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a b s t r a c t 

In this paper we introduce the vehicle routing problem with simultaneous pickup and delivery and han- 

dling costs (VRPSPD-H). In the VRPSPD-H, a fleet of vehicles operates from a single depot to service all 

customers, which have both a delivery and a pickup demand such that all delivery items originate from 

and all pickup items go to the depot. The items on the vehicles are organized as a single linear stack 

where only the last loaded item is accessible. Handling operations are required if the delivery items are 

not the last loaded ones. We implement a heuristic handling policy approximating the optimal decisions 

for the handling sub-problem, and we propose two bounds on the optimal policy, resulting in two new 

myopic policies. We show that one of the myopic policies outperforms the other one in all configurations, 

and that it is competitive with the heuristic handling policy if many routes are required. We propose an 

adaptive large neighborhood search (ALNS) metaheuristic to solve our problem, in which we embed the 

handling policies. Computational results indicate that our metaheuristic finds optimal solutions on in- 

stances of up to 15 customers. We also compare our ALNS metaheuristic against best solutions on bench- 

mark instances of two special cases, the vehicle routing problem with simultaneous pickup and delivery 

(VRPSPD) and the traveling salesman problem with pickups, deliveries and handling costs (TSPPD-H), and 

on two related problems, the vehicle routing problem with divisible pickup and delivery (VRPDPD) and 

the vehicle routing problem with mixed pickup and delivery (VRPMPD). We find or improve 39 out of 

54 best known solutions (BKS) for the VRPSPD, 36 out of 54 BKS for the VRPDPD, 15 out of 21 BKS 

for the VRPMPD, and 69 out of 80 BKS for the TSPPD-H. Finally, we introduce and analyze solutions for 

the variations of the VRPDPD and VRPMPD with handling costs – the VRPDPD-H and the VRPMPD-H, 

respectively. 

Crown Copyright © 2019 Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

When consumers buy major appliances, it is common practice

hat the store home-delivers the newly bought products and takes

ack the old machinery. These appliances are not easily moved

round in the delivery vehicle and, if pickup items are placed in

ront of delivery items, they may cause obstruction issues at subse-

uent stops. Handling these pickup items to access delivery items

s then a time consuming task and should not be ignored when

esigning the set of routes to service customers, which should

how a clear trade-off between routing and handling costs. Sim-

lar situations arise in the delivery and collection of large furni-
∗ Corresponding author. 
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ure, which often cover the entire vehicle width, the relocation

f damaged and undamaged bicycles in public sharing systems

 Battarra et al. (2010) ) or when delivering calves to farms and col-

ecting mature cows ( Erdo ̌gan et al. (2012) ). Recently, other studies

ooked at the effect of obstruction issues in related problem set-

ings (e.g., Veenstra et al. (2017) ). 

We refer to our vehicle routing problem (VRP) as the VRP with

imultaneous pickup and delivery and handling costs (VRPSPD-H),

n which a fleet of homogeneous vehicles operates from a single

epot to service all customers, which may have both a delivery and

 pickup demand. These demands are such that all delivery items

riginate from and all pickup items go to the depot. The items on

he vehicles are organized as a single linear stack which obeys the

ast-in-first-out (LIFO) policy and is only accessible from the rear.

his means that only the most recently loaded item is accessible,

nd if this is not the item of interest (for instance a pickup item

https://doi.org/10.1016/j.cor.2019.104858
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.104858&domain=pdf
mailto:r.p.hornstra@gmail.com
mailto:allyson.silva@cirrelt.ca
mailto:k.j.roodbergen@rug.nl
mailto:leandro.coelho@cirrelt.ca
https://doi.org/10.1016/j.cor.2019.104858


2 R.P. Hornstra, A. Silva and K.J. Roodbergen et al. / Computers and Operations Research 115 (2020) 104858 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

l  

(  

b  

Z  

t  

e  

S  

p

e  

t  

p

 

V  

a  

t  

N  

i  

a  

t  

p  

o  

S  

o  

s  

t  

l  

t

 

v  

i  

i  

c  

s  

C  

s  

g  

c  

l  

t  

d  

w  

o  

a  

p

 

S  

t  

S  

t  

c  

S

2

 

t  

p  

p

2

 

when a delivery is to be made), handling operations are required

before the desired service can be made. 

The VRPSPD-H generalizes some problems in the class of rout-

ing problems with pickups and deliveries, or linehauls and back-

hauls, such as the VRP with simultaneous pickup and delivery

(VRPSPD) by extending it to consider handling operations, and

the traveling salesman problem with pickups, deliveries and han-

dling costs (TSPPD-H) by allowing for the construction of multi-

ple routes. Other problems are also related, such as the VRP with

mixed pickup and delivery (VRPMPD), which considers that cus-

tomers either have pickup or delivery items, and the VRP with di-

visible pickup and delivery (VRPDPD), which considers that cus-

tomers can be visited twice, once for pickup and once for deliv-

ery. These problems find many practical applications and for an

extensive list of studies considering them, we refer the reader to

literature reviews on routing problems with pickups and deliveries

such as Berbeglia et al. (2007) ; Koç and Laporte (2018) ; Nagy and

Salhi (2005) and Wassan and Nagy (2014) ; for an overview of real-

life routing problems we refer to Coelho et al. (2016) . 

In this paper, we introduce, model and solve the VRPSPD-H.

We propose a mathematical formulation to solve small problem in-

stances optimally for the VRPSPD-H. We show that via a simple re-

formulation we can solve the generalization of the VRPMPD with

handling costs (VRPMPD-H). Our model can find an upper bound

solution to the VRPDPD with handling costs (VRPDPD-H). These

two problems are also introduced here. An adaptive large neigh-

borhood search (ALNS) metaheuristic in which we embed handling

policies is also proposed as an alternative to solve larger instances.

The handling decisions are made using a heuristic handling pol-

icy which approximates the optimal decisions to the handling sub-

problem. Its performance is compared with two new myopic poli-

cies obtained by deriving bounds on the optimal handling policy.

The quality of the proposed ALNS is shown by benchmarking on

many problems and instances from the literature (VRPSPD, VR-

PDPD, VRPMPD, and TSPPD-H), and by comparing it with optimal

results obtained from our mathematical formulation for the newly

introduced problems (VRPSPD-H, VRPDPD-H and VRPMPD-H). 

A closely related line of research is Veenstra et al. (2017) , in

which a single vehicle fulfills a set of requests. In contrast to our

problem, a request is defined as the transportation of items from

a specific pickup location to a specific delivery location. These may

both be different from the depot, whereas in our problem the de-

pot is always the origin and destination of the deliveries and pick-

ups, respectively. The operating vehicle also contains a single linear

stack subject to the LIFO policy and handling operations are con-

sidered as well. 

In Battarra et al. (2010) , a special case of our VRPSPD-H, em-

ploying only a single vehicle, is introduced and the authors pro-

pose branch-and-cut algorithms to solve the problem. Due to the

complexity of the handling sub-problem, the authors introduce

three handling policies and solve instances up to 25 customers op-

timally. The authors show that their Policy 3 (mixed policy) sig-

nificantly outperforms the Policies 1 (rear policy) and 2 (front pol-

icy). The three policies are described in Section 2.1 . A follow-up

study by Erdo ̌gan et al. (2012) focuses on the mixed policy of

Battarra et al. (2010) . The authors design an exact dynamic pro-

gram (DP) with quadratic complexity and a linear-time heuristic,

both to the mixed policy, to solve the handling sub-problem. These

methods are integrated into three different metaheuristics (tabu

search, iterated local search, and iterated tabu search) which are

used to solve instances of up to 200 customers. We extend the

works of Battarra et al. (2010) and Erdo ̌gan et al. (2012) by adopt-

ing their approaches, i.e., the DP policy and the heuristic policy, to

the handling sub-problem, in addition to our myopic policies, and

integrate it with our metaheuristic for the VRPSPD-H to apply it on

the multi-vehicle extension. 

 

Many different heuristic methods have been proposed to solve

he VRPSPD, the VRPMPD and the VRPDPD, including adaptive

ocal search ( Avci and Topaloglu (2015) ), ant colony systems

 Gajpal and Abad (2009) ; Kalayci and Kaya (2016) ), variable neigh-

orhood search ( Polat (2017) ) and tabu search ( Nagy et al. (2013) ;

achariadis and Kiranoudis (2011) ). Despite the successes of these

echniques, ALNS is growing in popularity over the last years. It

xtends the large neighborhood search (LNS) as first introduced by

haw (1998) by an adaptive mechanism and has recently been im-

lemented successfully in many different routing problems ( Emeç

t al. (2016) ; Grangier et al. (2016) ; Li et al. (2016) ). We build upon

hese recent successes and design an ALNS metaheuristic for our

roblem. 

Additional to heuristic solution methods, the VRPSPD-H, the

RPMPD-H, and the VRPDPD-H have also been solved using ex-

ct methods. Since the VRPSPD generalizes the standard capaci-

ated VRP, a well-known NP-hard problem, it can be shown to be

P-hard as well. However, small instances have been solved us-

ng exact solution methods. Dell’Amico et al. (2006) use a branch-

nd-price method to solve instances of up to 40 customers op-

imally and Subramanian et al. (2013) propose a branch-cut-and-

rice method solving instances of up to 100 customers. Since

ur problem generalizes the VRPSPD, which we formally show in

ection 3.1 , our problem is NP-hard as well. We adapt the model

f Dell’Amico et al. (2006) to fit handling costs and use it to solve

mall instances optimally. With a small reformulation, we show

hat the model can be used to solve the mixed version of the prob-

em with handling costs (VRPMPD-H) and to find an upper bound

o the divisible version of the problem (VRPDPD-H). 

Other areas of research which are less related are the multi-

ehicle pickup and delivery problem with LIFO constraints stud-

ed in Benavent et al. (2015) and the variant with time windows

n Cherkesly et al. (2015) . In contrast to our problem, these LIFO

onstraints prohibit delivery of an item not on top of the linear

tack, leading to a setting without handling operations. Wang and

hen (2012) study the VRPSPD with time windows and an exten-

ion with multiple depots is studied in Nagy and Salhi (2005) . Re-

arding handling operations, loading constraints in VRPs are dis-

ussed in Pollaris et al. (2015) , and a VRP where products are

oaded in multiple compartments is presented in Hübner and Os-

ermeier (2018) . A problem with handling costs in the form of ad-

itional service time for a VRP with pickup and delivery and time

indows is studied in Reimann and Ulrich (2006) . Shuffling goods

n-board may also be possible, without the need to unload, such

s in the VRP with restricted mixing of deliveries and pickups as

roposed by Casco et al. (1988) . 

The remainder of this paper is structured as follows. In

ection 2 we present a formal problem definition. Section 3 shows

he aforementioned generalizations and related problems.

ection 4 explains the ALNS metaheuristic proposed to solve

he problem and the handling policies used to calculate handling

osts. We report the results of an extensive numerical study in

ection 6 . Finally, Section 7 concludes the paper. 

. Problem definition 

This section presents the model for the VRPSPD-H and is struc-

ured as follows. We formally define the model, explain handling

olicies and propose a MIP formulation in Section 2.1 . Also, we

resent valid inequalities in Section 2.2 . 

.1. Mathematical formulation 

The VRPSPD-H is defined on a complete directed graph G =
(V, A ) , with V = { 0 , 1 , . . . , N} being the set of vertices and A is the
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Fig. 1. Illustration of handling options at a customer. In the example, the customer requires one delivery item (light grey box) and supplies two pickup items (dark grey 

box). 
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et of arcs ( i, j ) between every pair of nodes i, j ∈ V, i � = j . Let ver-

ex 0 represent the depot, then V c = V \{ 0 } is the set of customer

ertices. Define A r = { (i, 0) : i ∈ V c } as the set of arcs which end at

he depot. A positive travel cost c ij satisfying the triangle inequality

xists to each arc ( i, j ) ∈ A . Customer i ∈ V c requires d i > 0 delivery

tems and supplies p i ≥ 0 pickup items. The delivery items origi-

ate from the depot and the pickup items destinate to the depot.

 homogeneous fleet of vehicles with capacity Q is available at the

epot. 

We adopt the definition of an additional operation from

attarra et al. (2010) , which is defined as the unloading and

eloading of one item from a vehicle, with corresponding costs

 d and h p for a delivery item and a pickup item, respectively.

attarra et al. (2010) defined three handling policies based on the

ollowing structure. The load in the vehicles is divided into three

locks: (i) the pickup items at the front of the vehicle which never

equire additional operations at remaining stops, (ii) the delivery

tems in the middle of the vehicle, and (iii) the pickup items at

he rear of the vehicle which obstruct the delivery items. 

Under the rear policy, all pickups are always placed at the rear

f the vehicle, obstructing future deliveries. Under the front pol-

cy, all pickups are always placed at the front of the vehicle where

hey do not require additional operations at future stops. However,

dditional operations for the delivery items in the vehicle are re-

uired. The mixed policy is defined as follows. At each customer,

he decision of placing the pickup items either at the rear or at

he front of the vehicle is made. This decision is based on the vol-

mes in each of the three blocks in the vehicle and the delivery

nd pickup demand of the customers positioned later in the route.

attarra et al. (2010) presented three mathematical models for the

SPPD-H, each considering one of the policies. Due to its generality

nd its better performance when compared to the rear and front

olicies, we consider in this work that a mixed policy is used. 

Fig. 1 depicts the placement of pickups at the rear and front of

he vehicle graphically. In the example, the customer demands a

ingle delivery item and supplies two pickup items. To make the

elivery, the obstructing pickup item needs to be unloaded in both

ases. If the choice is to place the new pickup items at the rear

f the vehicle ( Fig. 1 (a)) the two new pickup items are added to

he already unloaded pickup item and are placed such that they

bstruct the next delivery resulting in a total handling cost of h p .

lternatively ( Fig. 1 (b)), the two remaining delivery items are un-

oaded prior to placing the pickup items at the front of the vehi-

le. This requires additional operations on the two delivery items

t the current stop, but results in no obstruction for the next de-

ivery, resulting in a total handling cost of h p + 2 h d . 
In a flow based formulation, let x ij be a binary variable which

s equal to one if arc ( i, j ) ∈ A is part of the solution, and zero oth-

rwise. Furthermore, y ij represents the number of delivery items

n board on arc ( i, j ) ∈ A , and w ij and z ij represent the number

f pickup items on board at the front and rear of the vehicle on

rc ( i, j ) ∈ A , respectively, such that w i j + z i j represents the total

umber of pickup items on board of the vehicle on arc ( i, j ) ∈ A .

nless required, the number of items is not necessarily integer. Fi-

ally, we introduce the binary variable s i , i ∈ V c , which is equal

o one if the pickup items are placed at the front of the vehicle,

nd zero if at the rear. Inspired by the models for the TSPPD-H by

attarra et al. (2010) and the VRPSPD by Dell’Amico et al. (2006) ,

e propose the following formulation for the VRPSPD-H: 

inimize 
∑ 

(i, j) ∈ A 
c i j x i j + 

∑ 

(i, j) ∈ A \ A r 
h p z i j + 

∑ 

(i, j) ∈ A \ A r 
s j h d 

(
y i j −

d j 

| V c | 
)

(1) 

ubject to 
 

j∈ V 
x ij = 1 , i ∈ V c , (2)

∑ 

j∈ V 
x i j = 

∑ 

j∈ V 
x ji , i ∈ V, (3) 

∑ 

j∈ V 
y ji −

∑ 

j∈ V 
y i j = d i , i ∈ V c , (4) 

 

j∈ V 

(
w ij + z ij 

)
−

∑ 

j∈ V 

(
w ji + z ji 

)
= p i , i ∈ V c , (5) 

 i j + y i j + z i j ≤ Qx i j , (i, j) ∈ A, (6) 

∑ 

j∈ V 
z i j = (1 − s i ) 

( ∑ 

j∈ V 
z ji + p i 

) 

, i ∈ V c , (7) 

 i j ∈ { 0 , 1 } , (i, j) ∈ A, (8) 

 i ∈ { 0 , 1 } , i ∈ V c , (9) 

 i j , y i j , z i j ≥ 0 , (i, j) ∈ A. (10) 
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Here, (1) states the objective function. The first term in the objec-

tive represents the routing cost, the second term corresponds to

the handling costs for the pickup items at the rear of the vehicle

and the third term corresponds to the handling costs for the de-

livery items when all pickup items are placed at the front of the

vehicle. Due to the domain of the sum in the third term, we divide

the quantity d j by the number of arcs defined to go to customer

j , | V c | since we are not considering arcs going from a customer to

itself, to make sure we subtract it exactly once from the quantity

y ij . Constraints (2) force every customer to be visited exactly once,

and constraints (3) –(5) induce flow conservation. Additionally, con-

straints (4) –(5) prevent subtours, and constraints (6) ensure that

vehicle capacity is not violated. Constraints (7) update the loca-

tion of the pickup items according to the decision of where to

place them. Finally, constraints (8) –(10) define the nature of the

variables. We also set the number of pickup items in the vehi-

cles when leaving the depot and the number of delivery items in

the vehicles going to the depot equal to zero, i.e., 
∑ 

i ∈ V c w 0 i = 0 ,∑ 

i ∈ V c z 0 i = 0 , and 

∑ 

i ∈ V c y i 0 = 0 . 

Due to our objective function, this formulation works only

when there are items to deliver in all customers. In Section 3.2 we

present a reformulation of the problem to accept d j = 0 for

any customer j , which is used to solve the VRPMPD-H and the

VRPDPD-H. 

2.2. Valid inequalities 

In order to tighten the formulation of Section 2.1 , we present

some valid inequalities which strengthen some of the constraints.

For the delivery items on the arcs, we know that the delivery load

in the vehicle should be at least as large as the demand of the

customer at the end of the arc, and a similar reasoning holds for

the flow of pickup items: ∑ 

j∈ V 
y ji ≥

∑ 

j∈ V 
x ji d i , i ∈ V c , 

∑ 

j∈ V 
w i j + z i j ≥

∑ 

j∈ V 
x i j p i , i ∈ V c . 

Next, capacity constraints (6) can be strengthened as follows (cf.

Battarra et al. (2010) ): 

w i j + y i j + z i j ≤ x i j 

(
Q − min { 0 , p i − d i , d j − p j } 

)
, (i, j) ∈ A. 

Additionally, when h p = h d and the number of pickup items at a

customer and the pickup items in the rear of the vehicle is higher

than the remaining delivery items in the vehicle, the best policy to

adopt is always the front policy. This is proven in the Proposition 1

in Section 5 . Therefore, given a sufficiently large number M and a

sufficiently small number ε, we can add the following inequalities

to the model: ∑ 

j∈ V 
z i j + p i ≤

∑ 

j∈ V 
y i j + Ms i − ε, i ∈ V c . 

3. Special cases and related problems 

In this section, we discuss how to solve problems related to the

VRPSPD-H. We first prove that the VRPSPD and the TSPPD-H are

special cases of the VRPSPD-H. Then, we show how to reformulate

the model to solve the VRPMPD-H, the VRPMPD and the VRPDPD,

and to find an upper bound to the VRPDPD-H. 

3.1. Special cases 

In this section, we show that the VRPSPD and the TSPPD-H are

special cases of the VRPSPD-H. 
heorem 1. The VRPSPD-H with h d = h p = 0 is equivalent to the

RPSPD. 

roof. Let an instance be given with h d = h p = 0 . As handling

osts are zero, an optimal solution for the VRPSPD, which dis-

egards handling operations, will also be optimal here. Hence,

he objective function only comprises the routing component. We

an also omit all constraints involving handling operations (con-

traints (7) and (9) ), and remove variables w ij and s i entirely.

ptionally, we can consider a maximum number of vehicles, so

hat the remaining model is equivalent to the VRPSPD as in

ell’Amico et al. (2006) . �

heorem 2. The VRPSPD-H with a single vehicle and Q ≥
ax 

{∑ 

i ∈ V c d i , 
∑ 

i ∈ V c p i 
}

is equivalent to the TSPPD-H. 

roof. Let an instance be given with Q ≥ max 
{∑ 

i ∈ V c d i , 
∑ 

i ∈ V c p i 
}

nd a single available vehicle, where the capacity restriction is

btained from the TSPPD-H formulation of Battarra et al. (2010) .

hen, the construction of a single route to service all customers

s the only possibility of a feasible solution. The solution space

f the VRPSPD-H shrinks to the solution space of the TSPPD-

. The remaining model is equivalent to the TSPPD-H as in

attarra et al. (2010) for the mixed handling policy when d i > 0

or all customers i . �

.2. Related problems 

In this section we show how to reformulate the VRPSPD-H

odel to accept customers without delivery requests ( d i = 0 ), thus

odeling the VRPMPD-H and the VRPMPD. We also show that by

plitting pickup and delivery into new dummy customers, we are

ble to optimally solve the VRPDPD and to find an upper bound

olution to the VRPDPD-H. 

To solve the VRPMPD-H the objective function (1) is changed

o 

minimize 
∑ 

(i, j) ∈ A 
c i j x i j + 

∑ 

(i, j) ∈ A \ A r ,d i > 0 

(
h p z i j + s j h d 

(
y i j −

d j 

| V c | 
))

+ 

∑ 

(i, j) ∈ A \ A r ,d i =0 

s j 
(
h p z i j + h d y i j 

)
(11)

ubject to (2) –(10) . 

The new objective function (11) explicitly considers handling

osts at the stops where there are items to be delivered. The first

nd second terms follow directly from (1) . According to the third

erm, when there are no delivery items and the rear policy is ap-

lied, the handling cost is zero since placing the pickup items does

ot require handling any item in the vehicle. Whereas if the front

olicy is applied, the handling cost is the same as when there are

elivery items. The VRPMPD-H with h d = h p = 0 is equivalent to

he VRPMPD, and the proof is similar to that of Theorem 1 . 

Now, consider a customer i ∈ V c with d i ≥ 0 and p i ≥ 0.

agy et al. (2013) indicate that the VRPDPD may be modeled

s a VRPMPD by creating two dummy customers i 1 ( d i 1 = d i and

p i 1 = 0 ) and i 2 ( d i 2 = 0 and p i 2 = p i ) located at the location of i ,

or all customers in V c . The same approach can be used to solve

 VRPDPD-H from the VRPMPD-H model. However, the solution

ound is an upper bound to the original problem. The reason is

escribed next. 

heorem 3. Solving the VRPSPD-H with objective function (11) and

ith dummy customers to represent pickups and deliveries gives an

pper bound to the VRPDPD-H. 

roof. Consider a vehicle traveling along arc ( i, j ) loaded with

 ij > 0 and y ij > 0 items. Consider also that customer j has d j > 0
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Algorithm 1 Outline of ALNS metaheuristic. 

1: construct initial solution s 

2: solution s best ← s 

3: repeat 

4: s ′ ← s 

5: destroy s ′ 
6: repair s ′ 
7: if ( f (s ′ ) < f (s best )) then 

8: local search s ′ 
9: s best ← s ′ 

10: end if 

11: if accept( s ′ , s ) then 

12: s ← s ′ 
13: end if 

14: update operator weights 

15: if operator weights are reset then 

16: local search s 

17: end if 

18: until stopping criterion 

19: return s best 
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nd p j > 0. In the VRPSPD-H, the handling process in j when the

ront policy is applied is as follows: 

(i) z ij obstructing pickup items are removed from the vehicle; 

ii) d j delivery items are removed and delivered to j ; 

ii) the remaining (y i j − d j ) delivery items are removed from the

vehicle; 

v) z ij items are placed back in the front of the vehicle; 

v) p j pickup items are placed next; 

i) (y i j − d j ) items are placed back lastly. 

The total handling cost in this process is given by the han-

ling of the z ij and (y i j − d j ) obstructing items given by z i j h p +
(y i j − d j ) h d . When customers are divided into dummy customers,

o achieve the same final vehicle setting the process is slightly

ifferent. Steps (i) and (ii) are the same. Then, if the dummy

ustomer representing deliveries is first in the route, the process

s followed by steps (iii), (iv) and (vi) with a handling cost of

 i j h p + (y i j − d j ) h d . Next, when visiting the other dummy customer

epresenting pickups, it is necessary to remove the (y i j − d j ) ob-

tructing items to place p j at the front, increasing the handling

ost by (y i j − d j ) h d units. If the order of the dummy customers

ere inverted, the handling costs of the first stop would be equal

o z i j h p + y i j h d , while the second stop would not require any han-

ling. Consequently, regardless of the case, whenever a customer is

ivided into two dummy nodes and they are visited in sequence,

nd the rear policy is applied, the result for the handling cost of

hese two stops will be higher than the handling cost in a one-stop

ase. Thus, the solution of the VRPSPD-H with dummy customers

s an upper bound to the solution of the VRPDPD-H. �

. Adaptive large neighborhood search metaheuristic 

This section provides details about the ALNS metaheuristic de-

igned to solve the VRPSPD-H. As mentioned in Section 1 , LNS

as introduced by Shaw (1998) and this technique is growing in

opularity over the last years due to recent successes in diverse

ettings. Among these settings are problems including simultane-

us pickups and deliveries ( Ropke and Pisinger (2006b) ), handling

osts ( Veenstra et al. (2017) ), multiple stacks ( Côté et al. (2012) )

nd under other restrictions such as time windows ( Ropke and

isinger (2006a) ). This diverse and successful application of ALNS

rovides grounds for us to employ this method as well. We use the

ramework of Ropke and Pisinger (2006a) as a basis for our design,

nriching the framework with a local search procedure. The outline

f our algorithm is given in Algorithm 1 . 

The procedure starts with the construction of an initial solution

nd by initializing the relevant parameters. Then, the algorithm en-

ers its iterative phase which runs until the stopping criterion is

et. In each iteration, the solution is changed by a destroy and

epair mechanism. First, a destroy operator removes a number of

ustomers from the solution. Next, a repair operator reinserts the

emoved customers to construct a new solution. If the resulting

olution is better than the currently best solution, a local search

rocedure is applied to potentially improve the solution further

nd the best solution is updated. A simulated annealing criterion

etermines whether the changed solution is accepted as the new

urrent solution. The destroy and repair operator weights are up-

ated based on the performance of the selected operators in the

urrent iteration. Finally, after a pre-specified number of iterations

he destroy and repair operator weights are reset to their origi-

al values. Each time the weights are reset, the local search pro-

edure is applied to the current solution to intensify the search. If

he stopping criterion is not met, the algorithm goes to the next

teration and the process repeats. Experiments with applying the

ocal search procedure to all accepted solutions or to all solutions

ithin a certain threshold of the global best solution resulted in
ignificantly higher calculation times without improving the solu-

ion quality. 

To evaluate the changes made by the metaheuristic, we evalu-

te the routing and handling costs separately. The routing cost dif-

erence is computed by assessing only the changed parts of a route

ince an unchanged route segment has the same cost in both cases.

he handling sub-problem is solved using a handling policy among

hose that are presented in Section 5 . The handling costs have to

e recalculated for the entire route since handling decisions at the

ustomers also depend on future customer visits. Feasibility of a

hange is assessed by checking if the vehicle capacity and number

f used vehicles is within the allowed limits. 

Details on the construction of an initial solution are reported in

ections 4.1 –4.3 explain the destroy and repair operators, respec-

ively. Section 4.4 reports details regarding the local search pro-

edure, and Section 4.5 provides details about the acceptance cri-

erion. Finally, Section 4.6 explains how the adaptive mechanism

perates. 

.1. Initial solution 

An initial solution is constructed by greedily inserting a random

ustomer at its best position in the solution. The first customer to

e inserted creates a new route, after which a random customer

s inserted at its best feasible location considering the increase in

otal cost. If no feasible insertion can be found for the current cus-

omer, it is inserted in a new route. This process continues until all

ustomers are inserted at a feasible position. 

.2. Destroy operators 

In the destroy phase of the metaheuristic, a roulette wheel se-

ection procedure randomly selects one destroy operator based on

ts weight. This operator removes a predefined number of q cus-

omers from the solution and places them in the customer pool.

 total of eight different destroy operators are used and are de-

cribed in this section. The random removal and worst removal op-

rators are adapted from Ropke and Pisinger (2006a) , whereas the

orst distance removal and worst handling removal operators were

ntroduced by Veenstra et al. (2017) . The related removal operator

as described by Shaw (1998) and the route removal and minimum

uantity removal operators are also commonly seen in the destroy

hase of a LNS heuristic. We newly introduce the cross route re-

oval operator, inspired by the cluster removal operator described



6 R.P. Hornstra, A. Silva and K.J. Roodbergen et al. / Computers and Operations Research 115 (2020) 104858 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

p  

t  

s  

l  

t  

t  

a  

V  

s  

s

 

 

 

 

 

 

 

 

 

 

i  

P  

s  

r  

e  

i  

v  
in Ropke and Pisinger (2006b) . The destroy operators are explained

below. 

1. Random removal 

The random removal operator selects q customers randomly and

removes them from the solution. 

2. Worst removal 

The worst removal operator removes q customers based on their

cost. Letting f ( x ) be the objective value of solution x , the op-

erator computes the cost of all customers in the solution as

c i (s ) = f (s ) − f (s −i ) , which denotes the difference in objective

value of the current solution s compared to the solution in

which customer i ∈ V c is removed, s −i . It then selects the y -th

worst customer, with y ~ 	 U [0, 1] p · N s 
 , where N s is the num-

ber of customers in the current solution and p is a measure

of randomness. When a customer is removed, the costs of the

remaining customers are recalculated and the process repeats

until q customers are removed, as in Algorithm 2 . 

Algorithm 2 Outline of worst removal operator. 

1: while number of customers in the pool < q do 

2: c i (s ) ← f (s ) − f (s −i ) , ∀ i ∈ V c 
3: y ∼ 	 U[0 , 1] p · ( numb er of customers in the solution ) 
 
4: remove customer with y -th highest c i (s ) 

5: end while 

3. Worst distance removal 

The worst distance removal operator is similar to the worst re-

moval operator. The difference is in the evaluation of the cost of

customer i ∈ V c . This cost, ˜ c i (s ) = f d (s ) − f d (s −i ) , is now only

the difference in routing cost. Again here, the y -th worst cus-

tomer is removed. 

4. Worst handling removal 

The worst handling removal operator is similar to the worst dis-

tance removal operator. The cost of customer i ∈ V c is computed

solely as the difference in handling cost. 

5. Related removal 

The related removal operator removes customers which are re-

lated to each other. Such customers are likely to be exchanged

more easily whereas more unique customers are often repaired

in their original position and hence do not aid much in the di-

versification of the search process. For the related removal we

define the relatedness measure R ( i, j ) between customers i and

j, i, j ∈ V c , i � = j , as the inverse of their mutual distance so that

customers located close to each other have a high relatedness

score. That is, R (i, j) = 

1 

c i j 

. 

6. Route removal 

The route removal operator randomly selects a route from the

solution. This selection is purely based on the number of routes

and does not take into account the length of the routes, such

that smaller routes are selected as often as larger routes. This

is a desirable property due to the ease of diversification of the

search when removing a small route. If the number of customer

in the selected route, q r , is smaller than q , the route is removed

and the route removal operator restarts with q ′ = q − q r . If there

are more than q customers in the route, the operator randomly

selects q customers from the given route and removes them. 

7. Minimum quantity removal 

The minimum quantity removal operator removes customers

with low demand quantity, computed as the sum of pickup and

delivery demand per customer. The intuition behind this oper-

ator is that customers with low demand do not affect capacity

restrictions much and are therefore more easily moved around

than customers with high demand. Selection of the customer to

be removed is similar as for the worst removal operator, i.e., re-
moves the y -th lowest demand customer using the same mea-

sure of randomness y ~ 	 U [0, 1] p · N s 
 . 
When the customer pool is empty, the related removal operator

selects a random customer in the solution and removes both

this and a related customer from the solution. Then, as long as

the customer pool does not contain q customers, a random cus-

tomer from the pool is selected and a related customer in the

solution is found which is then removed as well. The selection

of a related customer is similar to the worst removal operator.

Experiments with including the pickup and delivery demands

as a term in the relatedness measure yielded no significant im-

provement. 

8. Cross route removal 

In the cross route removal operator, a random customer in the

solution is selected, as well as the customers immediately pre-

ceding and succeeding the selected customer, if present. Next,

using the relatedness measure R ( i, j ), a related customer of the

initially selected customer in a different route and its neigh-

boring customers are selected. All these customers, or at most

q , are removed from the solution. If there are more than q

customers selected, we remove the last ones starting from the

neighbors of the related customer, then the related customer

itself, and finally the neighbors of the initial customer, until

there are only q customers to be removed. If there are fewer

than q , this process repeats until there are q customers in the

pool. This operator intensifies variation between routes as route

chunks with related customers from different routes are de-

stroyed in one iteration. 

.3. Repair operators 

After a destroy operator has placed q customer in the customer

ool, a repair operator is randomly selected which inserts all cus-

omers back into the solution. Similar to the selection of the de-

troy operator, a roulette wheel selection procedure randomly se-

ects a repair operator based on its weight. The three repair opera-

ors employed in the reparation phase are explained is this sec-

ion. The random repair operator is commonly seen in the liter-

ture, and the sequential best insertion operator is adopted from

eenstra et al. (2017) . We have created a perturbed version of the

equential best insertion operator to prevent repeating the same in-

ertions. The repair operators are explained below. 

1. Random repair 

The random repair operator randomly selects a customer from

the pool and inserts it at a random feasible location in the so-

lution. 

2. Sequential best insertion 

The sequential best insertion operator randomly selects a cus-

tomer from the customer pool and inserts it at its best feasible

location. It is a greedy, but therefore fast, operator. 

3. Perturbed sequential best insertion 

The perturbed sequential best insertion operator diversifies the

sequential best insertion operator to break out of potential local

optima. It randomly selects a customer from the customer pool

and inserts it at its y -th best location, where y is a random in-

teger between 0 and min {3, number of feasible insertion loca-

tions}. 

We have also experimented with two more calculation-

ntensive repair operators, both originating from Ropke and

isinger (2006a) . These are the best insertion operator , which in-

erts the overall best customer and recalculates the costs for the

emaining customers after each insertion, and regret insertion op-

rator , which inserts the customer with largest difference between

ts best and second best insertion location and recalculates regret

alues for the remaining customers after each insertion. However,
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nclusion of these operators did not improve the solution qual-

ty while calculation times increased significantly, so we excluded

hem from our final metaheuristic. 

.4. Local search 

When a new best solution is found or when the destroy and

epair operator weights are reset, a local search procedure is per-

ormed to try and improve the current solution. The following five

perators, applied in this order, are used: reinsertion, exchange, in-

ra 2-opt, inter 2-opt and inter 3-opt . The reinsertion operator finds

he best reinsertion of a single customer, and the exchange opera-

or performs the best exchange of two customers. The intra 2-opt

perator performs the best possible 2-opt move within a route,

hereas inter 2-opt performs the best 2-opt move between two

outes. Finally, the inter 3-opt operator removes a block of two

r more successive customers and inserts it at its best position

n a different route. Whenever an operator finds an improvement

nd changes the solution, the process restarts by applying reinser-

ion again. The process continues until no improvement can be

ound. An outline of the local search procedure is presented in

lgorithm 3 . 

lgorithm 3 Outline of local search procedure. 

1: for k in 1 : 5 do 

2: improve ← true 

3: while improve do 

4: improve ← false 

5: Apply operator k to solution 

6: if improvement found then 

7: k ← 1 

8: improve = true 

9: end if 

10: end while 

11: end for 

12: return (improved) solution 

.5. Acceptance decision 

A new solution s ′ is accepted based on a simulated annealing

ecision rule. If the new solution is better than the previous one

 s ), it is always accepted. Otherwise we accept it with probability 

 ( accept s ′ ) = exp 

{
− f (s ′ ) − f (s ) 

T 

}
, (12) 

here T is the temperature at the current iteration. The starting

emperature is determined at the start of the metaheuristic, and it

s decreased in every iteration by multiplying the temperature of

he previous iteration with the cooling rate γ ∈ (0, 1). 

.6. Updating operator weights 

The updating procedure is based on the work of Ropke and

isinger (2006a) . In order to update the weights of the destroy

nd repair operators, their performance is determined by means

f three measures: (i) a new best solution is found, (ii) the cur-

ent solution is improved, yet the global best remains the same,

nd (iii) the solution is accepted as the new one without improv-

ng its objective. Each of these three events leads to increasing the

eight of both the destroy and repair operator used in the cur-

ent iteration by a factor σ i , i = 1 , 2 , 3 . Since we cannot differen-

iate the effect of the destroy and repair operators in one itera-

ion, both are updated with the same amount. If none of the three
cenarios occurs, the weights remain the same. After a predeter-

ined number of iterations, the weights are reset to their initial

alues since different phases of the search may require different

perators. Ropke and Pisinger (2006a) reset the operator weights

t the start of a new segment to values which depend on the per-

ormance in the previous segment. However, we found that reset-

ing the weights to the original values results in equally good so-

utions. 

. Handling policies 

To solve the handling sub-problem, we adopt the mixed pol-

cy of Battarra et al. (2010) , in which decisions on either placing

ickup items at the rear or at the front of the vehicle are pos-

ible. Erdo ̌gan et al. (2012) extensively studied the handling sub-

roblem. The main difficulty of the handling policy is to decide

hen to place the pickup items of a customer at the rear of the

ehicle, and when to place all pickup items at the front of the ve-

icle so that they never obstruct future deliveries. This problem is

odeled as a dynamic program (DP) in Erdo ̌gan et al. (2012) and

t gives the optimal choices for any given route in O ( n 2 ) time. This

P policy is one of the policies we use to calculate handling costs. 

Due to the time complexity of the DP policy,

rdo ̌gan et al. (2012) also propose a linear-time heuristic to

olve the handling sub-problem. When designing a heuristic for

he mixed policy, the objective is to determine a threshold which

riggers the placement of all pickup items at the front of the

ehicle. If this threshold is not triggered, the pickup items are

laced at the rear. In their heuristic, Erdo ̌gan et al. (2012) experi-

ented with four different thresholds, showing the best one was

he average of all pickup items of the remaining customers in the

oute. If the number of pickup items onboard at the rear of the

ehicle exceeds this threshold, all pickup items are placed at the

ront of the vehicle. The authors conclude that using this heuristic

educes computation time substantially at the cost of only slightly

orse solutions. This linear-time heuristic policy is also included

ere for comparisons. 

Next, we report on some useful properties of the handling sub-

roblem to propose two new thresholds based on bounds on the

ptimal solution. These two newly introduced methods are called

yopic handling policies. The performance of our myopic handling

olicies is studied in Sections 6.4 and 6.5 . We first introduce new

otation before we propose the thresholds. 

Let a route with n ≤ | V c | customers (depot not included) be

enoted by a permutation φ( · ) of the location indices, such

hat φ( k ) is the index of the k -th customer on the route for k =
 1 , . . . , n } . We consider the decision at customer k whether or not

o place the pickup items at the front of the vehicle, given han-

ling decisions at all customers φ( l ) for l < k . Consistent with our

otation in Section 2.1 , we use s φ( k ) to represent the handling de-

isions, where s φ(k ) = 1 if the pickup items from customer φ( k )

nd the other pickup items that were in the rear of the vehicle

re placed at the front of the vehicle when visiting customer φ( k ),

nd s φ(k ) = 0 if they are placed at the rear. 

.1. Upper bound and myopic policy 1 

We show that there exist situations in which it is always op-

imal to place the pickup items at the front of the vehicle in

roposition 1 . 

roposition 1. Given handling decisions s φ(1) , . . . , s φ(k −1) ,

t customer φ( k ), it is always optimal to place p φ( k ) and
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Table 1 

Computational results for the VRPSPD benchmark instances of Dethloff (2001) . 

Instance N BKS ALNS: best Gap (%) ALNS: average Gap (%) Time (s) 

SCA3-0 50 635.62 636.06 0.07 639.20 0.56 7.6 

SCA3-1 50 697.84 697.84 0.00 697.84 0.00 7.7 

SCA3-2 50 659.34 659.34 0.00 660.20 0.13 7.9 

SCA3-3 50 680.04 680.04 0.00 680.27 0.03 8.0 

SCA3-4 50 690.50 690.50 0.00 690.50 0.00 8.1 

SCA3-5 50 659.91 659.91 0.00 661.59 0.25 8.2 

SCA3-6 50 651.09 651.09 0.00 651.18 0.01 8.5 

SCA3-7 50 659.17 666.15 1.05 667.69 1.28 8.7 

SCA3-8 50 719.48 719.48 0.00 719.48 0.00 8.8 

SCA3-9 50 681.00 681.00 0.00 681.00 0.00 8.9 

SCA8-0 50 961.50 961.50 0.00 965.97 0.46 7.4 

SCA8-1 50 1049.65 1050.38 0.07 1062.05 1.17 7.6 

SCA8-2 50 1039.64 1047.95 0.79 1050.67 1.05 7.7 

SCA8-3 50 983.34 983.34 0.00 1004.03 2.06 8.0 

SCA8-4 50 1065.49 1067.55 0.19 1068.26 0.26 8.1 

SCA8-5 50 1027.08 1040.08 1.25 1050.65 2.24 8.3 

SCA8-6 50 971.82 972.49 0.07 974.60 0.29 8.4 

SCA8-7 50 1051.28 1063.22 1.12 1066.94 1.47 8.4 

SCA8-8 50 1071.18 1071.18 0.00 1072.86 0.16 8.4 

SCA8-9 50 1060.50 1060.50 0.00 1066.47 0.56 8.5 

CON3-0 50 616.52 616.52 0.00 618.21 0.27 8.1 

CON3-1 50 554.47 554.47 0.00 555.55 0.19 8.2 

CON3-2 50 518.00 521.38 0.65 521.38 0.65 8.8 

CON3-3 50 591.19 591.19 0.00 591.19 0.00 8.9 

CON3-4 50 588.79 588.79 0.00 590.85 0.35 9.3 

CON3-5 50 563.70 563.70 0.00 564.17 0.08 9.3 

CON3-6 50 499.05 499.05 0.00 501.55 0.50 9.4 

CON3-7 50 576.48 576.48 0.00 577.29 0.14 9.5 

CON3-8 50 523.05 523.05 0.00 523.48 0.08 9.7 

CON3-9 50 578.25 578.31 0.01 584.11 1.00 9.9 

CON8-0 50 857.17 857.17 0.00 860.50 0.39 7.7 

CON8-1 50 740.85 750.38 1.27 752.75 1.58 8.2 

CON8-2 50 712.89 712.89 0.00 713.64 0.10 8.3 

CON8-3 50 811.07 821.26 1.24 821.66 1.29 8.3 

CON8-4 50 772.25 772.25 0.00 777.31 0.65 8.4 

CON8-5 50 754.88 754.88 0.00 758.28 0.45 8.5 

CON8-6 50 678.92 681.38 0.36 691.02 1.75 8.5 

CON8-7 50 811.96 814.79 0.35 814.79 0.35 8.5 

CON8-8 50 767.53 767.53 0.00 775.83 1.07 8.7 

CON8-9 50 809.00 809.00 0.00 811.12 0.26 8.7 

Average 758.54 760.35 0.21 763.40 0.58 8.4 
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t  

t

P  
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h

 

P  

φ  

k  

d  
∑ k −1 
l=1 

(∏ k −1 
m = l 

(
1 − s φ(m ) 

)
p φ(l) 

)
at the front of the vehicle if 

h p 

[ 

p φ(k ) + 

k −1 ∑ 

l=1 

( 

k −1 ∏ 

m = l 

(
1 − s φ(m ) 

)
p φ(l) 

) ] 

> h d 

n ∑ 

l= k +1 

d φ(l) . (13)

Proof. Assume a route with n ≥ 2 customers, and that cus-

tomer φ( k ) is not the last customer in the route. Let han-

dling decisions s φ(1) , . . . , s φ(k −1) be given. There are two op-

tions. Option 1 is to place p φ( k ) at the rear of the vehicle with

cost h p 
∑ k −1 

l=1 

(
( 
∏ k −1 

m = l 
(
1 − s φ(m ) 

)
p φ(l) 

)
at customer φ( k ) and cost

h p 

(
p φ(k ) + 

∑ k −1 
l=1 

(∏ k −1 
m = l 

(
1 − s φ(m ) 

)
p φ(l) 

))
at customer φ(k + 1) .

Option 2 is to place p φ( k ) and 

∑ k −1 
l=1 

(∏ k −1 
m = l 

(
1 − s φ(m ) 

)
p φ(l) 

)
at the

front of the vehicle with cost h p 
∑ k −1 

l=1 

(∏ k −1 
m = l 

(
1 − s φ(m ) 

)
p φ(l) 

)
+

h d 
∑ n 

l= k +1 d φ(l) at customer φ( k ) and cost 0 at customer φ(k + 1) .

Inequality (13) follows from this. It can then be seen that plac-

ing p φ( k ) , and thus also 
∑ k −1 

l=1 

(∏ k −1 
m = l 

(
1 − s φ(m ) 

)
p φ(l) 

)
, at the front

of the vehicle is always optimal if (13) holds. That is, given han-

dling decisions at all customers visited prior to arriving at cus-

tomer φ( k ), it is optimal to place the pickup items at the front

of the vehicle if the costs of handling the number of pickup items

at the rear of the vehicle plus the pickup items of customer φ( k ),
xceed the costs of handling the number of items that still need to

e delivered. �

Based on Proposition 1 , we introduce myopic policy 1 . Under

yopic policy 1, the pickup items at the rear of the vehicle and the

ickup items of customer φ( k ) are placed at the front of the vehi-

le if and only if inequality (13) holds. Otherwise, they are placed

t the rear. 

.2. Lower bound and myopic policy 2 

Similar as in Section 5.1 , and using the same notation, we show

hat there exist situations in which it is always optimal to place

he pickup items at the rear of the vehicle in Proposition 2 . 

roposition 2. Given handling decisions s φ(1) , . . . , s φ(k −1) , at cus-

omer φ( k ), it is always optimal to place p φ( k ) at the rear of the vehi-

le if 

 p (n − k ) 

[ 

p φ(k ) + 

k −1 ∑ 

l=1 

( 

k −1 ∏ 

m = l 

(
1 − s φ(m ) 

)
p φ(l) 

) ] 

< h d 

n ∑ 

l= k +1 

d φ(l) . 

(14)

roof. Assume a route with n ≥ 2 customers, that customer

( k ) is not the last customer in the route, and that p φ( l ) ,

 < l ≤ n are placed at the rear of the vehicle. Let handling

ecisions s φ(1) , . . . , s φ(k −1) be given. There are two options.
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Table 2 

Computational results for the VRPSPD benchmark instances of Salhi and Nagy (1999) . 

CMT N BKS ALNS: best Gap (%) ALNS: average Gap (%) Time (s) 

1X 50 470 468 −0.43 469.2 −0.16 6.2 

1Y 50 459 459 0.00 459.0 0.00 6.3 

2X 75 685 677 −1.18 687.5 0.36 16.8 

2Y 75 651 651 0.00 653.8 0.43 16.9 

3X 100 714 709 −0.71 712.7 −0.18 35.8 

3Y 100 705 702 −0.43 708.6 0.51 34.3 

4X 150 862 853 −1.06 863.0 0.12 118.5 

4Y 150 831 821 −1.22 824.6 −0.77 111.1 

5X 199 1063 1039 −2.31 1052.7 −0.98 276.7 

5Y 199 982 985 0.30 997.1 1.51 243.7 

11X 120 874 871 −0.34 895.4 2.39 79.8 

11Y 120 826 818 −0.98 822.7 −0.40 84.1 

12X 100 672 670 −0.30 675.8 0.57 37.5 

12Y 100 632 629 −0.48 639.9 1.23 31.1 

Average 744.71 739.43 −0.65 747.30 0.33 78.5 

Table 3 

Computational results for the VRPDPD benchmark instances of Dethloff (2001) . 

CMT N BKS ALNS: best Gap (%) ALNS: average Gap (%) Time (s) 

SCA3-0 50 635.62 636.06 0.07 639.20 0.56 30.2 

SCA3-1 50 697.84 697.84 0.00 697.84 0.00 32.1 

SCA3-2 50 659.34 659.34 0.00 660.20 0.13 31.9 

SCA3-3 50 680.04 680.04 0.00 680.27 0.03 32.6 

SCA3-4 50 690.50 690.50 0.00 690.50 0.00 31.1 

SCA3-5 50 659.91 659.91 0.00 661.35 0.22 32.7 

SCA3-6 50 651.09 651.09 0.00 651.18 0.01 30.8 

SCA3-7 50 659.17 666.15 1.05 667.69 1.28 30.9 

SCA3-8 50 719.48 719.48 0.00 719.48 0.00 33.0 

SCA3-9 50 681.00 681.00 0.00 681.00 0.00 31.9 

SCA8-0 50 961.50 961.50 0.00 965.97 0.46 28.2 

SCA8-1 50 1049.65 1050.38 0.07 1061.79 1.14 27.4 

SCA8-2 50 1039.64 1047.95 0.79 1050.16 1.00 27.7 

SCA8-3 50 979.13 983.34 0.43 1003.90 2.47 27.3 

SCA8-4 50 1065.49 1065.81 0.03 1067.90 0.23 26.9 

SCA8-5 50 1027.08 1036.57 0.92 1046.31 1.84 27.7 

SCA8-6 50 969.50 970.97 0.15 973.89 0.45 27.4 

SCA8-7 50 1051.28 1060.45 0.86 1066.34 1.41 27.5 

SCA8-8 50 1071.18 1071.18 0.00 1072.86 0.16 27.9 

SCA8-9 50 1057.26 1058.07 0.08 1065.66 0.79 27.0 

CON3-0 50 616.52 616.52 0.00 617.90 0.22 32.6 

CON3-1 50 554.47 554.47 0.00 555.55 0.19 32.6 

CON3-2 50 518.00 521.38 0.65 521.38 0.65 31.6 

CON3-3 50 591.19 591.19 0.00 591.19 0.00 31.5 

CON3-4 50 588.79 588.79 0.00 590.85 0.35 31.1 

CON3-5 50 563.70 563.70 0.00 563.93 0.04 31.0 

CON3-6 50 499.05 499.05 0.00 501.49 0.49 32.8 

CON3-7 50 576.48 576.48 0.00 577.29 0.14 31.3 

CON3-8 50 523.05 523.05 0.00 523.48 0.08 32.1 

CON3-9 50 578.25 578.31 0.01 584.11 1.00 29.9 

CON8-0 50 857.12 857.12 0.00 860.49 0.39 27.2 

CON8-1 50 739.44 750.38 1.46 752.57 1.75 27.9 

CON8-2 50 706.51 706.51 0.00 710.18 0.52 29.5 

CON8-3 50 811.07 821.26 1.24 821.63 1.28 28.4 

CON8-4 50 771.30 771.30 0.00 776.54 0.67 28.3 

CON8-5 50 754.88 754.88 0.00 758.00 0.41 28.1 

CON8-6 50 678.92 681.38 0.36 689.77 1.57 28.6 

CON8-7 50 811.96 814.79 0.35 814.79 0.35 27.9 

CON8-8 50 766.99 767.53 0.07 775.83 1.14 28.6 

CON8-9 50 797.69 804.79 0.88 809.80 1.50 28.5 

Average 757.78 759.76 0.24 763.01 0.62 29.8 

O  

h

f  ∑
 

h  

r

h

ption 1 is to place p φ( k ) at the rear of the vehicle at cost

 p (n − k ) 
∑ k −1 

l=1 

(∏ k −1 
m = l 

(
1 − s φ(m ) 

)
p φ(l) 

)
+ h p 

∑ n −1 
m = k (n − m ) p φ(m ) 

or the remainder of the route. Option 2 is to place p φ( k ) and
 k −1 
l=1 

(∏ k −1 
m = l 

(
1 − s φ(m ) 

)
p φ(l) 

)
at the front of the vehicle at cost

 d 

∑ n 
l= k +1 d φ(l) + h p 

∑ n −1 
m = k +1 

(n − m ) p φ(m ) for the remainder of the
oute. It follows that if 

 p 

( 

(n − k ) 
k −1 ∑ 

l=1 

( 

k −1 ∏ 

m = l 

(
1 − s φ(m ) 

)
p φ(l) 

) 

+ 

n −1 ∑ 

m = k 
(n − m ) p φ(m ) 

) 

< h d 

n ∑ 

l= k +1 

d φ(l) + h p 

n −1 ∑ 

m = k +1 

(n − m ) p φ(m ) ⇐⇒ 
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Table 4 

Computational results for the VRPDPD benchmark instances of Salhi and Nagy (1999) . 

CMT N BKS ALNS: best Gap (%) ALNS: average Gap (%) Time (s) 

1X 50 470 468 −0.43 469.2 −0.16 17.8 

1Y 50 459 459 0.00 459.0 0.00 17.7 

2X 75 684 676 −1.18 682.5 −0.22 48.7 

2Y 75 650 650 0.00 653.2 0.49 48.1 

3X 100 713 703 −1.42 706.3 −0.94 102.4 

3Y 100 705 698 −1.00 704.1 −0.12 103.7 

4X 150 862 847 −1.77 853.9 −0.94 302.7 

4Y 150 831 817 −1.71 819.0 −1.47 282.2 

5X 199 1062 1025 −3.61 1038.0 −2.31 740.9 

5Y 199 982 972 −1.03 991.2 0.93 627.8 

11X 120 873 868 −0.58 892.8 2.22 231.9 

11Y 120 826 818 −0.98 819.7 −0.77 229.1 

12X 100 672 667 −0.75 674.0 0.30 103.9 

12Y 100 632 629 −0.48 638.8 1.06 93.9 

Average 737.21 735.50 −0.19 743.00 0.74 210.8 

Table 5 

Computational results for the VRPMPD benchmark instances of Salhi and Nagy (1999) . 

CMT N BKS ALNS: best Gap (%) ALNS: average Gap (%) Time (s) 

1H 50 465 462 −0.65 462.1 −0.62 6.4 

1Q 50 490 488 −0.41 488.0 −0.41 6.4 

1T 50 520 516 −0.78 516.0 −0.78 5.8 

2H 75 663 658 −0.76 659.8 −0.48 17.0 

2Q 75 733 729 −0.55 736.3 0.45 17.0 

2T 75 783 783 0.00 786.6 0.46 16.6 

3H 100 701 690 −1.59 704.1 0.45 32.4 

3Q 100 747 736 −1.49 736.8 −1.38 37.2 

3T 100 798 790 −1.01 795.8 −0.28 33.1 

4H 150 829 824 −0.61 829.4 0.05 104.4 

4Q 150 918 911 −0.77 919.3 0.15 115.3 

4T 150 1000 984 −1.63 993.7 −0.63 133.2 

5H 199 983 982 −0.10 1008.8 2.56 251.9 

5Q 199 1119 1130 0.97 1143.1 2.11 283.2 

5T 199 1227 1234 0.57 1250.7 1.89 275.1 

11H 120 818 814 −0.49 831.1 1.58 89.1 

11Q 120 939 932 −0.75 938.2 −0.08 74.3 

11T 120 1000 1031 3.01 1075.3 7.01 71.9 

12H 100 629 635 0.94 650.7 3.34 33.8 

12Q 100 729 729 0.00 737.6 1.17 35.6 

12T 100 788 789 0.13 804.9 2.10 38.9 

Average 744.71 739.43 −0.65 747.30 0.33 78.5 
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t  
h p 

( 

(n − k ) 
k −1 ∑ 

l=1 

( 

k −1 ∏ 

m = l 

(
1 − s φ(m ) 

)
p φ(l) 

) 

+ (n − k ) p φ(k ) 

) 

< h d 

n ∑ 

l= k +1 

d φ(l) ⇐⇒ 

h p (n − k ) 

[ 

p φ(k ) + 

k −1 ∑ 

l=1 

( 

k −1 ∏ 

m = l 

(
1 − s φ(m ) 

)
p φ(l) 

) ] 

< h d 

n ∑ 

l= k +1 

d φ(l) 

holds, it is always optimal to place p φ( k ) at the rear of the vehicle.

That is, given handling decisions at all customers visited prior to

arriving at customer φ( k ), it is optimal to place the pickup items

of customer φ( k ) at the rear of the vehicle if the costs of placing

the pickup items at the front of the vehicle exceed the costs of

handling the pickup items located at the rear of the vehicle at all

subsequent stops. �

Based on Proposition 2 , we introduce myopic policy 2 . Under

myopic policy 2, the pickup items of customer φ( k ) are placed at

the rear of the vehicle if and only if inequality (14) holds. Other-

wise, they are placed at the front. 

We note that the pickup items of the last customer in any route

never require additional operations. Additionally, at the penulti-

mate customer in any route, inequalities (13) and (14) give the

same decision, indicating that this is the optimal decision. 
. Computational results 

The ALNS metaheuristic was programmed in C ++ and the math-

matical model of Section 2.1 was implemented in C ++ and solved

ith CPLEX 12.7.1. Since CPLEX can handle some non-linear func-

ions, such as ours, we did not have to linearize the objective func-

ions and constraints (7) . That would be simple using the tech-

ique of Glover and Woolsey (1974) . All our experiments were

un on a 2.4 GHz Intel Xeon Gold 6148 processor with a limit

f 16 GB of memory per run. We provide details on the param-

ter configuration in Section 6.1 . We test our ALNS metaheuris-

ic on well-known benchmark instances of the VRPSPD, VRPDPD,

RPMPD, and TSPPD-H, which are special cases and related prob-

ems of the VRPSPD-H, in Section 6.2 . A comparison with optimal

olutions for the VRPSPD-H, VRPDPD-H, and VRPMPD-H is made

n Section 6.3 . We compare the performance of the heuristic han-

ling policy and the two myopic policies for these same problems

n Section 6.4 . Finally, we investigate the influence of the number

f available vehicles on the trade-off between routing and handling

osts in Section 6.5 . 

.1. Tuning 

This section provides details about the parameter settings of

he proposed ALNS metaheuristic. For the purpose of tuning the
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Table 6 

Computational results for the TSPPD-H instances of Erdo ̌gan et al. (2012) . 

N Id. Erdo ̌gan et al. (2012) ALNS with heuristic policy ALNS with DP policy 

DP Heuristic Gap (%) Best Average Gap (%) Time ( s ) Best Average Gap (%) Time ( s ) 

20 1 633.0 634.0 0.16 633.0 633.0 0.00 3 633.0 633.0 0.00 7 

2 584.0 587.0 0.51 584.0 584.0 0.00 3 584.0 584.0 0.00 7 

3 573.0 590.0 2.88 573.0 575.8 0.00 3 573.0 573.0 0.00 7 

4 706.0 712.0 0.84 706.0 707.3 0.00 3 706.0 706.0 0.00 7 

5 501.0 507.0 1.18 501.0 501.0 0.00 3 501.0 501.0 0.00 7 

6 578.0 578.0 0.00 578.0 578.0 0.00 3 578.0 578.0 0.00 7 

7 612.0 619.0 1.13 612.0 612.0 0.00 3 612.0 612.0 0.00 8 

8 567.0 571.0 0.70 567.0 567.0 0.00 3 567.0 567.0 0.00 7 

9 604.0 625.0 3.36 604.0 605.6 0.00 3 604.0 604.8 0.00 18 

10 574.0 588.0 2.38 565.0 565.0 -1.59 3 565.0 570.1 −1.59 18 

40 1 909.5 915.5 0.66 909.5 910.7 0.00 18 913.5 913.5 0.44 61 

2 885.0 902.0 1.88 883.0 884.3 -0.23 18 883.0 890.2 -0.23 63 

3 815.5 864.0 5.61 815.5 820.5 0.00 18 815.5 816.6 0.00 61 

4 898.0 919.5 2.34 898.0 898.6 0.00 18 898.0 898.3 0.00 65 

5 743.5 751.5 1.06 743.5 744.3 0.00 18 745.0 745.0 0.20 63 

6 901.0 903.0 0.22 883.5 884.3 -1.98 18 883.5 885.7 -1.98 64 

7 798.5 833.5 4.20 798.5 800.1 0.00 18 798.5 802.9 0.00 65 

8 795.0 811.0 1.97 795.0 795.2 0.00 18 795.0 800.1 0.00 64 

9 876.5 895.5 2.12 876.5 879.5 0.00 18 876.5 878.9 0.00 64 

10 866.0 901.5 3.94 862.5 862.8 −0.41 18 862.5 862.5 −0.41 63 

60 1 1060.1 1063.8 0.34 1051.0 1053.2 −0.87 53 1051.0 1054.0 −0.87 263 

2 1051.1 1060.9 0.92 1044.3 1049.4 −0.65 55 1047.3 1048.7 −0.36 266 

3 990.4 1012.4 2.18 993.7 993.7 0.33 54 993.7 1010.5 0.33 261 

4 1061.4 1086.3 2.29 1066.0 1073.4 0.43 54 1066.0 1068.7 0.43 268 

5 986.9 1033.7 4.52 989.7 991.3 0.28 55 989.7 992.5 0.28 267 

6 1086.3 1131.3 3.98 1073.3 1079.8 −1.21 55 1067.7 1072.6 −1.75 268 

7 1005.4 1018.0 1.23 1007.3 1020.4 0.19 48 1007.3 1007.3 0.19 267 

8 1027.2 1059.5 3.05 1031.0 1034.6 0.37 54 1031.0 1033.5 0.37 264 

9 1001.4 1013.9 1.23 1004.3 1004.3 0.29 54 1004.3 1004.3 0.29 264 

10 1062.1 1081.7 1.81 1048.7 1049.3 −1.28 54 1048.7 1062.7 −1.28 274 

120 1 1472.5 1526.5 3.54 1436.7 1448.9 −2.49 309 1442.6 1442.6 −2.07 3569 

2 1482.3 1540.2 3.76 1455.5 1468.4 −1.84 312 1459.6 1459.6 −1.56 3517 

3 1510.0 1550.1 2.58 1465.5 1478.9 −3.04 316 1483.9 1483.9 −1.76 3561 

4 1563.5 1628.8 4.01 1543.7 1549.3 −1.28 361 1549.5 1549.5 −0.90 3550 

5 1457.0 1543.0 5.57 1430.7 1454.7 −1.84 360 1437.5 1437.5 −1.36 3536 

6 1546.2 1622.3 4.69 1528.0 1538.3 −1.19 365 1540.7 1540.7 −0.36 3599 

7 1557.3 1610.9 3.33 1517.7 1526.3 −2.61 403 1520.0 1520.0 −2.45 3578 

8 1524.1 1599.6 4.72 1504.8 1518.0 −1.28 391 1517.2 1517.2 −0.45 3572 

9 1547.9 1620.3 4.46 1530.7 1535.6 −1.13 403 1528.9 1528.9 −1.25 3613 

10 1573.9 1622.4 2.99 1540.8 1550.0 −2.14 396 1548.7 1548.7 −1.63 3613 

140 1 1575.2 1645.6 4.28 1589.0 1599.1 0.87 630 1586.6 1586.6 0.72 6655 

2 1605.8 1670.8 3.89 1584.9 1601.5 −1.32 631 1596.8 1596.8 −0.56 6808 

3 1583.7 1634.4 3.10 1571.3 1587.3 −0.79 628 1572.8 1572.8 −0.69 6760 

4 1712.7 1760.6 2.72 1682.7 1700.4 −1.78 634 1694.1 1694.1 −1.09 6721 

5 1547.4 1610.5 3.92 1549.1 1563.2 0.11 621 1542.9 1542.9 −0.29 6712 

6 1662.3 1741.2 4.53 1631.3 1656.8 −1.90 1557 1659.3 1659.3 −0.18 6804 

7 1664.4 1691.4 1.59 1621.4 1638.4 −2.65 1549 1633.9 1633.9 −1.87 6818 

8 1646.1 1698.1 3.06 1611.0 1637.2 −2.18 624 1628.7 1628.7 −1.06 6808 

9 1629.1 1700.0 4.17 1645.3 1653.3 0.98 637 1643.5 1643.5 0.88 6932 

10 1693.8 1717.3 1.37 1671.9 1686.0 −1.31 623 1683.1 1683.1 −0.64 6832 

160 1 1741.7 1836.6 5.17 1712.6 1730.0 −1.70 971 1713.2 1713.2 −1.67 11,383 

2 1773.6 1820.5 2.57 1725.7 1746.2 −2.77 974 1730.3 1730.3 −2.50 11,570 

3 1690.9 1748.4 3.29 1689.7 1712.8 −0.07 933 1684.3 1684.3 −0.39 11,287 

4 1858.1 1962.6 5.32 1837.5 1848.7 −1.12 946 1842.8 1842.8 −0.83 11,540 

5 1667.7 1756.7 5.07 1658.0 1677.0 −0.59 945 1654.1 1654.1 −0.82 11,479 

6 1813.0 1844.5 1.71 1726.7 1745.6 −4.99 948 1738.6 1738.6 −4.28 11,698 

7 1774.2 1835.4 3.33 1742.4 1758.3 −1.83 957 1753.7 1753.7 −1.17 11,628 

8 1770.7 1820.5 2.73 1749.2 1766.9 −1.23 931 1762.4 1762.4 −0.47 11,528 

9 1800.9 1893.5 4.89 1793.2 1804.3 −0.43 952 1786.7 1786.7 −0.79 11,772 

10 1764.4 1809.4 2.49 1757.6 1779.3 −0.38 939 1756.3 1756.3 −0.46 11,639 

180 1 1854.2 1936.0 4.23 1818.9 1845.5 −1.94 1347 1833.8 1833.8 −1.11 17,775 

2 1863.3 1927.5 3.33 1838.9 1860.2 −1.33 1351 1851.4 1851.4 −0.64 18,010 

3 1858.4 1889.9 1.66 1830.9 1860.3 −1.50 1331 1822.1 1822.1 −1.99 17,999 

4 1988.2 2059.5 3.46 1942.8 1957.6 −2.34 1363 1943.9 1943.9 −2.28 18,251 

5 1795.8 1853.7 3.12 1785.4 1804.1 −0.58 1353 1785.2 1785.2 −0.60 18,153 

6 1817.5 1873.2 2.97 1820.4 1851.4 0.16 1343 1826.4 1826.4 0.49 18,108 

7 1868.0 1929.6 3.19 1848.3 1860.3 −1.07 1358 1846.8 1846.8 −1.15 18,194 

8 1883.4 1930.5 2.44 1862.2 1884.1 −1.14 1326 1865.3 1865.3 −0.97 18,167 

9 1931.4 2004.6 3.65 1935.0 1945.3 0.18 1369 1917.5 1917.5 −0.73 18,385 

10 1852.5 1896.8 2.34 1845.9 1878.4 −0.36 1349 1857.6 1857.6 0.27 18,115 

( continued on next page ) 
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Table 6 ( continued ) 

N Id. Erdo ̌gan et al. (2012) ALNS with heuristic policy ALNS with DP policy 

DP Heuristic Gap (%) Best Average Gap (%) Time ( s ) Best Average Gap (%) Time ( s ) 

200 1 1976.3 2060.6 4.09 1928.6 1961.9 −2.47 1854 1934.4 1934.4 −2.16 27,134 

2 1982.0 2074.9 4.48 1975.2 1994.8 −0.34 1838 1964.7 1964.7 −0.88 27,031 

3 1976.7 2037.1 2.96 1958.8 1993.4 −0.91 1844 1954.3 1954.3 −1.15 26,724 

4 2119.5 2211.9 4.18 2061.5 2079.9 −2.81 1883 2041.4 2041.4 −3.83 27,354 

5 1905.6 1974.2 3.47 1902.1 1912.9 −0.18 1854 1890.4 1890.4 −0.80 27,247 

6 2011.1 2042.3 1.53 1957.6 1978.1 −2.73 1842 1948.3 1948.3 −3.23 27,467 

7 1983.0 2046.5 3.10 1930.4 1954.3 −2.72 1854 1931.9 1931.9 −2.65 27,394 

8 2000.3 2096.3 4.58 1995.8 2029.9 −0.23 1833 1995.1 1995.1 −0.26 26,944 

9 2052.7 2131.6 3.70 2013.7 2048.4 −1.94 1872 2016.3 2016.3 −1.80 27,735 

10 1977.9 2009.4 1.57 1927.3 1950.2 −2.63 1845 1933.0 1933.0 −2.32 27,420 

Average 1408.3 1454.0 2.90 1392.3 1404.6 −0 . 96 675 1394.4 1395.4 −0 . 82 8492 

Table 7 

Comparison of ALNS with optimal results on small instances of Dethloff (2001) for the VRPSPD-H. 

Instance N h MIP ALNS: best ALNS: average Time (s) 

Objective Time (s) Objective Gap (%) Objective Gap (%) 

SCA3-0 5 2 317.74 0 317.74 0.00 317.74 0.00 0.32 

5 4 322.08 0 322.08 0.00 322.08 0.00 0.32 

10 1 467.77 29 467.77 0.00 467.77 0.00 0.69 

10 2 560.03 30 560.03 0.00 560.03 0.00 0.70 

15 0.67 664.25 ∗ 15.3% 664.25 0.00 664.25 0.00 1.57 

15 1.33 905.09 ∗ 23.0% 905.09 0.00 905.09 0.00 1.57 

SCA8-1 5 2 384.12 0 384.12 0.00 384.12 0.00 0.32 

5 4 406.80 0 406.80 0.00 406.80 0.00 0.33 

10 1 598.17 84 598.17 0.00 598.17 0.00 0.70 

10 2 747.89 51 747.89 0.00 747.89 0.00 0.72 

15 0.67 726.14 17,901 726.14 0.00 726.14 0.00 1.53 

15 1.33 937.35 15,694 937.35 0.00 937.35 0.00 1.51 

CON3-0 5 2 291.80 0 291.80 0.00 291.80 0.00 0.32 

5 4 319.82 0 319.82 0.00 319.82 0.00 0.33 

10 1 667.94 47 667.94 0.00 667.94 0.00 0.72 

10 2 893.87 65 893.87 0.00 893.87 0.00 0.74 

15 0.67 907.26 ∗ 12.3% 907.26 0.00 907.26 0.00 1.49 

15 1.33 1296.79 ∗ 24.3% 1289.31 −0.58 1289.31 −0.58 1.52 

CON8-1 5 2 203.83 0 203.83 0.00 203.83 0.00 0.33 

5 4 218.31 0 218.31 0.00 218.31 0.00 0.33 

10 1 496.61 67 496.61 0.00 496.61 0.00 0.73 

10 2 694.64 61 694.64 0.00 694.64 0.00 0.74 

15 0.67 738.04 ∗ 8.9% 738.04 0.00 738.04 0.00 1.39 

15 1.33 1079.68 ∗ 19.7% 1079.68 0.00 1079.68 0.00 1.49 

Average 618.58 6817.88 618.27 −0 . 02 618.27 −0 . 02 0.85 

∗ indicates best integer solution for instances not solved to optimality. 
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parameters we generated new instances for the VRPSPD-H. First,

we created 80 new instances based on the 40 instances for the

VRPSPD of Dethloff (2001) by setting the handling cost parameters

equal to h = h d = h p = { 0 . 1 , 0 . 5 } . Additionally, we tested our algo-

rithm on the same 40 instances of Dethloff (2001) for the VRPSPD

and on instances for the TSPPD-H by Erdo ̌gan et al. (2012) . 

As a starting point for the parameter tuning, we used the val-

ues reported by Ropke and Pisinger (2006b) . The starting temper-

ature of the simulated annealing procedure is set such that, in the

first iteration, a solution with an objective up to 5% worse than

the current solution is accepted with probability 0.5, and the cool-

ing rate is set such that the temperature in the last iteration is

0.2 percent of the start temperature. The randomness parameter

p , used to randomize some of the destroy operators, is initialized

with value 3, and we remove q ∈ [0.1| V c |, 0.35| V c |] customers in

each iteration. The starting weights of the destroy and repair oper-

ators are set to 100, and the updating quantities are set to σ1 = 11 ,

σ2 = 3 and σ3 = 4 . We find that setting the maximum number of

iterations equal to 25,0 0 0 with weights being reset after every 100

iterations yielded good solutions compared to computation times.

We sequentially changed the values of these parameters without

finding significant improvements, which is in line with the con-
lusions of Ropke and Pisinger (2006b) and Veenstra et al. (2017) ,

ndicating that the algorithm is robust. 

Since the handling cost component significantly increases the

roblem complexity, evaluation of solutions, which requires solving

he handling sub-problem, is rather time consuming. Experiments

howed that the destroy operators are all relatively fast compared

o the repair operators. We forego a further extensive study on

hich operators to select since the adaptive mechanism increases

he weights of well-performing operators. 

.2. Benchmarks on special cases and related problems 

To test the quality of our metaheuristic when applied to spe-

ial cases, we use it to solve various instances for the VRPSPD, the

RPMPD, and the TSPPD-H. Our obtained results are then com-

ared to results from the literature to check the quality of our

etaheuristic. We note that a direct comparison of calculation

imes reported for other methods especially designed for the spe-

ial cases and our methods is not possible due to different com-

utational environments. However, we see that the magnitude of

he calculation times is similar even considering the generaliza-

ions we made in our ALNS to be able to solve the VRPSPD-H. 



R.P. Hornstra, A. Silva and K.J. Roodbergen et al. / Computers and Operations Research 115 (2020) 104858 13 

Table 8 

Comparison of ALNS with optimal results on small instances of Nagy and Salhi (2005) for the VRPSPD-H. 

Instance N h MIP ALNS: best ALNS: average Time (s) 

Objective Time (s) Objective Gap (%) Objective Gap (%) 

1X 5 2 130 0 130 0.00 130 0.00 0.32 

5 4 140 0 140 0.00 140 0.00 0.32 

10 1 231 28 231 0.00 231 0.00 0.73 

10 2 263 16 263 0.00 263 0.00 0.71 

15 0.67 292.33 688 292.33 0.00 292.33 0.00 1.77 

15 1.33 328 764 328 0.00 328 0.00 1.63 

1Y 5 2 128 0 128 0.00 128 0.00 0.32 

5 4 136 1 136 0.00 136 0.00 0.32 

10 1 242 45 242 0.00 242 0.00 0.72 

10 2 272 25 272 0.00 272 0.00 0.71 

15 0.67 304 4123 304 0.00 304 0.00 1.79 

15 1.33 336 1242 336 0.00 336 0.00 1.56 

2X 5 2 153 0 153 0.00 153 0.00 0.32 

5 4 159 0 159 0.00 159 0.00 0.33 

10 1 226 16 226 0.00 226 0.00 0.70 

10 2 257 10 257 0.00 257 0.00 0.70 

15 0.67 295 1121 295 0.00 295 0.00 1.56 

15 1.33 336.67 1526 336.67 0.00 336.67 0.00 1.48 

2Y 5 2 155 0 155 0.00 155 0.00 0.32 

5 4 159 0 159 0.00 159 0.00 0.33 

10 1 241 11 241 0.00 241 0.00 0.70 

10 2 269 8 269 0.00 269 0.00 0.69 

15 0.67 310 2066 310 0.00 310 0.00 1.60 

15 1.33 346.67 579 346.67 0.00 346.67 0.00 1.45 

3X 5 2 153 0 153 0.00 153 0.00 0.33 

5 4 171 0 171 0.00 171 0.00 0.33 

10 1 235 45 235 0.00 235 0.00 0.72 

10 2 263 32 263 0.00 263 0.00 0.71 

15 0.67 321 ∗ 3.4% 321 0.00 321.67 0.21 1.82 

15 1.33 362.33 14,081 362.33 0.00 362.33 0.00 1.62 

3Y 5 2 155 0 155 0.00 155 0.00 0.33 

5 4 175 0 175 0.00 175 0.00 0.33 

10 1 238 94 238 0.00 238 0.00 0.82 

10 2 264 33 264 0.00 264 0.00 0.71 

15 0.67 321 ∗ 3.9% 321 0.00 321 0.00 1.82 

15 1.33 362.33 10,505 362.33 0.00 362.33 0.00 1.55 

Average 242.51 2229.42 242.51 0.00 242.53 0.01 0.89 

∗ indicates best integer solution for instances not solved to optimality. 

Table 9 

Comparison of ALNS with optimal results on small instances of Dethloff (2001) for the VRPDPD-H. 

Instance N h MIP ALNS: best ALNS: average Time (s) 

Objective Time (s) Objective Gap (%) Objective Gap (%) 

SCA3-0 5 2 261.26 15 261.26 0.00 261.26 0.00 1.07 

5 4 265.54 19 265.54 0.00 265.54 0.00 1.07 

10 1 376.63 38.4% 369.79 −1.85 370.14 −1.75 5.56 

10 2 378.77 31.7% 370.66 −2.19 371.57 −1.94 4.57 

SCA8-1 5 2 341.66 12 341.66 0.00 347.54 1.69 1.29 

5 4 356.14 17 356.14 0.00 363.69 2.08 1.25 

10 1 431.52 36.7% 425.40 −1.44 433.42 0.44 3.99 

10 2 434.96 7550 434.96 0.00 445.18 2.3 4.02 

CON3-0 5 2 248.20 16 248.76 0.23 248.76 0.23 1.24 

5 4 248.20 14 248.20 0.00 250.79 1.03 1.25 

10 1 684.07 70.9% 525.97 −30.06 528.93 −29.33 5.66 

10 2 533.33 72.5% 533.33 0.00 551.10 3.22 7.40 

CON8-1 5 2 189.47 8 189.47 0.00 191.66 1.15 1.21 

5 4 189.47 6 189.47 0.00 189.97 0.27 1.21 

10 1 271.49 22.1% 271.49 0.00 271.52 0.01 3.39 

10 2 271.49 10.2% 271.49 0.00 276.04 1.65 3.40 

Average 197.75 10242.96 195.37 −0 . 94 196.09 −0 . 50 2.57 

∗ indicates best integer solution for instances not solved to optimality. 
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.2.1. Performance on the VRPSPD 

Two well-known sets of benchmark instances for the VRP-

PD without handling costs are solved. The 40 instances of

ethloff (2001) contain 50 customers each, divided into four dif-

erent configurations of 10 instances. The capacity is such that

he minimum number of vehicles required is either 3 or 8, and
ustomers are either scattered uniformly over a square area or

 fraction of the customers is clustered to resemble a more

rban area. Furthermore, 14 instances adopted from Salhi and

agy (1999) are solved. These instances range in size from 50 to

99 customers. An important remark on these instances is that

here is some confusion in the literature on how to adapt them
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Table 10 

Comparison of ALNS with optimal results on small instances of Nagy and Salhi (2005) for the VRPDPD-H. 

Instance N h MIP ALNS: best ALNS: average Time (s) 

Objective Time (s) Objective Gap (%) Objective Gap (%) 

1X 5 2 129 10 129 0.00 129 0.00 1.18 

5 4 133 8 133 0.00 133 0.00 1.03 

10 1 248 25.6% 233 -6.44 233 -6.44 3.75 

10 2 252 33.5% 251 -0.40 252.6 0.24 3.72 

1Y 5 2 128 7 128 0.00 128 0.00 1.04 

5 4 133 9 133 0.00 133 0.00 0.99 

10 1 255 24.7% 247 -3.24 247 -3.24 3.92 

10 2 271 45.3% 256 -5.86 256.8 -5.53 3.94 

2X 5 2 138 5 138 0.00 141.8 2.68 1.12 

5 4 138 5 138 0.00 139.7 1.22 1.10 

10 1 223 11.6% 222 -0.45 222 -0.45 3.37 

10 2 242 25.7% 242 0.00 243.4 0.58 3.48 

2Y 5 2 138 7 138 0.00 143.2 3.63 1.11 

5 4 138 4 138 0.00 139.4 1.00 1.10 

10 1 239 2.4% 239 0.00 239.6 0.25 3.37 

10 2 243 8055 243 0.00 243.2 0.08 5.87 

3X 5 2 159 39 159 0.00 159 0.00 1.30 

5 4 177 31 179 1.12 179.3 1.28 1.28 

10 1 246 23.8% 238 -3.36 238 -3.36 3.62 

10 2 265 30.7% 258 -2.71 258 -2.71 3.62 

3Y 5 2 161 31 161 0.00 161 0.00 1.31 

5 4 177 18 179 1.12 179 1.12 1.22 

10 1 243 27.7% 243 0.00 243.1 0.04 5.61 

10 2 270 38.9% 264 -2.27 264 -2.27 3.72 

Average 342.64 9928.56 331.47 −2 . 21 335.44 −1 . 19 2.97 

∗ indicates best integer solution for instances not solved to optimality. 
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to the VRPSPD, since they originally come from the classical VRP.

Some common divergencies in the literature are if values of pick-

ups and deliveries should be rounded and how to invert pick-

ups and deliveries to generate the Y version of the instances (see

Avci and Topaloglu (2015) ; Gajpal and Abad (2009) ; Kalayci and

Kaya (2016) ; Subramanian et al. (2013) ). Due to these divergences,

solutions for these instances are being incorrectly compared in the

literature. Since most studies do not detail how they adapted the

instances, it is hard to know which studies used the same pro-

cedures we do. We have then contacted the authors of the orig-

inal study that presented the instance set to clarify the original

methodology. The formula to generate the pickup and deliveries

is presented in the original study Salhi and Nagy (1999) . Dis-

tances, pickups and deliveries should be rounded to the nearest

integer. To generate the Y dataset, all customers with an even in-

dex (customers 2, 4, 6, etc.) should have their pickup and deliv-

ery values inverted. We note that all best known solutions (BKS)

for the instances of Dethloff (2001) are proven to be optimal in

Subramanian et al. (2013) . 

Table 1 reports the results on the 40 instances of

Dethloff (2001) . We solved each instance 10 times and report

the ALNS best found solution as well as the average objective

value over these 10 runs. Best known solutions are reported from

Subramanian et al. (2013) . Since we also provide the average solu-

tion value and not only the best, and considering that the variation

between these two values is very small, we follow the common

method from literature reporting the average time of all execu-

tions. See, e.g., the benchmarks of Gajpal and Abad (2009) and

Polat (2017) . Gaps are calculated as (x − x ∗) /x, where x is the

value of the objective function for the ALNS solution and x ∗ is the

value of the objective function for the BKS. The ALNS finds 26 out

of 40 best known solutions in at least one of the 10 runs, and on

average over all 40 instances the gap to the BKS is only 0.21%. The

results on the benchmark instances by Salhi and Nagy (1999) are

reported in Table 2 . We compare our results with those reported

in Polat (2017) since they are the ones whose procedure appears
 P  
ore similar to ours. Of the 14 instances, we find 11 BKS and our

ap is on average –0.65%, improving their solutions. 

.2.2. Performance on the VRPDPD 

The same instance sets used for the VRPSPD were tested for the

RPDPD. The problem was solved by the ALNS in such a way that

e start the solution from the VRPSPD solution, then we create the

ummy customers and run the ALNS again using the same param-

ters to search for improvements. Tables 3 and 4 show the results

or both instance sets. BKS are reported from Polat (2017) . Times

re reported as the sum of the time to solve the VRPSPD and to

un ALNS again with the dummy customers. On the first set, our

lgorithm finds 22 out of 40 optimal solutions, and on average the

ap with the BKS is 0.24%. The VRPDPD best solution found in this

ataset is better than the VRPSPD best solution ( Table 1 ) in nine

nstances. Our ALNS was able to improve the VRPSPD solution in

ix of these instances, finding the BKS for the VRPDPD in three of

hem. On the second set, the ALNS improves the best known so-

ution in 12 out of 14 instances, and it has an average gap to the

KS of –0.19%. The VRPDPD best solution found is better than the

RPSPD best solution in 10 instances, which attests the capacity of

ur method of improving solutions for the divisible version of the

roblem. 

.2.3. Performance on the VRPMPD 

We test the performance of the ALNS on instances for the

RPMPD derived from the CMT set of Salhi and Nagy (1999) .

his data set consists of 21 instances. For each VRPSPD instance

f type X, every 2nd, 4th and 10th customer is set to be a

ickup only customer while the others are set to be a delivery

nly. The new instances are labeled as H (half), Q (quarter) and

 (tenth), respectively. This dataset is solved by several studies

 Crispim and Brandão (2005) ; Gajpal and Abad (2009) ; Nagy and

alhi (2005) ; Ropke and Pisinger (2006b) ; Wassan et al. (2008) ).

n Table 5 , we show the results with BKS reported from Ropke and

isinger (2006b) . The ALNS improves BKS in 15 out of 21 instances,



R.P. Hornstra, A. Silva and K.J. Roodbergen et al. / Computers and Operations Research 115 (2020) 104858 15 

Table 11 

Comparison of ALNS with optimal results on small instances of Nagy and Salhi (2005) for the VRPMPD-H. 

Instance N h MIP ALNS: best ALNS: average Time (s) 

Objective Time (s) Objective Gap (%) Objective Gap (%) 

1H 5 2 120 0 120 0.00 120 0.00 0.33 

5 4 120 0 120 0.00 120 0.00 0.33 

10 1 220 17 220 0.00 223 1.35 0.92 

10 2 220 17 220 0.00 220 0.00 0.87 

15 0.67 279.33 1980 279.33 0.00 288.4 3.14 2.97 

15 1.33 295.33 1294 295.33 0.00 297.47 0.72 2.90 

20 0.5 308 ∗ 3.8% 308 0.00 308 0.00 3.29 

20 1 325 ∗ 14.9% 316 -2.85 316 -2.85 3.19 

1Q 5 2 106 0 106 0.00 106 0.00 0.33 

5 4 106 0 106 0.00 106 0.00 0.33 

10 1 190 6 192 1.04 192 1.04 0.91 

10 2 190 5 192 1.04 192 1.04 0.88 

15 0.67 249 97 249 0.00 249 0.00 1.75 

15 1.33 249 64 249 0.00 249 0.00 1.76 

20 0.5 309.5 ∗ 4.0% 308 -0.49 308.2 -0.42 3.10 

20 1 313 ∗ 5.5% 313 0.00 316.9 1.23 3.02 

1T 5 2 106 0 106 0.00 106 0.00 0.33 

5 4 106 0 106 0.00 106 0.00 0.33 

10 1 175 0 175 0.00 175 0.00 0.90 

10 2 180 1 180 0.00 180 0.00 0.87 

15 0.67 247 8 247 0.00 247 0.00 1.63 

15 1.33 253 55 253 0.00 253 0.00 1.64 

20 0.5 302.5 380 302.5 0.00 303.55 0.35 2.45 

20 1 305 1050 305 0.00 305 0.00 2.40 

2H 5 2 116 0 116 0.00 116 0.00 0.33 

5 4 116 0 116 0.00 116 0.00 0.33 

10 1 198 16 198 0.00 198 0.00 0.92 

10 2 202 7 202 0.00 202 0.00 0.90 

15 0.67 256 551 256 0.00 256 0.00 1.76 

15 1.33 256 622 256 0.00 256 0.00 1.74 

20 0.5 337 ∗ 3.8% 337 0.00 337 0.00 3.06 

20 1 344 ∗ 9.5% 344 0.00 344 0.00 2.98 

2Q 5 2 103 0 103 0.00 103 0.00 0.33 

5 4 103 0 103 0.00 103 0.00 0.33 

10 1 178 1 178 0.00 178 0.00 0.70 

10 2 178 1 178 0.00 178 0.00 0.70 

15 0.67 229 53 229 0.00 229 0.00 1.43 

15 1.33 229 13 229 0.00 229 0.00 1.44 

20 0.5 312 4880 312 0.00 312 0.00 2.34 

20 1 312 20,604 312 0.00 312 0.00 2.24 

2T 5 2 103 0 103 0.00 103 0.00 0.33 

5 4 103 0 103 0.00 103 0.00 0.33 

10 1 184 1 184 0.00 184 0.00 0.71 

10 2 184 2 184 0.00 184 0.00 0.71 

15 0.67 238 8 238 0.00 238 0.00 1.30 

15 1.33 238 5 238 0.00 238 0.00 1.31 

20 0.5 314 5900 314 0.00 314 0.00 2.16 

20 1 315 14,859 315 0.00 315 0.00 2.12 

Average 217.14 3793.69 217.00 −0 . 03 217.40 0.12 1.42 

∗ indicates best integer solution for instances not solved to optimality. 
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nd it has an average gap to the BKS of –0.65%, improving the best

esults from the literature. 

.2.4. Performance on the TSPPD-H 

Another benchmark is performed on the instances proposed by

rdo ̌gan et al. (2012) . The authors adapted 10 instances contain-

ng 200 customers proposed by Gendreau et al. (1999) to consider

imultaneous pickup and delivery. Smaller instances were created

y considering only the first 20, 40, 60, 80, 100, 120, 140, 160, 180

nd 200 customers, respectively. The handling cost parameters are

hosen such that h = h d = h p , where the product hN = 20 is kept

onstant. For further details concerning the exact configuration of

hese instances we refer to Erdo ̌gan et al. (2012) . In our results, we

eft out the instances with | V c | = { 80 , 100 } . For these instances, the

esults reported in Erdo ̌gan et al. (2012) have objectives smaller or

lose to those of the N = 60 instances, while adding 20 and 40 cus-

omers to the same set of 60 customers, respectively. All other in-
tances display a logical growth in objective values when the num-

er of customers increases. 

To be able to solve the instances for the TSPPD-H we adapt

ur metaheuristic so that it will only create a single route. For

nstance, operators which by design require multiple routes (e.g.,

ross route removal and 3-opt ) were excluded from the meta-

euristic, and feasibility issues which normally lead to construc-

ion of new routes have been solved. We solve the handling

ub-problem with both the exact DP and the approximation as

roposed by Erdo ̌gan et al. (2012) and compare these outcomes

ith their best overall and best heuristic solutions. Inspired by

rdo ̌gan et al. (2012) , to prevent compromising the time com-

lexity of our metaheuristic, neighborhood searches are evaluated

ith the heuristic handling policy rather than the DP. When a

hange in the solution is made, the costs are computed with the

P. Assessing changes with the heuristic handling policy rather

han the DP resulted in faster computation times without loss

f solution quality. We present the results in Table 6 . Results
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Table 12 

Comparison of handling policies on instances of Dethloff (2001) for the VRPSPD-H. 

Instance N K MIP Policies Heuristic policy Myopic policy 1 Myopic policy 2 

UB BKS Best (%) Avg. (%) Time (s) Best (%) Avg. (%) Time (s) Best (%) Avg. (%) Time (s) 

SCA3-0 50 5 1579.85 1426.19 0.00 0.05 17.4 0.90 0.90 11.3 10.83 11.71 12.4 

SCA3-1 50 5 1613.04 1476.19 0.00 0.12 17.6 1.99 2.06 10.9 11.67 12.17 12.3 

SCA3-2 50 5 1659.41 1535.05 0.00 0.17 17.7 0.46 0.49 10.9 12.20 12.57 12.5 

SCA3-3 50 5 1697.40 1547.17 0.00 0.37 17.5 0.50 1.82 10.7 11.72 12.17 12.1 

SCA3-4 50 5 1864.25 1724.52 0.00 0.32 17.6 0.02 0.17 11.3 13.23 14.06 12.4 

SCA3-5 50 5 1677.63 1467.84 0.00 0.03 18.4 2.64 2.79 11.3 11.19 11.53 12.6 

SCA3-6 50 5 1554.32 1421.40 0.00 0.44 18.0 1.67 1.86 11.2 11.01 11.32 12.8 

SCA3-7 50 5 1695.64 1536.16 0.00 0.41 18.0 1.31 1.64 11.1 12.46 12.76 12.3 

SCA3-8 50 5 1608.04 1550.41 0.00 0.30 18.1 1.23 1.38 11.4 10.26 10.36 12.4 

SCA3-9 50 5 1602.00 1467.83 0.00 0.00 16.7 1.42 1.71 10.7 10.58 11.10 11.9 

SCA8-0 50 12 1476.76 1369.93 0.00 0.25 10.5 0.00 0.10 8.1 3.37 3.37 8.5 

SCA8-1 50 12 1508.19 1458.51 0.00 0.39 11.3 0.72 0.78 8.3 2.73 2.78 8.8 

SCA8-2 50 12 1617.55 1496.52 0.43 0.62 10.6 0.00 0.09 8.0 3.97 4.07 8.4 

SCA8-3 50 12 1517.64 1455.43 0.00 0.18 10.2 0.47 0.60 8.0 2.65 2.71 8.6 

SCA8-4 50 12 1647.93 1621.62 0.00 0.10 10.4 0.10 0.10 8.1 2.25 2.27 8.4 

SCA8-5 50 12 1531.89 1456.27 0.11 0.23 10.9 0.00 0.01 8.7 2.29 2.42 9.1 

SCA8-6 50 12 1444.14 1378.91 0.00 0.07 10.6 0.30 0.30 8.5 2.25 2.28 9.0 

SCA8-7 50 13 1535.74 1470.16 0.00 0.02 10.6 0.28 0.28 8.5 3.02 3.03 8.5 

SCA8-8 50 12 1562.68 1531.18 0.00 0.09 11.0 0.31 0.42 8.6 2.67 2.77 8.9 

SCA8-9 50 12 1540.27 1467.44 0.20 0.32 10.2 0.00 0.02 8.1 2.47 2.59 8.5 

CON3-0 50 5 1547.44 1398.60 0.00 0.47 19.3 1.00 1.42 12.3 11.52 11.75 13.5 

CON3-1 50 5 1630.45 1478.77 0.00 0.57 20.0 0.84 1.29 12.9 11.57 12.17 13.5 

CON3-2 50 5 1461.92 1293.78 0.00 0.43 19.7 0.36 0.36 12.5 14.47 15.49 13.6 

CON3-3 50 5 1544.62 1426.86 0.31 0.82 19.2 0.00 0.00 11.8 14.44 14.68 13.1 

CON3-4 50 5 1635.52 1463.11 0.00 0.66 19.9 1.23 1.65 12.4 12.67 13.68 13.5 

CON3-5 50 5 1455.55 1303.25 0.00 0.68 19.4 1.71 1.77 12.0 11.17 11.68 13.4 

CON3-6 50 5 1245.62 1159.15 0.27 0.96 20.0 0.00 0.41 13.0 8.75 9.16 14.0 

CON3-7 50 5 1548.06 1381.00 0.00 0.56 18.4 0.53 0.70 12.1 12.60 12.88 13.0 

CON3-8 50 5 1510.60 1369.02 0.00 0.25 19.4 1.18 1.74 12.3 13.76 14.33 13.2 

CON3-9 50 5 1377.61 1261.29 0.00 0.14 18.7 0.80 0.81 11.8 10.63 11.29 13.3 

CON8-0 50 12 1265.96 1242.72 0.00 0.30 11.1 0.41 0.43 8.5 1.97 2.03 9.3 

CON8-1 50 12 1295.97 1222.29 0.12 0.27 12.6 0.00 0.02 8.7 1.91 2.01 9.5 

CON8-2 50 12 1141.49 1107.11 0.04 0.15 12.5 0.00 0.02 9.3 3.92 4.05 10.1 

CON8-3 50 13 1262.77 1220.64 0.00 0.22 11.9 0.00 0.00 8.8 1.85 1.90 9.1 

CON8-4 50 12 1362.12 1232.67 0.04 0.09 11.6 0.00 0.00 8.8 2.94 3.00 9.5 

CON8-5 50 12 1175.41 1127.85 0.00 0.03 10.9 0.23 0.23 8.6 3.13 3.22 9.0 

CON8-6 50 12 1103.76 1013.72 0.00 0.02 11.9 0.17 0.24 9.2 0.58 0.91 9.7 

CON8-7 50 12 1301.36 1223.76 0.07 0.31 11.2 0.00 0.00 8.1 3.46 3.46 9.2 

CON8-8 50 12 1267.14 1202.92 0.02 0.03 12.2 0.00 0.00 8.9 2.80 2.90 9.6 

CON8-9 50 12 1195.55 1157.10 0.01 0.16 11.2 0.00 0.04 8.8 1.52 1.65 9.9 

Average 1481.58 1378.61 0.04 0.29 14.9 0.57 0.72 10.1 7.21 7.51 11.0 
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are reported for the ALNS with both heuristic and DP handling

policies. Solutions reported in Erdo ̌gan et al. (2012) columns are

the BKS found by their algorithm when using the DP and the

heuristic handling policies. Their gap is calculated between the

heuristic and DP column, while ours are calculated between the

best solution found and the DP column of the benchmark algo-

rithm. We show that although the DP policy leads to better re-

sults in certain instances, the time it takes is too high in larger

instances. 

Our ALNS with heuristic policy finds or improves 69 out of

80 best known solutions, which were found with the DP in

Erdo ̌gan et al. (2012) , and the average gap is −0 . 96% . It improves

the heuristic policy of the authors on all 80 instances. The average

time needed to compute these solutions is competitive with the

exact evaluation in Erdo ̌gan et al. (2012) . Our ALNS with DP policy

finds or improves best known solutions on 68 out of 80 instances

with an average gap to the BKS of −0 . 82% . The average solution

with the DP policy is better than with the heuristic policy, but cal-

culation times are on average 13 times higher. 

6.3. Benchmark optimal solutions 

Since we are the first to model and solve the VRPSPD-H,

VRPDPD-H, and VRPMPD-H, no solutions in the literature ex-

ist for these problems for us to compare with. We have imple-
ented the model of Section 2.1 to the VRPSPD-H, and that of

ection 3.2 to the other two problems. We have then solved these

odels with CPLEX and compare our metaheuristic with the op-

imal solutions on small instances. We point that the ALNS was

mplemented in such a way to evaluate handling costs using the

ame method as in the model, thus also giving an upper bound for

he VRPDPD-H. We have generated new instances for these three

roblems. We select the first N customers of four VRPSPD instances

f Dethloff (2001) and six VRPSPD and another six VRPMPD in-

tances of Salhi and Nagy (1999) . The VRPSPD instances are used

o solve the VRPSPD-H and the VRPDPD-H, while the VRPMPD in-

tances are used to the VRPMPD-H. We start with N = 5 customers.

f the MIP is solved to optimality within six hours in all instances

f each problem, we generate another set with 5 more customers,

nd so on. This way we observe the maximum instance size that

ach problem can be solved with CPLEX. For all instances, we set

he handling cost parameters to 10 
N and 

20 
N and we limit the num-

er of available vehicles to 4. The results are reported in Tables 7–

1 . We solved each instance with CPLEX on a single thread. In-

tances not solved to optimality are indicated with an asterisk, and

he gap to the best lower bound found is reported as a percent-

ge in the column Time . We compare the results with 10 runs of

ur ALNS metaheuristic with the DP handling policy. CPLEX fails

o prove optimality within the time limit in instances with 15 cus-

omers in both sets of the VRPSPD-H, 10 customers in both sets
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Table 13 

Comparison of handling policies for the VRPDPD-H. 

Instance N K MIP Policies Heuristic policy Myopic policy 1 Myopic policy 2 

UB BKS Best (%) Avg. (%) Time (s) Best (%) Avg. (%) Time (s) Best (%) Avg. (%) Time (s) 

SCA3-0 100 5 2035.14 925.29 0.25 0.36 98.4 0.00 1.19 58.0 0.80 1.98 63.6 

SCA3-1 100 5 2018.02 1063.22 0.00 0.19 104.1 0.00 0.78 60.4 0.36 0.86 63.6 

SCA3-2 100 5 - 1023.15 0.00 1.79 103.2 0.09 1.50 59.1 1.41 2.71 63.4 

SCA3-3 100 5 - 1050.77 0.00 0.22 108.2 0.00 0.12 61.8 0.49 0.72 66.6 

SCA3-4 100 5 - 1059.66 0.13 1.54 95.8 0.00 1.31 55.5 1.97 2.40 61.2 

SCA3-5 100 5 - 967.86 0.00 2.24 109.5 0.46 3.12 62.8 0.43 1.93 67.1 

SCA3-6 100 5 - 1013.14 0.00 0.11 111.4 0.07 0.13 62.9 0.48 0.52 67.9 

SCA3-7 100 5 - 1008.12 0.00 0.45 109.3 0.00 0.16 59.3 0.44 0.66 63.9 

SCA3-8 100 5 2546.33 1083.36 0.00 0.87 100.5 0.70 1.28 58.7 1.25 1.85 61.2 

SCA3-9 100 5 2312.22 1016.53 0.00 0.00 96.9 0.00 0.39 56.9 0.00 0.00 59.5 

SCA8-0 100 12 - 1125.04 0.47 0.79 59.3 0.00 0.75 41.9 0.70 1.28 44.0 

SCA8-1 100 12 - 1264.21 0.00 0.89 60.6 0.73 1.13 40.8 1.03 1.25 42.6 

SCA8-2 100 12 - 1237.98 0.00 0.43 60.2 0.16 0.80 42.1 0.54 0.72 44.1 

SCA8-3 100 12 - 1209.17 0.00 0.48 61.8 0.00 0.32 43.2 0.31 0.69 45.6 

SCA8-4 100 12 - 1278.29 0.00 0.84 57.2 0.05 0.35 40.7 0.12 0.27 42.3 

SCA8-5 100 12 - 1236.41 0.00 0.75 61.7 0.05 1.61 43.6 0.05 0.76 45.9 

SCA8-6 100 12 - 1193.44 0.00 0.91 59.2 0.00 0.98 42.3 0.51 1.15 44.4 

SCA8-7 100 13 - 1242.84 0.00 0.91 59.4 0.01 0.92 41.9 0.15 0.80 44.3 

SCA8-8 100 12 - 1294.43 0.00 0.27 61.2 0.55 0.83 43.2 0.36 0.77 44.4 

SCA8-9 100 12 - 1258.90 1.26 1.48 57.4 1.10 1.38 40.7 0.00 1.33 42.8 

CON3-0 100 5 - 939.84 0.00 0.15 112.5 0.26 0.61 63.1 1.31 1.67 68.0 

CON3-1 100 5 1918.20 834.27 0.00 0.04 122.6 0.00 0.10 68.6 0.21 0.22 72.3 

CON3-2 100 5 2543.41 760.42 0.50 1.05 112.7 0.00 0.96 64.8 1.94 2.80 70.7 

CON3-3 100 5 2400.12 886.05 0.00 0.07 110.8 0.19 0.23 61.5 1.06 1.06 67.1 

CON3-4 100 5 1648.01 855.97 0.00 0.64 117.5 0.52 1.00 67.0 1.22 1.88 69.3 

CON3-5 100 5 1224.09 818.45 0.48 0.68 110.0 0.00 0.78 60.4 0.54 1.33 64.6 

CON3-6 100 5 - 730.74 0.00 0.52 113.1 0.04 0.30 63.1 1.03 1.40 67.9 

CON3-7 100 5 1560.31 885.60 0.00 0.35 113.2 0.88 0.98 62.0 1.59 2.03 66.0 

CON3-8 100 5 - 751.93 0.00 0.14 98.7 0.00 0.68 60.4 0.06 1.60 65.5 

CON3-9 100 5 1393.27 853.88 0.00 0.08 113.5 0.30 0.37 61.4 1.46 1.54 66.6 

CON8-0 100 12 - 1057.34 0.00 0.80 60.9 0.41 1.23 43.3 0.69 1.60 45.7 

CON8-1 100 12 - 913.18 0.49 1.34 63.4 0.00 1.37 43.2 0.69 1.91 45.6 

CON8-2 100 12 - 841.25 0.15 0.46 64.4 0.00 0.72 45.8 0.59 1.17 48.7 

CON8-3 100 13 - 991.62 0.00 0.56 60.5 0.20 0.81 43.2 2.28 2.56 45.7 

CON8-4 100 12 - 957.90 0.00 1.05 61.2 0.50 1.12 44.3 0.46 1.15 46.5 

CON8-5 100 12 - 920.30 0.37 1.58 58.4 0.00 1.89 43.8 1.30 2.30 44.0 

CON8-6 100 12 - 816.50 0.00 0.94 63.2 0.56 1.27 46.2 0.72 1.26 47.5 

CON8-7 100 12 - 1007.50 0.00 1.16 60.5 0.29 1.28 43.0 0.50 0.87 45.3 

CON8-8 100 12 - 920.99 0.04 0.27 62.6 0.00 0.11 44.7 0.09 0.22 47.1 

CON8-9 100 12 - 959.41 0.32 1.23 60.5 0.00 1.09 42.7 0.52 1.45 48.3 

Average - 1006.37 0.11 0.71 84.4 0.20 0.90 52.2 0.74 1.32 55.5 
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f the VRPDPD-H, which is equivalent to 20 customers when con-

idering the doubled customers, and 20 customers in the set of

he VRPMDP-H. Among all 148 instances tested, CPLEX proved op-

imality for 116. Our ALNS finds at least the best bound given by

PLEX in all VRPSPD-H instances, in all except three VRPDPD-H in-

tances, and in all except two VRPMPD-H instances. Considering all

nstances, the average time our metaheuristic needs is 1.57 s, com-

ared to 5595.66 s for CPLEX. These instances and results can be

hared upon request. 

.4. Comparison of handling policies 

We now compare the performance of the heuristic han-

ling policy compared to myopic policies 1 and 2, respectively,

hen embedded in our ALNS structure. We have created 40

ew VRPSPD-H and VRPDPD-H instances based on the VRP-

PD instances of Dethloff (2001) and 21 new instances based

n Nagy and Salhi (2005) for the VRPMDP-H. Our additions to

he original instances are the handling cost parameter, which is

et to 0.2 for all instances. This resulted in a distinct trade-

ff between routing and handling costs. Furthermore, we have

mposed a limit on the number of available vehicles K , where

 = max { 0 . 7 ∑ 

i ∈ V c (d i + p i ) , 1 . 4 
∑ 

i ∈ V c d i , 1 . 4 
∑ 

i ∈ V c p i } /Q, so that the

umber of vehicles is high enough to guarantee feasibility but not

oo high so that solutions result in the unrealistic construction of
any short routes to decrease handling as much as possible. The

esults of the experiments are given in Tables 12–14 , where we re-

ort the best objective value found by any policy in column BKS ,

he best and average gaps to the BKS, the computation times over

0 runs for all three policies, as well as the best upper bound

ound by the MIP after six hours whenever any is found. Since

one of the instances were solved by the MIP within the time limit

e omitted running times from the tables. 

We see that myopic policy 1 outperforms myopic policy 2 on all

RPSPD-H instances in similar computation times. On the VRPSPD-

, our ALNS with heuristic policy has the best average perfor-

ance on 25 instances, myopic policy 1 on 16 instances, and my-

pic policy 2 and MIP on none of the instances. Although the

euristic policy performed 0.43% better than the myopic policy 1,

he average computation time of the latter is around 32% lower.

ost of the improvements on myopic policy 1 are obtained when

 is higher. This is an intuitive result as the importance of han-

ling decisions declines when routes get shorter. Hence, there ex-

st scenarios in which myopic policy 1 is competitive with the

euristic policy for the VRPSPD-H. We characterize such scenarios

n Section 6.5 . 

We show important highlights on results for the VRPDPD-H. On

ost instances the MIP could not find a feasible solution to the

roblem within six hours. The heuristic policy performed best on

5 instances, while myopic policy 1 was the best one on 10 in-
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Table 14 

Comparison of handling policies for the VRPMPD-H. 

Instance N K MIP Policies Heuristic policy Myopic policy 1 Myopic policy 2 

UB BKS Best (%) Avg. (%) Time (s) Best (%) Avg. (%) Time (s) Best (%) Avg. (%) Time (s) 

1H 50 4 631.6 528.4 0.00 0.11 15.9 0.94 0.94 9.3 1.82 1.82 9.4 

1Q 50 6 550.8 535.4 0.00 0.11 14.3 0.04 0.07 8.9 0.26 0.32 9.2 

1T 50 7 562.0 537.8 0.00 0.06 13.2 0.85 0.85 8.3 0.92 0.92 8.4 

2H 75 8 - 719.6 0.00 0.00 31.2 0.30 0.30 21.1 0.91 0.91 22.0 

2Q 75 10 - 771.6 0.00 0.87 32.0 1.20 1.62 22.1 2.50 2.77 22.6 

2T 75 13 - 798.2 0.22 1.11 27.8 0.99 1.48 20.8 0.00 1.20 20.6 

3H 100 6 2228.0 789.8 0.00 0.45 82.4 0.03 0.45 48.0 0.33 0.69 48.8 

3Q 100 8 - 810.2 0.00 0.22 79.7 0.42 0.95 47.3 1.46 1.96 49.2 

3T 100 10 - 812.8 0.00 0.96 70.6 0.05 1.06 46.1 1.17 1.56 46.6 

4H 150 9 - 959.6 0.00 0.53 228.4 0.06 0.83 132.8 0.19 1.13 138.9 

4Q 150 12 - 994.0 0.00 1.30 220.9 0.14 1.25 122.0 0.88 1.59 137.0 

4T 150 15 - 1027.8 0.58 1.14 237.9 0.00 1.04 149.9 0.52 1.32 151.7 

5H 199 12 - 1129.8 0.00 1.15 459.5 0.77 1.45 271.3 1.05 2.08 285.9 

5Q 199 17 - 1237.4 0.11 0.81 485.1 0.00 0.70 293.4 0.34 1.47 301.7 

5T 199 21 - 1278.2 0.79 1.45 472.7 0.00 1.47 299.5 0.64 1.72 300.9 

11H 120 6 - 949.2 0.00 0.96 187.6 0.15 0.72 105.5 0.04 0.88 113.2 

11Q 120 8 - 1004.4 0.00 0.52 178.9 0.16 0.53 101.7 0.12 0.52 104.3 

11T 120 9 - 1032.4 3.06 5.62 167.3 0.00 5.97 97.4 0.33 3.93 99.7 

12H 100 7 - 748.0 0.00 0.16 69.0 0.00 0.12 42.0 0.27 0.45 42.2 

12Q 100 10 960.0 815.0 0.24 0.75 70.6 0.00 0.65 45.8 0.61 0.89 41.9 

12T 100 12 870.0 809.0 0.00 1.34 72.2 0.49 1.62 46.4 0.86 1.59 47.7 

Average - 870.9 0.24 0.94 153.2 0.31 1.15 92.4 0.72 1.42 95.3 

Fig. 2. Different cost components for myopic policies 1 and 2 and the heuristic policy for K = { 1 , . . . , 10 } and h = { 0 . 1 , 0 . 3 , 0 . 5 } . 
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Fig. 3. Objective gaps of myopic policies 1 and 2 compared to the heuristic policy for h = { 0 . 1 , 0 . 3 , 0 . 5 } . 
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tances, and myopic policy 2 on 6 instances. Differences on average

erformance of all methods were less significant with the heuristic

olicy leading by only 0.19% of myopic policy 1, which performed

nly 0.42% better than myopic policy 2. Finally, average computa-

ion times for both myopic policies are more than 30% lower than

or the heuristic policy. 

On the VRPMDP-H, the observations are similar to the VRPDPD-

. The heuristic policy performed better on 12 instances, the my-

pic policy 1 on 8 instances, and the myopic policy 2 on only 1

nstance. The average performance distances are quite similar with

euristic policy with a lead of 0.21% from myopic policy 1, while

his is better than myopic policy 2 by 0.27%. Differences in compu-

ation times are also proportionally similar for the three policies. 

.5. Varying number of vehicles 

We observed that the metaheuristic tends to create many short

outes to decrease handling costs which may result in unrealistic

cenarios. This section focuses on how the number of available ve-

icles impacts the trade-off between routing and handling costs.

or these computational experiments, we iteratively increase the

aximum number of allowed routes on various instances where

e ignore capacity constraints. We solve instances with N = 50 ,

 = { 0 . 1 , 0 . 3 , 0 . 5 } and increase the maximum number of allowed

outes K from 1 to 10 with both myopic policies and the heuris-

ic policy for the VRPSPD-H. We explicitly distinguish between the

outing and handling cost components. The results are presented

n Fig. 2 . The reported values are averages over 10 runs of our

LNS metaheuristic, for all configurations and handling policies.

e see that routing costs stay fairly constant in all scenarios when

ncreasing the maximum number of allowed routes, while the han-

ling costs drastically decrease at first and stabilize eventually. This

rend is true for all policies and all handling cost parameter values.

Fig. 3 shows the gaps of both myopic policies as percentages of

euristic policy. In line with the observation of Section 6.4 , we see

hat myopic policy 1 outperforms myopic policy 2 in all configura-

ions. When the number of routes is small, the handling cost com-

onent is the major driver of the objective value and it declines

hen an increasing number of routes is constructed. This leads to

he property that the performance of myopic policy 1 as compared

o the heuristic policy increases with the number of routes, and

ven becomes competitive with the heuristic policy when K ≥ 5.

rom a practical perspective, it makes sense to use myopic policy

 rather than the heuristic policy since it is an uncomplicated rule

hich the vehicle drivers can easily understand and execute and it

omputes solutions 32% faster than the heuristic policy. 

. Conclusion 

We have introduced the vehicle routing problem with simul-

aneous pickup and delivery and handling costs (VRPSPD-H). We
how that our problem generalizes both the vehicle routing prob-

em with simultaneous pickup and delivery (VRPSPD), the variant

ithout handling operations, and the single-vehicle variant called

he traveling salesman problem with pickups, deliveries and han-

ling costs (TSPPD-H). We have also shown that by reformulating

he problem we can solve the vehicle routing problem with mixed

ickup and delivery with handling costs (VRPMPD-H), which is

lso first introduced in this study, and its variant without handling

osts (VRPMPD). Another related problem that can be solved from

he reformulated model is the vehicle routing problem with divis-

ble pickup and delivery (VRPDPD). Finally, we prove that the re-

ormulated model can generate only upper bound solutions to the

RPDPD with handling costs (VRPDPD-H), which is another new

roblem in literature proposed here. We studied a heuristic han-

ling policy which approximates the optimal decisions for the han-

ling sub-problem, and we derived two new bounds on the opti-

al dynamic program (DP) policy which were used to define two

yopic policies. 

To solve our problem, we propose an adaptive large neighbor-

ood search (ALNS) metaheuristic in which we embedded all four

andling policies, and we implement the mathematical formula-

ion in CPLEX to solve small instances optimally. With the ALNS

etaheuristic, we also solve instances of the VRPSPD, the VRPDPD,

he VRPMPD, and the TSPPD-H. Results on these special cases and

elated problems have shown that our ALNS metaheuristic im-

roves 11 and finds 28 best known solutions (BKS) out of 54 in-

tances from two sets of benchmark instances for the VRPSPD, im-

roves 12 and finds 24 BKS out of 54 instances from two sets

or the VRPDPD, and improves 14 and finds 1 BKS out of 21 in-

tances from one set for the VRPMPD. For a set of 80 benchmark

nstances for the TSPPD-H, we find or improve 69 BKS with the

euristic handling policy. The DP handling policy, at the cost of

ignificantly higher calculation times, performs slightly better on

verage, but finds or improves only 68 BKS. The average gaps for

he two policies are −0 . 96% and −0 . 82% respectively. Furthermore,

e show that our proposed metaheuristic finds optimal solutions

n most instances for the VRPSPD-H of up to 15 customers, for the

RPDPD-H of up to 10 customers, and for the VRPMPD-H of up to

0 customers. 

We also study the quality of the two myopic policies and the

mpact of the number of constructed routes on the objective val-

es, where all handling policies are embedded in our ALNS struc-

ure. We see that for the VRPSPD-H when the number of con-

tructed routes increases, routing costs stay fairly constant while

he handling cost component, and thus the objective value, de-

reases significantly and stabilizes eventually. Myopic policy 1 out-

erforms myopic policy 2 in all configurations for this problem,

nd the difference between myopic policy 1 and the heuristic pol-

cy declines when the number of available vehicles is increased.

urthermore, the computation times of both myopic policies are

imilar and are 32% lower than the computation time when ap-
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plying the heuristic policy. For the VRPDPD-H and the VRPMDP-H,

differences on performance of the myopic policies and the heuris-

tic policy is even lower. From a practical perspective, it may then

be preferred to implement the simple myopic policy 1 rather than

the more complicated heuristic policy when the two have similar

performance. As suggestion for future research, exact methods are

required to obtain dual bounds for the three new problems with

handling costs, and new heuristic algorithms could provide com-

petitive results to the those of our ALNS. 
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