76 research outputs found

    A Modified Meta-Heuristic Approach for Vehicle Routing Problem with Simultaneous Pickup and Delivery

    Get PDF
    The aim of this work is to develop an intelligent optimization software based on enhanced VNS meta-heuristic to tackle Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). An optimization system developed based on enhanced Variable Neighborhood Search with Perturbation Mechanism and Adaptive Selection Mechanism as the simple but effective optimization approach presented in this work. The solution method composed by combining Perturbation based Variable Neighborhood Search (PVNS) with Adaptive Selection  Mechanism (ASM) to control perturbation scheme. Instead of stochastic approach, selection of perturbation scheme used in the algorithm employed an empirical selection based on each perturbation scheme success along the search. The ASM help algorithm to get more diversification degree and jumping from local optimum condition using most successful perturbation scheme empirically in the search process. A comparative analysis with a well-known exact approach is presented to test the solution method in a generated VRPSPD benchmark instance in limited computation time. Then a test to VRPSPD scenario provided by a liquefied petroleum gas distribution company is performed. The test result confirms that solution method present superior performance against exact approach solution in giving best solution for larger sized instance and successfully obtain substantial improvements when compared to the basic VNS and original route planning technique used by a distributor company

    Survey on Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical Models, Solution Methods and Real-Life Applications

    Get PDF
    A crucial practical issue encountered in logistics management is the circulation of final products from depots to end-user customers. When routing and scheduling systems are improved, they will not only improve customer satisfaction but also increase the capacity to serve a large number of customers minimizing time. On the assumption that there is only one depot, the key issue of distribution is generally identified and formulated as VRP standing for Vehicle Routing Problem. In case, a company having more than one depot, the suggested VRP is most unlikely to work out. In view of resolving this limitation and proposing alternatives, VRP with multiple depots and multi-depot MDVRP have been a focus of this paper. Carrying out a comprehensive analytical literature survey of past ten years on cost-effective Multi-Depot Vehicle Routing is the main aim of this research. Therefore, the current status of the MDVRP along with its future developments is reviewed at length in the paper

    Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation

    Get PDF
    In real-life logistics and distribution activities it is usual to face situations in which the distribution of goods has to be made from multiple warehouses or depots to the nal customers. This problem is known as the Multi-Depot Vehicle Routing Problem (MDVRP), and it typically includes two sequential and correlated stages: (a) the assignment map of customers to depots, and (b) the corresponding design of the distribution routes. Most of the existing work in the literature has focused on minimizing distance-based distribution costs while satisfying a number of capacity constraints. However, no attention has been given so far to potential variations in demands due to the tness of the customerdepot mapping in the case of heterogeneous depots. In this paper, we consider this realistic version of the problem in which the depots are heterogeneous in terms of their commercial o er and customers show di erent willingness to consume depending on how well the assigned depot ts their preferences. Thus, we assume that di erent customer-depot assignment maps will lead to di erent customer-expenditure levels. As a consequence, market-segmentation strategies need to be considered in order to increase sales and total income while accounting for the distribution costs. To solve this extension of the MDVRP, we propose a hybrid approach that combines statistical learning techniques with a metaheuristic framework. First, a set of predictive models is generated from historical data. These statistical models allow estimating the demand of any customer depending on the assigned depot. Then, the estimated expenditure of each customer is included as part of an enriched objective function as a way to better guide the stochastic local search inside the metaheuristic framework. A set of computational experiments contribute to illustrate our approach and how the extended MDVRP considered here diré in terms of the proposed solutions from the traditional one.Peer ReviewedPreprin

    The vehicle routing problem with simultaneous pickup and delivery and handling costs

    Get PDF
    In this paper we introduce the vehicle routing problem with simultaneous pickup and delivery and handling costs (VRPSPD-H). In the VRPSPD-H, a fleet of vehicles operates from a single depot to service all customers, which have both a delivery and a pickup demand such that all delivery items originate from and all pickup items go to the depot. The items on the vehicles are organized as a single linear stack where only the last loaded item is accessible. Handling operations are required if the delivery items are not the last loaded ones. We implement a heuristic handling policy approximating the optimal decisions for the handling sub-problem, and we propose two bounds on the optimal policy, resulting in two new myopic policies. We show that one of the myopic policies outperforms the other one in all configurations, and that it is competitive with the heuristic handling policy if many routes are required. We propose an adaptive large neighborhood search (ALNS) metaheuristic to solve our problem, in which we embed the handling policies. Computational results indicate that our metaheuristic finds optimal solutions on instances of up to 15 customers. We also compare our ALNS metaheuristic against best solutions on benchmark instances of two special cases, the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) and the traveling salesman problem with pickups, deliveries and handling costs (TSPPD-H), and on two related problems, the vehicle routing problem with divisible pickup and delivery (VRPDPD) and the vehicle routing problem with mixed pickup and delivery (VRPMPD). We find or improve 39 out of 54 best known solutions (BKS) for the VRPSPD, 36 out of 54 BKS for the VRPDPD, 15 out of 21 BKS for the VRPMPD, and 69 out of 80 BKS for the TSPPD-H. Finally, we introduce and analyze solutions for the variations of the VRPDPD and VRPMPD with handling costs – the VRPDPD-H and the VRPMPD-H, respectively

    An efficient meta-heuristic algorithm for solving capacitated vehicle routing problem

    Get PDF
    This work aims to develop an enhanced Perturbation based Variable Neighborhood Search with Adaptive Selection Mechanism (PVNS ASM) to solve the capacitated vehicle routing problem (CVRP). This approach combined Perturbation based Variable Neighborhood Search (PVNS) with Adaptive Selection Mechanism (ASM) to control perturbation scheme. Instead of stochastic approach, selection of perturbation scheme used in the algorithm employed an empirical selection based on success rate of each perturbation scheme along the search. The ASM helped algorithm to get more diversification degree and jumping from local optimum condition using most successful perturbation scheme empirically in the search process. A comparative analysis with existing heuristics in the literature has been performed on 21 CVRP benchmarks. The computational results proof that the developed method is competitive and very efficient in achieving high quality solution within reasonable computation time

    GRASP with path relinking for the selective pickup and delivery problem

    Get PDF
    postprin

    Applications of biased-randomized algorithms and simheuristics in integrated logistics

    Get PDF
    Transportation and logistics (T&L) activities play a vital role in the development of many businesses from different industries. With the increasing number of people living in urban areas, the expansion of on-demand economy and e-commerce activities, the number of services from transportation and delivery has considerably increased. Consequently, several urban problems have been potentialized, such as traffic congestion and pollution. Several related problems can be formulated as a combinatorial optimization problem (COP). Since most of them are NP-Hard, the finding of optimal solutions through exact solution methods is often impractical in a reasonable amount of time. In realistic settings, the increasing need for 'instant' decision-making further refutes their use in real life. Under these circumstances, this thesis aims at: (i) identifying realistic COPs from different industries; (ii) developing different classes of approximate solution approaches to solve the identified T&L problems; (iii) conducting a series of computational experiments to validate and measure the performance of the developed approaches. The novel concept of 'agile optimization' is introduced, which refers to the combination of biased-randomized heuristics with parallel computing to deal with real-time decision-making.Las actividades de transporte y logística (T&L) juegan un papel vital en el desarrollo de muchas empresas de diferentes industrias. Con el creciente número de personas que viven en áreas urbanas, la expansión de la economía a lacarta y las actividades de comercio electrónico, el número de servicios de transporte y entrega ha aumentado considerablemente. En consecuencia, se han potencializado varios problemas urbanos, como la congestión del tráfico y la contaminación. Varios problemas relacionados pueden formularse como un problema de optimización combinatoria (COP). Dado que la mayoría de ellos son NP-Hard, la búsqueda de soluciones óptimas a través de métodos de solución exactos a menudo no es práctico en un período de tiempo razonable. En entornos realistas, la creciente necesidad de una toma de decisiones "instantánea" refuta aún más su uso en la vida real. En estas circunstancias, esta tesis tiene como objetivo: (i) identificar COP realistas de diferentes industrias; (ii) desarrollar diferentes clases de enfoques de solución aproximada para resolver los problemas de T&L identificados; (iii) realizar una serie de experimentos computacionales para validar y medir el desempeño de los enfoques desarrollados. Se introduce el nuevo concepto de optimización ágil, que se refiere a la combinación de heurísticas aleatorias sesgadas con computación paralela para hacer frente a la toma de decisiones en tiempo real.Les activitats de transport i logística (T&L) tenen un paper vital en el desenvolupament de moltes empreses de diferents indústries. Amb l'augment del nombre de persones que viuen a les zones urbanes, l'expansió de l'economia a la carta i les activitats de comerç electrònic, el nombre de serveis del transport i el lliurament ha augmentat considerablement. En conseqüència, s'han potencialitzat diversos problemes urbans, com ara la congestió del trànsit i la contaminació. Es poden formular diversos problemes relacionats com a problema d'optimització combinatòria (COP). Com que la majoria són NP-Hard, la recerca de solucions òptimes mitjançant mètodes de solució exactes sovint no és pràctica en un temps raonable. En entorns realistes, la creixent necessitat de prendre decisions "instantànies" refuta encara més el seu ús a la vida real. En aquestes circumstàncies, aquesta tesi té com a objectiu: (i) identificar COP realistes de diferents indústries; (ii) desenvolupar diferents classes d'aproximacions aproximades a la solució per resoldre els problemes identificats de T&L; (iii) la realització d'una sèrie d'experiments computacionals per validar i mesurar el rendiment dels enfocaments desenvolupats. S'introdueix el nou concepte d'optimització àgil, que fa referència a la combinació d'heurístiques esbiaixades i aleatòries amb informàtica paral·lela per fer front a la presa de decisions en temps real.Tecnologies de la informació i de xarxe

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    A two-level local search heuristic for pickup and delivery problems in express freight trucking

    Get PDF
    We consider a multiattribute vehicle routing problem inspired by a freight transportation company operating a fleet of heterogeneous trucks. The company offers an express service for requests including multiple pickup and multiple delivery positions spread in a regional area, with associated soft or hard time windows often falling in the same working day. Routes are planned on a daily basis and reoptimized on-the-fly to fit new requests, taking into account constraints and preferences on capacities, hours of service, route termination points. The objective is to maximize the difference between the revenue from satisfied orders and the operational costs. The problem mixes attributes from both intercity less-than-truckload and express couriers operations, and we propose a two-level local search heuristic. The first level assigns orders to vehicles through a variable neighborhood stochastic tabu search; the second level optimizes the route service sequences. The algorithm, enhanced by neighborhood filtering and parallel exploration, is embedded in a decision support tool currently in use in a small trucking company. Results have been compared to bounds obtained from a mathematical programming model solved by column generation. Experience on the field and test on literature instances attest to the quality of results and the efficiency of the proposed approach
    corecore