφ(y, y) − 2Kφ(x, y)
= α + α − 2α ⋅ e−γ∥x−y∥

2

= 2α(1 − e−γ∥x−y∥
2

) (.)

A graphical comparison of standard Euclidean distance (which is induced by a linear kernel,
the standard dot product) to Gaussian-kernel distance for α = 1.0 and several values of γ can be
found in Figure .. In each subfigure, points in the grid are plotted at a distance to the origin
which is proportional to the considered Euclidean distance induced by the kernel. Gaussian kernels
locally map the Euclidean space around each point into a hypersphere of radius

√
2α, and the rate

at which neighbouring points are pushed apart towards the edge of the hypersphere increases with
the value of parameter γ.

It is also interesting to note that, if this Gaussian-kernel distance is used in Rbc, small values
of α lead to fuzzy boundaries between the clusters, whereas large values produce crisp ones. As a
particular case, hard Rbc is equivalent to the limit of soft Rbc as α →∞.

We will henceforth refer to the Gaussian-kernel-induced distance for certain α and γ as G(α,γ).
In particular, the notation G(∞,γ) will be used within HRbc.

... Unsupervised Tuning of Gaussian-Kernel Distance

The use of the presented Gaussian-kernel distance presents an obvious drawback, and that is the
choice of the values for α and γ. As mentioned in the previous section, the choice of α and γ
determine the degrees of fuzziness and locality of the output clustering, respectively. This can have a
dramatic influence on the result of the clustering process, and different datasets will require different
values of these parameters, not only to obtain quality clusterings, but even to avoid degenerate
solutions. The determination of suitable values for α and γ hence can become a problematic issue,
especially in unsupervised clustering settings.

Similar problems are to be addressed in all-in fuzzy clustering algorithms which depend on a
parameter. Among them, the one that has received the most attention in the literature is the
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tuning of the degree of fuzziness parameter, traditionally referred to as m, of the fuzzy c-means
algorithm (FCM; Bezdek, ). A series of works have proposed rules to find intervals inside
which the optimal m might be found (Deer and Eklund, ; Yu et al., ), but only more
recently procedures which provide a determinate value for m have been devised. In this direction,
Okeke and Karnieli () propose the use of grid search over m to minimize the sum of distances
between the objects in the original dataset and their reconstructed images built using the clustering
information. The value of m for which this sum of distances is minimal is selected.

A different approach is that of Schwämmle and Jensen (). In it, the authors study the
behaviour of the cluster centroids as the degree of fuzziness m increases, and find that, at a certain
point, the clustering degrades and the clusters start collapsing on each other. This phenomenon can
be detected by watching the minimum distance between centroids: the moment the degradation
starts, the first two clusters collapse and this distance becomes close to zero. It is interesting to note
that, according to the authors, this happens however many clusters are used, even if the number
does not match the actual one.

Given that “a large fuzzifier value suppresses outliers in data sets”, the authors consider that
maximum fuzziness should be sought, and hence propose selecting the largest m value for which
the minimum centroid distance still remains above a predefined threshold ε (set so as to reduce
floating-point errors).

We have adapted the approach of Schwämmle and Jensen to determine the optimal values of
α and γ for Ew-SRbc. The method is particularly suitable to our needs: it does not depend on
specific properties of FCM, nor requires knowledge of the exact number of clusters in the dataset.
However, as the Ew-SRbc method does not provide centroids for the found signal clusters, we
have instead tuned the parameters with the SoftBBC-EM algorithm of Gupta and Ghosh ().
Given that the optimal divergence metric for clustering will be more dependant on the dataset than
on the used algorithm, we believe that the parameters detected using SoftBBC-EM will provide,
at least, competitive performance when used within Ew-SRbc.

For a given value of γ, the influence of α on the clustering is equivalent to that of m for FCM.
When moving from α →∞ to α → 0, the fuzziness of the clustering is increased from a completely
crisp clustering to gradually fuzzier ones. At a certain point αth, the clustering starts degrading,
and each object is eventually assigned a uniform probability of belonging to any cluster.

On the flipside, for a given value of α, the influence of γ on the clustering gives rise to two
turning points: for values larger than a certain γh, the distance between all pairs of objects tend
to 2α; whereas for those smaller than a certain γl, they all tend to 0. Both phenomena degrade
the clustering, and hence also lead to cluster collapse. However, there is an interaction between the
values of α and γ: larger values of α force crisper decisions, and hence extend the feasible region
for γ.

Hence, the (α, γ) plane will contain an approximately V-shaped curve on one of whose sides
the value of the minimum centroid distance will fall below the floating-point-precision threshold ε.
Following the criterion of Schwämmle and Jensen, we look for maximum fuzziness, and hence the
algorithm should select the vertex of this curve. At this point, the value of α is the minimum one
which still avoids degradation, and for it γh and γl have become equal.

We have empirically verified that such curves actually arise across a variety of datasets. For
instance, Figure . shows a contour plot of the minimum centroid distance of the clusterings
obtained using SoftBBC-EM on the Toy dataset. In it, the thicker curve denotes the contour
level for a value of ε = 10−3, and the point at its vertex corresponds to the values of α and γ detected
by the algorithm.

Given that the minimum centroid distance function has to be obtained by sampling, which
introduces an amount of experimental noise, standard numerical methods for optimization cannot
be used, and minimization is instead performed using a recursive logarithmic grid search algorithm.
This allows us to exponentially increase the precision in the detection of the optimal point, without
an exponential increase of the computational burden.

We will henceforth refer to the distance induced by this automatically tuned Gaussian kernel
as G(Auto).
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Figure .: Contour plot of minimum centroid distance (Toy data)

. Threshold Determination

The last step of the Ewocs algorithm is that of determining, from the sequence of scores s⋆1 . . . s
⋆
n

found by the ensemble clustering process, a threshold value s⋆th which separates foreground and
background objects. We have considered a number of procedures to perform this decision. Next
Sections .. to .. give descriptions of each one of the considered threshold determination
criteria.

.. Best

A first criterion, which we have named Best, is that of selecting the threshold for which the
performance of the method is maximal according to a given measure. The actual applicability
of this criterion is limited, as performance measures depend on the availability of the gold truth.
However, its output is informative as an upper bound of the performance of the other ones, and we
have hence reported it for our experiments.

From the metrics that we have used for our evaluation, we have chosen for our experiments
the Best cutoff point to be the one that maximizes the F measure, which will be defined in
Section ...

.. Size

A more realistic approach than Best is that followed by other works in minority clustering (Gupta
and Ghosh, , ): the number of foreground objects is assumed to be known a priori. After
sorting the objects by their score, it is this number of highest-scored objects that are taken to form
the foreground cluster, whereas the rest are considered background objects. The score of the object
in the cutoff point is taken as threshold.

However, this threshold criterion, which we will refer to as Size, has the critical drawback
of determining the number of foreground objects. Their proposers give no hints about how this
quantity could be estimated, and we believe this limits its applicability for unsupervised minority
clustering. We have nevertheless included it to allow a comparison to previous approaches which
use it.

For our experiments, we have assumed that the exact number of foreground objects is known,
and used this value. Hence, the results for Size should also be regarded as an upper bound.

For the sake of simplicity, we will be omitting in this section the R subindex from s⋆Ri, as we believe there is no
risk of confusion with other than the final scores.
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Figure .: Accumulated score distribution (Ew-SRbc on Toy data)

.. Dist

A third approach, more appropriate to unsupervised minority clustering, uses a simple heuristic
to determine the threshold value for scores generated by Ewocs, and arises from the observation
of the distribution of the sorted sequence of scores of the clustered objects. An example of such
distribution appears in Figure ., for a run of Ew-SRbc on the Toy data in Figure ..

As observed in the figure, a small number of instances are assigned high scores whereas a large
number are assigned low ones, presumably corresponding to foreground and background objects,
respectively. The score sequence follows thus the shape of a decreasing convex function. This
phenomenon was recurrent across most of the tested datasets.

The cutoff point should try to separate these two regions. Intuitively, this point will lie in the
region of maximum convexity of the curve, and hence close to the lower left corner of the plot. This
idea leads to the criterion to which we will refer as Dist, and which, as an approximate but efficient
way to determine the threshold, minimizes the distance from the origin in a normalized plot of the
scores.

The first step in this criterion is hence sorting the objects xi ∈ X by decreasing scores assigned
to them by the Ewocs algorithm, so that, in the sequence s⋆1 . . . s

⋆
n, ∀i ∶ s⋆i ≥ s⋆i+1. These scores are

then linearly mapped to the range [0 . . .1], obtaining normalized versions s̄⋆i :

s̄⋆i =
s⋆i −min s⋆j

max s⋆j −min s⋆j
(.)

Then, the distance from the origin in the normalized plot is found for each object, and that at the
minimum distance is selected as cutoff object xth:

dist(xi) =
√

(s̄⋆i )
2 + (i/max i)2 (.)

xth = arg min
xi∈X

dist(xi) (.)

This object is the one marked as Dist in Figure .. Its score, s⋆th, is the one returned as threshold
value.

.. nGauss

The theoretical analysis of the Ewocs method presented in Section . provides us a new approach
to automatically determine the threshold score. In particular, we can much benefit from the result
stated in Proposition .: the conditional distributions of the average scores s⋆i approach a Gaus-
sian distribution with expectation µi. If we assume that the value of µi depends mainly on the
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Figure .: Score histogram (Ew-SRbc on Toy data)
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Figure .: Score fitting and threshold detection using nGauss (Ew-SRbc on Toy data)

source ψs which produced xi, we can try to approximate the overall distribution of average scores
s⋆i by a mixture of Gaussian components, one for each one of the sources generating the dataset.

As an example, the histogram of scores generated by the same run of Ew-SRbc on the Toy
data is shown in Figure .. As well as the joint distribution of scores (labeled All), the separate
histograms for objects from the foreground and background sources are also plotted. Two Gaussian
peaks are easily identifiable around the scores of 0.05 and 0.25, and we could expect another minor
Gaussian component to explain the probability mass around the score of 0.9.

The key to threshold selection is thus determining the number of mixtures, identifying them, and
finding the boundaries between them. The cutoff points must lie at one of these boundaries. There
is a wide spectrum of methods to solve this task, and among them we have chosen Expectation-
Maximization (EM), being by far the most popular one. The determination of the number of
mixtures reduces to discovering the number of clusters and hence to a model selection problem.
Given that one-dimensional EM is fast, we have used the usual approach of running EM for increas-
ing numbers of clusters and then using a model-selection criterion to select the best one (Fraley and
Raftery, ). More specifically, we have used the Bayesian Information Criterion (BIC; Schwartz,
).

We will denote the criteria based in this Gaussian-mixture modelling as nGauss. A graphical
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Figure .: Score fitting and threshold detection using Gauss (Ew-SRbc on Toy data)

depiction of the modelling of the sample score distribution using Gaussian mixtures is shown in
Figure .. In it, the arcs denote the mean, variance and a priori probabilities of the identified
components.

Proposition . states than only the mixture with the lowest mean should contain the back-
ground objects. However, it is empirically observed that the selection criterion often chooses models
which split this source into several components (this can be observed, for instance, in Figure .).
It is hence necessary to separate the found components into those corresponding to the background
source and those from the foreground ones. More specifically, if k components ψ̂1 . . . ψ̂k have been
identified (sorted by increasing means µ̂1 > . . . > µ̂k), for each c ∈ {1 . . . k − 1}, the possibility that
ψ̂1 . . . ψ̂c contain background objects and ψ̂c+1 . . . ψ̂k contain foreground ones needs to be considered.

The set of cutoff point candidates is hence built from the boundary scores for each c ∈ {1 . . . k−1},
i.e., the scores s⋆c for which

p(s⋆c ∈ ψ̂1 ∨ . . . ∨ s⋆c ∈ ψ̂c ∣ s⋆c) = p(s⋆c ∈ ψ̂c+1 ∨ . . . ∨ s⋆c ∈ ψ̂k ∣ s⋆c)

Moreover, and as stated in Section .., the small number of foreground instances are assigned
high scores whereas the large number of background instances are assigned low scores. As a result,
the variances of the scores of the former will differ significantly from those of the latter, being much
larger.

This last fact provides us with a heuristic criterion to choose a single threshold score from
the candidate set: being σ̂2

1 . . . σ̂
2
k the variances of the found components ψ̂1 . . . ψ̂k, we select the

boundary score that maximizes the difference between the average component variances at both
sides:

s⋆th = arg max
s⋆c

∣1
c

c

∑
i=1

σ̂2
i −

1

k − c
k

∑
i=c+1

σ̂2
i ∣

We will refer to this criterion as nGauss+Var. As an upper bound of its performance, we will
also consider a nGauss+Best criterion, which selects the boundary score s⋆c which maximizes the
F measure. In Figure ., the possible cutoff points are depicted by dashed vertical rules. The
score selected as threshold by both nGauss+Best and nGauss+Var is emphasized in black.

A slightly different alternative to overcome the foreground and background component separa-
tion problem is that of simplifying the possible models and performing EM with only  clusters.
In this case, there is no ambiguity in the choice of the background and foreground components, as
there must be one of each. We have named this simplified Gaussian modeling approach Gauss.
Figure . contains a representation of the modelling of the sample scores using Gauss.

If several such scores exist for a given c, we have taken the largest value for which, in addition, the probability
of the foreground mixtures is increasing.
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Number of dimensions 2, 3, 5, 8
Data range [−2.0 . . . + 2.0]
Number of background samples 5400 . . . 12000
Number of foreground sources 3 . . . 8
Number of foreground samples 700 . . . 1800
Variance within foreground sources 0.125 . . . 0.25
Minimum distance between foreground sources 0.75

Table .: Parameter range for synthetic dataset generation

Finally, as a last and implementation-related detail, we have found that using the linearly
mapped scores s̄⋆i as defined in Equation . as input to the EM algorithm for model fitting,
instead of the actual scores s⋆i , reduces the floating point rounding error and improves the quality
of the detected threshold.

. Evaluation

In order to validate the proposed Ewocs algorithm and to assess the performance of Ewocs-based
approaches, we have performed a series of experiments on synthetic data. In a preliminary stage, the
consistency of the different used weak clustering algorithms has been empirically assessed. Later,
a full-fledged comparison of the performance of Ewocs-based approaches to other methods in the
state of the art has been carried out.

Next sections give details about the evaluation procedure. Section .. describes the used
datasets and Section .. enumerates the different approaches to be evaluated or employed as
reference. Next Section .. describes the evaluation protocol, including the considered metrics,
and, finally, Section .. exposes and discusses the obtained results.

.. Data

The first dataset we have used for our experiments is the sample data plotted in Figure .. It is a
simple -dimensional dataset in which five foreground sources, with different shapes and variances,
are scattered against a background filled with a uniform distribution. Even though evaluation on
a single dataset such as Toy scarcely possesses any statistical significance, “for a -dimensional
dataset, graphical verification is an intuitive and reliable validation of clustering” (Ando, ), and
we believe this can be useful as an illustration of most of the concepts in our work.

For a more serious evaluation, we have prepared a number of synthetic datasets where foreground
Gaussian sources are embedded within a set of uniformly distributed background objects. Several
parameters, such as the number of sources, the number of foreground and background objects and
the means and variances of the Gaussian sources, were chosen at random for each dataset. A
summary of the ranges of these parameters can be found in Table .. In total,  such datasets
have been generated. We will refer to this collection as Synth.

Additionally, in order to perform the preliminary experiments on method consistency, for each
dataset in Synth,  additional samplings using the same source parameters were generated. The
whole -dataset groups have been used for consistency estimation.

.. Approaches

We have implemented the Ewocs algorithm using each one of the weak clusterers proposed in
Section ..

Ew-RSplit Ewocs using the RSplit algorithm of Section ...

Ew-HRbc Ewocs using the hard Rbc algorithm, HRbc, of Section ...

Ew-SRbc Ewocs using the soft Rbc algorithm, SRbc, of Section ...
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The notation Ew-RSplit/R×k (resp., Ew-HRbc/R×k and Ew-SRbc/R×k) will be used to refer
to the results obtained by Ewocs with an ensemble of R clusterings, each one produced by RSplit
(resp., HRbc and SRbc) with kmax = k.

In order to assess the performance of Ewocs-based approaches with respect to the state of the
art, we have implemented three existing methods for minority clustering:

BBOCC as proposed by Gupta and Ghosh (). We have used Mah as divergence, and the
actual number of foreground objects as the desired clustering size parameter.

BBCPress as proposed by Gupta and Ghosh (). Similarly to BBOCC, we have used Mah
as divergence, and the actual number of foreground objects as the desired clustering size
parameter. The number of clusters, however, has been assumed to be given a priori, and by
BBCPress/k we will refer to the runs of this algorithm with a number of clusters k.

kMD as proposed by Ando (). The implementation tries to mimic to the maximum extent
that of the original paper: we have used Gaussian distributions for the foreground clusters,
and a uniform distribution for the background cluster. The clusters have been initialized by
selecting fixed-size sets of most similar points to a randomly chosen one. To refer to the runs
of this algorithm with a certain parameter tuning, we will use the notation kMD/R×s0–smin,
where R refers the number of cluster detection iterations, and s0 and smin refer to the initial
and required cluster size parameters.

It is important to note that these methods, as well as, to our knowledge, all other existing minority
clustering methods proposed so far, include critical elements of supervision, in the form of parame-
ters such as the number of foreground objects, the number of foreground clusters, or the foreground
cluster sizes.

Additionally, we have considered three pseudo-systems for reference, to give lower and upper
bounds of the performance of the actual systems:

Random A random clusterer, which assigns foreground and background clusters according to a
Bernoulli distribution. We have taken the one among such clusterers which assigns the labels
according to the actual source size ratio in the data.

AllFG A blind clusterer, which assigns all objects to the foreground cluster.

Convex An oracle clusterer for the Synth dataset, which detects as foreground objects those
objects that lie within the convex hull of the actual foreground sources. As the foreground
objects are embedded within the background ones, there is a number of the latter that fall
within the region of the former and are hence, from the point of view of Gaussian distributions,
indistinguishable from them. The output of this Convex clusterer will hence detect all
foreground objects, but include some background ones (those in the union of each source’s
convex hull) as false positives.

.. Protocol

In the preliminary evaluation of clustering consistency, for each one of the  samplings of the
datasets in the Synth collection,  runs of every weak clustering algorithm were performed, and the
source affinities have been estimated from the co-occurrence matrices of these  clusterings. We
have then reported the fraction of datasets with which the considered methods are consistent (Cons),
as well as, more precisely, the fraction of sources which are detectable by them—both macro-
(M-Det) and micro-averaged (µ-Det) by dataset.

On the flipside, in order to assess and compare the performance of the different approaches in the
full minority clustering evaluation, we have used the same set of metrics as in our previous relation
detection evaluation: namely, the well-known measures of precision (Prc), recall (Rec) and F (see
Section ..). These metrics constitute a de facto standard for unsupervised classification tasks,
and, in particular, have been previously employed for the evaluation of minority clustering (Ando,
). As in previous chapters, the use of percentages when printing values of these metrics is
customary.

Additionally, to evaluate the performance of the scoring phase, isolating it from that of threshold
selection, we have also included Area Under the ROC Curve (AUC) measures. To reduce the impact
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Figure .: System output for the compared methods (Toy data)

of randomness, we have carried out  different runs for each method, configuration and dataset,
and reported the average measures.

Finally, as in previous chapter, statistical significance of the results is assessed using Bergmann
and Hommel hypothesis tests, with their output represented in the style of Demšar.

.. Results

The first Section ... presents the results of the full experiments on the Toy dataset. The
next two sections, ... and ..., detail the results obtained over the Synth collection—the
former regarding the preliminary experiments on clustering consistency; the latter, those on the
full minority clustering task.

... Clustering on the Toy Dataset

A graphical depiction of the output of a representative subset of the compared approaches on the
Toy dataset is shown in Figure .. Even if these results are only given for illustrative purposes,
a number of phenomena can already be observed in the different obtained clusterings.

For instance, we can see how the BBOCC method is unable to detect the multiple foreground
sources and instead creates a single cluster covering two of them. Also, the BBCPress method,
despite being given the correct number of sources, fails to recognize the half-moon-shaped one and
instead splits it into two clusters, and rounds the triangle-shaped one. As a result, the top right
source to be missed. The limitations of these two methods are well-known, and come from the fixed
number and shape (hyperelliptical) of clusters they look for.

On the flipside, the kMD and Ew-SRbc methods are able to recognize the variously shaped
foreground sources. It is interesting to note that, for this Toy dataset, kMD produces tighter
clusters, favouring precision over recall, whereas for Ew-SRbc this tendency is reversed. The more
systematical evaluation on Synth, presented in next section ..., will confirm this behaviour.
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Figure .: ROC curves for kMD and Ew-SRbc (Toy data)
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Figure .: Precision, Recall and F curves, and cutoff point determined by different threshold
detection criteria (Ew-SRbc on Toy data)

It is interesting to compare the ROC curves for both approaches, which are plotted in Figure ..
kMD does not provide an adjustable decision threshold; instead, its output is a fixed crisp boundary,
and hence its ROC curve is composed of two straight segments. On the contrary, Ew-SRbc, as
all other Ewocs-based approaches, assigns a continuous score to all objects, and the separation
between foreground and background ones is based on a threshold. Hence, its ROC curve, as a
function of this threshold, is much smoother. For this reason, even if the differences in precision,
recall and F score between the two methods are small (see Subfigure .b), the curve for kMD is
in this case missing a large fraction of the AUC, which that of Ew-SRbc is able to enclose. The
fact will also be relevant to the evaluation on Synth.

Regarding the proposed threshold determination approaches, Figure . shows the precision,
recall and F curves for the output of Ew-SRbc on Toy, according to the number of objects
clustered as foreground. The cutoff points for the different criteria are plotted above the F curve.
For this particular case, nGauss+Var finds the same cutoff point as nGauss+Best, and they are
both plotted as nGauss.

It is interesting to observe how the curve for precision remains quite high up to the break-even
point with recall, capturing the foreground objects and those background objects which lie among
them (and which prevent the value from reaching %), and then start to decrease as all foreground
objects have been detected. Regarding recall, it increases regularly until it reaches almost %,
only slightly after the best F point. We believe both behaviours are indicators of a good quality
of the minority clustering process.
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 Dimensions  Dimensions

Cons M-Det µ-Det Cons M-Det µ-Det

RSplit × - 81.82 96.10 94.48 100.00 100.00 100.00

× - 78.79 95.82 95.71 100.00 100.00 100.00

HRbc × Mah 93.94 99.13 98.77 100.00 100.00 100.00

G(∞,) 93.94 99.13 98.77 100.00 100.00 100.00

SRbc × Mah 84.85 94.81 95.71 100.00 100.00 100.00

G(,) 100.00 100.00 100.00 100.00 100.00 100.00

 Dimensions  Dimensions

Cons M-Det µ-Det Cons M-Det µ-Det

RSplit × - 100.00 100.00 100.00 100.00 100.00 100.00

× - 100.00 100.00 100.00 100.00 100.00 100.00

HRbc × Mah 100.00 100.00 100.00 100.00 100.00 100.00

G(∞,) 100.00 100.00 100.00 100.00 100.00 100.00

SRbc × Mah 100.00 100.00 100.00 100.00 100.00 100.00

G(,) 100.00 100.00 100.00 100.00 100.00 100.00

Table .: Consistency of the proposed weak clustering algorithms (Synth data)

Additionally, the plot shows how the threshold values found by Size, nGauss and Gauss are
quite close to the optimal one, Best. It is only the threshold found by Dist which falls somehow
behind, trading in this case too much recall for precision. Again, to asses the actual relationship
between the power of the different criteria, more systematical testing, such as the one on Synth,
is required.

... Consistency on the Synth Dataset Collection

Table . contains the values of consistency and averaged source detectability of the different weak
clustering algorithms, estimated over all Synth datasets. Given that more dimensional data will
exhibit a larger degree of sparsity which may render the results not comparable with those of lower
dimensional datasets, we have opted to present the results segregated by the number of dimensions
in the datasets.

As seen in the table, our hypothesis that weak clustering algorithms are consistent with data
generated by dense and local sources seems clearly corroborated by the empirical evidence coming
from these experiments. We have found the property to hold in all tested datasets for -, - and
-dimensional data. Only for -dimensional datasets, the algorithms, especially RSplit and SRbc
using theMah distance, fail to detect some of the sources—up to 7.45% of them in the case of SRbc
with Mah. Overall, for these two methods full consistency is only achieved in three fourths of the
datasets; and HRbc fulfills the property in 91.67% of the cases. On the flipside, the performance
of HRbc using G(,) is remarkable, as it obtains perfect consistency even in these harder cases.
The results also confirm the intuition that -dimensional datasets, being less sparse, are harder to
deal with.

However, even if perfect consistency is not achieved, the fact that, in the worst of the cases,
more than 94% of the sources are detectable suggests that the lack of full consistency does not
necessarily hamper the actual performance of the Ewocs algorithm. The study of the clustering
results over the same Synth collection in next section will shed light on this issue.

... Clustering on the Synth Dataset Collection

Table . contains the AUC values for the compared methods across all datasets in the Synth col-
lection, as well as their achievable precision, recall and F values, using the Best threshold selection
criterion. As mentioned before, the degree of sparsity increases with the number of dimensions,
and this simplifies the clustering task, and the results across datasets with different dimensionality
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Figure .: Bergmann-Hommel tests for the compared approaches (Synth data)

may not be commensurable. For this reason, we have again opted to split the results according to
dataset dimensionality.

For reasons of brevity, only the configurations which achieve the best results for each method
are included. Later in this same section, experiments studying the sensitivity of each method to
the tuning of their parameters will be presented.

Finally, regarding statistical significance, Figure . contains a graphical representation of the
outcome of Bergmann-Hommel tests on the F and AUC measures across all datasets in Synth.

One of the conclusions that can be drawn after inspection of the figures in the table is that
Ewocs-based approaches are able to obtain results in the state of the art for minority clustering, and
that, particularly, Ew-SRbc is able to outperform the existing approaches for the task, achieving
a performance close to the upper bound, given by Convex. We believe this is an excellent result,
and one which confirms the validity of the Ewocs algorithm.

A number of additional conclusions can follow from a more detailed analysis. First of all, it
is clear the BBOCC is the weakest approach among the compared ones. Even if its results are
above the Random and AllFG baselines, the limitation to a single hyperelliptical cluster produces
clusterings with a lower precision than those from other approaches. The differences are statistically
significant in terms of both F and AUC.

Regarding Ew-RSplit, it is interesting to note that the extension from  to a larger number
of hyperplanes improves the performance of the RSplit algorithm within the ensemble. However,
the algorithm favours too much recall over precision, and even if this allows it to achieve a good
AUC measure, its values of F are lower than other methods which exhibit a similar performance,
such as Ew-HRbc and BBCPress. These too approaches trade some of the recall of Ew-RSplit
for precision, thus obtaining lower AUC but higher F. The differences between the three systems,
nevertheless, are deemed not significant by the Bergmann-Hommel test, except for the one in terms
of AUC between Ew-RSplit and BBCPress, and can hence be considered similar in terms of
minority clustering power.

It can also be observed how the results for Ew-HRbc are similar using either of the Mah or
G(∞,) distances.

Finally, concerning kMD and Ew-SRbc, the results from the experiments allow us to say
that their performance is significantly better than that of the other methods in terms of F, and
that of Ew-SRbc is also better in terms of AUC. This is true for Ew-SRbc not only when
using the G(,) distance, which achieved the best results on Synth, but also when using the
unsupervised one G(Auto). More precisely, the results for Ew-SRbc using G(Auto) are only
slightly below those of kMD in terms of F, and slightly below those obtained using G(,) in
terms of AUC. In both cases the differences are not statistically significant. Taking into account
that the determination of G(Auto) is completely unsupervised, we believe we can qualify these
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 Dimensions  Dimensions

Best Best

AUC Prc Rec F AUC Prc Rec F

Random - 0.500 14.5 14.5 14.5 0.500 14.5 14.5 14.5

AllFG - 0.500 14.5 100.0 24.9 0.500 14.5 100.0 24.9

BBOCC - Mah 0.752 40.9 69.4 44.5 0.841 61.6 62.3 56.9

BBCPress  Mah 0.849 55.6 68.1 60.7 0.934 79.0 76.8 77.4

kMD ×– 0.808 82.0 63.7 68.5 0.945 93.6 90.0 91.6

Ew-RSplit × - 0.843 41.1 78.0 52.1 0.911 55.9 77.2 63.6

× - 0.862 45.0 75.9 54.5 0.950 66.0 83.9 73.1

Ew-HRbc × Mah 0.896 59.1 71.5 63.6 0.971 76.1 85.0 79.9

G(∞,) 0.896 58.9 71.7 63.5 0.971 76.3 84.9 79.9

Ew-SRbc x Mah 0.799 37.1 73.3 47.5 0.901 53.6 78.2 62.5

G(,) 0.958 66.4 85.9 74.6 0.991 85.3 94.9 89.7

G(Auto) 0.937 64.5 83.7 72.5 0.986 83.7 93.2 88.1

Convex - 0.957 67.6 100.0 79.3 0.996 95.4 100.0 97.6

 Dimensions  Dimensions

Best Best

AUC Prc Rec F AUC Prc Rec F

Random - 0.500 14.5 14.5 14.5 0.500 14.5 14.5 14.5

AllFG - 0.500 14.5 100.0 24.9 0.500 14.5 100.0 24.9

BBOCC - Mah 0.942 87.4 75.7 79.9 0.993 94.5 93.8 94.0

BBCPress  Mah 0.983 92.2 89.2 90.2 0.996 96.3 97.0 96.6

kMD ×– 0.983 98.9 96.7 97.8 0.991 99.8 98.1 99.0

Ew-RSplit × - 0.961 77.2 84.7 80.1 0.991 91.8 91.3 91.3

× - 0.986 87.4 91.2 89.0 0.998 96.0 97.6 96.8

Ew-HRbc × Mah 0.985 86.7 90.4 88.3 0.993 91.6 94.2 92.7

G(∞,) 0.984 86.8 90.2 88.2 0.991 91.2 93.3 91.9

Ew-SRbc x Mah 0.966 79.9 85.9 82.1 0.992 91.2 94.2 92.3

G(,) 0.999 98.3 99.4 98.8 0.996 99.9 99.4 99.6

G(Auto) 0.972 90.4 96.5 91.4 0.987 96.1 99.7 96.8

Convex - 1.000 100.0 100.0 100.0 1.000 100.0 100.0 100.0

Table .: Results for Synth data
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Figure .: Effect of parameters on Ew-SRbc (-dimensional Synth data)

results as really encouraging.
However, the results using the Mah distance within Ew-SRbc fall much below those obtained

with the G(α,γ) family. One reason for this behaviour may lie in the fixed degree of fuzziness
allowed by Mah: the standardized scale that this distance provides may not always give the most
suitable fuzziness for use in soft Bregman clustering in general, and Ew-SRbc in particular. The
greater versatility offered by the G(α,γ) distances is thus a valuable property.

It is important to note that the high F score of kMD comes from its elevate precision, which is
particularly high, for instance, in -dimensional datasets; whereas Ew-SRbc tends to favour recall
over precision. Also, we can see how the value of AUC for kMD is lower than for all other methods
except BBOCC. Both phenomena were also observed in the Toy dataset, and the explanation for
the latter is, as already mentioned in Section ..., the lack of an adjustable threshold in the
output of kMD.

At the light of these results, we believe we can assert that Ewocs-based approaches perform
competitively with respect to the state of the art in the minority clustering task, in terms of AUC
and F of the obtained clusterings. Ensemble clustering methods have hence been proven to be
useful for this task.

Moreover, the fact that the Ew-SRbc method is able to outperform all other compared ap-
proaches when using the manually tuned Gaussian-kernel distance, and most of them when using
the automatically tuned one, leads us to believe that, on the one hand, kernel-based distances are a
serious alternative to other similarity measures used in clustering tasks; and that, on the other, the
proposed Rbc algorithm can be successfully employed to construct individual clusterings suitable
for combination within a clustering ensemble.

However, these conclusions require an evaluation of the sensibility to parameter tuning of the
compared approaches. A detailed study of this issue follows below.

Parameter Sensitivity A number of experiments have been performed to assess the relevance
of parameter tuning on the different approaches, in terms of the impact these parameters have in
their performance on the minority clustering task.

Figure . provides two plots of the Best F score as a function of the parameters in Ew-SRbc:
the ensemble size R, the maximum number of clusters in each individual clustering kmax, and the
Gaussian-kernel distance scaling factors α and γ. The plots correspond to the -dimensional subset
of the Synth collection, being the datasets where the difference in performance between approaches
is the largest.

First Subfigure .a plots the curves of F for a fixed distance G(,). It can be seen how
a change in any of the two parameters does influence the F score. However, the difference in
performance is small, and, more importantly, the value stabilizes with increasing values of both R
and kmax. The curves for kmax = 50 and kmax = 100 are only shifted a small offset from each other,
and all curves present an almost flat slope after R = 50. Hence, we believe the tuning of these two
parameters is not an issue of clustering performance but rather of computational burden, and that
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Figure .: Effect of parameters on BBCPress and kMD (-dimensional Synth data)

a value such as that of R = kmax = 100, which we have used in our experiments, will produce good
quality clusterings across a wide range of situations.

However, the plot in Subfigure .b, which shows the curves of F for fixed values of R = kmax =
100, presents a different picture. The scaling parameters of the Gaussian-kernel distance also have
an impact on the F of the clusterings produced by Ew-SRbc, but in this case the values do not
stabilize: the curves for increasing values of α obtain higher F values, but nevertheless the limit
when α → ∞ presents a completely different behaviour. Moreover, the curves for finite α present
a maximum around γ = 10, and lower values of F are obtained at either side of these maxima.
Hence, the score using G(α,γ) distances can exceed significantly that obtained using Mah, but it
can also eventually drop much below.

It is hence clear that, as intuited in Section ..., the selection of the suitable values for
α and γ is a crucial issue when using Ew-SRbc. Nevertheless, the plot in Subfigure .b also
shows how the value of F obtained using the automatically tuned G(Auto) distance provides
an approximation to the optimum. Even if there does exist a gap between the highest achievable
results and those obtained using the unsupervised distance, previous Table . and Figure . have
already shown how this does not prevent them to be higher than those of most other approaches.
We hence believe that G(Auto) can be used to perform the minority clustering task satisfactorily,
even if we must also admit that fine tuning can improve the overall results.

A different behaviour is also observed for the subfamily G(∞,γ), which corresponds to the Ew-
HRbc method. For this particular case, the curve stabilizes for low values of γ, and hence one may
obtain a simple rule of thumb to tune the distance for this method. Nevertheless, the value of F
is lower than that achievable using Ew-SRbc, and also lower than that obtained using G(Auto).

Regarding non-Ewocs-based approaches, Figure . contains plots of the Best F score as
a function of the number of clusters k of BBCPress, and as a function of the starting s0 and
minimum required smin cluster sizes of kMD, for a fixed number of detection iterations R = 100.
For reference, the plots also include the value obtained by Ew-SRbc/× using G(Auto).

Subfigure .a shows the impact of parameter k, the number of clusters, on the F score of
BBCPress. In addition to the fact that the maximum achievable value is still below that obtained
by Ew-SRbc, this maximum happens only for a precise value of k, at whose sides the scores fall
behind. Given that Gupta and Ghosh () do not provide any hint about the determination of a
suitable value for k (and use instead for their evaluation the actual number classes in the dataset),
we believe the tuning of this parameter can become a problematic issue when using the BBCPress
method, and remains one more of its drawbacks.

Similarly, Subfigure .b contains the F curves obtained by kMD for different values of the
starting s0 and minimum required smin cluster sizes. In this case, the method seems robust to the
choice of s0, but presents a maximum for one single value of smax, slightly below the results obtained
by Ew-SRbc. Again, the results drop at either side of the maximum, and hence careful parameter
tuning may be required. However, Ando () does not explain how this may be achieved, and
the issue, once more, remains one which may become problematic.

For space reasons, the name is shown shortened as EW-G(Auto).
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Best Size Dist

Prc Rec F Prc Rec F Prc Rec F

Random - 14.5 14.5 14.5 - - - - - -

AllFG - 14.5 100.0 24.9 - - - - - -

BBOCC - Mah 40.9 69.4 44.5 35.4 35.4 35.4 - - -

BBCPress  Mah 55.6 68.1 60.7 58.3 58.3 58.3 - - -

kMD ×– 82.0 63.7 68.5 - - - - - -

Ew-RSplit × - 41.1 78.0 52.1 41.2 41.2 41.2 29.1 85.9 42.2

× - 45.0 75.9 54.5 48.0 48.0 48.0 30.2 87.9 43.8

Ew-HRbc × Mah 59.1 71.5 63.6 61.2 61.2 61.2 37.8 86.3 51.0

G(∞,) 58.9 71.7 63.5 61.2 61.3 61.2 37.9 86.4 51.1

Ew-SRbc x Mah 37.1 73.3 47.5 38.1 38.1 38.1 25.0 82.6 37.2

G(,) 66.4 85.9 74.6 71.2 71.2 71.2 45.2 97.4 60.6

G(Auto) 64.5 83.7 72.5 68.7 68.7 68.7 56.6 81.8 63.4

Convex - 67.6 100.0 79.3 - - - - - -

nGauss+Best nGauss+Var Gauss

Prc Rec F Prc Rec F Prc Rec F

Ew-RSplit × - 39.5 77.7 50.3 39.2 58.7 35.9 34.2 81.2 45.8

× - 42.0 78.5 51.8 25.6 89.3 32.2 35.7 85.2 46.8

Ew-HRbc × Mah 56.0 72.2 60.5 41.2 80.0 45.6 38.5 89.9 48.7

G(∞,) 56.6 72.0 60.4 39.6 81.6 45.5 38.4 89.7 48.5

Ew-SRbc x Mah 35.7 74.1 46.3 24.3 88.8 31.7 32.8 76.1 43.1

G(,) 62.0 88.0 70.9 50.3 94.2 64.2 49.3 96.4 64.6

G(Auto) 58.5 87.2 68.7 63.7 60.1 51.4 51.6 90.2 63.4

Table .: Results for -dimensional Synth data

From the outcome of our experiments, we believe that, as usual in clustering tasks, parameter
tuning is crucial to the performance of the compared minority clustering methods. In particular,
the number of clusters k of BBCPress, the minimum required cluster size smin of kMD, and the
α and γ Gaussian-kernel scaling parameters used within Ew-SRbc may have a dramatic impact of
the F scores of the produced clusterings.

However, whereas their respective authors proposed no method to automate (or even guide) the
tuning of the parameters of BBCPress or kMD, the automatic tuning procedure of the proposed
G(Auto) distance has empirically been proved to be a useful tool for Ew-SRbc, and one which
provides a solution to the tuning of the scaling parameters of a Gaussian-kernel distance in the task
of minority clustering. Moreover, the results obtained using Ew-SRbc and G(Auto) are better
than those of the compared approaches in terms of AUC and F.

We believe the existence of such a tool is a significant difference with respect to other approaches,
and that this makes Ew-SRbc suitable for completely unsupervised minority clustering tasks.

Threshold determination The last of the aspects in the Ewocs-based approaches which re-
mains open to study is that of the criteria for threshold determination. Table . contains the
values of precision, recall and F obtained when applying the different criteria to the output of
each minority clustering method. Again, for brevity the table contains only the results across the
-dimensional datasets of Synth.

Concerning the statistical significance of the differences, Figure . contains the graphical
representation of the outcome of Bergmann-Hommel tests on precision, recall and F across all
(not only -dimensional) datasets in Synth.

There is a number of trends that can be observed in the results. First of all, there is still a gap
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Figure .: Bergmann-Hommel tests for the compared criteria
(Ew-SRbc/× using G(,) on Synth data)

between the maximum achievable F score (criterion Best) and that obtained using the different
criteria. Second, there is another gap between the F scores of the criteria that contain some
element of supervision (Size and nGauss+Best) and those of the completely unsupervised ones
(Dist, nGauss+Var and Gauss). These differences are present in a consistent way across all
the Ewocs-based approaches.

Criterion Size is hence the one to obtain results closest to Best in terms of F. It is also the
one to obtain the best figures for precision, but at the cost of being the one which gives the least
recall. All differences are statistically significant.

However, the upper bound achievable using Gaussian modelling of the scores, that of nGauss+
Best, lies quite close to the output of Size. For the Ew-SRbc/× method using G(,)
on -dimensional data, the difference is only a .% in terms of F. nGauss+Best also shifts
the bias towards recall instead of precision, which is much closer to the region where the optimal
threshold (that of Best) lies.

Finally, regarding the three unsupervised criteria, nGauss+Var seems the one which comes
closest in terms of performance to nGauss+Best. Even if this does not hold for the particular
subset of -dimensional data, overall nGauss+Var gives higher precision and lower recall than
nGauss+Best. These differences are not statistically significant, but overall the one in F score
is.

The remaining criteria Dist and Gauss show a strong bias for recall, particularly the latter,
and fall much below nGauss+Best in precision. They perform worse in terms of F than the other
proposed approaches. However, from the statistical point of view, the difference is not significant
between them and nGauss+Var.

Taking these and all obtained results into account, we believe we can affirm that, even if elements
of supervision improve the results in the task of minority clustering, the proposed Ewocs algorithm
allows us to obtain competitive results using an unsupervised approach: the results obtained by
Ew-SRbc/× using G(Auto) and one of Dist, nGauss+Var or Gauss are above those
obtained by other supervised approaches, such as BBOCC or BBCPress.

Regarding the elements of supervision introduced by each one of the criteria, it is remarkable
that the use of nGauss+Best, which would require an a posteriori selection of the number of
background Gaussian components from a small number of them, suffices for Ew-SRbc/×
using G(Auto) to outperform all other approaches, including kMD, which requires careful tuning
of three parameters R, s0, smin.

Even if it is true that manual determination of the most suitable G(α,γ) distance, or more
informed (i.e., supervised) threshold detection criteria, such as Size or Best, allow further increases
in the F scores obtained by Ew-SRbc, we believe that the fact that, using no or little supervision,
Ew-SRbc outperforms supervised minority clustering approaches in the state of the art is an

As observed in the previous section, the Ew-SRbc method is robust to the tuning of R and kmax, so we can
consider it unsupervised.
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excellent result, and one which proves the validity of the whole minority clustering framework
introduced by the Ewocs algorithm.

. Conclusions

In this chapter, we have considered the problem of minority clustering, contrasting it with regular
all-in clustering. We have identified a key limitation of existing minority clustering algorithms—
namely, we have seen how the approaches proposed so far for minority clustering are supervised, in
the sense that they require the number and distribution of the foreground clusters, as well as the
background distribution, as input.

The fact that, in supervised learning and all-in clustering tasks, combination methods have been
successfully applied to obtain distribution-free learners, even from the output of weak individual
algorithms, has led us to make a three-fold proposal.

First, we have presented a novel ensemble minority clustering algorithm, Ewocs, suitable for
weak clustering combination. The properties of Ewocs have been theoretically proved under a set
of weak constraints. Second, we have presented two weak clustering algorithms: one, Rbc, based on
Bregman divergences; and another, RSplit, an extension of a previously presented random splitting
one. Third, we have proposed an unsupervised procedure to determine the scaling parameters for
a Gaussian kernel, used within a minority clustering algorithm.

We have implemented a number of approaches built from the proposed components, and eval-
uated them on a collection of datasets, for a comparison to other minority clustering methods in
the state of the art. The results of the evaluation show how approaches based on Ewocs, and
especially the one built using SRbc as weak clustering algorithm and G(Auto) as object diver-
gence function, are competitive with respect to—and even outperform—other minority clustering
approaches in the state of the art, in terms of F and AUC measures of the obtained clusterings.

The completely unsupervised minority clustering approach, built from Ewocs, SRbc,G(Auto)
and an unsupervised threshold detection criterion (one of Dist, nGauss+Var or Gauss) already
outperforms other supervised minority clustering approaches. With only the minor supervision
introduced by replacing the threshold detection by nGauss+Best, the resulting approach outper-
forms all other considered systems, including the much more supervised kMD.

At the light of the results, we believe that the Ewocs algorithm is an effective method for
ensemble minority clustering, and that it allows the building of competitive and unsupervised
approaches to the task. It is appealing because of its simplicity, flexibility and theoretical well-
foundedness, and can hence be taken into account for clustering on a diversity of domains, where
unsupervised minority clustering tasks may be the rule and not the exception.

This new unsupervised minority clustering algorithm represents a cornerstone in the work of this
thesis. Its development has allowed us, as it will be shown in next chapter, to develop a completely
new approach to pattern learning, based in a joint combination with minority clustering.





6
Joint Learning

The gross and net result of it is that people who spent most
of their natural lives riding iron bicycles over the rocky
roadsteads of this parish get their personalities mixed up
with the personalities of their bicycle as a result of the
interchanging of the atoms of each of them and you would be
surprised at the number of people in these parts who are
nearly half people and half bicycles. . . when a man lets
things go so far that he is more than half a bicycle, you will
not see him so much because he spends a lot of his time
leaning with one elbow on walls or standing propped by one
foot at kerbstones.

Flann O’Brien
The Third Policeman

This chapter presents our proposal for joint combination of cluster-
ing and IE pattern learning. The presented approach restates relation
detection as a minority clustering problem, and uses the Ewocs al-
gorithm presented in the previous chapter to solve it.
Section . explains this transformation from relation detection to
minority detection, and emphasizes why our approach should be able
to overcome the limitations of other solutions. Section . describes
the different components that are incorporated into the basic Ewocs
algorithm to solve this particular problem. An empirical evaluation on
the ACE relation mention detection task is presented in Section ..
Last, Section . draws conclusions of our work.

Parts of this work are also described in (Gonzàlez and Turmo,
).

M inority clustering algorithms, such as the one presented in the previous chapter,
open the door to unsupervised exploration of noisy datasets—and to the discovery of
dense regions within them. In particular, in this chapter we will use minority clustering

to our benefit, so as to implement a joint clustering and pattern learning approach. The goal is
to avoid the limitations of combinations including document clustering with respect to capturing
generic relations (see Section ..).
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. Joint Clustering and Pattern Learning

One alternative to circumvent the problems arising from the usage of document clustering for
pattern learning, as proposed in Chapter , is to skip the document clustering step altogether, and
perform clustering directly on entity pair contexts. This is the direction taken, for instance, by
Hasegawa et al. (), Chen et al. () or Eichler et al. () (see Section ..).

Similarly to these works, the starting step for the pattern learning approach we propose in this
chapter is to gather, across a document collection, all pairs of entities which co-occur in the same
sentence, and to generate a representation for each linguistic context in which these entity pairs
occur. After this process, the obtained data will contain two types of objects:

• The majority of entity pairs will not be linked by any particular relation. The contexts which
join them will be disparate, and scattered across the whole space of linguistic features.

• On the contrary, the entity pairs which are linked by some relation will often be grouped
together in the linguistic feature space: the construction expressing the relation will be shared
with other similarly related pairs, and hence the pairs which express the same relation using
the same construction will form dense regions in the feature space—i.e., clusters.

In this setting, applying a minority clustering algorithm will hopefully detect the groups of related
entity pairs as foreground clusters, and discard the non-related ones as background noise.

We believe this scheme is able to avoid a number of drawbacks present in other approaches:

• Limitation to domain-specific relations: As mentioned, one of our main motivations
for discarding the approaches which combined document clustering and pattern learning was
their bias towards domain-specific relations, which prevented them from detecting those of
a more generic nature. In the proposed joint scheme, the source document of contexts is
disregarded—allowing the formation of clusters of entities linked by both general and domain-
specific relations.

• Computational cost: The unsupervised document clustering methods proposed in Chap-
ter , and used within the sequential and collaborative methods, presents an additional draw-
back: that of its computational complexity. Due to the use of hierarchical clustering algo-
rithms (Geo, IT, Hi), or to the construction of the document co-association matrix (Minor,
Major), the space and time requirements of the proposed approaches grow quadratically with
the number of documents. This limits the applicability of the approaches to huge document
collections—such as those obtained from web data.

On the contrary, the runtime of the Ewocs algorithm increases only linearly with the size of
its input, and is thus able to cope with—and benefit from—such large datasets.

• No model generation: Some clustering-based approaches to unsupervised relation extrac-
tion (e.g., Hasegawa et al., ; Shinyama and Sekine, ) do not perform a generalization
step, nor provide any detection model which may be applied to find relations in new data.
The acquired knowledge is thus limited to the relations existing between entities in the used
collection.

As mentioned in Section .., the Ewocs algorithm allows obtaining minority clustering
models so as to classify new instances as belonging to the background or to one of the fore-
ground clusters. This model can be used as an effective—albeit complex and not necessarily
interpretable—pattern set for relation detection.

• Limited flexibility: Other systems (e.g., Hassan et al., ; Rozenfeld and Feldman, )
are tailored for a specific and fixed pattern format, usually word form, POS and lemma
sequences, and hence it is impossible to incorporate new sources of linguistic information—
such as chunks, semantics. . .

In the case of Ewocs, the fact that a number of soft clustering algorithms may be plugged
as inner clustering families, and the overall procedure will not depend on the object repre-
sentation used by them, opens the door to the experimentation with more complex feature
sets.
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(a) Relation detection as a binary decision problem

(b) Relation detection using minority clustering

(c) Minority clustering decomposition as scoring and filtering

Figure .: Joint approach for relation detection

Systems built using this approach will hence be able to acquire Ewocs models, usable as detection
patterns for both generic and domain-specific relations, in an unsupervised fashion from potentially
large document collections. Hopefully, such an achievement would place us one step closer to the
goal set in Section ..: that of unsupervised information extraction.

. Our Approach

Our approach is based on reduction of relation detection to a binary decision problem, previously
used for our sequential and collaborative approaches (see Section .). The reduction is depicted
in Figure .a. Also similarly to those approaches, the first step towards determination of the
relatedness of an entity pair is the generation of a binary feature vector, capturing linguistic traits
in their context. However, instead of using a pattern-based decision list, the relatedness of the
pair is determined using a minority clustering model (Figure .b). The model determines whether
new entity pair contexts belong to one of the foreground clusters or to the background, and the
entities are correspondingly classified as related or unrelated. Using the Ewocs minority clustering
algorithm, the classification is split in two different steps: a first scoring one, and a second filtering
one (Figure .c).

The learning of the models starts by gathering all contexts in which entity pairs co-occur in an
unannotated corpus, and generating a feature vector for each one of them. The Ewocs minority
clustering algorithm can then be applied on the obtained context matrix. Following other work (e.g.,
Chen et al., ; Hassan et al., ), we can optionally restrict the entities in the pair to belong
to given types T1 and T2.

The feature generation step is an extension of that presented for the binary feature conjunction
formalism of Section .... However, as the Ewocs algorithm is not affected by the problem
of combinatorial pattern explosion, we have devised a much richer set of feature patterns, and
explored a number of combinations of them. Moreover, in order to work with binary feature
vectors, we have considered a different set of weak clusterers than those proposed in the previous
chapter (see Section .). Last, we have identified some potential sources of bias within the scoring
scheme used by Ewocs, and we propose a number of alternative scoring functions which may help
in avoiding them.

Reproduced from Figure ..
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Structure-based

Distance between the pair is %d words • • • • • • • •
Distance between the pair is %d chunks · · · • • • • •
Left/rightmost entity is of type %t • • • • • • • •

Word-based

Word %d positions before/after the left/rightmost en-
tity. . .
. . . has POS tag %t • • • · · · • •
. . . has lemma %l · • · · · · · ·
. . . can have synset %w · · • · · · · ·

Chunk-based

Chunk %d positions before/after that containing the
left/rightmost entity. . .
. . . has type %t · · · • • • • •
. . . has a head with POS tag %t · · · • • • • •
. . . has a head with lemma %l · · · · • · · •
. . . has a head which can have synset %w · · · · · • · ·

Table .: Feature patterns used by feature sets

Sections .. and .. give details of the feature generation process and of the weak clustering
algorithms used, respectively, and Section .. presents the alternative cluster scoring functions
we have considered.

.. Feature Generation

As mentioned in the introduction of this section, the binary feature formalism we use for our joint
pattern learning approach is the same that was already presented in Section .... Nevertheless,
the features are no longer used to directly construct conjunction-based patterns. Instead, they are
collected into a binary matrix, which is then fed as input to a minority clustering algorithm.

The use of a numerical algorithm, instead of a combinatorial one as frequent-itemset mining,
allows for a larger number of features to be used without efficiency concerns, and we have hence
explored richer feature sets for use within our approach. Table . contains an overview of the
feature patterns used, and which ones are included by each feature set.

Similarly to Section ..., we have used a combination of syntactical and lexical features, at
both the word and chunk level. In addition to the larger number of combinations, the main novelty
here is the use of semantic information, in the form of WordNet synsets.

WordNet is a large lexical database of English, and a de facto standard for semantic representa-
tion within the NLP community. The basic element of semantics in WordNet is the synonym set or
synset, which, following differential semantic theory, identify concepts by means of a set of synonym
words which are all lexicalizations of it—so as to allow a user to distinguish this sense from other
possible senses of the words (Fellbaum, ). Among the different semantic and lexical relations
present in WordNet, the one that has been devoted the most attention is that of hypernymy and
its inverse hyponymy, informally corresponding to the is-a or concept generalization relation. The
noun and verb synsets are organized in a mostly tree-like hierarchy, where specific concepts are
linked by hypernymy links to more general ones.

Even if WordNet has been used for research across virtually all subfields of NLP (Fellbaum,
), the fine-grainedness of its sense distinctions has been often cited “as one of its main problems
for practical applications” (Agirre and López de Lacalle, ). For this reason, a number of works
have tried either to group the synsets in clustering-like fashion (e.g., Peters et al., ; Agirre and
López de Lacalle, ), or to prune the sense hierarchy, effectively disregarding distinctions below
a determined tree cut line (e.g., Li and Abe, ; Clark and Weir, ).
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For our purposes we have adapted the method of Li and Abe (), which regards the possible
pruned trees as probabilistic models to generate the distribution of senses observed across a dataset.
The selection of the best model—and tree cut—is made according to the minimum description length
principle (Rissanen, ). Even if the method was originally devised to generalize verbal case
frames using any sense thesaurus, it has been used subsequently to prune the WordNet hypernymy
hierarchy (McCarthy, ; Tomuro, ).

In our system, the application of this method requires a preliminary scan of the document
collection, in which the synsets of all nouns and verbs occurring within the context window are
collected. No word sense disambiguation is performed, so all synsets for every word are considered
with uniform weighting. At the end of the scan, the optimal generalization level for the WordNet
tree is found for each one of the pattern positions, following Li and Abe. In the second pass over
the document collection, the binary features are instantiated, and, for each word, the senses and
hypernyms that remain after position-dependent pruning are considered.

Similarly to previous approaches, thresholds over inter-entity distance and feature frequency
are employed for efficiency. As mentioned in Section .., relations are usually expressed using
short-distance constructions, so pairs of entities further than  tokens away have been removed in
the learning step. Features occurring in less than  contexts have also been discarded.

.. Weak Clustering

The previous chapter presented a number of weak clustering algorithms to be used within the
Ewocs algorithm. However, the fact that the objects generated by the collection scanning process
has the form of binary feature vectors led us to consider additional experimentation with other
methods, more specific to binary data.

In particular, we have considered the incorporation of one probabilistic and one margin-based
clustering algorithm. Next sections, ... and ..., describe these two proposed methods in
detail.

... Probabilistic Clustering

The field of probability theory has often provided well-founded grounds for the development of learn-
ing algorithms. In particular, significant attention has been devoted to the family of graphical mod-
els (Jordan, ), which includes a number of popular methods such as Bayesian networks (Heck-
erman, ), hidden Markov models (Rabiner, ), maximum entropy classifiers (Berger et al.,
) or conditional random fields (Lafferty et al., ). However, the naive Bayes framework—
despite being the simplest possible one—provides methods which frequently match the performance
of more complex algorithms, both probabilistic and non-probabilistic. The good behaviour of naive
Bayes on classification tasks—where more often that not its assumptions do not hold—together
with its simplicity and low computational cost, has fostered its use in a variety of problems, includ-
ing text classification (McCallum and Nigam, ). Zhang (a) provides a theoretical analysis
which tries to shed light on the reasons behind this unexpected success.

For our purposes, we have considered a mixture model of k components, where each component is
a sequence of Bernoulli distributions, one per feature w, combined using the naive Bayes assumption
of conditional independence given the component. Formally, the model has the form:

p(xi ; Θ) =
k

∑
c=1

p(yi = c ; Θ) ⋅ p(xi ∣ yi = c ; Θ)

p(yi = c ; Θ) = αc

p(xi ∣ yi = c ; Θ) =
z

∏
w=1

p(xiw ∣ yi = c ; Θ)

=
z

∏
w=1

(ϑcw)xiw ⋅ (1 − ϑcw)1−xiw

The {αc} and {ϑcw} are the parameters of the model, which, additionally, should accomplish the
restrictions:

k

∑
c=1

αc = 1 ∀c ∈ {1 . . . k},w ∈ {1 . . . z} ∶ 0 ≤ ϑcw ≤ 1

Where positions are expressed as, for instance, two words after the rightmost entity (see Section ...).
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The optimal parameters Θ̂ = (α̂c, ϑ̂cj) for the model are obtained through Maximum a Posteriori
estimation, using the Expectation-Maximization algorithm. As usual, Dirichlet distributions are
used as priors for both the αc and ϑcj , and conditional probabilities are identified with grades of
membership to obtain a soft clustering.

This model family is similar to that of Meilă and Heckerman () for document clustering
(see Section ...), but uses Bernoulli instead of multinomial distributions, the former being more
suitable for binary features. An equivalent model, but with different features, was also used for
unsupervised relation extraction by Banko et al. ()

The only parameter that remains open in the algorithm is the number of clusters k. Similarly
to the previously presented weak clusterers RSplit and Rbc algorithms, the value k is chosen at
random from the range {2 . . . kmax}, for a given kmax. Moreover, no attempt is made to provide a
good starting point for the EM algorithm, and the initial model parameters are chosen at random.

We will refer to this algorithm as Prob.

... Random Support Vector Clustering

Even if naive Bayes methods are able to provide competitive classifiers across a wide spectrum of
tasks, it is known that they are also susceptible to perform poorly in other occasions (Domingos and
Pazzani, ). We thus believe necessary to compare the performance of Prob with an alternative
which does not assume feature independence.

The Rbc algorithm presented in Section .. is one such alternative. However, among the
algorithms in the kernel method family to which it belongs, support vector machines (SVMs) have
been, since its introduction by Vapnik (), one of the most successful ones. SVMs have been
applied on a wide spectrum of ML problems (Wang, ). In particular, they have been used on
NLP tasks such as supervised relation extraction (Zelenko et al., ; Bunescu and Mooney, ;
Zhao and Grishman, ).

Even if support-vector-based clustering methods do exist, such as the ones proposed by Ben-Hur
et al. () and Zhao et al. (), their elevate computational cost makes them unsuitable for
our purposes: i.e., to be used as weak—and thus necessarily cheap—clusterers within the Ewocs
algorithm.

We have thus decided to modify the Rbc algorithm to incorporate SVM machinery. The idea
remains to select a set of seed objects and create clusters centered around those seeds. However,
instead of defining the clusters according to the Bregman divergence between the objects and the
seeds, we shall define them through a SVM. The classifier is trained from the seed set, with each
seed in a class by itself, and then applied to the rest of the dataset, in order to assign every object
to a class. A clustering is obtained by identifying these classes with clusters. We shall name this
method Random Support Vector Clustering (RSvc).

The multi-class SVM framework used is that of Crammer and Singer (), where the SVM
for a dataset X = {x1 . . . xn}, whose objects respectively belong to classes Y = {y1 . . . yn}, is found
by optimizing the functional

T̂ = arg max
T

−1

2

n

∑
i,j=1

k

∑
c=1

K(xi, xj)τicτjc + β
n

∑
i=1

τiyi

subject to the restrictions

∀i ∈ {1 . . . n} ∶
k

∑
c=1

τic = 1 ∀i ∈ {1 . . . n}, c ∈ {1 . . . k} ∶ τic < δ(yi, c)

where δ(x, y) is the usual Kronecker delta function.
For the particular case in which our dataset consists only of the seed set X̂ = {x̂1 . . . x̂k} ⊂ X ,

and for every seed x̂i its class is yi = i, the problem becomes

T̂ = arg max
T

−1

2

k

∑
i,j=1

k

∑
c=1

K(xi, xj)τicτjc + β
k

∑
i=1

τii

This Kronecker delta function is defined as: δ(x, y) = { 1 if x = y
0 otherwise
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subject to

∀i ∈ {1 . . . k} ∶
k

∑
c=1

τic = 1 ∀i, c ∈ {1 . . . k} ∶ τic < δ(i, c)

The obtained multi-class SVM can be used directly to obtain a hard clustering of the data.
However, in order to obtain a soft clustering from the output of the classifier SVM, we have made
a loose adaptation of the method of Platt (). The author therein proposes converting the
output of a regular two-class SVM to a probabilistic output p(c+ ∣ xi)—the conditional probability
of object xi to belong to the positive class c+. The margin M(xi, c+) between xi and the decision
hyperplane is mapped into the [0,1] range by using a sigmoid function

p(c+ ∣ xi) =
1

1 + eA⋅M(xi,c+)+B

The function parameters A and B should be fitted using the training data.
Given that our algorithm is unsupervised and we do not have training data at our disposal,

we have chosen B = 0, which makes the probability symmetric at both sides of the hyperplane.
Moreover, we want the probability to increase with the value of the margin, so A < 0. Introducing
A′ = −A > 0, we can then reexpress the probability as:

p(c+ ∣ xi) =
1

1 + e−A′⋅M(xi,c+)
= e

A′
2 ⋅M(xi,c+)

e
A′
2 ⋅M(xi,c+) + e−A

′
2 ⋅M(xi,c+)

Taking into account that the margin for the negative class is M(xi, c−) = −M(xi, c+), we finally
obtain the expression.

p(c+ ∣ xi) =
e
A′
2 ⋅M(xi,c+)

e
A′
2 ⋅M(xi,c+) + eA

′
2 ⋅M(xi,c−)

which allows a natural generalization to more than two classes as:

p(c ∣ xi) =
e
A′
2 ⋅M(xi,c)

∑kq=1 e
A′
2 ⋅M(xi,q)

The coefficient A′/2 can be integrated into the kernel function—and hence into the margin—as a
scaling parameter, and we can come to our final expression for p(c ∣ xi) as

p(c ∣ xi) =
eM

′
(xi,c)

∑kq=1 e
M ′(xi,q)

By identifying the classes c of the SVM with clusters πc, and conditional probabilities with
grades of membership, we finally obtain the RSvc algorithm, which is presented in Algorithm ..
Even if there is a number of raw approximations in the algorithm, we believe that it may still
remain useful in a weak clustering context, and we have hence incorporated it to our experiments.
In them, we have used a Gaussian kernel, analogous to that proposed in Section ...

Being both based around kernel functions, there is a strong connection between RSvc and Rbc.
In particular, we can prove that

Theorem .
When kmax = 2, Rbc using the Gaussian kernel Kφ(x, y) = α ⋅ e−γ∥x−y∥

2

and RSvc using the
Gaussian kernel K ′

φ(x, y) = 2α ⋅ e−γ∥x−y∥2 = 2Kφ(x, y) are equivalent algorithms.

Proof See Appendix B. ∎

.. Cluster Scoring

In the previous chapter, we derived the Ewocs algorithm from the study of the probability dis-
tribution, for objects xi in a dataset X , of the average scores assigned by clustering functions fr
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Algorithm . Random Support Vector Clustering (RSvc)
Input: A dataset X
Input: A kernel function K
Input: A maximum number of clusters kmax
Output: A (hard or soft) all-in clustering Π of X
: Draw a number of clusters k at random from the range {2 . . . kmax}

k ∈ {2 . . . kmax}

: Select a subset X̂ of k seeds from X

X̂ = {x̂1 . . . x̂k} ⊂ X

: Optimize the SVM functional

T̂ = arg min
T

−1

2

k

∑
i,j=1

k

∑
c=1

K(x̂i, x̂j)τicτjc + β
k

∑
i=1

τii

subject to the constraints

∀i ∈ {1 . . . k} ∶
k

∑
c=1

τiq = 1 ∀i, c ∈ {1 . . . k} ∶ τic < δ(i, c)

: Find the margin of all objects xi with respect to each one of the classes c

M(xi, c) =
k

∑
j=1

τ̂jcK(xi, x̂j)

: If Hard clustering desired then
: Assign each object xi to the cluster πc which gives it the largest margin,

πc = {xi ∈ X ∣ arg max
c

M(xi, c)

: Else
: Find membership grade for each object xi and cluster πc,

grade(xi, πc) =
eM(xi,c)

∑kq=1 e
M(xi,q)

: Return The clustering Π = {π1 . . . πk}

drawn at random from a family F . The fundamental step in the process was the accumulation of
object scores (line  in Algorithm .):

s+i ← s+i + sri = s+i + ∑
πrc∈Πr

grade(xi, πrc) ⋅ size(πrc)

It is interesting to note here that the size of cluster πrc can be regarded as a particular case
of a score of the cluster—related to its confidence—and one can hence wonder if there exist other
scores which will provide different properties to the output of Ewocs. For our experiments on joint
pattern learning, we have considered a number of such scoring functions, with the aim of trying to
correct some biases that we have observed, arising from the use of the raw cluster size.

More specifically we have observed that the pure Ewocs algorithm is subject to two main biases:

Clustering cardinality bias The first one of such biases comes from the fact that, as we are se-
lecting the number of clusters kr in each weak clustering at random from the range {2 . . . kmax},
clusterings with a lower cardinality have a larger influence in the final object score. The reason
is that, on average, clusters in a clustering have size ∣X ∣/kr, and hence, the lower the value of
kr, the larger the contribution of the size(πrc) to the object scores s+i .
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(a) Loose cluster (b) Tight cluster

Figure .: Relationship between cluster density and variance eigenvector decomposition

In order to compensate this bias, we propose here the use of a normalized cluster size, which
takes into account the cardinality of the clustering. However, in some cases (especially with
the Prob algorithm) the number of effective clusters in the output clustering is lower than the
randomly selected kr. For this reason, we have considered the number of non-empty clusters
kNEr , which are those whose size exceeds a certain threshold thNE

kNEr = ∣{πrc ∣ size(πrc) ≥ thNE}∣

The normalized cluster size is then the product of cluster size and the number of non-empty
clusters:

nsize(πrc) = size(πrc) ⋅ kNEr
We have used a value of thNE = 1 for the non-empty threshold in our experiments.

Cluster density bias The second bias we have identified is that related to the differences be-
tween loose and tight clusters. As shown in Figure . for two-dimensional data, even if two
clusters have the same size, one would expect clusters which are loose (a) to have a lesser
influence on object score that those which are tight (b).

In order to quantify this difference between loose and tight clusters, we have used properties
of the variance of the objects in the cluster: loose clusters present larger variances than tight
ones. In particular, if we find the eigenvectors of the covariance matrix, which correspond
to the main directions of variability within the cluster, their corresponding eigenvalues will
provide a magnitude of this variability. We have defined the radius of a cluster to be the sum
of eigenvalues of its covariance matrix.

If we consider the expectation vector e⃗rc and covariance matrix V rc of cluster πrc, whose
entries are:

ercw = ∑xi∈X grade(xi, πrc) ⋅ xiw
∑xi∈X grade(xi, πrc)

V rcww′ = ∑xi∈X grade(xi, πrc) ⋅ (xiw − ercw ) ⋅ (xiw′ − ercw′)
∑xi∈X grade(xi, πrc)

the radius of the cluster is the sum of eigenvalues of this V rc matrix. However, by linear
algebra we know that the sum of eigenvalues of a matrix is equal to its trace and, hence, the
radius can be found as the sum of the feature variances:

radius(πrc) =
z

∑
w=1

V rcww

The formula requires calculation of the diagonal of the covariance matrix only, and no eigen-
vector decomposition.

By combining the two heuristics, we have devised a set of five different cluster scoring functions
for our experiments:
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Siz The original size function:

scoreSiz(πrc) = size(πrc)

NSiz The normalized size function:

scoreNSiz(πrc) = nsize(πrc)

Rad The inverse of the cluster radius:

scoreRad(πrc) = 1/radius(πrc)

Dns The density of the cluster, as a combination of size and radius:

scoreDns(πrc) = size(πrc)/radius(πrc)

NDns The normalized density of the cluster, as a combination of normalized size and radius:

scoreNDns(πrc) = nsize(πrc)/radius(πrc)

. Evaluation

To evaluate the validity of our approach, we have applied a number of learning methods, built from
combinations of the proposed components, on the same relation detection task in which we had
evaluated our sequential and collaborative approaches (Section .).

Section .. reviews the data used for the task, and Section .. discusses the evaluation
protocol. Section .. then contains a thorough presentation and discussion of the obtained results.
Final Section .. examines the model obtained for one particular case study—so as to give an
intuition of the nature of the obtained knowledge.

.. Data

Similarly to our previous evaluation, we have used the document collection coming English training
data provided by the organizers of the ACE-, ACE- and ACE- evaluations. The
documents come from sources of different nature: Table . contains an overview of the size, in
terms of documents and words, of these different parts of the corpus. The table also contains
the short two-letter codes which are used in the official distribution to identify the source-specific
subcollection, and which we will also employ in our discussion. As mentioned previously, ,
entity mentions and , relation mentions between them are annotated within them. We refer
back to Section .. for a more detailed description.

Nevertheless, we have already mentioned how the proposed joint approach is able to benefit from
large document collections. For this reason, in this evaluation we have also used an unannotated
document set whose size is almost two orders of magnitude larger than ACE. More specifically, we
have used the year  subset of the Associated Press (APW) section of the AQUAINT Corpus.
The considered data set contains , documents and ,, words from newswire data.

Being unannotated, an entity mention recognition process was required. To this end, the BIOS
suite was used. In particular, a recognition model for the first level of the ACE entity type
hierarchy was trained (see Appendix C), using the ACE data itself. Applying the obtained model
on the APW corpus, a total of ,, entities were automatically recognized.

Clusters with a larger radius should be less rewarded than those with a smaller one. Inverting the radius is one
way to achieve this effect.

Reproduced from Table ..
The code for telephone speech has been changed from <cts> to <ts> for consistency.
Freely available from http://www.surdeanu.name/mihai/bios/.

http://www.surdeanu.name/mihai/bios/
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Docs. Words Docs. Words

<bn> Broadcast news 147 38,298 220 69,547
<nw> Newswire 105 67,100 223 101,109
<ts> Telephone speech - - 8 14,937

<all> TOTAL 252 105,398 451 185,593

 TOTAL

Docs. Words Docs. Words

<bc> Broadcast conversation 60 46,587 60 46,587
<bn> Broadcast news 226 62,820 593 170,665
<nw> Newswire 106 54,766 434 222,975
<ts> Telephone speech 39 48,901 47 63,838
<un> Usenet groups 49 42,084 49 42,084
<wl> Weblogs 119 42,316 119 42,316

<all> TOTAL 599 297,474 1,302 588,465

Table .: ACE subcollection sizes

Fac-Gpe Gpe-Org Org-Per Fac-Loc Gpe-Per Org-Veh
Fac-Per Gpe-Veh Per-Veh Gpe-Loc Loc-Per

Table .: Evaluated entity type pairs

.. Protocol

In order to assess the performance of our Ewocs-based approach, we have implemented the method
of Hassan et al. (), an unsupervised pattern acquisition approach for relation detection. As
presented in Section .., the method finds sequence-based patterns from the distribution of POS
n-grams on an input corpus. The confidence of these patterns is then estimated from that of the
extracted entity pairs—and vice-versa—using a mutual reinforcement algorithm. The fact that
the algorithm obtains patterns which can later be applied on new documents makes it particularly
suitable for comparison with our approaches. Being n-gram based, we will henceforth refer to this
method as Grams.

Given that the distance between the candidate entities is a critical indicator of relatedness, we
have also included, as a baseline, a system which determines two entities to be related if and only
if their distance in tokens is lower than a certain threshold. For each entity type pair, the selected
threshold is that giving the best F over the test data—so the results can be regarded as the upper
bound achievable by such an approach. We will use the name Base to refer to this baseline.

Together with these two baselines, we have considered Ewocs-based approaches using the Prob,
Rbc and RSvc algorithms as weak clusterers. We have used a default value kmax = 100 thorough
all the evaluation, but other values in the range {2 . . .100} were tried. Within these algorithms, we
have explored the use of all feature sets presented in Section .. to extract linguistic traits from
the entity contexts. A Gaussian kernel Kφ(x, y) = 0.1 ⋅e−0.1∥x−y∥2 and the Best and Dist threshold
selection criteria (see Sections .. and ..) have been used.

We have also mimicked the evaluation protocol proposed by Hassan et al. (). In particular,
we have considered  entity type pairs among the most frequently annotated as related in the
ACE corpus—including the two type pairs, Gpe-Per and Org-Per, used by Hassan et al. in
their evaluation—and performed the pattern learning and evaluation process for each one of them
separately. The selected types are those listed in Table ..

For our experiments, the AQUAINT collection has been used to perform the learning process,
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and the obtained patterns have then been evaluated by their extraction performance on the ACE
documents. The previously defined metrics of precision, recall and F have been used to this end
(see Section ..).

Additionally, in order to compare the performance of systems across different entity type pairs—
where commensurability cannot be assumed—we have considered relative performance metrics with
respect to a reference system (similar to those proposed in Section ..). For each pair, the
precision, recall and F values of each system are divided by those of the reference one, and the
means and standard deviations on these ratios are reported. However, even if relative performance
ratios are informative, they are not totally sound from a statistical point of view. In order to
correctly assess the significance of the results, Bergmann and Hommel hypothesis tests have been
used, as usual.

For Ewocs-based approaches, five runs were performed for each combination of entity type pair,
algorithm and feature set. The presented figures are the average of the results obtained across all
runs.

.. Results

The performed evaluation compares a number of different aspects of the overall process of pattern
learning. In order to organize the exposition of results, the following sections deal each with a
single one of the involved components, starting with the cluster scoring function (Section ...)
and following with the feature set, the weak clustering algorithm and the threshold detection
criterion (Sections ... to ..., respectively). Section ... makes a brief discussion of
the influence of the parameter kmax in the obtained results, before the last two sections ...
and ... proceed to deal with the variations in performance across the different subcollections in
the ACE corpus and the computational requirements—in terms of runtime—of the built systems.

... Cluster Scoring

Figure . contains histograms for the performance—relative precision, recall and F with respect
to Siz—of the Ewocs-based approaches using the different clustering scoring functions. All entity
type pairs and feature sets are included in the comparison. In order to evaluate the performance of
the scoring and threshold detection stages isolatedly, the results in this section—and the following
ones, up to ...—are those obtained using the threshold giving the Best F value.

The histograms depict both the averages and the standard deviation of the values, using a
logarithmic scale. Plots (a) to (c) contain the data for each one of the weak clustering algorithms,
whereas plot (d) contains the aggregated information for all of them. Figure . contains the
outcome of the corresponding Bergmann-Hommel hypothesis tests on the F metric.

Overall, the results confirm the utility of the clustering-cardinality normalization but, on the
contrary, raise doubts about the suitability of the incorporation of cluster radius into the score.
The hypothesis tests show how, globally and for all but the Prob algorithm, function NSiz obtains
the best results, whereas Dns and NDns are both worse ranked than their respective radius-less
counterparts Siz and NSiz—with function Rad, which does not include cluster-size information,
achieving the lowest F values in all cases.

Delving more into details, the plots also bring into relief the high variance of the results which
use radius information. In particular, those for Rad present a standard deviation of more than
20%. Together with the significant decrease in average F with respect to Siz, and the fact that
the hypothesis tests always rank Rad worse, with a significant difference within all but the Rbc
algorithm, these values are an indicator that cluster size information is essential to the Ewocs
algorithm—in addition to being the grounds for its theoretical properties.

The variance of the results of Dns and NDns is lower than that of Rad, but, as mentioned, the
values remain lower than by using (unnormalized or normalized) cluster size alone. Only under the
Prob algorithm Dns is better than Siz, and NDns is better than NSiz—placing the former as the
best choice for this algorithm—but without statistical significance.

The overall comparison is thus clear, and points to NSiz as the best cluster scoring function—
with all differences between methods being significant. For this reason, unless otherwise stated,
further discussion in this section will consider the results obtained with this function.
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(b) Rbc algorithm
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(c) RSvc algorithm
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Figure .: Performance histograms, relative to Siz, for the compared clustering scoring functions
(across all pairs and features, Best threshold)

5 4 3 2 1

Rad

Siz

NSiz

Dns

NDns

(a) Prob algorithm

5 4 3 2 1

Rad

Dns

Siz

NDns

NSiz

(b) Rbc algorithm

5 4 3 2 1

Rad

Dns

Siz

NDns

NSiz

(c) RSvc algorithm

5 4 3 2 1

Rad

Dns

Siz

NDns

NSiz

(d) Overall

Figure .: Bergmann-Hommel tests on F for the compared clustering scoring functions
(across all pairs and features, Best threshold)
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(a) Prob algorithm
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(b) Rbc algorithm
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Figure .: Performance histograms, relative to w:t, for the compared feature sets
(across all pairs, NSiz function, Best threshold)

... Feature Set

Figure . contains a new set of logarithmic histograms, which depict the performance of Ewocs-
based approaches using the different feature sets, relative to that obtained with the simplest one,
w:t. Figure . graphically presents the results of the corresponding F Bergmann-Hommel hy-
pothesis tests.

Overall, the evaluation points to the two combined feature sets, w:t+c:t and w:t+c:tl, as the
best choices in terms of F score, and suggest the failure of the procedure proposed to incorporate
semantic information into c:tw and, especially, w:tw. Besides, the results bring up again the lack
of correspondence between feature set extension and performance increase in unsupervised learning
problems.

To be more specific, among the word-only feature sets, using any algorithm the option which
achieves the best F results is the simplest w:t set, which includes only the POS-tag information.
The inclusion of lemmas w:tl causes a slight decrease in all cases; whereas the case of w:tw is clear:
it is systematically ranked as the worst feature set by the hypothesis tests in all cases—with an
statistically significant difference under the RSvc algorithm and in the overall comparison.

This phenomenon—namely, the decrease of system performance caused by the incorporation of
more features—has been identified as characteristic of unsupervised learning settings in previous
chapters. In this case, the addition of the lemmas, and particularly the senses, of all words in
the entity pair contexts produces an explosion of the number of features. This can be observed
in Table ., which contains the average number of features—across all entity pairs, and after
the generation and frequency pruning steps—obtained for each one of the used feature sets. The
figures there confirm an explosion: the values for w:tl and w:tw are the highest among all sets, with
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Figure .: Bergmann-Hommel tests on F for the compared feature sets
(across all pairs, NSiz function, Best threshold)

w:t 784.9 c:t 1029.9 w:t+c:t 1808.7
w:tl 19362.1 c:tl 18047.5 w:t+c:tl 18989.2
w:tw 25123.0 c:tw 11551.0

Table .: Average number of features (after generation and frequency pruning) for each
compared feature set

over 19,000 and 25,000 features, respectively. In particular, the large number of features of w:tw,
together with its poor performance, arises questions about the suitability of the WordNet-pruning
method of Li and Abe () for this purpose.

Among chunk-based feature sets, there is not much difference between c:t and c:tl, even
though the inclusion of chunk head lemmas produces a large increase in the number of features.
In general, both feature sets generate patterns with higher precision and lower recall than those
of w:t, being overall ranked worse in terms of F by the Bergmann-Hommel tests, when using
Rbc and RSvc. The tendency is reversed under Prob, but neither in this nor in the other two
algorithms significant differences are found. Regarding c:tw, in this set the WordNet-pruning
strategy is successful in controlling the number of features, as only 11,500 are used during the
minority clustering process—much less than the 18,000 used with c:tl. The hypothesis tests deem
its results comparable to those of c:t and c:tl: no significant differences are found with respect
to the other two chunk-based sets, nor with the reference w:t.
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Base Grams Prob Rbc RSvc

Prc Rec F Prc Rec F Prc Rec F Prc Rec F Prc Rec F

Fac-Gpe 61.1 70.6 65.5 67.6 56.8 61.7 71.9 68.5 70.2 65.5 77.0 70.7 64.6 78.8 71.0

Fac-Loc 58.0 68.9 63.0 64.7 29.7 40.7 53.3 80.4 64.1 61.7 66.2 63.8 61.6 66.2 63.8

Fac-Per 36.8 58.0 45.0 51.0 22.9 31.6 44.7 53.2 48.4 38.2 59.1 46.4 37.8 59.5 46.2

Gpe-Loc 57.2 74.5 64.7 67.8 58.6 62.8 69.4 65.6 67.5 61.6 71.9 66.3 61.4 72.0 66.3

Gpe-Org 60.1 69.1 64.3 68.3 73.8 70.9 65.5 78.5 71.3 58.6 77.8 66.8 61.8 73.6 66.9

Gpe-Per 61.0 55.1 57.9 55.1 62.6 58.6 69.0 55.5 61.5 64.7 58.0 61.2 63.8 59.0 61.3

Gpe-Veh 57.1 63.1 59.9 71.1 50.6 59.1 63.5 70.5 66.8 63.9 69.8 66.7 65.1 69.3 67.1

Loc-Per 34.1 54.7 42.0 47.9 25.7 33.4 37.2 58.6 45.5 37.9 49.1 42.8 38.2 48.5 42.7

Org-Per 57.6 58.1 57.9 52.1 71.4 60.2 67.1 60.3 63.5 56.5 70.0 62.5 56.5 71.5 63.1

Org-Veh 67.7 66.3 67.0 91.1 50.5 65.0 70.1 70.3 70.2 78.2 65.3 71.2 78.7 64.6 70.9

Per-Veh 32.7 57.8 41.8 59.1 24.5 34.7 60.3 37.5 46.1 36.1 57.3 44.3 36.6 56.5 44.4

Table .: Relation detection results across the different entity type pairs
(NSiz function, w:t+c:t features, Best threshold)

Therefore, the two combined feature sets are those which, as mentioned, occupy the high end of
all Bergmann-Hommel tests. Sets w:t+c:t and w:t+c:tl obtain the best results. Moreover, they
seem rather robust: their results present a lower variance than those of any other set but w:tl.
The results for w:t+c:t are slightly better than those with chunk head lemma information, and
it is ranked the best in the overall comparison. Being also the simplest of the two, its use will be
assumed in the remaining result analyses unless otherwise stated.

The results in this section suggest that both word- and chunk-level information are useful to the
task of relation detection, and that the Ewocs algorithm is able to benefit from them. However,
it remains necessary to find ways to avoid feature explosion, which degrades the performance of
the approaches. The problem is not unique to Ewocs, but known to be common to most other
unsupervised learning algorithms (for further discussion, see for instance Kim et al., ; Dy and
Brodley, ).

It is also interesting to note how the Prob algorithm seems to be able to benefit from more
complex feature sets—in spite of being based on a naive Bayes model, whose performance might
have been damaged by the increasing lack of independence coming with feature set growth.

... Weak Clustering

The histograms and hypothesis tests shown in Figures . and ., respectively, contain the results
obtained by Ewocs using the three different algorithms as inner weak clusterers. In the histograms,
the performance is plotted relative to that of the baseline distance-based method Base.

As seen in the histogram and confirmed by the tests, all Ewocs-based methods obtain higher
precision and recall than Base, and hence systematically achieve better F values. The strict POS-
sequence formalism used by Grams leads it to the highest precision scores, but damages its recall
and makes it score a low F value, even lower than that of the baseline.

The differences in terms of precision, recall and F between Prob and Base are deemed signif-
icant despite the reduced number of entity pairs on which the evaluation is performed. Regarding
Grams, it is significantly outperformed in terms of recall and F by all Ewocs systems, and the
advantage it obtains with respect to precision is small and not significant with respect to Prob.

In the comparison among Ewocs methods, it is thus Prob which sets himself as the best
option, obtaining both better precision and recall than their kernel-based counterparts. Lack of
feature independence does hence not seem to damage the performance of the naive-Bayes-based
method for the task. The relative merits of Rbc and RSvc are quite similar: even if RSvc obtains
better precision results, they are deemed equivalent by the Bergmann-Hommel tests in terms of
recall, and the overall difference of F is small and non-significant.

We believe these are excellent results, which state the validity of our joint clustering and pattern
learning combination strategy, and in particular of the Ewocs-Prob approach.
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Figure .: Performance histograms, relative to Base, for the compared approaches
(across all pairs, NSiz function, w:t+c:t feature set, Best threshold)
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Figure .: Bergmann-Hommel tests on F for the compared approaches
(across all pairs, NSiz function, w:t features, Best threshold)

For reference, Table . contains the detailed scores of each one of the proposed approaches
for the different entity type pairs. The values therein confirm the conclusions drawn from the
histograms and hypothesis tests: the Ewocs-based approaches outperform Grams on all pairs,
and Base on most of them—with Prob in turn outperforming Rbc and RSvc. The gap in terms
of F between Prob and Grams is often considerable: 8.5% for Fac-Gpe, 13.4% for Fac-Loc,
16.8% for Fac-Per. . .

Regarding the precision-recall trade-off, Grams markedly favours the former, whereas for the
other approaches the results are more balanced or, occasionally, shifted towards the latter.

POS-only patterns One question that is left open by the previous results is whether the dif-
ference in performance between Grams and the Ewocs-based approaches comes from the use of
the minority clustering framework per se; or whether, on the contrary, it is only the fact that it is
possible to incorporate additional information into the patterns—such as chunk head POS-tags and
lemmas—which boosts their results. To find an answer, we have compared the results of Grams
with those of Prob, Rbc and RSvc using the w:t, which includes only word POS-tags, similarly
to Grams patterns.

Table . contains the results obtained by the Ewocs-based approaches under these condi-
tions, compared to those of Grams. Even if the results are slightly lower than those obtained
with w:t+c:t, in most cases the comparison is still favorable for the Ewocs-based approaches,
particularly for Prob. The performance of Rbc and RSvc occasionally falls below that of Grams
(Gpe-Org, Org-Per), but Prob obtains better F values across all pairs.

The Bergmann-Hommel test on the F scores, shown in Figure ., confirms this behaviour
and assesses the significance of the difference between Prob and Grams. It is thus clear that the
improvement of the results over the Grams baseline is not only caused by the enrichment of the
patterns with additional features, but also by the joint detection-as-minority-clustering approach
we have adopted—and which has allowed the use of the Ewocs algorithm.

... Threshold Detection

So as to evaluate the last remaining component, that of threshold detection, Table . contains
the results obtained, for each one of the entity pair types, by the Ewocs-based approaches, using
the Dist and Best threshold detection methods. The results for baseline method Grams are
replicated from Table . for ease of comparison.

As seen in the table, the goodness of the threshold determined by Dist varies across the different
entity type pairs and methods. Some of them allow scores close to the Best achivable (e.g., Org-
Per), whereas others cause a considerable loss in the F score of the output (e.g., Fac-Gpe).
Overall, the thresholds detected by Dist from the output of the Prob algorithm are tighter to
Best than those coming from Rbc and RSvc.

It is interesting to note that the F values obtained by Prob using the Dist criterion are higher
than the upper bound value (Best) achievable by the Grams approach in all but the Gpe-Org
pair, in which the latter obtains a small favourable gap. Using Rbc and RSvc, the obtained values
also usually exceed those of Grams, but there are more pairs for which the behaviour is reversed—
in most of them because the threshold is far from the Best one: only for the Gpe-Org pair the
maximum achievable value is below that of Grams.

Figure . contains the Bergmann-Hommel hypothesis tests on F score under these conditions.
The tests confirm the advantage of Prob, RSvc and Rbc with respect Grams; but also determine
that, in this comparison, the performance of Rbc falls below that of the baseline system, a fact
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Grams Prob Rbc RSvc

Prc Rec F Prc Rec F Prc Rec F Prc Rec F

Fac-Gpe 67.6 56.8 61.7 63.5 71.5 67.2 58.8 80.2 67.8 62.2 74.5 67.6

Fac-Loc 64.7 29.7 40.7 58.9 69.2 63.6 60.9 65.3 62.8 54.8 68.8 60.6

Fac-Per 51.0 22.9 31.6 41.3 47.1 44.0 37.3 58.5 45.5 38.2 56.1 45.5

Gpe-Loc 67.8 58.6 62.8 62.2 71.9 66.7 57.8 75.0 65.3 55.9 76.1 64.4

Gpe-Org 68.3 73.8 70.9 77.4 67.7 72.2 59.4 72.2 65.2 60.3 70.7 65.0

Gpe-Per 55.1 62.6 58.6 68.7 52.7 59.6 57.9 62.0 59.9 57.8 60.3 59.0

Gpe-Veh 71.1 50.6 59.1 63.6 62.1 62.8 60.9 64.5 62.6 59.4 63.2 61.2

Loc-Per 47.9 25.7 33.4 39.1 52.4 44.8 36.1 56.1 43.9 35.5 56.8 43.7

Org-Per 52.1 71.4 60.2 55.4 67.5 60.8 55.6 61.9 58.6 54.3 64.5 58.8

Org-Veh 91.1 50.5 65.0 77.6 65.0 70.7 82.5 65.1 72.8 80.6 65.0 71.9

Per-Veh 59.1 24.5 34.7 34.6 55.2 42.5 33.5 60.6 43.2 33.3 57.8 42.2

Table .: Relation detection results across the different entity type pairs
(NSiz function, w:t features, Best threshold)

Grams Prob Rbc RSvc

Prc Rec F Prc Rec F Prc Rec F Prc Rec F

Fac-Gpe Dist − − − 70.5 55.2 61.9 81.3 38.6 52.3 81.5 43.8 56.9

Best 67.6 56.8 61.7 71.9 68.5 70.2 65.5 77.0 70.7 64.6 78.8 71.0

Fac-Loc Dist − − − 65.1 60.1 62.5 76.0 38.1 50.7 73.6 40.4 52.1

Best 64.7 29.7 40.7 53.3 80.4 64.1 61.7 66.2 63.8 61.6 66.2 63.8

Fac-Per Dist − − − 52.8 37.6 43.8 60.9 22.0 32.3 57.8 23.3 33.2

Best 51.0 22.9 31.6 44.7 53.2 48.4 38.2 59.1 46.4 37.8 59.5 46.2

Gpe-Loc Dist − − − 60.8 67.6 64.0 71.9 47.7 57.3 71.3 48.0 57.2

Best 67.8 58.6 62.8 69.4 65.6 67.5 61.6 71.9 66.3 61.4 72.0 66.3

Gpe-Org Dist − − − 70.1 64.9 67.2 67.4 63.9 65.6 66.2 65.8 66.0

Best 68.3 73.8 70.9 65.5 78.5 71.3 58.6 77.8 66.8 61.8 73.6 66.9

Gpe-Per Dist − − − 62.5 57.7 60.0 71.2 51.3 59.6 70.8 51.6 59.7

Best 55.1 62.6 58.6 69.0 55.5 61.5 64.7 58.0 61.2 63.8 59.0 61.3

Gpe-Veh Dist − − − 54.5 73.8 62.7 64.1 67.8 65.9 63.3 69.4 66.2

Best 71.1 50.6 59.1 63.5 70.5 66.8 63.9 69.8 66.7 65.1 69.3 67.1

Loc-Per Dist − − − 43.2 39.2 41.0 48.2 29.8 36.8 48.0 31.1 37.6

Best 47.9 25.7 33.4 37.2 58.6 45.5 37.9 49.1 42.8 38.2 48.5 42.7

Org-Per Dist − − − 66.9 59.3 62.8 68.1 52.6 59.3 67.3 54.5 60.2

Best 52.1 71.4 60.2 67.1 60.3 63.5 56.5 70.0 62.5 56.5 71.5 63.1

Org-Veh Dist − − − 73.1 65.0 68.8 70.2 66.3 68.2 69.4 66.3 67.8

Best 91.1 50.5 65.0 70.1 70.3 70.2 78.2 65.3 71.2 78.7 64.6 70.9

Per-Veh Dist − − − 42.4 44.3 41.9 53.1 35.5 42.6 51.1 36.8 42.8

Best 59.1 24.5 34.7 60.3 37.5 46.1 36.1 57.3 44.3 36.6 56.5 44.4

Table .: Relation detection across the different entity type pairs
(NSiz function, w:t+c:t features)
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Figure .: Bergmann-Hommel tests on F for the compared approaches
(across all pairs, NSiz function, w:t+c:t features, Cut threshold)
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(b) RSvc algorithm
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(c) Prob algorithm

Figure .: Influence of the kmax parameter on relation detection performance
(across all pairs and features, NSiz function, Best threshold)

which may raise slight concerns. Nevertheless, the difference is not significant and it is important
to remember that the results for Base are an upper bound.

Given that by incorporating the Dist threshold selection the last remains of supervision are
removed, the results of this section confirm that it is possible to build a completely unsupervised
system for relation detection pattern acquisition using the proposed joint learning approach—and
one whose extractions outperform other compared approaches in terms of the considered metrics.

... Influence of kmax

One element that has been so far overlooked in the present evaluation is the influence on the relation
detection process of the kmax parameter, for which a value kmax = 100 has always been used so far.
The minority clustering evaluation carried out in the previous chapter showed that parameters R
and kmax of RSplit and Rbc did not require careful tuning (see Section ...). This section
attempts to provides a similar study for the relation detection task at hand.

Figure . contains plots of the relative values of precision, recall and F using the three consid-
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Figure .: Performance histograms, relative to <nw>, on the ACE subcollections
(across all pairs, NSiz function, w:t+c:t feature set, Best threshold)

ered weak clustering algorithms, as a function of kmax. The values are relative to the performance
obtained using the kmax = 100. As seen in plots (a) and (b), algorithms Rbc and RSvc are almost
unaffected by the setting of kmax. The standard deviation of the results is barely 2%, and the
difference from using kmax = 2 or kmax = 100 is lower than 1% in terms of precision, recall and F.
The algorithms thus seem portable without any special parameter tuning requirements.

However, plot (c) seems to show a different picture. Setting kmax = 2 instead of kmax = 100
can bring, in average, an almost 20% increase in recall at the expense of a slightly larger decrease
in precision. Overall, F can drop some 5%. The standard deviation of these values is also in
the order of 20%. Nevertheless, this variability is progressively reduced as kmax increases, and the
values become stable from kmax = 20 on. Thus, even if kmax does indeed have an influence in the
performance of Prob, the results suggest that coarsely setting the parameter to a relatively large
value suffices to obtain competitive results, and that hence no fine-tuning of its value should be
required.

... Portability Across ACE Subcollections

Given that the pattern learning process uses a subset of the AQUAINT corpus consisting only of
newswire documents, but the evaluation is performed on the ACE corpus which contains docu-
ments coming from heterogeneous sources, another open question is whether the obtained relation
detection model is specific to newswire language—and how it performs over texts from different
sources.

Figure . contain performance histograms for the Ewocs-based approaches over the different
subcollections within the ACE corpus, relative to their performance on <nw>. The four plots present
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<all> <bc> <bn> <nw> <ts> <un> <wl>
BBN 33.4 24.7 34.0 33.7 42.6 31.7 34.8
UPC 33.1 24.1 38.2 33.2 43.6 20.5 27.8
LCC 32.5 25.5 42.3 41.0 41.2 54.5 4.6

Table .: ACE scores on the Relation Mention Detection task, for the systems taking part in the
ACE- evaluation

a similar shape, independently of the used weak clustering algorithm, and all show how the change of
subcollection does not necessarily imply a decrease of performance in terms of precision or recall—
on the contrary, in many cases an improvement happens. Nevertheless, the change does produce an
increase in the variance of the results, which is larger the more the nature of the documents differs
from newswire text.

Curiously enough, the average performance on all other subcollections of ACE is higher than
that on <nw> except for F on <un>. <bn> is the subcollection on which the results are better:
all approaches obtain higher scores than on <nw>, and their variance is quite low. The results for
<bc> are somewhat lower and more disperse, but nevertheless the comparison with <nw> remains
positive. On the contrary, for the other three subcollections the variance of the results is large,
becoming quite unwieldy over <wl> documents. Regarding the relative performances, the highest
scores of all are achieved on <ts> conversations, whereas <un> seems the hardest section of all, and
the F scores on it are lower than on <nw>.

Despite the variations across domains, we believe these results suggest that, even if the learning
process was performed on newswire data, the learned patterns are general enough to be successfully
applied on documents from other domains—and, in fact, often to better results than on the newswire
domain itself.

For the sake of comparison, we have included, in Table ., the official results reported by
the organizers on the ACE- Relation Mention Detection task, using the official value-based
scores (ACE, ). The evaluation used the ACE- corpus, which is a subset of our aggregated
ACE collection, and considered full runs—i.e., relation extraction was performed using system-
detected entity mentions. Despite the differences in evaluation metric and protocol, and the fact
that the approaches are supervised, we believe information about the relative performance of the
systems across the different subcollections can be relevant to the discussion. In particular, we want
to emphasize how, with the exception of <bc>, the trends that we have observed about the average
scores on each division are also present in the results obtained by BBN and UPC participants.

... Runtime

The last aspect to be considered in the present evaluation is the computational cost of the Ewocs-
based algorithms—not only their asymptotic behaviour, but also the actual runtime taken by the
clustering pattern learning process.

Figure . contains a logarithmic scatter plot of runtime versus the size of the matrix containing
all pair contexts (i.e., the number of collected contexts times the number of generated features).
The plot confirms the expected linear behaviour of the Ewocs algorithm, but also puts in relief
the different requirements of the three considered weak clustering algorithms. Whereas RSvc and,
particularly, Rbc are cheap and allow matrices of sizes in the order of thousands of millions of
entries to be processed in less than one hour, the required time clustering of the same matrices
using Prob takes is more than one order of magnitude higher.

In addition to its runtime, Prob also has harder computational demands in terms of space:
its parameter matrix cannot be represented in a sparse form, and its memory requirements can
also become orders of magnitude higher than those of margin-based weak clustering algorithms.
Even if this has not been an issue for problems the size of our evaluation collections, the trade-off of
performance versus computational parsimony may need to be taken into account as datasets become
larger and larger (such as Web-scale ones)—and hence may eventually tip the scales towards the
use Rbc or RSvc.

The matrices are stored in sparse format, so the actual memory footprint is much lower.
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Figure .: Runtime versus context matrix size scatter plot

.. Case Study

In order to give an intuition of the nature of the knowledge obtained using Ewocs, in this section
we will examine a sample of the results obtained for one particular entity type pair and learning
setting. This analysis is presented here for illustrative proposes only—it intends to be qualitative
more than quantitative, and no general conclusions should be drawn from the behaviour of the
algorithm in this particular case.

More specifically, we have considered the learning of relation detection for the Fac-Gpe pair of
entity types, and the models obtained using:

• the Prob weak clustering algorithm,

• the NSiz scoring function,

• the w:t+c:tl feature set,

• and the Best threshold selection criterion.

This is one of the settings in which the best results were obtained. Moreover, w:t+c:tl contains
most feature patterns we have considered (see Section ..)—in fact, all but the semantic ones,
which were found in the evaluation to be too noisy to be useful for the task (see Section ...).

Next Section ... examines the relevance of different feature types to the task, whereas
Section ... presents a small set of sample sentences from the corpus where correct, incorrect
and missed extractions occur.

... Feature Relevance

In order to quantify the impact of each individual feature in the results of the Ewocs algorithm, we
have studied the conditional expectations of the scores assigned by the obtained model. Recalling
Section .., the score s⋆x assigned by Ewocs to an object xx can be written as:

s⋆x =
1

N
∑
Πr

∑
πrc∈Πr

grade(xx, πrc) ⋅ score(πrc)

We can consider the expectation of this score across all possible objects, as well as its expectations
conditioned to whether certain feature f is active or not in xx. We can then define the expected
score offset and relevance of a feature as
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Definition . (Feature expected score offset and relevance)
The expected score offset of a feature f in an Ewocs model is the difference between the
conditional expectation of the score s⋆x of an object xx given that f is active in xx, and the
expectation of the score given that f is inactive:

∆f = E1
f −E0

f = E[s⋆x ∣ xxf = 1] −E[s⋆x ∣ xxf = 0]

The relevance of feature f is the absolute value of its expected score offset: ∆f = ∣∆f ∣

Features with large relevances will be strong indicators of relatedness (if their expected score offset
is positive) or non-relatedness (if it is negative).

We can also prove that

Proposition .
When using the Prob clustering algorithm within Ewocs, the expected score offset of feature
f can be found from the model parameters as:

∆f =
1

N
∑
Πr

(∑πrc∈Πr
αrc ⋅ ϑrcf ⋅ score(πrc)

∑πrc∈Πr αrc ⋅ ϑrcf
− ∑πrc∈Πr

αrc ⋅ (1 − ϑrcf) ⋅ score(πrc)
∑πrc∈Πr αrc ⋅ (1 − ϑrcf)

)

Proof See Appendix B. ∎

These quantities thus defined, Table . contains the most relevant features found for one run of
Ewocs on the Fac-Gpe entity type pair data, using the learning setting considered in this section.
The  most relevant features with positive expected score offset, and the  most relevant features
with negative offset are listed.

This set of most relevant features points to two patterns as the most common indicators of
relatedness for this pair of entity types:

• Contexts in which the the Fac and Gpe entities are juxtaposed, the latter being a nominal
complement of the former and the facility being a common noun. In this case:

– The distance between the two entities is zero chunks—i.e., both entities belong to the
same one (dist=0ch).

– The distance between the two entities is one token—i.e., there is no token between
them (dist=1tk).

– The chunk is a noun phrase (ch/common/type=NP).

– The head of the chunk is the Fac entity (ch/common/head-tag=FAC). Moreover, it
is a common noun (ch/common/head-tag=NN), which corresponds to the facility type
word (ch/common/head-lemma=hospital, home, plant. . . ).

• Contexts in which the Fac and Gpe entities are separated by a preposition. In this case:

– The distance between the two words is two chunks—i.e., there is one chunk between
them (dist=2ch).

– The distance between the two entities is two tokens—i.e., there is one token between
them (dist=2tk).

– The chunk in between is a prepositional phrase (ch/before:right:1/type=PP).

– The head of this chunk is a preposition (ch/before:right:1/head-tag=IN). The strong-
est indicator of relatedness among them is in, but other ones like near, outside, of . . .
are also possible (ch/before:right:1/head-lemma=in, near, outside. . . ).

Concerning the relevant features with negative expected score offset, most of them express
properties of chunks at a large distance, and are hence indicators of a long distance between the
two entities. Therefore, the model is penalizing pairs in which the entities are far a part—matching
the empirical evidence that relations are usually expressed using short-distance constructions (as
mentioned in Section ..).

Moreover, for this particular entity type pair, the feature ch/left/type=NP is also a strong
indicator of non-relatedness. Given that entities tend to occur within noun phrases, this feature



.. EVALUATION 

Feature E1
f E0

f ∆f

+ ch/common/type=NP . . .
+ dist=0ch . . .
+ ch/common/head-tag=FAC . . .
+ ch/before:right:1/head-lemma=in . . .
+ ch/before:right:1/head-tag=IN . . .
+ ch/before:right:1/type=PP . . .
+ dist=1tk . . .
+ dist=2tk . . .
+ ch/common/head-lemma=hospital . . .
+ ch/common/head-lemma=home . . .
+ ch/common/head-lemma=plant . . .
+ ch/common/head-lemma=prison . . .
+ ch/common/head-tag=PER . . .
+ ch/common/head-tag=GPE . . .
+ ch/before:right:1/head-lemma=near . . .
+ ch/common/head-lemma=embassy . . .
+ ch/common/head-lemma=jail . . .
+ ch/common/head-lemma=building . . .
+ dist=2ch . . .
+ ch/common/head-lemma=base . . .
+ ch/common/head-tag=NN . . .
+ ch/common/head-lemma=station . . .
+ ch/common/head-lemma=airport . . .
+ ch/common/head-lemma=street . . .
+ ch/common/head-lemma=center . . .
+ ch/common/head-lemma=facility . . .
+ ch/common/head-lemma=headquarters . . .
+ ch/before:right:1/head-lemma=outside . . .
+ ch/before:right:1/head-lemma=of . . .
+ ch/common/head-lemma=hotel . . .

. . .

- ch/left/type=NP . . -.
- ch/before:right:9/head-lemma=mile . . -.
- ch/after:left:4/head-lemma=mile . . -.
- ch/before:right:9/head-tag=NNS . . -.
- ch/before:right:10/type=ADVP . . -.
- ch/before:right:10/head-tag=RB . . -.
- ch/after:left:6/head-lemma=of . . -.
- ch/before:right:11/head-lemma=of . . -.
- ch/after:left:5/head-tag=RB . . -.
- ch/before:right:6/head-lemma=in . . -.
- ch/before:right:8/head-lemma=, . . -.
- ch/before:right:8/head-tag=, . . -.
- ch/after:left:5/type=ADVP . . -.
- ch/before:right:7/head-tag=GPE . . -.
- ch/before:right:12/head-tag=GPE . . -.

. . .

Table .: Expected score offsets for the most relevant features
(Fac-Gpe pair, Prob algorithm, NSiz function, w:t+c:tl features, Best threshold)
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( that/FAC1 )
NP

( ’s/VBZ )
VP

( new_york/GPEA )
NP

( ’s/POS laguardia_airport/FAC2 )
NP

./.

(a)

( Israeli/GPEA combat/NN helicopters/VEH )
NP

( are/VBP reported/VBN to/TO have/VB hit/VBN )
VP

( a/DT hotel_and_casino/FAC2 )
NP

( in/IN )
PP

( Jericho/GPEB )
NP

and/CC ( a/DT building/FAC2 )
NP

( of/IN )
PP

( the/DT Palestinian_authority/GPEC )
NP

./.

(b)

( An/DT explosion/NN )
NP

( struck/VBD )
VP

( the/DT Cole/NNP )
NP

,/,
( as/IN )

SBAR
( it/PRP )

NP
( refueled/VBD )

VP
( in/IN )

PP

( the/DT Yemeni/GPEA port/FAC1 )
NP

( of/IN )
PP

( Aden/GPEB )
NP

./.
(c)

( The/DT authorities/PER )
NP

( have/VBP started/VBN building/VBG )
VP

( sandbag/NN walls/FAC1 )
NP

( to/TO protect/VB )
VP

( the/DT main/JJ road/FAC2 )
NP

( into/IN )
PP

( Vietnam/GPEA )
NP

( ’s/POS commercial/JJ capital/GPEB )
NP

,/,
( Ho_Chi_Min_city/GPEC )

NP
./.

(d)

( in/IN )
PP

( many/JJ cities/GPEA )
NP

,/, ( angry/JJ crowds/PER )
NP

( roam/VBP )
VP

( the/DT streets/FAC1 )
NP

./.
(e)

Figure .: Sample sentences from the ACE corpus

will be active in most of the cases where the two entities are not embedded in the same chunk
(where a ch/common/type=NP would be active instead). This seems thus to reinforce the previous
conclusion that Fac-Gpe relations are often expressed by means of a nominal complement, where
both entities are contained inside the same chunk.

The analysis of individual feature relevance, however, can only uncover the strongest patterns
of relatedness and non-relatedness. We must keep in mind that the model is complex, and the
interactions between the features will lead to decisions far beyond the reach of these simple rules-
of-thumb.

... Sample Extractions

Figure . contains some sample sentences from the ACE corpus, drawn to illustrate the behaviour
of the model learnt by Ewocs.

In the first sentence, (a), the model correctly predicts the relation between new_york and
laguardia_airport, expressed by means of a possessive construction. Moreover, it judges that
and new_york as non-related, which also matches the ACE annotation (even if, in this case, the
existence of a relation may be subject to discussion).

In Sentence (b), there is a number of Fac and Gpe entities, of which only hotel_and_casino
and Jericho, and building and Palestinian_authority, are related. The model classifies all the
pairs correctly. In particular, it classifies building and Jericho as non-related—despite the fact
that a strong indicator of relatedness such as feature dist=2ch is active. The model is hence able
to successfully integrate the evidence supporting and rejecting relatedness into complex patterns.

On the flipside, in the case of Sentence (c) the outcome of the model differs from the ACE
gold annotation. The sentence contains two Gpe entities, and one Fac entity, which the system
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classifies as related to the two of them. However, the relation existing between port and Yemeni
was not annotated by the ACE annotators, and the pair counts as a false positive instead of a true
one—an error which hurts the estimation of precision (see Section ..). Manual inspection shows
that this kind of annotation errors are more frequent than we expected, and suggest that the actual
precision figures for the methods might be higher than reported in our evaluation.

However, there is obviously a large number of actual misclassifications performed by the model.
In Sentence (d), for instance, the system is unable to detect the relation between road and capital
or Ho_Chi_Min_city—but finds one between road and Vietnam, which is not annotated as
such. In this case, the fact that road and Vietnam are separated by a single preposition leads
the model to an error, as it ignores the fact that the Gpe is followed by a possessive mark. For the
other two cases, we believe the reason for the false negatives lies in the distance between capital
and Ho_Chi_Min_city and road, together with the presence of other entities in between.
The incorporation of features derived from the sentence parse tree could provide the additional
information required to recover the relations present in these contexts.

Finally, in the case shown in Sentence (e), the relation between cities and streets is not detected
by the model either. This time, in addition to the distance between the two entities, the fact that
the prepositional phrase has been shifted to the beginning of the sentence makes it harder for the
model to recognize the existent relation. Similarly to the previous sentence, in these and similar
cases deep parsing information may bring an improvement—even if it would clearly pose a number
of challenges of its own, too.

. Conclusions

This chapter has presented our scheme for joint clustering and pattern learning combination. The
proposed framework reduces pattern acquisition to the compilation of all entity pairs which co-occur
in the same sentence across an unannotated corpus, and the minority clustering of the obtained
context matrix.

To effectively put this scheme into action, firstly, the formalism previously used for sequential
and collaborative clustering and learning combination, based on binary feature templates able to
capture linguistic traits of the entity pair context, has been revisited to incorporate new sources of
information to the potential detection patterns. Secondly, a number of weak clustering algorithms
suitable for this binary feature vectors have been proposed, to be plugged into the Ewocs minority
clustering algorithm developed in the previous chapter. Thirdly, two heuristics to reduce biases
present in the scoring scheme of Ewocs have been devised.

In order to validate this novel approach, these components have been evaluated on an actual
relation detection task, comparing them to the existing POS-sequence-based unsupervised system
of Hassan et al. () and a distance-based baseline.

The results of the evaluation have shown the superiority of Ewocs-based approaches. Specifi-
cally, the normalization of cluster scores by clustering cardinality within the Ewocs scoring process,
the incorporation of chunk head POS-tags and lemmas into the patterns, and the usage of a naive-
Bayes weak clustering algorithm based on Bernoulli distributions have been particularly successful,
and made their results rise in terms of precision, recall and F of the detected relations up to levels
which significantly improve those obtained by competing approaches. The usage of other feature
sets, as well as that of margin-based weak clustering algorithms, has produced results that, despite
not matching the performance of the most efficacious ones, also exceed the compared alternatives.

The approaches have been proven to be portable across texts of heterogeneous nature, and robust
with respect to the setting of their internal parameters. Nevertheless, the larger computational
requirements, in terms of time and space, of the better-performing probabilistic algorithm can
make its choice unsuitable on very large textual collections, and opens the door to the use of
margin-based weak clusterers—a choice which trades efficiency for a minor decrease in extraction
performance.

At the light of these results, we believe that the proposed method for unsupervised learning of
relation detection patterns can be considered a powerful alternative to existing alternatives, given
its simplicity, efficiency, flexibility, non-supervision and competitive performance.





7
Conclusions

And this is what you waited for
But under lights, we’re all unsure
So tell me
What would make you feel better?

LCD Soundsystem
Home

This chapter presents our conclusions and final thoughts at the end
of the thesis. This recapitulation also gives us the chance to put into
relief the main contributions of our work, and to sketch possible lines
of future work.

Section . highlights the main contributions our work makes to
the areas of clustering and information extraction. Section . draws
a reduced set of final conclusions from all the work in our thesis.
Finally, Section . contains our thoughts on the lines of research
that could be followed to further explore areas that still remain open
after our work.

I n these pages, we have explored the task of unsupervised learning of relation detection
patterns using clustering techniques. We have conducted research on the ways in which this
combination can be accomplished, and we have also developed, adapted and compared clus-

tering methods to suit our specific needs. Along the way, we have proposed a completely novel
approach for minority clustering, based on ensemble methods.

. Contributions of this Thesis

The research in this thesis thus spans over several areas within the fields of NLP and ML, and
we believe that a number of distinguishable contributions are contained in our work. We want to
highlight a small number of them, listing them below in what we consider their order of decreasing
relevance:

• We have developed a novel unsupervised approach for learning of IE patterns using a minor-
ity clustering algorithm (Chapter ). The approach not only presents a much lower degree
of supervision than many other existing alternatives, but it is also more flexible and allows
easier incorporation of additional linguistic features into the patterns. We have implemented
a learning method based on this approach, and evaluated the produced patterns on the ACE
relation detection task. The results of the evaluation have shown that the proposed approach
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outperforms comparable alternatives in the state of the art. Moreover, the experimenta-
tion has also provided insights into the influence of diverse feature sets and components of the
minority clustering algorithm on the extraction pattern performance—as well as into the vari-
ations in performance experimented by the patterns across documents from different sources
and nature.

• We have developed Ewocs, a novel minority clustering algorithm, and the first—to the
best of our knowledge—to use ensemble methods for the task (Chapter ). The algorithm
consists of repeated application of an inner weak clustering algorithm and a cluster scoring
scheme, and has been derived from the theoretical analysis of the distribution of the obtained
scores. It is hence a statistically sound algorithm, under a set of conditions which we have
found to be easily satisfied in practice. The algorithm contains a number of components
(inner clustering algorithm, scoring scheme, threshold detection), for which we have considered
different alternatives. All of them have been implemented and evaluated over a collection of
geometrical datasets, in which the comparison to other approaches has been favourable to
Ewocs. Moreover, the success of our pattern learning approach, which uses Ewocs at its
core, must be regarded not only as a proof of the validity of the joint clustering and pattern
learning strategy, but also of the effectiveness of the Ewocs algorithm itself.

• We have developed unsupervised approaches for learning of IE patterns using sequential and
collaborative schemes for combination with document clustering (Chapter ). The correctness
of the approach has been studied using a double evaluation. In a first indirect evaluation on
text categorization, the acquired patterns have been found to perform competitively with
respect to those learned using manual sets of seeds. However, in the second direct evaluation
on relation detection, the results have shown the inability of the framework to detect generic
and transverse relations, such as the ones in the ACE evaluations. The low mutual information
between the distributions of clusters and relation types has been pointed to as an explanation
for the poor performance of the proposed approaches. The results have also raised doubts on
the suitability of certain indirect text categorization evaluations themselves.

• We have performed an empirical comparison of a number of unsupervised ensemble approaches
for the task of document clustering (Chapter ). Two ensemble generation strategies and
six clustering combination algorithms have been compared, together with individual meth-
ods, across a collection of real-world datasets. The comparison has shown the superiority of
combination approaches over individual clustering algorithms; and of a massive generation
strategy, based on randomization of a less informed algorithm, over a smaller ensemble of
stronger individual clusterers.

• We have proposed a number of weak clustering algorithms: RSplit (Section ..), Rbc (Sec-
tion ..) and RSvc (Section ...), the last two of them based on margin- and kernel-
method theory. Their utility has been empirically assessed by their use within the Ewocs
algorithm (Sections . and .)—but they are open to usage in general weak clustering
settings.

• We have devised an information-theoretical unsupervised clustering method, as an adaptation
of a geometrical approach (Section ...). The method uses algorithms, measures and
criteria coming from the field of information theory. Its performance has been compared to
other individual and ensemble unsupervised clustering methods (Section .).

. General Conclusions

Being now at the terminus of our work, a number of general conclusions can be drawn from the
results of our research. We want to highlight only three of them, as they are the strongest trends
that we have observed along all our work.

We regard the leitmotif of the thesis itself—namely, that it is indeed possible to enhance the
process of pattern learning with clustering techniques and reduce its elements of supervision—as
the first and most significant one. In particular, using the Ewocs minority clustering algorithm we
have obtained a virtually unsupervised method to learn patterns which detect ACE-style relations
between entity mentions. As said, we consider this to be the most significant conclusion of our
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research, as it is the one that validates the whole thesis, and which justifies all work done. Even
if other works had combined clustering and IE pattern acquisition, our approach has a number
of distinguishing traits—such as the reduction of the task to a minority clustering problem, its
flexibility in the incorporation of new features and the reduced supervision requirements—which
set it apart from the rest.

Secondly, a trend which has recurrently occurred in our results is the superiority of ensemble
methods with respect to individual approaches. We have observed such superiority in unsupervised
document clustering (Major method in Section .), in collaborative pattern learning (Major
seeds in Section .), in minority clustering (Ewocs algorithm in Section .) and in joint pattern
learning (Section .). Even if we are only one more among the increasing number of works which
praise combination approaches in both supervised and unsupervised learning settings, we believe
the repetition of the trend across a number of different tasks is an interesting conclusion—which
should reinforce the confidence in such approaches for all kind of ML problems.

Finally, a last pattern of behaviour consistently observed across our experiments is the preva-
lence of the ugly duckling theorem—and the problems inherent to providing learners with more
information within unsupervised settings. Even if the issue is shared between unsupervised and
supervised learning settings, in unsupervised learning tasks the lack of class information implies
that drawing a line between useful and non-useful features can be hard—and makes it possible for
the structure that we expect to uncover to end up buried in irrelevant information. In our case, this
phenomenon lies behind the decrease of performance experimented by more complex feature sets
with respect to simpler counterparts (such as w:t+c:l in Section ., or w:tl in Section ...).

. Future Work

Even if the writing of their PhD thesis is a major undertaking for any graduate student, it is also
true that any work of research, even if it closes pending questions, always leaves new ones open.
This thesis is no exception, and a number of ideas have not been thoroughly explored—including
some which have only been scratched at the surface. This section tries to collect such possible future
lines of research, grouping them by the chapter in which the work related to them is exposed.

Clustering Regarding our work on unsupervised clustering and clustering ensembles, it would
be interesting to extend the comparison in Section . to consider more methods, both individual
and ensemble-based. In particular, adding or replacing methods within the Minor ensemble gen-
eration strategy may improve its results. Regarding the Major strategy, the influence of the kmax
parameter on the final output, even if small, is clearly a drawback of the approach (Section ...).
Alternative ensemble generation and/or combination algorithms need to be explored, which be even
less sensitive to the tuning of this and other parameters.

Finally, it is clear that the proposed Info method is not as competitive as its Geo counterpart.
However, the good performance of IT-based clustering algorithms has been proved in countless
works, so finding a suitable implementation of the hybrid unsupervised clustering method is an
open problem by itself.

Collaborative Learning As seen in Section .., the performance of the sequential and collab-
orative approaches for pattern learning has been one of the biggest disappointments in this thesis.
Nevertheless, even if we have been unable to detect ACE-style relations using these combination
frameworks, we believe they may still be useful to detect domain-specific relations from document
collections containing well distinguished categories. Experimentation with different relation types
is clearly needed.

On the other hand, the introduction of the binary feature conjunction pattern formalism (Sec-
tion ...) has required the separation of the pattern candidate generation and pattern selection
steps for computational reasons. Given the poor results of the overall approach, it has not been
possible to assess the impact of this decision. An evaluation of the fraction of interesting patterns
that are missed because of not exceeding the frequency threshold can be of interest. Moreover, the
development of a smart strategy to explore the pattern space during the pattern learning stage is
by itself an algorithmic challenge—but might bring unexpected improvements on the quality of the
obtained pattern base.
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Minority Clustering Even if our treatment of the Ewocs algorithm has been quite thorough, a
number of issues concerning components of the algorithm remain open. The first and most obvious
one is the improvement of the threshold detection algorithm. As mentioned in Section ..., there
is still a gap between the threshold giving the maximum F score and the criteria that provide some
level of supervision—and another one between these partially supervised criteria and the completely
unsupervised ones. Similarly, in the application of Ewocs to pattern learning, inaccuracies in the
threshold detection cause a significant loss in detection power (Section ...). Improving the
detection of the threshold can thus have a considerable effect on the performance of Ewocs-based
systems. Moreover, the presented detection methods are mostly heuristic in nature—research on
the theoretical basis of the foreground-background separation is required, and may provide better
criteria.

Concerning the evaluation of Ewocs, in this work we have only applied the method to synthetic
data (Section .) and to the linguistic data used within our pattern learning approach (Section .).
Given that Ewocs is devised as a generic algorithm for minority clustering, it would be interesting
to test it in data coming from different areas.

Last, even if the procedure used to tune the Gaussian kernel within the Rbc algorithm (Sec-
tion ...) has allowed us to obtain close-to-optimal performance on synthetic data, it is never-
theless a costly procedure. The development of a cheaper alternative, suitable to be used in large
datasets, may be of interest not only for usage within Ewocs, but for any fuzzy clustering algorithm
in general.

Joint Learning Finally, regarding the joint clustering and pattern learning approach, we believe
much remains to be explored concerning the introduction of more kinds of linguistic information
into the patterns. Parsing information, for instance, has been proven useful in a considerable
number of relation extraction approaches. Moreover, one of the advantages of Ewocs is that it
is not restricted to flat feature vectors. By using suitable kernel functions, alternative context
representations, such as sequences or trees, could be employed.

Nevertheless, we believe that the most promising future line of research, for both this joint
approach and the collaborative and sequential ones, is to extend the learning process to allow
for full relation extraction instead of only detection—i.e., to include devices so as to classify the
obtained relations into a number of classes, predefined or not. In particular, classification could
allow the acquisition of patterns corresponding to a predefined scenario of extraction, allowing a
system built using an otherwise unsupervised approach to take part, for instance, in KBP-style
evaluations. Additionally, we also envision the incorporation of biases for the features taking part
in the patterns—favouring, for instance, one particular type of construction (nominal, verbal. . . )
above the others.

The possibility of incorporating an extraction scenario, or feature selectional preferences, as
biases for the pattern learning process would require the extension of the existing framework to
allow both completely unsupervised and slightly supervised learning. Such a unified framework
would be of large interest by itself.
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A
Mathematical Background

This appendix contains the definitions of common mathematical con-
cepts that we have omitted in the body of the thesis for fluidity of
the exposition. We expect most readers to be familiar with them, but
nonetheless decided to incorporate them for reference. We have tried
to include, together with the definition, an authoritative source on the
topic, often the very work in which the concept was first defined.

The concepts are grouped in three main areas. Section A.
contains definitions of concepts from regular set theory, whereas Sec-
tion A. deals with fuzzy sets, and Section A. is concerned with In-
formation Theory.

A. Set Theory

Definition A. (Partition)
A partition of a set X is a family of sets Π = {π1 . . . πk} such that

• The sets πc are non-empty.
∀πc ∈ Π ∶ πc ≠ ∅

• All sets are disjoint.
∀πc ≠ πc′ ∈ Π ∶ πc ∩ πc′ = ∅

• The union of all sets πc is the total set X .

⋃
πc∈Π

πc = X

A. Fuzzy Set Theory

Definition A. (Fuzzy set)
A fuzzy set over an ordinary set X is a pair X̃ = (X , fX̃), where fX̃ ∶ X → [0,1] is the member-
ship function (or characteristic function) of X̃ . For xi ∈ X , fX̃(x) expresses the grade of
membership of xi to X̃ , and will often be denoted as grade(xi, X̃ )

(Zadeh, ) ◻
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Definition A. (Fuzzy c-partition)
A fuzzy c-partition (or fuzzy pseudopartition) of an ordinary set X is a family of fuzzy sets
Π = {π1 . . . πk} over X such that

∀x ∈ X ∶ ∑
πc∈Π

fπc(x) = 1

∀πc ∈ Π ∶ 0 < ∑
x∈X

fπc(x) < ∥X ∥

(Bezdek, ; Klir and Yuan, ) ◻

A. Information Theory

Definition A. (Entropy)
The entropy of a discrete random variable X, following probability distribution p(x) over set X ,
is defined as:

H(X) = − ∑
x∈X

p(x) ⋅ log p(x)

(Shannon, ) ◻

Definition A. (Mutual Information)
The mutual information between two discrete random variables X and Y , following a joint
probability distribution p(x, y) over sets X and Y, is defined as:

I(X ;Y ) = ∑
x∈X
y∈Y

p(x, y) ⋅ log
p(x, y)

p(x) ⋅ p(y)

(Shannon, ) ◻

Definition A. (Cross-Entropy)
The cross-entropy between two discrete probability distributions, p(x) and q(x), of the same
random variable X over set X , is defined as:

H×(p, q) = ∑
x∈X

p(x) ⋅ log q(x)

(Kullback and Leibler, ) ◻

Definition A. (Kullback-Leibler Divergence)
The Kullback-Leibler divergence between two discrete probability distributions, p(x) and q(x),
of the same random variable X over set X , is defined as:

KL(p ∣ q) = ∑
x∈X

p(x) ⋅ log
p(x)
q(x)

(Kullback and Leibler, ) ◻

Definition A. (Jensen-Shannon Divergence)
The Jensen-Shannon divergence between two discrete probability distributions p(x) and q(x), of
the same random variable X over set X , is defined as the average of the Kullback-Leibler divergence
between each one of the distributions and their average, m(x):

JS(p ∥ q) = 1

2
⋅KL(p ∣m) + 1

2
⋅KL(q ∣m)

where:
m(x) = 1

2
⋅ (p(x) + q(x))

(Lin, ) ◻



B
Proofs

This appendix contains the proofs of secondary propositions which we
have not judged relevant enough to the discussion so as to include
them in the main text—but which are not trivial and hence require a
formal proof of their validity.

Each section below contains one of the proofs that have been
deferred.

Proof of Proposition in Definition .

In a subsumption tree Ψ over dataset X , of cardinality n = ∣X ∣, the root ψ2n−1 is equal to the
complete dataset X .

Proof The following definition will be needed for all proofs in the section:

Definition B. (Sequence prefix)
Given a sequence Ψ = (ψ1 . . . ψd) of length d, and p ∈ {1 . . . d}, the prefix of length p of
sequence Ψ is the subsequence

Ψp = (ψ1 . . . ψp)

Remark Being a sequence of sets, the prefixes of a subsumption tree are its prefixes regarded
as a sequence.

The proof uses the two propositions, which state properties of the subsumption tree prefixes.

Proposition B.
The number of non-subsumed nodes within the subsumption tree prefix Ψp of length p, with
p ∈ {n . . .2n − 1}, is 2n − l.

Proof By induction on p:

• If p = n, Ψn only contains the leaves ψi = {xi}, for xi ∈ X . All the elements in X being
distinct, none of the leaves subsumes another, so the number of non-subsumed nodes is
n = 2n − p = 2n − n.

• Let us assume that p > n and the property is true for p − 1. Therefore, the number of
non-subsumed nodes in Ψp−1 is 2n − (p − 1) = 2n − p + 1.
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Let us consider node ψp. As p > n, ψp is the union of two preceding nodes ψa and ψb,
with a, b < p. Hence, ψa, ψb ∈ Ψp−1.

Moreover, given that ψp subsumes ψa and ψb, and that all sets are subsumed by exactly
one succeeding set, no set in Ψp−1 can subsume ψa or ψb, and hence they are non-
subsumed nodes in Ψp−1.

With the incorporation of ψp to Ψp−1, nodes ψa and ψb become subsumed in Ψp. But ψp
cannot be subsumed by any succeeding one, being the last in the subsequence. Hence,
the number of non-subsumed nodes is one less than in the previous prefix, becoming
(2n − p + 1) − 1 = 2n − p. ∎

Proposition B.
The union of all non-subsumed nodes within the subsumption tree prefix Ψp of length p, with
p ∈ {n . . .2n − 1}, is X .

Proof By induction on p:

• If p = n, Ψn only contains the leaves ψi = {xi}, for xi ∈ X . The union of all leaves is
hence

⋃
ψi∈Ψn

ψi = ⋃
xi∈X

{xi} = X

• Let us assume that p > n and the property is true for l − 1. Therefore, the union of all
non-subsumed nodes in Ψp−1 is X .
Similarly to the previous proof, node ψp is the union of two preceding nodes ψa and
ψb, which are non-subsumed within Ψp−1, but become so within Ψp. ψp is, in turn,
non-subsumed within Ψp.

Hence,

⋃{ψi ∣ ψi ∈ Ψp ∧ ¬subsumed(ψi ; Ψp)} =
= ψp ∪ (⋃{ψi ∣ ψi ∈ Ψp−1 ∧ ¬subsumed(ψi ; Ψp)})
= ψp ∪ ((⋃{ψi ∣ ψi ∈ Ψp−1 ∧ ¬subsumed(ψi ; Ψp−1)}) ∖ ψa ∖ ψb)
= (ψa ∪ ψb) ∪ ((⋃{ψi ∣ ψi ∈ Ψp−1 ∧ ¬subsumed(ψi ; Ψp−1)}) ∖ (ψa ∪ ψb))
= ⋃{ψi ∣ ψi ∈ Ψp−1 ∧ ¬subsumed(ψi ; Ψp−1)}

which equals X by the induction hypothesis. ∎

Using these two propositions, the proof of the proposition is immediate. The whole dendrogram
can be regarded as its own prefix of length 2n − 1 ∈ {n . . .2n − 1}. Within it, by Proposition B.
there is only 2n−(2n−1) = 1 non-subsumed node, which must necessarily be the root ψ2n−1. Given
that, by Proposition B., the union of all non-subsumed nodes within the prefix is X , the root
ψ2n−1 = X . ∎

Proof of Proposition .

A cut of tree Ψ over dataset X at any valid level l is a partition of X .

Proof The proof uses the following propositions:

Proposition B.
All nodes within the prefix of length p of a subsumption tree Ψ are non-empty.

Proof By induction on p:

• For p ≤ n, the prefix of length p of the tree will only contain leaves which, by construction,
are singletons containing the objects in set X . They are hence non-empty.





• Let us assume n < p ≤ 2n− 1 and the proposition holds for p− 1. Therefore, all nodes in
Ψp−1 are non-empty.

Similarly to the previous proofs, node ψp is the union of two preceding nodes ψa and
ψb, which are in Ψp−1, and are hence non-empty. Being the union of two non-empty
nodes, ψp cannot be empty.

Therefore, the prefix of length p does not contain any empty node either. ∎

Corollary B.
All nodes in a subsumption tree are non-empty.

Proof The whole tree is a prefix of itself, and, by previous proposition, prefixes of a tree do
not contain empty nodes. ∎

Proposition B.
All non-subsumed nodes within the prefix of length p of a subsumption tree Ψ are disjoint.

Proof By induction on p:

• For p ≤ n, the prefix of length p of the tree will only contain leaves which, by construction,
are singletons containing the objects in set X . All the elements in X being distinct,
they are hence all disjoint.

• Let us assume n < p ≤ 2n − 1 and the proposition holds for p − 1. Therefore, all non-
subsumed nodes in Ψp−1 are disjoint.

Similarly to the previous proofs, node ψp is the union of two preceding nodes ψa and
ψb, which are non-subsumed within Ψp−1, but become so within Ψp. ψp is, in turn,
non-subsumed within Ψp.

The only potential candidate for intersection with the other non-subsumed nodes in the
prefix is ψp. However, ψp is the union of two nodes ψa and ψb, which were disjoint to
all other nodes in Ψp−1. Hence, ψp is also be disjoint to them. The nodes with which
ψp intersects are ψa and ψb, which are subsumed, or those which were subsumed in the
first place by these nodes.

Therefore, ψp is disjoint with all other non-subsumed nodes in Ψp. The rest of non-
subsumed nodes remaining the same as in Ψp−1, all non-subsumed nodes in Ψp are
disjoint. ∎

Proposition B.
The cut of tree Ψ at a level l ∈ {1 . . . n} is the set of non-subsumed nodes within the prefix Ψp,
with p = 2n − l.

Proof By induction on l:

• According to its definition, the cut at level l = n is the set of nodes at level larger or
equal than n which are not subsumed by another node at level larger or equal than n.
This corresponds to the set of leaves, as only they have the largest level n, and none of
them subsumes another.

On the flipside, the prefix of length p = 2n−n = n also corresponds, by definition, to the
set of leaves of the tree. Hence, the two sets are equal.

• Let us assume that 1 ≤ l < n and the property is true for l+1. Therefore, the cut of tree
Ψ at a level l + 1 is the set of non-subsumed nodes within the prefix Ψ2n−l−1 of length
2n − l − 1.

Consider now the cut for level l. It will contain the nodes at level larger or equal than
l, which are not subsumed by another level larger or equal than l. In particular, it will
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contain all nodes in the cut for level l + 1, plus the nodes at level l, minus the nodes in
the previous cut which are subsumed by the nodes at level l.

In particular, as l < n, from the definition of node level, it follows that only one branch
in a tree may have level l, and that is node ψ2n−l. By appending this node to prefix
Ψ2n−l−1, we obtain prefix Ψ2n−l—and the nodes that are subsumed by ψ2n−l are the only
ones in Ψ2n−l−1 which are subsumed by nodes at level l. Hence, the set of non-subsumed
nodes within Ψ2n−l equals the cut of tree Ψ at level l. ∎

The proof now is reduced to checking that the set of nodes in cut(Ψ, l) satisfy the three require-
ments for being a partition:

• The sets in the cut are not empty. Being a subset of the nodes of the tree, which by Corol-
lary B. contains no empty nodes, the cut cannot contain any empty nodes.

• The sets in the cut are disjoint. Being by Proposition B. equal to the set of non-subsumed
nodes within a prefix of length p = 2n − l ∈ {n . . .2n − 1} of the tree, all sets are disjoint,
according to previous Proposition B..

• The union of all sets in the cut is the total set X . Being by Proposition B. equal to the
set of non-subsumed nodes within a prefix of length p = 2n − l ∈ {n . . .2n − 1} of the tree, the
union of all sets is equal to the complete set X , according to previous Proposition B.. ∎

Proof of Theorem .

When kmax = 2, Rbc using the Gaussian kernel Kφ(x, y) = α ⋅ e−γ∥x−y∥2 and RSvc using the
Gaussian kernel K ′

φ(x, y) = 2α ⋅ e−γ∥x−y∥2 = 2Kφ(x, y) are equivalent algorithms.

Proof If kmax = 2 the only possible value for the sampled k in both Rbc and RSvc, and it is
k = 2. In the case of Rbc, this means that two samples x̂1, x̂2 ∈ X will be sampled, and that the
grade of membership of another object xi to cluster π1 (resp., π2) is

grade(xi, π1) =
e−Dφ(x̂1,xi)

∑kq=1 e
−Dφ(x̂q,xi)

= e−Dφ(x̂1,xi)

e−Dφ(x̂1,xi) + e−Dφ(x̂2,xi)

In particular, using a kernel-induced squared Euclidean distance (Equation .)

Dφ(x, y) =Kφ(x,x) +Kφ(y, y) − 2Kφ(x, y)

the formula for the grade of membership becomes

grade(xi, π1) = e−(Kφ(x̂1,x̂1)+Kφ(xi,xi)−2Kφ(x̂1,xi))

e−(Kφ(x̂1,x̂1)+Kφ(xi,xi)−2Kφ(x̂1,xi)) + e−(Kφ(x̂2,x̂2)+Kφ(xi,xi)−2Kφ(x̂2,xi))

=
e2Kφ(x̂1,xi)

eKφ(x̂1,x̂1)eKφ(xi,xi)

e2Kφ(x̂1,xi)

eKφ(x̂1,x̂1)eKφ(xi,xi)
+ e2Kφ(x̂2,xi)

eKφ(x̂2,x̂2)eKφ(xi,xi)

=
e2Kφ(x̂1,xi)

eKφ(x̂1,x̂1)

e2Kφ(x̂1,xi)

eKφ(x̂1,x̂1)
+ e2Kφ(x̂2,xi)

eKφ(x̂2,x̂2)

And in the case of a Gaussian kernel, in which Kφ(x̂1, x̂1) =Kφ(x̂2, x̂2) = α

grade(xi, π1) =
e2Kφ(x̂1,xi)

eα

e2Kφ(x̂1,xi)

eα
+ e2Kφ(x̂2,xi)

eα

= e2Kφ(x̂1,xi)

e2Kφ(x̂1,xi) + e2Kφ(x̂2,xi)
(B.)

See Definition A. in Appendix A..





Regarding RSvc, for the same two samples x̂1, x̂2, the reduced SVM problem becomes finding the

T̂ = [ τ̂11 τ̂12

τ̂21 τ̂22
]

such that

T̂ = arg max
T

−1

2

2

∑
i,j=1

2

∑
c=1

K ′
φ(x̂i, x̂j)τicτjc + β

k

∑
i=1

τii

and subject to

τ11 + τ12 = 1 τ21 + τ22 = 1

τ11 ≤ 1 τ12 ≤ 0 τ21 ≤ 0 τ22 ≤ 1

However, in this case there is no need to solve the optimization problem: the constraints imply
that τ12 = 1 − τ11, thus τ12 = 1 − τ11 ≤ 0, and τ11 ≥ 1—forcing that τ11 = 1 and τ12 = 0, and, mutatis
mutandis, τ22 = 1 and τ21 = 0. Therefore, the only feasible point, and hence also the optimal, is

T̂ = [ 1 0
0 1

]

The grade of membership of another object xi to cluster π1 (resp., π2) assigned by RSvc will
then be

grade(xi, π1) = eM
′
φ(xi,1)

∑2
q=1 e

M ′
φ
(xi,q)

= eτ11K
′
φ(x̂1,xi)+τ21K

′
φ(x̂2,xi)

eτ11K
′
φ
(x̂1,xi)+τ21K′

φ
(x̂2,xi) + eτ12K′

φ
(x̂1,xi)+τ22K′

φ
(x̂2,xi)

= eK
′
φ(x̂1,xi)

eK
′
φ
(x̂1,xi) + eK′

φ
(x̂2,xi)

= e2Kφ(x̂1,xi)

e2Kφ(x̂1,xi) + e2Kφ(x̂2,xi)

which is equal to the grade of membership determined by Rbc (Equation B.). Therefore, the
produced clusterings—and also the two methods—are equivalent. ∎

Proof of Proposition .

When using the Prob clustering algorithm within Ewocs, the expected score offset of feature f
can be found from the model parameters as:

∆f =
1

N
∑
Πr

(∑πrc∈Πr
αrc ⋅ ϑrcf ⋅ score(πrc)

∑πrc∈Πr αrc ⋅ ϑrcf
− ∑πrc∈Πr

αrc ⋅ (1 − ϑrcf) ⋅ score(πrc)
∑πrc∈Πr αrc ⋅ (1 − ϑrcf)

)

Proof Applying the definition of expected score offset (Definition .), we obtain:

∆f = E[s⋆x ∣ xxf = 1] −E[s⋆x ∣ xxf = 0]

= E[ 1

N
∑
Πr

∑
πrc∈Πr

grade(xx, πrc) ⋅ score(πrc) ∣ xxf = 1]

−E[ 1

N
∑
Πr

∑
πrc∈Πr

grade(xx, πrc) ⋅ score(πrc) ∣ xxf = 0]

= 1

N
∑
Πr

∑
πrc∈Πr

E[grade(xx, πrc) ⋅ score(πrc) ∣ xxf = 1]

− 1

N
∑
Πr

∑
πrc∈Πr

E[grade(xx, πrc) ⋅ score(πrc) ∣ xxf = 0]

= 1

N
∑
Πr

∑
πrc∈Πr

E[grade(xx, πrc) ∣ xxf = 1] ⋅ score(πrc)

− 1

N
∑
Πr

∑
πrc∈Πr

E[grade(xx, πrc) ∣ xxf = 0] ⋅ score(πrc)
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For the Prob algorithm, we know that grades of membership are identified with a posteriori class
probabilities (Section ...). Hence, applying the probabilistic model:

E[grade(xx, πrc) ∣ xxf = 1] = E[p(πrc ∣ xx, xxf = 1)] = p(πrc ∣ xx, xxf = 1)

= p(xxf = 1 ∣ πrc)
p(xxf = 1) = αrc ⋅ ϑrcf

∑πrc′ αrc′ ⋅ ϑrc′f
E[grade(xx, πrc) ∣ xxf = 0] = E[p(πrc ∣ xx, xxf = 0)] = p(πrc ∣ xx, xxf = 0)

= p(xxf = 0 ∣ πrc)
p(xxf = 1) = αrc ⋅ (1 − ϑrcf)

∑πrc′ αrc′ ⋅ (1 − ϑrc′f)

Plugging back these quantities into the definition of ∆f :

∆f = 1

N
∑
Πr

∑
πrc∈Πr

E[grade(xx, πrc) ∣ xxf = 1] ⋅ score(πrc)

− 1

N
∑
Πr

∑
πrc∈Πr

E[grade(xx, πrc) ∣ xxf = 0] ⋅ score(πrc)

= 1

N
∑
Πr

∑
πrc∈Πr

αrc ⋅ ϑrcf
∑πrc′ αrc′ ⋅ ϑrc′f

⋅ score(πrc) −
1

N
∑
Πr

∑
πrc∈Πr

αrc ⋅ (1 − ϑrcf)
∑πrc′ αrc′ ⋅ (1 − ϑrc′f)

⋅ score(πrc)

= 1

N
∑
Πr

∑πrc∈Πr αrc ⋅ ϑrcf ⋅ score(πrc)
∑πrc αrc ⋅ ϑrcf

− 1

N
∑
Πr

∑πrc∈Πr αrc ⋅ (1 − ϑrcf) ⋅ score(πrc)
∑πrc αrc ⋅ (1 − ϑrcf)

= 1

N
∑
Πr

(∑πrc∈Πr
αrc ⋅ ϑrcf ⋅ score(πrc)
∑πrc αrc ⋅ ϑrcf

− ∑πrc∈Πr
αrc ⋅ (1 − ϑrcf) ⋅ score(πrc)
∑πrc αrc ⋅ (1 − ϑrcf)

)

as we wanted to prove. ∎



C
ACE Annotation

This appendix contains the full set of figures representing, in a dia-
grammatic fashion, the entity and relation types and subtypes hierar-
chies used in the ACE-, ACE- and ACE- evaluations—
as well as the evolution of subtypes into others as the annotation
schemes changed from year to year.

We want to reiterate that the correspondences are established by
ourselves after comparison of the annotation guidelines, and do not
necessarily correspond to the official view of the ACE organizers.

Figures C. to C. contain the entity types and subtypes. Each
subfigure concerns one type, and each ellipse corresponds to a sub-
type. Solid and dashed arrows try to capture what we have judged,
respectively, as a full or partial correspondence from one subtype to
another.

In turn, Figures C. to C. contain the relation types and sub-
types. In each plot, named boxes correspond to types and ellipses
to subtypes. Similarly, solid and dashed arrows depict full or par-
tial subtype correspondence. A number of boxes and ellipses appear
dotted—this is to indicate that only some of the subtypes in the type
are represented in the figure, and that the full fragment of the hierar-
chy is to be found elsewhere.
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D
List of Publications

This appendix contains a list of the publications which have been pro-
duced with the research in this thesis. For each one of them, the
sections of this document which present the work there contained are
referred.

D. Conference Papers

• (Gonzàlez and Turmo, )

Edgar Gonzàlez and Jordi Turmo. Unsupervised clustering of spontaneous speech documents.
In th European Conference on Speech Communication and Technology (EuroSpeech/Inter-
Speech), .

This paper contains our first experiments on the task of unsupervised document clustering—in
particular, the application of the Geo method on the Swb corpus. The method is presented,
and evaluated on manual transcripts of spontaneous conversations from the Switchboard
corpus. The results show how Geo finds a suitable estimation of the number of clusters in
the collection, and exceeds the performance of its two components, HAC and EM.

The work in the paper is subsumed by the much comprehensive evaluation presented in
Section ..

• (Gonzàlez and Turmo, b)

Edgar Gonzàlez and Jordi Turmo. Comparing non-parametric ensemble methods for docu-
ment clustering. In th International Conference on Applications of Natural Language to
Information Systems (NLDB), pages –, .

This paper contains another series of experiments on unsupervised document clustering—
concerning, in this case, the comparison of individual and combination methods, and between
different ensemble generation strategies. The Major and Minor strategies are presented, as
well as the triad of individual methods Geo, Hi and Info (referred to in the paper as IT).
The Agglo+L algorithm is used for clustering combination. The experiments included in
the evaluation are hence a subset of those included in Section .. The conclusions, neverthe-
less, remain the same: the superiority of ensemble methods—and, in particular, the Major
strategy—over individual methods, and that of Geo among the latter.

Most parts of Sections . and . of this document correspond to extended versions of the
work in the paper.
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• (Gonzàlez and Turmo, )

Edgar Gonzàlez and Jordi Turmo. Unsupervised relation extraction by massive clustering.
In th IEEE International Conference on Data Mining (ICDM), pages –, .

This paper contains our joint approach for unsupervised learning of relation detection pattern.
Specifically, it contains the first presentation of the Ewocs algorithm—albeit without this
name, and in a slightly different form—using the Prob algorithm and the Dist threshold
detection criterion, on the APW and ACE corpora. However, only patterns based on word
POS tags are considered (feature set w:t).

Chapter  contains most of the ideas presented in this paper, especially in Sections ...
and .. However, the evaluation therein subsumes that in the paper, as additional algorithms
and feature sets are included. Regarding the Ewocs algorithm itself, it has been formalized
and evaluated in isolation in Chapter .

D. Journal Articles

• (Gonzàlez and Turmo, a)

Edgar Gonzàlez and Jordi Turmo. Non-parametric document clustering by ensemble methods.
Procesamiento del Lenguaje Natural, :–, .

This article is a journal version of the paper presented the same year in the International
Conference on Applications of Natural Language to Information Systems. Its contents are
hence also included in Sections . and ..

D. Technical Reports

• (Gonzàlez and Turmo, )

Edgar Gonzàlez and Jordi Turmo. Unsupervised document clustering by weighted combi-
nation. Technical Report LSI---R, Department de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, .

This report contains our proposal of a method for weighted clustering ensemble combination,
based on the unweighted approaches of Strehl and Ghosh () and Topchy et al. ().
The report describes the proposed algorithm, and evaluates it on ensembles built from the
Geo, Hi (referred to as HiIT) and Info (referred to as IT) clusterers, following what we
have subsequently named the Minor strategy. The results show how an improvement in
clustering performance can often be achieved with the incorporation of weighting. However,
the computational cost of the approach eventually made us drop it in favour of the simpler
Agglo, Balls and Furth algorithms.
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