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Abstract

The automated analysis of affect has been gaining rapidly increasing attention by re-
searchers over the past two decades, as it constitutes a fundamental step towards achieving
next-generation computing technologies and integrating them into everyday life (e.g. via
affect-aware, user-adaptive interfaces, medical imaging, health assessment, ambient intel-
ligence etc.). The work presented in this thesis focuses on several fundamental problems
manifesting in the course towards the achievement of reliable, accurate and robust affect
sensing systems. In more detail, the motivation behind this work lies in recent develop-
ments in the field, namely (i) the creation of large, audiovisual databases for affect analysis
in the so-called ”Big-Data“ era, along with (ii) the need to deploy systems under demand-
ing, real-world conditions. These developments led to the requirement for the analysis of
emotion expressions continuously in time, instead of merely processing static images, thus
unveiling the wide range of temporal dynamics related to human behaviour to researchers.
The latter entails another deviation from the traditional line of research in the field: instead
of focusing on predicting posed, discrete basic emotions (happiness, surprise etc.), it became
necessary to focus on spontaneous, naturalistic expressions captured under settings more
proximal to real-world conditions, utilising more expressive emotion descriptions than a set
of discrete labels. To this end, the main motivation of this thesis is to deal with challenges
arising from the adoption of continuous dimensional emotion descriptions under natur-
alistic scenarios, considered to capture a much wider spectrum of expressive variability
than basic emotions, and most importantly model emotional states which are commonly
expressed by humans in their everyday life. In the first part of this thesis, we attempt to de-
mystify the quite unexplored problem of predicting continuous emotional dimensions. This
work is amongst the first to explore the problem of predicting emotion dimensions via multi-
modal fusion, utilising facial expressions, auditory cues and shoulder gestures. A major
contribution of the work presented in this thesis lies in proposing the utilisation of various
relationships exhibited by emotion dimensions in order to improve the prediction accuracy
of machine learning methods - an idea which has been taken on by other researchers in the
field since. In order to experimentally evaluate this, we extend methods such as the Long
Short-Term Memory Neural Networks (LSTM), the Relevance Vector Machine (RVM) and
Canonical Correlation Analysis (CCA) in order to exploit output relationships in learning.
As it is shown, this increases the accuracy of machine learning models applied to this task.

The annotation of continuous dimensional emotions is a tedious task, highly prone to
the influence of various types of noise. Performed real-time by several annotators (usually
experts), the annotation process can be heavily biased by factors such as subjective in-
terpretations of the emotional states observed, the inherent ambiguity of labels related to
human behaviour, the varying reaction lags exhibited by each annotator as well as other
factors such as input device noise and annotation errors. In effect, the annotations manifest

a strong spatio-temporal annotator-specific bias. Failing to properly deal with annotation



bias and noise leads to an inaccurate ground truth, and therefore to ill-generalisable ma-
chine learning models. This deems the proper fusion of multiple annotations, and the
inference of a clean, corrected version of the “ground truth” as one of the most significant
challenges in the area. A highly important contribution of this thesis lies in the introduc-
tion of Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), a method aimed
at fusing noisy continuous annotations. By adopting a private-shared space model, we isol-
ate the individual characteristics that are annotator-specific and not shared, while most
importantly we model the common, underlying annotation which is shared by annotators
(i.e., the derived ground truth). By further learning temporal dynamics and incorporating
a time-warping process, we are able to derive a clean version of the ground truth given
multiple annotations, eliminating temporal discrepancies and other nuisances.

The integration of the temporal alignment process within the proposed private-shared
space model deems DPCCA suitable for the problem of temporally aligning human be-
haviour; that is, given temporally unsynchronised sequences (e.g., videos of two persons
smiling), the goal is to generate the temporally synchronised sequences (e.g., the smile
apex should co-occur in the videos). Temporal alignment is an important problem for
many applications where multiple datasets need to be aligned in time. Furthermore, it is
particularly suitable for the analysis of facial expressions, where the activation of facial
muscles (Action Units) typically follows a set of predefined temporal phases. A highly chal-
lenging scenario is when the observations are perturbed by gross, non-Gaussian noise (e.g.,
occlusions), as is often the case when analysing data acquired under real-world conditions.
To account for non-Gaussian noise, a robust variant of Canonical Correlation Analysis
(RCCA) for robust fusion and temporal alignment is proposed. The model captures the
shared, low-rank subspace of the observations, isolating the gross noise in a sparse noise
term. RCCA is amongst the first robust variants of CCA proposed in literature, and as we
show in related experiments outperforms other, state-of-the-art methods for related tasks

such as the fusion of multiple modalities under gross noise.

Beyond private-shared space models, Component Analysis (CA) is an integral com-
ponent of most computer vision systems, particularly in terms of reducing the usually
high-dimensional input spaces in a meaningful manner pertaining to the task-at-hand (e.g.,
prediction, clustering). A final, significant contribution of this thesis lies in proposing the
first unifying framework for probabilistic component analysis. The proposed framework
covers most well-known CA methods, such as Principal Component Analysis (PCA), Lin-
ear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature
Analysis (SFA), providing further theoretical insights into the workings of CA. Moreover,
the proposed framework is highly flexible, enabling novel CA methods to be generated by
simply manipulating the connectivity of latent variables (i.e. the latent neighbourhood).
As shown experimentally, methods derived via the proposed framework outperform other
equivalents in several problems related to affect sensing and facial expression analysis,

while providing advantages such as reduced complexity and explicit variance modelling.
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The study and understanding of human affect has been a long standing problem, troubling
the human race since its infancy. The earliest testimonies on the philosophical enquiries
towards the understanding of emotions can be attributed to the Stoics (3rd century BC)
[88], who claimed that human affect can be separated into coarse categories such as pleasure,
appetite and fear. The Chinese encyclopaedia Li Chi (1st century BC), attempts a more
detailed discrimination into emotion classes, while also proposing a theory that has dominated
the modern psychology of emotions centuries later: that some emotions are biologically hard-
wired to humans, rather than being acquired through social interactions and learning [217].
Philosophic inquisitions on the understanding of emotions continued throughout the centuries,
with pioneering works by Descartes [61] and Spinoza [238], with what Descartes called passions
being synonymous to the modern definition of emotions. More directly related to emotions
is the seminal work of Charles Darwin, who extensively studied expressions of the face and
gestures of the body in mammals [55], thus setting the foundations of the study of affect in

psychology as well as greatly influencing what we now call affect sensing.

A remarkable milestone in the study of affect in psychology, is the work of Paul Ekman
and his colleagues, who put forward the claim that there exists a set of six basic emotions

(anger, fear, disgust, happiness, sadness and surprise) which are biologically hard-wired to
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1. Introduction

humans and are common across different cultures, thus rendering them global in terms of
both understanding and expressing them. Ekman and his colleagues empirically studied this
phenomenon in various works [69, 70, 74], providing the ground for what later evolved as the
basis of affective computing. In particular, starting from the mid 1990s, researchers in diverse
fields such as computer science, psychology and the cognitive sciences started to take interest
in the analysis of human affect, be it recognising, interpreting or simulating emotions [198].
This trend has risen out of necessity, since tools generated from the computational analysis of
affect can be considered as a requirement for the further evolution of modern scientific fields,
such as human-computer interaction, robotics, ambient computing and medicine. The study of
affective computing and human behaviour, as it has been defined in the mid 1990s and evolved
throughout the past-decades, essentially defines the main topic of this thesis; we propose
and develop various techniques, based on machine learning, computer vision and pattern
recognition, which particularly fit specific idiosyncratic characteristics of problems commonly
dealt with when processing human affect and behaviour, without loss of application generality.
In particular, this thesis follows several recent shifts in the field of affective computing [97, 95]:
moving away from data acquired in particularly constrained laboratory settings, with actors
or other subjects posing the emotion expressions (i.e. being told to replicate what they believe
to be a specific expression such as anger) to more real-world settings, where the conditions
are not so constraint and the emotion expressions by the subjects are naturalistic, usually
elicited by conversation or interaction with other subjects. As we thoroughly discuss in what
follows, this particular direction entails other radical changes in the problem settings, such
as the processing much larger amounts of data (often in the form of videos instead of static
images) as well as the adoption of different descriptions of emotions, moving away from the

rigid, basic emotion theory initially employed in the field.

The remainder of the introductory chapter is organised as follows. Firstly, in Section 1.1
we refer in more detail to the problem space on which the thesis builds on. Specifically,
in Section 1.1.1 we detail the typical structure of affect sensing systems, and subsequently,
in Section 1.1.2 we discuss the field shift towards learning continuous dimensional emotion
descriptions. Subsequently, in Section 1.2 we analyse a set of significant challenges which have
risen in the field, and are specifically tackled in this thesis. Finally, in Section 1.3 we provide a
detailed listing of the thesis contributions, providing a summary of methodologies along with

the specific application contributions.
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1.1. Problem Space

1.1 Problem Space

1.1.1 Affect Sensing Systems

CLASSIFICATION
o FACE » GEOMETRIC

© AUDIO FEATURES : LEVEL OF INTEREST DETECTED: HIGH

FEATURE | © TEMPORAL

. BCRACTON | i ALGNMENT

! DIMENSIONALTY : : T l
e | suaREDSPACE | OO0
VAROUS COUNRRNG i CATURES:

1. INPUT MODALITIES 2. PRE-PROCESSING 3. ALIGNMENT / FUSION

I T
0 100

4. PREDICTIVE ANALYSIS

Figure 1.1: Illustration of the commonly utilised pipeline in automatic behaviour analysis and
affect sensing. (1) Given a set of observations (features) possibly from multiple modalities,
step (2) refers to pre-processing the features to facilitate the task at hand. Furthermore,
in step (3), if the observation sets are temporally ordered and not synchronised in time,
a temporal alignment process follows, along with the fusion of the features into one set
containing all the necessary information pertaining to the task at hand. In the final step
(4), predictive analysis takes place, most commonly classification (into discrete classes) or
regression (into continuous values).

A typical system aimed towards affect sensing usually follows the pipeline depicted in Fig.
1.1. Firstly, a set of features are obtained depending on the modality utilised (e.g., visual,
auditory). In case of e.g., facial images/videos, this can be a collection of coordinates encap-
sulating the location of various interest points, such as the corners of the eyes, the lips and
the eyes. Features derived from such a collection of points are called geometric features, while
features based on the image pixels are defined as appearance-based features. In case of audio,
this can be prosody features such as pitch or energy, as well as other spectrum-based repres-
entations. Secondly, the pre-processing step follows, where the features obtained from each
modality are extracted, usually by applying some sort of dimensionality reduction technique,
with the goal being to remove the uninteresting components of the input features, such as
signals appearing due to noise and corruption, and enhance some characteristics of the signal
which can be deemed beneficial for later use (such as e.g., preserving locality and variance).
The third stage consists of the actual fusion of the modalities, where the useful information

from all utilised cues is inferred - a common way of doing this being by maximally correlating
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1. Introduction

the modalities. In case there are temporal discrepancies in the data (i.e. the data are not
temporally aligned), this stage may also include an alignment step (for an example of aligning
human behaviour, please see Fig. 1.5. The final step is typically some form of predictive
analysis, be it classifying into discrete labels (e.g., angry, bored), or regressing, i.e. learning
continuous values function mappings. As we will see in what follows, regression is usually

employed for dealing with the problem of learning continuous emotions.

1.1.2 Continuous and Dimensional Emotion Description

Most of the work in this thesis is driven by the recent trend in affective computing, that is
the adoption of a set of latent dimensions which describe the affective state of an individual.
Previously, the research community was mostly focusing on the recognition of six discrete basic
emotional states [69], happiness, anger, sadness, surprise, fear and disgust. Nevertheless, the
deployment of emotion recognition systems under real-world scenarios indicated that a more
expressive vocabulary for emotions is required. In fact, research in psychology [129, 138] has
hinted that the six basic emotional states correspond only to a small subset of the emotions
humans express during their everyday life (see also Fig. 1.2). This lead to the adoption of
a different representation for affective states, based on continuous and dimensional emotion
descriptions. Traced back to the seminal work of Russell in 1980 [216], the most commonly
used latent dimensions are Valence and Arousal, with Valence indicating how positive (e.g.,
happiness, optimism) or negative (e.g., unhappy, depressed) the emotional state is, and Arousal
describing how active or passive the emotional state is. This essentially transformed the

problem from a classification task to learning real-valued functions, i.e. performing regression.

During this paradigm shift in the area of affective computing, another, greater change was
taking place in the entire field of data sciences, including machine learning and computer vision.
The so-called “Big Data” era led to the gathering of vast amounts of data. In turn, this led
researchers to adopt continuous annotations over time. That is, instead of annotating static
images in terms of discrete emotions, one would annotate audio-visual sequences continuously
over the entire duration of the clip in terms of latent dimensions. This led to the creation of
databases such as the Sensitive Artificial Listener (SAL) [64] and SEMAINE [157], which were
annotated continuously both over time and space. An example of such annotations is shown
in Fig. 1.3.

From the machine learning perspective, the presence of multiple continuous emotion dimen-
sions as outputs leads to a regression problem with multiple-outputs. As we will discuss in

what follows, this poses a both a set of opportunities for adapting models to the task-at-hand,
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1.2. Challenges

Figure 1.2: (a) Posed, discrete emotional states (left to right: disgust, happiness, sadness,
anger, fear, surprise). Image adapted from [185]. (b) Spontaneous (induced) emotional states.
Stills from the SEMAINE database [157].

as well as a set of further challenges to overcome.

1} SPIKE NOISE

VALENCE

Figure 1.3: Example of multiple valence annotations in the range of [-1,1], with -1 being most
negative emotional state and 1 most positive, along with a set of stills from the SEMAINE
database. We illustrate a set of challenges arising when dealing with multiple, noisy annota-
tions, as detailed in the text.

1.2 Challenges

In this section, we introduce a set of rising challenges in the field, in order to facilitate later

discussions on methodological and application-oriented contributions of our work.

Empirical Analysis of Continuous Emotion Dimensions. The appraisal of emotions
utilising latent emotion dimensions is only a recent development in the field of affective com-

puting, and many aspects of the problem can be considered as open problems [95]. Since
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1. Introduction

Figure 1.4: Temporal phases of Action Unit (AU) activation. From left to right: neutral,
onset, apex, offset, neutral. Video from the UvE-Nemo Smile Database.

adopting emotion dimensions such as valence and arousal leads to a vastly different prob-
lem setting than the traditional approach of adopting discrete emotion classes, many research
questions arise. These questions are of high significance for demystifying several aspects of
the problem which in many cases appear to be subjective and ambiguous. A straightforward
question can be the correlation of input modalities (e.g., audio or visual cues) to emotion
dimensions. This information is essential in order to determine which set of features may be
utilised depending on the task at-hand. E.g., as we verify in this work, arousal seems more
correlated with audio cues rather than facial expressions and therefore acoustic features can
be more suitable for arousal detection. This is actually due to the fact that the frequency
and pitch of the voice change accordingly when a person experiences high arousal (e.g., anger,
laughter etc.). Secondly, another question which is of interest is the relationship of emotion
dimensions to basic emotions. In theory, the values of the latent dimensions which correspond
to basic emotions are rather abstract, e.g., happiness corresponds to high valence and high
arousal, but no specific value range is defined. Therefore, it is of interest to study how latent
dimensions correlate with basic emotions (in effect, the intensity of the presence of these emo-
tions) in order to resolve such ambiguities and provide a better understanding of the problem

itself.

Modelling Temporal Dependencies. A recurring challenge in time-series analysis in
general, and specifically in behaviour analysis and affect sensing, is the requirement for mod-
elling temporal dynamics. In some settings, such as when analysing the activation of Facial
Action Units (AUs)!, there is a strict sequence of phases which occur in a specific order: neut-
ral, onset, apex, offset and then back to neutral. This is also illustrated in Fig. 1.4, where we
visualise the temporal phases of a posed smile activation. Of course, this order of states applies
strictly to posed expressions, and the situation changes when dealing with spontaneous or eli-

cited expressions, where the subjects behaviour is more unpredictable, and e.g., an expression

! Action Units (AUs) refer to the contraction or relaxation of one or more facial muscles, according to the
Facial Action Coding System (FACS) [73]. We discuss AUs more in Chapter 2.
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1.2. Challenges

might be interrupted by, a re-activation or the onset of a different expression. Furthermore,
in case we are predicting emotions over time, the outputs also exhibit some form of temporal
smoothness which needs to be modelled. E.g. in a high valence episode (e.g., corresponding to
laughter), temporal phases analogous to the onset and offset of AUs will manifest, the former
when the valence value is increased and the latter when it is decreased. In general, taking
dynamics into account is crucial for the interpretation of complex, human behaviour as e.g.,
in many cases the behaviour can be highly ambiguous. An example is a nervous laughter
episode during an anger outburst; only via temporal modelling a system can avoid detecting

the laughter episode as an example of joy.

Exploiting Emotion Dimension Correlations for Learning. In many learning prob-
lems, the setting consists of multidimensional labels (or targets) to be learnt. The problem of
dimensional emotion recognition inherently belongs in this class; the latent dimensions which
describe the affective state of an individual are multiple, and evidence from psychology hints
that the emotion dimensions can be highly correlated [129, 181, 5, 138]. In effect, that means
that there is a covariance structure in the multiple dimensions. Since many researchers have
adopted the continuous and dimensional emotion descriptions in learning, a research ques-
tion that naturally arises is whether one can evaluate the correlations which actually arise
within emotion dimensions, and actually exploit them for learning. This translates to devel-
oping methods which can (i) learn e.g., commonly occurring patterns (over time) between
dimensions such as valence and arousal, and (ii) remove the redundancy which is exhibited in
the output dimensions in order to construct more parsimonious models. This direction was
virtually unexplored in the field of affective computing before the work we present in this

thesis.

Fusion of Multiple Continuous Annotations. The fusion of multiple, continuous an-
notations is arguably the most significant problem which arises when utilising continuous
dimensional annotations. While most supervised learning tasks assume the existence of reli-
able and objective labels, this is very often not the case, especially when dealing with problems
related to human behaviour and affect. In particular, the annotation process in such settings
can be highly error prone, leading to inaccurate, ambiguous and subjective labels, which in
turn are utilised to train ill-generalisable models. Such issues arise both (i) due to the nature
of the problem, where many affect-related labels are defined rather ambiguously thus leading
to the adoption of personal interpretations, and (ii) due to the impact of human factors, such
as the varying perception of emotions and the personal characteristics and experiences of the

annotator. The issue becomes even more prominent when the task is temporal, as (i) it renders
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1. Introduction

UNALIGNED VIDEO STILLS

Figure 1.5: The problem of aligning human behaviour from videos. In unaligned videos (a,b,c),
the temporal phases of AU 26 (mouth opening) are not synchronised accross the subjects. In
the aligned videos (d,e,f) the temporal phases in both subjects are aligned in time, i.e. with
(d) being neutral, (e) being apex and (f) back to neutral.

the labelling procedure vulnerable to wvarying temporal lags caused by the varying response
times of annotators (depending on factors such as fatigue and stress), while (ii) a delay in
most annotators is expected to appear due to the real-time nature of the annotation acting
together with the temporal delay exhibited by the annotator when perceiving an emotion and
acting towards labelling it. In effect, the annotation signals carry a strong spatio-temporal,
annotator specific bias, while also being exposed to other issues such as e.g., noise generated
via the input devices used for annotating. These difficulties give rise to various issues in the
annotations, such as scale-ambiguities, temporal lags, spike noise and others (see Fig. 1.3,
where a set of example annotations from the SEMAINE database are illustrated). In such
scenarios, the only information which can be exploited in order to derive a clean, correct ver-
sion of the ground truth is the existence of multiple annotations. In fact, in such difficult
scenarios, multiple experts (usually trained in psychology) are employed as annotators, with
the idea being that somehow the “average” annotation will provide the most reliable labels,
which will later be used for training machine learning methods for predictive analysis. In
fact, the typically employed approach in the field is the most naive, that is, simple averaging.
Nevertheless, simple averaging can be deemed suboptimal for such problems for many reas-
ons, such as the lack of a mechanism to rank the annotators and weight the annotations, in
effect assessing the confidence level attributed to each annotator. This is a reasonable task,
as we expect that some annotators will be more competent than others. Furthermore, simple
averaging inherently lacks the ability to compensate for temporal discrepancies amongst the
annotators, leading to the manifestation of false peaks in the resulting signal. As can be easily
understood, the absence of well defined labels, free from noise and annotator bias deems the

learning problem even more difficult and even, in some cases, ill-defined.

Temporal Alignment of Human Behaviour. The manifestation of similar behaviour

in multiple sequences is the usual manner in which data are gathered and used in order to
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1.2. Challenges

train machine learning models. For example, a set of videos capturing the activation of the
same Action Units (AUs) from multiple subjects can be used as observations, leading to the
training of a machine learning model which detects the occurrence of the particular set of
AUs. The same applies when e.g., training models to detect the occurrence of smiles or the
temporal phases of the activation. Nevertheless, a common problem in these scenarios is
that although the manifested behaviour is similar over time (e.g., both subjects are smiling),
this behaviour is not temporally aligned. For example, the peak of the smile in subject one
happens at frame t1, while the peak of the smile in subject two happens at frame to, with
t1 # to (see also, Fig. 1.5). The problem is deemed very challenging due to numerous reasons,
such as possible large temporal discrepancies, inter/intra subject variability, as well as the
presence of various forms of noise. The most basic of algorithms for solving the temporal
alignment problem, Dynamic Time Warping (DTW), is optimal for aligning one-dimensional,
clean, temporal signals. Nevertheless, the most common case when dealing with real data
lies in the availability of multi-dimensional signals, possibly of different dimensionality. It is
natural that some form of dimensionality reduction is utilised to accommodate time-warping
in a more robust (to outliers, occlusions and noise) scenario. We discuss more details regarding

Time Warping and related work in Chapter 3.

Fusion of Multiple Modalities. It is very common for problems in learning and vision
for observations extracted from multiple modalities to be available. An open question is how
to optimally fuse the modalities at hand in order to maintain only what can be considered as
useful information for a specific task. This can be performed both in an unsupervised manner,
when the fused observations are extracted without considering labels but subject to some
constraints, or in a supervised manner where the optimisation function includes some kind
of penalty when labels are not predicted correctly. A fusion model should be able to isolate
corruptions in the data, commonly arising in realistic scenarios, even when the corruptions are
not spread evenly across modalities, e.g. in some cases the visual signal might be very noisy
due to illuminations or occlusions, while the audio signal may be noise free. A limit case of the
problem is when one of the modalities is entirely missing in the test data queries; the model
should be able to extrapolate given the training on both modalities and be able to perform

inference to determine e.g., the correct label for the test query.

Dimensionality Reduction and Feature Extraction. A typical pre-processing step in
most learning and vision applications refers to dimensionality reduction, usually performed via
component analysis methods such as Principal Component Analysis (PCA). (See Fig. 1.1).

Typically unsupervised, dimensionality reduction methods aim to reduce the number of ran-
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dom variables in the given data by projecting them on a latent space which satisfies a set of
constraints depending on the problem. For example, PCA transforms the given data into a
reduced dimensionality space which preserves most of the data variance, thus minimising the
reconstruction error. Linear Discriminant Analysis (LDA) optimally reduces the dimensional-
ity by also considering class labels, while Locality Preserving Projections (LPP) do the same
while preserving a notion of locality, usually encoded via a graph. Dimensionality reduction
techniques should be flexible enough to accommodate varying problems, while complexity is
another factor that should be taken into account, since as a typical pre-processing step the
observations will consist of both high-dimensional as well as a large number of samples. While
dimensionality reduction via component analysis has been well studied over the past decades,
the focus of the research is mostly relating to deterministic component analysis. The formu-
lation of novel, probabilistic component analysis models can be very beneficial to many fields,

due to advantages such as uncertainty estimation as well as reduced complexity in most cases.

1.3 Contributions

In this section, we list the contributions of our thesis both technically, as well as with respect
to the aforementioned problems. The first part of this thesis deals mostly with the empirical
analysis of the relatively unexplored problem of continuous dimensional emotion recognition,
focusing mostly on learning to predict emotion dimensions via exploiting the correlations ex-
hibited by the emotion dimensions. The contributions arising from this part are mostly driven
from the affective computing viewpoint, focusing on the specific application and psychological
theory, and ultimately deriving appropriate models to tackle the problem of learning emotion
dimensions. The second part of the thesis is more technically oriented, focusing on proposing
novel component analysis methods, which are again fitted to specific very crucial problems,
such as the fusion of multiple continuous annotations as well as dimensionality reduction. It
is important to note that, while at most times the proposed techniques have been developed
with a specific application in mind, they remain generally applicable to any problem with
similar settings, with possible applications including medical imaging, health assessment, re-

commender systems, affect-aware and adaptive user interfaces and robotics.

The rest of the section is organised as follows. Firstly, in Section 1.3.1, we introduce the
various methodologies presented in this thesis while discussing particular technical novelties.
Secondly, in Section 1.3.2, we discuss particular contributions of the aforementioned method-

ologies with respect to the challenges and problems discussed in Section 1.2.
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1.3.1 Proposed Methodologies

In what follows, we summarise the methodologies introduced in this thesis in order to facilitate

the following discussion on solving particular challenges and problems via these methods.

Part I: Learning Emotion Dimensions

The first part of this thesis deals particularly with learning emotion dimensions and various
challenges met when dealing with predictive analysis in terms of such emotion descriptions.
Three methodologies are proposed, which are based on neural networks, the Relevance Vector
Machine (RVM) and Canonical Correlation Analysis (CCA), all aiming at exploiting spatio-
temporal correlations that manifest in the outputs of a given problem (in this case, in emotion
dimensions). The application of these models is without loss of any generality, since they
cover a very wide problem class, and are suitable for application within any similar scenario,
i.e. where the targets (or outputs) consist of multi-dimensional vectors which are likely to be

correlated in time and space. The proposed methods are summarised in what follows.

e Chapter 5. BLSTM-NN Output-Associative Fusion. A precursor of a current
trend in machine learning, the so-called “deep-learning” methods, the Bidirectional Long
Short-Term Memory Neural Networks (BLSTM-NN) are one of the most recent vari-
ations of traditional recurrent neural networks. BLSTM-NNs, introduced in [107], are
able to model long-term temporal dependencies in observations by modifying the struc-
ture of each node in a typical neural network in order to resolve the vanishing gradient
problem, which led to various issues due to the gradient either vanishing or growing
exponentially during learning. We discuss more regarding LSTM in Chapter 3, while in
Chapter 5, we utilise BLSTM-NN for (i) fusion of multiple modalities, and (ii) output-
associative fusion, that is, learning temporal patterns arising in outputs, not only in

inputs.

e Chapter 6. Output-Associative Relevance Vector Machine (OA-RVM). The
Relevance Vector Machine (RVM) is a formulation of sparse probabilistic regression, in-
troduced by Tipping in [246] and later extended in [249]. Closely related to Gaussian
Processes (GP), the RVM provides a fast and sparse alternative to traditional GP learn-
ing, at the cost of some unintuitive properties regarding the estimation of uncertainty.
Nevertheless, RVMs constitute one of the fastest and sparse Bayesian regression tech-
niques in machine learning, providing both accuracy and robustness to noise. In Chapter

6, we extend RVM by augmenting the design matrix in order to learn correlations which
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manifest in multi-dimensional outputs over time. In more detail, we model the correl-
ation of output dimensions over time, and incorporate such representative basis in the
model, in order to utilise temporal output patterns in learning. We coin this model the
Output-Associative Relevance Vector Machine (OA-RVM).

e Chapter 7. Correlated-Spaces Regression. Canonical Correlation Analysis (CCA)
is a fundamental component analysis technique which, given two sets of observations
discovers a set of loading matrices which project the observation sets onto a latent space
where these sets are maximally correlated. Correlated-Spaces Regression (CSR) is a
technique we propose in Chapter 7, which is based on CCA. The main idea in CSR is
that instead of correlating input observation sets, we correlate inputs and outputs. This
simple idea entails several advantages, particularly to the problem of learning continuous
dimensional emotion descriptions as we will discuss in this section since in effect, CSR
allows us to simultaneously correlate inputs with outputs and reduce output redundan-

cies.

Part 2: Component Analysis for Affective Behaviour

The second part of the thesis deals with the design of novel Component Analysis (CA) meth-
ods?. In particular, we firstly develop methods belonging to the general category of Shared-
Space component analysis. These methods aim to discover a “shared-space” amongst multiple
sets of observations, while satisfying particular constraints. Such models are particularly
suited for the problems of fusion and temporal alignment, as both problems can benefit from
the discovery of a common space of all observations under some constraints (e.g., the derived
shared space can act as the fused features). In what follows, we summarise the two novel
shared-space CA methodologies introduced in this thesis: Dynamic Probabilistic Canonical
Correlation Analysis (DPCCA) and Robust Canonical Correlation Analysis (RCCA).

e Chapter 9. Dynamic Probabilistic Canonical Correlation Analysis (DPCCA).
In Chapter 9, we propose a novel, dynamic probabilistic model based on a private-shared
space formulation. The private-shared space formulation entails that given a set of mul-
tiple observations, DPCCA recovers both the common characteristics of the sequence
at hand (in the shared space), while isolating portions of the signal which are specific
to each sequence (in the private space). Furthermore, by imposing Markovian depend-

encies on the latent variables, DPCCA is able to model the temporal characteristics of

2A detailed introduction to CA is presented in Chapter 3.
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the observations. This is, to the best of our knowledge, the first private-shared space
technique in the field which models temporal dependencies. Furthermore, DPCCA is
augmented with a time-warping process, leading to the DPCCA with Time Warping
model (DPCTW) model. Essentially, this is performed by attaching a time-warping
processes on the “clean” spaces of each observation sequence, i.e. by removing private,
non-shared characteristics and noise, thus enabling the alignment of noisy sequences
which contain a commonality set. In effect, this provides an elegant method for the tem-
poral alignment of multiple sequences in a clean, shared space. Summarising, given a set
of multiple observations, DPCCA is able to (i) isolate private characteristics belonging
to each set observations, (ii) learn the commonality which underlies all observations, (iii)
model temporal dynamics via Markovian dependencies, and (iv) align the observations

in time via a time-warping process.

Chapter 10. Robust Canonical Correlation Analysis (RCCA). Canonical Cor-
relation Analysis (CCA) is a traditional method, commonly utilised in multiple diverse
scientific fields. Nevertheless, the Gaussian noise assumption accompanying the ori-
ginal formulation of CCA limits the use under real-world scenarios where gross noise
and corruptions are observed. In Chapter 10, we propose the Robust Canonical Cor-
relation Analysis (RCCA) which can better deal with the problem of learning from
high-dimensional, grossly corrupted data. This is accomplished by robustly estimating
a low-rank latent subspace even in the presence of gross noise, by decomposing the ob-
servation sets into a low-rank component and a sparse noise component. Similarly to
DPCCA, a time warping process can be integrated into RCCA, in order to align the
corrupted sequences in the derived error-free low-rank subspace. Summarising, RCCA
(i) jointly decontaminates observation sets which have been perturbed by sparse, gross
noise, (ii) models the clear, noise-free shared space of the observations, and (iii) allows for
the temporal alignment of high-dimensional, grossly corrupted input sequences, all while
providing a framework which can be used for e.g., robust fusion and robust multi-modal

fusion.

The final method presented in this thesis deals with probabilistic feature extraction via com-

ponent analysis. This is in fact a more technical work, which nevertheless entails a set of

significant advantages when utilised in various applications. In what follows, we summarise

the first unifying probabilistic component analysis framework in literature thus far.
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e Chapter 11. A Unified Framework for Probabilistic Component Analysis.
Feature extraction and dimensionality reduction is a crucial pre-processing step in the
vast majority of machine learning, application-oriented systems, with the most typically
used method being Principal Component Analysis (PCA). Although deterministic CA
has been well studied in literature so far and several unification frameworks have been
introduced [58, 123, 52, 241], to this date no probabilistic unification framework has been
proposed for component analysis. This is of crucial importance, not only because unified
frameworks offer various insights into the workings of the methods at hand, but also since
probabilistic formulations (e.g., based on Expectation Maximisation (EM)) usually pose
several advantages, such as lower per iteration complexity as well as probabilistic infer-
ence facilitating explicit noise and uncertainty estimation. In Chapter 11, we propose
a unified framework which covers all component analysis methods whose corresponding
deterministic formulation can be posed as a trace optimisation problem without domain
constraints for the parameters. Besides PCA, we formulate other, commonly used meth-
ods including Linear Discriminant Analysis (LDA) and Locality Preserving Projections
(LPP), while other more recent approaches are also incorporated, such as Slow Feature
Analysis (SFA). The contributions derived from this framework, beyond the theoret-
ical insights on component analysis, are as follows: (i) probabilistic models for certain
CA methods are proposed for the first time, such as probabilistic LPP, (ii) explicit per
dimension variance modelling, (iii) reduced per-iteration complexity in comparison to de-
terministic equivalents, as well as (iv) a flexible framework upon which novel component

analysis methods can be straightforwardly generated.

1.3.2 Application-oriented Contributions

We have so far described both the challenges that this thesis deals with (Section 1.2), as well as
the methodologies introduced in this thesis in order to tackle such challenges (Section 1.3.1).
In what follows, we proceed to discuss several application-oriented contributions, inspired
mostly by the aforementioned challenges, typically encountered when deploying affect analysis

systems under real-world conditions.

Learning Continuous Emotion Dimensions via Exploiting Output Correlations
(Chapters 5, 6, 7)

The work presented in this thesis shows the first empirical results on large audio-visual corpora
which experimentally verify that emotion dimensions manifest various correlations which prove

beneficial for the task of learning continuous and dimensional emotional states. Furthermore,

24



1.3. Contributions

novel models fitted to the task are presented. In more detail, such output correlations are
exploited in our work by (i) learning output-dependencies during training in order to improve
accuracy on testing data, and (ii) removing redundancy in the output dimensions. In more
detail, regarding (i), in Chapter 5 we approach the problem in a straightforward manner; we
show how by appropriately utilising the so-called Bi-directional Long Short-Term Memory
Neural Networks (BLSTM-NN), we are able to exploit both temporal information as well as
temporal correlations. This is, to the best of our knowledge, the first work® which explicitly
proposes and models the relationship of output dimensions for the task of learning continuous
emotion dimensions, and has influenced several works by other researchers, such as [13]. This
concept is further studied in Chapter 6, where we propose an extension of the Relevance Vector
Machine (RVM) which is able to learn output-dependencies over time. In more detail, we pro-
pose a novel Output-Associative Relevance Vector Machine (OA-RVM) regression framework
that augments the traditional RVM regression by being able to learn non-linear input and
output dependencies. Instead of depending solely on the input patterns, OA-RVM models out-
put covariances within a predefined temporal window, thus capturing past, current and future
context. As a result, output patterns manifested in the training data are captured within a
formal probabilistic framework, and subsequently used during inference. We successful apply
our model to the problem of dimensional continuous prediction of emotions, and evaluate the
proposed framework by focusing on the case of multiple nonverbal cues, namely facial expres-
sions, shoulder movements and audio cues. We demonstrate the advantages of the proposed
OA-RVM regression by performing subject-independent evaluation using the SAL database
that constitutes of naturalistic conversational interactions. The experimental results show
that OA-RVM regression outperforms the traditional RVM and SVM regression approaches in
terms of accuracy of the prediction (evaluated using the Root Mean Squared Error) and struc-
ture of the prediction (evaluated using the correlation coefficient), generating more accurate
and robust prediction models. Regarding (ii), in Chapter 7, we present a simple methodology
based on the least-squares formulation of Canonical Correlation Analysis (CCA), which is able
to project features extracted from multiple modalities as well as output emotion dimensions
onto a common space, where their inter-correlation is maximised®. In effect, this entails that
(a) the observations become correlated to the output-dimensions, significantly reducing their
dimensionality, while (b) removing the output redundancy by projecting the emotion dimen-

sions on a diagonal covariance latent space. As we show in Chapter 7, this is highly beneficial

3 At time of publication [174].

4Note that since CCA is a static method, the output modelling in CSR is spatial and not temporal (in con-
trast to OA-RVM, where spatio-temporal modelling is achieved via a temporal window and BLSTM-NN where
previous inputs and outputs are recurrently fed into the model). CSR can be easily extended to accommodate
for temporal relationships by utilising temporal windows, as in case of OA-RVM.
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in terms of accuracy. Finally, it is important to state that in Chapter 7, we also contribute
in terms of empirically analysing emotion dimensions, answering questions such as (a) which
modality best correlates with particular emotion dimensions in comparison to other emotion
dimensions, and (b) analysing the correlation of emotion dimensions to (the intensity of) ba-
sic emotions. As mentioned in Section 1.2, (a) is of high importance when designing systems
aiming for particular emotion dimensions (such as e.g., arousal), as one can utilise the cues
which best correlate with the target dimension (E.g., audio cues for arousal). Furthermore,
as we show in our work, it turns out that emotion dimensions are better correlated to other
emotion dimensions than to feature sets (E.g., valence is better correlated to arousal, power,
intensity and expectation rather to facial expressions or audio cues). In turn, these findings

further motivate our work on learning output-associations amongst emotion dimensions.

Level of Interest as a Continuous Emotion Dimension (Chapters 7, 10 and 11)

The modelling of the level of interest constitutes a problem with very large applicability. The
demand for the detection of interest under real-world conditions (e.g., in museums) has led to
great attention from researchers in affective computing and machine learning [195, 227, 228].
In most related work, interest is not considered as an emotion dimension, but is usually
studied similarly to basic emotions, i.e. as a discrete label. In this thesis, we attempt to
treat Interest as an emotion dimension. That is, firstly in Chapter 7, we define Interest as
an emotion dimension. In a normalised range [—1,1], we define the dimension of interest as
ranging from disinterested (—1) to interested (1) while we gather the relevant annotations of
the Level of Interest by eight annotators. Subsequently, we study the correlation of interest
to emotion dimensions. In conclusion, we find that the continuous annotations of interest
are well correlated with emotion dimension annotations, despite the disjoint set of annotators
used in different sets of annotations. In agreement to findings in psychology, we find that
the level of interest best correlates with arousal and secondly with valence. Furthermore, in
Chapter 10, we provide a novel robust feature fusion technique, Robust Canonical Correlation
Analysis (RCCA), which we apply to the problem of audio-visual interest prediction. As we
show in relevant results, RCCA is able to outperform other feature techniques for this task.
Furthermore, by utilising other emotion dimensions in the comparison, we find that although
there is an overlap, the Interest measurements contain unique information with respect to other
emotion dimensions. Finally, in Chapter 11, we utilised a set of quantised interest annotations
and evaluate the Probabilistic Linear Discriminant Analysis (EM-LDA) we propose in the

same chapter on the problem of feature extraction for the detection of interest.
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Spatio-temporal Fusion of Multiple Annotations (Chapter 9)

It is a common scenario for applications which pertain to subjective labels to attain multiple
annotators in an attempt to reduce the subjectivity, and person-specific bias of the annota-
tions. As discussed in Section 1.2, this is a matter of crucial importance since the “ground
truth” derived from the multiple annotations is subsequently used in order to train machine
learning models to predict continuous emotions. Therefore, if the ground truth is not obtained
correctly, it is unavoidable that the relevant learning techniques employed will be unable to
model the true latent functions which map e.g., facial expressions to continuous emotions, but
rather will be negatively influenced by both annotator bias and fallacies of human judgement,
noise and other temporal discrepancies. Understandably, these issues establish the problem of
fusing multiple continuous annotations as perhaps the most significant challenge of adopting
continuous emotion annotations. Furthermore, it is important to note that most research-
ers simply average the annotations in order to obtain what will be considered as the ground
truth, a quite suboptimal approach to the problem as it renders the annotations susceptible

to various types of noise.

An attempt to solve this problem is presented in Chapter 9 where a novel probabilistic
method is presented for inferring the ground truth based on a set of imperfect annotations.
In more detail, we present a novel dynamic private-shared space probabilistic model based
on Canonical Correlation Analysis (CCA), which we dub Dynamic Probabilistic Canonical
Correlation Analysis (DPCCA). This approach offers a complete solution to the problem of
fusing multiple annotations, as it is suitable for tackling the most significant of problems
which commonly arise in such settings. Firstly, the private-shared space formulation entails a
significant advantage fitting to the inherent nature of this problem: the shared space represents
the underlying annotation which is common to all annotators, while the private space is
able to isolate the portions of the signal which are uninteresting and specific only to one
annotator. Furthermore, the dynamic nature of the model enables smoothing over noise of
various nature apparent in such annotations (e.g., false positives, errors originating from the
imperfect handling of input devices etc.). Note that a significant issue in fusing continuous
in-time annotations is the various temporal discrepancies that are exhibited by annotators,
a consequence of varying human response times, the level of concentration of the annotator
and so on. To accommodate for this issue, we extend DPCCA by incorporating a time-
warping process in the model, which corrects the temporal misalignments manifested in the
annotations. Moreover, as we show in Chapter 9, the specific formulation adopted allows for

automatic ranking of annotations, including automatically discarding malicious annotations
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(or spam). Finally, DPCCA is extended in order to include features and other observations
in the derivation of the ground truth. This is crucial in many problems where the actual
observations can be the only true reference to the actual annotated sequence, especially when
the annotations are very noisy. In effect, DPCCA tackles all problems that arise when fusing
multiple continuous annotations. Firstly, DPCCA exploits both (i) the existence of multiple
annotations as carriers of portions of the true annotations, and (ii) the availability of any
features which can act as objective references to the sequence at hand, such as audio and
visual features. These are in fact the only information at hand which can disambiguate
the existing annotations. Summarising, DPCCA (i) isolates annotator-specific spatial bias,
(ii) nullifies temporal discrepancies of annotators, (iii) exploits any available features, (iv)
models dynamics (v) ranks the efficacy of annotators and finally, (vi) provides a probabilistic
estimation of the “ground truth” as a representation of a clean, shared space underlying all

annotations.

Temporal Alignment of Human Behaviour (Chapters 9 and 10)

As mentioned in Section 1.2, the problem of temporal alignment of human behaviour, and
sequences is general, carries particular significance and is often encountered within the realms
of computer vision. In this thesis we approach this problem with two different models, which
both share the same principles of design (see also, Section 1.3.1). The first method, DPCCA,
is a probabilistic approach which, as discussed above, is particularly fitted for the problem of
fusing annotations, providing the modelling of latent dynamics as well inferring a probabilistic
measure of uncertainty. The second method, which we coin Robust Canonical Correlation
Analysis (RCCA), is particularly suited to high-dimensional data which are corrupted by

non-Gaussian noise, as are e.g., occlusions and other forms of gross noise.

e Probabilistic Temporal Alignment via DPCCA (DPCTW). In Chapter 9, we
derive a probabilistic, private/shared space model which can be used in order to tempor-
ally align sequences. Unlike previous works targeting temporal alignment, this method
can handle an arbitrary number of sequences, model temporal dynamics, as well as in-
fer the shared space of all sequences in a probabilistic manner. The advantage of this
formulation is that information which is private to a specific sequence is isolated in the
private space and does not influence the shared space. With the private space modelling
noise and bias, the shared space captures the commonality of the observations, which
is subsequently temporally aligned. This effectively allows for temporally aligning the

shared characteristics of temporal sequences, even though each may carry some unique
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information. Finally, DPCCA allows for a ranking of the observation sequences in terms
of the contribution to the “shared” information conveyed by the entirety of observation

sequences.

e Robust Temporal Alignment via RCCA (RCTW). Most of the CCA variants in
literature are based on a the Gaussian-noise assumption. Nevertheless, in many real-
world applications, the presence of gross types of noise is observed (E.g., gross errors due
to incorrect localization and tracking, presence of partial occlusion, as well as outliers).
These types of errors rarely follow a Gaussian distribution, which as aforementioned is
the de-facto assumption in most methods. To this end, in Chapter 10 we propose a
robust variant of Canonical Correlation Analysis, utilising low-rank approximation and
sparse errors. Given a set of high-dimensional observations corrupted by gross noise and
by incorporating a temporal alignment step, the method is able to temporally align the
observation sequences in a clean (from gross errors) latent space. As we show in both
real and synthetic experiments, this method is able to outperform other static variants

of CCA which appear unable to cope with gross noise.

Modelling Temporal Dynamics (Chapters 5, 6, 9, 11)

As discussed, the concept of modelling temporal dynamics and in effect temporal dependencies
is extremely crucial in terms of analysing human behaviour, especially when the observations
consists of video or audio sequences and not of static images. The modelling of dynamics is a
common feature which is exhibited by the models proposed in this thesis. In Chapter 5, the
employed BLSTM-NNs are inherently able to model such dependencies, and in-effect the pro-
posed output-associative fusion, consisting of BLSTM-NNs, is able to model both short and
long term temporal dependencies. The probabilistic OA-RVM presented in Chapter 6 is able
to do so by applying a temporal window to the output features, thus utilising neighbouring
temporal information. The DPCCA (Chapter 9) model is equipped with latent spaces which
model temporal dependencies, in effect by modelling the temporal evolution of the signal in
latent states following a first-order, directed Markov chain. In fact, in Chapter 11, where
we propose a unified framework for probabilistic component analysis, imposing temporal de-
pendencies in probabilistic component analysis models becomes straightforward, by simply
incorporating a Markov Random Field (MRF) with temporal connectivity in the latent space.
Note that other models which do not model dynamics are primarily tested on static data and
are based on deterministic CCA, which is inherently a static model. Nevertheless, temporal
dependencies can be modelled by employing sliding temporal windows or other feature trans-

formations, such as temporal kernels. Finally, we summarise by highlighting that the results
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presented in this work crystallize the significance of modelling dynamics in the problem of
continuous emotion dimensions and human behaviour in general, as in all cases the inclusion

of temporal capabilities increases the obtained accuracy.

The Fusion of Multiple Modalities (Chapters 5, 7, 9, 10)

As aforementioned, many open problems in affective computing and human behaviour ana-
lysis revolves around fusion, where typically information from multiple modalities (such as
audio and video) convey complementary information. In the first part of thesis, and namely
in Chapters 5, 6 and 7, we perform an experimental evaluation of various fusion techniques
while providing answers to questions such as which modality is better for predicting which
emotion dimension, and which fusion method is more suitable for predicting specific emotion
dimensions. We compare against several widely used fusion techniques such as model-level
fusion, where fusion is performed as an added layer on already trained models and feature-
level fusion, where features from multiple cues and modalities are simply concatenated. We
propose fusing multiple modalities via model level BLSTM-NN fusion 5, while we also show
how one can fuse multiple observation sets by utilising a block matrix formulation in CCA
(Chapter 7. Subsequently, driven by a fundamental idea proposed in this thesis, namely that
emotion dimensions exhibit spatial and temporal correlations which can be utilised to improve
the accuracy of predictive analysis, in the related chapters we propose fusion techniques which
essentially incorporate output information and dependencies during learning from observa-
tions. This line of work has been described in the subsection Learning Continuous Emotion

Dimension via Exploiting Output Correlations previously in the current section.

Subsequently, in the second part of the thesis, we propose novel fusion techniques, mostly
founding on the shared-space principle. Firstly, in Chapter 9, we introduce a novel dynamic
model which aims to isolate private information specific for each observation sequence and
learn any arising commonality amongst the observation sets. Although the method can be
generally utilised for fusion, we apply the method in Chapter 9 to the fusion of annotations with
observations in order to assist the inference of the clean “ground truth” signal from multiple
noisy observations. Subsequently in Chapter 10, we introduce RCCA, a robust variant of CCA,
which aims to isolate gross errors and learn a clean, common subspace for the observation
sets. RCCA is utilised for robust fusion of multiple modalities. In Chapter 10, we evaluate
RCCA on many fusion related problems, such as the audio-visual fusion for the detection of
interest along with heterogeneous face fusion/recognition, where images of subjects attained

via different sensors (e.g., visual images, 3D maps (depth information), infrared images as well
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as hand-drawn sketches) are fused, and the extracted features are used for classifying. Note
that in this scenario, we also examine the very challenging scenario when one of the modalities
is missing during testing, as well as the scenario where the set of testing classes and training
classes is disjoint, and thus during testing the goal is to match the multiple modalities amongst
themselves to obtain a classification. Note that the methods defined within out unifying
framework for probabilistic component analysis (Chapter 11) are not currently developed for

fusion, but can be easily extended to do so.

Dimensionality Reduction via Probabilistic Component Analysis: Face Analysis

and Visualisation (Chapter 11)

In Chapter 11 we present a Unified framework for Probabilistic Component Analysis, suitable
for dimensionality reduction and feature extraction. The proposed framework has a great the-
oretical novelty, as for the first time, a probabilistic framework which unifies most well-known
Component Analysis (CA) techniques is presented. In more detail, we present novel probabil-
istic models for applying Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA)). The models
derived via our framework bear several advantages over equivalent methods, such as reduced
complexity in comparison to deterministic equivalents, explicit noise modelling, estimating
per-dimension variance (thus being able to rank the derived latent space in contrast to other
probabilistic component analysis techniques), as well as allowing for more robust inference
due to the probabilistic nature of the model. We evaluate the Expectation Maximisation
(EM) based models derived from our framework on various problems. Firstly, we apply our
EM Linear Discriminant Analysis (EM-LDA) on the problem of automatically detecting the
level of interest of a subject on naturalistic, spontaneous data acquired in the Lisbon Zoo by
a robot acting as a virtual guide. Furthermore, we evaluate the methods on the problem of
Feature Extraction for Face Recognition on various popular databases such as PIE, YALE and
AR under noisy settings. Finally, we evaluate the derived methods on the problem of high-
dimensional data visualisation on the Frey Faces data. Via our experiments, we show that
the theoretical advantages posed by our frameworks greatly reflect on the obtained results, as

models derived via our framework outperform other, compared methods.

31



1.

Introduction

1.4 Publications

The work presented in this thesis has resulted in the following list of publications.

1]

32

e International Conferences

M. A. Nicolaou, S. Zafeiriou, and M. Pantic. A Unified Framework for Probabilistic
Component Analysis. In Furopean Conf. Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML/PKDD’14), Nancy, France, 2014.

M. A. Nicolaou, Y. Panagakis, S. Zafeiriou, and M. Pantic. Robust Canonical Correlation
Analysis: Audio-visual Fusion for Learning Continuous Interest. In Proceedings of IEEE
Int’l Conf. Acoustics, Speech and Signal Processing (ICASSP), 2014.

M. A. Nicolaou, Y. Panagakis, S. Zafeiriou, and M. Pantic. Correlated-Spaces Regression
for Learning Continuous Emotion Dimensions. In The 21st ACM International Conference

on Multimedia (ACM MM), 2013.

Y. Panagakis, M. A. Nicolaou, S. Zafeiriou, and M. Pantic. Robust Canonical Time
Warping for the Alignment of Grossly Corrupted Sequences. In Proc 26th IEEE Int’l
Conference on Computer Vision and Pattern Recognition (CVPR). Oregon, USA, 2013.

M. A. Nicolaou, V. Pavlovic, and M. Pantic. Dynamic Probabilistic CCA for Analysis of
Affective Behaviour. In Proceedings of the 12th European Conference on Computer Vision
(ECCV). Florence, Italy, 2012.

M. A. Nicolaou, H. Gunes, and M. Pantic. Designing Frameworks for Automatic Affect
Prediction and Classification in Dimensional Space. In Proceedings of IEEE Int. Conf.
Computer Vision and Pattern Recognition (CVPR-W), Workshop on Gesture Recognition,
Colorado Springs, USA, 2011.

M. A. Nicolaou, H. Gunes, and M. Pantic. Output-Associative RVM Regression for
Dimensional and Continuous Emotion Prediction. In Proceedings of IEEE International
Conference on Automatic Face and Gesture Recognition (FG), Santa Barbara, CA, USA,
March 2011.

M. A. Nicolaou, H. Gunes, and M. Pantic. Audio-visual Classification and Fusion of
Spontaneous Affect Data in Likelihood Space. In Proceedings of Int’l Conf. Pattern Re-
cognition (ICPR), Istanbul, Turkey, 2010.



1.5. Thesis Outline

[9] M. A. Nicolaou, H. Gunes, and M. Pantic. Automatic Segmentation of Spontaneous Data
using Dimensional Labels from Multiple Coders. In Proceedings of LREC Int’l Workshop
on Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality,
Valletta, Malta, 2010.

e Journal Articles

[1] M. A. Nicolaou, S. Zafeiriou, and M. Pantic. A Unified Framework for Probabilistic
Component Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI). Submitted - under revision.

[2] M. A. Nicolaou, V. Pavlovic, and M. Pantic. Dynamic Probabilistic CCA for Analysis of
Affective Behaviour and Fusion of Continuous Annotations. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2014.

[3] M. A. Nicolaou, H. Gunes, and M. Pantic. Output-associative RVM regression for
dimensional and continuous emotion prediction. Image and Vision Computing (IMAVIS),

Special Issue on The Best of Automatic Face and Gesture Recognition 2011, 2012.

[4] M. A. Nicolaou, H. Gunes, and M. Pantic. Continuous Prediction of Spontaneous Affect
from Multiple Cues and Modalities in Valence-Arousal Space. IEEE Transactions on
Affective Computing (TAC), 2011.

e Book Chapters

[1] O. Rudovic, M. A. Nicolaou, and V. Pavlovic. Machine Learning Methods for Social
Signal Processing. Cambridge University Press, 2014. To appear.

[2] H. Gunes, M. A. Nicolaou, and M. Pantic. Continuous Analysis of Affect from Voice
and Fuace. Springer-Verlag, 2011.

1.5 Thesis Outline

The rest of the thesis is structured as follows. In Chapter 2, we present an introduction to
the problem of affective analysis, covering mostly continuous dimensional emotion descrip-
tions, the perception of affect from multiple modalities, as well as discuss common feature

sets employed in the field. Subsequently, in Chapter 3 we introduce a set of machine learning
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techniques which are relevant to this thesis, such as regression, component analysis and time
warping for temporal alignment. The main body of this thesis is separated into two main
parts. While both parts revolve around both affective computing, machine learning and com-
puter vision, the first is primarily attentive to affective computing while the second is more

machine learning oriented.

In more detail, the first part, consisting of Chapters 5, 6 and 7, is more focused on exploring
the problems arising from adopting continuous and dimensional emotion descriptions. We per-
form an empirical analysis of the problem and identify the idiosyncrasies which, when taken
into account during the design of a system will prove beneficial. In more detail, we focus on
prediction by exploiting output-correlations (i.e., correlations amongst emotion dimensions),
an idea which is proposed and implemented in this work for the first time in literature (spe-
cifically, in [174]). In more detail, in Chapter 5 we perform an initial approach to the problem
by utilising various regression techniques such as the Bidirectional Long-Short Term Memory
Neural Networks (BLSTM-NN), while we examine the efficacy of utilising several modalities
and cues (visual consisting of facial expressions and shoulder movements, as well as audio cues)
in terms of predicting continuous emotions. We propose the utilisation of output-correlations
in a form of fusion (which we dub output-associative fusion), aiming to learn output patterns
commonly occurring in our data and in effect obtain better models for predictive analysis.
In Chapter 6, we formalise the concept of learning output correlations in emotion dimen-
sions further. We introduce a novel, probabilistic framework based on the Relevance Vector
Machine (RVM) which can learn spatio-temporal output dependencies while adopting sparse
probabilistic learning. Finally, Chapter 7 presents a simple idea on using Canonical Correla-
tion Analysis (CCA), a component analysis method aimed at analysing multiple observation
sets, in order to correlate observations to emotion dimensions, while removing any redundancy
arising in emotion dimensions. This is achieved by diagonalising the output covariance matrix,

and in effect facilitating the utilisation of single-output models without loss of information.

The second part of the thesis is more closely attached to component analysis. In more
detail, in Chapters 9, 10 and 11, we propose a set of novel probabilistic and deterministic
component analysis techniques and frameworks. While, as in the previous part, we are in
many cases driven by an attempt to solve a particular application related problem, this does
not constrain in any way the generality of application, as the solutions we provide are fitting
to many other fields and domains with similar settings, as we discuss. Firstly, in Chapters
9 and 10, we propose two different component analysis methods which have a common prin-

ciple: the discovery of a “shared-space”, an underlying commonality in all observation sets.
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Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), proposed in Chapter 9, is
a general method for probabilistically inferring the shared and private information conveyed
by observation sequences. Via this method, we tackle the problem of fusing a set of mul-
tiple annotations in a formant and elegant framework by preserving the common information
underlying all annotations. DPCCA also features temporal warping, ranking of annotations
as well as temporal modelling. In Chapter 10, we present the Robust Canonical Correlation
Analysis (RCCA), a robust variant of CCA which is able to isolate non-Gaussian noise due
to gross errors in the observation sets. RCCA is also extended with time warping, where the
temporal alignment takes place in the discovered error-free latent subspace. The applicability
of RCCA is evaluated on problems such as the temporal alignment of human behaviour, the
multi-modal fusion from multiple sensors (such as e.g., facial images obtained via 3D and
infrared sensors) as well as other related problems. Finally, our efforts in Chapter 11 are ini-
tially driven by a theoretical problem; the formulation of a unifying, probabilistic framework
which unifies all component analysis techniques, which can be formulated as trace optimisa-
tion problems with no domain constraints for the parameters. By utilising Markov Random
Fields (MRFs), we specify a probabilistic model which can be solved via Expectation Max-
imisation, and by manipulating the MRF latent prior one can achieve equivalent solutions
to CA methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA). As discussed
and shown via various experiments such as level of interest classification, face recognition and
visualisation, the models derived via our framework offer various advantages with comparison

to other equivalent (in terms of projection) methods.
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This chapter revolves around affect sensing and analysis. In particular, herein we provide the
reader with the necessary background in affect sensing, focusing mostly in terms of continuous
emotion dimensions. Furthermore, we provide a review of related literature which is most
relevant to the general research directions followed by this thesis'. In more detail, in Section
2.1, we firstly discuss the adoption of a dimensional emotion descriptions, along with related
work mostly in terms of predictive analysis on continuous emotion dimensions. In Section
2.2, we discuss the transition from posed to spontaneous expressions, while in Section 2.3,
we review the basic concepts which relate to the perception of emotions from modalities
(such as the visual and audio), while also discussing their fusion. In Section 2.4, we further

discuss the significance of modelling temporal dynamics as far as the automatic sensing of

"'We note that related work which is particular to specific chapters is further analysed in the relevant chapter
introduction.
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human behaviour is concerned. In Section 2.5, we detail the process of feature extraction from
relevant modalities, with particular emphasis placed on facial expressions from the visual
modality. Finally, we discuss issues related to the data, such as describing various commonly
employed databases (Section 2.6), while also referring to the problem of obtaining reliable
annotations (Section 2.7). Finally, we conclude the chapter in Section 2.8. For more details,

the reader may refer to [285], [98].

2.1 Continuous and Dimensional Emotion Descriptions

As discussed in Chapter 1, the adoption of continuous, dimensional emotion descriptions
arises as a direct consequence of several recent trends emerging in affect sensing, such as
the need to accommodate a wider variability of emotion descriptions along with capturing
emotions most often encountered in everyday life. The description of affect via the utilisation
of latent dimensions dates back to the work of Russell [216], with similar approaches taken

on in many works in psychology, such as [132, 244] and [242] (c.f., Figures 2.1 and 2.2).

Arousal

suprised

angry elated

Valence

unhappy neutral

bored™ relaxed

(a)

Figure 2.1: (a) Russell’s valence-arousal space. The angle is represented by « while the vector
€ represents the emotion (point) as a parameter of valence and arousal . (b) Nine facial
expressions arranged in the ordering of (a). Image adapted from [200].

While the main basic dimensions of emotion, valence and arousal, are deemed to capture most
affective variability encountered in interactive scenarios, other dimensions are often defined
in psychology literature, such as potency or power, referring to the degree of control that the
individual feels with respect to the emotional state [56, 163, 183]. In fact, several works consider
the dimensions of power and expectation to be significant carriers of affective information [79].

While the first databases adopting elicited spontaneous behaviours along with continuous
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Figure 2.2: Other 2D emotion categorisation approaches: (a) Approach of Larsen and Diener
[132] (b) Thayer [244], (c) Watson and Tellegen [242].

annotations where only annotated in terms of valence and arousal (e.g., the Sensitive Artificial
Listener, [64]), the introduction of more recent databases such as SEMAINE [157] adopted

affective annotations in terms of 5 total emotion dimensions, summarised in what follows.

e Valence refers to the positive or negative feeling of the subject’s emotional state.

e Arousal/Activation points to the subject’s feeling of dynamism or lethargy, i.e. how

passive or active the emotion state of the subject is.

e Power dimension consists of both power and control over the emotion, with more em-

phasis placed on the power which the emotion holds over the subject.

e Anticipation/Expectation relates to control in terms of the domain of information,

i.e. expecting an event or dialogue or not.

e Intensity, closely interweaved with arousal, points to how far the emotional state of the

subject diverts from a rational, cool state.

We clarify that each emotion dimension is usually normalised between [-1, 1], ranging from
e.g., negative to positive for Valence, passive to active for Arousal and so on. In cases where
an emotion dimension can be either present or absent, (and not ranging the spectrum between
two polar opposites), the normalisation is usually done between [0,1], actually representing
the intensity of the presence of the emotion (i.e. with 0 corresponding to not present and 1
present). For further details on different approaches to modelling human emotions and their

relative advantages and disadvantages, the reader is referred to [220, 87].
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2. Affect Sensing: Background & the State-of-the-art

There has been a significant increase of work in modelling continuous and dimensional
emotions during the past years. Since annotations are provided in a continuous space, many
systems that target automatic dimensional affect recognition, generally tend to quantize the
continuous range into certain levels. A commonly employed strategy is to map the problem
of classifying the six basic emotions to a three-class valence-related classification problem:
positive, neutral, and negative emotion classification (e.g., [283]). A similar simplification is
to reduce the dimensional emotion classification problem to a two-class problem (positive vs.
negative or active vs. passive classification) or a four-class problem ( classification into the
quadrants of 2D V-A space; e.g., [39], [80, 85, 110, 275]). For instance, [267] analyses four
emotions, each belonging to one quadrant of the V-A emotion space: high arousal positive
valence (joy), high arousal negative valence (anger), low arousal positive valence (relief), and
low arousal negative valence (sadness). Furthermore, [122] discriminates between high-low,
high-neutral and low-neutral affective dimensions, while [151] uses the SAL database and
quantizes the V-A into 4 or 7 levels and uses Conditional Random Fields (CRFs) to predict
the quantized labels.

Methods for discriminating between more coarse categories, such as low, medium and high
[126], excited-negative, excited-positive and calm neutral [41], positive vs. negative [172],
and active vs. passive [39] have also been proposed. Of these [39] uses the SAL (Sensitive
Artificial Listener) database and combines information from audio (acoustic cues) and visual
(Facial Animation Parameters used in animating MPEG-4 models) modalities. The authors of
[172] focus on audiovisual classification of spontaneous affect into negative or positive emotion
categories, and utilize 2- and 3-chain coupled Hidden Markov Models and likelihood space
classification to fuse multiple cues and modalities. Kanluan et al. [116] combine facial ex-
pression and audio cues exploiting SVM for regression (SVR) and late fusion, using weighted

linear combinations and discretized annotations (on a 5-point scale, for each dimension).

The works which model dimensional emotion descriptions in a continuum are even more
recent. Many of these works deal exclusively with speech (i.e., [275], [L51], [91]). The work
presented in [275] utilizes a hierarchical dynamic Bayesian network combined with BLSTM-
NN performing regression and quantizing the results into four quadrants (after training).
The work by Wollmer et al. uses Long Short-Term Memory neural networks and Support
Vector Machines for Regression (SVR) [151]. Grimm and Kroschel use SVRs and compare
their performance to that of the distance-based fuzzy k-Nearest Neighbour and rule-based
fuzzy-logic estimators [91]. The work of [96] focuses on dimensional prediction of emotions

from spontaneous conversational head gestures by mapping the amount and direction of head
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motion, and occurrences of head nods and shakes into arousal, expectation, intensity, power
and valence level of the observed subject using SVRs. Several recent works focus on multiple
modalities (e.g., combining visual and auditory cues). For instance, Eyben et al. [75] propose
a string-based approach for fusing the behavioural events from visual and auditive modalities
(i.e., facial action units, head nods and shakes, and verbal and nonverbal audio cues) to
predict human affect in a continuous dimensional space (in terms of arousal, expectation,
intensity, power and valence dimensions). Metallinou et al. in [164] focus on analysing the
vocal and body language behaviour (via MoCap features) of pairs of actors improvising dyadic
interactions. For each actor’s recording, they computed the Spearman correlation coefficient
between the mean annotation and the MLE curve. Activation and dominance were predicted
from visual and audiovisual cues reasonably well. Another representative approach is that
of Gilroy et al. [84] where a dimensional multimodal fusion scheme is proposed, in order
to support detection and integration of spontaneous affective behaviour of users (in terms of
audio, video and attention events) experiencing arts and entertainment. At this point, we note
that as discussed in Chapter 1 an important contribution of this thesis is the idea of utilising
relationships exhibited in emotion dimensions for learning. This has led to the adoption of
this idea by other researchers in the field, including recent works such as [206] and [13], which
utilise Conditional Random Fields (CRFs) to this end. Finally, it is interesting to note the
recent establishment of various workshops dedicated to the topic in related conferences, such as
the Emotion Synthesis, Representation, and Analysis in Continuous space workshop, dealing
particularly with the topic of continuous dimensional emotion descriptions, as well as the the
Audio/Visual Emotion Challenge and Workshop (AVEC) [257] which includes evaluation in

the continuous domains of valence and arousal.

2.1.1 Modelling the Level of Interest

Although the level of interest is not traditionally considered as part of the latent dimensions
which describe the affective state, the automatic detection of interest in audiovisual sequences
has been gaining rising attention amongst researchers, in both the fields of affective computing
and pattern recognition and machine learning [195, 227, 228]. From a psychology perspective,
interest has been extensively studied since 1910 [7], and has since then been considered as an
emotion by various experts [250, 2306], while several works have stated that interest is correl-
ated to emotion dimensions, mostly with arousal and secondly with valence [130]. Interest is
commonly defined as an emotion that causes the subject to focus his or hers attention to the
event taking place [236], and in conclusion, one can consider the magnitude of interest as a

continuous dimension. As can be understood, the detection of interest (and, similarly, engage-
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ment) is crucial for a vast number of applications, ranging from virtual guides to interactive
learning systems as well as enhancing the experience of human-computer interaction. Most of
related work on the automatic detection of interest [228, 226, 227] treats interest as a discrete
emotion, focusing on classification in terms of discrimination between interest/non-interest,
as well as discriminating amongst classes e.g., disinterest, indifference and interest. This is in
line with traditional research in affective computing and emotion theory, which focuses only
on a set of discrete emotions, such as anger and joy, but lacks the expressive variability of a di-
mensional approach. We note that, as discussed in the introduction (Chapter 1), in this thesis

we attempt to treat interest as a continuous emotion dimension (c.f., Chapter 7, Chapter 10).

2.2 Posed vs. Spontaneous Emotional States

Affect recognition systems are often criticised in terms of the difficulties which arise when
deploying them under real-world conditions. This arises not only due to the constraints and
assumptions that are usually undertaken when training such systems (e.g., constraint, labor-
atory environment etc.), but also to the type of behaviour which is utilised for training. In
more detail, affect sensing traditionally focused on posed emotion expressions, i.e. where act-
ors or subjects where asked to exhibit an expression. As discussed in Chapter 1, this leads to
behaviours which are quite unlike their spontaneous equivalents, since spontaneous emotion
expressions are more complex and do not follow a set of strict temporal phases, e.g., beginning
and finishing in neutral, with all facial muscles relaxed. As a result, many researchers shifted
their attention to modelling spontaneous human affect, in order to accommodate the increas-
ing demand for robust affect sensing under real-world conditions. The practical implications
of this shift lead to a multitude of challenges, arising mostly from recordings taking place in
much more unconstrained scenarios, where there is less control over lighting conditions, the
movement of subjects is much less constrained while various occlusions may manifest in the
recordings, e,g., by body parts, other persons or even foreign objects (such as microphones or

headsets).

Many recent studies focus on the analysis of spontaneously manifesting affective states, by
utilising both facial expressions [18, 44, 256, 8] as well as acoustic features [20, 134]. Interesting
findings relate to the differences between spontaneous and posed expressions. There has been
a lot of work in detecting differences between spontaneous and posed behaviour by the Affect
Analysis Group?, while the temporal characteristics of phases as described in Section 2.4

have been found important in detecting spontaneous vs. posed smiles [44, 258]. It is also

2http://www.pitt.edu/ emotion/publications.html
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significant to note the importance of modality fusion in discriminating between posed and
spontaneous emotions. It is typical for spontaneous body expressions to be manifested along
with an agreeing facial expression. There are different views on whether body motions or
facial expressions are most expressive of the spontaneity of the emotional expression. The two
main factors that contribute to this is the difficulty of control and the conscious censoring that
humans can impose. Darwin’s views support the facial expressions, since as he claimed, the
body expressions are more easy to control. Looking at this problem from a different angle,
Ekman [71] supports that humans usually try to censor their face (since as Ekman supports,
humans are more concious of their facial expression) thus the body expressions would be more
prone to expressing uncensored information. There has been work that also suggests that
truthful and deceptive behaviour differs on the number of head movements [34, 33], or the

lack of accompanying gestures [60].

Some examples of systems discriminating spontaneous from posed behaviour include [258],
which discriminates spontaneous from posed smiles by utilising geometric features and multi-
modal fusion using head movement, facial expressions and shoulder gestures. Based on the
data, the temporal facial states are detected, along with the activated AUs, while GentleBoost
and Support Vector Machines (SVM) are used for the classification. Experimentation also
occurs with modifying the abstraction level of fusion (early, mid-level and late), while the
authors conclude that from the specific results, the head pose seems to be the most important
modality. Another example is that of Littlewort et al. [145], discriminating between real vs.
fake pain. The system utilises Action Units (AUs) to encode facial expressions, using 20 AU
classifiers with input data images of posed and spontaneous facial expressions. The authors
presented better accuracy compared to human FACS experts (72% to 52%), while they argue
that such a method could be also used for other spontaneous expressions. It is important
to note that in general, research on spontaneous vs. posed expressions, whether it is from
psychology or in developing affect recognition systems agrees that the temporal dynamics

appear to be highly significant in terms of determining one from another [285].

2.3 Modalities and Emotion Perception

In this section, we refer to the various modalities typically employed for affect sensing. We
firstly focus on the wvisual modality, where we discuss facial expressions and body gestures.
Subsequently, we discuss the perception of emotion from audio cues, as well as provide a brief
reference to measuring emotions from physiological parameters. Finally, we discuss the issue

of multi-modal fusion.
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2.3.1 Visual Modality
Facial Expressions

In order to model the multiple, complex human facial expressions, Ekman and Friesen de-
veloped the Facial Action Coding System (FACS) [72] in 1978. This model provided a tax-
onomy of facial expressions, and is widely accepted as a de-facto standard utilised in order to
categorise the facial expressions of emotions. Based on Carl-Herman Hjortsjo’s book on the
anatomy of facial features [104], the FACS model consists of 32 atomic facial muscle actions,
(Action Units, AUs), which in turn represent the contraction or relaxation of one of the facial
muscles (Fig. 2.4). An important advantage of the FACCS model is that the annotation of
facial expressions is moved away from a subjective, personal interpretation of the annotator to
an objective representation of human expressions, which is observer-independent - although
usually an expert is required to correctly identify the activated facial muscles and thus, the
activated AUs. A list of facial AUs can be found in Fig. 2.3.

AU1 Inner Brow Raise [AU2 Outer Brow Raise |AU1 Brow Lowerer AUS5 Upper Lid Raiser  |AUG Cheek Raise AU7 Lids Tight AU43 Eye Closure mm

H " \ >, ]

¥ 1 - / \ b
B B 3 ] — — I —

BDEL BT 5 & e s ol 2

-

Figure 2.3: Facial Action Units (AUs), with 9 AUs for the upper face and 18 for the lower,
containing images from [72] and [189]. Figure adapted from [214].

Body & Gestures

Researchers have long attributed the expression of emotional states through body movement
and bodily gestures (e.g. [100, 3, 167]), originating from the work of Darwin on the description
of animal and human emotion expression. Various research has also supported that emotional
states can be disambiguated via analysing body expressions [259], while also indicating that a
better appreciation of emotional states can be achieved by analysing the entire body. In some
limited cases, studies have shown that body gestures can be as significant as voice and facial

expression modality [47]. There has been research in combining posture and body information
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Muscular Anatomy Muscular Action

Figure 2.4: Left: Relation between muscular anatomy and muscular actions (Action Units).
Right: The AUs of FACS. Circle represents fixed point towards which skin is pulled along the
line during activation while number represents the AU. Both images adapted from [72].

with kinematics [67, 92, 93, 94], while there were also attempts to relate emotions to kinematic?
data (e.g., joint angle data for head tilt, rotation, neck flexion, shoulder abduction, elbow
flexion and knee flexion) and gait parameters® (velocity, cadence or steps per minute). Results
for such attempts varied and demonstrated a difficulty in recognising emotions such as anger,
while attaining best performance in recognising sadness. The most characteristic parameters
expressing emotion were related to limb motion and general posture. It is important to note
that, in contrast to facial expressions, there is no standardised method in interpreting human
postures and gestures (like FACS) and no equivalent to AUs, although there have been efforts
in that direction (e.g. [127]).

2.3.2 Audio

Audio and speech are essential carriers of human affect. The acoustic behaviour of humans
is separated into the transfer of linguistic, paralinguistic and extralinguistic information, al-
though only linguistic and paralinguistic are communicative [133]. The linguistic part is refers
to language itself, being precisely the explicit verbal part of the communication. The paralin-
guistic element refers to the non-verbal part of the communication, which is used as to modify
the verbal meaning, or convey emotion (e.g. falsetto in mocking), whether it is expressed

unconsciously or consciously. Features such as volume, pitch and intonation are related to

3Kinematics is a branch of classical mechanics which relates to the description of motion
4Gait analysis is related to the quantization of parameters in order to help athletes improve their perform-
ance or identify posture related problems
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paralinguistics. The extralinguistic element refers to informative but not communicative in-
formation which might e.g. identify the speaker from overall pitch and loudness of speech.
The extralinguistic part refers to information which has no conventional meaning, but is un-
intentional, for example pitch differentiation based on age and sex [51]. Usually in emotion
[285, 97] and speech recognition [223], the discrimination is between verbal (linguistic) and
non-verbal (paralinguistic, extralinguistic) elements of speech. Important information with re-
spect to the expression of emotions is deemed to be conveyed in the paralinguistic part, while
it has been reported that spoken messages are not reliable in expressing affective behaviour
[169], as e.g. a different selection of words is used by different persons in order to express the
same affective state, while other difficulties can be for instance, in cases where human speakers
refer to emotional states which are irrelevant to their current emotional state. Despite the
difficulties, there have been attempts to generate dictionaries of words and affective states,
e.g. Whissell’s dictionary of affect in language [270], which is essentially a list of 4000 words,

with a 2D rating in the activation/evaluation space.

On the other hand, implicit paralinguistic messages are deemed to provide significant con-
tribution towards emotion recognition, while parameters which have been identified as strong
indicators of emotions are continuous acoustic measures, especially those who relate to the
pitch (fundamental frequency) such as frequency range, the mean, median and variability val-
ues [97]. Further detailed surveys in this area include [210] and [137], while a survey of acoustic
features is presented in [49]. It is important to note that while the identification of the optimal
feature set is yet an open problem, human listeners are accurate in detecting basic emotions
from prosody features (rhythm, stress, intonation) [210] and some non-basic affective states
from non linguistic vocalisations like laugh, cries, sighs and yawns [203]. A recent, systematic

survey on computational paralinguistics including tools and techniques can be found in [225].

2.3.3 Physiological Parameters & Heat

There have been other methods of attaining results and measurements of human affective
states, to which we will refer briefly in this section. Firstly, we refer to measuring physiological
parameters or bio-potential signals. The range of parameters ranges from measuring brain
signals by functional Near Infrared Spectroscopy (fNIS), scalp signals by electroencephalogram
(EEG), peripheral signals such as cardiovascular activity, electrodermal activity, Galvanic Skin
Response (GSR) and the electromyograph (EMG). It is believed that these measurements can
be translated to the valence-arousal emotion space. Furthermore, research results suggest a

correlation between emotional states and core body temperatures of mammals, e.g. the change
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in the facial temperature of monkeys when they are under stressful situations, or the body
temperature of rats under similar fearful situations. It is also notable that a correlation has
been found between measurements in blood flow and changes of affective states [252, 192],
due to thermo-muscular activity. Thus, by obtaining objective measurements of the skin
temperature change, there is a possibility of obtaining information for affect states of subjects.
Again, a generic framework for these measurements is yet to be defined. For more details, the

reader can refer to [97].

2.3.4 Fusing Modalities

A significant issue relating to affect sensing and automatic behaviour analysis lies in the
appropriate fusion of multiple modalities. Clearly, in human-to-human communication the
combination of information conveyed from speech, gestures and facial expressions is essential
in order to disambiguate the actual conveyed emotion [160, 159]. In human communication,
the modality information is fused either consciously or subconsciously. McNeil emphasises
what he calls the conceptual expression of gestures in combination with language, as he claims
that the speaker is thinking in images and in words, expressing words by language and images
by gestures. It is suggested facial expressions and vocal characteristics (tone of voice, prosody)
strongly influence each other ([155, 57, 239]). It has also been reported that body expressions
disambiguate the classification of facial expressions, as well as influence vocal features such as
tone [259]. Summarising, these findings point to the significance of properly fusing modalities
when analysing human behaviour. This includes balancing the contribution of modalities (i.e.,
properly weighting cues which are better for analysing particular behaviours). Also, in many
cases the modality information can be incongruent (i.e., disagreeing information). Meeren et
al. [162] investigate the agreement and conflict of facial and body modalities, by presenting
images of faces on body’s to participants, with agreeing (e.g. happy face on happy persons
body) or conflicting information (sad face on an exited persons body). The human participants
opted towards the trusting the body expression where the information was conflicting, leading
to an indication of the importance of bodily expression in the presence of ambiguous facial
expressions. The most common employed fusion techniques are feature-level fusion (where the
features are simply concatenated and normalised) and decision-level fusion, where a predictive

analysis algorithm is trained on single modalities, and the results are subsequently fused [285].
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2.4 The Significance of Temporal Features

As has been hinted in previous sections, the modelling of temporal dynamics is of crucial
importance to affect recognition, since such information provides further indications regarding
the affective state of the subject, which may not be conveyed if one observes each temporal
instance in isolation. For example, in [44, 258], it is shown that the timing of smiles can
demonstrate whether a subect is posing a smile or not. The significance of modelling such
temporal characteristics has been shown in many studies, such as [6] where the importance of
time slices against stills in personality judging is denoted and in [221], where discussion involves
temporal features of ”social” expressions such as smiles and other expression components such
as yawning and eyebrow flashing. The sequence of temporal phases of facial expressions (based

on Ekman’s work [68]) can be described as follows.

Neutral. The neutral phase is when there are no manifestations of muscle activation

and the face is considered to be relaxed.

Onset. Onset phase occurs at the beginning of an action, where the activity in the

facial muscles begins, and gradually increases in intensity.

Apex. Apex is the plateau when the intensity of the motion stabilises.

Offset. The last phase is the offset phase, where the muscular action begins to relax.

Typically, human facial expressions follow the above pattern, especially when the expressions
are posed. In cases where the emotion can be spontaneous, it is likely that the sequence
will not follow the precise steps defined above (e.g., two consequent smiles, with the second
onset initiating during the first offset, i.e. offset — onset — apex). In Fig. 2.5, we show an
example of such a case by illustrating a plot annotated with the intensity changes as well as
the temporal phases. Furthermore, in Figure. 2.6 we show an example of a spontaneous smile,
where as can be seen, an offset face is preceded by another onset and apex, instead of resting

to the neutral position as usually happens in posed data.

Regarding the temporal structure of body gestures, there have been similar studies although
much less explored. In general, a gesture can assume up to five temporal phases [97, 161].
These are defined as (i) the preparation phase, where the body parts move to the posture
where the gesture stroke will commence from, (ii) the pre-stroke hold state, which occurs
when the body parts hold in position, (iii) the where the peak of intensity is acquired in the
stroke phase, (iv) the post-stroke hold, where the final gesture position is reached, and (iv) the
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Intensity
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Figure 2.5: A hypothetical example from [74], where temporal facial phases are portrayed as
functions of intensity. The neutral state is assumed to occur when intensity is around zero.

Figure 2.6: An example of a spotaneous smile from the UvE Nemo database. Note that the
sequence of temporal phases during activation is not so strict in spontaneous behaviour. As
can be seen, the expression changes from apex to apex in the second and third frames without
firstly going through the neutral state.

retraction phase, where the body parts returns to the previous state. As argued in [161, 272]
the only required part in this transitional process is the stroke, while all other phases are

optional.

2.5 Feature Extraction and Pre-processing

In this section, we will refer to the typically employed methodologies used to extract features
from various recordings. We mostly focus on facial expressions, which are utilised in the
vast majority of work presented in this thesis. Two separate steps are usually employed
when utilising facial expressions: the detection of the face, and subsequently the extraction
of features. For completion, we also briefly refer to feature extraction from body movements

and the audio modality.

2.5.1 Facial Expressions
Face Detection

In order to extract features from facial images, the first step consists of two parts: (i) determin-
ing whether a face exists or not in a given image, and (ii) determining the actual location of the

face. This process is typically called Face Detection. While seemingly a relatively easy prob-
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lem, especially when compared to highly complex modern computer vision problems, it can
become highly challenging when studied under real-world conditions, with the manifestation
of occlusions, uncontrolled variations in the head pose and varying illumination conditions.
Typically, the problem is simplified by various assumptions, e.g., that there is only one face
in the image [97] or by limitations in the posture of the person (front or profile view). Face
detection is usually based on classifiers trained with positive and negative examples of faces,
while modern methods for face detection are typically based on the Viola-Jones algorithm
[263], which has been extended and improved in [142, 77]. Detailed surveys regarding the

advances in face detection can be found in [294, 286].

Tracking

Having detected a face, a set of points must be localised on the face, e.g., via tracking. This
process, often called facial point detection, may be be omitted in case only the texture of the
face is required for the task-at-hand, but it is most often required since in most applications
faces need to be spatially aligned and registered. Such methods can be based on texture
or both texture and shape, whereas techniques based on shape also propagate information
which essentially constraints the solution space, by disregarding e.g., anatomically impossible
results. An example of a facial point detector based on local Gabor wavelets is presented in
[266], later improved in [255, 154] by introducing graph-based constraints in order to validate
the face shape. The main disadvantage of this family of detectors lies in being unable to
cope with non near-frontal images. More recent methodologies which can deal with large
pose variations as well as deal better with occlusions and varying illuminations have been
proposed in [301, 278]. A very well known method based on both texture and shape refers to
Active Appearance Models (AAM) [156]. In particular, AAMs define facial shapes via a 2D
triangular mesh, while Principal Component Analysis (PCA)? is applied within each triangle
in order to model the variation within. The reconstruction error is optimised in order to
recover the optimal parameters via iterative gradient-descent. It is important to note that
other commonly employed tracking methods such as Eigentracking [27], Lucas-Kanade [148]
and Constraint Local Models (CLMs) [9] belong in the same family as AAMs, namely the
Parametrised Appearance Models (PAMs) [171].

Feature Extraction

Having detected a face, the next step consists of extracting the desired features. In what fol-

lows, we discuss the most commonly utilised feature sets, commonly categorised into geometric

5Component Analysis (CA) is more formally introduced in Chapter 3.
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and appearance based features [59, 285].

Geometric Features. As the name suggests, geometric features usually consist of encoded
information regarding the location and the shape of the face and facial features (e.g., location of
lips, eyes, nose and brows). The simplest feature set consists of 2D or 3D Cartesian coordinates,
although more complex representations have been utilised in related work, such as basis fitting
(e.g., polynomial and exponential), angle and distance-based representations. Furthermore,
other works [117] employ the parametrisation of shape components as a feature set, which in
many cases provides several useful invariant properties. There are many examples of works
which utilise geometric features in related work. To name a few, in [187, 188] a set of 20 facial
points is used in order to describe facial expressions. The derivation of further features such as
angles, distances and velocities has been used in works such as [256, 258]. Specifically, in [256],
the features are derived from 58 facial points, aiming to to capture the temporal structure of
Action Units, while in [258], 12 fiducial points along with head motion are utilised in order to
distinguish posed from spontaneous smiles. In [43], a model-based face tracked is utilised in
order to track facial features such as eyebrows, eyelids and mouth, along with head motion,
for the analysis of basic emotions. While geometric features are deemed unable to capture
particular Action Units (AUs) such as AU28 (inward lip sucking), since the change is only
visible in terms of texture, geometric features have been successfully utilised in the analysis

of facial expressions in many works [149, 186, 188, 256].

Appearance Features. Appearance features are essentially based on representations of tex-
ture information. Therefore, in contrast to geometric features, appearance features can capture
skin texture changes such as wrinkles and bulges [112, 197]. There is a multitude of appearance
feature sets utilised for affect sensing, including feature extraction via Component Analysis
methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA)
and Independent Component Analysis [19, 21]. A set of very commonly used descriptors (e.g.,
in [53, 295]) include the gradient-based descriptors such as Histogram of Gradient Orientations
[54] and the Scale Invariant Feature Transform (SIFT) [147]. An alternative feature set based
on the description of pixels relative to their neighbours is the Linear Binary Patterns (LBP)
method introduced in [180] and applied in many works pertaining to affect sensing, such as
[293, 4] as well being utilised in the provided feature set for the Audio/Visual Emotion Chal-
lenge 2013 [257]. Finally, we note that other feature sets which have been greatly applied in
affect sensing include the Gabor wavelets and Haar Filters [292, 150, 19, 271]. Each particular

feature set comes both with a set of advantages and disadvantages, in most cases determin-
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ing the tradeoff between accuracy, complexity and robustness to various transformations and
noise. For example, Gabor wavelets [135] essentially involve the modulation of a since wave
with a Gaussian envelope at multiple spatial scales, orientations and locations. Good results
have been obtained by utilising Gabor filters, while theoretically the process is assumed to be
similar to the human visual system [135]. While Gabors are deemed robust to misalignments,
they are also deemed very computationally expensive due to the presence of the convolution
operator. Also, a redundancy of features is also generated, which in turn is remedied by apply-
ing dimensionality reduction, usually via component analysis. Haar filters [271] correspond to
more coarse features, being more computationally efficient but less accurate in terms of texture
details. This is also an issue with the DCT [1], where texture variation from the frequency
domain is utilised. Since the high frequency coefficients are usually discarded, as they are
considered to be noise, the DCT may lead to a loss of texture details. Gradient-based feature
sets such as the Histograms of Oriented Gradients (HOG) [54] as well the Scale Invariant Fea-
ture Transform (SIFT) [147] are based on pixel gradients and are deemed especially robust in
terms of varying illumination and scale changes. Finally, Local Binary Patterns (LBP), [180]
encode a vector of 8 dimensions for each pixel, describing the pixel’s intensity with respect
to the neighbouring ones. LBPs are deemed computationally efficient and simple and robust
to illumination changes due to the relative description of the pixels intensity, while being less

robust to image rotations.

It is not clear whether appearance-based or feature-based extraction is best, since there have
been surveys suggesting the better performance of either appearance-based [17] or feature
based methods [245, 187, 256]. There have been attempts to produce hybrid systems (e.g.
[245, 289]), and it has been suggested that methods which combine the two approaches could
provide better results [184]. The main advantage of appearence-based feature sets lies in
representing subtle texture changes which can not be detected via geometric features, but it is
also a question of whether these changes are vital to a particular task. Geometric features on
the other hand are more intuitive as the descriptions can be easily grasped by humans, and
also facilitate the more direct modelling of dynamics and facial movement, since the features
are essentially spatial coordinates. The further interested reader can refer to [184] for more

details regarding feature extraction.

2.5.2 Body and Gesture

There have been many attempts in interpreting and capturing human gestures and body

posture, combining techniques from fields such as computer vision and image processing,
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mostly targeting Human Machine Interaction (HMI) systems. Specific systems that make use
of these capabilities are sign language recognition systems, computer control through gestures,

alternative computer interfaces and systems which target emotion recognition.

According to [97], methodologies relating to gesture and body recognition can be separated

into three categories:

e model-based, which depend on the body or body parts by modelling them or recovering

3D configuration from vision processing.

e appearance-based, which base the recognition process on 2D information, e.g. by

tracing edges which could form body contours..

e motion-based, where the main characteristic tracked is related to motion.

In general, gesture recognition is one of the most difficult tasks in computer vision, due to diffi-
culties commonly appearing in related scenarios (illumination, background/foreground separa-
tion, edge tracing, background, occlusions). There is also the issue of separating out irrelevant
body motions (which may occur during a proper gesture), determining when a gesture begins
manifesting and when it terminates, while also another problem is when a gesture overlaps

another.

There is quite a variety of techniques used for tracking, as covered in [65], while an example
of a system related to tracing specific features can be found in [178], where the system detects
shoulder positions by fitting a parabola to detected horizontal lines in the image and then
using the weighted Hough Transform to detect the shape. In [258], head motion is detected
with a cylindrical head tracker [277], while a 12 point tracker is used to capture facial features.

In order to track shoulder motion, a particle filtering technique is employed.

In general, body gesture recognition requires the calculation of different features, such as the
measuring the amount of motion compared to outline changes, hand velocity etc. It is again
noted that these methods are optimised for very constraint environments and the development
of generic body gesture systems is still an open issue. Relevant extensive surveys on these areas
include Yilmaz et al. [282] on general object recognition and specifically vision-based human
motion analysis, Mitra and Acharya’s [166], specific to hand gestures and facial expressions,
and Poppe [201], which surveys modern approaches to vision-based human motion while also
discussing theoretical issues of human motion in relation to modelling (e.g. kinematic models,

silhouettes, contours). There is also a discussion on the issue of estimation, i.e. finding the
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set of pose parameters to minimise the observation error in relation to the model (or example
set or projection function) used to estimate it. The field has advanced rapidly due to the
introduction of easily accessible 3D cameras (or scanners) such as the one utilised by the

Microsoft Kinect project [291].

2.5.3 Audio

The optimal set of acoustic features always depends on the particular problem at hand, as
well as the inherent characteristics of the dataset employed. In general, commonly employed
features include the fundamental frequency (or pitch), as well as the signal energy [285]. A
summary of acoustic features in relation to emotion expressions is presented in Table 2.1
(adopted from [19]). Regarding spectral features, the Mel-Frequency Cepstrum Coefficients
(MFCCs) are deemed one of the most commonly used feature sets. The mel-frequency bands
are equaly spaced on the mel scale® and thus are considered to better approximate the response
of the human auditory system. Other examples of acoustic features include the voice quality
[36], as well as the measurement of pauses and silences [62]. Following the shift towards
spontaneous emotion detection, several approaches combined acoustic features and spoken
words, while others used linguistic features to improve spontaneous emotion recognition. A
notable example of a popular acoustic feature extraction toolkit is described in [76], while

further details with respect to acoustic features can be found in [285], [225].

Table 2.1: Sound features in relation to emotional states. Table adopted from [49].

‘Anger ‘Happiness ‘ Sadness ‘Fear ‘Disgust
Rate Slightly faster Faster or slower Slightly slower Much faster Very much faster
Pitch Average |Very much higher [Much higher Slightly lower Very much higher |Very much lower
Pitch Range  |Much wider Much wider Slightly narrower Much wider Slightly wider
Intensity Higher Higher Lower Normal Lower
Voice Quality |Breathy, chest Breathy, blaring tone|Resonant Irregular voicing Grumble chest tone
Pitch Changes |Abtrupt on stressed|Smooth, upward Downward in ections [Normal Wide, downward
Aritculation Tense Normal Slurring Precise Normal

2.6 Databases

An important problem that researchers in this field are often confronted with is the proper
acquisition and labelling of data. We have already referred to the problem of determining
spontaneous vs. posed data (Section 2.2) and in general, the long-term goal of realising

systems which perform automatic spontaneous emotion recognition. In fact, strictly speaking

5The mel scale is defined as a scale of pitches which are judged to be equi-distant from one another by
human listeners.
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the available databases can be separated into the following, depending on the setting of the

recordings.

e Posed, where the participants are requested to produce the affective state on demand,

usually in laboratory settings.

e Induced, where the experiment takes place in controlled environments which are de-
signed in order to induce the affective states, e.g. by projecting video clips to the

participants or capturing human-to-human or human-to-machine interaction [14].

e Spontaneous, as in occurring in real-life settings, e.g. in naturalistic human to human

communication.

Recording the subjects in such databases requires the use of cameras for facial and body ex-
pressions and microphones for recording the audio signals, while often motion capture systems
are used to record 3D postures and gestures. Ideally, these sensors should be minimally intrus-
ive to the actual recording process in order to minimise the effect on the subjects behaviour.
Issues relate to variant noise levels in the audio signal as well as various occlusions, e.g., of the

face by various equipment or body parts.

Most existing affective databases contain posed data, where the expressions exhibited by
the participants follow the neutral-onset-apex-offset-neutral transition of facial expressions.
This is due to the fact that posed data are easier to squire than spontaneous or induced,
while there are many difficulties in terms of capturing spontaneous manifestations, as they are
more difficult to elicit or capture, they are more influenced by the context and therefore more
difficult to analyse and track, are more noisy (e.g., more occlusions by body parts, different
angles and distances from the camera etc.) while even the annotation process (labelling) of

the data becomes more difficult.

Due to the rising interest in detecting spontaneous emotions there have been attempts to
generate databases of spontaneous emotions. While typically, the basic emotions are used
for categorisation in posed databases, spontaneous databases often use the may utilise more
descriptive approaches, such as dimensional emotions, including dimensions such as valence
and arousal. A database which contains both spontaneous and posed data is the MMI Database
[189], considered to be one of the most comprehensive set of facial behaviour recordings,
providing both images and videos depicting frontal and profile views. It includes more than

1500 samples, while the samples are encoded utilising the FACS system.
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In this thesis, we mostly utilise databases annotated in terms of continuous emotion dimen-
sions, namely the Sensitive Artificial Listener (SAL), as well as the Sustained Emotionally Col-
oured Machine-human Interaction using Nonverbal Expression (SEMAINE) databases. SAL is
essentially the first database which adopts a human-to-human interactive scenario with a goal
of eliciting spontaneous emotions, while also adopting continuous and dimensional emotion
annotations. SAL has been superseded by SEMAINE, which offers a similar scenario while
offering various advantages, including the improvement of annotation quality and quantity,
better input device quality with a reduction of noise, as well as more subjects and sessions.

We discuss more regarding these databases in what follows.

The SAL database

The Sensitive Artificial Listener Database (SAL-DB) [64] contains audio-visual, naturalistic
affective conversational data taking place between a participant and an avatar (operated by a
human): Poppy (happy), Obadiah (gloomy), Spike (angry) and Prudence (pragmatic). Each
avatar is considered to have a different personality: Poppy is happy, Obadiah is gloomy, Spike

is angry and Prudence is pragmatic.

e

Figure 2.7: Stills from the SAL database, where sessions involving the above subjects have
been annotated in the valence-arousal space.

The audiovisual sequences have been recorded at a video rate of 25 fps (352 x 288 pixels) and
at an audio rate of 16 kHz. The recordings were made in a controlled laboratory setting, using
one camera, a uniform background and constant lighting conditions. The SAL data has been
annotated by a set of annotators who provided continuous annotations with respect to valence
and arousal dimensions using the FeelTrace annotation tool [48]. Feeltrace allows annotators
to watch the audiovisual recordings and move their cursor, within the 2-dimensional emotion

space (valence and arousal) confined to [—1, 1], to rate their impression about the emotional
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state of the subject. Although there are approximately 10 hours of footage available in the SAL
database, V-A annotations have only been obtained for two female and two male subjects. This
is the portion of data we utilise throughout the experiments on SAL in this thesis (Chapters
5, 6). Example frames from the SAL database are shown in Fig. 2.7.

The SEMAINE database

The SEMAINE (Sustained Emotionally Coloured Machine-human Interaction using Nonverbal
Expression) database [157], contains a set of audio-visual recordings focusing on dyadic inter-
action scenarios, similarly to SAL. The recording scenario is similar to SAL, with the adoption
of HD video and a smoother frame rate (50 frames per second) in SEMAINE. The dyadic in-
teraction scenarios consist of a human subject, conversing with an operator, who assumes the
role of an avatar. Each operator assumes a specific personality, which is defined by the avatar
he undertakes: happy, gloomy, angry or pragmatic. This is in order to elicit spontaneous emo-
tional reactions by the subject that is conversing with the operator. As discussed in Section
2.1, SEMAINE has been annotated in terms of several emotion dimensions, particularly in
terms of valence, arousal (activation), power, expectation (anticipation) and intensity. Stills
from the SEMAINE database are shown in Fig. 2.8.

2.7 Continuous Annotations: Obtaining the Ground Truth

As discussed in the introduction of this thesis, obtaining annotations continuously in time is a
tedious and error-prone task, leading to many open challenges. In this section, we summarise
the aforementioned set of issues with respect to the database described above, namely SAL and
SEMAINE. The typical annotation tool which has been employed in both SAL and SEMAINE
is the Feeltrace tool [48], which allows the affective state of the individual to be evaluated in
terms of dimensions such as valence and arousal. In the case of audio-visual recordings, the
annotator which is responsible for the annotation observes and listens to the recording. The
annotator moves the mouse and in effect the cursor indicating the current annotation. The
annotation is usually performed real-time and later normalised from —1 to 1. The agreement of
annotators with regards to the mapping of the observed emotional stimulus in to a dimensional
space is difficult to achieve. Problems adopting labels related to emotions carry an inherent
issue of label subjectivity. When measuring quantities such as subject interest or emotion
dimensions such as valence, it is natural for some ambiguity to arise, especially when utilising
spontaneous data in naturalistic, interactive scenarios. This is essentially the trade-off between

capturing a larger spectrum of expressions, and minimising the space in order to reduce label
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ambiguity. Furthermore, the on-line nature of the annotation process renders the resulting
annotations vulnerable to various temporal lags which depend on the response time of the
annotator. In more detail, the annotator has to first interpret the emotional state observed,
subsequently map it to the emotion dimension annotated, and then perform a movement with
an input device (here, mouse) in order to reflect his understanding of the emotional state of
the subject. As can be understood, this leads to a temporal lag in the annotation with respect
to the video itself, which is dependent on many parameters such as the complexity of the
emotion being portrayed, a set of annotator specific human factors as well as any extra effort

required by the input device. Clearly, the task of obtaining a “gold standard” (i.e., the true

Figure 2.8: Frames grabbed simultaneously from the five video streams offered in SEMAINE.
The operator appears on the left, while the user on the right. The image has been adapted
from [157].

annotation, given a set of possibly noisy annotations) is it is clear that the task of obtaining
a “gold standard” (i.e. the “true” annotation, given a set of possibly noisy annotations),
is a quite tedious task, and researchers in the field have not been agnostic regarding this in
previous work [164]. In the majority of past research related to affect sensing though, usually a
form of averaging is employed for this task, assuming that the true annotations is represented
by a simple average of the multiple annotations [274], or utilising weighted averages, e.g.,
by the correlations of each annotator to the rest ([174], Chapter 5). Nevertheless, majority
voting (for discrete labels) or averaging (for continuous in space annotations) makes a set of
explicit assumptions, namely that all annotators are equally good, and that the majority of the
annotators will identify the correct label eliminating any ambiguity /subjectivity. Nevertheless,
in most in real-world problems these assumptions typically do not hold. As we discussed, even
in the case of SEMAINE and SAL, where the annotators are trained experts, they are not
infallible when it comes to a subjective process which incorporates all the pitfalls discussed
above, indicating the existence of a strong spatio-temporal bias. On top of that, in many cases
though, annotators can be inexperienced, naive or even uninterested in the annotation task.
This phenomenon has been amplified by the recent trend of crowdsourcing annotations (via
services such as Mechanical Turk), which allows gathering labels from large groups of users,

who usually have no formal training in the task-at-hand, shifting the annotation processes from
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a small group of experts to a massive but weak-annotator scale. In general, besides experts, we
can consider that annotators can be assigned to classes such as naive which commonly make
mistakes, adversarial or malicious annotators, that provide erroneous annotations on purpose,
or spammers that do not even pay attention at the sequence they are annotating. It should be
clear that if e.g., the majority of annotators are adversarial then majority voting will always
obtain the wrong label. This is also the case if the majority of annotators are naive, and
on a difficult/subjective data all make the same mistake. This phenomenon led to particular
interest manifesting in modelling annotator performance, c.f.[208, 209]. Note that due to the
discussed temporal lag exhibited by the annotators, simply averaging the annotations without
eliminating temporal discrepancies is very likely to lead to both phase and magnitude errors
(such as false peaks). We clarify here, that temporal lags depending on annotator response
times are always “later” in time (i.e. are positive temporal shifts). In effect, this means that
if we adopt simple averaging, there will always be a misalignment between the annotation and

the sequence-at-hand.

The idea of shifting the annotations in time in order to attain maximal agreement has been
touched upon in [173] and later in [152]. Nevertheless, these works refer to a constant time-
shift, which assumes that the annotator-lag is constant. This does not appear to be the case,
as the annotator-lag depends on time-varying conditions. Note that in Chapter 9, we present

a novel probabilistic model aiming to resolve such temporal errors in the annotations.

Finally, we discuss the method proposed in [208] towards the fusion of multiple annotations
and labels. In this work, an attempt is made to model the performance of annotators, who
assign a possibly noisy label. The latent “true” (binary) annotation is not known, and should
be discovered in the estimation process. By assuming independence of all annotators and
furthermore, assuming that annotator performance does not intrinsically depend on the an-
notated sample, each annotator can be characterised by his/her sensitivity and specificity. In
this naive Bayes scenario, the annotator scores are essentially used as weights for a weighted
majority rule, where if all annotators have the same annotator characteristics it collapses to
the majority rule’. Note that the more general approach of [208] indicates that in the absence
of a gold standard, neither simple nor weighted majority voting is optimal. In fact majority
voting can be seen only as a first guess aimed at assigning an uncertain consensus “true” la-
bel, which is then further refined using an iterative Expectation Maximisation (EM) process,

where both the “true” label and the annotator performance are recursively estimated.

"Detailed analysis of majority voting, including its weighted version, can be found in [128, 218].
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2.8 Conclusions

In this section, we provided a thorough examination of the background which relates to affect
sensing and analysis, covering the general directions employed by this thesis, as well as referring
to various related work. In what follows, we briefly summarise the relationship of the aspects
covered in this chapter with respect to the work presented in this thesis. In more detail, in the
first part of this thesis (Chapters 5, 6 and 7), we focus on presenting a set of methodologies
aiming at learning continuous emotion dimensions by further utilising relationships amongst
the output dimensions. We also present novel methodologies which utilise the fusion of multiple
modalities (including facial expressions, shoulder gestures and audio cues), as well as provide
an empirical analysis to the problems which arise from utilising continuous emotion dimensions.
In the second part of the thesis, we firstly focus on the problem of fusing multiple continuous
annotations (Chapter 9), and propose an approach which aims to deal with the multitude
of problems arising in this scenario. In Chapter 10, a robust, multi-modal fusion technique
is proposed, which is evaluated in terms of predicting continuous interest. In Chapter 11
we propose a unifying framework for probabilistic component analysis, giving rise to many
methods which can be applied for feature extraction in affect sensing. In the same chapter,

we apply the proposed EM-LDA to the problem of interest classification.
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3.1 Introduction

In this chapter, we refer to a set of machine learning techniques which are closely to the content
of this thesis. Firstly, in Section 3.1.1 we discuss the issue of supervised and unsupervised
learning, as well as refer to generative and discriminative models. In Section 3.1.2 we provide a
high level introduction to the methods described, including regression and component analysis.
In Section 3.2, we discuss methods based on Recurrent Neural Networks (Section 3.2.1) and
Bayesian Regression (Section 3.2.2), while we briefly refer to Support Vector Regression (SVR)
in Section 3.2.3. Subsequently, in Section 3.3, we shift to component analysis and detail
various, commonly employed, component analysis methods. In Section 3.4, we discuss time
warping (temporal alignment) and provide a connection to component analysis, while finally,

in Section 3.5 we conclude the chapter.

3.1.1 Supervised vs. Unsupervised Learning

As in all learning problems, machine learning problems tangent to automatic behaviour ana-

lysis consist of a set of observations (features) and in many cases, a set of labels (annotations).
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In case a set of labels is available, the goal is to learn a mapping from the feature space to
the labels (e.g., learn a mapping from a face image to the emotion expressed by the image).
Otherwise, the goal becomes the extraction of a subspace from the original observation space
which preserves particular desired properties of the signal (e.g., given a set of images (obser-
vations), remove the features which characterise the identity of the subject and keep only the

features which pertain to the expression of the subject).

The above setting also determines, to a large degree, the type of learning method employed
for a particular task. In general, a learning problem can be approached either by supervised or
unsupervised learning. In case annotations (labels) are available, one can resort to the so-called
supervised learning methods. This implies that for a given problem, a set of annotations has
been obtained either manually or automatically. In automatic behaviour analysis, the typ-
ical case is that the annotations have been manually annotated - a costly task, as we discuss
throughout in this thesis. Usually, supervised learning leads to the adoption of discriminative
learning methods, which model the conditional distribution of the labels given the observa-
tions. In many cases, this has been shown to be beneficial in terms of classification accuracy,
since this distribution is exactly what is required in order to classify. Nevertheless, this comes
at a sacrifice of model flexibility. In case no labels are available, one has to resort to unsu-
pervised learning techniques in order to extract interesting information from the observations.
Unsupervised learning is highly affiliated with generative models, which focus on modelling
joint distributions (instead of conditional as for discriminative). In general though, it should
be clarified that discriminative methods can be extended for unsupervised tasks, and gener-
ative models can be extended to supervised or semi-supervised scenarios. In what follows, we
discuss regression and component analysis, with regression being a predictive analysis method
which is inherently supervised and discriminative, and component analysis, where methods
are inherently generative. Furthermore, Component Analysis methods can be both supervised
and unsupervised depending on the constraints that are imposed, e.g., if the constraints are
simply to maximise the variance of the data then no labels are needed; if while doing so we

are required to conform to class label constraints, then the method becomes supervised.

3.1.2 Regression and Component Analysis

In this section, we will introduce regression and component analysis more formally. Inter-
estingly enough, an incredible amount of research in machine learning over many decades is

based on a seemingly simple linear equation:

x =wla. (3.1)
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Essentially a deterministic linear mapping, the goal of a problem utilising such a mapping is
only defined when both specific interpretations are assigned to each of the random variables
x and 1, as well as the desired behaviour of w is specified. In general, in machine learning
scenarios we have one or more set of observations, or input data. These essentially represent
any information we have with regards to the problem, and usually they will also be available
during testing, where we have already trained a system and deployed it in the target applic-
ation domain. This information can be e.g., in the form of features (or observations), which
are usually extracted via the procedures detailed in Section 2.5. Furthermore, in predictive
analysis scenarios (regression, classification), during training we also have a set of class labels
or outputs (annotations), which essentially encapsulate a form of class or target value which
may correspond to each training observation sample (in continuous scenarios), or can carry an
entire value for an entire segment or sequence. These labels essentially represent the targets
of the linear function presented in Eq. 3.1 (in case they are continuous). In other words, we
alm to learn a function mapping from the observations to the labels, or put simply, from the
inputs to the outputs. Once this function is learned, the inputs should enable the accurate
prediction of the outputs. Adopting the aforementioned scenario, let us assume we are given
observations x; and target values for each observation, y;. In this regression setting, Eq. 3.1

becomes

T
yi=W X,

input: y;, x;. (3.2)

essentially meaning that one wants to obtain the best w which map the inputs x; as close
as possible to the given outputs y;. Having learnt the correct w, is the only requirement
for predicting y* given a test datum, x;. Interestingly enough, most of the state-of-the-
art predictive analysis techniques employed in modern research and industry are based on
optimising this simple functional, ranging from simple linear regression to the Relevance Vector
Machine (RVM) [246] as well as the Support Vector Machine [66].

Regression and classification though are not the only techniques which are based on learning
a simple mapping. Component Analysis (CA), a significant branch of statistics and machine
learning, consists of a set of techniques which aim at factorising a given signal in a manner
which facilitates an employed task, e.g. clustering or even regression and classification. The
differentiating factor in unsupervised CA, is that essentially there are no target labels to learn a
mapping to'. CA techniques essentially infer a latent, unobserved space which satisfies a par-

ticular set of desired properties, with the most common being Principal Component Analysis

"While label information may be available and component analysis techniques can be easily adapted in
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(PCA), which essentially recovers a parsimonious explanation of the observations, providing
a latent space which maintains the variability of the input features while decorrelating them
and usually reducing their dimensionality. As described, in CA we usually have a set of ob-
servations (x;), and aim to discover the latent space which satisfies the desired properties (in

the form of constraints), y; with w again being the loadings. Eq. 3.1 can now be expressed as

T
Yi=WwW X;

input: x;. (3.3)

where the actual loadings are commonly found by formulating a trace-optimisation or least-
squares problem under particular constraints. Examples of such formulations will be discussed

in more depth in Section 3.3.

3.1.3 Non-linear Mappings

While, as aforementioned, the linear mapping is a basic functional commonly employed, in
many scenarios features need to be mapped in higher dimensional spaces: this is because
the data in their current form are simply not linearly separable. Typically, this is performed
by utilising the kernel trick in regression scenarios, that is, by estimating an implicit feature
space without actually estimating the coordinates of the data in the feature space, but rather
simply computing the inter products between the images of all pairs of data. This makes
the projection in many cases feasible, and also computationally efficient. E.g., in the RVM
which employs the regression linear mapping (Eq. 3.2), we simply need to replace x; for ¢(x;),

leading to the mapping
yi = w' o(x;) (3.4)

where ¢(x;) = [K(xi,%x1), K(Xxi,X2), ..., K(x;,xx)], with N being the number of samples and

K a non-linear function (kernel), such as e.g., the Radial Basis Function (RBF), defined as

K(xi,%;) = exp{—W}. (3.5)

with [ being the length scale. This process is similar in SVM and other non-linear regression
techniques and many kernel types may be utilised [262]. Summarising, this allows us to simply

pre-compute the kernels between all pairs of data and still apply a linear method.

many cases to account for labels (i.e. supervised component analysis), the methods do not map the features to
the labels but rather utilise the labels for optimally recovering the projections.
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3.1.4 Handling Noise

Another typical desired characteristic in machine learning is resilience to noise. This is a
common situation encountered in almost all learning scenarios, since data is nearly never
perfect. The typically assumed form of noise is Gaussian. In probabilistic scenarios, as e.g., in
RVM or Probabilistic PCA, this can be easily added to the model functional, by incorporating

a noise term €. E.g., in RVM, the regression functional defined in Eq. 3.2 is extended as

T
Yi=W X; +¢€

e ~N(0,0%), (3.6)

where € represents the noise as independent samples from a zero-mean (Gaussian noise process
with variance o2. Interestingly enough, if one takes the Maximum Likelihood (ML) solution
of Eq. 3.6, one easily finds that the actual term being minimised (up to a constant) is the

least-squares penalty,

> (yi—whxi). (3.7)
i=1
In effect, this shows that least squares estimates are actually equivalent to producing the

maximum likelihood solution of Eq. 3.6, where the parameters and variables are linearly

related up to Gaussian noise.

3.2 Related Regression Techniques

In this section, we describe in more detail a set of related methods which are utilised in
the thesis. Firstly, in Section 3.2.1 we describe Recurrent Neural Networks (RNNs), and in
more detail one of the most recent reincarnations, Long Short-Term Memory Neural Networks
(LSTM-NNs). LSTMs are actually the first RNN variant being able to model long range
temporal dependencies, a crucial aspect in terms of analysing the inherently temporal char-
acteristics of human behaviour (as discussed in Chapter 2). Nevertheless, neural networks
have been heavily criticised in the past decades, mostly due to (i) the lack of efficient training
algorithms and (ii) the inherent lack of model interpretability; a mapping was learnt, but
this provided no information regarding the relative importance of the data as well as no in-
formation regarding uncertainty of predictions. The first issue, that of efficient training, was
recently resolved via the introduction of Hinton’s contrastive divergence method, significantly
speeding up the learning procedure, as well as the increase of computational capabilities of

modern computers and the utilisation of GPUs in training. Nevertheless, the second issue
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of interpretability remains, while many of the algorithms employed are based on empirical
evaluations and are not theoretically justified in terms of e.g., convergence or even the actual
approximation targets. In effect, this has led many researchers to characterise deep neural
networks as simply powerful empirical feature-extractors (often utilised as a “black-box”),
providing just a single step in the design of a large complex system. This leads to the second
model we discuss. The Relevance Vector Machine (RVM), detailed in Section 3.2.2 is a very
popular probabilistic regression technique (or more accurately, a Sparse Bayesian Regression
technique), which infers probabilistic distributions of datums utilising Bayesian Regression in
a fast and robust manner. RVM utilises only the set of data which are highly relevant to the

output datums, while providing parsimonious explanations of the data at hand.

3.2.1 Recurrent to Long Short-Term Memory Neural Networks
Recurrent Neural Networks

Recurrent Neural Networks (RNN) are significant tools in the analysis of time series. While
traditional feedforward neural networks are allowed to only have forward connections (i.e. from
the input to the output), recurrent neural networks also employ feedback connections, thus
permitting the formation of cycles and loops. This adjustment facilitates the adaptation of
RNNSs to past inputs, therefore incorporating temporal dependencies in the learning procedure,

thus enabling the analysis of temporally enriched sequences.

In mode detail, assuming that we have a regular feedforward network, given an input = at

time t, the network learns the following mapping:

y(t) = F(z(t)) (3.8)

That is, the network, which has an internal configuration consisting of weights on connections
between neurons along with the family of activation functions used, will map the input ()
at any time ¢ to the output y(¢). It is important to stress that the output depends only on the
current configuration and input. On the other hand, a recurrent network can operate on an
internal state space, which ideally contains all relevant information from the past behaviour
of the system. This extends the network capabilities by allowing it to capture temporal
information and exploiting them during learning. Thus, the recurrent network’s output at
time ¢, y(t) would be a function of the current state of the network s(¢), which in turn depends

on the previous state s(t — 1) and the current input x(¢):

y(t) = F'(s(t)) (3.9)
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s(t) = G (s(t — 1), z(t)) (3.10)

It is interesting to observe that this Markovian-like dependencies expressed in the above
equations are very similar to typical Linear Dynamical Systems, only we essentially have a
neural network function instead of a simple linear mapping. To contrast the computational
power of recurrent neural networks in comparison to regular feedforward networks, it is enough
to say the following: while a feedforward network, given enough hidden nodes can approximate
any spatially finite function, recurrent neural networks (again assuming any number of hidden
nodes) can represent any Turing Machine [102], while if real weights are used, the network
can function as a super-Turing Machine [234], notions which are much more powerful than

approximating finite functions.

In this section, we will refer to a neural network with one hidden layer, the input layer and
the output layer. For referring to a node in the hidden or output layer, the subscripts h and o
will be used respectively. We consider the input to have a size of n, while we consider m nodes
in the hidden layer and m nodes in the output layer. The activation of a neuron belonging to

the hidden layer of such a feedforward network will have an activation value yp,(t):

yn(t) = o(netp(t)) (3.11)

netp(t) = Z i (t)wn;i + B (3.12)

That is, the output is the net input to the neuron applied to the activation function o (typically
a non-linear such as the logistic function). The net input to the hidden node is the sum of
the weights coming to node h from each input ¢ (the input vector x has a size of n), while g

is the bias of node h.

Assume a simple recurrent network, where besides the feedforward connections, the nodes
of the hidden layers have one step delay feedback connections, that is the previous activation
of the nodes in that layer is taken into account. Since there are more connections, a new set
of weights v;; is required. Again looking at the activation of a node in the hidden layer, (%),

Equation 3.11 remains the same. What changes is the net, (t):
n m
nety(t) = > xi(t)wni + > y;(t — )vn; + B (3.13)
i J

where m is the number of nodes which have the feedback connection to node h and y;(t — 1)

is the previous activation of each of them. In the example presented in the section, we stated
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that feedback loops occur only in the hidden layer, so the equations for the output nodes of

the network are the same as the feedforward networks:

Yo(t) = o(nety(t)) (3.14)

net, = Z yi(t)uoj + Bo (3.15)
J

Where u,; are weights from the hidden nodes j to the output node o and again, o is the

activation function and 3, the bias of the output node.

There is a vast amount of literature concerning recurrent neural networks, e.g., state-space
models where the previous activation of the hidden layer is considered part of the next input,
input-output recurrent models where the actual output of the network is being fed back to
the input, recurrent multilayer perceptrons where each computation layer has a feedback,
and second order networks where the previous outputs are actually multiplied. For more
details regarding recurrent neural networks along with optimisation details (utilising Back-

Propagation Through Time) we refer the reader to [125] and [113].

Long Short-Term Memory Neural Networks

One of the most significant issues when utilising RNNs was the apparent inability to model
temporal dependencies longer than a few time steps away due to to the so-called vanishing-
gradient problem [106]. Essentially, the problem refers to the inability of conventional training
algorithms for RNNs to keep the error signals which are flowing backwards in time from
either vanishing exponentially or increasing exponentially, leading to an inherent inability to
model long range dependencies. This has been shown extensively in Hochreiter’s analysis [105]
while also discussed in [23, 106]. To this end, the LSTM Neural Networks (LSTM-NNs) were
introduced by Graves and Schmidhuber [89] to overcome this issue. Essentially, the LSTMs
are the most recent incarnation of RNNs before the rise to prominence of the recent “Deep

Learning” trend.

LSTMs introduce recurrently connected memory blocks instead of traditional neural network
nodes, which contain memory cells and a set of multiplicative gates. The gates essentially allow
the network to learn when to maintain, replace or reset the state of each cell. As a result, the
network can learn when to store or relate to context information over long periods of time,
while the application of non-linear functions (similar to transfer functions in traditional NN)

enables learning non-linear dependencies
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Figure 3.1: lustration of (a) the simplest LSTM network, with a single input, a single output,
and a single memory block in place of the hidden unit, and (b) a typical implementation of
an LSTM block, with multiplication units (II), an addition unit (¥) maintaining the cell state
and typically non-linear squashing function units.

In more detail, in Fig. 3.1b, the three types of gates are visualised: the input, output and
forget gates. As aforementioned, they can be thought of as providing write, read and reset
access to what is called a cell state (o), which represents temporal network information. This

can be seen from examining the state updates at time ¢:

o(t) = ys(t)o (t —1) + Yig(t) gin(t)

The next state o(t) is defined as the sum of the forget gate at time ¢ (y4(t)) multiplied by the
previous state, o(t — 1) and the squashed input to the cell g;,(¢) multiplied by the input gate
Yig(t). Thus, the forget gate can reset the state of the network, i.e. when y, ~ 0 then the next

state does not depend on the previous one:

U(t) ~ Yig (t)gin (t)

This is similar when the input gate is near zero. Then, the next state depends only on the
previous state and the forget gate value. The output of the cell is is the cell state, as regulated
by the value of the output gate (Fig. 3.1b). This configuration enforces constant error flow

and overcomes the vanishing gradient problem.

Bidirectional LSTMs

In addition, traditional RNNs process input in a temporal order, thus learning input patterns
by relating only to past context. Bidirectional RNNs (BRNNs) [230, 12] instead modify the
learning procedure to overcome the latter issue of the past and future context: they present

each of the training sequences in a forward and a backward order (to two different recurrent
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networks, respectively, which are connected to a common output layer). In this way, the BRNN
is aware of both future and past events in relation to the current timestep. The concept is
directly expanded for LSTMs, referred to as Bidirectional Long Short-Term Memory neural
networks (BLSTM-NN). BLSTM-NN have been shown to outperform unidirectional LSTM-
NN for speech processing (e.g., [89]) and have been used for many learning tasks. They have
been successfully applied to continuous emotion prediction from speech (e.g., [151], [275])
proving that modelling the sequential inputs and long range temporal dependencies appear to

be beneficial for the task of automatic emotion prediction.

3.2.2 Relevance Vector Machine

The Relevance Vector Machine (RVM), introduced by Tipping in [246] is a Bayesian regression
technique, aimed at providing parsimonious, probabilistic solutions for regression and classi-
fication. In more detail, we assume a regression problem with N training examples, (x;, ;).
As briefly mentioned in Section 3.1.2, within the Bayesian framework applied in RVM, our

goal is to learn the functional

ti =wlo(x;) + € (3.16)

where the ¢; are assumed to be independent Gaussian samples with zero mean and o2 variance,
e ~ N(0,0?), and ¢ is a typically non-linear projection of the input features, x;. The method
infers the set of weights w along with the noise estimation, given the training data. In general,
in most regression techniques one wishes to penalise the growth of the weights w in order to
constrain the complexity of the inferred function and thus obtain more parsimonious solutions.
In deterministic scenarios, i.e. in SVM, this can be employed by e.g. [2-regularisation, by
directly penalising the norm of the weights, i.e. ||w]||2. In a probabilistic scenario as in
RVM, this is performed by utilising prior probability distributions on w, thus expressing our
preference for smoother and less complex functions. Specifically in RVM, the weight prior is

defined by utilising a zero-mean Gaussian distribution
P(w|a;) = N(0,0; 1), (3.17)

where «; describes the precision (i.e. inverse variance) of each weight, w;. In effect, this
controls the strength of the prior individually for each weight, since essentially the prior is

data dependent. An important property of the RVM is that the «; hyperpriors are hierarchical,
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i.e. a set of scale parameters in the form of Gamma distributions are employed:

N
P(a) = H Gamma(a;|v,) (3.18)
P(0%) = Gamma(o2|vg) (3.19)

where the vy stand for the parameters of the gamma distribution. By setting these parameters
to small values, uniform hyperpriors are obtained. An advantage of adopting these “improper
priors” lies in the provided scale-invariance, since all scales are equally likely. Furthermore,
these priors are essentially a form of automatic relevance determination priors. Put simply,
these broad priors over the hyperparameters allow for the posterior mass to concentrate at
very large values of «; and thus sending the weight posterior to zero. This essentially defines
the sparse properties of the model: the weights for specific data which is deemed unnecessary
will be sent to zero, thus ignoring the sample and being able to learn simpler, less complex
models. It is interesting to study the sparseness of RVM a bit further. If we consider the

distribution of w when marginalising out the hyperparameters, i.e. the a, we have

Plw;) = / Plws|as)p(as)do. (3.20)

This in fact results in a Student-t distribution, thus justifying the sparseness properties. This
is due to compounded a Gaussian distribution with an unknown variance following an inverse
gamma distribution, which has been subsequently marginalised out. This is illustrated in

Fig. 3.2. Finally, we note that the sparse property of RVM, along with the existence of fast,

Gaussian Student-t

Figure 3.2: Comparing a two dimensional Gaussian prior with a two dimensional Student-t
prior. The probability mass is concentrated at the origin and along the spines, where one of
the weights is zero. Image adapted from [246].

computationally efficient and incremental methods for learning [249], deem RVM a suitable
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model for processing large amounts of data under realistic conditions, where a large amount
of this data may be corrupted by noise. We will discuss more on extending RVM in Chapter
6, while we refer the interested reader to [246, 249], Chapter 7 of [26] and Chapter 13 of [16§]

for more details.

3.2.3 Support Vector Machines for Regression

In this section, we briefly summarise a commonly employed technique, Support Vector Ma-
chines for Regression [66] (SVR). In SVR, a non-linear function (conceptually similar to RVM)
is optimised by the model, in a mapped feature space, induced by the kernel used (as discussed
in Section 3.1.2). An important advantage of SVMs is the convex optimization function em-
ployed which guarantees that the optimal solution is found. The goal is to optimize the
generalization bounds for regression by a loss function which is used to weight the actual error
of the point with respect to the distance from the correct prediction. To this aim, various
loss functions maybe employed (e.g., quadratic loss function, Laplacian loss function, and
e-insensitive loss function). The e-insensitive loss function, introduced by Vapnik, is an ap-
proximation of the Huber loss function and enables a more reliable generalization bound [50].
This is due to the fact that unlike the Huber and quadratic loss functions (where all the data
may be support vectors), utilising an e-insensitive loss function leads to a sparse selection of
support vectors. Sparse data representations have been shown to reduce the generalization
error [264] (see Chapter 3.3 of [222] for details). Finally, SVM is commonly used in related

work on predicting continuous affect (e.g., [151, 91, 116]).

3.3 Component Analysis

A major part of this thesis is based on Component Analysis (CA), a set of statistical tech-
niques aimed at factorising observations into components, based on certain constraints which
capture desirable properties of the resulting spaces. As mentioned earlier, CA constitutes an
important step in systems tangent to computer vision and machine learning. The roots of CA
can be traced back to 1901, with the introduction of Principal Component Analysis (PCA)
by Karl Pearson [193]. PCA was later developed independently in 1933 [108] by Hotelling,
three years before Hotelling introduced Canonical Correlation Analysis (CCA) [109]. While
the main goal of PCA is to identify the principal directions of maximal variance of a set of

observations® CCA generalises this to two observation sets, by finding the projection directions

2The actual definition of PCA as initially posed by Pearson [193] was defined as the linear projection
minimising the average projection cost, which is defined as the mean squared distance between points and
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under which the sets are maximally correlated. CCA has essentially risen from the need to
study multiple observation sets, and led to other significant work in the following decades,
such as Tucker’s Inter-Battery Factor Analysis (IBFA) [253]. In what follows, we summarise
two basic component analysis techniques, PCA and CCA, in order to facilitate discussions in
later chapters. Throughout this description we consider, without any loss of generality, a zero
mean set of F-dimensional observations of length 7', {x1,...,xr}, represented by a matrix
X = [x1,...,x7|. All CA methods discover an N-dimensional latent space Y = [y1,...,y7]

which preserves certain properties of X.

3.3.1 Principal Component Analysis (PCA)

PCA discovers a lower dimensionality space (the principal subspace), where the variance of
the observations is maximised. The deterministic model of PCA finds a set of projection bases
W, with the latent space Y being the projection of the training set X (i.e., Y = WTX)).

Since we aim to maximise the projected variance, the optimization problem can be defined as

W, = arg mvz&xtr [WTSW] , st WIW =1 (3.21)
where S = %Z?:l xixiT is the total scatter matrix and I the identity matrix. One can

alternatively arrive at the same optimisation problem by formulating the analogous problem
of minimising the reconstruction error and end up in the same algorithm. The above trace is
maximised by setting W to the N projection basis corresponding to the N eigenvectors of S

corresponding to the largest NV eigenvalues.

PCA has also been studied in terms of probabilistic formulations. In more detail, approaches
towards Probabilistic PCA (PPCA) were proposed independently in [211] and [248]. In [248]

a linear Gaussian generative model was adopted as:
x; = Wy; + €, yi ~N(0,I), ¢ ~N(0,5°1) (3.22)

where W € REF*N is the matrix that relates the latent variable y; with the observed samples
x; and €; is the noise which is assumed to be an isotropic Gaussian model. The motivation
is that, when N < I, the latent variables will offer a more parsimonious explanation of the
dependencies between the observations. The Maximum Likelihood (ML) and Expectation

Maximisation (EM) solutions for parameter and moments E[y;] and E[y;y? ] can be found in

their projections. Hotelling defined PCA as the orthogonal projection of the data onto a lower dimensional
linear space (the principle suspace) where the variance of the projected data is maximised [108]. Both of these
definition lead to the same algorithm.
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[26, 248]. Several variations have from the proposed since, e.g. by incorporating sparseness and
non-negative constraints [235] or utilising joint generative/regression frameworks (the so-called
Supervised Probabilistic Principal Component Analysis (SPPCA) [284]). In SPPCA, a model
x; = W,y + € is assumed to generate the data, while a second generative framework models
a set of outputs z; on the latent variables y; as z, = W.y; + €/, y; ~ N(0,I), € ~ N(0, o?T),
€/ ~ N(0,0%I). z; can represent outputs from a regression task or can stand for continuous

class labels.

3.3.2 Canonical Correlation Analysis (CCA)

CCA has risen out of the need to study samples from “multiple batteries”?. Since CCA deals
with multiple sets of observations, we assume the observation matrices X; and Xsy. The

projected data should be maximally correlated, i.e.

VVTE W
1 X1X2 2
arg max

. (3.23)
Wi, W2 \/W1T2X1X1W1 \/W%2X2X2W2

where 3 xy corresponding to the empirical covariance matrix on sample matrices X and Y,
ie. ¥xy = cov(X,Y). Due to scale invariance of the correlation with respect to the loadings,

the problem can be posed as

Jnax WX, XITw, (3.24)
st. WIX XTw, =1, WIX,XITw, =1 (3.25)

where the solution is found by solving the generalised eigenvalue problem
X, X5 (XoX3) ' XoX ] wi = AX X wy (3.26)

and using the top eigenvectors for the loadings (where X is the eigenvalue corresponding to
the eigenvector wi). Most related to our work is the least-squares formulation of this problem

[58, 240], where the solution of CCA can by found by solving

argmin |[WTX; - WIX,|%
Wl 7W2

st. WIX XTw, =1, WIX,XIw, =1 (3.27)

3Battery (tests) refers to a series of psychological, behaviour or cognitive assessment tests. This term
was often used in statistics since data from multiple batteries were essentially the one of the first datasets
which consisted of multiple modalities, leading to several significant publications in the field of statistics being
published, e.g., in Psychometrika, a psychology oriented journal.
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Probabilistic formulations of CCA have been explored in various forms, with the most recent
being the work of Bach and Jordan [11], where a latent variable model with a maximum

likelihood solution co-directional to deterministic CCA is defined as

z ~ N(0,I)
x1|z ~ N (Wiz, ¥)
X2|Z ~ N(Wgz, \I/g). (328)

where W, stands for the covariance matrix. The interest in this particular formulation lies in
the fact that the common space (linked to the random variable z) is explicitly represented,
instead of discovered by minimising the sum-of-squares of the projected observation sets, as
in the deterministic formulation. This work has later been extended by Klami and Kaski to
include private spaces (i.e. modelling information specific to one observation set), thus making
the model more similar to Inter Battery Factor Analysis (IBFA) [253], and its probabilistic

interpretation by Browne [32]. In more detail, the model is defined as

z ~ N(0,1),
z1 ~ N(0,1),
25 ~ N(0,T)
x1 ~N(Wiz + Bz, %)
x3 ~ N(Waz + Baza, 3)
(3.29)

with 3J; representing a diagonal covariance matrix, indicating the independence of the noise
component over the features. In this particularly useful formulation, the shared space is mod-
elled in the latent variable z, while the remaining variation is modelled via the latent variables
z;, with both latent spaces being transformed to the observation space via linear mappings,

specific to the observation set.

3.4 Time Warping

The problem of temporally aligning multiple signals is commonly encountered in many mani-
festations, and can be a common problem in cases of analysing signals obtained from multiple
modalities (e.g., unsynchronised audio and video). In general, the alignment of temporal se-
quences is a very challenging problem, where besides computer vision [86, 114, 265, 297, 298,

296], has also been raised in the fields of bioinformatics [144] and speech processing [120, 219].
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One can define the temporal alignment problem as finding the temporal coordinate transform-
ation which renders the given sequences to be aligned in time. Traditionally, this problem can
be solved via dynamic programming, utilising the so-called Dynamic Time Warping (DTW)
technique. Given sequences X; € RP*Tt and Xy € RPXT2) DTW can be defined as a least-
squares problem as follows:

argmin || X; A1 — XoAs|[% (3.30)
ALA

whereas now A; € {0,1}77%72 and A, € {0,1}2*72 are binary selection matrices, with
T the aligned, common length. In this way, the warping matrices A effectively re-map the
samples of each sequence. The A matrices are essentially a matrix representation of the warp-
ing path p, which is a vector of the mapped indices from the original sequence to the resulting
time-warped (i.e. X;AT = X;(p1)). Although the number of possible alignments is expo-
nential in 7,7}, employing dynamic programming can recover the optimal path in O(T,T,)
(i.e. polynomial time), with the optimal Tx automatically inferred. Furthermore, a set of con-
straints must be satisfied, namely (i) the boundary conditions: the first index of each p must
be 1, and the last should map to the last frame of each sequence (71, 75), (ii) the monotonicity
condition: the p vectors must be in increasing order (not strictly increasing, since repetitions
are allowed), and (iii) the continuity condition: [pi** p5tt] — [p, pb] € {[0, 1], [1,0],[1,1]}. Al
though DTW provides an optimal solution, at least for 1 dimensional time-series, it comes with
many disadvantages, such as the inability to process sequences with varying dimensionality
(i.e. D1 # Dy) as well as being highly susceptible to various forms of noise. As we will discuss
in what follows, a solution that makes time warping a much more flexible method, and thus
more appropriate for high-dimensional data usually associated with human behaviour analysis

comes through incorporating time-warping with component analysis.

3.4.1 Time Warping and Component Analysis

The incorporation of Component Analysis (CA) and Time Warping (TW) is a natural con-
sequence of the need to process and align high-dimensional data in modern scenarios, with
more corruptions and noise. By utilising CA one can avoid applying time-warping to portions
of the signal which are uninteresting: one can time-warp only the part of the signal which is
relevant to the task, for example, one can align only the portion of each signal which is shared
amongst all warped sequences while removing noisy components. The incorporation of CA
and TW comes naturally: most CA methods assuming a generalised eigenvalue problem are
also subject to least-squares formulations [58, 241]. This is very important in terms of incor-

porating them with time-warping algorithms, since both problems can be naturally combined
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into one least squares problem. For example, by taking the DTW (Eq. 3.27) and the CCA
formulations (Eq. 3.30), one can arrive at the following problem:
argmin  |[WTX1A; — WIX,A,|%
W, Wa,A,,As
st. WIX A ATXTW, =1 (3.31)
WIXoAATXTW, =1 (3.32)
wWIX, A ATXTW, = diag, (3.33)
X;A11 =0,X3A51 = 0. (3.34)

where the added constraints ensure rotation, scaling and translation invariance. This leads to
the Canonical Time Warping (CTW) model [298], successfully combining multi-series com-
ponent analysis (CCA) with DTW in a model which allows for aligning signals from multiple
modalities and varying dimensionality. At this point, it is worth mentioning that in the re-
lated statistical field of Functional Data Analysis (FDA) [207, 90], where the observed data are
represented as functional data (e.g., utilising basis such as exponential, polynomial etc.), func-
tional PCA has been applied along with time-warping (or registration as it is called in FDA).
A related idea of utilising functional basis for time-warping has been introduced in [296], where
the generalised time warping methodology introduced has been combined with CCA. Finally,
the dynamic manifold temporal warping (DMTW) [86] and the manifold warping (MW) [265]

extend the CTW to handle more complex spatial transformations through manifold learning.

3.5 Conclusions

In this chapter, we discussed a set of related machine learning techniques which are closely
related to this thesis, focusing mostly on regression and component analysis. In what follows,
we briefly map the techniques discussed in this chapter to the content of this thesis. Regarding
the first part of the thesis, BLSTM-NN are utilised in Chapter 5, while the RVM is extended in
Chapter 6. Finally, we propose a novel regression framework based on CCA in Chapter 7. As
far as the second part of the thesis is concerned, it is entirely devoted to component analysis
methods. In particular, Chapter 9 provides a probabilistic, shared-space component analysis
method aiming mostly at fusing multiple annotations. Chapter 10 presents a novel, robust
variant of CCA, which is able to learn a low-rank subspace while isolating gross errors in a
sparse component. Finally, in Chapter 11, we propose a novel, unified framework for probab-
ilistic component analysis, which is able to encapsulate methods such as Principal Component
Analysis (PCA), Locality Preserving Projections (LPP), Linear Discriminant Analysis (LDA)
and Slow Feature Analysis (SFA).

7
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Part 1

Learning Continuous Emotion
Dimensions via Exploiting Output

Correlations
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CHAPTER 4

Introduction

Risen from the need to analyse emotions occurring spontaneously under real-world conditions,
researchers adopted the continuous emotion dimensions in order to facilitate the description
of typically encountered emotional states. In this part of the thesis, we explore the newly
introduced problem of predicting and analysing human emotional states in terms of emotion
dimensions. We are mostly motivated by various research findings in psychology which demon-
strate that emotion dimensions exhibit some form of correlation. The idea posed herein, is
that be exploiting such correlations and relationships, one can improve the accuracy of the

predictive task at hand. The content of this chapter is summarised in what follows.

Chapter 5

In this chapter, we present one of the first studies in related work in terms of learning continu-
ous and dimensional emotions, initially published in [174]. In particular, we present the first
approach in literature towards automatic, dimensional and continuous affect predictions in
terms of valence and arousal, based on all facial expressions, shoulder gestures and audio cues
(at time of publication). Based on Bidirectional Long-Short Term Memory Neural Networks
(BLSTM-NN), the presented approach is aimed at both learning long-range temporal depend-
encies, a crucial requirement for the given problem, as well modelling dependencies in the
output dimensions. This work is in fact, to the best of our knowledge, the first work which ex-
plicitly aims to improve accuracy by modelling output relationships in emotion dimensions. In
mode detail, in Chapter 5, we initially perform a comparison of BLSTM-NN to another, com-
monly used regression technique in the field, Support Vector Machines (SVMs). Subsequently,
we focus on the fusion of multiple modalities, and compare two commonly employed fusion

techniques, feature-level and model-level fusion, to the proposed output-associative fusion
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based on LSTM-NN. Result-wise, BLSTM-NN and the proposed fusion technique overper-
form other, compared methods, establishing the significance of properly modelling temporal

dependencies in the given problem, as well as exploiting output correlations.

Chapter 6

In Chapter 6 we present one of the first probabilistic methods particularly focused on the
predictive analysis of continuous dimensional emotion dimensions. While the work presented
in Chapter 5 was based on neural networks (NN), many researchers have criticised the inherent
lack of interpretability of trained NN as well as the lack of an estimation of uncertainty. In
contrast to NN, the Bayesian framework we adopt in this chapter provides an elegant solution
to the problem, while estimating a sparse, parsimonious solution. In more detail, in Chapter 6
we present an extension of the Relevance Vector Machine (RVM, c.f., Chapter 3), which we coin
Output-Associative Relevance Vector Machine (OA-RVM). By utilising an augmented design
matrix with a temporal window, OA-RVM allows for learning temporal output dependencies
manifesting in emotion dimensions within a probabilistic robust framework, inheriting the
advantages posed by the original RVM framework while remaining in the same computational
complexity class. Experiments are performed on all audio, visual and shoulder movement cues,
while utilising a small number of data for training. Results show that OA-RVM significantly

outperforms other regression techniques such as SVM and RVM.

Chapter 7

Finally, in Chapter 7, we firstly focus on empirically answering several important questions
which have remained relatively unexplored in related literature, such as the correlation of each
emotion dimension (i) with respect to other emotion dimensions, (ii) to basic emotions (e.g.,
happiness, anger) as well as (iii) to the level of interest. In more detail, in order to study the
level of interest in comparison to other emotion dimensions, we essentially treat interest as
a continuous emotion dimension, ranging from disinterested to enthusiastic. As a measure of
comparison, we utilise audiovisual features. Interestingly enough, results show that (i) each
emotion dimension is more correlated with other emotion dimensions rather than with face and
acoustic features, and similarly (ii) that each basic emotion is more correlated with emotion
dimensions than with audio and video features. Regarding interest, we find that interest is

most correlated with the emotion dimension of arousal, while secondly with valence.

It is interesting to note here, that since each emotion dimension is better correlated to other

emotion dimensions rather than to face or audio cues (which are of much higher dimensionality
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than annotations), the idea of dimensionality reduction for this problem is further motivated.
Furthermore, this empirical study further motivates the idea of exploiting output correlations
in this problem. In this light, we present a method based on Canonical Correlation Analysis
(CCA) for exploiting output correlations and learning emotion dimensions'. This work, which
we coin Correlated Spaces Regression (CSR) deviates from the previous methods towards
learning emotion dimensions as it is mostly focused on generating the appropriate features
for utilising in terms of predictive analysis, therefore acting as a bridge between the more
application-oriented, first part of the thesis, to the more technical-based second part, which
focuses on component analysis. The basic idea lies in projecting both the features/observations
and the outputs onto a latent space on which they are maximally correlated. The implica-
tions are two-fold. Firstly, this process maximally correlates the features with the outputs by
projecting on a dimensionality reduced latent space, thus providing appropriate features for
predictive analysis. Secondly, the output-dimensions are de-correlated via an orthogonal pro-
jection, thus enabling the utilisation of single-dimensionality regression to optimally learn the
function mapping to the outputs. In essence, this method is highly useful for problems where
we have multi-dimensional outputs, since any redundancy in the outputs is removed while the
feature space dimensionality is reduced significantly without penalising predictive accuracy.
As we show, this type of fusion provides better results than other alternatives employed in

related work.

! Although Canonical Correlation Analysis is a shared-space component analysis method and in theory this
Chapter is also relevant to the second part of this thesis, we describe this method in the first part since (i) the
main contribution of this work is in the ap