274 research outputs found

    Deep Canonical Time Warping

    Get PDF
    Machine learning algorithms for the analysis of timeseries often depend on the assumption that the utilised data are temporally aligned. Any temporal discrepancies arising in the data is certain to lead to ill-generalisable models, which in turn fail to correctly capture the properties of the task at hand. The temporal alignment of time-series is thus a crucial challenge manifesting in a multitude of applications. Nevertheless, the vast majority of algorithms oriented towards the temporal alignment of time-series are applied directly on the observation space, or utilise simple linear projections. Thus, they fail to capture complex, hierarchical non-linear representations which may prove to be beneficial towards the task of temporal alignment, particularly when dealing with multi-modal data (e.g., aligning visual and acoustic information). To this end, we present the Deep Canonical Time Warping (DCTW), a method which automatically learns complex non-linear representations of multiple time-series, generated such that (i) they are highly correlated, and (ii) temporally in alignment. By means of experiments on four real datasets, we show that the representations learnt via the proposed DCTW significantly outperform state-of-the-art methods in temporal alignment, elegantly handling scenarios with highly heterogeneous features, such as the temporal alignment of acoustic and visual features

    Comparative analysis of molecular fingerprints in prediction of drug combination effects

    Get PDF
    bbab291Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.Peer reviewe

    Deep Canonical Time Warping for simultaneous alignment and representation learning of sequences

    Get PDF
    Machine learning algorithms for the analysis of time-series often depend on the assumption that utilised data are temporally aligned. Any temporal discrepancies arising in the data is certain to lead to ill-generalisable models, which in turn fail to correctly capture properties of the task at hand. The temporal alignment of time-series is thus a crucial challenge manifesting in a multitude of applications. Nevertheless, the vast majority of algorithms oriented towards temporal alignment are either applied directly on the observation space or simply utilise linear projections - thus failing to capture complex, hierarchical non-linear representations that may prove beneficial, especially when dealing with multi-modal data (e.g., visual and acoustic information). To this end, we present Deep Canonical Time Warping (DCTW), a method that automatically learns non-linear representations of multiple time-series that are (i) maximally correlated in a shared subspace, and (ii) temporally aligned. Furthermore, we extend DCTW to a supervised setting, where during training, available labels can be utilised towards enhancing the alignment process. By means of experiments on four datasets, we show that the representations learnt significantly outperform state-of-the-art methods in temporal alignment, elegantly handling scenarios with heterogeneous feature sets, such as the temporal alignment of acoustic and visual information

    The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti

    Get PDF
    The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti.Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis.Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies

    ์ž ์žฌ ์ž„๋ฒ ๋”ฉ์„ ํ†ตํ•œ ์‹œ๊ฐ์  ์Šคํ† ๋ฆฌ๋กœ๋ถ€ํ„ฐ์˜ ์„œ์‚ฌ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ธฐ ํ•™์Šต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์žฅ๋ณ‘ํƒ.The ability to understand the story is essential to make humans unique from other primates as well as animals. The capability of story understanding is crucial for AI agents to live with people in everyday life and understand their context. However, most research on story AI focuses on automated story generation based on closed worlds designed manually, which are widely used for computation authoring. Machine learning techniques on story corpora face similar problems of natural language processing such as omitting details and commonsense knowledge. Since the remarkable success of deep learning on computer vision field, increasing our interest in research on bridging between vision and language, vision-grounded story data will potentially improve the performance of story understanding and narrative text generation. Let us assume that AI agents lie in the environment in which the sensing information is input by the camera. Those agents observe the surroundings, translate them into the story in natural language, and predict the following event or multiple ones sequentially. This dissertation study on the related problems: learning stories or generating the narrative text from image streams or videos. The first problem is to generate a narrative text from a sequence of ordered images. As a solution, we introduce a GLAC Net (Global-local Attention Cascading Network). It translates from image sequences to narrative paragraphs in text as a encoder-decoder framework with sequence-to-sequence setting. It has convolutional neural networks for extracting information from images, and recurrent neural networks for text generation. We introduce visual cue encoders with stacked bidirectional LSTMs, and all of the outputs of each layer are aggregated as contextualized image vectors to extract visual clues. The coherency of the generated text is further improved by conveying (cascading) the information of the previous sentence to the next sentence serially in the decoders. We evaluate the performance of it on the Visual storytelling (VIST) dataset. It outperforms other state-of-the-art results and shows the best scores in total score and all of 6 aspects in the visual storytelling challenge with evaluation of human judges. The second is to predict the following events or narrative texts with the former parts of stories. It should be possible to predict at any step with an arbitrary length. We propose recurrent event retrieval models as a solution. They train a context accumulation function and two embedding functions, where make close the distance between the cumulative context at current time and the next probable events on a latent space. They update the cumulative context with a new event as a input using bilinear operations, and we can find the next event candidates with the updated cumulative context. We evaluate them for Story Cloze Test, they show competitive performance and the best in open-ended generation setting. Also, it demonstrates the working examples in an interactive setting. The third deals with the study on composite representation learning for semantics and order for video stories. We embed each episode as a trajectory-like sequence of events on the latent space, and propose a ViStoryNet to regenerate video stories with them (tasks of story completion). We convert event sentences to thought vectors, and train functions to make successive event embed close each other to form episodes as trajectories. Bi-directional LSTMs are trained as sequence models, and decoders to generate event sentences with GRUs. We test them experimentally with PororoQA dataset, and observe that most of episodes show the form of trajectories. We use them to complete the blocked part of stories, and they show not perfect but overall similar result. Those results above can be applied to AI agents in the living area sensing with their cameras, explain the situation as stories, infer some unobserved parts, and predict the future story.์Šคํ† ๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋Šฅ๋ ฅ์€ ๋™๋ฌผ๋“ค ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค๋ฅธ ์œ ์ธ์›๊ณผ ์ธ๋ฅ˜๋ฅผ ๊ตฌ๋ณ„์ง“๋Š” ์ค‘์š”ํ•œ ๋Šฅ๋ ฅ์ด๋‹ค. ์ธ๊ณต์ง€๋Šฅ์ด ์ผ์ƒ์ƒํ™œ ์†์—์„œ ์‚ฌ๋žŒ๋“ค๊ณผ ํ•จ๊ป˜ ์ง€๋‚ด๋ฉด์„œ ๊ทธ๋“ค์˜ ์ƒํ™œ ์† ๋งฅ๋ฝ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์Šคํ† ๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋Šฅ๋ ฅ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ๊ธฐ์กด์˜ ์Šคํ† ๋ฆฌ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋Š” ์–ธ์–ด์ฒ˜๋ฆฌ์˜ ์–ด๋ ค์›€์œผ๋กœ ์ธํ•ด ์‚ฌ์ „์— ์ •์˜๋œ ์„ธ๊ณ„ ๋ชจ๋ธ ํ•˜์—์„œ ์ข‹์€ ํ’ˆ์งˆ์˜ ์ €์ž‘๋ฌผ์„ ์ƒ์„ฑํ•˜๋ ค๋Š” ๊ธฐ์ˆ ์ด ์ฃผ๋กœ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์Šคํ† ๋ฆฌ๋ฅผ ๋‹ค๋ฃจ๋ ค๋Š” ์‹œ๋„๋“ค์€ ๋Œ€์ฒด๋กœ ์ž์—ฐ์–ด๋กœ ํ‘œํ˜„๋œ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•  ์ˆ˜ ๋ฐ–์— ์—†์–ด ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ์—์„œ ๊ฒช๋Š” ๋ฌธ์ œ๋“ค์„ ๋™์ผํ•˜๊ฒŒ ๊ฒช๋Š”๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹œ๊ฐ์  ์ •๋ณด๊ฐ€ ํ•จ๊ป˜ ์—ฐ๋™๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ˆˆ๋ถ€์‹  ๋ฐœ์ „์— ํž˜์ž…์–ด ์‹œ๊ฐ๊ณผ ์–ธ์–ด ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋‹ค๋ฃจ๋Š” ์—ฐ๊ตฌ๋“ค์ด ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌ์˜ ๋น„์ „์œผ๋กœ์„œ, ์ธ๊ณต์ง€๋Šฅ ์—์ด์ „ํŠธ๊ฐ€ ์ฃผ๋ณ€ ์ •๋ณด๋ฅผ ์นด๋ฉ”๋ผ๋กœ ์ž…๋ ฅ๋ฐ›๋Š” ํ™˜๊ฒฝ ์†์— ๋†“์—ฌ์žˆ๋Š” ์ƒํ™ฉ์„ ์ƒ๊ฐํ•ด ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด ์•ˆ์—์„œ ์ธ๊ณต์ง€๋Šฅ ์—์ด์ „ํŠธ๋Š” ์ฃผ๋ณ€์„ ๊ด€์ฐฐํ•˜๋ฉด์„œ ๊ทธ์— ๋Œ€ํ•œ ์Šคํ† ๋ฆฌ๋ฅผ ์ž์—ฐ์–ด ํ˜•ํƒœ๋กœ ์ƒ์„ฑํ•˜๊ณ , ์ƒ์„ฑ๋œ ์Šคํ† ๋ฆฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ์— ์ผ์–ด๋‚  ์Šคํ† ๋ฆฌ๋ฅผ ํ•œ ๋‹จ๊ณ„์—์„œ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„๊นŒ์ง€ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์‚ฌ์ง„ ๋ฐ ๋น„๋””์˜ค ์†์— ๋‚˜ํƒ€๋‚˜๋Š” ์Šคํ† ๋ฆฌ(visual story)๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•, ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ํ…์ŠคํŠธ๋กœ์˜ ๋ณ€ํ™˜, ๊ฐ€๋ ค์ง„ ์‚ฌ๊ฑด ๋ฐ ๋‹ค์Œ ์‚ฌ๊ฑด์„ ์ถ”๋ก ํ•˜๋Š” ์—ฐ๊ตฌ๋“ค์„ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ์—ฌ๋Ÿฌ ์žฅ์˜ ์‚ฌ์ง„์ด ์ฃผ์–ด์กŒ์„ ๋•Œ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์Šคํ† ๋ฆฌ ํ…์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ(๋น„์ฃผ์–ผ ์Šคํ† ๋ฆฌํ…”๋ง)๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ด ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์œ„ํ•ด ๊ธ€๋ž™๋„ท(GLAC Net)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ์‚ฌ์ง„๋“ค๋กœ๋ถ€ํ„ฐ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง, ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ˆœํ™˜์‹ ๊ฒฝ๋ง์„ ์ด์šฉํ•œ๋‹ค. ์‹œํ€€์Šค-์‹œํ€€์Šค ๊ตฌ์กฐ์˜ ์ธ์ฝ”๋”๋กœ์„œ, ์ „์ฒด์ ์ธ ์ด์•ผ๊ธฐ ๊ตฌ์กฐ์˜ ํ‘œํ˜„์„ ์œ„ํ•ด ๋‹ค๊ณ„์ธต ์–‘๋ฐฉํ–ฅ ์ˆœํ™˜์‹ ๊ฒฝ๋ง์„ ๋ฐฐ์น˜ํ•˜๋˜ ๊ฐ ์‚ฌ์ง„ ๋ณ„ ์ •๋ณด๋ฅผ ํ•จ๊ป˜ ์ด์šฉํ•˜๊ธฐ ์œ„ํ•ด ์ „์—ญ์ -๊ตญ๋ถ€์  ์ฃผ์˜์ง‘์ค‘ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์—ฌ๋Ÿฌ ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•˜๋Š” ๋™์•ˆ ๋งฅ๋ฝ์ •๋ณด์™€ ๊ตญ๋ถ€์ •๋ณด๋ฅผ ์žƒ์ง€ ์•Š๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„  ๋ฌธ์žฅ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์œ„ ์ œ์•ˆ ๋ฐฉ๋ฒ•์œผ๋กœ ๋น„์ŠคํŠธ(VIST) ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ํ•™์Šตํ•˜์˜€๊ณ , ์ œ 1 ํšŒ ์‹œ๊ฐ์  ์Šคํ† ๋ฆฌํ…”๋ง ๋Œ€ํšŒ(visual storytelling challenge)์—์„œ ์‚ฌ๋žŒ ํ‰๊ฐ€๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ „์ฒด ์ ์ˆ˜ ๋ฐ 6 ํ•ญ๋ชฉ ๋ณ„๋กœ ๋ชจ๋‘ ์ตœ๊ณ ์ ์„ ๋ฐ›์•˜๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์Šคํ† ๋ฆฌ์˜ ์ผ๋ถ€๊ฐ€ ๋ฌธ์žฅ๋“ค๋กœ ์ฃผ์–ด์กŒ์„ ๋•Œ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ ๋ฌธ์žฅ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ž„์˜์˜ ๊ธธ์ด์˜ ์Šคํ† ๋ฆฌ์— ๋Œ€ํ•ด ์ž„์˜์˜ ์œ„์น˜์—์„œ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•˜๊ณ , ์˜ˆ์ธกํ•˜๋ ค๋Š” ๋‹จ๊ณ„ ์ˆ˜์— ๋ฌด๊ด€ํ•˜๊ฒŒ ์ž‘๋™ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ˆœํ™˜ ์‚ฌ๊ฑด ์ธ์ถœ ๋ชจ๋ธ(Recurrent Event Retrieval Models)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์€๋‹‰ ๊ณต๊ฐ„ ์ƒ์—์„œ ํ˜„์žฌ๊นŒ์ง€ ๋ˆ„์ ๋œ ๋งฅ๋ฝ๊ณผ ๋‹ค์Œ์— ๋ฐœ์ƒํ•  ์œ ๋ ฅ ์‚ฌ๊ฑด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€๊น๊ฒŒ ํ•˜๋„๋ก ๋งฅ๋ฝ๋ˆ„์ ํ•จ์ˆ˜์™€ ๋‘ ๊ฐœ์˜ ์ž„๋ฒ ๋”ฉ ํ•จ์ˆ˜๋ฅผ ํ•™์Šตํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ด๋ฏธ ์ž…๋ ฅ๋˜์–ด ์žˆ๋˜ ์Šคํ† ๋ฆฌ์— ์ƒˆ๋กœ์šด ์‚ฌ๊ฑด์ด ์ž…๋ ฅ๋˜๋ฉด ์Œ์„ ํ˜•์  ์—ฐ์‚ฐ์„ ํ†ตํ•ด ๊ธฐ์กด์˜ ๋งฅ๋ฝ์„ ๊ฐœ์„ ํ•˜์—ฌ ๋‹ค์Œ์— ๋ฐœ์ƒํ•  ์œ ๋ ฅํ•œ ์‚ฌ๊ฑด๋“ค์„ ์ฐพ๋Š”๋‹ค. ์ด ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฝ์Šคํ† ๋ฆฌ(ROCStories) ๋ฐ์ดํ„ฐ์ง‘ํ•ฉ์„ ํ•™์Šตํ•˜์˜€๊ณ , ์Šคํ† ๋ฆฌ ํด๋กœ์ฆˆ ํ…Œ์ŠคํŠธ(Story Cloze Test)๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ํŠนํžˆ ์ž„์˜์˜ ๊ธธ์ด๋กœ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ• ์ค‘์— ์ตœ๊ณ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, ๋น„๋””์˜ค ์Šคํ† ๋ฆฌ์—์„œ ์‚ฌ๊ฑด ์‹œํ€€์Šค ์ค‘ ์ผ๋ถ€๊ฐ€ ๊ฐ€๋ ค์กŒ์„ ๋•Œ ์ด๋ฅผ ๋ณต๊ตฌํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ํŠนํžˆ, ๊ฐ ์‚ฌ๊ฑด์˜ ์˜๋ฏธ ์ •๋ณด์™€ ์ˆœ์„œ๋ฅผ ๋ชจ๋ธ์˜ ํ‘œํ˜„ ํ•™์Šต์— ๋ฐ˜์˜ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์€๋‹‰ ๊ณต๊ฐ„ ์ƒ์— ๊ฐ ์—ํ”ผ์†Œ๋“œ๋“ค์„ ๊ถค์  ํ˜•ํƒœ๋กœ ์ž„๋ฒ ๋”ฉํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์Šคํ† ๋ฆฌ๋ฅผ ์žฌ์ƒ์„ฑ์„ ํ•˜์—ฌ ์Šคํ† ๋ฆฌ ์™„์„ฑ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์ธ ๋น„์Šคํ† ๋ฆฌ๋„ท(ViStoryNet)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฐ ์—ํ”ผ์†Œ๋“œ๋ฅผ ๊ถค์  ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ๊ฑด ๋ฌธ์žฅ์„ ์‚ฌ๊ณ ๋ฒกํ„ฐ(thought vector)๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์—ฐ์† ์ด๋ฒคํŠธ ์ˆœ์„œ ์ž„๋ฒ ๋”ฉ์„ ํ†ตํ•ด ์ „ํ›„ ์‚ฌ๊ฑด๋“ค์ด ์„œ๋กœ ๊ฐ€๊น๊ฒŒ ์ž„๋ฒ ๋”ฉ๋˜๋„๋ก ํ•˜์—ฌ ํ•˜๋‚˜์˜ ์—ํ”ผ์†Œ๋“œ๊ฐ€ ๊ถค์ ์˜ ๋ชจ์–‘์„ ๊ฐ€์ง€๋„๋ก ํ•™์Šตํ•˜์˜€๋‹ค. ๋ฝ€๋กœ๋กœQA ๋ฐ์ดํ„ฐ์ง‘ํ•ฉ์„ ํ†ตํ•ด ์‹คํ—˜์ ์œผ๋กœ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ž„๋ฒ ๋”ฉ ๋œ ์—ํ”ผ์†Œ๋“œ๋“ค์€ ๊ถค์  ํ˜•ํƒœ๋กœ ์ž˜ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์—ํ”ผ์†Œ๋“œ๋“ค์„ ์žฌ์ƒ์„ฑ ํ•ด๋ณธ ๊ฒฐ๊ณผ ์ „์ฒด์ ์ธ ์ธก๋ฉด์—์„œ ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ์œ„ ๊ฒฐ๊ณผ๋ฌผ๋“ค์€ ์นด๋ฉ”๋ผ๋กœ ์ž…๋ ฅ๋˜๋Š” ์ฃผ๋ณ€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์Šคํ† ๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๊ณ  ์ผ๋ถ€ ๊ด€์ธก๋˜์ง€ ์•Š์€ ๋ถ€๋ถ„์„ ์ถ”๋ก ํ•˜๋ฉฐ, ํ–ฅํ›„ ์Šคํ† ๋ฆฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•๋“ค์— ๋Œ€์‘๋œ๋‹ค.Abstract i Chapter 1 Introduction 1 1.1 Story of Everyday lives in Videos and Story Understanding . . . 1 1.2 Problems to be addressed . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Approach and Contribution . . . . . . . . . . . . . . . . . . . . . 6 1.4 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . 9 Chapter 2 Background and Related Work 10 2.1 Why We Study Stories . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Latent Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Order Embedding and Ordinal Embedding . . . . . . . . . . . . 14 2.4 Comparison to Story Understanding . . . . . . . . . . . . . . . . 15 2.5 Story Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Abstract Event Representations . . . . . . . . . . . . . . . 17 2.5.2 Seq-to-seq Attentional Models . . . . . . . . . . . . . . . . 18 2.5.3 Story Generation from Images . . . . . . . . . . . . . . . 19 Chapter 3 Visual Storytelling via Global-local Attention Cascading Networks 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Evaluation for Visual Storytelling . . . . . . . . . . . . . . . . . . 26 3.3 Global-local Attention Cascading Networks (GLAC Net) . . . . . 27 3.3.1 Encoder: Contextualized Image Vector Extractor . . . . . 28 3.3.2 Decoder: Story Generator with Attention and Cascading Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.1 VIST Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.2 Experiment Settings . . . . . . . . . . . . . . . . . . . . . 33 3.4.3 Network Training Details . . . . . . . . . . . . . . . . . . 36 3.4.4 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . 38 3.4.5 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . 38 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 4 Common Space Learning on Cumulative Contexts and the Next Events: Recurrent Event Retrieval Models 44 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Problems of Context Accumulation . . . . . . . . . . . . . . . . . 45 4.3 Recurrent Event Retrieval Models for Next Event Prediction . . 46 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4.2 Story Cloze Test . . . . . . . . . . . . . . . . . . . . . . . 52 4.4.3 Open-ended Story Generation . . . . . . . . . . . . . . . . 53 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Chapter 5 ViStoryNet: Order Embedding of Successive Events and the Networks for Story Regeneration 58 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Order Embedding with Triple Learning . . . . . . . . . . . . . . 60 5.2.1 Embedding Ordered Objects in Sequences . . . . . . . . . 62 5.3 Problems and Contextual Events . . . . . . . . . . . . . . . . . . 62 5.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 Contextual Event Vectors from Kids Videos . . . . . . . . 64 5.4 Architectures for the Story Regeneration Task . . . . . . . . . . . 67 5.4.1 Two Sentence Generators as Decoders . . . . . . . . . . . 68 5.4.2 Successive Event Order Embedding (SEOE) . . . . . . . . 68 5.4.3 Sequence Models of the Event Space . . . . . . . . . . . . 72 5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 73 5.5.2 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . 73 5.5.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . 74 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Chapter 6 Concluding Remarks 80 6.1 Summary of Methods and Contributions . . . . . . . . . . . . . . 80 6.2 Limitation and Outlook . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . 81 ์ดˆ๋ก 101Docto

    Machine learning for automatic analysis of affective behaviour

    Get PDF
    The automated analysis of affect has been gaining rapidly increasing attention by researchers over the past two decades, as it constitutes a fundamental step towards achieving next-generation computing technologies and integrating them into everyday life (e.g. via affect-aware, user-adaptive interfaces, medical imaging, health assessment, ambient intelligence etc.). The work presented in this thesis focuses on several fundamental problems manifesting in the course towards the achievement of reliable, accurate and robust affect sensing systems. In more detail, the motivation behind this work lies in recent developments in the field, namely (i) the creation of large, audiovisual databases for affect analysis in the so-called ''Big-Data`` era, along with (ii) the need to deploy systems under demanding, real-world conditions. These developments led to the requirement for the analysis of emotion expressions continuously in time, instead of merely processing static images, thus unveiling the wide range of temporal dynamics related to human behaviour to researchers. The latter entails another deviation from the traditional line of research in the field: instead of focusing on predicting posed, discrete basic emotions (happiness, surprise etc.), it became necessary to focus on spontaneous, naturalistic expressions captured under settings more proximal to real-world conditions, utilising more expressive emotion descriptions than a set of discrete labels. To this end, the main motivation of this thesis is to deal with challenges arising from the adoption of continuous dimensional emotion descriptions under naturalistic scenarios, considered to capture a much wider spectrum of expressive variability than basic emotions, and most importantly model emotional states which are commonly expressed by humans in their everyday life. In the first part of this thesis, we attempt to demystify the quite unexplored problem of predicting continuous emotional dimensions. This work is amongst the first to explore the problem of predicting emotion dimensions via multi-modal fusion, utilising facial expressions, auditory cues and shoulder gestures. A major contribution of the work presented in this thesis lies in proposing the utilisation of various relationships exhibited by emotion dimensions in order to improve the prediction accuracy of machine learning methods - an idea which has been taken on by other researchers in the field since. In order to experimentally evaluate this, we extend methods such as the Long Short-Term Memory Neural Networks (LSTM), the Relevance Vector Machine (RVM) and Canonical Correlation Analysis (CCA) in order to exploit output relationships in learning. As it is shown, this increases the accuracy of machine learning models applied to this task. The annotation of continuous dimensional emotions is a tedious task, highly prone to the influence of various types of noise. Performed real-time by several annotators (usually experts), the annotation process can be heavily biased by factors such as subjective interpretations of the emotional states observed, the inherent ambiguity of labels related to human behaviour, the varying reaction lags exhibited by each annotator as well as other factors such as input device noise and annotation errors. In effect, the annotations manifest a strong spatio-temporal annotator-specific bias. Failing to properly deal with annotation bias and noise leads to an inaccurate ground truth, and therefore to ill-generalisable machine learning models. This deems the proper fusion of multiple annotations, and the inference of a clean, corrected version of the ``ground truth'' as one of the most significant challenges in the area. A highly important contribution of this thesis lies in the introduction of Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), a method aimed at fusing noisy continuous annotations. By adopting a private-shared space model, we isolate the individual characteristics that are annotator-specific and not shared, while most importantly we model the common, underlying annotation which is shared by annotators (i.e., the derived ground truth). By further learning temporal dynamics and incorporating a time-warping process, we are able to derive a clean version of the ground truth given multiple annotations, eliminating temporal discrepancies and other nuisances. The integration of the temporal alignment process within the proposed private-shared space model deems DPCCA suitable for the problem of temporally aligning human behaviour; that is, given temporally unsynchronised sequences (e.g., videos of two persons smiling), the goal is to generate the temporally synchronised sequences (e.g., the smile apex should co-occur in the videos). Temporal alignment is an important problem for many applications where multiple datasets need to be aligned in time. Furthermore, it is particularly suitable for the analysis of facial expressions, where the activation of facial muscles (Action Units) typically follows a set of predefined temporal phases. A highly challenging scenario is when the observations are perturbed by gross, non-Gaussian noise (e.g., occlusions), as is often the case when analysing data acquired under real-world conditions. To account for non-Gaussian noise, a robust variant of Canonical Correlation Analysis (RCCA) for robust fusion and temporal alignment is proposed. The model captures the shared, low-rank subspace of the observations, isolating the gross noise in a sparse noise term. RCCA is amongst the first robust variants of CCA proposed in literature, and as we show in related experiments outperforms other, state-of-the-art methods for related tasks such as the fusion of multiple modalities under gross noise. Beyond private-shared space models, Component Analysis (CA) is an integral component of most computer vision systems, particularly in terms of reducing the usually high-dimensional input spaces in a meaningful manner pertaining to the task-at-hand (e.g., prediction, clustering). A final, significant contribution of this thesis lies in proposing the first unifying framework for probabilistic component analysis. The proposed framework covers most well-known CA methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA), providing further theoretical insights into the workings of CA. Moreover, the proposed framework is highly flexible, enabling novel CA methods to be generated by simply manipulating the connectivity of latent variables (i.e. the latent neighbourhood). As shown experimentally, methods derived via the proposed framework outperform other equivalents in several problems related to affect sensing and facial expression analysis, while providing advantages such as reduced complexity and explicit variance modelling.Open Acces

    The functional and molecular characterisation of the pig ileal NA+/bile acid co-transport protein

    Get PDF
    Bile acids are essential for the efficient digestion and absorption of lipids, and are re-absorbed by aNa+ /bile acid co-transport protein within the ileum. Investigation into the transport protein, using BBMV and Xenopus laevis oocytes, revealed that pig ileal Na +/bile acid co-transport protein was not strictly dependent of the presence of an inwardly directed Na + gradient, as previously determined. Cations which had ionic radii between 0.8 - 1.33A, most notably Na+, K+ and Ca2+, stimulated secondary active transport of taurocholate. Taurocholate uptake in the presence of inwardly directed cation gradients of Na + and K+, demonstrated Michealis Menten Kinetics, concentrative accumulation, competitive inhibition and was temperature sensitive. Preventing the translation of the gene encoding the Na+/bile acid co-transport protein, abolished secondary active transport in the presence ofboth Na+ and K+. Isolation and computer modelling of the gene which encoded the pig ileal Na +/bile acid co-transport protein, revealed that this protein was composed of 8 transmembrane domains and lead to the identification of proposed cation and bile acid binding sites. The ability of K+ to stimulate the Na +/bile acid co-transport protein could be of physiological importance in vivo, because of the depleted Na + concentration present within the ileum. Though, the rate of taurocholate transport in the presence of K+ is reduced when compared to Na+, the transport protein has very similar affinities for taurocholate in the presence of both cations and therefore could use K+ for efficient re-absorption of taurocholate. Therefore, for this study it was proposed that the Na+/bile acid co-transport protein had a preference for Na+ rather than a strict dependence as previously concluded

    Molecular and Functional Differences between Heart mKv1.7 Channel Isoforms

    Get PDF
    Ion channels are membrane-spanning proteins that allow ions to permeate at high rates. The kinetic characteristics of the channels present in a cell determine the cell signaling profile and therefore cell function in many different physiological processes. We found that Kv1.7 channels from mouse heart muscle have two putative translation initiation start sites that generate two channel isoforms with different functional characteristics, mKv1.7L (489 aa) and a shorter mKv1.7S (457 aa). The electrophysiological analysis of mKv1.7L and mKv1.7S channels revealed that the two channel isoforms have different inactivation kinetics. The channel resulting from the longer protein (L) inactivates faster than the shorter channels (S). Our data supports the hypothesis that mKv1.7L channels inactivate predominantly due to an N-type related mechanism, which is impaired in the mKv1.7S form. Furthermore, only the longer version mKv1.7L is regulated by the cell redox state, whereas the shorter form mKv1.7S is not. Thus, expression starting at each translation initiation site results in significant functional divergence. Our data suggest that the redox modulation of mKv1.7L may occur through a site in the cytoplasmic N-terminal domain that seems to encompass a metal coordination motif resembling those found in many redox-sensitive proteins. The mRNA expression profile and redox modulation of mKv1.7 kinetics identify these channels as molecular entities of potential importance in cellular redox-stress states such as hypoxia

    RNA graanulite uurimus inimese neuroblastoomi SH-SY5Y rakuliinis

    Get PDF
    We aimed to establish a protocol for the purification of neuronal RNA granules from all-trans retinoic acid differentiated human neuroblastoma cell line SH-SY5Y. Different bio-chemical purification methods were tested for obtaining a homogenous preparation of RNA granules for later structural analysis by cross-linking coupled mass-spectrometry or single-particle cryo-electron microscopy. The major problem encountered was a significant amount of copurifying cellular glycogen granules in the RNA granule preparations obtained by a combination of velocity sedimentation and size-exclusion chromatography. However, a ma-jority of the contaminating glycogen could be removed from the RNA granule preparations using a maltose-binding protein (MBP) or artificial FLX protein based Ni-Sepharose or Flag-resin affinity chromatography. Besides, changes in the expression levels of mRNAs im-portant for neuronal differentiation and synaptic function upon SH-SY5Y differentiation were analyzed. A western blot analysis revealed the presence of key RNA granule compo-nents previously identified in rat cortical RNA granules (e.g. CAPRIN-1, G3BP-1, and G3BP-2) in the SH-SY5Y derived RNA granules. In estonian: Kรคesoleva bakalaureusetรถรถ eesmรคrgiks oli vรคlja tรถรถtada meetodid inimese luuรผdikasvajast pรคrit SH-SY5Y rakuliini kasutamiseks in vitro mudelsรผsteemina neuronaalsete RNA graanulite ekspressiooniks ja puhastamiseks. Tรถรถ kรคigus testiti erinevaid biokeemilise puhastamise meetodeid vรตimalikult homogeense RNA graanulite preparatsiooni valmistamiseks retinoolhappe toimel differentseeritud SH-SY5Y rakkudest hilisemaks RNA graanulite struktuuri analรผรผsiks ristsidumise massispektromeetria vรตi krรผo- elektronmikroskoopia abil. Peamiseks raskuseks osutus tรถรถs glรผkogeeni graanulite kaasapuhastumine RNA graanulitega. RNA graanulite esialgse preparaadi tรคiendav puhastamine maltoosi siduva valgu vรตi tehisvalgu FLX afiinsusresinil (Ni-sefaroos vรตi Flag, vastavalt) vรตimaldas siiski kontamineerivat glรผkogeeni edukalt eemaldada. Tรถรถ kรคigus analรผรผsiti lisaks retinoolhappe poolt indutseeritud differentseerumisega kaasnevaid muutusi neuronaalsete mRNA-de ekspressioonitasemes SH-SY5Y rakkudes. Western blot analรผรผs tuvastas roti ajukoorest eraldatud RNA graanulitele omaste oluliste RNA graanuli funktsiooni regulerivate valkude nagu Caprin-1, G3BP-1 ja G3BP-2 olemasolu SH-SY5Y rakkudest eraldatud RNA graanulites

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy
    • โ€ฆ
    corecore