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PREFACE 

In this study, a novel hybrid intelligent system (HIS) that provides a unified 

framework of numerical and linguistic knowledge representations is proposed. The 

proposed HIS is a hierarchical integration of an incremental learning fuzzy neural 

network (ILFN) and .a linguistic model, i.e., fuzzy expert system (FES), optimized via the 

genetic algorithm (GA). The ILFN is a self-organizing network with the capability of 

fast, one-pass, online, and incremental learning .. The linguistic model is constructed based 

on knowledge embedded in the trained ILFN or provided by the domain expert. The 

knowledge captured from the low-level ILFN can be mapped to the higher-level 

linguistic model and vice versa. The GA is applied to optimize the linguistic :model to 

maintain high accuracy, comprehensibility, and completeness. The resulting HIS is 

capable of dealing with low-level numerical computation and higher-level linguistic 

computation. After the system is successfully constructed, it can incrementally learn new 

information in both numerical and linguistic forms. To evaluate the system's 

performance, several medical data sets have been used. The simulation results have 

shown that the proposed HIS achieved performance classification better than the 

individual standalone ·· systems. The comparison results based on performance 

classification show that the linguistic rules extracted are competitive with, or even 

superior to, some well-known approaches in literature: 
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CHAPTER I 

INTRODUCTION 

1.1 Medical Diagnosis Overview 

· Treatment .,y 
.-------. physiciai1 

/ 
. ·oata 

Proce~in!,!1 
· Fenture 
Extraciio~ 

· ))ecisioR · ··. 
·.Suppo1't 
.... Syi,tem 

Figure 1.1: Computer-Based Medical Diagnostic System 

Conventional medical diagnosis in clinical examinations highly relies upon 

physicians' experience. Physicians intuitively exercise knowledge obtained from 

symptoms of previous patients. In everyday practice, the amount of medical knowledge 

grows steadily such that it may become difficult for physicians to keep up with all the 

essential information gained. For physicians to quickly and accurately diagnose a patient, 

there is a critical need in the area of employing computerized technologies to assist in 

medical diagnosis and to access to the information related. Computer-assisted technology 

is certainly helpful for inexperienced physicians in making medical decisions as well as 

for experienced physicians in supporting complex diagnoses. . Computer-assisted 

technology has become an essential tool to help physicians in retrieving the medical 
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information and making decisions in medical diagnosis [Seka97], [Dupuits98], 

[Makris98], [Conforti99], [ForanOO], [AdlassnigOl], [EconomouOl]. Figure 1.1 shows a 

diagram of a computer-based medical diagnostic system. · 

As shown in Figure 1.1, a computer-based medical diagnostic system consists of 

several units: 1) a sensory unit/data-receiving unit; 2) a data processing/feature extraction 

unit; 3) a decision support system or a classification unit; and 4) a user interaction unit. 

The sensory unit or the data-receiving unit is used to acquire data from the patient. The 

data can be from Electroencephalography (EEG), Electrocardiogram (EKG), Magnetic 

Resonance Imaging (MRI), Computerized Axial Tomography (CAT), Positron Emission 

Tomography (PET), or from patient's interview. The data processing or feature 

extraction unit is used to prepare data in a form that is easy for a decision support system 

or a classification unit to use. Compared to the input, the output data from the feature 

extraction unit is usually of a much lower dimension as well as a much easier form to 

classify. The decision support system or the classification unit makes decision using data 

from the feature extraction unit. The decision support system provides a list of cause-and­

effect reasoning from the symptoms and their corresponding treatment. Finally, the 

physician uses the output of the decision support system to assist in the diagnosis. With 

direct access to a computer-based medical diagnostic system, the physicians can treat the 

patient promptly and can be more accurate and consistent. 

1.2 Motivation for the Research 

A number of medical diagnostic decision support systems (MDSS) based on 

computational intelligence methods have been developed to assist physicians and medical 
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professionals. Some medical diagnosis systems based on computational intelligence 

methods use expert systems (ESs) [Buchana84], [Wiegerinck99], [KovalerchukOOJ, 

[YanOO], fuzzy expert systems (FESs) [Pefia99], [WalterOO], [ZahanOl], [BelacelOl], 

artificial neural networks (ANNs) [Durg93], [Pattichis95], [Yao97], [WestOO], and 

genetic algorithms (GAs) [Podgorelec99], [ManOO], [Pe:fiaOO]. ESs and FESs use 

symbolic and linguistic knowledge, respectively, and are well recognized as applicable 

tools in medical diagnosis. Physicians and medical professionals· can easily understand 

the decisions from ESs and FESs. However, the development of an ES or a FES for 

medical diagnosis is not a trivial task. It demands an intensive and iterative process from 

medical experts who may not be readily available. On the other hand, ANNs have been 

employed to learn numerical data recorded from sensory measurements, images, patient's 

history, or some physical symptoms. After being trained, ANNs keep knowledge in 

numerical weights and biases that are often regarded as a black box scheme. The 

knowledge stored in weights and biases is just a numerical representation that is used in a 

mapping from the input to the output. This numerical representation makes it difficult for 

physicians or medical professionals to understand the underlying rationale. Physicians 

may want to know the meaning of those numbers and how they are related to the causes 

and effects of symptoms. It would be easier to generate a meaningful explanation if 

knowledge representation is in a symbolic form. Recently, numerical weights of ANNs 

have been translated to symbolic/linguistic rules by using rule extraction algorithms 

[Setiono96], [Tan97], [Tickle98], [Taha99], [Tino99], [MitraOO], [SetionoOO]. 

Symbolic/linguistic rules extracted are then used as a knowledge base for an ES or a FES 

to support physicians in making decisions [Setiono96], [Taha99], [MitraOO], [SetionoOO], 

3 



[HayashiOO]. However, the resulting knowledge base is often incomplete and inefficient. 

It may perform poorly in unseen data. 

The integration of symbolic/linguistic processing and numerical computation, or 

hybrid intelligent architectures, was motivated by a need to improve the accuracy of a 

decision-making system. [Gallant93], [Medsker94], [Goonatilake95], [Taha97], 

[WermterOO]. Hybrid intelligent architectures tend to be more appropriate in applications 

that require both numerical computation for. generalization and symbolic/linguistic 

· reasoning for explanation. It is found that hybridization between symbolic/linguistic and 

numerical representations can achieve higher correct classification rate as compared to 

either of them employed alone [Tan97], [Taha97], [WermterOO]. 

Most investigations on hybrid intelligent systems have focused on the accuracy 

and the interpretability. In a learning system, an incremental learning capability is 

considered an important attribute aside from its accuracy and interpretability. As for 

medical diagnosis, patient data grows everyday, and novel medical knowledge should be 

quickly incorporated into a medical diagnosis system without spending large amounts of 

time in the learning process. In a hybrid system, usually multilayer perceptron (MLP) 

neural networks are used as a numerical model that is trained by backpropagation 

algorithms [Taha97]. One well-known problem of the backpropagation learning 

algorithms is that it is difficult to employ an incremental learning feature. The standard 

backpropagation algorithm lacks the ability to dynamically incorporate additional nodes 

or connections needed during learning [Tan97], [Fu96]. In medical problems, new 

knowledge of diagnosis may be found after the diagnosis system has been constructed. In 

using the backpropagation learning algorithms, all old and new data have to be retrained 
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in order to update the knowledge to cover the new symptoms. With an incremental 

learning algorithm, the new knowledge can be learned and added to the system without 

retraining previously learned data [Fu96], [Carpenter92], [Yen99], [YenOl]. 

The.contribution of this study is in the development of a pattern classifier system 

(i.e., a decision support system) that is concerned not only with accuracy and 

interpretability but also on an incremental learning concept. We propose a hybrid 

intelligent system (HIS) that is composed of a numerical model in the low level and a 

linguistic model in the higher level and is equipped with an incremental learning 

algorithm. The proposed system is a hierarchical integration of an incremental learning 

fuzzy neural network (ILFN} [Yen99], [YenOl], and a fuzzy expert system (FES). The 

ILFN is a self-organizing network with the ability for fast online learning .. The ILFN can 

learn incrementally without retraining old information. The linguistic model, FES, is 

constructed based on knowledge embedded in the trained ILFN. The knowledge captured 

from the low-level ILFN can be mapped to the higher-level FES and vice versa. The 

system is equipped with a conflict resolution scheme to maintain consistency in decision­

making. The low-level ILFN contributes fast, incremental learning while the higher-level 

FES offers advantages of dealing with fuzzy data. It provides easy interpretation and 

explanation to the decision made. A genetic algorithm (GA) is then applied to optimize 

the linguistic model to maintain. high accuracy and comprehensibility. The resulting HIS 

is capable of dealing with low-level numerical data and higher-level linguistic 

information. After being completely constructed, the system can incrementally learn new 

information in both numerical and linguistic forms. 
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1.3 Organization of the Dissertation 

The rest of this dissertation is organized as follows. Literature review related to 

general pattern classification is discussed in Chapter II. Following this, Chapter III gives 

the details of the proposed hybrid intelligent system (HIS). Quantitative measures on the 

accuracy, comprehensibility, and completeness of a fuzzy knowledge base are discussed 

in Chapter IV. To demonstrate the effectiveness and efficiency of the proposed system, 

numerical simulations and benchmark comparisons are presented in Chapter V. Chapter 

VI details the development of a hybrid intelligent system graphical user interface. 

Additional study on fuzzy temporal representation and reasoning is described in Charter 

VII. Finally, Chapter VIII provides some concluding remarks and outlines possible future 

research directions. 
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CHAPTER II 

LITERATURE REVIEW 

Pattern classification presents a fundamental solution to various problems in real 

world applications such as sonar detection and classification [SabatiniOl], [Kundu94], 

image processing [Bors99], [Pan99], process control [Marcu97], [Bensaoula98], 

signature identification [Qi95], machinery conditional health monitoring [Filippetti2000], 

[Li2000], computer-assisted medical diagnosis [Chen98], [Chen2000], [Tilbury2000], 

[Sacha2000], and etc. The function of pattern classification is to categorize an unknown 

pattern into a distinct class based upon some suitable similarity measures. Thus, similar 

patterns are designated into the same classes, while dissimilar ones are classified into 

different classes. 

2.1 Basic Architecture of Pattern Classification 

Physical real world 

t -=:::::::::::Infinite dimensional ! 
Sensors 

Real world 

-==:::::::: K c I asses 

Preprocessing _.. Pattern space Classification ...,. Classes 

~ ~dimensional i 
Feature extraction_.. Feature space 

Figure 2.1: The Conceptualized Pattern Classification Problem 

Figure 2.1 illustrates the framework of the pattern classification problem. The 

· physical real world is sensed by a transducer system that feeds its data into the pattern 

space after a preprocessing procedure. The physical real world, or sensory system, can be 

characterized by a continuum of parameters that are basically infinite in dimensionality. 
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Transducers are used to transform signals from real environment to the pattern vector 

space with the dimensionality of R, typically a large value. Then a feature extractor is 

employed to reduce the dimension from R to a much smaller value, M, while still 

preserving the discriminatory features for classification expectation. Using an M-

dimensional feature space, a classifier performs much faster than using an R-dimensiorial 

pattern space. Finally, in the classification space, one of K classes is chosen for a given 

input pattern [Andrews72]. 

The data that will be classified are presented into pattern classifiers by sets of 

measurements. Each measurement can be associated to an axis in a multidimensional 

space called "hyperspace." For visualization purpose, Figure 2.2 shows a two-

dimensional space with three groups, i.e., "classes," of patterns. Figure 2.3 illustrates a 

linear separable problem in which a line exists to separate the two classes. Figure 2.4 

demonstrates a non-linear separable problem where a straight line cannot separate the two 

dasses. A non-linear decision boundary is needed to solve this problem. An overlapping 

class is depicted in Figure 2.5. Neither a linear nor a non-linear boundary can separate 

this problem. However, the decision can be made by using "Bayes strategy" to minimize 

misclassification rate for this problem. 

Dimension= 2 · 
Classes= 3 
Patterns in class 1 = 20 
Patterns in class 2 = 28 
Patterns in class 3 = 25 
Total patterns = 73 

P, 

X 
X X 

xx 
X X 

class 1 

xx 
X X 

~ X 
xx 

X 

• 
.• • class 3 

.":·::;.:::·-· 

class 2 

Figure 2.2: Example of a Two-Dimensional Vector Pattern Space 
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class 1 

X XX X 

X XX X X 
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class 2 

Figure 2.3: A Linearly Separable Problem 

P, 

• • 

class 2 

Figure 2.4: A Nonlinearly Separable Problem 

class I x .: • • • 
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xx xxx.~:. •: 
X X X ·X • • 
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Figure 2.5: An Overlapping Problem 
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A large number of classification techniques have been developed to deal with 

pattern classification problems. Some of these classification techniques are statistical­

based approaches, neural networks, expert (knowledge-based) systems, fuzzy systems, 

and hybrid systems, which involve the combination of two or more techniques mentioned 

above. 

2.2 Statistical Classifiers 

A statistical classifier is a conventional technique for pattern classification 

· problems [Heng98], [Kumar97]. Much of the early work focused on linear classifiers 

[Smith68] and parametric classifiers such as Bayesian classifier [Duda73]. Because 

statistical approaches are usually based on the assumption that the decision problem is 

posed in probabilistic terms and that all of the related probability parameters are known 

beforehand [Duda73]. These techniques can rarely be ideally applied in practice. 

However, due to its effectiveness, even when approximate values are used, statistical 

classifiers are still widely applied (see [Wiegerinck99], [Dennis96], [Pradhan96], 

[Yan2000], [Nikovski2000], [Matthews2001].) Statistical approaches may limit to the 

simple problems in which the probabilistic values are known in a prior or can be reliably 

estimated. In many complex applications, the probabilistic values are not known 

beforehand. Computational intelligence methods, such as genetic algorithms, neural 

networks, expert systems, fuzzy systems, are motivated in order to handle more 

complicated applications. 
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2.3 Genetic Algorithms 

The genetic algorithm [Holland75] is a stochastic search useful for optimization 

problems. It is motivated by the mechanisms of evolution in nature [Darwin58]. The 

genetic algorithm operates on populations of strings, with the string coded to represent 

some underlying parameter sets. Reproduction, crossover, and mutation are applied to 

successive string population~ to create· new string populations. These operators involve 

random number generation, string copying, and partial string exchange. Figure 2.6 

illustrates a flow chart diagram of the genetic algorithm. 

chromosomes fitness 
Define fitness function and 

other parameters 1010001100 8 
0011011001 48 
1100000100 13 
0000111111 12 

Initialize population ----------> 1111001101 43 
1110000011 36 

• -----------------------------
Evaluate fitness 1110000011 36 

1111001101 43 
1111001101 43 

Select mate -----------> 1110000011 36 
0011011001 48 
1111001101 43 

Crossover --- ---- --- -> 1111001101 
1110000011 
1111000011 
1110001101 

Mutate 0011011101 
1111001001 

--... 1011001101 
Evaluate fitness 1010000010 

1111000011 
1111011101 

No Yes 0011011101 
Satisfy solution? 1111001011 

Figure 2.6: Flowchart Diagram of the Genetic Algorithm 

In practice, we can implement this genetic model of computation by having arrays 

of bits or characters to represent the chromosomes. Simple bit manipulations allow the 

implementation of crossover, mutation, and other operations. When the genetic algorithm 

is implemented, it usually proceeds in a manner that involves the following cycle: 
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evaluate the fitness of all of the individuals in the population; create a new population by 

performing operations such as crossover, fitness-proportionate reproduction and mutation 

on the individuals whose fitness has just been evaluated; discard the old population and 

iterate using the new population. 

2.4 Neural Networks 

A neural network is a data processing system consisting of a massive number of 

simple and highly interconnected processing units operated in a parallel manner. The 

networks are inspired by the structure and the function of the human brain. The 

characteristics of an artificial neural network are model-free (i.e., the model can be 

considered as a "black box") and trainable systems with parallel computation. These 

properties are considered as benefits to many applications in the real world, including 

pattern classification problems. 

Leaming algorithms of neural networks applied to pattern classification have two 

main categories: supervised learning algorithms and unsupervised learning (clustering) 

algorithms. The use of supervised learning algorithms assumes that the input and the 

corresponding target pairs are known. This approach assumes that appropriate input 

features have been chosen and that the training data are representative of all the problem 

conditions. Some examples of supervised learning networks are the multilayer perceptom 

network (MLP) [Rumelhart86] trained by the Backpropagation algorithm (BP) 

[Rumelhart86], probabilistic neural network (PNN) [Specht88]-[Specht94], the learning 

vector quantization (L VQ) neural network [Kohonen97J, and the radial basis function 

networks (RBFN) [Broomhead88], [Haykin94], [Hwang97], [Moody89]. 
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On the contrary, in unsupervised learning neural networks, the input does not 

have a corresponding target. Since there are no target outputs available, the network 

distinguishes the input data into a number of clusters. The system learns to categorize the 

input patterns into a finite number of classes using some similarity measures. The two 

most used unsupervised neural networks are adaptive resonance theory networks (ART) 

[Carpenter87] and self-organizing maps (SOM) [Kohonen97]. 

2.4.1 Multilayer Perceptron (MLP) Neural Network 

Output 
Input 

Input Layer Hidden Layer Output Layer 

Figure 2.7: The MLP Neural Network 

The MLP neural network trained by the backpropagation algorithm has been a 

good candidate for pattern classification problems. The MLP is a fully connected 

feedforward network with sigmoidal activation functions. There are many developed 

algorithms that are used to train the network such as the steepest descent, Newton's 

methods [Battiti92], conjugate gradient [Charalambous92], and Levenberg-Marquardt 

algorithm [Hagan94]. Rumelhart and McClelland in [Rumelhart86] present an extensive 

detail of the MLP network. The steepest descent backpropagation algorithm requires a 

long training time. In addition, similar to the other nonlinear optimization methods, there 
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is no guarantee of convergence to a global minimum. Especially when complex decision 

boundaries are required and networks have more hidden layers, the performance index 

becomes more complicated [Dimartino96], [Lippmann89]. Levenberg-Marquardt 

backpropagation is a very fast learning algorithm for training the MLP network but it 

requires a considerable amount of memory [Hagan94]. The architecture of the MLP 

network is shown in Figure 2.7. 

2.4.2 Probabilistic Neural Network (PNN) 

P, 

P, 

INPUT 
UNITS 

PATTERN 
UNITS 

SUMMATION 
UNITS 

Figure 2.8: The PNN Network Architecture 

The probabilistic neural network (PNN), developed by Specht in 1988, is a useful 

methodology for solving pattern classification problems. "Decision boundaries" which 

are the lines separating the different classes are formed by characteristic values from 

conditional probability density functions (PDF). The network is able to form complex 

nonlinear decision boundaries created by the Bayes strategy when given enough 

examples. The training speed of the PNN is faster than the MLP trained by the 

backpropagation algorithm to achieve the same level of generalization. On-line learning 
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is another advantage of the PNN; thus it is suitable to use the PNN for real-time 

applications: However, the PNN uses extensive memory requiring one neuron for each 

training pattern. Therefore, researchers have proposed various remedies to solve the 

memory problem, such as using clustering techniques to implement a cluster center 

which represents a prototype of training patterns [Specht88], [Specht94]. Figure 2.8 

shows the architecture of the PNN. 

2.4.3 Radial Basis Function (RBF) Neural Network 

Another good candidate for pattern classification is the RBF neural network 

[Broomhead88], [Moody89],. [Haykin94], [Hwang97J. The network is a feedforward 

network consisting of three layers: an input layer, a hidden layer, and an output layer. 

Each neuron of the input layer connects to each element of an input vector. Neurons of 

· the input layer are fully connected · to neurons of the hidden layer via weights that 

represent the centers of radial basis functions in the hidden layer. The hidden layer has 

kernel functions (activation functions), usually Gaussian types, which are centered on the 

mean vectors of clusters or prototypes in the input space. 

Training of the RBF network can proceed in two steps. First, the hidden layer is 

trained. Training patterns are clustered to a reasonable number of groups by using SOM 

clustering [Kohonen97], k-means clustering [Moody89], a successive approximation 

method [Linkens93], or the APC-111 algorithm [Hwang94]. After the training of the 

hidden layer, the output layer is trained by a gradient descent method or a least mean 

square error method [Devijver82]. It is worth noting that both APC-111 and the successive 

approximation method are equipped with incremental learning ability (meaning that it 
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learns new information without forgetting old information). It can cluster input patterns 

within only a single pass through all patterns. A variety of techniques for training radial 

basis function networks are discussed in the literature [Broomhead88], [Moody89], 

[Haykin94], [Hwang97]. In general, the training procedure of RBF networks requires an 

order of magnitude less in training time compared to the MLP trained by the 

backpropagation algorithms [Musavi92]. Moreover, their functions can be interpreted 

equivalent to a fuzzy inference system [Jang93]. The architecture of the radial basis 

networks is shown in Figure 2.9. 

P, 

P, 

.- - ... 
I I 

I 
I 

Figure 2.9: Radial Basis Function Neural Network 

2.4.4 Self-Organizing Map (SOM) Neural Network 

The self-organizing map (SOM) neural network is an unsupervised learning 

algorithm that is very effective for pattern classification problems. The SOM network is 

usually composed of an input layer and an M-dimensional Kohonen or competitive layer. 

Typically the Kohonen layer is a two-dimensional layer. The weight vector is the same as 

the dimension of the input feature vectors. The weight vectors are randomly initialized in 

the feature space at the first stage. Then, the network determines the wining neuron for a 
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given input vector. Next, all neurons within a certain neighborhood of the winning 

neuron are updated moving toward the input. The moving step is controlled by the 

learning rate [Kohonen97]. One drawback of the SOM network is that the user needs to 

estimate the number of clusters in advance. For some applications, it may not be feasible 

to estimate the number of clusters beforehand. In addition, the choice of learning rate 

forces a trade-off between the speed of learning and the stability of the final weight 

vectors. Moreover, the SOM network needs iterative presentations of input patterns in 

the learning process. 

A generalization of the SOM netwgrk, namely the learning vector quantization 

(L VQ) neural network, has been extensively used for pattern classification problems. The 

L VQ network uses both an unsupervised and a supervised learning algorithm. The LVQ 

algorithm applies a reinforced or a punished learning principle. If the current training 

pattern is correctly classified, the winning prototype vector will be moved closer toward 

the input pattern. If the input pattern is incorrectly classified, the prototype vector will be 

moved away from the input [Kohonen97]. A drawback of the L VQ network is that the 

number of clusters in the competitive layer needs to be determined in a priori. Moreover, 

it needs off-line training provided that all input patterns and the corresponding targets are 

available. Furthermore, in the learning process, the L VQ requires iterative presentations 

of the input patterns. 

2.5 Expert (Knowledge-Based) Systems 

A neural network is a distributed approach where one unit in the hidden layer 

corresponds to a knowledge representation. Even though this distributed approach is 
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advantageous in efficiency of memory usage or adaptability, it is disadvantageous in 

lacking the understandability for the human beings [Narazaki96]. Neural networks belong 

to a family of models that are based on a learning-by-example archetype in which 

problem solving knowledge is automatically created according to nonsymbolic or 

numerical data presented to the network. The knowledge, however, is represented at a 

subsymbolic level in terms of connections and weights. Neural networks act like a black 

box providing little insight into how decisions are made. They have no explicit, 

declarative knowledge structure that allows the representation and reasoning of decision 

made [Huang97]. 

Recently, knowledge-based systems or expert systems have gained a broad 

recognition as powerful tools for solving complex pattern recognition and pattern 

classification problems. Knowledge-based systems are finding increasing use as a 

practical option for problems involving human judgment. These systems operate using a 

set of knowledge that captures the logic needed to address the problem at hand. This 

knowledge may be represented in a variety of formats including production rules, 

semantic nets, decision trees, frames, and objects [Gonzalez93]. Most knowledge-based 

systems contain a vast set of knowledge that covers some problems presented to the 

system [Chaturvedi92]. The domain knowledge in expert systems is typically emphasized 

over formal reasoning methods; hence, expert systems are called "knowledge-based 

expert systems." A knowledge base contains all knowledge regarding a domain of 

interest that has been captured through a knowledge acquisition module [Lu97]; 

Knowledge-based networks establish a class of artificial neural networks that use crude 
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domain knowledge to generate the initial network architecture that is later refined in the 

· presence of training data [Mitra97]. 

Experience with rule-based expert systems has shown that the ability to generate 

explanations is absolutely crucial for user acceptance of computational intelligence 

systems. Hence, it is very important to understand the behavior of artificial neural 

networks. One way to generate an understanding of the behavior of artificial neural 

networks is to extract their problem solving knowledge in terms of rules [Huang97]. 

Knowledge-based system is a computational intelligence system which mimics 

the knowledge of human experts in order to exercise a heuristic to a given problem. The 

solution from knowledge-based system is essentially the same as that obtained by human 

experts when faced with the same problem. A knowledge-based system reflects the 

problem solving abilities of a human expert within a specific problem domain 

[Gonzalez93]. The major logical components of an expert system are a knowledge base, 

an inference engine, and an explanation facility. 

Knowledge Acquisition 

Human 
Operator 

Knowledge 
Base 

Inference 
Engine 

Work 
Space 

Figure 2.10: A Block Diagram of an Expert System 
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The knowledge base represents the most important component of a knowledge­

based system. It contains the entire relevant, domain-specific, problem-solving 

knowledge which is collected by a knowledge engineer from human experts. The format 

of the knowledge refers to how this knowledge is represented internally within the 

knowledge-based system so that it can be used in problem solving. The knowledge 

representation forms widely used include logic, procedure, semantic network, production 

systems (if-then rules), and frames and scripts. The inference engine is the interpreter of 

the knowledge stored in the knowledge base. It examines the contents of the knowledge 

base and the data accumulated about the current problem and derives additional data and 

conclusions. The data structure selected for the specific form of knowledge representation 

determines the nature of the inference engine. The knowledge explanation facility 

provides the reasoning to the users. Figure 2.10 shows a block diagram of an expert 

system . 

. 2.5.1 Knowledge Representation 

Various methods of representing knowledge within an expert system are reported 

in the literature. Some of the widely used methods are semantic networks, frames, and . 

production rules. 

Semantic Networks: A semantic network has the structure of a graph where a node 

represents a concept and an arc connecting the nodes represents the relationship between 

the concepts. A good property of semantic networks is that semantic networks permit the 

statement of important associations explicitly and compactly. Compared to frames and 

productions rules, the search time in the semantic networks is less because the nodes are 
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directly connected to related nodes. A drawback of semantic networks is that no standard 

interpretation exists for knowledge representation within semantic network. Besides, 

there is a high possibility of incorrect inferences drawn using semantic networks. 

Frames: Frame is one of the knowledge representation schemes which include 

knowledge about a concept. A frame structure may consist of various slots. Each slot may 

consist. of properties of a single concept. Some advantages of frames are: 1) the 

knowledge engineer can specify the actions that should take place when certain 

conditions arise during the knowledge processing; 2) inference process is speedy; and 3) 

frames can be made self driven. A disadvantage of frames is that frame based systems 

can be too complex. Furthermore, it is not easy to accommodate the new situations in 

frame-based systems. 

Production Rules (IF-Then Rules/' The production rules, also called "if-then 

rules," are widely used in the majority of the expert systems. The rules are the If-Then­

Action rules; that is if condition is met, then some action is performed. These rules may 

contain certainty factors. In the absence of certainty factor, the decision is assumed to be 

100% confidence. 

Some of the advantages of the production rules are as follows. 1) It is easy to 

incorporate additional knowledge, modify knowledge and eliminate knowledge since the 

rules are independent from each other. 2) Rules are generally "crystal clear" to humans in 

the sense that they use the same form of natural language. 3) There is a provision to 

incorporate heuristic knowledge and inexact information using uncertainty factors. 4) It is 

easy to incorporate the explanation facility in the expert system by simply restating the 

rules. 
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On the other hand, production rules have some disadvantages. For example, when 

the knowledge base grows, it may become difficult to keep track of the rules. In addition, 

when new knowledge is introduced to fix some problem in the knowledge base, a 

contradiction may be introduced. 

2.5.2 Mycin Expert System for Medical Diagnosis 

Mycin is an expert system developed at Stanford in the 1970s. Its objective is to 

diagnose and recommend treatment for certain blood infections. Without Mycin, to do the 

diagnosis properly will involve growing cultures of the infected organism. Unfortunately 

this takes around 48 hours, and if doctors waited until this was complete their patient 

might be dead. So, doctors· have to come up with quick guesses about the likely problems 

from the early symptoms, and use these intelligent guesses to provide necessary 

treatments. Mycin was developed partly in order to explore how human experts make 

these rough but important guesses based on partial information. However, the problem is 

also a potentially important one in practical terms; there are lots of junior or non­

specialized doctors who sometimes have to make such a bold diagnosis, and if there is an 

expert tool available to help them then this might allow a more effective treatment to be 

prescribed. Mycin represented its knowledge as a set of IF-THEN rules with certainty 

factors. The following is an English version of one ofMycin's rules: 

IF the infection is pimary-bacteremia , 

AND the site of the culture is one of the sterile sites, 

AND the suspected portal of entry is the gastrointestinal tract, 

THEN there is suggestive evidence (0. 7) that infection is bacteroid. 
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The 0.7 is roughly the certainty that the conclusion will be true given the 

evidences. If the evidence is uncertain, the certainties of the bits of evidence will be 

multiplied with the certainty of the rule to give the certainty of the conclusion. 

Mycin is a goal-directed system, using the backward chaining reasoning strategy 

that is the inference engine selects a possible conclusion and try to prove its validity by 

searching for supporting evidences. However, Mycin used various heuristics to control 

the search for a solution or proof of some hypotheses. These were needed both to make 

the reasoning efficient and to prevent the user being asked too many unnecessary 

questions. One strategy is to first ask the user a number of more or less preset questions 

that are always required and from which allow the system to rule out totally unlikely 

diagnoses. Once these questions have been asked the system can then focus on particular, 

more specific possible blood disorders, and go into full backward chaining mode to try 

and prove each one. This rules out a lot of unnecessary search, and also follows the 

diagnostic pattern of human patient-doctor interviews. The other strategies relate to the 

way in which rules are invoked. The first one is simple: given a possible rule to use, 

Mycin first checks all the premises of the rule to see if any are known to be false. If so, 

there is not much point using the rule. The other strategies relate more to the certainty 

factors. Mycin will first look at rules that have more certain conclusions, and will 

abandon a search once the certainties involved get below 0.2. 

A dialogue with Mycin has three main stages. In the first stage, initial data about 

the case is gathered so the system can come up with a very broad diagnosis. In the 

second, more directed questions are asked to test specific hypotheses. At the end of this 

section a diagnosis is proposed. In the third section questions are asked to determine an 
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appropriate treatment, given the diagnosis and facts about the patient. This obviously 

concludes with a treatment recommendation. At any stage the user can ask why a 

question was asked or how a conclusion was reacht;:d, and when treatment is 

recommended the user can inquire alternative treatments if the first is not viewed as 

satisfactory. 

2.6 Fuzzy Systems 

The idea of fuzzy sets was originated by Zadeh [Zadeh65]. The main concept of 

fuzzy sets is that many problems in the real world are imprecise rather than exact. It is 

believed that the effectiveness of the human brain is not only from precise cognition, but 

also from fuzzy concept, fuzzy judgment, and fuzzy reasoning. Fuzzy systems reason 

with multi-valued sets or.fuzzy sets (i.e., the sets of values between O and 1) instead of bi­

valued sets or crisp sets (i.e., the sets of value of O and 1). An advantage of fuzzy 

classification techniques lies in the fact that they provide a soft decision, a value that 

describes the degree to which a pattern fits within a class, rather than a hard decision, in 

which a pattern either belongs to a class or not. In later development, fuzzy systems are 

successfully used to handle many applications in the real world such as control systems 

and pattern classification problems. Some well-known fuzzy systems are fuzzy-rule-base 

methods [lshibuchi92], fuzzy c-means [Bezdek81], fuzzy k-nearest-neighbor [Bezdek86], 

[Keller85], and fuzzy decision tree [Chang77]. 

A typical fuzzy logic system has four components: a fuzzifier, a fuzzy rule base, 

an inference engine, and a defuzzifier. The function of the fuzzifier is to determine the 

degree of membership of a crisp input in a fuzzy set. The fuzzy rule base is used to 
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represent the fuzzy relationships between input-output fuzzy variables. The output of the 

fuzzy rule base is determined based on the degree of membership specified by the 

fuzzifier. The inference engine calculates the rule's conclusion based on its membership 

degree. Optionally, if needed, a defuzzifier is used to convert outputs of the fuzzy rule 

base into crisp values. Figure 2.11 illustrates a block diagram of a fuzzy system. 

Crisp --+- Fuzzifier 
Input . 

Fuzzy Rules 
Rule 

Inference 
Engine 

Defuzzifier --+- Crisp 
Output 

Figure 2.11: A Block Diagram of a Fuzzy System 

2.6.1 Structure of Fuzzy Rules 

A fuzzy rule is the basic unit for capturing knowledge in many fuzzy systems. A 

fuzzy rule has two components: 1) an IF-part or the antecedent and 2) a THEN-part or the 

consequent (i.e., If <antecedent> THEN <consequent>). The antecedent describes a 

condition, and the consequent. describes a conclusion that can be drawn when the 

condition holds. The most popular models of fuzzy systems are the Mamdani models 

[Mamdani74] and the Takagi-Sugeno (TS) models [Takagi85]. Brief discussions of fuzzy 

systems for both Mamdani models and TS models are given.in the following subsections. 

2.6.2 Mamdani Models 

Mamdani fuzzy-rule based systems [Mamdani74] consist of a linguistic 

description in both the antecedent parts and the consequent parts. Each rule is a 

description of a condition-action statement that may be clearly interpreted by the users. 
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To describe a mapping from input U1x U2 x ... x Un (where xis the Cartesian product) to 

output W,.the linguistic rule structure ofMamdani models is as follows: 

Ri: IF x1 is An and ... and Xn is Ain THEN y is C, i = 1, ... , L (2.1) 

where L is the number of fuzzy rules, Xj E Uj,j = 1, 2, ... , n, are the input variables, y is 

the output variable, and Au and Ci are the linguistic variables or fuzzy sets for Xj and y 

respectively. Au and Care characterized by membership functions mAij (x) and me; (y), 

respectively. Assuming normalized membership values mi, and denoting W = {w1, w2, 

... , wn} as the finite set of possible normalized output values, the resulting output, j), can 

be obtained by applying defuzzification methods as follows. 

Center of Gravity ( COG): The COG is the most popular defuzzification 

technique. The COG method takes into account the entire possibility distribution in 

calculating its representative point. Alternatively, we can view the COG method as 

calculating a weighted average, where mi(x) serves as the weight for value x. 

n 

Imi(x)w; 
A i=l (2.2) y = n 

Imi(x) 
i=l 

Mean of Maximum (MOM): The MOM method calculates the average of those 

output values that have the highest possibility degrees or the center of gravity of the area 

under the maxima of fuzzy output. 

Iwi 
A ieM (2.3) y = M 
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where M = { i I mi= max( m1 ... ,mn } . 

2.6.3 Takagi-Sugeno (TS) Models 

Instead of working with linguistic rules as in Mamdani models [Mandani74], 

Takagi, Sugeno, and Kang [Takagi85], [Sugeno88] proposed a new model based on rules 

where the antecedent was composed of linguistic variables, while the consequent was 

represented by a function of the input variables. The most usual form of these kinds of 

rules is the one shown in the following, in which the consequent constitutes a linear 

combination of the variables involved in the antecedent: 

Ri: IF X1 is An and ... and Xn is Ain THEN Yi= bw + bnx1 + bi2X2 + ... + binXn, (2.4) 

where x1,j = 1, ... , n, are the system input variables, Yi is the output variable, and biJ,i = 0, 
,, 

1, ... , n, are the numerical constant parameters. An, ... ,Ain are linguistic labels associated 

in the form of fuzzy set. The entire rule base consists of L rules: R = { Ri Ii =l, 2, ... , L }. 

The aggregated output of the model, y , is calculated by taking the weighted average of 

the rule consequents: 

L 

L¢;Y; 
y = ~i=~~-- (2.5) 

L¢i 
i=l 

where ¢i is the degree of activation of the ith rule: 

n 

¢; = fl mA/x), i = 1,2, ... ,L, (2.6) 
j=l 
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andmA1; (.x): 9t ~ [O, 1] is the membership function of the fuzzy setAij in the antecedent 

of Rj. 

The inference performed by the TS model is an interpolation of the entire relevant 

linear model. The degree of relevance of a linear model is determined by the degree of 

the input data belonging to the fuzzy subspace associated with the linear model. These 

degrees of belonging become the weight in the interpolation process. 

2.6.4 Constructing Fuzzy If-Then Rules 

Fuzzy linguistic rules are usually constructed by employing knowledge from 

human experts in a problem domain. However, experts in a particular problem are not 

always readily available for constructing a fuzzy rule base. Even if there are experts 

available, it is very time-consuming to derive fuzzy linguistic rules. To cope with this 

problem, automatic construction of fuzzy rules from numerical data has been extensively 

investigated. 

With the emerging technologies of computational intelligence, such as artificial 

neural networks (ANNs), genetic algorithms (GAs), and other learning algorithms, the 

generation of fuzzy rules has been improved. Clustering algorithms such as c-means, 

fuzzy c-means, and self-organizing feature map algorithms have been employed to assist 

fuzzy rule generation. In clustering approaches, training patterns are clustered into 

subspaces that are mapped to fuzzy rules. ANN s are also applied to help in constructing 

fuzzy rules. Linguistic rules can be extracted from the trained ANNs [Fu94]. 

Ishibuchi et al. [Ishibuchi95] proposed the concept of distributed fuzzy if-then 

rules where all fuzzy if-then rules corresponding to several fuzzy partitions were 
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simultaneously employed in fuzzy inference. A disadvantage of this method is that an 

excessive number of rules are generated especially for high-dimensional pattern spaces. 

Abe et al. [Abe95] proposed a method to construct fuzzy rules directly from numerical 

data. In this method, activation hyperboxes are used to define fuzzy regions. This method 

is unclear to human users since fuzzy linguistic variables are not being used. In addition, 

Ishibuchi et al. [Ishibuchi97] used the genetic algorithm to derive fuzzy rules from 

numerical data. Using this method, a compact rule set is obtained since several 

unnecessary fuzzy partitions are removed by the genetic operations. Nozaki et al. 

[Nozaki96] studied a method for selecting significant fuzzy rules by pruning unnecessary 

ones. Their method employs the error correction-based learning procedure and the 

concept of forgetting. Russo [Russo98] developed FuGeNeSys, a method based on the 

genetic algorithm to model fuzzy systems from input-output data. Tang et al. [Tang98] 

proposed a scheme to obtain optimal fuzzy subsets and rules derived from the use of 

genetic algorithms. Wang et al. [W angHong98] proposed a methodology to construct 

fuzzy knowledge by integrating multiple sources using genetic algorithms. lshibuchi et 

al. [Ishibuchi99] proposed a method to construct a fuzzy classifier using antecedent fuzzy 

sets of each fuzzy if-then rule and pre-specified linguistic values with fixed membership 

functions while the consequent class and the grade of certainty of each fuzzy if-then rule 

are determined by a simple heuristic procedure. The genetic algorithm was used as an 

optimi~ation method to reduce the number of rules. Using the "don't care" membership 

function, this method is claimed to handle high-dimensional problems very effective. 

Figueiredo and Gomide [Figueiredo99] proposed a method to extract fuzzy rules from a 

neurofuzzy network. Chow et al. [Chow99] used a fuzzy neural network to extract 
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knowledge by heuristic constraint enforcement. Jin et al. [Jin99] proposed evolution 

strategy to generate a fuzzy rule set which is considered to be flexible, complete, 

consistent, and compact. Cordon and Herrera [Cordon99] proposed a method to construct 

TS fuzzy rule-based systems using a two-stage evolutionary process. In the first stage, a 

preliminary TS-type knowledge base is obtained from the training data. The second stage 

performs a hybrid genetic local search to obtain an optimal global solution. Shi et al. 

[Shi99] proposed a method to design fuzzy systems by using evolutionary algorithms. In 

their study, the shapes and types of membership functions and the fuzzy rule set 

including the number of rules used are evolved. In addition, the genetic parameters of the 

evolutionary algorithm are adapted via a fuzzy system. 

2. 7 Hybrid Intelligent Systems 

The computational intelligence methods such as expert systems, fuzzy systems, 

neural networks, and genetic algorithms, are complementary to each other in terms of 

their advantages and disadvantages. Expert systems provide symbolic interpretation and 

explanation capability. Fuzzy systems offer the important concept of computing with 

words that deal with imprecision and information granularity. In addition, fuzzy systems 

have a benefit on approximate reasoning. Neural networks have the capability of learning 

and adaptation. Genetic algorithms make use of an evolutionary search that is essential 

for optimization. A lot of research projects have been investigating on how to combine 

two or more methods· in order to overcome limitations of each individual system alone. 

This synergism can be exploited to achieve benefits such as accuracy, interpretability, 

robustness, and low solution cost. A hybrid intelligent system is a system resulting from 
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the combination of two or more intelligent systems into the same framework. A hybrid 

intelligent system is designed to improve system interpretability or performance over that 

of each individual technique used alone. 

Earlier research proposals for classifying hybrid systems can be found in many 

publications [Medsker94], [Hilario94], [Goonatilake95], [Taha97], [McGarry99], 

[WermterOO]. Medsker has defined the classes of hybrid system in three categories: 

loosely, tightly, and fully integrated systems [Medsker94]. In loosely coupled systems, 

the communication between the modules is performed by shared files, while tightly 

integrated systems and fully integrated systems use shared memory structures. 

Hilario has proposed two hybrid classifications for integration: the unified 

approaches and hybrid approaches [Hilario94]. The unified approaches use neural 

networks to implement all the processing activities including a symbolic one. The hybrid 

approach integrates separate symbolic and neural elements. In the hybrid approaches, 

Hilario uses four distinct classes based on the flow of data between the modules as well 

as two degrees of coupling, i.e., loosely coupled and tightly coupled. 

Goonatilake and Khebbal [Goonatilake95], based on neural networks, rule-based 

systems, genetic algorithms, and neuro-fuzzy logic, have defined hybrid systems into 

three terms: function-replacing hybrids, intercommunicating hybrids, and polymorphic 

hybrids. In the function replacing hybrids, a basic of one technology is replaced by 

another technology, for example the use of genetic algorithms to train neural networks. 

The intercommunicating hybrids · have modular structures. Different modules use 

different kind of systems and they are basically independent. The function replacing 

hybrids can be considered as a sub-class within the intercommunicating class. The 
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function-replacing hybrids use a neural network to replace the inferencing engine of an 

expert system. The intercommunicating class is a redundant term of the function-

replacing hybrids. In the last term, the polymorphic hybrids base on one technology but 

achieve the functionality of different processing techniques [Goonatilake95]. 

Taha has classified hybrid intelligent systems that are the combination of an 

expert system and a neural network into four groups: standalone models, transformational 

models, tightly coupled models, and fully coupled models [Taha97]. Standalone hybrid 

intelligent models have two separate components, an expert system and an artificial 

neural network, where there is no interaction between them. Transformational models are 

sequential in their operational nature, starting up with one component and ending with the . \ 

other one. (Standalone hybrid models and transformational models are also called loosely 

coupled models.) Tightly coupled models refer to the hybrid systems that the two 

components use part but not all of their internal data structure to communicate instead .of 

using external data files. Fully coupled models represent hybrid systems of dual nature 

that the architecture can be viewed as an expert system or as a neural network 

architecture. 

By focusing on those hybrid systems using two elements, namely rule-based 

components and neural networks, in [McGarry99] and [WermterOO]; hybrid neural 

systems can be classified into three groups: unified hybrid systems, transformational 

hybrid systems, and modular hybrid systems. The unified hybrid systems use all 

processing activities implemented by neural network elements. The transformational 

hybrid systems consist of insertion modules, rule extraction :modules, and rule refinement 

module within the framework of a neural network system. The modular hybrid systems 
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are comprised of several neural network and rule-based modules which can have different 

degrees of coupling and integration [MacGarry99], [WermterOO]. 

Based on the classification schemes available in the existing literature, some 

terminologies defined are respectively inconsistent. Some hybrid systems cannot be 

classified into any scheme; the existing schemes do not cover all the hybrid systems. The 

existing schemes focused only on the combination of expert system and neural networks. 

Some of the existing schemes do not include fuzzy neural network, neuro fuzzy network, 

fuzzy genetic systems, and neuro genetic systems as hybrid architectures. In this research, 

a new taxonomy for the hybrid intelligent systems is proposed to classify the combination 

of two or more methods of computational intelligence including expert systems, fuzzy 

systems, neural networks, and genetic algorithms. 

The hybrid intelligent systems on which most researches are currently being done 

may be classified into two main groups: single-structure hybrid intelligent systems 

(SHIS) and multi-module hybrid intelligent systems (MHIS). The details of the two groups 

of hybrid intelligent systems are discussed in the following subsections. 

2.7.1 Single-Structure Hybrid Intelligent Systems (SHIS) 

Single-structure hybrid intelligent systems (SHIS) are hybrid systems that have 

only one structure to represent concepts. SHIS are self-contained and independently 

operating without links to other systems or modules. The integrated system cannot be 

distinguished between the two techniques that have been combined. Examples of SHIS 

are fuzzy neural networks, neurofuzzy systems, fuzzy genetic systems, and neuro-genetic 

systems. 
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2.7.1.1 Fuzzy Neural Networks 

In general, neural ne~works have good learning abilities but are not suitable for 

representing symbolic or qualitative knowledge, while fuzzy systems are good at this. A 

drawback of fuzzy systems is that it has no learning abilities. However, fuzzy systems 

and artificial neural networks share some similar properties. Both of them are able to map 

the naturally nonlinear relation of the input-output without a precise mathematical model 

between the input and output variables. Much research combines the fuzzy set theory 

[Zadeh65] with some neural network architectures to address the deficiencies and to 

enhance the performance of each individual technique. The combination of neural 

network and fuzzy logic forms a fuzzy neural network or a neuro-fuzzy network. 

A growing number of researchers have designed and examined various forms of 

fuzzy-neural or neuro-fuzzy networks. The idea is to merge the capabilities of model-free 

and trainable systems, parallel computation, and noise tolerance of neural networks with 

the ability of dealing with imprecise situations from the fuzzy set theory. The integration 

of neural networks and the fuzzy set theory results in a classifier that borrows useful 

properties from both neural networks and fuzzy sets. The combination of neural networks 

and fuzzy sets forms a hybrid network that handles pattern classification problems very 

effectively and efficiently. Because of their massive parallel computational units, neural 

networks have the advantage of fast computation so that it is possible to process real time 

estimation of extensive information. The benefit of fuzzy systems lies in their ability to 

handle the imprecise data usually experienced in real world problems [Zadeh65]. As a 

result of using the fuzzy logic method, some initial experiences and knowledge can 

induce some rules directly from the original data. On the other hand, using the learning 
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capability of neural networks to tune some fuzzy logic parameters, for example the 

membership functions and the weights of aggregation and defuzzification, the efficiency 

of function approximating will be largely improved. Fuzzy neural networks have shown 

to be very effective in dealing with realistic problems in real life. 
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Figure 2.12: Architecture ofa Neurofuzzy Network [MeesadOO] 

Some representative examples of fuzzy neural networks and neural-fuzzy systems 

for pattern classification problems are: neural-network-based fuzzy classifier [Uebele96], 

neuro-fuzzy system [Vuorimaa95], adaptive neural fuzzy inference system (ANFIS) 

[Jang93], on-line self-constructing neural fuzzy inference network (SONFIN) [Juang98], 

fuzzy min-max neural network [Simpson92], fuzzy ART neural network [Carpenter91], 

fuzzy ARTMAP neural network [Carpenter92], Gaussian ARTMAP neural network 

[Williamson96], RBF fuzzy ARTMAP neural network [Tontini96], and Neurofuzzy 

Network [MeesadOO]. An example of a neural fuzzy network is shown in Figure 2.12. 

The details of the neurofuzzy network shown in Figure 2.12 can be found in [MeesadOO]. 
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2.7.1.2 Neuro-Genetic Systems 

The use of evolutionary computation for neural network designs has been 

growing. Several different and possibly synergistic approaches have been proposed. Most 

of the applications regard the use of evolutionary approaches (such as genetic algorithms) 

· as a means to learn connection weights. Some applications also involve learning of 

network topology. Some applications use genetic algorithms to define the parameters of a 

learning algorithm that will be used in the training phase. Examples of neuro-genetic 

systems or evolutionary neural networks can be found from [Angeline94], [Maniezzo94], 

[Huang97b], [Liu99], [Chen99]. 

2.7.1.3 Fuzzy Genetic Systems 

The optimization abilities of genetic algorithms are used to develop the optimal 

set of rules to be used by a fuzzy inference engine and to optimize the choice of 

membership functions. A particular use of this system is in fuzzy classification systems, 

where the linguistic values of the attributes of an object enable the object to be classified. 

The most difficult part of building a system like this is to find an appropriate set of fuzzy 

rules. The most direct approach is to obtain knowledge from experts and translate this 

into a set of fuzzy rules. However, aside from the time-consuming nature of this solution, 

experts may be unable to extract their knowledge into an accurate linguistic form. A 

second approach is to obtain the fuzzy rules· through machine learning, whereby the 

knowledge is automatically extracted or deduced from sample cases. 

A fuzzy genetic algorithm is a directed random search over all fuzzy subsets of an 

interval, and has features that make it applicable to solving this problem. It is capable of 

36 



creating the classification rules for a fuzzy system where objects are classified by 

linguistic terms. Coding the rules genetically enables the system to deal with multi-value 

fuzzy logic, and is more efficient as it is consistent with numeric coding of fuzzy 

examples. The training data and randomly generated rules are combined to create the 

initial population, giving a better starting point for reproduction. Finally, a fitness 

function measures the strength of the rules, balancing the quality and diversity of the 

population. The use of the genetic algorithm to construct fuzzy rules can be found from 

[Cordon99], [Gonzalez99], [JinOO], [Nawa99], [Tang98]. 

2.7.2 Multi-Module Hybrid Intelligent Systems (MHIS) 

Multi-module hybrid intelligent systems (MHIS) usually composed of two or 

more intelligent systems that can be easily distinguish from each other. Since the brain 

has not only a neuronal structure but has the capability to perform symbolic reasoning 

[WermterOO], an MHIS mimics the human brain to have two main modules: a low-level 

non-symbolic (or numerical) module and a higher-level symbolic (or linguistic) module. 

The low-level numerical module represents neuronal structure, while the higher-level 

represents symbolic reasoning. Those hybrid systems that use rule-based components and 

neural networks are classified to MHIS. A SHIS can be considered as a sub-module or a 

component of MHIS. For example, a neurofuzzy network can function as a low-level 

module, and a fuzzy genetic system can·function as a higher-level linguistic module. 

Based on their functionality and interconnectivity, MHIS can be classified into 

four sub-groups: unified architectures, loosely coupled architectures, tightly coupled 

architectures, and fully integrated architectures. 
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2.7.2.1 Unified Architectures 

The unified architectures consist of those systems that have all processmg 

activities implemented by neural network elements. The motivation for this area of 

research is that neural networks can perform certain forms of rule-based processing. 

Neural networks are used both in low-level numerical representation and higher-level 

symbolic representation. There can be two types of representations: 1) local connectionist 

architectures containing one distinct node for representing each concept; and 2) 

distributed neural architectures comprising of a set of non-exclusive, overlapping nodes 

for representing each concept. The use of local and distributed representations allows the 

generalization capabilities of neural networks to be supported by the ability to assign 

conceptual meanings to individual neurons or groups of neurons [McGarry99], 

[WemterOO]. Some examples of unified hybrid architectures are CONSYDERR [Sun95], 

RUBICON [Samad92], and SC-NET [Hall92], 

2.7.2.2 Loosely Coupled Architectures 

Loosely coupled architectures [Taha97], [McGarry99], [WermterOO] can be 

separated into two groups: standalone models and transformational models. Standalone 

models have two separate components, and an expert system and a neural network. There 

is no interaction or shared data structure between the two systems. Each network of these 

models has the unique behavior: the reasoning and explanation of expert systems and the 

generalization and adaptability of neural networks. Figures 2.13 (a) and (b) show loosely 

couple models of hybrid intelligent systems. Figure 2.13 (a) has two independent outputs 
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that can be compared with each other while the output of Figure 2.13 (b) is the combined 

decisions of the expert system and the neural network modules. 

.Expert System Output I Expert System 

J Input Input 

Output 

Neural 
Output2 

Neural 
Network Network 

(a) (b) 

Figure 2.13: · Loosely Coupled Models 

Transformational models have similar characteristics to the standalone models 

where the expert system and the neural network modules do not share any of their 

internal data structure. However, transformational models are sequential in their 

operational nature. A transformational model usually starts up with one component and 

ends with the other one. The interaction between the two components of transformational 

models takes place by passing the output of the first module to the second one for further 

processing to get the benefits of the latter's unique features [Taha97], [McGarry99], 

[WermterOO]. 

Rule extraction from trained neural networks is a kind of transitional hybrid 

models in the category of loosely coupled architectures. The goal of rule extraction is to 

interpret· knowledge of trained artificial neural networks into a human comprehensible 

manner. There are an increasing number of techniques that pursue to explain the behavior 

of trained artificial neural networks by extracting rules from the networks. The field of 

rule extraction is expanding to include techniques for connectionist knowledge 

representation: and connectionist explanation based generalization and methods for 
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describing the behavior of artificial neural networks [Andrews95]. In the next section, a 

basic rule extraction technique is given. The basic rule extraction reviewed here is a rule 

extraction technique for trained feedforward artificial neural networks. 

extracted rules: 

a 

Ps 

P, A P2 A PJ ~ a 

P1 I\. P2 I\. -.Ps ~ a 

P, I\. P3 I\. -.Ps ~ a 

P2 I\. A I\. -.Ps ~ a 

Figure 2.14: A Trained Feedforward Neural Network 

Figure 2.14 shows the task of rule extraction from a very simple network. This 

one-layer perceptron network has five Boolean inputs and one Boolean output. A finite 

set of symbolic if-then rules can be extracted since there are a finite number of possible 

input vectors. The symbolic rules specify conditions on the input features that guarantee a 

given output state. We assume that the value "false" for a Boolean input feature is 

represented by an activation of "O," and the value "true" is represented by an activation of 

"1." Also we assume that the output unit employs a threshold function to compute its 

activation: 

ifLW;P; +b > 0 
a (2.7) 

otherwise 
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where .a is the activation of the output, Pi is the input, wi is the weight for the ith input to 

the output unit, and b is the bias or threshold parameter for the output. 

Figure 2.15 illustrates three conjunctive rules which describe the most general 

conditions under which the output unit has an activation of unity. Consider the rule: 

Pt A P2 A A ~ a 

This rule states that when p1 is true and p2 is true and p3 is true, then a is true (i.e., the 

output unit a will have an output activation of "1 "). 

a2 

:~: I . I 

I I 
I I 
I I 

·------------· 
a\ a1 a\· ~.~:~A2. :~~·: I I I I I I 

I I I I I, I 
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·- ·---- ------> ·------------> ·------------> 

extracted rules: I a1 a1 ~ a2 a1 V 2 V 3 

P1 A P2 ~ a1 
I 

P2 A p3 A p4 ~ a1 
2 

Ps ~ a1 
3 

Figure 2.15: The Local Approach to Rule Extraction for a Multilayer Neural Network 

Whenever a neural network is used for a classification problem, there is always an 

implicit decision procedure that is used to. decide which class is predicted by the network 

for a given case [Craven96]. In Figure 2.15, the decision procedure was simply to predict 

a2 = "true" when the activation of the output unit was "1," and to predict a2 = "false" 

when it was "O." In case of using logistic transfer function instead of a threshold function 

at the output unit, then the decision procedure might be to predict a2 = "true" when the 
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activation exceeds a specified value, say 0.5. More details on this basic concept to 

extract rule from a trained artificial neural network can be found in [Craven96]. 

2.7.2.3 Tightly Coupled Architectures 
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Figure 2.16: Three Tightly Coupled Models: (a) A Partially Overlapped Hybrid Model; 

(b) and (c) Two Schemes of Embedded Hybrid Models 

In tightly coupled architectures [Medsker94], [Hilario94], [Taha97], 

[McGarry99], [WermterOO], the two components of the models partly share their internal 

data structure for communication instead of using external data. Interaction speed 

between the two components increases. Figures 2.16 (a), (b), and (c) shows tightly 

coupled models of hybrid expert system. Figure 2.16 (a) is a partially overlapped 

architecture where the two components interact through part of their internal data 

structures. Figure 2.16 (b) and ( c) are embedded architecture where one of the two 

components is embedded inside the other [Pal92]. 

42 



2.7.2.4 Fully Integrated Architectures 

Fully integrated architectures represent hybrid systems of dual nature [Taha97]. 

The architecture can be viewed as an expert system or as a neural network architecture 

and still have the unique features from both networks. Fully coupled models share all the 

internal data structure and the knowledge representation of both components. Input 

symbols of the expert system can be used as input nodes to the neural network and the 

output nodes of the neural network can be viewed as the output decisions of the expert 

system. Both components can be converted to each other via a mapping mechanism. 

Fully integrated models have the capability to combine the complementary features of the 

symbolic and non-symbolic paradigms. The system designer can build such knowledge 

representation that can be utilized by both modules and can come up with an efficient 

mapping mechanism that can translate the expert system to neural network or vice versa. 

The resulting efficiency and robustness of the hybrid learning system can be further 

increased. In addition, the overall system performance can be optimized [Pal92]. 

2.7.3 Existing Hybrid Intelligent Systems 

There are many existing hybrid architectures that combine two or more 

computational intelligence methods into the same framework. The following sub-sections 

briefly discussed a few methods. 

2.7.3.1 Knowledge-Based Artificial Neural Network 

Knowledge-based artificial neural network (KBANN) [Towel194] is a refinement 

system that translates a rule base into a neural network and then refines it using 
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backpropagation. The translation into a neural network proceeds in a straightforward 

manner. First, a logical circuit is created using the AND-OR graph of the theory, and the 

weights of the units in the network are set to simulate AND and OR gates. In addition, all 

remaining features in the data are added to the input layer. The network is then fully 

connected by adding low-weighted links from every node in layer n to every node in 

layer n+l. 

Once built, the network is trained using backpropagation. To help minimize the 

size of the network, weight-decay [Hinton96] is utilized. By adjusting each weight in the 

network slightly towards zero after each weight update, interconnection weights that are 

not contributing to the network are eliminated. 

After training, symbolic rules can be extracted from the network. By analyzing 

the weights of the incoming links, each unit is translated into a set of M-of-N rules, that 

are satisfied if at least M of their N antecedents are true. The resulting rule base is 

generally much simpler than the revised network; however, there is no guarantee that the 

two representations are semantically equivalent. 

2.7.3.2 NeuroRule 

NeuroRule is a rule extraction algorithm proposed by Setiono [Setiono96]. It is an 

algorithm that extracts rules from trained feedforward neural networks with a single 

hidden layer. Two key components of this algorithm are a network pruning method and a 

hidden unit-clustering algorithm. An effective pruning algorithm removes the redundant 

connections and units from the network. A robust clustering algorithm clusters or 

discretizes the hidden unit activation values of the input patterns into a small number of 
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clusters. The rules are extracted in two steps. The network outputs are first described as 

classification rules in terms of the clustered hidden unit activation values. Each cluster of 

hidden unit activation values is then explained as rules that involve the input attributes. 

By merging the two sets of rules, the algorithm obtains a set of rules that explains the 

network outputs in terms of the input attributes of the data. A more concise set of rules 

can be thus expected from a network with fewer connections and fewer clusters of hidden 

unit activations [Setiono96), [SetionoOO]. 

2. 7.3.3 Taha's Hybrid Intelligent Architecture 

Taha's hybrid intelligent architecture (RIA) [Taha97] is a fully integrated hybrid 

architecture. It combines knowledge-based and artificial neural network systems. It has 

four phases involving domain knowledge representation, mapping of this knowledge into 

an initial connectionist architecture, network training, and rule extraction, respectively. 

The final phase is important because it can provide a trained connectionist architecture 

with explanation power and validate its output decisions. It can be used to refine and 

maintain the initial knowledge acquired from domain experts. Taha's RIA is show in 

Figure2.17. 

In Taha's RIA, there are seven main components: 1) a knowledge-based module, 

2) a statistical module, 3) a mapping algorithm (node links algorithm), 4) a discretization 

module, 5) a connectionist module, 6) a rule extraction module, and 7) an integration 

module. Complete details ofTaha's RIA can be found from [Taha97]. 
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Figure 2.17: Taha's Hybrid Intelligent System Architecture 

2.7.4 Combined Numerical and Linguistic Paradigms 

Combined numerical and linguistic paradigm is a type of multi-module hybrid 

system. Data in real applications can be in a numerical form or a linguistic form. 

Numerical data comes from sensor measurements while linguistic information comes 

from human experts. Numerical quantity of a decision-making system is more robust in 

noisy data; however, its drawback is the lack of representation power. Numerical data 

alone may be not sufficiently available for training. As a result, the resulted numerical 

learning system may be incomplete. Linguistic knowledge is more preferable when an 

explanation to the decision is called for, but linguistic rules alone may be not enough to 

build a rule base to cover the domain problem. In addition, some knowledge may be lost 

when the expert transfers his knowledge in constructing linguistic rules. Integration of 

both numerical data and linguistic data can improve the system to achieve higher 

generalization as well as to provide knowledge representation in an interpretable form. 
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Both features from numerical computation and linguistic computation should be 

preserved. 

There are a number of researchers attempting to hybrid low-level numerical 

neural computations and higher-level linguistic rules to perform complicated tasks. Yang 

and Asada [Yang92] used hybrid numerical control of deburring robot. In their work, 

human skills and knowledge of performing a given task are transferred to robots through 

the acquisition and interpretation of human linguistic information. Based on the linguistic 

information, a nonlinear control structure is obtained in which the input space 1s 

partitioned in accordance with the linguistic labels that a human expert uses for 

describing his expertise. Zhou et al. [Zhou98] developed a hybrid intelligent controller 

that is a combination of linguistic and numerical information resulting in a neurofuzzy 

based integration and fuzzy rules extraction based integration. The neurofuzzy network 

structure uses linguistic information to set the initial parameters while input-output 

numerical data is used for updating the parameters. 

A large number of researchers studied and developed networks that can deal with 

both numerical data and linguistic information. lshibuchi et al. [Ishibuchi93] studied 

multilayer perceptron neural networks to handle linguistic data where an interval 

numerical generated from an a-level method. Lin and Lu [Lin95], [Lin96] studied neural 

fuzzy learning system that is trained by fuzzy if-then rules. The system of Lin and Lu can 

process both numerical information and linguistic information. Based on an a-level 

method, membership functions are transformed to fuzzy numbers that will be trained to 

the network. A crisp number is viewed as a fuzzy singleton thus can be treated. the same 

way as the fuzzy numbers. Similarly, based on an a-level method, Chen and Chang 

47 



[Chen2000] also developed a fuzzy perceptron neural network that learns from fuzzy if­

then rules. In addition, Zhang et al. [Zhang2000] studied a granular neural network 

(GNN) to deal with numerical-linguistic data fusion and granular knowledge discovery in 

numerical-linguistic databases. The GNN is capable ofcompressing low-level granular 

data to high-level granular knowledge. Chakraborty et al. [Chakraborty99] designed a 

neurofuzzy feature selector using a modified multilayer perceptron neural network that 

generates fuzzy rules for input to a classifier. The neurofuzzy feature selector can receive 

inputs from several sources of knowledge including numerical data and human 

knowledge in linguistic form. 

In the other extremes, several researchers have studied methodologies for 

linguistic rules extraction from numerical data. Linguistic rules can be directly generated 

from numerical data by using searching tools such as the genetic algorithm. In addition, 

numerical data can be trained to neural networks or neurofuzzy network before linguistic 

rules are extracted from the trained networks. The methods can be used to combine both 

linguistic data and numerical data in a fuzzy rule-based system. Fuzzy rules generated 

from numerical data consist of expert knowledge. For instance, Wang and Mendel 

[Wang92] developed a method for directly generating fuzzy rules from numerical data. 

Fuzzy rules can be generated from the input and output space of given data that is divided 

into fuzzy region. Ishibuchi et al. [Ishibuchi95], [Ishiubushi99] studied a method for 

generating linguistic rules from numerical data using a fuzzy partition method searching 

for a solution by using the genetic algorithm. Fahn et al. [Fahn99] studied a methodology 

for fuzzy rules extraction by using the combination of evolutionary algorithms and 

multilayer perceptron networks. Based on heuristic constraint on membership functions, 
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Chow et al, [Chow99] developed a method for fuzzy rules extraction from fuzzy/neural 

architectures. They stated that the method ensures that the final membership functions 

conform to prior heuristic knowledge. 

In summary, from the literatures there are different ways to combine numerical 

data and linguistic information processing. The first groups of hybrid systems are the 

systems that use numerical data to derive linguistic if-then rules. Usually the multilayer 

perceptron networks, radial basis function networks, or fuzzy neural/neuro-fuzzy 

networks are used for learning from data. After the networks have been trained, rule 

extraction algorithms are then used to extract knowledge embedded (i.e., weight 

connections and biases) in the trained networks. The linguistic rules are then used in the 

decision-making mechanism in a fuzzy rule-based system. In these hybrid systems, the 

neural networks are used for rule construction purposes. The fuzzy rule-based systems 

are used as the main decision making process. The second groups of hybrid systems are 

the systems that learn both linguistic rules and numerical data. After being trained, these 

systems can deal with both fuzzy data and numerical data. These approaches have a black 

box structure because they often use multilayer perceptron neural networks. The 

explanation for the system's decision may not be understandable. The third groups of 

hybrid systems are hierarchically composed of two systems: a numerical model and a 

linguistic model. The two models receive input from numerical data and linguistic 

knowledge. The output of the hybrid system for these groups is the decision fusion from 

both the numerical model and the linguistic model. 

Based on the literature in the area of hybrid intelligent systems, there remains a 

lot of work yet to be done. Especially, there is an interesting study on the investigation of 
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computation of low-level and high-level modules that are simultaneously operated, since 

human brains are not only the synaptic connections but also cognitive level for reasoning 

in linguistic sense. There is no unique method to bridge between the synaptic 

computation level and the cognitive linguistic level. This leads to the focus of the study in 

this dissertation. 
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Figure 3.1: The Architecture of the Proposed Hybrid Intelligent System 

The proposed HIS, shown in Figure 3.1, consists of five components: 1) an ILFN, 

2) a FES, 3) a network-to-rule module, 4) a rule-to-network module, and 5) a decision-

explanation module. Input data are brought into the system through both the ILFN and 

the FES. The ILFN and the FES are linked together by a network-to-rule module that is a 

rule extraction algorithm for mapping the ILFN to the FES, and a rule-to-network module 

that is a process for mapping the FES to the ILFN. The outputs of the ILFN and the FES 

connect to the decision-explanation module which makes decisions and provides 
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explanations based on the information received from both the ILFN and the FES. The 

human operators can interact with the system through an additional user interaction 

module. The details of each module are discussed in the following sections. 

3.1 Incremental Learning Fuzzy Neural Network (ILFN) 

The ILFN network is advanced from the fuzzy ARTMAP basic idea of on-line 

and incremental learning behavior. The architecture of the ILFN network is similar to the 

fuzzy ARTMAP; however, in details, the ILFN network operations are completely 

different from the fuzzy ARTMAP. While the fuzzy ARTMAP uses hyperbox 

membership functions, the ILFN network employs Gaussian membership functions that 

can prevent full membership of overlapping classes. The ILFN network architecture is 

detailed as follows. 
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Figure 3.2: Network Architecture of the ILFN Classifier 

in the Supervised Leaming Mode 
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Figure 3.3: Network architecture of the ILFN Classifier 

in the Unsupervised Learning Mode 

The architecture of the ILFN network is distinguished by two different modes: a 

supervised learning mode (as shown in Figure 3.2) and an unsupervised learning mode 

(as shown in Figure 3.3). The two learning modes differ only in the controller module 

and the target labeling module. Whereas the supervised learning mode requires pairs of 

input and target of patterns to construct "prototype" vectors that are centroid locations in 

hyper space of clusters, the unsupervised learning mode uses the target labeling module 

to assign the target class for a given input pattern. 

The ILFN network has four layers: one input layer, one hidden layer, one output 

layer, and one decision layer, as shown in Figures 3.2 and 3.3. Generally, the first three 

layers of the system are composed of two subsystems: an input subsystem and a target 

subsystem. These subsystems are linked together via three connections: 1) the controller 

module in the hidden layer; 2) the pruning modules in both the input subsystem and the 
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target subsystem of the output layer; and 3) decision layer which is the link between the 

membership module in the input subsystem and the target module in the target 

subsystem. The following subsections present the details of the input subsystem, the 

target subsystem, the controller module as well as the fourth layer, the decision layer. 

3.1.1 Input Subsystem 

input 
ve.ctor 

Radial basis 
function 

Membership 
module 

to the 
decision layer 

Figure 3.4: The Input Subsystem of the ILFN Classifier 

Figure 3.4 illustrates the input subsystem of the ILFN classifier. The input 

subsystem is composed of three parts: 1) input neurons in the input layer, 2) a synaptic 

weight Wp and Gaussian neurons in the hidden layer, and 3) a pruning module and a 

membership module in the output layer. 

In the input layer, an element of an input vector p connects to each neuron. The 

neurons in the input layer have no activation functions. The neurons in the input layer are 

fully connected to the neurons of the hidden layer via a synaptic weight matrix, Wp, 

whose rows represent prototype vectors which are the centroids of radial basis functions 

in the hidden layer. Wp is a trainable weight matrix using learning rules that will be 

discussed later. Wp grows when a new prototype is detected. Growing of Wp means that 
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additional rows are added to Wp each time a neuron is added to the hidden layer. (How a 

new prototype is detected will be discussed in Subsection 3.1.8.) 

In the hidden layer of the ILFN network, Gaussian membership functions are 

used. The Gaussian functions are centered on the mean vectors of clusters which are 

called prototypes of the input pattern space. The Gaussian membership functions are 

employed to fuzzify the input vectors, p, into membership values, mi, with respect to the 

distance measure between the input vectors, p, and the ith prototypes. The membership 

function at the ith neuron, mi(p, Wpi), is defined by the following equation: 

( llp-Wp;112J . 
m;(p, wp;) = exp - . 2crf , z = 1, 2, ... , L (3.1) 

where IHI denotes the Euclidean distance which is used as a similarity measure between 

two vectors. The weight vector between the input layer and the ith hidden neuron, Wpi, is 

the center or mean vector at the ith neuron in the hidden layer. cri represents the standard 

deviation of the ith neuron in the hidden layer. For simplicity, cri used in (3.1) is the same 

in all directions. cri is determined by the average of the standard deviations in all 

directions. The membership function, mi(p, Wpi), of the hidden layer is used to fuzzify the 

distance between a given input vector p and the ith centers Wpi into a real value mi which 

represents the degree of similarity between p and Wpj. The membership functions produce 

localized, bounded, and radially symmetric kernels. The value of these membership 

functions monotonically decreases as the distance from the function's center increases. 

It is worth noting that the Euclidean distance can be replaced by other 

complicated distance metrics to obtain more complicated forms of clusters. Using the 

Euclidean distance, the clusters are formed hyper circles in hyperspace. Other metric 
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distance such as Mahalanobis distance [Duda73] which forms hyper ellipsoidal may be 

used; however, it is difficult, if not impossible, to learn online in real-time. 

In the ILFN network, a class may have several prototypes. These prototypes have 

different degrees of belonging assigned to a pattern. Only one prototype with the highest 

degree of belonging is needed to represent a pattern. The prototypes with lower degrees 

of belonging generate redundant classes. To eliminate redundant classes, the pruning 

module is used in the output layer of the ILFN network. Instead of passing many 

duplicated classes, only distinguished classes are passed to the membership module. This 

makes the system easier for human users to interpret the output. 

The pruning procedure of the ILFN network is different from the usual pruning 

procedures that eliminate insignificant neurons or weights [Mitra97]. The pruning 

module used in the ILFN network is a short-term memory which refers to the information 

that is stored for a short period of time. The information does not stay the same for each 

input pattern that is processing. In this case, for each input pattern presented, the 

information in the pruning module is processed and stored in the memory until there is 

another input pattern coming in. (The pruning algorithm is described in Step 6 of the 

"ILFN classification algorithm" in Subsection 3.1.8.) 

In addition, the pruning module in the input subsystem and the pruning module in 

the target subsystem work in the same way. From each prototype, the highest 

membership value in the input subsystem is selected (by the algorithm) to represent the 

degree of similarity with respect to a class in the target subsystem. The output of the 

pruning module is presented to the membership module. 
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The membership module in the output layer of the input subsystem receives 

information, which is the pruned membership values, transmitted from the pruning 

module and passes it (without any processing) to the decision layer. The information 

stored in the membership module is a short-term memory, which means that the 

information in the membership module differs for different input vectors. Each 

membership value in the membership module indicates the degree of similarity of an 

input vector with respect to the target classes of the classifier. The membership values are 

then mapped in the same order of indices to classes in the target module in the target 

subsystem via the decision layer. 

3.1.2 Target Subsystem 

target 
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function 

target 
module 
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Figure 3.5: The Target Subsystem of the ILFN Classifier 

The target subsystem of the ILFN classifier is depicted in Figure 3.5. Each 

neuron of the input layer in the target subsystem is fully connected to each element of a 

target vector. A synaptic weight matrix WT, which needs no training, connects the 

neurons of the input layer to the neurons of the hidden layer. At the same time that Wp is 

growing, WT is automatically constructed by using the corresponding target of a current 

input pattern that inputs to the system. When a neuron is added to the hidden layer, an 
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additional row is added to Wr. These hidden neurons of the target subsystem are 

activated by linear functions. 

As in the input subsystem, the pruning module of the output layer in the target 

subsystem is used to eliminate redundant classes in the hidden layer. Instead of passing 

many duplicate classes, only classes with prototypes that have the highest degree of 

membership for a given input are passed to the membership module. As mentioned 

before, the pruning module in the target subsystem works the same way as the pruning 

module in the input subsystem does. 

The target module, which is in the output layer of the target subsystem, receives 

information passed from the pruning module and submits it to the decision layer. Each 

neuron of the target module is a class or a target of an input vector. The target module is a 

short-term memory as . is the membership module of the input subsystem. In the same 

order of indices, the target module is then mapped to the membership module of the input 

subsystem via the decision layer. 

3.1.3 Controller Module 

The controller module is used to control the growing number of neurons in the 

hidden layers of both the input subsystem and the target subsystem. It operates differently 

in the controller module in supervised learning mode and unsupervised learning mode. 

In the supervised learning mode, there are three components in the controller 

module: two comparators and one AND gate. One comparator is used to compare the 

winning membership value from the output of the hidden layer of the input subsystem to 

the threshold, i::. (i:: is heuristically chosen by the user.) The output of this comparator 
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becomes "true" if the winning membership value is smaller than the E. This implies that 

the input vector is significantly different from all existing prototype vectors. The output is 

sent to one input of the AND gate. Another comparator, which has two inputs, is used to 

compare the desired target with the predicted output which is stored in the hidden layer of 

the target subsystem. The output of the comparator becomes "true" if both the desired 

target and the predicted output are the same. It is sent to another input of the AND gate. 

If both inputs of the AND gate are "true," its output becomes "true." This allows the 

system to add one more neuron to the hidden units. In other words, the system generates 

more neurons whenever the membership value of the winning neuron is smaller than the 

threshold, E, and the desired target and the decision output are the same. 

In the unsupervised learning mode, the controller module of the ILFN classifier 

has only one component which is a comparator. The comparator is used to compare the · 

winning membership value in the hidden layer to the threshold, E. The output of this 

comparator becomes "true" if the winning membership value is smaller than E. If the 

output of the comparator is "true," meaning that a new category is detected, the system 

adds a new neuron to the hidden layer using the input pattern as the new prototype, then 

the target labeling module distinguishably assigns a corresponding target to the new 

prototype. 

In addition to a comparator, the controller module in the unsupervised learning 

mode has a target labeling module used to assign a target for a new prototype. The target 

labeling module receives one input from the output of the controller module in the hidden 

layer of the target subsystem. This input from the controller module tells the target 

labeling module to assign a target when a new neuron is added to the system. Another 
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input of the target labeling module, representing targets of prototypes, is used to check 

the existing targets in order to assign a new target that differs from the existing targets. 

3.1.4 Decision Layer 

The decision layer is used to map the membership values in the membership 

module of the input subsystem to the target classes in the target module of the target 

subsystem. The output from the decision layer is the output of the system. The decision 

output can be interpreted as a soft decision or a hard decision. For the soft decision, the 

decision output assigns different membership values to the pattern classes or prototypes. 

This allows a given pattern to belong to lllore than one class with different degrees of 

similarity measures. For the hard decision, the decision output selects only one class with 

the highest membership value. 

3.1.5 ILFN System Dynamics 

Both Wp and WT are allowed to grow when the system detects new classes. 

However, only Wp can adaptively change its information or learn new prototypes. At the 

initialized state, there are no neurons in the hidden layer. The first neuron in the hidden 

layer is setup after the first input vector p is presented to the input subsystem of the 

network while the first target vector t is presented to the input layer in the target 

subsystem. Then both Wp and WT setup the first neuron using p and t respectively. The 

next input vector is compared to the existing prototype. If there is a significant difference 

( depending on the threshold, 8 ), then a new neuron is added to the hidden layer; p is 

added to W p and t is added to WT. On the other hand, if the input vector meets the 
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similarity criterion then, instead of adding a new neuron, the learning process is 

performed. The Wp and other parameters are updated to include the new data in the 

existing prototypes. 

3.1.6 Learning Process 

The learning process takes place only in the hidden layer. It adapts the synaptic 

weight, Wp, and updates the parameters regarding the pattern clusters of the input space. 

In the learning process, each input vector p from the input space is fuzzified to a 

membership value at each node of the hidden layer with respect to the distance measure 

between input vector p and the synaptic weight matrix Wp. The winning node of the 

hidden layer is determined by the defuzzification process using the fuzzy OR operation 

( V ) defined as: 

winner = m1 V m2 V .. , V mL, (3.2) 

J = winner index= arg m~(m;), (3.3) 
I 

i = 1, ... , L, is calculated by (3.1). Only the parameters of the winner node (i.e., Jth 

neuron) including the number of patterns, the mean, and the standard deviation are 

updated, while other loosing nodes remain the same, as follows: 

cntJ,new = cnt J,old + 1, (3.4) 

WPJ,new = 
WPJ,old(cntJ,new -l)+p 

(3.5) 
cnt J,new 
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(1- 1 )s2 + (sJ,old -p)2 

J,old 
s - cntJ,new cntJ,new J,new -

if cntj new > 1, 
(3.6) 

otherwise; 

where a parameter with the subscript "old" represents that parameter before updating and 

a parameter with the subscript "new" represents that parameter after updating. cntJ 

( abbreviation from "count") represents the number of patterns that have been counted 

into the Jth prototype. The mean WpJ, the center or the Jth prototype, is a row in the 

synaptic weight Wp. The standard deviation, SJ= [crn, cr.12, ... , O'JM], will be used to 

indicate the spread of the data in. the Jth prototype. O'Ji, i = 1, ... , M, represents the 

standard deviation of the Jth prototype in the ith dimension and Mis the dimension of the 

pattern space. s0 = [cro1, cr02, ..• , croM] is the initial standard deviation representing the 

isotropic spread in pattern space of a new category for the first sample. Initial standard 

deviation, cr0i, i = 1, ... , M, is usually chosen small enough (e.g., a value between 0.001 

and 0.05) to include only the pattern that is setup for the new prototype. After the patterns 

near the prototype are included in the same prototype, the standard deviation SJ is updated 

accordingly. 

Equations (3.4), (3.5), and (3.6) are learning rules used to update the prototype 

variables in the input subsystem. The number of patterns belonging to each cluster is 

updated by Equation (3.4). By knowing the previous centers and the number of patterns 

that belong to a cluster, new centers can be calculated by Equation (3.5). The estimated 

standard deviations can be calculated if the previous standard deviation and the number 

of the patterns belonging to a cluster are known. Estimated standard deviations, which are 

the spread of the Gaussian membership functions, are determined by Equation (3.6). 

62 



3.1.7 Decision Boundaries 

The purpose of pattern classification is to determine to what class a given sample 

belongs. Through an observation or measurement process, a set of numbers which make 

up the observation vector is obtained. The observation vector serves as the input to a 

decision rule by which the sample to one of the given classes is assigned. 

P1 _.. 

Figure 3.6: The Decision Boundaries Among Prototypes of the ILFN Classifier 

The decision boundaries of the ILFN network distinguish among prototypes in the 

Voronoi tessellation [Kohonen97]. Each prototype has its own region separated by the 

decision boundaries. Since the ILFN classifier uses Guassian type membership functions 

with different standard deviations, the soft decision boundaries of the ILFN classifier are 

quadratic. However, the hard decision boundary between the neighboring prototype 

vectors is a hyperplane containing the points that have the same degree of the 

membership value, as shown in Figure 3.6. Figure 3.6 shows the decision boundaries 

among prototypes of the ILFN network in which dotted circles indicate the spread of 

statistical data for each prototype. 

63 



3.1.8 ILFN Classification Algorithm 

The ILFN network can learn in two different ways: 1) supervised learning which 

requires both input patterns and the corresponding targets; and 2) unsupervised learning 

\ 

which requires only input patterns without the corresponding targets and in which the 

target labeling module will assign appropriate class labels. The classification algorithm of 

the ILFN classifier is outlined as follows. 

Step 1: Set the user-defined threshold parameter (E), the initial standard deviation 

cr0, and the maximum number of patterns allowed in each cluster. (The 

latest parameter is used in the unsupervised mode to force the system to 

stop updating weights.) 

Step 2: Retrieve the first input pattern 

- Use the first input pattern p to set up the first prototype (or mean) to 

- Set the number of patterns for the first node to be 1. 

- Set the standard deviation equal to the initial standard deviation, cro. 

- Set a new neuron to WT using the first target t to be the corresponding 

target of the prototype in Wp. 

Step 3: Retrieve the next training sample with an input and target. 

Step 4: Measure the Euclidean distance between the input p and the prototype 

Wp. 

Step 5: Calculate membership values for each node using the Gaussian type 

radial basis function. 
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Step 6: Assign membership values to each node. The current input pattern has 

different degrees of belongings for each node or prototype. For each 

class, select the maximum membership value from each prototype to 

represent the degree of similarity with respect to that class. 

Step 7: Identify the largest membership (called winner) using the fuzzy OR 

operator. 

Step 8: If there is the corresponding target (i.e., supervised learning mode), 

1) If the value winner is larger than & and the target t is the same value 

as WT at the winning node then update weight Wp, the standard 

deviation, and the number of patterns belonging to this node. 

2) If 1) is not satisfied, then: 

- Set a new node center for Wp using the input pattern p. 

- Set the number of patterns for the new node to be 1. 

- Set the initial standard deviation to the new node. 

- Add a new neuron to WT using the new target t as the 

corresponding target of a new prototype in Wp. 

If there is no corresponding target (i.e., unsupervised learning mode), 

1) If the value winner is larger than & and the number of patterns is less 

than the maximum number of allowed patterns, then update the 

weight Wp, the standard deviation, and the number of patterns 

belonging to this node. Identify the class output which is stored in WT 

at the same index of the winning node ofWp. 

2) If the value winner is smaller than & then 
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- Set a new node center for Wp using the input pattern p. 

- Set the number of patterns for the new node to be 1. 

- Set the initial standard deviation to the new node. 

- Add a new neuron to WT and assign a new target as the 

corresponding target of a new prototype in Wp. (The assigned new 

target must be significantly different from the existing targets 

already stored in Wr. For example, if there exist targets in Wr = [1 

23{, the new target should be "4," that is Wr becomes [12 3 4() 

Step 9: If there are no more input patterns, then stop. Otherwise, go to step 3. 

Usually, if the user knows both input patterns and their targets, the network is 

trained in the supervised learning mode. After supervised training, the network is used in 

a pattern classification system. The ILFN network can detect new categories that have not 

been presented as training data. When the system detects new categories, it employs the 

unsupervised learning mode by using the target labeling module to assign the 

corresponding targets to the input patterns. The targets that are assigned to the novel 

prototypes are chosen significantly different from the existing targets in the target 

module. 

ILFN network uses four weighting parameters: Wp, Wr, S, count, as well as one 

threshold parameter, E. Wp is the hidden weight of the input subsystem. Each row (i.e., a 

node in the hidden layer) ofWp represents a mean or centroid of a cluster. Each node of 

WT stores the corresponding target of the input prototype patterns. S is the standard 

deviation matrix and the count vector is the number of patterns that belong to each node. 
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£, selected within the range [O, 1 ], is the threshold parameter that controls the number of 

clusters. The system generates more clusters if£ is large and fewer clusters if it is small. 

However, clusters that belong to the same class are grouped together via the pruning 

module. The details of learning algorithm can be found in [Meesad98], [Yen99], 

[YenOl]. 

0 Xz 

Figure 3. 7: ILFN Decision Boundaries of a Three-Class, Two-Dimensional Pattern Space 

Figure 3.7 shows the decision boundaries when the ILFN is used to classify a 

three-class, two-dimensional pattern space. Three circles indicate the locations of the 

three clusters of the three classes centered at Wp1, Wpz, and Wp3. The membership values 

are highest when the patterns are located at the centers of the clusters. The membership 

values monotonically decrease when the distances between the patterns and the centers of 

the clusters increase. The size of the circle depends on the variances of the patterns that 

belong to the clusters. A pattern outside a circle indicates a near-zero membership degree 

of belonging to the cluster. The dashed line indicates the boundaries of each cluster. 

A trained ILFN does not exhibit a clear meaning of knowledge embedded inside 

its structure. Linguistic knowledge is more preferable if an explanation about the decision 
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is needed. Thus it is desirable to transform the knowledge of the trained ILFN into a 

representation that is easier to comprehend in linguistic from used in a FES. A FES has a 

close relationship with an ILFN network in that it can be mapped from one to another. In 

order to employ both numerical calculation from an ILFN and linguistic processing from 

a FES, we will combine both a trained ILFN and the mapped FES into the same hybrid 

system. The output decision of the hybrid system is based on both the ILFN and the FES. 

The resulting hybrid system would provide complementary features from both the ILFN 

and the FES. The hybrid system seems to show the ability to deal with more complex 

problems that need an explanation capability. 

The following sections describes the details·ofthe FES used in this study, as well 

as how to map knowledge from a trained ILFN to a FES and vice versa. 
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Figure 3.8: A Fuzzy Expert System (FES) 

A FES can be thought of as a special kind of expert systems (ESs). In fact, a FES 

1s an ES that is incorporated with fuzzy sets [Zadeh65]. Thus, a FES exhibits 

transparency to users. Users can easily understand the decision made by a FES due to the 

fact that the rule base is in "if-then" form used in natural languages. From a knowledge 
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representation viewpoint, a fuzzy if-then rule is a scheme for capturing knowledge that is 

imprecise by nature. 

Figure 3.8 illustrates a schematic diagram of a FES. A FES is composed of four 

main modules: a fuzzifier, an inference engine, a defuzzifier, and a knowledge base. The 

function of the fuzzifier is to determine the degree of membership of a crisp input in a 

fuzzy set. The fuzzy knowledge base is used to represent the fuzzy relationships between 

input and output fuzzy variables. The output of the fuzzy knowledge base is determined 

by the degree of membership specified by the fuzzifier. The inference engine utilizes the 

information from the knowledge base as well as from the fuzzifier to infer additional 

information. The output of a FES can be fuzzy values from which the inference engine 

processes. The output in fuzzy value format is advantageous in pattern classification 

problems since the fuzzy values indicate the degree of belongings of a given pattern to 

class prototypes. Optionally, the defuzzifier is used to convert the fuzzy output of the 

system into crisp values. 

3.2.1 Knowledge Base of the proposed FES 

In the proposed FES, a knowledge base is used for the system to generate an 

explanation as well as to make a decision. A knowledge structure used in the proposed· 

FES comprises of 1) input features' names, 2) variables' ranges, 3) number oflinguistic 

labels, 4) linguistic labels, 5) membership functions, 6) membership functions' 

parameters, and 7) fuzzy if-then rules. The information about the knowledge structure of 

the FES can be provided by experts or automatically generated from data. For an M-
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dimensional pattern space, the components in the knowledge base used in the FES are 

detailed as follows. 

Knowledge Base (K) 

K= { FN, VR, NL, Ling, MF, MP, R} 

Input Features' Names (FN) 

Variables' Ranges (VR) 

VR= 

Vmin 1, Vmax1 

Vmin 2 , Vmax 2 

Vmin M, VmaxM 

Number of Linguistic Labels (NL) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

To maintain comprehensibility of the linguistic model, the number of the linguistic 

variables should be as small as possible. It is suggested that it should not be larger than 

nine [JinOO]. 

Linguistic Labels (Ling) 

Ling= 

V11,l12, ···,l1N,} 

V2p 122, · · ·, 12N, } 

where '1k is a linguistic label in the / 1 dimension and k is the index to it. 
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Membership Functions (MF) 

MF= 

{mJ; i, mfi2' ... ' mJ;N1 } 

{mf21, mf22, · · ·, mf2N2 } 

Membership Functions 'Parameters (MP) 

MP= 

{mpu, IDP12, · · ·, mp1NJ 

{mP21, mp 22, ... , mp2N2 } 

(3.12) 

(3.13) 

(3.14) 

Assume that mfjk is a Gaussian membership function, mpjk has two variables which are 

cr and µ, a standard deviation and a mean of a Gaussian membership function, 

respectively. Thus, we have 

mp jk = {mPikI, mpj1c2} = {crjk, µjk}; j = 1, ... , M; k = 1, ... , ~- (3.15) 

Fuzzy If-Then Rules (R) 

Au A12 ... AIM B1 CF; 

R = {ALxM, B Lx1' CFLxl} 
A21 A22 ... A2M Bz CF2 

(3.16) 

ALI AL2 ... ALM BL CFL 

A LxM represents the antecedent part of the if-then rules; B Lxl and CF Lxl constitute the 

consequent part of the if-then rules; where L and M is the number of fuzzy rules and the 

dimension of the pattern space, respectively. Aii, i = 1, ... , L, j = 1, ... , M, is the 
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antecedent of the ith rule for the }th dimension. A!i E { 0, 1, · · ·, N j } is the index of a 

linguistic label in the }th dimension of the linguistic labels (Ling) of the ith rule. If A!i is 

"O" then the system uses a don 't care label in which its activation function is always a 

unity membership grade. Bi is a constant value that is a class consequent part of the ith 

rule. CFi, a value in [O, 1], is a confident factor of the ith rule. In a FES, for a finite class 

pattern classification problem with an M-dimensional pattern space, linguistic knowledge 

can be written as a set of fuzzy if-then rule in a natural language as follow: 

THEN x = {x1, x2, ••. , xM}belongs to Class Bi with confident factor CF;; (3.17) 

where K, i = 1, ... , L, is the label of the ith rule and A!i indicates a linguistic label such as 

small, medium, or large. 

Assume that Gaussian membership functions are employed in the FES. The rule 

firing strength or matching degree ~i can be computed by the following equation: 

(3.18) 

where µii and crii are the mean and the standard deviation, respectively, of the linguistic 

label indexed by A!i; and min is a T-norm operator which can be replaced by product. 

After computing the firing strength from each rule, the class output, Cy, 1s 

calculated by using the inference mechanism as follow: 

BJ; J = arg m~x (~;·CF;). (3.19) 
I 
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3.2.2 Fuzzy If-Then Rule Generation 

For the completeness of the rule structure in a FES, grid partition methods are 

widely used for partitioning input space into grid cells. Fuzzy if-then rules can be 

obtained by using fuzzy grid partitions [Wang92]. Despite its advantage of providing the 

completeness of rule structure, the grid partition method has a disadvantage in that the 

number of fuzzy rules increases exponentially as the dimension of the input space 

increases. Since each cell represents a fuzzy if-then rule, the number of fuzzy if-then 

rules is usually very large. The system becomes a black-box scheme that is not 

comprehensible to human users. Pattern classification problems in the real world often 

have large dimensions. It is undesirable to directly use the grid-type partitioning for 

constructing fuzzy if-then rules. 

To obtain a smaller number of fuzzy rules, projection from clusters [Setnes98a], 

[Jin99] is called for. Clustering algorithms can be used for partitioning data points into a 

small number of clusters. Each cluster then represents a fuzzy relation and corresponds 

to a rule. The fuzzy sets in the antecedent parts of the rules are projected from the clusters 

onto the corresponding axis of the data space. The number of rules generated from 

projection method is smaller than the number of rules generated from grid-type 

partitioning. A more compact linguistic model is obtained. However, the fuzzy sets that 

are directly projected from clustering methods may not be transparent or crystal clear 

enough for human interpretation. The number of fuzzy sets from the projection may be 

very large and redundant since the projected fuzzy sets may be very similar resulting in a 

fuzzy system that is not optimal since some of the fuzzy sets can be discarded without 

loosing the generalization. The problem mentioned above can be solved · using rule 
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simplification methods [ Jin99], [Setnes98b]. Alternatively, fuzzy rules can be generated 

by projection from trained ILFN parameters. 

- ILFN Cluster Boundaries FES Grid Partitions 

0~ 

I ' 

~x, 
O o' l_/o_w_, --,><-·~-, --hig_h_,. 

c,.,,, c,,,,,,, ) x, 

(a) (b) 

Figure 3.9: (a) Projection ofILFN to One-Dimensional Fuzzy Sets; (b) FES Grid 

Partition with Its Parameter Projected from a Trained ILFN 

The ILFN groups the patterns in the input space into a number of clusters. Based 

on grid partition methods, the clusters and its parameters of the trained ILFN can be 

mapped to fuzzy if-then rules. The number of fuzzy if-then rules is equal to the number 

of clusters in the trained ILFN. The number of fuzzy sets in each dimension depends on 

the number of grid partitions chosen. The parameters of fuzzy sets are projected from the 

cluster parameters of the trained ILFN. Figure 3.9 (a) shows the projection of ILFN to 

one-dimensional fuzzy sets. There are four fuzzy sets resulted from the projection from 

ILFN parameters to each axis. We can see that the fuzzy sets projected to x1 and x2 

dimensions in Figure 3.9 (a) have some similarity. For example, in x1 axis, two Gaussian 

membership functions centered at wp21 and Wp11 are highly overlapping. In the same 

fashion, two Gaussian membership functions centered at WP4J and Wp31 are highly 
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overlapping. There are only two fuzzy sets in each axis when the fuzzy grid partitioning 

method is used. Combining grid partitioning method and projection method is shown in 

Figure 3.9 (b). The parameters of fuzzy sets in Figure 3.9 (b) are projected and adapted 

from the clusters of the trained ILFN. 

Using a grid-based projection method, the fuzzy if-then rules of the FES are 

extracted from a trained ILFN. The hidden numerical weights of ,the ILFN are mapped 

into initial fuzzy if-then rules. A genetic algorithm is then used to select only 

discriminatory features resulting in a more compact rule set with highly transparent fuzzy 

sets or in other words easily understandable linguistic labels. (Transparency of the fuzzy 

system means that the rule structures and fuzzy sets of a fuzzy expert system can be 

easily understood by experts or experienced users in the problem domain.) Next section 

describes the method used to map the ILFN to the FES. 

3.3 Network-To-Rule Module 

Since the knowledge embedded in the ILFN is not in a linguistic form, the ILFN 

lacks of an explanation capability. ILFN weights can be extracted by using a rule 

extraction algorithm to obtain linguistic rules. A meaningful explanation in reasoning 

process can then be generated from the linguistic model i.e., the FES, The mechanism 

used for mapping a trained ILFN to a linguistic knowledge base operates inside the 

network-to-rule module. The mechanism is called ilfn2rule algorithm. (The name 

"ilfn2rule" comes from that the algorithm is used to transform "ilfn" parameters "to" 

fuzzy "rules".) 
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3.3.1 ILFN2RULE Algorithm 

Using a grid-based projection method, the ilfn2rule algorithm is used to map a 

trained ILFN to fuzzy if-then linguistic rules. The user specifies membership functions' 

types (MF). Any type of fuzzy membership functions can be used. In this study, 

Gaussian membership functions are used. The rule extraction algorithm is given in four 

steps described below. 

Step 1: Retrieve trained ILFN parameters (Wp, WT, count) as well as the 

numbers of linguistic labels (NL). (The numbers of linguistic labels are 

determined during the genetic optimization process that will be discussed 

later.) 

Step 2: Calculate membership functions' parameters (MP) that are a center and a 

standard deviation for each linguistic label in the case that Gaussian 

membership function is used. Centers of Gaussian functions can be 

determined from the variables' ranges (VR) that are minimum and 

maximum values of the numerical weight Wp for the ILFN network. 

Vminj 

Vmax j = max ( wPtj, wPzj , · · ·, wPLj ) = m~x ( wPij ), 
l 

resj = 
Vmax j - Vmin j 

N. -1 
J 

(3.20) 

(3.21) 

(3.22) 

where i = 1, ... , L;j = 1, ... , M; Lis the number of hidden nodes, i.e., 

prototypes created by the ILFN network; M is the dimension of the 

pattern space; resj represents the numerical resolution between linguistic 

variables in the jth dimension; Vmaxj and Vminj are the maximum and the 
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minimum values of the weight Wp in the jth dimension; and Nj is the 

number of linguistic variables in the jth dimension. 

{
Vminj 

µ "k = 
1 µ j,k-I + res1 

fork= 1 

fork =2, ... , Nj 
(3.23) 

(3.24) 

(3.25) 

where µ1k, k = 1, ... , Nj, represents the mean of the kth Gaussian 

membership function in the jth dimension; a1 represents the standard 

deviation of the Gaussian membership· functions in the jth dimension; and 

"A, selected in (0, 1 ], represents the overlap parameter between 

membership functions. 

Step 3: Map the numerical weight Wp into linguistic label form usmg the 

following equation: 

(3.26) 

where Ay represents the index of the linguistic label mapped from wP!i; 

and wP!i, for i = 1, ... , L,j = 1, ... , M, k = 1, ... , Nj, is an element of the 

hidden weight Wp of the ILFN network.Mis the dimension of the pattern 

space and L is the number of prototypes created by the ILFN network. 

Step 4: Generate if-then rule table: use linguistic antecedent parts obtained from 

Wp and consequent parts from WT. The number of fuzzy if-then rules is 

equal to the number of hidden neurons of the trained ILFN. Calculate 
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confident factor CF;, i = 1, ... , L, for each rule using count parameter 

count by the following equation: 

count= [cnt1, cnt2, •.. , cntL]T, 

cnt; 
CF;=--­

Icnth' 
hEClass( WT;) 

(3.27) 

(3.28) · 

where cnt;, i = 1, ... , L, is a count parameter of the ith rule (i.e., the ith 

prototype) obtained when a pattern is included into the ith prototype; and 

Class(wTi) = {l I WT/= WT;, l = 1 , ... , L}. 

. T 
CF = [CF1, CF2, ... , CFr] (3.29) 

Knowledge Base 

Linguistic Label 

{I: low, 2: medium, 3: high} 

Antecedent ~ Consequent 

Direct Mapping 

Figure 3 .10: Mapping from ILFN to Linguistic Rules 

The knowledge base from Figure 3.10 can be described by fuzzy linguistic form 

that is similar to natural language as follows: 

Rule 1: If feature 1 is high and feature2 is low and feature3 is medium, then class 

is 1; 
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Rule 2: If feature 1 is medium and feature2 is low and feature3 is low, then class is 

3· 
' 

Rule 3: If feature 1 is high and feature2 is medium and feature3 is medium, then 

class is 2; 

After linguistic rules are extracted from the ILFN network, they can be used as a 

rule base for a fuzzy expert system. A fuzzy expert system is considered as a higher-level 

knowledge representation since it uses if-then rules similar to natural languages. Using 

linguistic form makes the system transparent, allowing human users to easily comprehend 

the rationale of how the decision was made. Explanations and answers can be provided if 

needed. 

In pattern classification problems, the dimension of the pattern space may be very 

large. For a problem with a very large dimension, it is too cumbersome to use all the 

features available as a knowledge base. Though it is described in linguistic form, using all 

available features, it results in a system that is no longer transparent to users. It is possible 

to select only a feature subset that provides the most discriminatory power in classifying 

patterns. To do this, the genetic algorithm is very useful and suitable to select the 

important features. We will adapt the genetic algorithm (GA) [Holland75] to search for 

an optimal set of features used for each rule while maintaining a high percentage of 

correct classification. This will result in reducing the number of rules as well. Some rules 

will be redundant after many features have been eliminated, these duplicated rules can be 

pruned out. 
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3.3.2 Genetic Algorithm for Rule Optimization 

The linguistic rule base extracted from the ILFN is clearly not optimal. (An 

optimal linguistic rule base implies that, for the. same percentage of correctly classified 

training patterns, the number of rules and the number of fuzzy sets cannot be further 

reduced. An optimal linguistic rule base provides the most transparent fuzzy sets to the 

user.) In order to obtain a near optimal rule set, the GA is used to operate on initial fuzzy 

rules. An integer chromosome representation is used instead of a binary chromosomes 

representation, . to reduce the size of chromosome and to improve the speed of the 

evolutionary operations. The fuzzy if-then rules are encoded into integer chromosomes to 

be evolved by the GA. After converging, the best chromosomes are decoded back into the 

FES with a compact rule set. (Please note that the GA optimization procedure here is not 

performed or related to ILFN network; it is used to change the rule structure of the FES 

to get near a optimal rule set.) 

In order to apply the genetic optimization, the if-then rule base is encoded in a 

chromosome representation. Only the antecedent is coded and operated on by the 

evolutionary process. The original rule set is used as a reference rule set in decoding the 

most fitted individual to the final linguistic rule base. 

3.3.3 Fuzzy If-Then Rule Encoding 

In the proposed procedure, only the antecedents of the if-then rules are used in 

genetic encoding. If-then rules are encoded to an integer chromosome. A chromosome 

sometimes refers to an individual of the population. The elements of each chromosome 
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are called genes that are integer numbers. Each gene in a chromosome can be decoded to 

a fuzzy if-then rule. Let GR be a chromosome that is a set of genes g;, i = 1, ... , L, where 

(3.30) 

M 
- "2j-l g;- L..i aii (3.31) 

j=l 

if A .. =0 
u ;i=l, ... ,L,j=l, ... ,M, 

otherwise 
(3.32) 

where L is the number of fuzzy if-then rules; Mis the dimension of the pattern space. The 

antecedentAiiis the linguistic label in thejth dimension of the ith rule. aii is equal to "1" 

meaning that the jth dimension of the ith rule is being used and aii is equal to "O" 

meaning that thejth dimension of the ith rule is not being used, i.e., don't care. Note that 

equation (3 .31) is used to transform binary numbers to decimal numbers, which is the 

reason why the term '2!-1 is used. 

For example, a FES is used in a three-class, two-dimensional pattern space. The 

fuzzy expert system has two linguistic labels {l: low, 2: high} in each dimension. 

Suppose that there are four rules extracted from a trained ILFN, as follows. 

Rule 1: if x1 is low and x2 is high, then class 1; 

Rule 2: if x1 is high and x2 is high, then class 2; 

Rule 3: if x1 is low and x2 is low, then class 3; 

Rule 4: if x1 is high and x2 is low, then class 3. 

That iswe have R = { A, B }, 
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1 2 1 

2 2 2 
A= B= 

1 1 ' . 3 
; where A is the antecedent set and B is the consequent 

2 1 3 

set. 

Let Ade be a set of antecedents when some features. are composed of a don't care 

linguistic label. Let Abi be a binary set of 1 'sand O's indicating whether or not an element 

of A is used. 

Suppose the antecedent set A is reduced to ~c = 

That is we have a binary set Abi = 

1 1 

1 1 

0 0 

0 1 

1 2 

2 2 

0 0 

0 1 

From the binary set Abi, we have an encoded chromosome 

{ (1 +2), (1 +2), (O+O), (0+2)} 

{ 3, 3, 0, 2 }. 

The above numbers 3, 3, 0, and 2, are genes of a chromosome GR. Each gene 

represents an encoded fuzzy rule. With these encoded fuzzy rules, the GA can be 

operated on for rule optimization. After the GA optimization process, the final 

chromosomes, which are encoded fuzzy rules, can be decoded back to normal fuzzy 

rules. 
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3.3.4 Fuzzy If-Then Rule Decoding 

Integer chromosomes are used in the genetic optimization process. After 

convergence of the solution, encoded integer chromosomes are decoded back to fuzzy if-

· then rule bases. Given an integer chromosome, each gene is decomposed into binary 

format. The decoding process is an inverse process of the encoding process mentioned 

above. The procedure for transforming from integer numbers to binary numbers can be 

performed as following steps: 

Step 1: Retrieve an integer value and keep as g. Set index Q = 1. 

Step 2: Divide 2 into g; keep the remainder from the division as YQ; keep the 
) 

answer from the division as g; 

Step 3: Check the answer if it is equal 0, go to Step 4; if it is not equal 0, set Q = 

Q + 1 and repeat Step 2. 

Step 4: Output the binary number b = {y1,Y2, ... , YQ}-

For example, transforming integer number g = 5 to binary form can be proceeded 

as follows 

Step 1: g=5; Q= 1. 

Step 2: Divide 2 into g; the answer is 2 with the remainder 1; set g = 2; set Y1 = 1. 

Step 3: g is not O; Q = 2; repeat Step 2: 

Divide 2 into g; the answer is 1 and the remainder is O; set g = 1; set yz = 

0. g is not O; Q = 3; repeat Step 2: 

Divide 2 into g; the answer is O and the remainder is 1 ; set g = O; set y3 = 

1. g is O go Step 4: 
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Step4: Output the binary number b = {y1, Y2, y 3} = { 1 0 1} 

In a short way, we can transform an integer number g to a binary number b by 

expressing g into the form 

{21-1 22-l 23-1 2M-l } = xa1 + xa2 + xa3 + ... + xaM 

M z:21- 1a1 ; ai E {O, 1}. 
}=I 

Finally, the binary number b can be written as b = {a1, a2, ... , aM}. For example, 

an integer number g = 5 can be expressed in the form g = {1 + 0 + 4} = { 2°x1 + ixO + 

22xl}. Thuswehaveb= {1 0 l}. 

Suppose that we have a solution chromosome GR = { 3, 3, 0, 2}. Using the 

procedure for transforming from integer numbers to binary number, GR can be 

decomposed to binary format as follows: 

GR { 3, 3, 0, 2 } 

{ (1+2), (1+2), (O+O), (0+2)} 

So, we have Abi 

1 1 

1 1 
. Knowing the origin antecedent set A = 

0 0 

0 1 

have the reduced antecedent set Ade = 

1 2 

2 2 

0 0 

0 1 
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2 2 

1 1 

2 1 

, we 



1 2 1 

2 2 2 
R= {Ade, B} = 

0 0 3 

0 1 3 

Note that if a rule comprises of all don't care linguistic labels in the antecedent part, then 

that rule can be eliminated. 

3.3.5 Genetic Selection for the Number of Linguistic Variables 

The number of linguistic variables can be varied depending on a given problem. 

Some problems may need more linguistic variables than others. Using more linguistic 

variables results in finer fuzzy partitions and better classification performance. However, 

to maintain the interpretability of the system, the number of linguistic variable should be 

kept as small as possible. Selecting the numbers of linguistic variables becomes a trade 

off between the accuracy of the system and the interpretability of the system. To obtain 

the optimal point that balances between the accuracy and the interpretability is not an 

easy task. To avoid the difficulty, the numbers of linguistic labels can be selected by 

using the genetic algorithm. The genetic selection for the linguistic numbers can be 

processed simultaneously with the rule optimization. 

The chromosome for the genetic optimization of the number of linguistic 

variables (GNL) can be written as 

(3.33) 

where ~' j = 1, ... , M, is the number of linguistic variables for the jth dimension. The 

chromosome for optimizing the number of linguistic variables (GNL) can be combined 
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with the chromosome for optimizing the fuzzy if-then rules (GR)- The combined 

chromosome from Equations (3.30) and (3.33) can be written as 

{ N1, N2, ... , NM, g1, g2, ... , gr} (3.34) 

When the genetic algorithm· is implemented, it usually proceeds in a manner that 

involves the following steps: 

Step 1 Initialization of the population 

Step 2 Fitness evaluation 

Step 3 Mate selection 

Step 4 Crossover 

Step 5 Mutation 

Step 6 Check stopping criteria; if the solution meets the criteria, stop the 

algorithm and obtain the final if-then rules; otherwise, repeat Steps 2-6. 

Initialization of the population: A chromosome has two different groups of genes: 

the number of linguistic variables and the fuzzy if-then rules. The initial population of the 

chromosomes is randomly selected as integer numbers in both of the groups. These initial 

individuals will be reproduced to next generation via the evolutionary operations: fitness 

evaluation, mate selection, crossover, and mutation. 

Fitness evaluation: The fitness function is based on the performance of resulting 

rules decoded from a chromosome and the compactness of the rule set. A fuzzy expert 

system with the decoded rules is used to evaluate the performance of the resulting rules. 

The fitness function of a chromosome G can be determined from the following equations: 

fitness(G) Wpc x PC - WF x SC - WNL x NL, (3.35) 
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PC 

SC 

NL 

Total Patterns - Wrongly Classified Patterns x 100 , 

Total Patterns 
(3.36) 

(3.37) 

(3.38) 

where Wpc is the weight of percent correct classification by a fuzzy expert system; PC is 

the percent correct classification; WF is the weight of the number of features used for a 

rule set; a1; is calculated from Equation (3.32); SC is the structure complexity of the 

fuzzy system i.e., number of (eatures used for a rule set, i.e., number of l's in Abi; WNL is 

the weight of the number of linguistic variables used for a rule set; and NL is the 

summation of the numbers of linguistic variables used. Preferring fewer linguistic 

variables, fewer rules, and fewer features with higher correct classification performance, 

the weight of percent correctly classified patterns (Wpc), is usually set to be relatively 

larger than the weight of structure "complexity (WF) and the weight of the linguistic 

variables (WNL). WF, Wpc, and WNL are all positive numbers in iR; they are predefined by 

the user. 

Mate selection: There are many ways of selecting individuals for mating. One of 

the well-known methods is roulette wheel selection [Goldberg89]. The fittest individuals 

usually have a higher chance to mate than the ill-fitted ones. In roulette wheel selection, 

the individuals are randomly selected based on the probability of fitness. The 

reproduction probability can be defined from the fitness function. 
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fittness(G;) 
p 

L fittness(G 1 ) 
1~1 

i = 1, ... , P, 

where Pis the number of individuals in the population. 

Parent, 

Parent2 

Offspring, 

Offspring2 

Crossover points 

2 3 4 s ! 23 o 6 12 I 
3 4 5 2142 7 8 10 

3 4 !4 sl! 42 1 s [W 
LI s 2 H23 o 6!10 
'-y----'j~ 

GNL GR 

Figure 3 .11: Crossover Operation 

(3.39) 

Crossover: After mate selection operation, crossover operation is performed. 

Crossover operation is a mechanism for changing information between two chromosomes 

called parents to reproduce two new individuals called offspring. A crossover point is 

selected randomly with probability Pc· In our problem, since a chromosome is separated 

into two groups, the crossover process is also separated into two parts: the crossover of 

the number of linguistic variables and the crossover of fuzzy if-then rules. The crossovers 

of the two parts are independent from each other. Figure 3.11 illustrates how two 

chromosomes crossover, yielding two offspring. 

Mutation: Mutation is applied to offspring to prevent the solution from trapping at 

a local minimum area. The mutation operation allows the genetic algorithm to explore 

new possible solutions and increase a chance to get near global minima. Figure 3.12 

illustrates how the mutation operation works. 
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Offspring1 

Offspring1 

Mutation points 

3 4 4 5142 7 8 12 

3 4 2 5 l 64 7 8 12 
'--v----1 l '--y-----' 

GNL l GR 

Figure 3.12: Mutation Operation 

An offspring chromosome mutates with the mutation probability Pm on each gene. 

In the integer-coded genetic algorithm, the mutation process operates by the following 

equation 

Gnew = round(Gotd + y x randn(l)), (3.40) 

where Gozd is a gene selected for mutating; Gnew is the resulted gene from mutating; 

randn(l) is a random number in [O, 1] produced by the Gaussian random number 

generator; and y is the highest possible integer value a gene is allowed to be. The two 

parts of the chromosome G have different values. The highest possible value of the 

number of linguistic variables is set to 9 or smaller. The highest integer value for the gene 

of the if-then rule is 2M-J for M-dimensional space. 

3.4 Rule-To-Network Module 

The rule-to-network module is used for transferring the linguistic knowledge into 

the ILFN structure. The rule-to-network module allows domain experts to incorporate 

their knowledge into the system. The rule-to-network consist of the rule2ilfn algorithm 

that is used for mapping the FES to the ILFN. 
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3.4.1 RULE2ILFN Algorithm 

There are two phases in the rule2ilfn algorithm. Phase 1 is used when fuzzy rules 

are compact where they have don 't care linguistic variables. The don 't care linguistic 

variables need to be transformed into intermediate rules. In the transformed intermediate 

rules, every feature or component of the rules is composed of at least a linguistic variable 

attached; otherwise, we cannot map rules to an ILFN network. Phase 2 operates after 

phase 1 ended. In phase 2, the parameters of fuzzy rules are correspondingly mapped to 

the parameters of an ILFN network. The details of the two phases are shown as follows. 

Phase 1: Mapping a compact rule set to an intermediate rule set. 

1) Retrieve a rule Ri = {Ai1, Ai2,·· ., AiM, Bi, CFi}; i = 1, ... , L. 

2) Check for a feature that has a don't care linguistic label (i;e., Au= 0). 

Within the present rule, if there is a feature having a don 't care 

linguistic label; expand every possible rule to cover the combinations 

of available linguistic labels. 

3) Repeat 1) and 2), until there are no more rules. 

4) Output the intermediate rule set. 

Phase 2: Mapping an intermediate rule set to an initial ILFN network. 

1) Set Wr, WT, S, and count to be empty sets. 

2) For ith rule = 1 to L do, 

• Forjth feature= 1 to M do, 

o Set Wp!i = µij 

o Set stdij = au 

90 



• Set wri = Bi 

• Set cnt; = 1 

3) Set Wp = [wp1, Wp2, ... , Wpr]T; where Wp; = [wpn, wPi2,· .. , WPiM] 

4) Set Wr = [wn, wn, ... , WTL]T 

5) Set S = [s1, s2, ... , sr]T; where si = [stdn, std;2, •• . , stdiM] 

6) Set count= [cnt1,cnt2, ... ,cntL]T 

L is the number of rules and Mis the dimension of pattern space. The parameters µif and 

cr ij, i = 1, ... , L, j = 1, ... , M, are a mean and a standard deviation of the linguistic label 

indexed by Aij. More specifically, µij and crij are taken from mp 1.A that is in the 
. " 

membership functions' parameters (MP) from Equation (3.13). 

After obtaining the initial ILFN network, available training data is used to refine 

the ILFN network. Network pruning is also needed to eliminate the hidden nodes that do 

not have any belonging pattern. This can be done by checking at the parameter count. If 

count of a node is equal to one, then eliminate the node. 

3.5 The Decision-Explanation Module 

The last module in the HIS is the decision-explanation module. The decision-

explanation module performs two functions: making a decision and explaining the 

decision. For a first function, making a decision, the decision-explanation module 

receives two inputs from the outputs of low-level ILFN and higher-level FES. Another 

function of the decision-explanation module is to generate a natural language to explain 

and conclude the decision made by using the knowledge base (K) from the FES module. 
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FES 
Cl>p 

input output 

X y 

ILFN 
<I> a 

Figure 3.13: Hybrid System Combined from ILFN and FES 

Figure 3.13 shows an equivalent of the I-iIS. The decision for the class output Cy 

can be calculated by the following equations: 

C [Ci, C2, .. ·, CQ] (3.41) 

[ t,1' ~ a2 ,' " ' ~ aQ J (3.42) 

= [ ~ 131 x CFi, ~in x CF2 , ... , ~PQ x CFQ] (3.43) 

aAai + r\~pi X CF; 
, for i = 1, ... , Q (3.44) 

ai+Pi 

y = [y1, Yz, .. · ,YQ] (3.45) 

CJ; J= argm~ (yi) (3.46) 
I 

where C is the class vector; ct> a is the membership values from the ILFN with respect to 

C; ct> 13 is the membership values from the FES with respect to C; y is the membership 

values from the HIS with respect to C; a= [a1, a2, ... , aQ] and~= [P1, Pz, ... , PQ] are 

the real-value weights linking from the ILFN and the FES to the decision-explanation 

module, respectively; Q is the number of classes; and Cy is the class decision output from 

the HIS. Please note that a and ~ can be specified by the user or determined by an 
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optimization algorithm such as the GA. In our study we used a GA to search for possibly 

optimal values of a. and fl 

For simplicity, we may set a. = a.1 = a.2 = ... = a.Q and P = P1 = P2 = ... = PQ- Then 

we have 

y 

····················· ILFN Boundaries .......................... FES Grid Partitions 

high2 

- - - - - - Hybrid Boundaries 
Xz 

ooll __ ~~-- low, X Mgh, 

) X 
I 

Figure 3.14: Hybrid Decision Boundaries 

3.5.1 Decision Boundaries 

(3.47) 

The decision boundaries of the HIS come from the weighted average of the 

boundaries from the ILFN and FES. The decision boundaries of the ILFN and the 

decision boundaries of the FES contribute in different manners. The decision boundaries 

of the ILFN emphasize in local area to achieve better generalization while the decision 

boundaries of the FES preserve for human interpretability. Since numerical information 

93 



in the ILFN and linguistic information in the FES have complement benefits, it is 

preferable to incorporate both structures into the same system. The boundaries of the 

hybrid system provide both accuracy and interpretability. In the HIS, the ILFN serves as 

a low-level numerical computation, while the FES operates as a higher-level linguistic 

computation. Hybrid weights ( a. and f3) play an important role in adjusting the hybrid 

decision boundaries. If a.i is larger than pi, the hybrid boundaries tend toward the ILFN 

boundaries. If a.1 is smaller than p1, the hybrid boundaries tend toward the FES 

boundaries. Figure 3.14 shows the hybrid decision boundaries of the combined ILFN and 

FES. 

3.5.2 Conflict and Conflict Resolution Between Low Level and Higher Level 

Ideally, there should be no conflict between low level and higher level decisions 

in the HIS, if it is a one-to-one mapping between them. Since a combination of grid based 

partition and projection is used in the mapping process, decisions from ILFN and FES 

may conflict with each other. The diagram in Figure 3.15 shows the possible conflict 

decisions between the ILFN and the FES. The system is in conflict, if the decision from 

the ILFN is correct but the decision from the FES is wrong or if the decision from the 

ILFN is wrong but the decision from the FES is correct. The system is not in conflict, if 

the two systems make the same decision. It is preferable that the two systems are not 

conflict and both make correct decisions. 

It is feasible to resolve the conflict between the two systems by forcing their 

decision boundaries to be as close to the HIS decision boundaries as possible. Conflict 

resolution for the HIS is then the determination of the elements for a. and p. As a matter 
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of fact, this becomes an ordinary optimization problem, which can be solved by using any 

optimization method. Due to an advantage of not requiring a derivative calculation and 

unlikely to be trapped at local minima, GA can be adopted for this purpose. The GA 

searches for weights a and ~ that adapt the decisions boundaries of the two modules to be 

closer together. The hybrid decision finally will be forced to the diagonal path indicated 

as a dashed line in Figure 3.15, which ideally shows that the ILFN and the FES are not 

conflicting and both make consistent decisions. 

Conflict 

Agr\!C!··············· 

(Both.·~ong) 

.................. / 

)'I 

Agree_... ... ...­

(Both.£brrect) 

.... ·••···········•• 

Conflict 

Decision from ILFN 

Figure 3 .15: Conflict Decision between the ILFN and the FES 

3.6 Increment Learning Characteristic of the Proposed HIS 

An incremental learning system updates its new knowledge without training old 

data. Only new data is needed in the learning process. This concept has been studied by 

many .researchers (see [Fu96], [Carpenter92], [Yen99], [YenOl].) In the hybrid structure 

between a low level and a higher level, such as in numerical and symbolic or numerical 

and linguistic systems, it is preferable to incorporate the incremental feature to the 

system. It is important in application such as controls and monitoring process, as well as 

in medical diagnosis, to employ an incremental learning aspect. New knowledge needs to 
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be captured in real time without spending tremendous time to learn all the old data along 

with the new ones. 

Since the proposed HIS incorporated the ILFN which is equipped with an 

incremental learning architecture, it is easy to employ its incremental learning capability. 

The ILFN can learn all patterns within only one pass. While operating, the ILFN detects 

new unseen class prototypes. If new knowledge is found, the new knowledge is added in 

the hidden unit without forgetting the old knowledge. Incorporating the incremental 

learning feature to the higher-level linguistic model is straightforward. New linguistic 

rules can be directly extracted from the new hidden nodes of the ILFN by using the 

ilfn2rule algorithm in the network-to-rule module. An algorithm for checking conflict is 

operated to maintain consistency between the two levels. Similarly, if the higher level has 

a new knowledge, i.e., linguistic rules that maybe come from an expert or experienced 

users, the new knowledge needed to be mapped to the ILFN structures as well. This can 

be done by using the rule2ilfn algorithm in the rule-to-network module. 
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CHAPTER IV 

QUANTITATIVE MEASURES ON THE ACCURACY, 

COMPREHENSIBILITY, AND COMPLETENESS 

OF A FUZZY KNOWLEDGE BASE 

Quantitative measures are essential and form the basis for making reliable 

decisions in software engineering including computational intelligence such as fuzzy 

expert systems (FESs). Quantitative assessment helps us to understand quality of FESs 

that are not accessible to our intuitive ability. Generally, quantitative assessments 

concerned when a FES is constructed are accuracy measures. Accuracy measures help us 

to judge how good a FES can perform in prediction of unseen data. In addition, since 

FESs provide a knowledge representation of the problems dealing with; accuracy alone 

may not be sufficient to guarantee the goodness ofFESs [Setnes98], [JinOO], [RoubosOl]. 

Comprehensibility measures are additional quantitative assessment that can assure that a 

FES is understandable. Moreover, a completeness measure is an indicator to check a 

fuzzy system whether its linguistic variables and rule structure cover the entire possible 

data domain [Jin99], [Stamou99], [Valente99]. The accuracy and the comprehensibility 

of a FES are discussed as follows. 

4.1 Accuracy Measures 

In a binary classification model there are two possible prediction errors: false 

positives (PP) and false negatives (FN). The performance of a binary classifier model is 

normally summarized in a confusion or contingency matrix that cross-tabulates the true 

and predicted classes. Contingency tables provide an easy method to determine 
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relationships between two variables. Based on the contingency table, we can interpret 

many performance measures such as accuracy, false alarm, sensitivity, and specificity. 

TABLE4.1: 
Binary-class Contingency Table 

Predicted Class 
Total 

Yes No 

"' True positive False negative 
"' Yes TP+FN «I (TP) (FN) 0 
Q) 

False positive True negative 
~ No FP+TN 

(FP) (TN) 

Total TP+FP FN+TN 
TP+FN+ 
FP+TN 

The most common assessment of the performance of a classifier system is to test 

its accuracy. Accuracy is a measure of a predictive model that reflects the proportionate 

number of times that the model is making correct classification when applied to test data. 

It measures the probability that the system can correctly classify the data .. In contrast to 

the accuracy measure, false alarm or misclassification rate measures the probability that 

the system wrongly classify the data. False alarm (FA) and accuracy (Ac) may be used 

interchangeably. 

Ac= TP+TN 
TP+FN+FP+TN 

FP+FN 
FA=-------

TP+FN +FP+TN 

(4.1) 

(4.2) 

Sensitivity (SE) and specificity (Sp) are other two measures that are commonly 

used to assess the accuracy of a diagnostic test. Sensitivity is the proportion of all positive 
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classes that actually are correctly classified as positive in a test. For example in a medical 

diagnosis, sensitivity may measure the number of people who truly have the disease and 

who test positive. Specificity is the proportion of all negative classes that actually are 

correctly classified as negative in a test. In a medical diagnosis, specificity may measure 

the number of people who do not have the disease and who is tested negative. 

TP 
(4.3) 

TP+FN 

TN 
(4.4) 

FP+TN 

TABLE4.2: 
Multi-class Contingency Table 

Predicted Class 
Class Total 

1 2 3 ... L 

Ul 
1 T11 F12 F13 ... FIL Nraw, 

Ul 

F21 Tzz F23 FzL Nraw2 ro 2 ... -u 
F31 F32 T33 F3L (J.) 3 ... Nraw3 

;:I 
;... 

E--< 

L FLI FL2 FL3 ... TLL NrawL 

Total Neal1 Neal2 Neal? ... Neall NTotat 

For multi-class problems, the contingency or confusion matrix can be shown in 

Table 4.2. Table 4.2 shows a general contingency table of multi-class problems. Multi-

class contingency tables provide a way to determine relationships among multiple 

variables. The rows of the contingency table indicate the true classes. The columns show 

the predicted classes. In the diagonal of the contingency table, Ti;, i = 1, ... , L, means that 

true class i is identified as class i. For the off diagonal of the table, F ij, i = 1, ... , L, j = 1, 
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... , L, is a false alarm where true class i is identified as class}. Nrowi, i = 1, ... , L, is the 

summation of patterns in the ith row and it is the number of all true class i. Nco9, j = 1, 

... , L, is the summation of the patterns in the jth column and it is the total number of 

predicted class}. Nroiat is the total number of the patterns. From Table 4.2, the accuracy 

(Ac) measure can be determined from the following equation: 

Ac 

= 

Number of Correctly Classified Patterns 

Total Number of Patterns 

L 

I Tu 
J::!_ 

NTotal 

i=1 
L 

I(Nrow;) 
i=l 

i=l 
L 

I(Ncol;) 
i=l 

where Tu is the number of patterns of true class i that are identified as class i. 

4.2 Comprehensibility Measures 

(4.5) 

Comprehensibility is an important issue for a fuzzy system. It is one indication for 

the goodness of a fuzzy system. It can tell whether a fuzzy system is understandable. 

Practically, it is preferable to design a fuzzy system which is highly comprehensible in 

term of knowledge representation. A highly comprehensible fuzzy system can be easy to 
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draw reasoning from. Comprehensibility of fuzzy systems involves the compactness of 

fuzzy systems, the similarity between linguistic terms, and the consistency of fuzzy rules. 

4.2.1 Compactness 

Membership functions 
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Figure 4.1: Higher Comprehensible Fuzzy System with Few Linguistic Terms 
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Figure 4.2: Low Comprehensible System with Too Many Linguistic Terms 

Compactness of fuzzy systems is associated with the comprehensibility of fuzzy 

systems. A compact fuzzy system implies that the fuzzy systems are easy to comprehend. 
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Compactness of fuzzy systems relates to three aspects: a small number of linguistic terms 

in each dimension, a small number of fuzzy rules in the rule base, and a small number of 

conditions in the rule premise or antecedent part [Jin99], [Roubos2001]. 

For the first aspect of compactness regarding the number of linguistic terms, 

Figures 4.1 and 4.2 illustrate the compactness concept of fuzzy systems. Figures 4.1 and 

4.2 differ in the number of linguistic terms. Comparing between Figures 4.1 and 4.2, 

Figure 4.1 has fewer linguistic terms. In general, it is relatively easier for the user to 

discern a fuzzy variable with three rather than seven linguistic labels. 

Xz 

R, R, R; R, 

R, R10 R11 R12 

R" R" R11 R" 

R21 R:n R23 R24 

R,, R2s R29 

R,, R,, R35 

x, 

Figure 4.3: A Structure of Two-Dimensional Fuzzy System with Too Many Fuzzy Rules 

The second aspect of compactness is the number of fuzzy rules. The number of 

fuzzy rules needed to represent a physical system depends on the structure of the fuzzy 

rules. In a standard structure of a fuzzy system with M dimensions and each dimension 

partitioned into N subspaces, there exist up to tf'1 rules in the fuzzy system. For example, 

in Figure 4.3, for a two-dimensional fuzzy system partitioned into 6 subspaces, the 

number of fuzzy rules is 36. If all the possible rules are used then the system is not 

compact. For the same fuzzy system, a more compact fuzzy system is shown in Figure 

4.4. A compact rule set is easier to comprehend and recognize. Compactness of fuzzy 
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rules increases the degree of importance when the system mcreases the number of 

dimensions or the number of input features [Jin99]. 

R, 

Figure 4.4: A Structure of Two-Dimensional Fuzzy System with Fewer Fuzzy Rules 

R17 Class 1 R2 7 Class 3 

R3 7 Class 2 R4 7 Class 3 

Figure 4.5: A Two-dimensional Fuzzy System with Two Conditions Per Rule 

The third aspect of compactness is the number of conditions in the antecedent part 

of fuzzy rules or the number of features used per rule. If some of the features are not used 

then the system becomes more compact. The system structure can be easier to 

comprehend. Figure 4.5 shows a two-dimensional fuzzy system with four rules. In Figure 

45, the number of conditions is two. Each rule uses both inputs as conditions in the 
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antecedent part. Figure 4.6 illustrates the same fuzzy system with three rules, but the 

number of conditions per rule is 1.67. Rules 1 and 3 use both inputs x 1 and x2 in the 

antecedent part while Rule 2 uses only input x1• Figure 4.6 has a structure that is easier to 

comprehend and recognize. 

x, 

R17 Class I 

R, 7 Class 3 

R3 7 Class 2 

Figure 4.6: A More Compact Fuzzy System with 1.67 Conditions Per Rule 

The compactness of a fuzzy system can be quantified into numerical values. The 

comprehensibility can be measured in several terms: the number of rules (L), the number 

of antecedents per rule (NA), the number of labels per dimension (Nr), the degree of 

linguistic similarity (LS), and the degree of inconsistency or rule similarity (RS). 

L 

Nr 

counts of all the rules in the rule set 

counts of all the antecedents in the rule set 

L 

counts of all the linguistic labels 

M 

where Mis the number of dimensions. 
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4.2.2 Linguistic Similarity 

Highly comprehensible membership functions 

2 3 4 5 6 
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Complete fuzzy partitioning 

Figure 4.7: Comprehensible Linguistic Terms and Complete Fuzzy Partitions 
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Figure 4.8: Poorly Comprehensible Linguistic Terms and Incomplete Fuzzy Partitions 
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Linguistic similarity of fuzzy variables is an important factor for the 

comprehensibility of fuzzy systems. Figures 4.7 and 4.8 illustrate two different sets of 

fuzzy linguistic terms, i.e., two different sets of membership functions. Both figures have 

the same number oflinguistic terms that are extremely low, very low, low, medium, high, 

very high, and extremely high. One can notice that the membership functions in Figure 

4. 7 are more comprehensible than the membership functions in Figure 4.8. The 

membership functions in Figure 4. 7 are equally distributed in the universe of discourse. 

Each membership function in Figure 4. 7 is easily distinguished from the others. 

However; in Figure 4.8, the membership functions are not well comprehensible because 

there are some membership functions that are very similar to each other. They cannot be 

easily discriminated among others. The similar membership function should be 

eliminated or merged together [Setnes98], [Jin99], [Jin2000], [Roubos2001]. 

A similarity measure [Setnes98], [Jin2000] for fuzzy sets can be used to quantify 

the comprehensibility of a fuzzy knowledge base. The degree of linguistic similarity is 

considered the highest when two fuzzy sets are equal. When there are no overlapping 

fuzzy sets, the degree of linguistic similarity is zero. The degree of linguistic similarity 

falls in [O, 1], if there are overlapping fuzzy sets. Based on the set-theoretic operations of 

intersection and union, we can determine the degree of linguistic similarity (LS) of fuzzy 

sets by the following equation: 

(4.9) 

where jljkl = Z:m1jk (xq) is the summation of membership value oflinguistic label ljk; all 
q 

Xq are crisp members of fuzzy set ~k; m defines the membership degree; j represents the 
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jth dimension; k1 and k2 are the indexes to linguistic labels; and the n and U operators 

represent the intersection and union, respectively. Using the operator n as min and the 

operator U as max, we have the following degree of linguistic similarity (LS): 

LS 

Imin[m11k1 (xq),m1jk2 (xq)] 
q . 

~max[m1 (xq),m,. (xq)] 
L_i 1k1 1k2 

q 

1 M 
=-·~LS. 

L..i J ' M j=I 

(4.10) 

(4.11) 

(4.12) 

where LS)kl'k2 ) E [O, 1] is the degree oflinguistic similarity between linguistic labels 

l jk1 and l jk2 ; Nj is the number of linguistic labels in the jth dimension; k1 and k2 are the 

indexes to linguistic labels; m1jk denotes the membership function of linguistic labels ljk; 

xq,j = 1, ... , M, q = 1, ... , Q, is the qth input sample in thejth dimension; Mis the 

number of dimension; Q is the total number of input samples in the universe of discourse; 

and L8.i E [O, 1] is the average of the degree oflinguistic similarity in thejth dimension. 

Figures 4.9 and 4.10 illustrate the intersection and the union, respectively, 

between two fuzzy sets. 
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Figure 4.9: Intersection of ljki and ljkz 
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Figure 4.10: Union of ljki and ljkz 

4.2.3 Consistency of Fuzzy Rules 

Fuzzy rules should be consistency with each other, i.e., they are not conflicting 

with each others [Jin99]. Inconsistency of fuzzy rules can directly effect to the overall 

decision-making 'of the system. It can degrade the overall performance of the system. 

Inconsistency of fuzzy rules should be avoided. Inconsistency of fuzzy rules occurs when 

there are two or more rules are conflicting. Fuzzy rules are conflicting if they have 
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similar antecedents but rather different consequents. Measuring rule inconsistency is 

equivalent to measuring rule similarity. Degree of fuzzy rule similarity can be measured 

by using fuzzy similarity measure. Fuzzy rule similarity (RS) is divided into two parts: 

the similarity of the antecedents (SA) and the similarity of the consequents (SC). The 

. similarity of the antecedents (SA) can be determined from the following equation: 

'°'min[m1 (xq),m1. (xq)] 
L_. JAij JAkj 

q 

Imax[m 11Au (xq),m 11A,; (xq)] 
q 

(4.13) 

where Aij E {O, 1, 2, ... , lvj} is the index to the linguistic terms of the ith rule in the jth 

dimension; A1g E {O, 1, 2, .. ,, lvj} is the index to the linguistic terms of the kth rule in the 

jth dimension; and lvj is the total number of linguistic labels in the jth dimension. 

Using constant numbers as consequents, the similarity of the consequents (SC) 

can be determined from the following equation: 

if the consequents are the same; 

(4.14) 

otherwise. 

for i :;t: k; i = 1, ... , L-l; k = 2, ... , L;j = 1, ... , M. (4.15) 

1 L~ L . 

RS= · . L IRS(R;,Rk) ; for i :;t: k, 
(L-1) + (L -2) + · · · + 1 i=1 k=2 

(4.16) 

where RS(R;, Rk) E [O, 1] is the degree oflinguistic similarity between rules Ri and Rk; 

and RS E [O, 1] is the average of the degree of rule similarity. 
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4.3 Completeness Measure 

Completeness is a property of deductive systems that has been used in the context 

of artificial intelligence to indicate that the knowledge representation scheme can 

represent every entity within the intended domain. In a fuzzy system, completeness is a 

fundamental issue since complete fuzzy systems can respond to any given input. A 

complete fuzzy system can achieve a proper operation avoiding undesirable situations 

[Stamou99], [Valente99]. The completeness of fuzzy systems consists of two main 

factors: completeness of fuzzy partitions and completeness of fuzzy rule structure [Jin99]. 

Examples of complete and incomplete fuzzy partitions are shown in Figures 4.7 and4.8, 

respectively. Examples of complete and incomplete fuzzy rule structures are shown in 

Figures 4.11 a and 4.11 b, respectively. 

To measure the completeness and incompleteness of fuzzy rule structure, suppose 

input variable x in the universe of discourse X is divided into N fuzzy partitions 

represented by membership functions mi(x), for i = 1, ... , N. The completeness of the 

system is satisfied if 

VxEX,:3i:l::S:i::S:N such that m;(x) > 0. (4.17) 

More generally, one may defined a certain level of completeness, 8, given rise to the 

concept of strong completeness, as follows: 

VxEX,:3i:l::S:i::S:N such that m;(x) > 5. (4.18) 

Figures 4.11 a and 4.11 b, respectively, illustrate complete and incomplete fuzzy 

rule structures. In Figure 4.1 la, the rule structure is complete because every partition in 
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each dimension is incorporated. Though the fuzzy partitions are complete, the rule 

structure in Figure 4.11 b is incomplete because some partitions are not incorporated. The 

input in which its partitions are not used may cause a no-response or zero output. 

0 0 

a) b) 

Figure 4.11: a) A Complete Rule Structure; b) An Incomplete Rule Structure 
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Figure 4.12: Antecedent Structure of a Complete Fuzzy System 
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Figure 4.13: Antecedent Structure of an Incomplete Fuzzy System 

To check whether or not the rule structure is complete, each dimension of fuzzy 

sets from all rules are mapped onto the same axis by OR operator (v), as shown in 

Figures 4.12 and4.13. Figure 4.12 shows the antecedent structure of a complete fuzzy 

system drawn from Figure 4.11 a, while Figure 4.13 illustrates the antecedent structure of 

an incomplete fuzzy system from Figure 4.11 b. 

A completeness measure is defined as the proportion of the complete region and 

the region of interest. Similarly, an incompleteness measure is defined as the proportion 

of the incomplete region and the region of interest. Completeness degree in the jth 

dimension (CDj) and incompleteness degree in the jth dimension (IDj) are calculated 

from the following equations: 

CD1 
Nm(x)°28,xeX 

NxeX 
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ID.= 
.I 

I -D -
j=l 

M 

Nm(x)<li, xeX 

NxeX 

(4.20) 

(4.21) 

where In is the overall incompleteness degree which is the average values of all the 

incompleteness degrees from each dimension. M is the number of the dimensions. CDi 

and !Di E [O, 1] are completeness degree and incompleteness degree, respectively, in the 

jth dimension; CRi is the length of the complete region in the jth dimension; !Ri is the 

length of the incomplete region in the jth dimension; and Rl_j is length of the region of 

interest in the jth dimension or the universe of discourse X. x E Xis the input elements. 

m(x) the membership degrees of x. 8 E [O, 1] is the level of completeness. Nm(x)°?:.ois the 

number of element x that has membership degree larger than 8. Nm(x)<o is the number of 

element x that has· membership degree smaller than 8. Nxex is the total number of 

element x in the universe of discourse X. 

It is an N-P hard problem in constructing a fuzzy rule-based system that is to 

preserve the performance accuracy and the comprehensibility in term of knowledge 

representation. There are many ways to optimize fuzzy rules. One of the popular 

techniques is to use evolutionary computation such as genetic algorithms (GAs). In this 

study, we apply a GA to perform an optimization process of fuzzy rules by searching 

both for good accuracy and the comprehensibility based on the quantity measures 

discussed above. 
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4.4 Fitness Functions Implemented for the Genetic Algorithm 

GAs have been widely used for helping in the generation of if-then rule bases of 

FESs. When a FES is constructed, accuracy and comprehensibility should be concerned 

during the optimization process using the GAs. A fitness function is used to guide the 

evolutionary process to a satisfactory goal. The fitness function used is based on the 

accuracy performance of resulting rules, the comprehensibility of the rule set, and the 

completeness of the fuzzy rule structure. The fitness function can be determined from the 

following equations: 

where F N represents an overall fitness function; Ac, SE, and Sp are the accuracy, the 

sensitivity, and the specificity, respectively; L and NA are the numbers of rules and 

antecedents per rule, respectively; Mand Nr are the numbers of dimensions and linguistic 

terms per dimension; LS is linguistic similarity; RS is the rules similarity or the 

inconsistency; and ID is the degree of incompleteness; and WA is the weight for the 

reinforcement part and Ws is the weight for penalty part. Usually WA is selected to be 

larger than Ws, since the accuracy of the system is paid more attention. 
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CHAPTERV 

BENCHMARK SIMULATION RESULTS 

To demonstrate the performance of the HIS, computer simulations were used in 

our study. Simulations and analysis of the HIS are performed using two well-known 

benchmark data sets: Iris data [Fisher36] and Wisconsin breast cancer data [Wolberg90]. 

The Iris data is used because it is a simple and widely used benchmark data set. 

Wisconsin breast cancer database (WBCD) [Wolberg90] is used as an example for 

application in medical diagnosis. The WBCD is a real application that has been exploited 

by many researchers [Pefia99], [Setiono96], [Taha99], [SetionoOO]. 

5.1 Iris Data Set 

The Fisher's Iris flower data set consists of 150 patterns with four features: sepal 

length, sepal width, petal length, and petal width. These four features describe the shape 

and size of the Iris flowers. Each pattern in the data set falls into one of three classes: 

Setosa, Versicolour and Virginica, with a total of 50 patterns per class. For the purpose of 

this experiment, we will call them Class 1, Class 2, and Class 3, respectively. Class 1 is 

linearly separable from the other two. However, Classes 2 and 3 are not linearly separable 

from each other. 

Figure 5.1 shows the scatter plot of the Iris data for sepal width and length 

features. It is worth noting from the plot that Class 1 can be easily separated from 

Classes 2 and 3. However, Class 2 and Class 3 seem very difficult to separate since there 

is an overlap between them. Moreover, in Figure 5 .2, the petal width and length features 
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are plotted, showing that Class 1 is very well separated from Classes 2 and 3. However, 

Class 2 and Class 3 remain overlapped [Fisher36]. 

Scatter plot of sepal width and length features 
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Figure 5.1: Scatter Plot of Sepal Width and Length Features of the Fisher's Iris Data 
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Figure 5.2: Scatter Plot of Petal Width and Length Features of the Fisher's Iris Data 

5.1.1 Simulation Results for the Iris Data Set 

We used 75 patterns with the first 25 patterns from each class for training. The 

remaining 75 patterns were used for testing. Setting the threshold E = 0 and the standard 

deviation cr0 = 1, the ILFN network one-pass incrementally learned the training set in 
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which 9 hidden neurons are constructed. The resulting numerical parameters of the ILFN 

network are shown in Tables 5.1 and 5.2. With the numerical values in Tables 5.1 and 

5.2, ILFN classifier achieved 96% for training set and 98.67% for test set. 

TABLE 5.1: 
W p and WT from the ILFN Classifier for the Iris Data 

Wp WT 
5.028 3.48 1.46 0.248 1 

6.1059 2.8118 4.4529 1.3882 2 
7.1 3.125 6.1583 2.1583 3 

5.56 2.66 4.92 2 3 
5.26 2.5 3.64 1.16 2 

6.5167 2.9167 5.4333 1.9833 3 
6 2.2 5 1.5 3 

6.3 2.7 4.9 1.8 3 
6.7333 3.0333 4.6333 1.4 2 

TABLE 5.2: 
· The Standard Deviation, S, and the Number of Patterns, count, 

from the ILFN Classifier for the Iris Data 

s coU:nt 
1.3497 1.2501 0.68582 0.39022 25 

0.91305 1.078 0.98196 0.70182 17 
1.13 ·0.76985 1.1016 ·o.63668 12 

0.65772 0.48898 0.55937 0.61237 5 
0.69121 0.64083 0.58204 0.50869 5 
0.51473 0.63733 0.55909 0.49749 6 

1 1 1 1 1 
1 1 1 1 1 

0.59815 0.59255 0.61328 0.58737 3 

The rule extraction algorithm, "ilfn2rule" discussed in Section 3.3, was used to 

map the numerical parameters of the ILFN network from Table 5.1 into fuzzy linguistic 

form shown in Table 5.4. Table 5.3 indicates the extracted linguistic variables and their 
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parameters. Table 5.4 shows the original fuzzy rule set that was the result from the rule 

extraction "ilfu2rule." 

TABLE 5.3: 
Resulted Linguistic Labels and Their Parameters for the Iris Data 

Features Linguistic Labels and Parameters 

Fl: Sepal Length 
1: Short 2: Long 

!(Gaussian, 5.28, 0.6827) (Gaussian, 7: 1, 0.6827) 

F2: Sepal Width 
1: Narrow 2: Wide 

(Gaussian, 2.2, 0.4218) (Gaussian, 3.48, 0.4218) 

F3: Petal Length 
1: Short 2: Medium 3: Long 

(Gaussian, 1.46, 0.7741) (Gaussian, 3.8092, 0.7741' (Gaussian, 6.1583, 0.7741' 

F4: Petal Width 
1: Narrow 2: Medium 3: Wide 

'Gaussian, 0.248, 0.3147 (Gaussian, 1.2032, 0.3147' 1Gaussian, 2.1583, 0.3147' 

TABLE 5.4: 
Original Fuzzy If-Then Rules for the Iris Data 

Antecedent Consequent 

F1 F2 F3 F4 Class CF 

1 2 1 1 1 1 
2 1 2 2 2 0.68 
2 2 3 3 J 0.48 
1 1 2 3 3 0.2 

1 1 2 2 2 0.2 

2 2 3 3 3 0.24 
1 1 3 2 3 0.04 
2 1 2 3 3 0.04 
2 2 2 2 2 0.12 

A fuzzy expert system with the original rule classified the training pattern with 

96% correct classification. The generalization for the test set was 96% correct 

classification. Although the originally extracted rule is functional, it may be further 

simplified by reducing the number of discriminatory features. This simplification greatly 

enhances human understandability of the rule without sacrificing performance. In other 

words, it is possible to use fewer features which have high discriminatory power. In this 
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simulation, the genetic algorithm was used to select only important features that 

contribute a high discriminatory power. The genetic parameters are chosen as follows: 

population size = 100, the probability for mutation, Pm = 0.8, and the probability for 

crossover, Pc = 0.01. After running for 60 generations, the genetic algorithm yielded 

results shown in Table 5.5. 

TABLE 5.5: 
Final Fuzzy If-Then Rules for the Iris Data 

Antecedents Consequent 
F1 F2 F3 F4 Class CF 
0 0 0 1 1 1 
2 0 2 2 2 0.68 
2 0 3 0 3 0.48 
0 0 0 3 3 0.2 
0 0 2 2 2 0.2 

From Table 5.5, the linguistic rules can be interpreted in a natural language form 

as follow: 

Rule 1: If petal width is narrow 

Then class is Iris Setosa with CF = 1; 

Rule 2: If sepal length is long and 

petal length is medium and 

petal width is medium 

Then class is Iris Versicolor with CF= 0.68; 

Rule 3: If sepal length long and 

petal length is long 

Then class is Iris Virginica with CF= 0.48; 

Rule 4: If petal width is wide 
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Then class is Iris Virginica with CF= 0.2; 

Rule 5: If petal length is medium and 

petal width is medium 

Then class is Iris Versicolor with CF= 0.2. 

Using 75 patterns for training and 75 patterns for testing, the fuzzy expert system 

with this rule set achieved 98.67% and 96% correct classification for training and testing, 

respectively. 

We combine the trained ILFN and the fuzzy expert system resulting in a hybrid 

intelligent system. The weights between the decision output from the ILFN and the FES 

are a = 0.42857 and J3 = 0.57143 (where a and J3 were determined by using GA). The 

resulting system achieve 100% for classification rate in training set and 100% for 

classification rate in the test set. 

5.2 Wisconsin Breast Cancer Data (WBCD) 

The WBCD contains a collection of 699 patterns each described by 9 features. 

Each feature is a real number in the interval 1 to IO based on a fine needle aspirate taken 

directly from human breasts: clump thickness, size uniformity, shape uniformity, 

marginal adhesion, cell size, bare nuclei, bland chromatin, normal nucleoli and mitosis. 

The larger the values of these attributes yield the greater the likelihood of malignancy. 

There are 458 patterns for benign (labeling as "2" in the data base) and 241 patterns for 

malignant (labeling as "4"). There are 16 patterns with incomplete feature descriptions 

marked as"?" [Wolberg90], [Blake98]. We replaced the missing values with "O." 
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5.2.1 Simulation Results for the WBCD 

Ten simulations were performed to evaluate the proposed method. In every 

simulation, the ILFN learning parameters were set to defaults as follows: the threshold, E 

= 0 and the standard deviation, cr0 == 0.5. The numerical weights of the ILFN network 

were extracted to fuzzy initial linguistic rules. In order to optimize the linguistic rules, the 

GA with the integer chromosome representation was used by setting its learning 

parameters heuristically as follows: population size = 100, the number of generations = 

100, the mutation probability, Pm= 0.8, and the crossover probability, Pc = 0.01. The 

weights in the fitness evaluation are set as follows: Wpc = 50, WF = 5, and WNL = 1. The 

number of linguistic labels was constrained to within 3 for each dimension. The GA with 

a real chromosome representation also was used to find the weighting parameters, a and 

~- The parameters for the GA were as follows: population size = 60, the number of 

generations = 20, the mutation probability, Pm= 0.8, and the crossover probability, Pc = 

0.01. The results from the ten simulations are shown in Table 5.6. 

From Table 5.6, the ILFN achieved an average correct classification of96.17% on 

training set and 97.37% on test set. The fuzzy rules extracted from the trained ILFN 

achieved an average correct classification of 97.43% on training set and 96.72% on test 

set. It is worth noting that the fuzzy rules extracted from the trained ILFN achieved a 

higher correct classification rate for the training set. However, the fuzzy rules achieved 

lower percentage of correctly classified patterns from the test set. When we combined the 

ILFN and fuzzy rules extracted to construct a HIS, the results show that the HIS achieved 

a better performance than both the ILFN and the extracted fuzzy rules alone. The 
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proposed HIS had an average of 97.61 % and 97.48% correct classification on the training 

set and the test set, respectively. 

TABLE 5.6: 
Simulation Results for the WBCD 

Structure complexity Number of patterns % Correctly classified patterns 

Run no. Methods 
#Nodes %Overall 

# conditions* # Training #Test Training set % Test set 
and/or #Rules patterns 

Numerical (ILFN) 3 nodes 9FIN 100 599 98% 96.83% 97.00% 

1 
Fuzzy Rules 3 rules 2.3 FIR 100 599 98% 96.49% 96.71% 

Hybrid ILFN and 3 nodes&3 
Fuzzv Rules rules 

9 FIN & 2.3 FIR 100 59.9 98% 96.83% 97.00% 

Numerical (ILFN) 3 nodes 9FIN 100 599 98% 96.83% 97.00% 

2 
Fuzzv Rules 3 rules 4FIR 100 599 98% 94.74% 96.25% 

Hybrid ILFN and 3 nodes & 3 
9FIN &4FIR 100 599 98% 97.14% 97.57% 

Fuzzv Rules rules 
Numerical (ILFN) 3 nodes · 9FIN 100 342 98% 97.95% 97.23% 

3 
Fuzzy Rules 3 rules 2.7FIR 341 342 97.95% 96.49% 96.71% 

Hybrid ILFN and 3 nodes & 3 
9 FIN.& 2.7 FIR 341 342 98% 98.25% 98.13% 

Fuzzy Rules rules 
Numerical (ILFN) 4 nodes 9FIN 120 358 95.83% 97.49% 96.57% 

4 
Fuzzv Rules 4 rules 3.75 FIR 341 358 97.36% 96.65% 97.00% 

Hybrid ILFN and 4nodes &4 
Fuzzv Rules rules 

9 FIN & 3.75 FIR 341 358 97.07% 97.50% 97.43% 

Numerical (ILFNl 4 nodes 9FIN 120 342 95.83% 98.25% 96.93% 

5 
Fuzzy Rules 3 rules 2.67F/R 341 342 96.77% 96.78% 96.79% 

Hybrid ILFN and 4 nodes & 3 
Fuzzy Rules rules 

9 FIN, 2.67 FIR 341 342 96.48% 98.25% 97.36% 

Numerical (ILFN) 5 nodes 9FIN 150 342 94.67% 97.19% 96.63% 

6 
Fuzzv Rules 5 rules 2.2 FIR 341 342 97.07% 97.37% 97.22% 

Hybrid ILFN and 5 nodes, 5 
9 FIN & 2.2 FIR 341 342 97.07% 97.08% 97.07% 

Fuzzv Rules rules 
Numerical (ILFNl 5 nodes 9FIN 150 342 94.67% 97.19% 96.63% 

7 
Fuzzy Rules 4 rules 2.5 FIR 683 683 97.07% 97.07% 97.07% 

Hybrid ILFN and 5 nodes & 4 
9 FIN & 2.5 FIR 683 683 97.22% 97.22% 97.22% 

Fuzzy Rules rules 
Numerical (ILFN) 3 nodes 9FIN 100 342 98% 97.95% 97.23% 

8 
Fuzzy Rules 2 rules 3FIR 683 683 97.23% 97.23% 97.23% 

Hybrid ILFN and 3 nodes&2 
9FIN & 3 FIR 683 683 97.57% 97.57% 97.57% 

Fuzzy Rules rules 
Numerical (ILFN) 5 nodes 9FIN 150 549 94.67% 97.19% 96.42% 

9 
Fuzzy Rules 4 rules 2.5 FIR 699 699 97.57% 97.57% 97.57% 

Hybrid ILFN and 5 nodes &4 
9 FIN & 2.5 FIR 699 699 97.57% 97.57% 97.57% 

Fuzzv Rules rules 
Numerical (ILFN) 3 nodes 9FIN 100 599 98% 96.83% 97.00% 

IO 
Fuzzy Rules 3 rules 2.33 FIR 699 699 96.85% 96.85% 96.85% 

Hybrid ILFN and 3 nodes & 3 
9 FIN & 2.33 FIR 699 699 97.42% 97.42% 97.42% 

Fuzzv Rules rules 
Numerical (ILFN) 3.8 nodes 9FIN 96.17o/o 97.37% 96.77% 

Average 
Fuzzy Rules 3.4 rules 2.77FIR 97.43%, 96.72% 97.08% 

Hybrid ILFN and 3.8nodes& 
Fuzzv Rules 3.4 rules 

9 FIN & 2.77 FIR 97.61% 97.48% 97.55% 

* FIN - # features per node and FIR,.,;# features per rule. 

Due to the space limitation, we show the details of numerical weights of the ILFN 

and the extracted linguistic rules from one example (highlighted) based on the best 

classification performance of the HIS, i.e., from run number 3 in Table 5.6. Based on run 
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number 3, the details on ILFN and its linguistic rules extracted are shown in Tables 5.7, 

5.8, and 5.9. 

TABLE 5.7: 
ILFN Parameters for the WBCD 

WP WT 
2.7818 1.3455 1.4182 1.2727 2.0545 1.5273 2.7818 1.1818 1.0909 2 
7.3462 6.6538 6.6154 5.1923 6.7692 7.5 5.5385 6.9615 3.4615 ·4 
6.6316 3.7895 4.3684 2.6842 3.8947 4 3.8947 4.4211 2.0526 4 

Standard Deviation count 
8.0293 3.4577 4.1716 2.6234 2.3358 5.2169 7.9414 2.2247 1.6642 55 
8.9208 9.4657 7.9145 12.538 9.2651 9.8717 7.244.6 10.184 13.132 26 
8.9898 4.0137 4.2122 4.8625 5.2584 7.6044 3.4663 8.9787 7.9811 19 

TABLE 5.8: 
Resulted Linguistic Labels and Their Parameters for the WBCD 

Features Linguistic Labels.and Parameters 

F 1 = Clump Thickness 
1: /ow 1 2: high] 

(Gaussian: 2.7818, 1.504)* (Gaussian: 7.3462, 1.504) 

F2 = Size Uniformity 
1: /ow 2 2: high 2 

(Gaussian: 1.3455, 1.7491) (Gaussian: 6.6538, 1.7491) 

F3 = Shape Uniformity 
1: /ow 3 2: medium 3 3: high3 

(Gaussian: 1.4182, 0.85625) (Gaussian:4.0168, 0.85625) (Gaussian: 6.6154, 0.85625) 

F 4 = Marginal Adhesion 
1: low 4 2: high4 

(Gaussian: 1.2727, 1.2915) (Gaussian: 5.1923, 1.2915) 

F5 = Cell Size 
1:/ow 5 2: medium 5 3: high 5 

(Gaussian: 2.0545, 0.77676) (Gaussian: 4.4119, 0.77676) (Gaussian: 6.7692, 0.77676) 

F6 = Bare Nuclei 
1: /ow 6 2: high 6 

(Gaussian: l.5273, 1.968) (Gaussian: 7.5, 1.968) 

F7 = Bland Chromatin 
1: /ow 7 2: medium 1 3: high7 

(Gaussian: 2.7818, 0.45416) (Gaussian: 4.1601, 0.45416) (Gaussian: 5.5385, 0.45416) 

Fs = Normal Nucleoli 
.1: lows 2: mediums 3: highs 

(Gaussian: 1.1818, 0.95222) (Gaussian: 4.0717, 0.95222) (Gaussian: 6.9615, 0.95222) 

F9 = Mitosis 1: /ow 9 2: high 9 

!(Gaussian: 1.0909 0.78113) (Gaussian: 3.4615, 0.78113) 

• Since Gaussian membership functions are used, the parameters of the lingusistic !ables are written as (Gaussian: mean, standard deviation). 

From run number 3, we used 100 patterns for training the ILFN, 341 patterns for 

training the FES and HIS, and used 342 patterns for testing in all three systems. The 

ILFN constructed 3 hidden nodes with the parameters shown in Table 5.7. The ILFN 
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network achieved 98% and 97.95% correct classification for the training set and the test 

set, respectively. 

From Table 5.7, the knowledge embedded in the trained ILFN is in numerical 

form. Linguistic rules are preferably extracted from the trained ILFN for a reasoning 

purpose. The fuzzy linguistic rules are mapped from the ILFN parameters and the GA is 

used to select only discriminatory features. This will be resulted in a more compact rule 

set. 

TABLE 5.9: 
Fuzzy Expert Rules for the WBCD 

Antecedent Consequent 
F1 F2 F3 .F4 Fs F6 F, Fa F9 Class CF 
1 1 0 1 1 0 0 1 1 2 1 
2 0 3 0 0 0 0 0 2 4 0.57778 
2 0 0 0 0 0 2 0 l 4 0.42222 

F1 Fz F3 F4 Fs F6 F, Fa F9 Class CF 

Rulel o.{IJo.:[[Jo.:Lo.:~o{Do.:Lo.:Lo.:[J-{3] 2 1 0 o. 0 0 0 0 0 0 0 T1j0l_~0r!FLol_~~012 4 6 13 4 5 1LOliJ Rule2 0.5 0.5 0.5 .5 0.5 . 0.5L0.5L0.5 0.5 4 0.57778 0 0 0 0 0 0 0 0 0 10 . 5 101 2 4 6 1L01 2 4 1 4 6 12 4 6 1L1D 1 2 4 6 1W4 
Rule3 0.5[1J0.5L0.5 0.5L0.5L05L0.5 .5L0.5 4 0.42222 0 0 0 0 0 0 0 0 0 0 5 10 2 4 6 2 4 6 2 4 4 6 2 4 6 2 4 6 2 4 6 0 2 4 

After running for 100 generations, the resulted fuzzy linguistic labels are shown 

in Table 5.8. The fuzzy linguistic rules are shown in Table 5.9. Using the linguistic 

knowledge from Tables 5.8 and 5.9 as the rule set for a fuzzy expert system, the final 

fuzzy linguistic rules achieved 97.95% and 96.49% correct classification for training and 

testing data, respectively. The hybrid intelligent system combining the decisions from 

both ILFN and FES achieved 98% correct classification rate for training set and 98.25% 

correct classification rate for the test set. The HIS achieved 98.13% in all 683 patterns of 

the WBCD. Fuzzy expert rules in natural language for the WBCD can be interpreted as 
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Rule 1: If Clump Thickness is low1 and Size Uniformity is low2 and Marginal 

Adhesion is low4 and Cell Size is low5 and Normal Nucleoli is low8 and 

Mitosis is low9, Then Malignant, with confidence = 1; 

Rule2: If Clump Thickness is high1 and Shape Uniformity is high3 and Mitosis is 

high9, Then Benign, with confidence= 0.58; 

Rule3: If Clump Thickness is high1 and Bland Chromatin is medium7 and Mitosis 

is low9, Then Benign, with confidence= 0.42; 

5.2.2 Comparison Results for the WBCD 

Several groups of researchers have studied and developed knowledge-based 

system for the WBCD. Pe:fia-Reyes and Sipper used a fuzzy if-then system as a classifier. 

They developed a fuzzy-GA algorithm to extract rules from the WBCD. Fuzzy-GA 

algorithm uses the genetic algorithm (GA) to search for two parameters, P and d, of their 

fuzzy rules [Pefia99]. The number of rules has to be predetermined in an ad hoc manner. 

In [Setiono96], Setiono developed a rule extraction called NeuroRule. NeuroRule uses a 

pruning procedure after the training phase to decrease the number of the network 

connections. The pruning process runs until network performance drops to 95% correct 

classification rate. In [Setiono96], 100-MLP networks were used in the training phase. 

The network with the best performance out of 100 pruned networks was used in rule­

extraction phase. The NeuroRule extracts rules by clustering the hidden nodes activation 

values. Then, the input combinations are checked if any input makes the hidden nodes 

and output node active. An improvement ofNeuroRule in the WBCD was studied by the 

same author in [SetionoOO] by data pre-processing before the training step. Another 
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group was Taha and Ghosh [Taha99]. In [Taha99], three rule extraction algorithms were 

developed: BIO-RE, Partial-RE, and Ful-RE. BIO-RE is a black box rule extraction 

technique which does not require information regarding the internal network structure to 

generate rules. Partial-RE searches for a set of incoming connections that will cause a 

unit to be active. Full-RE decomposes the rule extraction process into two steps: rules 

between hidden and output units and rules between input units and hidden units. This is 

similar to NeuroRule [SetionoOO] but the difference is that Full-RE employs linear 

programming and an .input discretization method to find a combination of the input 

values that will cause a hidden unit to be activated. Comparison results on the WBCD are 

shown in Table 5 .10, which shows the comparison among several rule-based systems 

from [Pefia99], [Setiono96], [Taha99], [SetionoOO]. 

TABLES.IO: 
Comparison Results for the WBCD Among Well-Known Methods 

Representaion Rule complexity Number of patterns Perfonnance Evaluation 
Methods 

Type # Rules #FIR* # Training # Test % Training corr. % Test corr. % Overall corr. 

NenroRule (Setiono961 Boolean Rules I + default 2 350 349 96.86% 93.98% 95.42% 
NeuroRule (Setiono96] Boolean Rules 2 + default 4 350 349 97.71% 96.56% 97.14% 
NeuroRule [SetionoOO] Boolean Rules 1 + default 4 341 342 97.07% 97.66% 97.36% 
NeuroRule [SetionoOO] Boolean Rules 3 + default 3.7 341 342 97.95% 98.25% 98.10% 
NeuroRule (SetionoOOJ Boolean Rules 4 + default 1 341 342 97.07% 97.66% 97.36% 
NeuroRule (SetionoOO] Boolean Rules 5 + default 4.2 341 342 98.53% 97.95% 98.24% 
NeuroRule [SetionoOOJ Boolean Rules 6 + default 1.7 341 342 97.95% 98.25% 98.10% 
Fuzzy-GA [Pena99] Fuzzv Rules 1 + default 4 341 342 97.07% 
Fuzzy-GA (Pena99] FuzzvRules 2 + default 3 341 342 97.36% 
Fuzzy-GA [Pena99] Fuzzy Rules 3 + default 4.7 341 342 97.80% 
Fuzzy-GA [Pena99] Fuzzy Rules 4 + default 4.8 341 342 97.80% 
Fuzzy-GA [Pena99] Fuzzy Rules 5 + default 3.4 341 342 97.51 % 
BIO-RE [Taha99] Boolean Rules 11 + default 2.7 341 342 97.07% 96.20% 96.63% 
Partial-RE [Taha99] Boolean Rules 9 + default 2.67 341 342 97.07% 95.91% 96.49% 
Full-RE [Taha99l Boolean Rules 5 1.8 341 342 96.77% 95.61% 96.19% 

Numerical (ILFN) (3 nodes) (9 FIN) 100 342 98% 97.95% 97.23% 

This study 
Fuzzy Rules 3 2.7 341 342 97.95% 96.49% 96.71% 

Hybrid ILFN and (3 nodes & 3 (9 features & 
FuzzvRules rules) 2.7 FIR) 

341 342 981!/o 98.25% 98.13% 

* FIR ~ # features per rule and FIN~# features per node. 

From Table 5.10, the best performance was from NeuroRule [SetionoOO] with 5 

rules plus a default rule extracted from one of the 100 pruned networks with 2 hidden 
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units and 9 connections. The accuracy rate was 98.24% in 683 patterns. The rule set 

extracted in [SetionoOO] is as follows: 

If F 2 ::; 4 and F 6 ::; 2 and F 8 ::; 2, then benign, 

Else ifF2 ::; 4 and F6 ::; 2 and F8 ::; 8 and F1 ::; 6, then benign, 

Else ifF1 ::; 5 and F4 ::; 4 and F6 ::; 5 and F8 ::; 2, then benign, 

Else if F 1 ::; 6 and F 2 ::; 4 and F 6 ::; 6 and F 8 ::; 8, then benign, 

Else if F2 ::; 4 and F4 ::; 5 and F6 ::; 5 and 3 ::; F6 ::; 5 and Fs ::; 8, then benign, 

Else malignant 

NeuroRule does not produce any rule for malignancy. It needs a default rule for 

malignancy. Fuzzy-GA [Pefia99] extracted rules based on the predetermined number of 

rules in the range of 1 to 5. A total of 120 evolutionary runs were performed. The highest 

performance system was 97.80% correct classification rate using 3 fuzzy if-then rules 

with 4.7 conditions per rule, and a default rule. In [Taha99], using Bio-RE algorithm, the 

best performance system was 96.96% using 11 Boolean rules with 2. 7 conditions per 

rule. Using Full-RE algorithm, the best performance was 96.19% with 5 rules and 1.8 

conditions per rule (no default rule). NeuroRule [Setiono96], [SetionoOO], fuzzy-GA [12 

Pefia99], Bio-RE [Taha99], and Partial-RE [Taha99] have a default rule that seems to 

imply they lack of completeness. Default rules do not provide a symbolic interpretation 

of the decision other than that "because none of the above occurred" [Taha99]. 

Based on ten runs, our proposed HIS achieved 98.13% correct classification for 

all 683 patterns. The HIS used ILFN with 3 hidden nodes and FES with 3 fuzzy if-then 

rules and 2.7 conditions per rules. An advantage of the proposed HIS is that it 

incorporates an incremental learning characteristic in the system. Since data can be made 
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available on a daily basis, using the proposed HIS, the novel data can be added into the 

system quickly without spending too much time on retraining all the old information. 

5.3 Additional Medical Diagnosis Data Sets 

Three real medical data domains which are provided by the Institute of Oncology, 

University Medical Center, Ljubljana, Yugoslavia were used for evaluation of the 

proposed method. The three data domains include Breast Cancer Data, Lymphograph 

Domain, and Primary Tumor Domain. The three data sets were archived and publicly 

accessible at the UCI repository of machine learning databases and domain theories, 

http://www.ics.uci.edu/-mlearn/MLRepository.html [Murphy95]. 

5.3.1 Breast Cancer data 

This data set has 286 instances: 201 instances of nonrecurrence and 85 instances 

of recurrence. The instances are described by nine attributes, some of which are linear 

and some are nominal, plus one class attribute, as shown in Table 5.11. This data set has 

the recurrence versus non-recurrence of breast cancer in patients and provides 

information for evaluating the prognosis of breast-cancer recurrence. The data has been 

used as a benchmark test for machine learning studies. This data set presents a 

challenging problem because of the fact that the best test accuracy reported in the 

literature on this domain is less than 80%. It reflects a high degree of uncertainty 

involved or insufficient discriminant information provided .. 

Since the data is not in a format that can be applied to the developed systems, it 

has been rearranged to the format that can be processed by the algorithms studied in this 

dissertation as follows. 
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For the class attribute, the original parameters are no-recurrence-events, 

recurrence-events are replaced by numbers 1 and 2, respectively. For age attribute, 

numbers 15, 25, 35, 45, 55, 65, 75, 85, and 95 replace the ranges of numbers 10-19, 20-

29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, and 90-99, respectively. Numbers 10, 20, 

and 30 replace the parameters lt40, ge40, and premeno, respectively, in the attribute 

menopause. For tumor-size attribute, the ranges of number 0-4, 5-9, 10-14, 15-19, 20-24, 

25-29, 30-34, 35-39, 40-44, 45-49, 50-54, and 55-59 are replaced by number!> 2, 7, 12, 

17, 22, 27, 32, 37, 42, 47, 52, and 57, respectively. The ranges of number 0-2, 3-5, 6-8, 

9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, and 36-39 in the inv-nodes 

attribute are substituted by numbers 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, and 37, 

respectively. The parameters of the node-caps yes and no are substituted by numbers 10 

and 20, respectively. The parameters of the deg-malig attribute are kept the same. For the 

breast attribute, the parameters left and right are substituted by numbers 10 and 20, 

respectively. Numbers 10, 20, 30, 40, and 50 substitute the parameters left-up, left-low, 

right-up, right-low, and central, respectively, in the breast-quad attribute. For the irradiat, 

yes and no are replaced by numbers 10 and 20, respectively. 

5.3.1.1 Simulation Results for the Breast Cancer Data 

Table 5.12 shows the results on breast cancer data from other researchers in the 

literature and from this study. In this data set, Michalski et al. used their developed 

system called AQ15, and achieved 66-72% correct classification performance for the test 

data. Clark et al. achieved 65-72% correct classification. performance using a simple 
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Bayes network. Assistant86 developed by Cestnik et al. achieved the best performance of 

78% of correct classification. 

In this study,' 200 patterns were randomly selected for training and the remaining 

86 patterns for testing to ILFN, FES, and HIS. As shown in Table 5.12, based on an 

average of five runs, the accuracy performance on the ILFN was 82.5% correct 

classification based on 200 pattern from training sets and 63.95% correct classification 

based on 86 patterns from the test set. The accuracy of the FES was 75.5% correct 

classification based on 200 training patterns, 73 .26% correct classification based on 86 

test patterns, and 74.83% classification overall. The HIS achieved 88% correct 

classification on the training patterns, 64. 79% correct classification on the test patterns, 

and 80.41 % correct classification overall. It is found that in this data set the HIS achieved 

the highest accuracy results compared to other methods. 

Other than the accuracy performance, the sensibility and specificity are also used 

in a diagnostic test of binary class problems such as the breast cancer data. A high 

percentage of the sensitivity or the specificity implies that the systems are more accurate 

and reliable. The sensibility and specificity are shown in Table 5.12. The sensitivities of 

the ILFN on training set, test set, and overall were 80.99%, 74.57%, and 79.10%, 

respectively. The sensitivities of the FES on training set, test set, and overall were 

98.59%, 94.92%, and 97.51 %, respectively. The sensitivities of the HIS on training set, 

test set, and overall were 96.48%, 81.36%, and 92.04%, respectively. The specificities of 

the ILFN on training set, test set, and overall were 86.21 %, 40.74%, and 71.76%, 

respectively. The specificities of the FES on training set, test set, and overall were 
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18.96%, 25.92%, and 21.17%, respectively. The specificities of the HIS on training set, 

test set, and overall were 67.24%, 22.22%, and 52.94%, respectively. 

TABLE 5.11: 
Breast Cancer Data 

Attribute Attribute Information 

I Class: no-recurrence-events, recurrence-events 

2 Age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69; 70-79, 80-89, 90-99. 

3 Menopause: lt40, ge40, premeno. 
4 Tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59. 

5 Inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18'-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39. 

6 Node-caps: yes, no. 

7 Deg-malig: 1, 2, 3. 

8 Breast: left, right. 

9 Breast-quad: left-up, left-low, right-up, right-low, central. 
10 Irradiate: yes, no. 

TABLE 5.12: 
Simulation Results for the Breast Cancer Data 

Methods Reference 
Accuracy (%) Sensibility (%) Specificity(%) 

Train Test Overall Train Test Overal Train Test Overall 
AQ15 Michalski - 66-72 - - - - - - -

Simple Bayes Clark - 65-72 - - - - ~ - -
Weighted Network Tan - 60-73.5 - - - - - ~ -

Assistance86 Cestnik - 78 - - - - - - -
CLILP2 Liu - 76 - - - - - - -

ILFN Mees ad 82.5 63.95 76.92 80.99 74.57 79.1 86.21 40.74 71.76 
FES Meesad 75.5 73.26 74.83 98.59 94.92 97.51 18.96 25.92 21.17 
HIS Meesad 88 64.79 80.41 96.48 81.36 92.04 67.24 22.22 52.94 

The fuzzy if-then rules of the FES are as follows: 

If (age is Old) and (menopause is Premeno) and (deg-malig is High), Then Class 

is no-recurrence-event with confidence 0.99. 

IF (age is Young) and (menopause is LT40) and (inv-nodes is Small) and (node-

caps is Yes) and (breast-quad is left-up) and (irradiate is Yes), Then Class is no-

recurrence-:events with confidence 1. 
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If (age is Old) and (menopause is Premeno) and (inv-nodes is Big) and (deg-malig 

is High) and (irradiate is Yes), Then Class is recurrence-events with confidence 1. 

age monopause tumor-size inv-nodes node-caps deg-malig breast breast-quad irradiate 

1,:[21171:l_::L:L:m:L:L:L 
~,;1,tr:rtr:c:1t:" 1:1, 11~-:c:1 :!,1:1 11 

't7tl1f'°L0.5 ',~fi'l '' ~''[ ~ih (L0.5 110L10 20,l rr 
~ o.: . ·: ·: o.: w·: L·: .· 1 ·: o.: o.: 

20 40 60 10 20 30 0 0.5 1 0 5 10 0 0.5 1 0 2 4 0 0.5 1 0 0.5 1 0 10 20 

Figure 5 .3: Linguistic Rules for the Breast Cancer Data 

TABLE 5.13: 
The Compressibility of Fuzzy Rules for the Breast Cancer Data 

Data 
Comprehensibility 

Iv L I NA I Nr I LS I RS 
Breast Cancer 3 I 4.7 I 2.4 I 0.084 I 0.53 0.02 

The comprehensibility of the fuzzy rules can be quantified as shown in Table 

5.13. It is found that the knowledge base obtained from the proposed method is compact 

and highly comprehensible. The number of rules (L) is 3, which is very small. The 

number of antecedents per rule (NA) is 4. 7. Please note that this is a nine-attribute 

problem. NA = 4. 7 is considered that a system is very comprehensible. In addition, the 

number of labels per dimension (Nr) is incredibly small. There are only 2.4 labels per 

dimension in the fuzzy knowledge base. The degree of linguistic similarity (LS) of the 

fuzzy rules is 0.084. This implies that the fuzzy variables are easy to be. discerned from 
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each other. The degree of fuzzy rule similarity (RS) is 0.53. This shows that the fuzzy 

rule is not conflicting each other greatly. The fuzzy rule structure has an incompleteness 

degree of 0.02. This implies that the rule structure of the system is nearly complete. 

5.3.2 Lymphography Domain 

The aim is to detennine the results of the lymphographic investigation. This data 

is described by four subsets of eight features. There are 148 patterns in the data set. The 

training data comprised of 103 learning patterns and 45 test patterns. The set of features 

for this domain was complete i.e., always sufficient to differentiate between different 

cases. Actual testing of physicians was not performed and diagnoses in this domain were 

not verified. Table 5.14 shows the information details of the attributes of the 

Lymphography domain. 

TABLE 5.14: 
Lymphography Domain 

Attribute Attribute Information 
1 class: normal find, metastases, malign lymph, :fibrosis 
2 lymphatics: normal, arched, deformed, displaced 
3 block of affere: no, yes 
4 bl. oflymph. c: no, yes 
5 bl. oflymph. s: no, yes .· 

6 bypass: no, yes 
7 extravasates: no, yes 
8 regeneration of: no, yes 
9 early uptake in: no, yes 
10 lym.nodes dirnin: 0-3 
11 lym.nodes enlar: 1-4 
12 changes in lym.: bean, oval, round 
13 defect in node: no, lacunar, lac. marginal, lac. central 
14 changes in node: no, lacunar, lac. margin, lac. central 
15 changes in stru: no, grainy, drop-like, coarse, diluted, reticular, stripped, faint 
16 special forms: no, chalices, vesicles 
17 dislocation of: no, yes 
18 exclusion of no: no, yes 
19 no. ofnodes in: 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, >=70 
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TABLE 5.15: 
Simulation Results for the Lymphography Domain 

Methods Reference 
Accuracy (%) 

Train Test Overall 
A015 Michalski - 85 -
Expert Michalski - 80-82 -

Simple Baves Clark - 83 -
CN2 (99%threshold) Clark - 82 -

Assistance86 Cestnik - 76 -
CLILP2 Liu - 85 -

ILFN Meesad 91.26 88.89 90.5 
FES Meesad 85.43 84.44 85.14 
HIS Meesad 92.23 91.11 91.89 

TABLE 5.16: 
The Compressibility of Fuzzy Rules for the Lymphography Domain 

Data 
Comprehensibility 

Iv L I NA I NL I LS I RS 
Lymphography 8 I 7.9 I 2.5 I 0.15 I 0.56 0 

5.3.2.1 Simulation Results for the Lymphography Domain 

The simulation results from other researchers and this study are shown in Table 

5.15. Michaski et al. used their AQ15 to obtain 85% correct overall classification 

performance. In addition, they used an expert system to experiment on the data set and 

achieved a· correct classification range of 80-82%. Clark et al. achieved 83% correct 

classification using a simple Bayes method and achieved 82% correct classification using 

CN2 system with 99% threshold. 

In this study, based on an average of five runs, the ILFN achieved 91.26%, 

88.89%, and 90.5% correct classification on training set, test set, and overall, 

respectively. The FES achieved 85.43%, 84.44%, and 85.14% correct classification. The 

HIS achieved 92.23%, 91.11 %, and 91.89% correct classification. The three methods 
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performed better than those from the literature. The quantitative measure on the 

comprehensibility of the fuzzy if-then rules is shown in Table 5.16. The 

comprehensibility measures of the resulted rules were 8, 7.9, 2.5, 0.15, and 0.56 for L, 

NA, NL, LS, and RS, respectively. From the quantitative . measures on the 

comprehensibility, it implied that the resulting fuzzy rules were comprehensible. The· 

incompleteness degree (JD) was low as O showing that the rule structure was complete. 

The resulting linguistic rules for Lymphography data are as follows. 

1. IF ( by pass is yes) and ( early uptake in is yes) and ( changes in node is lac. 

central) and (changes in stru is reticular or stripped or faint) and (special forms is 

vesicles) and (dislocation ofis yes) and (exclusion of no is yes) and (no. of nodes 

in is High), Then Class is malign lymph (with confidence= 1) 

2. IF (lymphatics is deformed or displaced) and (block of affere is yes) and (bl. of 

lymph. c is yes) and (lym.nodes dimin is Medium) and (lym.nodes enlar is High) 

and (changes in lym. is round) and (defect in node is lac. marginal or lac. central) 

and (special forms is chalices), Then Class is metastases (with confidence= 0;99) 

3. IF (bl. of lymph. sis yes) and (extravasates is yes) and (lym.nodes dimin is High) 

and (lym.nodes enlar is Low) and (defect in node is lac. marginal or lac. central) 

and (changes in node is lacunar or lac. margin) and (no. of nodes in is High), 

Then Class is fibrosis (with confidence= 0.96) ·· 

4. IF (block of affere is no) and (bl. of lymph. s is no) and (by pass is no) and 

(regeneration of is no) and (early uptake in is neutral) and (lym.nodes dimin is 

Low) and (lym.nodes enlar is Low) and (defect in node is no or lacunar) and 

(changes in stru is coarse or diluted) and (special forms is no) and (dislocation of 

135 



is no) and (exclusion of no is no) and (no. of nodes in is Low), Then Class is 

malign lymph (with confidence= 1) 

5. IF ( bl. of lymph. c is neutral) and (regeneration of is no) and (lym. nodes dimin is 

Medium) and (defect in node is lac. marginal or lac. central) and (changes in 

node is lacunar or lac. margin) and (changes in stru is coarse or diluted) and (no. 

of nodes in is Low), Then Class is metastases (with confidence= 0.82) 

6. IF ( block of ajfere is no) and ( bl. of lymph. c is neutral) and ( defect in node is lac. 

marginal or lac. central) and ( changes in node is lacunar or lac. margin) and 

( changes in stru is reticular or stripped or faint) and ( exclusion of no is yes) and 

(no. of nodes in is Low); Then Class is malign lymph (with confidence= 0. 79) 

7. IF (block of ajfere is no) and (bl. of lymph. sis yes) and (regeneration of is no) 

and (changes in lym. is bean) and (defect in node is no or lacunar) and (changes. 

in node is no) and (dislocation ofis no) and (exclusion of no is no), Then Class is 

normal find (with confidence = 1) 

8. IF (lymphatics is deformed or displaced) and (block of affere is no) and (by pass is 

no) and (special forms is vesicles) and (no. of nodes in is Medium), Then Class is 

malign lymph (with confidence= 1) 

5.3.3 Primary Tumor Domain 

This is one of three medical domains provided by the Oncology Institute. Primary 

tumor domain consists of 339 instances with 18 attributes including one class attribute. In 

this study, 173 patterns and 166 patterns were used for training and testing, respectively. 

There are 22 classes in this data set. All attribute values in the database have been .entered 
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as numerical values corresponding to their index in the list of attribute values for that 

attribute domain as given in Table 5.17. 

TABLE 5.17: 
Primary Tumor Domain 

Attribute Attribute Information 
class: lung, head & neck, esophasus, thyroid, stomach, duoden & sm.int, colon, 

l rectum, anus, salivary glands, pancreas, gallblader, liver, kidney, bladder, testis, 
prostate, ovary, corpus uteri, cervix uteri, vagina, breast 

2 age: <30; 30-59, >=60 
3 sex: male, female 
4 histologic-type: · epidermoid, adeno, anaplastic 
5 degree-of-diffe: well, fairly, poorly 
6 bone: yes, no . 
7 bone-marrow: yes, no 
8 lung: yes, no 
9 pleura: yes, no 
10 peritoneum: yes, no 
11 liver: yes, no 
12 brain: yes, no 
13 skin: yes, no 
14 neck: yes, no 
15 supraclavicular: yes, no 
16 axillar: yes, no 
17 mediastinum: yes,no 
18 abdominal: ves, no 

5.3.3.1 Simulation Results for the Primary Tumor Domain 

The simulation results on the primary tumor domain are shown in Table 5.18. 

Michalski et al. used AQ15 system achieved the correct classification performance in the 

range of 29-41 %. An expert system also was used and it achieved 42% correct 

classification. Using a simple Bayes network and CN2 with 95% threshold, Clark et al. 

achieved 48% and 45%, respectively. Cestnik et al. achieved 44% correct classification 

using their Assistant86 system. 

In this study, we used three systems: ILFN, FES, and HIS. Based on an average of 

five runs, ILFN constructed 56 hidden nodes for the problem. It achieved 37.99%, 
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33.33%, and 37.17% correct classification for training set, test set, and overall, 

respectively. The FES achieved 41.94%, 38.33%, and 41.29% correct classification for 

training set, test set, and overall, respectively. The HIS achieved 41.67%, 38.35%, and 

40.1 % correct classification, for training set, test set, and overall, respectively. The 

comprehensibility of knowledge base is shown in Table 5.19. The comprehensibility 

measures based on L, NA, NL, LS, and RS were 55, 8.5, 2.2, 0.2, and 0.46, respectively. 

The incompleteness degree (ID) was 0. The number of fuzzy rules for this data set was not 

too high since this data set has 22 classes overall. The average number of rules generated 

was only about 2.5 fuzzy rules per class. The primary tumor data were very difficult to 

classify compared to the other two data sets. 

TABLE 5.18: 
Simulation Results for the Primary Tumor Domain 

Methods Reference 
Accuracy (%) 

Train Test Overall 
AQ15 Michalski - 29-41 -
Expert Michalski - 42 -

Simple Bayes Clark - 48 -
CN2 (95%threshold) Clark - 45 -

Assistance86 Cestnik - 44 -
CLILP2 Liu - 37 -

ILFN Mees ad 37.99 33.33 37.17 
FES Meesad 41.94 38.33 41.29 
HIS Meesad 41.67 38.35 40.1 

TABLE 5.19: 
The Compressibility of Fuzzy Rules for the Primary Tumor Domain 

Data 
Comprehensibility 

ID 
L NA NL LS RS 

Primary Tumor 55 8.5 2.2 0.2 0.46 0 
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The result has shown that the fuzzy knowledge bases had the best accuracy on the 

Lymphography data set. The fuzzy knowledge base extracted for the primary tumor data 

was with the lowest accuracy. However, the fuzzy knowledge bases were easy to 

comprehend, since the number of rules, the number of antecedent per rule, the number of 

linguistic per dimension, the linguistic similarity degree, and the rule similarity degree 

were relatively low. 

It is worth noting to see that LS, RS, and ID are the values in the rages [O, 1]. A 

FES that has the values of LS and RS close to zero implies that the FES is highly 

comprehensible. On the other hand, if LS and RS are close to one, the FES may be 

difficult to understand. If a FES has the value of ID equals to zero, it implies that the rule 

structure of the FES is complete. However, the objectives of reducing RS and ID are 

conflicting to each other. When using the GA to search for fuzzy rules with small RS, the 

incompleteness degree may be increased. The incompleteness degree is considered low if 

the ID is less than 0.1. This may be acceptable for pattern classification problems. 

However, in function approximation or control systeni, the ID which is larger than zero 

may not be acceptable. An incomplete system may result in an undesirable behavior of 

the system output. 

For the comparisons among several methods, such as Assistant-86, Bayes, AQR, 

CN2, AQT-15, and CLILP2, it is found that the FES achieved competitive performance 

· with others. Except for the last data set, the primary tumor FES achieved lower accuracy 

based on the test set. One reason is that the FES is not focused solely on the accuracy. 

While searching for fuzzy rules with acceptable accuracy performance, we maintain the 

comprehensibility of the fuzzy sets as well as the completeness of the fuzzy rule 
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structure. Obtaining a highly comprehensible and complete system results in losing the 

accuracy of the system. Another reason of having lower accuracy performance on the 

primary tumor may be because we replaced missing values with zeros while the others 

used some things else. With diverse choices of the numerical values to replace the 

missing ones, the decision of the system can be made differently. To do a good job for a 

22-class of primary tumor, we should use more data in the training set to improve 

accuracy. 
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CHAPTER VI 

DEVELOPMENT OF A HIS GRAPHICAL USER INTERFACE 

To provide a user-friendly interface of the proposed HIS, a HIS graphical user 

interface (HIS-GUI) was developed under the Matlab programming environment. The 

HIS-GUI :framework integrates the ILFN and the FES as well as a GA optimization 

technique. Some medical data sets used in the study will be included in the HIS-GUI 

:framework. The main frame of the HIS-GUI is shown in Figure 6.1. 

Command 
Menu 

Load data 
Save data 
Clear 
Close 

Explanation 
Window 

Data fields Status ILFN and GA tuning parameters 

ILFN 

FES 

HIS 

Output field Plot area 

Figure 6.1: HIS Graphical User Interface 

6.1 The Main Window of IDS-Gil 

The main window of HIS-GUI composes of several areas: 1) command menu, 

2) data field, 3) status of the system, 4) ILFN and GA tuning parameters, 5) load button, 
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6) save button, 7) clear button, 8) close button, 9) command and explanation window, 

10) output field, II) plot area, 12) ILFN weight, \3) fuzzy rules of FES, and 14) HIS 

weight. 

The command menu contains the following commands: load data, select training 

and testing patterns, train networks, test networks, plot data, visualize the trained 

network, view the trained networks, and evaluation of the trained networks. 

6.2 Load Data 

Before loading data to the network, the data has to be prepared in the format that 

HIS-Gill uses. Figure 6.2 illustrates the data preparation for the HIS-Gm. In Figure 6.2, 

the variable data. is a structure type. The variables P and T are the initial members of 

data. P is a matrix whose each column is an input vector pattern. T is a matrix whose 

each column is a target vector pattern corresponding to input matrix P. The variable data, 

which contains P and T, has to be saved into a file, as an example in Figure 6.2. 

P: [lfx158 doubie] 
T: [1X158 double] 

save datairis data 

Figure 6.2: Data Preparation for the Gill 

After preparing the dat~ now it is ready to load data to the HIS-Gill by selecting 
',. 

the ''LOAD'' button ot ''toa,d P~i~t' from the command menu, as shown in Figure 6.3. 
' ,l (\.,; '· 

/'"' 
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When the Load Data command is selected, the LOAD DATA dialog is appeared, as 

shown in Figure 6.4. The data files in the current directory will be listed in the dialog. 

The user can type in a file's name or select a file from the list to load data to the system.. 

After a file is typed in or selected, the user can click the OK button to load the data file. 

Figure 6.3: Main Menu of the Gill 

Figure 6.4: Dialog for Load Data 
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6.3 Setting the Number of Training and Test Patterns 

After data is loaded, the user can choose the number of training patterns and the 

number oftest patterns, by selecting a command "Select Training and Test Patterns" :from 

the command menu. The "Set Number of Training and Test Patterns" dialog is shown in 

Figure 6.5. The total number of patterns will be shown in "#Patterns" text field. The 

number of training patterns can be specified in the "Training Patterns" text field. The 

number of the test patterns can be specified in the "Test Patterns" text field. For example, 

in Figure 6.5, there are 150 patterns in the data set loaded. The training patterns are :from 

the patterns #1 to #75 and the test patterns are from patterns #76 to #150. The user can 

reorder the training data by click at the "Reorder Training Data" button~ 

Figure 6.5: Dialog for Setting the Number of Training and Testing Data.· 

6.4 Setting ILFN Tuning Parameters· 

The ILFN network needs two tuning parameters: initial standard deviation cro and 

threshold e. The initial standard deviation is set default to 1 and the threshold is set 
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default to 0. To change the values of the initial standard deviation and the threshold, 

click at the left or right arrow of the standard deviation and the threshold slider bars. An 

alternative way is to type in a number directly to the edit field under the standard 

deviation slider bar and the threshold slider bar. 

6.5 Training ILFN Network 

After the number of training data has been selected and the ILFN tuning 

parameters have been set, it is ready to train an ILFN network. To train the ILFN network 

select ''Train Network" and "Train ILFN" from the command menu, as shown in Figure 

6.6. The resulting network's weights will appear in the ILFN weights area, as shownin 

Figure 6.7. 

Figure 6.6: Training ILFN Network 
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Figure 6.7 illustrates the trained ILFN weights. The weights Wp and WT are 

shown in matrix forms. Weight Wp is located on the left side and weight WT is located 

on the right of the area. The number of columns ofWp matrix is the number of dimension 

of the input patterns. The number of rows ofWp matrix is the number of hidden nodes of 

the ILFN. Each corresponding target of each node is placed in each row ofWT. 

Figure 6.7: ILFN Weights Appeared in the Main Window 

The user can add or delete the weights of the trainecl ILFN. To add or edit the 

weights of a trained ILFN, select "Trained Networks" and then "ILFN Network" from the 

command menu. The command will bring the ILFN window, as shown in Figure 6.8. 
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3.64 
5.43 1.98 
5 1.5 
4.9 1.8 
4.63 1.4 

0.982 0.702 
1.1 0.637 
0.559 0.612 
0.582 0.509 ,>·iL>>i,'I 

0.637 0.559 0.497 
1 1 

1 1 1 
0.593 0.613 

Figure 6.8: The Trained ILFN Weights and Parameters 

6.6 ILFN Evaluation 

To evaluate a trained ILFN, choose "Evaluation" and then "ILFN Evaluation" 

from the command menu, as shown in Figure 6.9. The ILFN will be evaluated using the 

test patterns specified in the "Set Number of Training and Test Patterns" dialog. The 

ILFN evaluation dialog will appear. The results from the evaluation will be shown in 

evaluation dialog, as shown in Figure 6.10. 
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Figure 6.9: Evaluation of the ILFN by the Test Data 

Figure 6.10: ILFN Evaluation Dialog 

In the ILFN evaluation dialog, there are main areas· of information: contingency 

matrix, complexity, and performance measure. The contingency matrix shows the details 

of the accuracy performance of the ILFN. The list of hidden nodes of the ILFN is shown 

in the left side of the contingency matrix. When the user click at a node of the ILFN, the 

accuracy performance of the selected node will appear in the contingency matrix. For 
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example in Figure 6.11, node #1 is selected. The accuracy performance of node #1 is 

displayed in the contingency matrix. The first column and the first row of the 

contingency matrix indicate the classes of the data. For example in Figure 6.11, there are 

three classes: classes 1, 2, and 3. The elements inside the contingency matrix are the 

accuracy in count or percentage depending on the option selected to show. In Figure 6.11, 

it shows that node # 1 predicts class 1 as class 1 with 25 test patterns. If the user decides 

to show the accuracy in percentage, click at "Show Percentage" button under the 

contingency matrix the elements inside the contingency matrix will change to a 

percentage format, as shown in Figure 12. Percentage and count will be interchanged 

when the button under the contingency matrix is clicked. 

Figure 6.11: ILFN Performance Based on Individual Node in Count 

Figure 6.12: ILFN Performance Based on Individual Node in Percentage 
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From Figure 6.12, the complexity area shows the number of hidden nodes. The 
\ 

performance measure .shows the overall accuracy and false alarm in percentage. 

Percentage of sensitivity and specificity are also shown in the performance measure area 

but they are available only in the binary classification problems. 

6. 7 Setting GA Parameters and Training FES 

GA parameters need to be decided before training FES. As shown in Figure 6.13, 

the parameters for GA optimization include: the number of GA population, the number of 

generation to terminate the GA process, the constrained number of linguistic labels for 

FES, the mutation probability and the crossover probability. After the GA parameters are 

specified, the FES can be started to train by choosing "Train Networks" and then "Train 

Fuzzy'' as shown in Figure 6.14. 

Figure 6.13: Select GA Parameters before Training to FES and HIS 
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Figure 6.14: Select Train Fuzzy to Begin Training FES 

Figure 6.15: Result after Training FES 
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The FES will be trained based on the weights connections of the ILFN network by 

the GA optimization technique. (The details how the ILFN and GA are used to construct · 

the knowledge of FES can be found in Chapter 3.) While FES is training, the current 

fuzzy rules are displayed in the "Fuzzy Rules" area. The current fitness value and the 

accuracy perfonnance are displayed in the output field. The percent error will be 

displayed in the plot area. Figure 6.15 shows the result FES after trained. 

6.8 FES · Evaluation 

After the FES has been trained, to evaluate the fuzzy if-then rules, choose 

''Evaluation" and then '~ule Evaluation" from the command menu, as shown in Figure 

6.16. The results of the rule evaluation is will be appeared in the rule quality dialog, as 

shown in Figure 6.17. Figure 6.17 shows the rule evaluation dialog comprising of the 

contingency matrix, comprehensibility measure, and the perfonnance measure. 

Figure 6.16: Evaluation of the FES by the Test Data 
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Figure 6.17: Rule Quality Evaluation Dialog 

Rule quality evaluation dialog, as shown in Figure 6.17, contains three mains 

parts: a contingency matrix, the comprehensibility measure, and the performance 

measure. The contingency matrix shows the details of the accuracy performance of the 

FES. The list of fuzzy rules of the FES is shown in the left side of the contingency 

matrix. When the user click at a rule of the FES, the accuracy performance of the selected 

rule will appear in the contingency matrix. For example in Figure 6.17, "All Rules" is 

selected. The accuracy performance of the whole fuzzy rules is displayed in the 

contingency matrix. The first column and the first row of the contingency matrix indicate 

the classes of the data. For example in Figure 6.17, there are three classes: classes I, 2, 

and 3. The elements inside the contingency matrix are the accuracy in count or 

percentage depending on the option selected to show. In Figure 6.17, it shows that fuzzy 

rules predict class I as class I with 50 out of 50 test patterns. They predict class 2 as class 

2 and class 3 as class 3 with 49 out of 50 patterns. If the user decides to show the 

accuracy in percentage, click at "Show Percentage" button under the contingency matrix 

the elements inside the contingency matrix will change to the percentage format. 

Percentage and count will be interchanged when the button under the contingency matrix 

is clicked. 
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6.9 Fuzzy Knowledge Base 

The knowledge base of the FES can be shown in details by selecting "Trained 

Networks" and then "Fuzzy Knowledge Base" from the command menu, as shown in 

Figure 6.18. The fuzzy knowledge base dialog of the FES is shown in Figure 6.19. The 

fuzzy knowledge base dialog comprises of several parts: refresh button, edit values area, 

view rule surface button, and dose button. The refresh button will be used to redisplay all 

the information of the fuzzy knowledge base. The edit values area contains many buttons 

that are used to update the following parameters: features, value's ranges, number of 

linguistics, linguistic labels, membership :functions, membership :functions parameters, 

and fuzzy rules. The view fuzzy rule surface button is used to show the rule viewer 

dialog, discussed in Section 6.12. The close button is used to close the fuzzy knowledge 

base dialog. 

Figure 6.18: Selecting Fuzzy Knowledge Base from Command Menu 
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IF (Feature2 is High) and (Feature4 is Medium High), Then Class is 2 ( 
IF (Feature 1 is High) and (Feature3 is Extremly High), Then Class is 3 f 
IF (Feature3 is Medium), Then Class is 2 (weight= 0.99737) 
IF (Feature2 is Medium) and (Feature4 is High), Then Class is 3 (weigh 

Figure 6.19: Fuzzy Knowledge Base Window 

The right side of the fuzzy knowledge base dialog in Figure 6.19 is the 

information area of the fuzzy knowledge base. It comprises of feature's names, values' 

ranges, the number of linguistics, linguistic labels, membership functions, membership 

functions parameters, and fuzzy expert rules. These parameters are extracted from the 

ILFN network and optimized by the GA method. 

If preferred, the user can edit the parameters by choosing a button from the edit 

values area. For example, if the user wants to change the feature's names that are 

appropriate for the problem under study, the user has to select "Features" button from the 

edit values areas. The "Edit Feature's Names" dialog will appear, as shown in Figure 

6.20. In the ''Edit Feature's Names" dialog, the user can select, from the right side of the 
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"Feature Name" labe~ a feature or a dimension of the data and retype a new name in the 

edit area on the right side of the "Enter New Name" label Click at "REFRESH" will 

update the new feature's name. Repeat the procedure to change the other names. Click 

"CLOSE" button when finish will return to the main fuzzy knowledge base dialog. 

Figure 6.20: Edit Feature's Names Dialog 

Figure 6.21: Edit Linguistic Labels Dialog 
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Figure 6.21 illustrates the "Edit Linguistic Labels" dialog. The user can change 

the names of the linguistic labels suitable for the problem. To change a linguistic label, · 

the user click at the selected linguistic label and type a new name in the edit area. on the 

right side of the "Enter New Name" label. Click "REFRESH" button when finish will 

update the new linguistic label. Repeat the update process for other linguistic labels. To 

close the dialog, click at "CLOSE" dialog. 

• les> IF (Feature1 is High) and (Feature2 is High) and (Feature3 is 
i IF {Feature4 is Medium), Then Class is 2 (weight= 0.9925) 

IF (Feature2 is Low) and (Feature3 isHigh), Then Class is 3 ( 

Figure 6.22: Edit Fuzzy Rules Dialog 

The user can also edit fuzzy rules by using "Edit Rules" dialog. To edit fuzzy 

rules, click the "Fuzzy Rules" button in the "EDIT VALUES" area will open the "Edit 

Rules" dialog, as shown in Figure 6.22. From the "Edit Rules" dialog, the user can add 

and delete fuzzy rules. To add a rule, select feature and linguistics from the pop up menu 

on the right of the "Feature" and "Linguistics" labels. Then select or type the class 

consequent and the confident factor (CF) for the rule. Click the "ADD" button when 
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finish. The new rule will be added to the fuzzy rule base provided that the new fuzzy rule 

does not conflict with the existing rules. (Please note that when a new fuzzy rule is added 

to the fuzzy rule base system, several new hidden nodes may be added in the ILFN 

networks.) Figure 6.23 illustrates a fuzzy rule is added to the fuzzy rule base. To delete a 

fuzzy rule,' the user can click at a rule to be deleted then click at "DELETE" button. The 

selected rule will be deleted from the fuzzy rule base. Figure 6.24 shows several fuzzy 

rules that have been deleted from the fuzz rule base. 

IF (Featurel is High) and (Feature2 is High) and (Feature3 is 
IF (Feature4 is Medium), Then Class is 2 (weight= 0.9925) 
IF (Feature2 is Low) and (Feature3 is High) , Then Class is 3 ( 
IF (Featurel is High) and (Feature3 is High), Then Class is 1 

Figure 6.23: A New Rule is Added in the Fuzzy Rule Base 

The current fuzzy rules can be viewed in the rule surface window by selecting the 

''Rule Surface" button in the "Fuzzy Knowledge Base" dialog. The fuzzy rule surface 

viewer is shown in Figure 6.25. The rule surface viewer can view two inputs at a time in 

a three dimensions plot. The user can select an input pair, a plot style, shading, and color 

map. Rule surface viewer h~lps the user to visualize the concept of the fuzzy rule 

structure better. 
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Figure 6.24: Many Rules are Deleted from the Fuzzy Rule Base 

Figure 6.25: Fuzzy Rule Surface Viewer 
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6.10 Training HIS 

After ILFN and FES have been trained. ILFN and FES will be combined together 

to become a HIS. The weighted link between the ILFN and the FES need to be trained. A 

GA is used to train the HIS weights. GA parameters are selected before training. To start 

the training session, select "Train Networks'' and then "Train Hybrid System" from the 

command menu, as shown in Figure 6.26. When the training process is running, the 

current weights will appear in the "Hybrid Weight" area. The error will be plotted along 

the plot axis. The current fitness values and the percentage of correct classification of the 

training patterns are appeared in the "output" text field. The GA will terminate when the 

number of generations has been reached. The final generation of the trained HIS is shown 

in Figure 6.27. 

Figure 6.26: Select Train HIS to Begin Training HIS 
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Figure 6.27: After Training HIS 

Figure 6.28: Evaluation of the FES by the Test Data 
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6.11 Evaluation of HIS 

To evaluate a trained HIS, select "Evaluation" and then "HIS Evaluation" from 

the command menu, as shown in Figure 6.28. The results of the HIS evaluation will 

appear in the "HIS Evaluation" dialog, as shown in Figure 6.29. Figure 6.29 shows the 

HIS evaluation dialog comprising of the contingency matrix, conflicting matrix, 

complexity, and the performance measure. 

Figure 6.29: ILFN Evaluation Dialog 

The HIS evaluation dialog, as shown in Figure 6.29, contains four mains parts: a 

contingency matrix, the conflicting matrix, the complexity measure, and the performance 

measure. The contingency matrix shows the details of the accuracy performance of the 

HIS. The models, ILFN and FES, of the HIS are listed in the left side of the contingency 

matrix. When the user click at a model of the HIS, the accuracy performance of the 

selected model will appear in the contingency matrix. For example in Figure 6.29, HIS is 

selected. The accuracy performance of the combination of ILFN and FES is displayed in 
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the contingency matrix. The first column and the first row of the contingency matrix 

indicate the classes of the data. For example in Figure 6.29, there are three classes: 

classes l, 2, and 3. The elements inside the contingency matrix are the accuracy in count 

or percentage depending on the option selected to show. In Figure 6.29, it shows that HIS 

predict class I as class 1 with 50 out of 50 test patterns. It predicts class 2 as class 2 and 

class 3 as class 3 with 49 out of 50 patterns. If the user decides to show the accuracy in 

percentage, click at "Show Percentage" button under the contingency matrix, the 

elements inside the contingency matrix will change to the percentage format. Percentage 

and count will be interchanged when the button under the contingency matrix is clicked. 

6.12 Test Networks 

Similar to the "Evaluation" command menu, the "Test Networks" command 

menu, as shown in Figure 6.30, provides a way to evaluate the trained networks. 

However, only the accuracy performance is evaluated. Unlike the "Evaluation" 

command menu, the "Test Networks" command menu will show the predicted result of 

the current pattern in the main window. The user can immediately know to which class 

the current pattern belongs. If the ILFN is tested, a highlight bar appears at the ILFN 

winning node to which the pattern is classified. Similarly, ifthe FES is tested, a highlight 

bar appears at the FES winning rule to which the current pattern is classified and an "IF­

THEN" explanation message appears in the "Command and Explanation" window. When 

the HIS is tested, two highlight bars appear at the ILFN winning node and the FES 

winning rule which are the current pattern belongs to. In addition, an "IF-TIIEN" 

explanation message appears in the "Command and Explanation" window. 
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Figure 6.30: Test Networks Command Menu 

6.13 Plot Command Menu 

Plot command menu provides three commands: "Plot ILFN," "Plot Fuzzy Rules 

(Initial)," and "Plot Fuzzy Rules (Optimized)." The "Plot ILFN" command will plot the 

hidden weight of the ILFN in the plot area, as shown in Figure 6.31. The "Plot Fuzzy 

Rules" commands will open a fuzzy rule window and plot linguistic terms of the fuzzy 

rules, as shown in Figures 6.32 and 6.33. Figure 6.32 shows initial fuzzy rules, which are 

directly extracted from a trained ILFN without the GA optimization. Figure 6.33 shows a 

final fuzzy rule set that has been optimized by GA optimization. From Figures 6.32 and 

6.33, each row of the figures represents antecedents of a fuzzy rule and each column 

represents an attribute or a dimension of the rule. Consequents of the fuzzy rule appear on 

the left of each rule, for example, C 1 (1) means "class 1 with confident factor 1." 
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Figure 6.31: A Plot ofILFN Weight 

Figure 6.32: A Plot oflnitial Fuzzy Rules 

165 



Figure 6.33: A Plot of Optimized Rules 

6.14 Visualization 

The visualization command menu, as shown in Figure 6.34, provides a way to 

visualize the internal information of the data and the trained systems. There are four 

commands in the visualization menu: "Visualize DATA," "Visualize Clusters of ILFN," 

"Visualize Fuzzy Rule Surface," and "Visualize Hybrid Surface." A scatter plot of data 

window, as shown in Figure 6.35, appears when the "Visualize Data" command is 

selected. The user can plot two-dimensional plot or three-dimensional graph by selecting 

the X, Y, and Z dimensions. The pattern is plotted, one color for each class. The user can 

view the characteristic of the internal structure of the .data. Figure 6.36 shows the clusters 

of the ILFN, when the "Visualize Clusters oflLFN" command is selected. This command 

allows user to see the locations of the ILFN clusters and their shapes. Figure 6.37 

illustrates the ''Rule Surface Viewer" window that is appeared when the "Visualize Fuzzy 
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Rule Surface" command is selected. This command allows the user to understand the 

relationships between two dimensions of fuzzy rules. 

Figure 6.34: Visualization Command Menu 
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Figure 6.35: Visualize Data 
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Figure 6.36: Visualize Clusters ofILFN 

Figure 6.37: Visualize Fuzzy Rule Surface 
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Figure 6.38: Visualize Hybrid Surface 

Figure 6.39: View Surface ofILFN 
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Figure 6.38 shows the "HIS Surface Viewer" window appeared when the 

"Visualize Hybrid Surface" command is selected. This command helps the user to 

visualize the structure of the HIS, which is the combination of ILFN clusters and fuzzy 

rules of the FES. The ILFN and the FES can be individually viewed in the "IDS Surface 

Viewer" window, as shown in Figures 6.39 and 6.40. 

Figure 6.40: View Surface of FES 
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CHAPTER VII 

ADDITIONAL STUDY: FUZZY TEMPORAL 

REPRESENTATION AND REASONING 

Temporal representation and reasoning has received growing attention in the 

design of computational intelligence systems. Knowledge representation and reasoning 

about time is a main subject to be considered in all those reasoning tasks which take 

account of a dynamic environment. Employing temporal reasoning in computational 

intelligence systems is practical in many application domains such as medical diagnosis 

[Dutta88], [KiseliovaOl], industrial processes [Allouche97], management systems · 

[ChinnOO], [Aboelela99], and decision support systems [ChaalOl]. 

Recently, fuzzy logic has been a considerable interest in applying to temporal 

representation and reasoning. A temporal language based on fuzzy temporal constraints 

turns out to be having an important effect for domains in which knowledge is imprecise 

or uncertain. Very beginning works for processing fuzzy temporal knowledge were 

proposed by Dutta [Dutta88] and Dubois and Prade [Dubois89]. Dutta modeled the lack 

of knowledge about events by means of fuzzy sets of time intervals. Dubois and Prade 

[Dubois89] proposed an approach based on possibility theory for the representation and 

management of imprecision and uncertainty in temporal knowledge. 

Some applications of fuzzy temporal representation and reasoning include but do 

not limited to application in explanation, planning, industrial process supervision, and 

prediction. In explanation for a given problem, fuzzy temporal can be used to produce a 

description of the world at some past time which accounts for the world being the way it 

currently is.· In developing a plan one has to consider the duration of the actions and tasks 
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that can be performed· and find out the most appropriate temporal ordering taking into 

account their interaction over time. For industrial process supervi~ion, to correctly control 

a process it is necessary to consider the different past states of the process, the historic 

evolution of the variables, which and when operations have been performed and how the 

actions that can be carried out would affect the evolution of the process. Fuzzy temporal 

also can be applied in prediction applications that determine the state of the world at a 

given future time or, more generally, the evolution of the world until a given future time. 

7.1 Constructing Fuzzy Temporal Models from Data 

In the same fashion of normal fuzzy models, constructing fuzzy temporal models 

requires to define membership functions and their parameters in both antecedent parts 

and consequent parts. The membership functions define the fuzzy subspaces in both input 

spaces and output spaces. Traditionally, experts have to predefine the membership 

functions and their parameters. Input and output spaces are divided into fuzzy subspaces 

and determine the locations of the linguistic variables. The rule evaluation process is 

taken on to evaluate the goodness of the resulting linguistic model. However, due to the 

lack of experienced experts or the unavailability of experienced experts in a given 

problem, linguistic models are not always easy to construct. 

Recently, there are many alternative methodologies that can be applied to 

construct fuzzy models based on the relationship between input and output data. Using 

data, it is much faster and easier to generate fuzzy if-then rules and to find the parameters 

for the membership functions. Fuzzy c-mean (FCM) clustering algorithm is a well-known 

approach to define fuzzy subspaces for fuzzy modeling. After FCM applied to the data, a 
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particular membership function is used for input variable to compose a rule condition. In 

this way fuzzy models generated utilize local fuzzy sets pertaining to individual rules 

rather than global fuzzy sets used by all rules. It is not reasonable to define different 

linguistic label to every different rule. This leads to resulting fuzzy systems that are not 

transparent or semantically meaningless. Besides the accuracy, many other researchers 

have paid more attention to the comprehensibility of the resulting linguistic models. 

Genetic algorithms (GAs) may be currently the most popular approach for applying to 

search for accurate and comprehensible systems. Though they are very effective in 

finding good systems, GAs have been suffered with too expensive for the cost of the 

learning time. GAs may be not applicable in such a system that requires a quick learning 

for tracking dynamic environments. 

In this study, the ILFN is used to assist in constructing fuzzy temporal system. 

The ILFN network has been discussed in Section 3 .1. The ILFN can be used as a 

clustering algorithm. Unlike PCM clustering, ILFN does not need to predefine the 

number of the clusters. ILFN finds the number of the clusters automatically. After the 

ILFN is applied to learn the data, the location of each cluster is mapped to fuzzy temporal 

system based on the fuzzy partition calculated from the numerical ranges of the data. A 

rule extraction algorithm is used to map from ILFN to fuzzy rules, which is detailed in 

Section 3 .3. The details of the proposed fuzzy temporal system and the details of using 

ILFN and the rule extraction algorithm to construct fuzzy temporal system can be 

described as follows. 
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7.2 Temporal Representation and Reasoning by Fuzzy Temporal Systems 

Usually, dealing with fuzzy temporal reasomng implies that the process is 

operating in dynamic environments. Fuzzy systems applied in dynamic environments 

may be called fuzzy temporal systems. The structure of a fuzzy temporal system 

proposed in this study is shown in Figure 7 .1. 

Yout 

Figure 7 .1: A Fuzzy Temporal Model 

Like Mamdani fuzzy model, the proposed fuzzy temporal model is a linguistic 

model that has linguistic variables in both the antecedents and the consequents. The 

knowledge of a fuzzy temporal system can be represented by a finite set of rules that may 

contain fuzzy linguistic propositions and time-dependent information. The proposed 

fuzzy temporal model is a generalized form of Mamdani model. The knowledge of the 

proposed model is in the following form: 
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R;: IF (x1(t) is A;1) [and (Tx1 is Tn)] and (x2(t) is A12) [and (Tx2 is T12)], 

... , and (xM(t) is A;M) [and ( TxM is T;M)], THEN (yi(t) is Bi) with 

weight /J; [ and ( Ty is Ty;) with weight B;]. (7.1) 

R;, i = 1 ... , L, represents the ith rule. Each x1(t),j = 1, ... , M, represents an entity attribute 

that takes values in the input domain J{_j at time t. Each Au, i = 1 ... , L, j = 1, ... , M, is a 

linguistic term representing a fuzzy subset of J{_j. Each TxJ represents a time attribute 

associated with the input x1. Tu, i = 1 ... , L,j = 1, ... , M, represents linguistic variables of a 

time gap in the time domain. The squared brackets imply that temporal information may 

be omitted. (If all the temporal information attributes are omitted, the system becomes a 

Mamdani-like model.) y represents an entity attribute that takes values in the output 

domain Y. B is linguistic term representing a fuzzy subset of the output domain Y. 

When the input p = [x1(t), Tx1, x2(t), Tx2, ... , xM(t), TxM]T is given, the firing 

strength of the antecedents of the rule is calculated by 

M 

r/Ji= flA;/x/t))·I';/Txj). (7.2) 
j=l 

The outputs, Yout and Tout, of the fuzzy temporal model are the weighted sum of the 

matching degrees contributed from the outputs of every rule. Center average defuzzifier 

can be used to compute the total output of the model as 

L 

Yout = L V;/J; 
i=l 

L 

Tout= Iwiei 
i=l 

V; = ---fa-. defuzz(B;) 

I1i 
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w- = __!/l_ · def'uzz(T .) 
l L :! ' y, ' (7.6) 

I1i 
i=I 

where defuzz(Bi) and defuzz(Tyi) are defined as the defuzzification of the consequent 

linguistic variables, Bi and Tyi, of the ith rule. 

Equations (7.3) and (7.4) can be viewed as a special case of the linear regression 

model which can be rewritten as 

L 

Yout = I vJJi + ey 
i=l 

L 

f out = I w/J; + er: 
i=I 

(7.7) 

(7.8) 

where vi and wi are known as the regressors; /Ji and Bi· are the coefficient parameters of the 

regressors. ey and er: are the error signals which assumed to be uncorrelated with the 

regressors. Given N input-output pairs { p(t), z(t) }, t = 1, 2, ... , N, where p(t) = [x1(t), 

rx1, x2(t), rx2, ... , xM(t), TxM]T and z(t) = [ y(t), ry(t)J\ equations (7.7} and (7.8) can be 

expressed in the matrix forms as 

Yout =VB+ ey (7.9) 

'tout = we + er: (7.10) 

matrix V and W are known in a priori from training data. The only unknown parameters 
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are p and 9 which can be determined by solving by the least squares estimations. The aim 

. is to reduce the norm of the error vector ey and e1 to close to zero. That is to minimize 

tnjn lley 11 2 = mjn IIY out - VPll2 

mJniie.112 = mJnlliout -we112. 

(7.11) 

(7.12) 

y out and i out are the estimated fact and time outputs. The solutions to equations (7 .11) 

and (7.12) are 

and 

p = (VTvrt yT y out 

e = (WTwr1 WT 'tout. 

(7.13) 

(7.14) 

The solution for p will be valid if and only if rank(VTV) = dim(P) and, similarly, the 

solution for e will be valid if and only if rank(WTW) = dim(9). This implies that all the 

rules have to receive enough excitation during training, which may be not true in every 

situation. In practice, the matrixes (VTV) and (WTW) may be singular when the rules 

have low excitation. The resulting rules fuzzy system will have significant errors. 

Using an adaptive strategy, such as the recursive least squares (RLS) 

[Biermann77], to adapt only the consequence of those rules that has been excited can 

solve this problem. For the rule without excitation, an initial numerical value is assigned 

using a prior knowledge of experts, if available. 

Alternatively, a solution to guarantee that the matrixes will not singular is to add 

smaHnumbers called excitation factor to the matrixes (VTV) and (WTW). So we have 

and 

p = (VTV+urtvTYout 

e = cwTw+u)-1wT 't out 
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A 0 ... 0 

0 A 0 
U= (7.17) 

0 0 ... A 

where U is a diagonal matrix composed of small numbers, A, in the diagonal and zeros 

elsewhere and size ofU equal size of(VTV) and (WrW). 

7.3 An Algorithm for Generating Fuzzy Temporal Systems 

It is aimed to design an algorithm to obtain a good compromise between 

numerical approximation accuracy, linguistic comprehensibility, and the completeness of 

the fuzzy system. This tradeoff has been of interest in developing fuzzy systems. The 

main step for generating fuzzy temporal systems are as follows: 

Step 1: Data preparing: Collect N points of data from the input-output pairs 

{p(t), z(t)}, t = 1, 2, ... , N, where p(t) = [xr(t), Txr, x2(t), Tx2, ... , xM(t), 

TxMf E 9t2M and z(t) = [y(t), ry(t)f E 9t2 • Use p(t) and z(t) to reformat 

data x(t) = [ p(tl, z(tlf E 9t2M+z. 

Step 2: Data clustering: Use the new formatted data x(t) to train to ILFN in an 

unsupervised mode, i.e., there are no target vectors for the ILFN. The 

ILFN will learn the data and find the cluster of the formatted data. The 

ILFN constructs a cluster matrix Wp and a target matrix WT. (Please 

note here that WT keeps only the cluster target generated by the ILFN. It 

is not the real target or real output, of the input data. Since the real target 

outputs have been incorporated in the reformatted data.) 
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Step 3: Mapping ILFN to Rule: The ilfn2rule algorithm is used to map ILFN to 

rule. The user needs to pre-specify the type of membership functions and 

the number of linguistic variable in each dimension of the formatted 

data. Using the ilfn2rule algorithm and a trained ILFN as its input 

argument, the ilfn2rule algorithm finds the variables ranges for each 

dimension of the formatted data based on the trained ILFN. Then the 

ilfn2rule algorithm finds parameters of the linguistic labels in all 

dimensions. Finally, the cluster matrix Wr is mapped to linguistic rules. 

Step 4: Reorganizing antecedents and consequents of the rules for step 3: Please 

note that the ilfn2rule algorithm is mapped Wr to the antecedents of the 

rules and WT to the consequents of the rules. Nevertheless, the resulting 

fuzzy rules are not correct yet. Since we include both input and output 

into the same vector to reformat the data, the resulting rules will contain 

the antecedents that have both input and output features; while the 

consequents contain the target label generated by the ILFN. To obtain 

correct antecedents and consequents of the rules, we recompose the new 

antecedent by using the first 2M columns of the original antecedents. 

The new consequents are obtained from the next 2 columns of the 

original antecedents. 

Step 5: (Optionally) Finding the consequent weights of the fuzzy temporal 

system: After the antecedents and the consequents are obtained, it is 

read to determined the additional numerical weights 13 and 8. Apply 

Equations (7.13) and (7.14) to find 13 and 8. 
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Step 6: Givingfinal rules: The final rules are composed of antecedents from step 

4, while the consequents are the consequents from step 4 concatenating 

with the additional numerical weights f3 and 8 obtained from step 5. 

7.4 Simulation Study 

Simulation study was performed to prove the concept of the proposed method. 

The simulation study was based on a process of hot-and-cold water mixing simulator. 

The aim was to use the proposed rule generation method to derive the cause-and-effect 

relationships induced by the process. Knowing the cause and effect relationships in the 

process, it is easy to manage the process based on the.linguistic rule generated. 

7.4.1 A Process of Hot-And-Cold Water Mixing Simulator 
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Figure 7.2: A Process of Hot-And-Cold Water Mixing Simulator 

The process of hot-and-cold water mixing simulator was used as an example for 

reasoning the cause-and-effect relationships. The process comprises of two input water 

pipes and an output water pipe. The water output in pipe 3 is the mixing water between 

pipe 1 and pipe 2. The temperature and flow rate of the two water inputs can be adjusted. 
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Adjusting temperature and flow rate of pipes 1 and 2 will cause the water output at pipe 3 

changes in temperature as well as flow rate. Figure 7.2 shows the diagram of the process 

of hot-and-cold water mixing simulator. 

In this data simulation, the temperature of pipe 2 was kept constant. The 

temperature of pipe 1 (T 1), flow rate 1 (F 1), and flow rate 2 (F2) were changed. There are 

1,079 data points with 7 dimensions. All the dimensions of the data are used in clustering. 

Dimension 1 to 3 (Inlet Templ, Flow rate 1, and Flow rate 2) are used as clauses. 

Dimension 4 to 6 are the effects (Temp3 after small delay, Temp3 after medium delay, 

and Temp after large delay). Dimension 7 (Total Delay) is used as auxiliary information 

to select one out of the three outputs. A portion of the data is shown in Table 7.1 and the 

plot of the data is shown in Figure 7.3. 

TABLE 7.1: 
Simulated Data from Hot-And-Cold Water Mixing Process 

Output TempT3 
Output TempT3 

Output TempT3 
Inlet Temp 1 Flow rate 1 Flow rate 2 

after small delay 
after medium 

after large delay 
Total Delay 

delay 
4.758129 8.803611 4.251697 34.55271 49.13313 49.03167 9.820508 
9.063462 16.93759 10.24756 34.48225 49.56707 48.77365 6.552082 
12.95909 19.77439 12.32197 34.44295 49.65956 48.39556 6.094354 

16.484 20.45669 12.94478 34.42908 49.67792 47.77696 5.995535 
19.67347 20.56671 13.09719 34.42444 49.68147 46.89688 5.976493 
22.55942 20.5805 13.12065 34.4226 49.68207 45.77946 5.973815 
25.17074 20.58112 13.12515 34.42171 49.68207 44.37085 5.973446 
27.53356 20.58025 13.12661 34.42116 49.68207 42.93735 5.973404 
29.67152 20.57949 13.12737 34.42078 49.68207 41.78879 5.973404 
31.60603 20.57893 13.12787 34.4204 49.68207 41.00483 5.973408 
33.35644 20.57855 13.1282 34.42021 49.68207 40.51879 5.973411 
34.94028 20.5783 13.12844 34.42014 49.68207 40.23433 5.973412 

36.3734 20.57811 13.1286 35.35246 49.67899 40.07803 5.973415 
37.67014 20.57793 13.12872 38.95541 49.63313 40.09012 5.973419 
38.84346 20.57786 13.12881 43.49283 49.48849 40.57659 5.973418 
40.00416 20.57783 13.12884 47.4348 49.26642 41.83931 5.973417 
41.72237 20.57783 13.12884 49.13313 49.03167 43.98223 5.973417 
44.13358 20.57783 13.12884 49.56707 48.77365 47.17145 5.973417 
46.88627 20.57783 13.12884 49.65956 48.39556 50.68148 5.973417 
49.56163 20.57783 13.12884 49.67792 47.77696 53.41776 5.973417 
51.98241 20.57783 13.12884 49.68147 46.89688 55.13325 5.973417 
54.17282 20.57783 13.12884 49.68207 45.77946 56.09249 5.973417 
56.15478 20.57783 13.12884 49.68207 44.37085 56.60021 5.973417 
57.94814 20.57783 13.12884 49.68207 42.93735 56.86259 5.973417 
59.57083 20.57783 13.12884 49.68207 41.78879 56.99699 5.973417 
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Figure 7 .3: The Plot of Simulated Data from Hot-And-Cold Water Mixing Process 

7.4.2 Rule Generation 

To generate linguistic rules from data, the algorithm discussed in Section 7.3 is 

applied. The data in this simulation does not have a temporal feature in the three-input 

clauses while the output effects have temporal feature namely "Time Delay." The 

procedures of the rules generation are as follows. 

1) Data Preparing: Reformatted input data by input-output data i.e., all 7 

dimensions: Templ, Flow Rate2, Flow Rate, Temp3 short time, Temp after 

medium delay, Temp3 after long delay, and Time Delay. 

2) Data Clustering: Apply the data to ILFN algorithm. After training, ILFN 

gives Wp, which contains the clusters of the data, and Wr, which contains the 

regenerated target labels. 
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3) Mapping ILFN to Rule: Call the ilfn2rule algorithm to calculate the linguistic 

variables based on the ranges of the numerical values in each dimension of the 

data. The clusters of the data found in 2) are then mapped to linguistic 

variables calculated. In mapping, each center in each dimension of the clusters 

is mapped to the linguistic labels. Now each cluster corresponds to a rule that 

has the linguistic variables of Tempi, Flow Ratel, Flow Rate2, Temp3 after 

short time, Temp3 after medium time, Temp3 after long delay, and Time Delay 

for the antecedents. The consequents are the target values mapped from WT. 

4) Reorganizing the rules: Rearrange the rule such that each cluster corresponds 

to a rule that has the linguistic variables of Tempi, Flow Ratel, and Flow 

Rate2 for the antecedents and linguistic variables of Temp3 after short time, 

Temp3 after medium time, and Temp3 · after long delay for the consequents. 

The linguistic variables of the Time Delay attribute are kept separately to help 

in selecting the correct temperature output. In each rule, the correct output is 

associated with the time delay auxiliary linguistic variables. For example, if a 

rule has an auxiliary variable as short, then the correct output is Temp3 after 

short delay. So we keep only Temp3 after short delay for the consequent of 

the rule. 

5) Giving final rules: The final rules are composed of antecedents and the 

consequents obtained from step 4. 
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7.4.3 The Resulting Linguistic Rules 

The resulting number of rules seems to be small compared to the number of the 

available data. The number of the resulting rules is 17 rules generated out of 1,079 data 

points. It is found that the generated rules are easy to understand for domain expert. 

Among all 17 rules, four rules listed below, are identified to be the most straightforward 

knowledge for anyone with fluid dynamic training. The linguistic rules about the causes 

and effects of the process are expressed as follows. 

1. IF input (Tempi is Medium) and (Flow Ratel is Low) and (Flow Rate2 is 

Low), Then output (after long delay Temp3 is Medium) 

2. IF input (Templ is High) and (Flow Ratel is Low) and (Flow Rate2 is High), 

Then output (after short delay Temp3 is Low) 

3. IF input (Templ is Medium) and (Flow Ratel is Low) and (Flow Rate2 is 

High), Then output (after short delay Temp3 is Low) 

4. IF input (Templ is Medium) and (Flow Ratel is High) and (Flow Rate2 is 

Low), Then output (after short delay Temp3 is Medium) 

5. IF input (Templ is Low) and (Flow Ratel is High) and (Flow Rate2 is Low), 

Then output (after short delay Temp3 is Low) 

Figures 7.4, 7.5, and 7.6 show the linguistic variable of the input and output. From 

the figures, it is easily notice that the linguistic labels are very easy to comprehend, since 

the partitions are complete, each linguistic term is easily distinguishable, and the number 

of linguistic term is small. Only three linguistic terms are used in each dimension. 
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Figure 7.4: Linguistic Variables for Flow Rate 1 and Flow Rate 2 
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Figure 7.5: Linguistic Variables for Inlet Tempi and Outlet Temp 3 

185 



Time Delay 

0.9 

0.8 ow Mediu High 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
10 15 20 25 30 35 

Figure 7.6: Linguistic Variables of Time Delay 
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Figure 7.7: Sample Temporal Representation and Reasoning 
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The rule generation method proposed herein has been successfully applied to 

search for the cause-and-effect relationships for a hot-and-cold mixing water simulator. 

The number of linguistic rules generated by the proposed method was small number 

compared to the large number of the available training data points. The resulting 

linguistic rules were reasonable and acceptable for the expert who is knowledgeable 

about the process. For example, Rule 1, "IF input (Templ is Medium) and (Flow Ratel is 

Low) and (Flow Rate2 is Low), Then output (after long delay Temp3 is Medium)," can be 

matched with the raw data as in Figure 7.7. In Figure 7.7, it is illustrated that Rule 1 

agrees very well with the data that is when Templ is medium (about 40-60), Flow Ratel 

and Flow Rate2 are low (about 0-5), the output Temp2 at long delay (about 38 seconds) 

will be medium (about 40-60). 

This project was a first step of developing process cause-and-effect relationships 

for process management and automation. For future research, the algorithm should be 

applied to a more complex process. Temporal features of the process should be 

incorporated in the training data to take advantages of the rich of information in the 

dynamic environments. In addition, GA should be incorporated to minimize Type I error 

(the anticipation of an event when it does not happen), Type II error (no anticipation an 

event when it does happen), and rule complexity (the number of conjunctions included in 

rules). Moreover, rule evaluation method should be incorporated to check the goodness of 

the resulting fuzzy rules. 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE RESEARCH 

Researchers have paid great attention to computational intelligence techniques 

such as artificial neural networks, fuzzy systems, genetic algorithms, and hybrid 

combinations of these methods i.e., hybrid intelligent systems (HIS) for years. The 

computational intelligence methods proposed by the researchers were derived from 

intelligent behaviors of human beings or other forms of intelligence in nature. According 

to previous studies, many of these methods were proved to be suitable for real world 

applications. Often, an intelligent system needs to possess a multitude of intelligent 

learning methodologies in order to achieve a better solution for a complex problem. For 

example, a problem might need a high degree of accuracy as well as its ability to be 

interpreted or reasoned by human. Therefore, ~e system may be required to incorporate 

two intelligence frameworks seamlessly together: an artificial neural network (for dealing 

with low level numerical data) and a fuzzy expert system with linguistic knowledge 

representation methods (for reasoning the decision). The need to develop combination of 

several intelligent approaches to form a unique intelligent system led to the studies 

documented in this dissertation. 

8.1 Concluding Remarks 

The main objective of this dissertation was to propose an intelligent system that 

could mimic some of the intelligent behaviors of human beings -- the ability to learn and 

reason a problem. In this dissertation work, the focus was on the combination of two 

intelligent systems, namely "an Incremental Learning Fuzzy Neural Network (ILFN)" 
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and "Fuzzy Expert System (FES)." The combination of the trained ILFN network and the 

FES into a unified structure resulted in a "Hybrid Intelligent System" (HIS) useful for 

decision-making applications. This system can be useful for complex real-world 

applications, in particular, for medical diagnosis in which various processing strategies 

are required to support the decision-making. 

The proposed HIS offers mutually complementary advantages inherent in an 

ILFN network (a low-level numerical representation) and a FES (a higher-level linguistic 

representation). In the proposed HIS, a mapping mechanism from high-level linguistic 

knowledge to a low level ILFN network and a fuzzy rules extraction from the ILFN 

network are incorporated. The higher-level FES allows domain experts to add or revise 

linguistic rules into the system. New knowledge incorporated from domain experts can be 

mapped back to the ILFN structure allowing the ILFN network to update its parameters. 

In addition, the low-level ILFN can be trained from data in an incremental 

fashion. The linguistic knowledge of the FES can also be extracted from the trained 

ILFN. The mapping mechanisms of information from FES to ILFN, i.e., "rule2ilfn" 

algorithm, and ILFN to FES, i.e., "ilfn2rule" algorithm, are purposed to continuously 

maintain consistency between low-level and higher-level modules. The outputs of the 

ILFN and the FES are connected to the decision-explanation module which draws 

conclusions and provides explanations based on the information received from both the 

ILFN and the FES. 

For validation proposes, computer simulations using the well-known Fisher iris 

data set and the Wisconsin breast cancer database as well as several real medical data sets 

were performed. In the simulation, first, we used an ILFN to learn the data. Next, the 
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linguistic rules in the FES were extracted directly from the trained ILFN network by 

using the ilfn2rule algorithm. After using the ilfn2rule algorithm to map the ILFN 

numerical parameters to linguistic labels, a genetic algorithm was then used to optimize 

the rule set. Based on the initial rules extracted, the number of rules and features of the 

FES were refined by using a genetic algorithm. A compact FES with only essential 

discriminatory features was obtained. Finally, the trained ILFN and the optimized FES 

were combined into a HIS. 

The resulting knowledge from the proposed rule extraction procedure was 

represented in "if-then" linguistic form that was easily comprehensible. By integrating 

the ILFN and the FES, explanations and answers can be easily generated when needed 

while numerical accuracy is preserved. The results showed that the proposed HIS 

achieved acceptable classification results on both training and testing patterns. The low­

level ILFN had a small number of hidden nodes while the higher-level linguistic model 

extracted had a small number of rules. The trained ILFN and the fuzzy linguistic rules 

were combined into a HIS, which yielded very good results based on the performance 

classification as compared to the original system as well as other rule-:-based methods. 

Some quantitative measures pertaining to performance accuracy, 

comprehensibility, and completeness of fuzzy expert systems were also proposed herein. 

Quantitative measures were used as the fitness function to guide a genetic algorithm 

(GA) to search for an optimal fuzzy rule set. In the simulations on three medical domains: 

breast cancer data, lymphography data, and primary tumor data, the resulting fuzzy rule­

based systems were able to competitively yield accurate performance to some state-of­

the-art methods in literature. The resulting fuzzy knowledge bases showed a high degree 
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of comprehensibility. Quantitative measures on accuracy, comprehensibility, and 

completeness were developed to particularly evaluate the proposed FES, which has 

linguistic antecedents and constant numbers in the consequents. However, with minor 

modifications, the evaluation method could be adapted to other types of fuzzy systems as 

well. 

8.2 Suggestions for Future Research 

There are many remaining possibilities to be pursued for future research such as 

1) improving overall accuracy of the system, 2) incorporating a natural language 

processing, 3) studying the scalability issue, 4) providing theoretical proofs on the 

convergence and the robustness of the system, 5) incorporating descriptive and temporal 

features, and 6) applying the system in real world problems. 

First of all, since accuracy is always a concern in every learning system, the 

overall accuracy of the HIS may be improved by using different methods to combine the 

decisions from the ILFN and the FES. The current implementation of HIS used a 

weighted average approach to combine the decisions. Other possible combination 

methods may include Bayesian framework, overall performance measures, and area of 

expertise [Taha97]. The accuracy of the HIS may also be improved by preprocessing data 

before entering into the system. The possible data preprocessing methods include 

reordering the sequence of the data, filling-in missing features, and applying data 

transformation and feature extraction. 

In the current implementation of the proposed HIS, users have to enter the input 

data in the form of either numerical values or indexes of linguistic terms. It may be more 
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desirable if natural language processing (NLP) is incorporated into the HIS framework, 

so that users will be able to interact with the system using natural language sentences. A 

decision support system should be able to translate human language into a form that can 

communicate with the host computer. 

Scalability is another important issue when developing a learning system. The 

scalability of a learning system is affected by the size of the dimension of data, the 

number of data points, and the complexity of time. A good learning system should be 

able to learn from data with any size of dimensions as well as with any number of the 

available data without difficulties or complications. The time complexity is also an 

important aspect in the scalability issue. When learning a large-scale data set, i.e., large 

dimensions and large number of patterns in training data set, a good learning system 

should be able to learn the data in a reasonable period of time. A learning system that 

cannot handle large-scale data is usually not acceptable to apply in real world situations. 

In order to apply the proposed method in real world application, the scalability issues 

need to be carefully evaluated. 

It is also very important that a learning system can be justified by the rigor of 

mathematical analysis. Without mathematical proofs, a system may not be reliable to be 

applied in some real world applications. Since the learning system developed here is 

model free, mathematical proofs may be difficult, if not impossible. In the current study, 

the validation of the learning system was accomplished only by using test data, and 

mathematical proofs are left for possible future work. The main issue needed to be 

proved is the convergence of the learning process as well as the robustness of the system. 
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Another concern is about the temporal representation and reasoning. Temporal 

representation and reasoning have received increasing attention when designing a 

computational intelligence system. The temporal feature is a concept that is demanding in 

many problem domains. The knowledge representation and reasoning about time is one 

main subject to be considered in all the reasoning tasks that consider the dynamic 

environment; therefore, incorporating the temporal representation and reasoning into a 

HIS may be practical in many application domains. 

Lastly, the proposed HIS needs to be further investigated under real world 

applications. The HIS was developed specifically for pattern classification domains and 

was tested to work well with real medical data sets. Nevertheless, the developed system, 

HIS, may also be useful in other application domains such as function approximation, 

control system, and signal processing and warrants further investigation in these areas. 
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