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Abstract

The automated analysis of affect has been gaining rapidly increasing attention by re-

searchers over the past two decades, as it constitutes a fundamental step towards achieving

next-generation computing technologies and integrating them into everyday life (e.g. via

affect-aware, user-adaptive interfaces, medical imaging, health assessment, ambient intel-

ligence etc.). The work presented in this thesis focuses on several fundamental problems

manifesting in the course towards the achievement of reliable, accurate and robust affect

sensing systems. In more detail, the motivation behind this work lies in recent develop-

ments in the field, namely (i) the creation of large, audiovisual databases for affect analysis

in the so-called ”Big-Data“ era, along with (ii) the need to deploy systems under demand-

ing, real-world conditions. These developments led to the requirement for the analysis of

emotion expressions continuously in time, instead of merely processing static images, thus

unveiling the wide range of temporal dynamics related to human behaviour to researchers.

The latter entails another deviation from the traditional line of research in the field: instead

of focusing on predicting posed, discrete basic emotions (happiness, surprise etc.), it became

necessary to focus on spontaneous, naturalistic expressions captured under settings more

proximal to real-world conditions, utilising more expressive emotion descriptions than a set

of discrete labels. To this end, the main motivation of this thesis is to deal with challenges

arising from the adoption of continuous dimensional emotion descriptions under natur-

alistic scenarios, considered to capture a much wider spectrum of expressive variability

than basic emotions, and most importantly model emotional states which are commonly

expressed by humans in their everyday life. In the first part of this thesis, we attempt to de-

mystify the quite unexplored problem of predicting continuous emotional dimensions. This

work is amongst the first to explore the problem of predicting emotion dimensions via multi-

modal fusion, utilising facial expressions, auditory cues and shoulder gestures. A major

contribution of the work presented in this thesis lies in proposing the utilisation of various

relationships exhibited by emotion dimensions in order to improve the prediction accuracy

of machine learning methods - an idea which has been taken on by other researchers in the

field since. In order to experimentally evaluate this, we extend methods such as the Long

Short-Term Memory Neural Networks (LSTM), the Relevance Vector Machine (RVM) and

Canonical Correlation Analysis (CCA) in order to exploit output relationships in learning.

As it is shown, this increases the accuracy of machine learning models applied to this task.

The annotation of continuous dimensional emotions is a tedious task, highly prone to

the influence of various types of noise. Performed real-time by several annotators (usually

experts), the annotation process can be heavily biased by factors such as subjective in-

terpretations of the emotional states observed, the inherent ambiguity of labels related to

human behaviour, the varying reaction lags exhibited by each annotator as well as other

factors such as input device noise and annotation errors. In effect, the annotations manifest

a strong spatio-temporal annotator-specific bias. Failing to properly deal with annotation



bias and noise leads to an inaccurate ground truth, and therefore to ill-generalisable ma-

chine learning models. This deems the proper fusion of multiple annotations, and the

inference of a clean, corrected version of the “ground truth” as one of the most significant

challenges in the area. A highly important contribution of this thesis lies in the introduc-

tion of Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), a method aimed

at fusing noisy continuous annotations. By adopting a private-shared space model, we isol-

ate the individual characteristics that are annotator-specific and not shared, while most

importantly we model the common, underlying annotation which is shared by annotators

(i.e., the derived ground truth). By further learning temporal dynamics and incorporating

a time-warping process, we are able to derive a clean version of the ground truth given

multiple annotations, eliminating temporal discrepancies and other nuisances.

The integration of the temporal alignment process within the proposed private-shared

space model deems DPCCA suitable for the problem of temporally aligning human be-

haviour; that is, given temporally unsynchronised sequences (e.g., videos of two persons

smiling), the goal is to generate the temporally synchronised sequences (e.g., the smile

apex should co-occur in the videos). Temporal alignment is an important problem for

many applications where multiple datasets need to be aligned in time. Furthermore, it is

particularly suitable for the analysis of facial expressions, where the activation of facial

muscles (Action Units) typically follows a set of predefined temporal phases. A highly chal-

lenging scenario is when the observations are perturbed by gross, non-Gaussian noise (e.g.,

occlusions), as is often the case when analysing data acquired under real-world conditions.

To account for non-Gaussian noise, a robust variant of Canonical Correlation Analysis

(RCCA) for robust fusion and temporal alignment is proposed. The model captures the

shared, low-rank subspace of the observations, isolating the gross noise in a sparse noise

term. RCCA is amongst the first robust variants of CCA proposed in literature, and as we

show in related experiments outperforms other, state-of-the-art methods for related tasks

such as the fusion of multiple modalities under gross noise.

Beyond private-shared space models, Component Analysis (CA) is an integral com-

ponent of most computer vision systems, particularly in terms of reducing the usually

high-dimensional input spaces in a meaningful manner pertaining to the task-at-hand (e.g.,

prediction, clustering). A final, significant contribution of this thesis lies in proposing the

first unifying framework for probabilistic component analysis. The proposed framework

covers most well-known CA methods, such as Principal Component Analysis (PCA), Lin-

ear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature

Analysis (SFA), providing further theoretical insights into the workings of CA. Moreover,

the proposed framework is highly flexible, enabling novel CA methods to be generated by

simply manipulating the connectivity of latent variables (i.e. the latent neighbourhood).

As shown experimentally, methods derived via the proposed framework outperform other

equivalents in several problems related to affect sensing and facial expression analysis,

while providing advantages such as reduced complexity and explicit variance modelling.
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Chapter 1

Introduction

Contents

1.1 Problem Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

The study and understanding of human affect has been a long standing problem, troubling

the human race since its infancy. The earliest testimonies on the philosophical enquiries

towards the understanding of emotions can be attributed to the Stoics (3rd century BC)

[88], who claimed that human affect can be separated into coarse categories such as pleasure,

appetite and fear. The Chinese encyclopaedia Li Chi (1st century BC), attempts a more

detailed discrimination into emotion classes, while also proposing a theory that has dominated

the modern psychology of emotions centuries later: that some emotions are biologically hard-

wired to humans, rather than being acquired through social interactions and learning [217].

Philosophic inquisitions on the understanding of emotions continued throughout the centuries,

with pioneering works by Descartes [61] and Spinoza [238], with what Descartes called passions

being synonymous to the modern definition of emotions. More directly related to emotions

is the seminal work of Charles Darwin, who extensively studied expressions of the face and

gestures of the body in mammals [55], thus setting the foundations of the study of affect in

psychology as well as greatly influencing what we now call affect sensing.

A remarkable milestone in the study of affect in psychology, is the work of Paul Ekman

and his colleagues, who put forward the claim that there exists a set of six basic emotions

(anger, fear, disgust, happiness, sadness and surprise) which are biologically hard-wired to

11



1. Introduction

humans and are common across different cultures, thus rendering them global in terms of

both understanding and expressing them. Ekman and his colleagues empirically studied this

phenomenon in various works [69, 70, 74], providing the ground for what later evolved as the

basis of affective computing. In particular, starting from the mid 1990s, researchers in diverse

fields such as computer science, psychology and the cognitive sciences started to take interest

in the analysis of human affect, be it recognising, interpreting or simulating emotions [198].

This trend has risen out of necessity, since tools generated from the computational analysis of

affect can be considered as a requirement for the further evolution of modern scientific fields,

such as human-computer interaction, robotics, ambient computing and medicine. The study of

affective computing and human behaviour, as it has been defined in the mid 1990s and evolved

throughout the past-decades, essentially defines the main topic of this thesis; we propose

and develop various techniques, based on machine learning, computer vision and pattern

recognition, which particularly fit specific idiosyncratic characteristics of problems commonly

dealt with when processing human affect and behaviour, without loss of application generality.

In particular, this thesis follows several recent shifts in the field of affective computing [97, 95]:

moving away from data acquired in particularly constrained laboratory settings, with actors

or other subjects posing the emotion expressions (i.e. being told to replicate what they believe

to be a specific expression such as anger) to more real-world settings, where the conditions

are not so constraint and the emotion expressions by the subjects are naturalistic, usually

elicited by conversation or interaction with other subjects. As we thoroughly discuss in what

follows, this particular direction entails other radical changes in the problem settings, such

as the processing much larger amounts of data (often in the form of videos instead of static

images) as well as the adoption of different descriptions of emotions, moving away from the

rigid, basic emotion theory initially employed in the field.

The remainder of the introductory chapter is organised as follows. Firstly, in Section 1.1

we refer in more detail to the problem space on which the thesis builds on. Specifically,

in Section 1.1.1 we detail the typical structure of affect sensing systems, and subsequently,

in Section 1.1.2 we discuss the field shift towards learning continuous dimensional emotion

descriptions. Subsequently, in Section 1.2 we analyse a set of significant challenges which have

risen in the field, and are specifically tackled in this thesis. Finally, in Section 1.3 we provide a

detailed listing of the thesis contributions, providing a summary of methodologies along with

the specific application contributions.

12



1.1. Problem Space

1.1 Problem Space

1.1.1 Affect Sensing Systems

1. INPUT MODALITIES

FACE

AUDIO

2. PRE-PROCESSING 3. ALIGNMENT / FUSION 

FEATURE 
EXTRACTION

DIMENSIONALITY 
REDUCTION

VARIOUS
NORMALISATIONS

FUSED
FEATURES

4.  PREDICTIVE ANALYSIS

SHARED-SPACE
INFERENCE

TEMPORAL
ALIGNMENT

REGRESSION

CLASSIFICATION

LEVEL OF INTEREST DETECTED: HIGH

0 100

0

GEOMETRIC 
  FEATURES

VALENCE

Figure 1.1: Illustration of the commonly utilised pipeline in automatic behaviour analysis and
affect sensing. (1) Given a set of observations (features) possibly from multiple modalities,
step (2) refers to pre-processing the features to facilitate the task at hand. Furthermore,
in step (3), if the observation sets are temporally ordered and not synchronised in time,
a temporal alignment process follows, along with the fusion of the features into one set
containing all the necessary information pertaining to the task at hand. In the final step
(4), predictive analysis takes place, most commonly classification (into discrete classes) or
regression (into continuous values).

A typical system aimed towards affect sensing usually follows the pipeline depicted in Fig.

1.1. Firstly, a set of features are obtained depending on the modality utilised (e.g., visual,

auditory). In case of e.g., facial images/videos, this can be a collection of coordinates encap-

sulating the location of various interest points, such as the corners of the eyes, the lips and

the eyes. Features derived from such a collection of points are called geometric features, while

features based on the image pixels are defined as appearance-based features. In case of audio,

this can be prosody features such as pitch or energy, as well as other spectrum-based repres-

entations. Secondly, the pre-processing step follows, where the features obtained from each

modality are extracted, usually by applying some sort of dimensionality reduction technique,

with the goal being to remove the uninteresting components of the input features, such as

signals appearing due to noise and corruption, and enhance some characteristics of the signal

which can be deemed beneficial for later use (such as e.g., preserving locality and variance).

The third stage consists of the actual fusion of the modalities, where the useful information

from all utilised cues is inferred - a common way of doing this being by maximally correlating

13



1. Introduction

the modalities. In case there are temporal discrepancies in the data (i.e. the data are not

temporally aligned), this stage may also include an alignment step (for an example of aligning

human behaviour, please see Fig. 1.5. The final step is typically some form of predictive

analysis, be it classifying into discrete labels (e.g., angry, bored), or regressing, i.e. learning

continuous values function mappings. As we will see in what follows, regression is usually

employed for dealing with the problem of learning continuous emotions.

1.1.2 Continuous and Dimensional Emotion Description

Most of the work in this thesis is driven by the recent trend in affective computing, that is

the adoption of a set of latent dimensions which describe the affective state of an individual.

Previously, the research community was mostly focusing on the recognition of six discrete basic

emotional states [69], happiness, anger, sadness, surprise, fear and disgust. Nevertheless, the

deployment of emotion recognition systems under real-world scenarios indicated that a more

expressive vocabulary for emotions is required. In fact, research in psychology [129, 138] has

hinted that the six basic emotional states correspond only to a small subset of the emotions

humans express during their everyday life (see also Fig. 1.2). This lead to the adoption of

a different representation for affective states, based on continuous and dimensional emotion

descriptions. Traced back to the seminal work of Russell in 1980 [216], the most commonly

used latent dimensions are Valence and Arousal, with Valence indicating how positive (e.g.,

happiness, optimism) or negative (e.g., unhappy, depressed) the emotional state is, and Arousal

describing how active or passive the emotional state is. This essentially transformed the

problem from a classification task to learning real-valued functions, i.e. performing regression.

During this paradigm shift in the area of affective computing, another, greater change was

taking place in the entire field of data sciences, including machine learning and computer vision.

The so-called “Big Data” era led to the gathering of vast amounts of data. In turn, this led

researchers to adopt continuous annotations over time. That is, instead of annotating static

images in terms of discrete emotions, one would annotate audio-visual sequences continuously

over the entire duration of the clip in terms of latent dimensions. This led to the creation of

databases such as the Sensitive Artificial Listener (SAL) [64] and SEMAINE [157], which were

annotated continuously both over time and space. An example of such annotations is shown

in Fig. 1.3.

From the machine learning perspective, the presence of multiple continuous emotion dimen-

sions as outputs leads to a regression problem with multiple-outputs. As we will discuss in

what follows, this poses a both a set of opportunities for adapting models to the task-at-hand,

14



1.2. Challenges

(a)

(b)

Figure 1.2: (a) Posed, discrete emotional states (left to right: disgust, happiness, sadness,
anger, fear, surprise). Image adapted from [185]. (b) Spontaneous (induced) emotional states.
Stills from the SEMAINE database [157].

as well as a set of further challenges to overcome.
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Figure 1.3: Example of multiple valence annotations in the range of [-1,1], with -1 being most
negative emotional state and 1 most positive, along with a set of stills from the SEMAINE
database. We illustrate a set of challenges arising when dealing with multiple, noisy annota-
tions, as detailed in the text.

1.2 Challenges

In this section, we introduce a set of rising challenges in the field, in order to facilitate later

discussions on methodological and application-oriented contributions of our work.

Empirical Analysis of Continuous Emotion Dimensions. The appraisal of emotions

utilising latent emotion dimensions is only a recent development in the field of affective com-

puting, and many aspects of the problem can be considered as open problems [95]. Since

15



1. Introduction

Figure 1.4: Temporal phases of Action Unit (AU) activation. From left to right: neutral,
onset, apex, offset, neutral. Video from the UvE-Nemo Smile Database.

adopting emotion dimensions such as valence and arousal leads to a vastly different prob-

lem setting than the traditional approach of adopting discrete emotion classes, many research

questions arise. These questions are of high significance for demystifying several aspects of

the problem which in many cases appear to be subjective and ambiguous. A straightforward

question can be the correlation of input modalities (e.g., audio or visual cues) to emotion

dimensions. This information is essential in order to determine which set of features may be

utilised depending on the task at-hand. E.g., as we verify in this work, arousal seems more

correlated with audio cues rather than facial expressions and therefore acoustic features can

be more suitable for arousal detection. This is actually due to the fact that the frequency

and pitch of the voice change accordingly when a person experiences high arousal (e.g., anger,

laughter etc.). Secondly, another question which is of interest is the relationship of emotion

dimensions to basic emotions. In theory, the values of the latent dimensions which correspond

to basic emotions are rather abstract, e.g., happiness corresponds to high valence and high

arousal, but no specific value range is defined. Therefore, it is of interest to study how latent

dimensions correlate with basic emotions (in effect, the intensity of the presence of these emo-

tions) in order to resolve such ambiguities and provide a better understanding of the problem

itself.

Modelling Temporal Dependencies. A recurring challenge in time-series analysis in

general, and specifically in behaviour analysis and affect sensing, is the requirement for mod-

elling temporal dynamics. In some settings, such as when analysing the activation of Facial

Action Units (AUs)1, there is a strict sequence of phases which occur in a specific order: neut-

ral, onset, apex, offset and then back to neutral. This is also illustrated in Fig. 1.4, where we

visualise the temporal phases of a posed smile activation. Of course, this order of states applies

strictly to posed expressions, and the situation changes when dealing with spontaneous or eli-

cited expressions, where the subjects behaviour is more unpredictable, and e.g., an expression

1Action Units (AUs) refer to the contraction or relaxation of one or more facial muscles, according to the
Facial Action Coding System (FACS) [73]. We discuss AUs more in Chapter 2.
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1.2. Challenges

might be interrupted by, a re-activation or the onset of a different expression. Furthermore,

in case we are predicting emotions over time, the outputs also exhibit some form of temporal

smoothness which needs to be modelled. E.g. in a high valence episode (e.g., corresponding to

laughter), temporal phases analogous to the onset and offset of AUs will manifest, the former

when the valence value is increased and the latter when it is decreased. In general, taking

dynamics into account is crucial for the interpretation of complex, human behaviour as e.g.,

in many cases the behaviour can be highly ambiguous. An example is a nervous laughter

episode during an anger outburst; only via temporal modelling a system can avoid detecting

the laughter episode as an example of joy.

Exploiting Emotion Dimension Correlations for Learning. In many learning prob-

lems, the setting consists of multidimensional labels (or targets) to be learnt. The problem of

dimensional emotion recognition inherently belongs in this class; the latent dimensions which

describe the affective state of an individual are multiple, and evidence from psychology hints

that the emotion dimensions can be highly correlated [129, 181, 5, 138]. In effect, that means

that there is a covariance structure in the multiple dimensions. Since many researchers have

adopted the continuous and dimensional emotion descriptions in learning, a research ques-

tion that naturally arises is whether one can evaluate the correlations which actually arise

within emotion dimensions, and actually exploit them for learning. This translates to devel-

oping methods which can (i) learn e.g., commonly occurring patterns (over time) between

dimensions such as valence and arousal, and (ii) remove the redundancy which is exhibited in

the output dimensions in order to construct more parsimonious models. This direction was

virtually unexplored in the field of affective computing before the work we present in this

thesis.

Fusion of Multiple Continuous Annotations. The fusion of multiple, continuous an-

notations is arguably the most significant problem which arises when utilising continuous

dimensional annotations. While most supervised learning tasks assume the existence of reli-

able and objective labels, this is very often not the case, especially when dealing with problems

related to human behaviour and affect. In particular, the annotation process in such settings

can be highly error prone, leading to inaccurate, ambiguous and subjective labels, which in

turn are utilised to train ill-generalisable models. Such issues arise both (i) due to the nature

of the problem, where many affect-related labels are defined rather ambiguously thus leading

to the adoption of personal interpretations, and (ii) due to the impact of human factors, such

as the varying perception of emotions and the personal characteristics and experiences of the

annotator. The issue becomes even more prominent when the task is temporal, as (i) it renders
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FRAMESUNALIGNED VIDEO STILLS FRAMESTEMPORALLY ALIGNED VIDEO STILLS

(a) (b) (c) (d) (e) (f)

Figure 1.5: The problem of aligning human behaviour from videos. In unaligned videos (a,b,c),
the temporal phases of AU 26 (mouth opening) are not synchronised accross the subjects. In
the aligned videos (d,e,f) the temporal phases in both subjects are aligned in time, i.e. with
(d) being neutral, (e) being apex and (f) back to neutral.

the labelling procedure vulnerable to varying temporal lags caused by the varying response

times of annotators (depending on factors such as fatigue and stress), while (ii) a delay in

most annotators is expected to appear due to the real-time nature of the annotation acting

together with the temporal delay exhibited by the annotator when perceiving an emotion and

acting towards labelling it. In effect, the annotation signals carry a strong spatio-temporal,

annotator specific bias, while also being exposed to other issues such as e.g., noise generated

via the input devices used for annotating. These difficulties give rise to various issues in the

annotations, such as scale-ambiguities, temporal lags, spike noise and others (see Fig. 1.3,

where a set of example annotations from the SEMAINE database are illustrated). In such

scenarios, the only information which can be exploited in order to derive a clean, correct ver-

sion of the ground truth is the existence of multiple annotations. In fact, in such difficult

scenarios, multiple experts (usually trained in psychology) are employed as annotators, with

the idea being that somehow the “average” annotation will provide the most reliable labels,

which will later be used for training machine learning methods for predictive analysis. In

fact, the typically employed approach in the field is the most naive, that is, simple averaging.

Nevertheless, simple averaging can be deemed suboptimal for such problems for many reas-

ons, such as the lack of a mechanism to rank the annotators and weight the annotations, in

effect assessing the confidence level attributed to each annotator. This is a reasonable task,

as we expect that some annotators will be more competent than others. Furthermore, simple

averaging inherently lacks the ability to compensate for temporal discrepancies amongst the

annotators, leading to the manifestation of false peaks in the resulting signal. As can be easily

understood, the absence of well defined labels, free from noise and annotator bias deems the

learning problem even more difficult and even, in some cases, ill-defined.

Temporal Alignment of Human Behaviour. The manifestation of similar behaviour

in multiple sequences is the usual manner in which data are gathered and used in order to
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train machine learning models. For example, a set of videos capturing the activation of the

same Action Units (AUs) from multiple subjects can be used as observations, leading to the

training of a machine learning model which detects the occurrence of the particular set of

AUs. The same applies when e.g., training models to detect the occurrence of smiles or the

temporal phases of the activation. Nevertheless, a common problem in these scenarios is

that although the manifested behaviour is similar over time (e.g., both subjects are smiling),

this behaviour is not temporally aligned. For example, the peak of the smile in subject one

happens at frame t1, while the peak of the smile in subject two happens at frame t2, with

t1 �= t2 (see also, Fig. 1.5). The problem is deemed very challenging due to numerous reasons,

such as possible large temporal discrepancies, inter/intra subject variability, as well as the

presence of various forms of noise. The most basic of algorithms for solving the temporal

alignment problem, Dynamic Time Warping (DTW), is optimal for aligning one-dimensional,

clean, temporal signals. Nevertheless, the most common case when dealing with real data

lies in the availability of multi-dimensional signals, possibly of different dimensionality. It is

natural that some form of dimensionality reduction is utilised to accommodate time-warping

in a more robust (to outliers, occlusions and noise) scenario. We discuss more details regarding

Time Warping and related work in Chapter 3.

Fusion of Multiple Modalities. It is very common for problems in learning and vision

for observations extracted from multiple modalities to be available. An open question is how

to optimally fuse the modalities at hand in order to maintain only what can be considered as

useful information for a specific task. This can be performed both in an unsupervised manner,

when the fused observations are extracted without considering labels but subject to some

constraints, or in a supervised manner where the optimisation function includes some kind

of penalty when labels are not predicted correctly. A fusion model should be able to isolate

corruptions in the data, commonly arising in realistic scenarios, even when the corruptions are

not spread evenly across modalities, e.g. in some cases the visual signal might be very noisy

due to illuminations or occlusions, while the audio signal may be noise free. A limit case of the

problem is when one of the modalities is entirely missing in the test data queries; the model

should be able to extrapolate given the training on both modalities and be able to perform

inference to determine e.g., the correct label for the test query.

Dimensionality Reduction and Feature Extraction. A typical pre-processing step in

most learning and vision applications refers to dimensionality reduction, usually performed via

component analysis methods such as Principal Component Analysis (PCA). (See Fig. 1.1).

Typically unsupervised, dimensionality reduction methods aim to reduce the number of ran-
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dom variables in the given data by projecting them on a latent space which satisfies a set of

constraints depending on the problem. For example, PCA transforms the given data into a

reduced dimensionality space which preserves most of the data variance, thus minimising the

reconstruction error. Linear Discriminant Analysis (LDA) optimally reduces the dimensional-

ity by also considering class labels, while Locality Preserving Projections (LPP) do the same

while preserving a notion of locality, usually encoded via a graph. Dimensionality reduction

techniques should be flexible enough to accommodate varying problems, while complexity is

another factor that should be taken into account, since as a typical pre-processing step the

observations will consist of both high-dimensional as well as a large number of samples. While

dimensionality reduction via component analysis has been well studied over the past decades,

the focus of the research is mostly relating to deterministic component analysis. The formu-

lation of novel, probabilistic component analysis models can be very beneficial to many fields,

due to advantages such as uncertainty estimation as well as reduced complexity in most cases.

1.3 Contributions

In this section, we list the contributions of our thesis both technically, as well as with respect

to the aforementioned problems. The first part of this thesis deals mostly with the empirical

analysis of the relatively unexplored problem of continuous dimensional emotion recognition,

focusing mostly on learning to predict emotion dimensions via exploiting the correlations ex-

hibited by the emotion dimensions. The contributions arising from this part are mostly driven

from the affective computing viewpoint, focusing on the specific application and psychological

theory, and ultimately deriving appropriate models to tackle the problem of learning emotion

dimensions. The second part of the thesis is more technically oriented, focusing on proposing

novel component analysis methods, which are again fitted to specific very crucial problems,

such as the fusion of multiple continuous annotations as well as dimensionality reduction. It

is important to note that, while at most times the proposed techniques have been developed

with a specific application in mind, they remain generally applicable to any problem with

similar settings, with possible applications including medical imaging, health assessment, re-

commender systems, affect-aware and adaptive user interfaces and robotics.

The rest of the section is organised as follows. Firstly, in Section 1.3.1, we introduce the

various methodologies presented in this thesis while discussing particular technical novelties.

Secondly, in Section 1.3.2, we discuss particular contributions of the aforementioned method-

ologies with respect to the challenges and problems discussed in Section 1.2.
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1.3.1 Proposed Methodologies

In what follows, we summarise the methodologies introduced in this thesis in order to facilitate

the following discussion on solving particular challenges and problems via these methods.

Part I: Learning Emotion Dimensions

The first part of this thesis deals particularly with learning emotion dimensions and various

challenges met when dealing with predictive analysis in terms of such emotion descriptions.

Three methodologies are proposed, which are based on neural networks, the Relevance Vector

Machine (RVM) and Canonical Correlation Analysis (CCA), all aiming at exploiting spatio-

temporal correlations that manifest in the outputs of a given problem (in this case, in emotion

dimensions). The application of these models is without loss of any generality, since they

cover a very wide problem class, and are suitable for application within any similar scenario,

i.e. where the targets (or outputs) consist of multi-dimensional vectors which are likely to be

correlated in time and space. The proposed methods are summarised in what follows.

• Chapter 5. BLSTM-NN Output-Associative Fusion. A precursor of a current

trend in machine learning, the so-called “deep-learning” methods, the Bidirectional Long

Short-Term Memory Neural Networks (BLSTM-NN) are one of the most recent vari-

ations of traditional recurrent neural networks. BLSTM-NNs, introduced in [107], are

able to model long-term temporal dependencies in observations by modifying the struc-

ture of each node in a typical neural network in order to resolve the vanishing gradient

problem, which led to various issues due to the gradient either vanishing or growing

exponentially during learning. We discuss more regarding LSTM in Chapter 3, while in

Chapter 5, we utilise BLSTM-NN for (i) fusion of multiple modalities, and (ii) output-

associative fusion, that is, learning temporal patterns arising in outputs, not only in

inputs.

• Chapter 6. Output-Associative Relevance Vector Machine (OA-RVM). The

Relevance Vector Machine (RVM) is a formulation of sparse probabilistic regression, in-

troduced by Tipping in [246] and later extended in [249]. Closely related to Gaussian

Processes (GP), the RVM provides a fast and sparse alternative to traditional GP learn-

ing, at the cost of some unintuitive properties regarding the estimation of uncertainty.

Nevertheless, RVMs constitute one of the fastest and sparse Bayesian regression tech-

niques in machine learning, providing both accuracy and robustness to noise. In Chapter

6, we extend RVM by augmenting the design matrix in order to learn correlations which
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manifest in multi-dimensional outputs over time. In more detail, we model the correl-

ation of output dimensions over time, and incorporate such representative basis in the

model, in order to utilise temporal output patterns in learning. We coin this model the

Output-Associative Relevance Vector Machine (OA-RVM).

• Chapter 7. Correlated-Spaces Regression. Canonical Correlation Analysis (CCA)

is a fundamental component analysis technique which, given two sets of observations

discovers a set of loading matrices which project the observation sets onto a latent space

where these sets are maximally correlated. Correlated-Spaces Regression (CSR) is a

technique we propose in Chapter 7, which is based on CCA. The main idea in CSR is

that instead of correlating input observation sets, we correlate inputs and outputs. This

simple idea entails several advantages, particularly to the problem of learning continuous

dimensional emotion descriptions as we will discuss in this section since in effect, CSR

allows us to simultaneously correlate inputs with outputs and reduce output redundan-

cies.

Part 2: Component Analysis for Affective Behaviour

The second part of the thesis deals with the design of novel Component Analysis (CA) meth-

ods2. In particular, we firstly develop methods belonging to the general category of Shared-

Space component analysis. These methods aim to discover a “shared-space” amongst multiple

sets of observations, while satisfying particular constraints. Such models are particularly

suited for the problems of fusion and temporal alignment, as both problems can benefit from

the discovery of a common space of all observations under some constraints (e.g., the derived

shared space can act as the fused features). In what follows, we summarise the two novel

shared-space CA methodologies introduced in this thesis: Dynamic Probabilistic Canonical

Correlation Analysis (DPCCA) and Robust Canonical Correlation Analysis (RCCA).

• Chapter 9. Dynamic Probabilistic Canonical Correlation Analysis (DPCCA).

In Chapter 9, we propose a novel, dynamic probabilistic model based on a private-shared

space formulation. The private-shared space formulation entails that given a set of mul-

tiple observations, DPCCA recovers both the common characteristics of the sequence

at hand (in the shared space), while isolating portions of the signal which are specific

to each sequence (in the private space). Furthermore, by imposing Markovian depend-

encies on the latent variables, DPCCA is able to model the temporal characteristics of

2A detailed introduction to CA is presented in Chapter 3.
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the observations. This is, to the best of our knowledge, the first private-shared space

technique in the field which models temporal dependencies. Furthermore, DPCCA is

augmented with a time-warping process, leading to the DPCCA with Time Warping

model (DPCTW) model. Essentially, this is performed by attaching a time-warping

processes on the “clean” spaces of each observation sequence, i.e. by removing private,

non-shared characteristics and noise, thus enabling the alignment of noisy sequences

which contain a commonality set. In effect, this provides an elegant method for the tem-

poral alignment of multiple sequences in a clean, shared space. Summarising, given a set

of multiple observations, DPCCA is able to (i) isolate private characteristics belonging

to each set observations, (ii) learn the commonality which underlies all observations, (iii)

model temporal dynamics via Markovian dependencies, and (iv) align the observations

in time via a time-warping process.

• Chapter 10. Robust Canonical Correlation Analysis (RCCA). Canonical Cor-

relation Analysis (CCA) is a traditional method, commonly utilised in multiple diverse

scientific fields. Nevertheless, the Gaussian noise assumption accompanying the ori-

ginal formulation of CCA limits the use under real-world scenarios where gross noise

and corruptions are observed. In Chapter 10, we propose the Robust Canonical Cor-

relation Analysis (RCCA) which can better deal with the problem of learning from

high-dimensional, grossly corrupted data. This is accomplished by robustly estimating

a low-rank latent subspace even in the presence of gross noise, by decomposing the ob-

servation sets into a low-rank component and a sparse noise component. Similarly to

DPCCA, a time warping process can be integrated into RCCA, in order to align the

corrupted sequences in the derived error-free low-rank subspace. Summarising, RCCA

(i) jointly decontaminates observation sets which have been perturbed by sparse, gross

noise, (ii) models the clear, noise-free shared space of the observations, and (iii) allows for

the temporal alignment of high-dimensional, grossly corrupted input sequences, all while

providing a framework which can be used for e.g., robust fusion and robust multi-modal

fusion.

The final method presented in this thesis deals with probabilistic feature extraction via com-

ponent analysis. This is in fact a more technical work, which nevertheless entails a set of

significant advantages when utilised in various applications. In what follows, we summarise

the first unifying probabilistic component analysis framework in literature thus far.
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• Chapter 11. A Unified Framework for Probabilistic Component Analysis.

Feature extraction and dimensionality reduction is a crucial pre-processing step in the

vast majority of machine learning, application-oriented systems, with the most typically

used method being Principal Component Analysis (PCA). Although deterministic CA

has been well studied in literature so far and several unification frameworks have been

introduced [58, 123, 52, 241], to this date no probabilistic unification framework has been

proposed for component analysis. This is of crucial importance, not only because unified

frameworks offer various insights into the workings of the methods at hand, but also since

probabilistic formulations (e.g., based on Expectation Maximisation (EM)) usually pose

several advantages, such as lower per iteration complexity as well as probabilistic infer-

ence facilitating explicit noise and uncertainty estimation. In Chapter 11, we propose

a unified framework which covers all component analysis methods whose corresponding

deterministic formulation can be posed as a trace optimisation problem without domain

constraints for the parameters. Besides PCA, we formulate other, commonly used meth-

ods including Linear Discriminant Analysis (LDA) and Locality Preserving Projections

(LPP), while other more recent approaches are also incorporated, such as Slow Feature

Analysis (SFA). The contributions derived from this framework, beyond the theoret-

ical insights on component analysis, are as follows: (i) probabilistic models for certain

CA methods are proposed for the first time, such as probabilistic LPP, (ii) explicit per

dimension variance modelling, (iii) reduced per-iteration complexity in comparison to de-

terministic equivalents, as well as (iv) a flexible framework upon which novel component

analysis methods can be straightforwardly generated.

1.3.2 Application-oriented Contributions

We have so far described both the challenges that this thesis deals with (Section 1.2), as well as

the methodologies introduced in this thesis in order to tackle such challenges (Section 1.3.1).

In what follows, we proceed to discuss several application-oriented contributions, inspired

mostly by the aforementioned challenges, typically encountered when deploying affect analysis

systems under real-world conditions.

Learning Continuous Emotion Dimensions via Exploiting Output Correlations

(Chapters 5, 6, 7)

The work presented in this thesis shows the first empirical results on large audio-visual corpora

which experimentally verify that emotion dimensions manifest various correlations which prove

beneficial for the task of learning continuous and dimensional emotional states. Furthermore,
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novel models fitted to the task are presented. In more detail, such output correlations are

exploited in our work by (i) learning output-dependencies during training in order to improve

accuracy on testing data, and (ii) removing redundancy in the output dimensions. In more

detail, regarding (i), in Chapter 5 we approach the problem in a straightforward manner; we

show how by appropriately utilising the so-called Bi-directional Long Short-Term Memory

Neural Networks (BLSTM-NN), we are able to exploit both temporal information as well as

temporal correlations. This is, to the best of our knowledge, the first work3 which explicitly

proposes and models the relationship of output dimensions for the task of learning continuous

emotion dimensions, and has influenced several works by other researchers, such as [13]. This

concept is further studied in Chapter 6, where we propose an extension of the Relevance Vector

Machine (RVM) which is able to learn output-dependencies over time. In more detail, we pro-

pose a novel Output-Associative Relevance Vector Machine (OA-RVM) regression framework

that augments the traditional RVM regression by being able to learn non-linear input and

output dependencies. Instead of depending solely on the input patterns, OA-RVM models out-

put covariances within a predefined temporal window, thus capturing past, current and future

context. As a result, output patterns manifested in the training data are captured within a

formal probabilistic framework, and subsequently used during inference. We successful apply

our model to the problem of dimensional continuous prediction of emotions, and evaluate the

proposed framework by focusing on the case of multiple nonverbal cues, namely facial expres-

sions, shoulder movements and audio cues. We demonstrate the advantages of the proposed

OA-RVM regression by performing subject-independent evaluation using the SAL database

that constitutes of naturalistic conversational interactions. The experimental results show

that OA-RVM regression outperforms the traditional RVM and SVM regression approaches in

terms of accuracy of the prediction (evaluated using the Root Mean Squared Error) and struc-

ture of the prediction (evaluated using the correlation coefficient), generating more accurate

and robust prediction models. Regarding (ii), in Chapter 7, we present a simple methodology

based on the least-squares formulation of Canonical Correlation Analysis (CCA), which is able

to project features extracted from multiple modalities as well as output emotion dimensions

onto a common space, where their inter-correlation is maximised4. In effect, this entails that

(a) the observations become correlated to the output-dimensions, significantly reducing their

dimensionality, while (b) removing the output redundancy by projecting the emotion dimen-

sions on a diagonal covariance latent space. As we show in Chapter 7, this is highly beneficial

3At time of publication [174].
4Note that since CCA is a static method, the output modelling in CSR is spatial and not temporal (in con-

trast to OA-RVM, where spatio-temporal modelling is achieved via a temporal window and BLSTM-NN where
previous inputs and outputs are recurrently fed into the model). CSR can be easily extended to accommodate
for temporal relationships by utilising temporal windows, as in case of OA-RVM.
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in terms of accuracy. Finally, it is important to state that in Chapter 7, we also contribute

in terms of empirically analysing emotion dimensions, answering questions such as (a) which

modality best correlates with particular emotion dimensions in comparison to other emotion

dimensions, and (b) analysing the correlation of emotion dimensions to (the intensity of) ba-

sic emotions. As mentioned in Section 1.2, (a) is of high importance when designing systems

aiming for particular emotion dimensions (such as e.g., arousal), as one can utilise the cues

which best correlate with the target dimension (E.g., audio cues for arousal). Furthermore,

as we show in our work, it turns out that emotion dimensions are better correlated to other

emotion dimensions than to feature sets (E.g., valence is better correlated to arousal, power,

intensity and expectation rather to facial expressions or audio cues). In turn, these findings

further motivate our work on learning output-associations amongst emotion dimensions.

Level of Interest as a Continuous Emotion Dimension (Chapters 7, 10 and 11)

The modelling of the level of interest constitutes a problem with very large applicability. The

demand for the detection of interest under real-world conditions (e.g., in museums) has led to

great attention from researchers in affective computing and machine learning [195, 227, 228].

In most related work, interest is not considered as an emotion dimension, but is usually

studied similarly to basic emotions, i.e. as a discrete label. In this thesis, we attempt to

treat Interest as an emotion dimension. That is, firstly in Chapter 7, we define Interest as

an emotion dimension. In a normalised range [−1, 1], we define the dimension of interest as

ranging from disinterested (−1) to interested (1) while we gather the relevant annotations of

the Level of Interest by eight annotators. Subsequently, we study the correlation of interest

to emotion dimensions. In conclusion, we find that the continuous annotations of interest

are well correlated with emotion dimension annotations, despite the disjoint set of annotators

used in different sets of annotations. In agreement to findings in psychology, we find that

the level of interest best correlates with arousal and secondly with valence. Furthermore, in

Chapter 10, we provide a novel robust feature fusion technique, Robust Canonical Correlation

Analysis (RCCA), which we apply to the problem of audio-visual interest prediction. As we

show in relevant results, RCCA is able to outperform other feature techniques for this task.

Furthermore, by utilising other emotion dimensions in the comparison, we find that although

there is an overlap, the Interest measurements contain unique information with respect to other

emotion dimensions. Finally, in Chapter 11, we utilised a set of quantised interest annotations

and evaluate the Probabilistic Linear Discriminant Analysis (EM-LDA) we propose in the

same chapter on the problem of feature extraction for the detection of interest.
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Spatio-temporal Fusion of Multiple Annotations (Chapter 9)

It is a common scenario for applications which pertain to subjective labels to attain multiple

annotators in an attempt to reduce the subjectivity, and person-specific bias of the annota-

tions. As discussed in Section 1.2, this is a matter of crucial importance since the “ground

truth” derived from the multiple annotations is subsequently used in order to train machine

learning models to predict continuous emotions. Therefore, if the ground truth is not obtained

correctly, it is unavoidable that the relevant learning techniques employed will be unable to

model the true latent functions which map e.g., facial expressions to continuous emotions, but

rather will be negatively influenced by both annotator bias and fallacies of human judgement,

noise and other temporal discrepancies. Understandably, these issues establish the problem of

fusing multiple continuous annotations as perhaps the most significant challenge of adopting

continuous emotion annotations. Furthermore, it is important to note that most research-

ers simply average the annotations in order to obtain what will be considered as the ground

truth, a quite suboptimal approach to the problem as it renders the annotations susceptible

to various types of noise.

An attempt to solve this problem is presented in Chapter 9 where a novel probabilistic

method is presented for inferring the ground truth based on a set of imperfect annotations.

In more detail, we present a novel dynamic private-shared space probabilistic model based

on Canonical Correlation Analysis (CCA), which we dub Dynamic Probabilistic Canonical

Correlation Analysis (DPCCA). This approach offers a complete solution to the problem of

fusing multiple annotations, as it is suitable for tackling the most significant of problems

which commonly arise in such settings. Firstly, the private-shared space formulation entails a

significant advantage fitting to the inherent nature of this problem: the shared space represents

the underlying annotation which is common to all annotators, while the private space is

able to isolate the portions of the signal which are uninteresting and specific only to one

annotator. Furthermore, the dynamic nature of the model enables smoothing over noise of

various nature apparent in such annotations (e.g., false positives, errors originating from the

imperfect handling of input devices etc.). Note that a significant issue in fusing continuous

in-time annotations is the various temporal discrepancies that are exhibited by annotators,

a consequence of varying human response times, the level of concentration of the annotator

and so on. To accommodate for this issue, we extend DPCCA by incorporating a time-

warping process in the model, which corrects the temporal misalignments manifested in the

annotations. Moreover, as we show in Chapter 9, the specific formulation adopted allows for

automatic ranking of annotations, including automatically discarding malicious annotations
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(or spam). Finally, DPCCA is extended in order to include features and other observations

in the derivation of the ground truth. This is crucial in many problems where the actual

observations can be the only true reference to the actual annotated sequence, especially when

the annotations are very noisy. In effect, DPCCA tackles all problems that arise when fusing

multiple continuous annotations. Firstly, DPCCA exploits both (i) the existence of multiple

annotations as carriers of portions of the true annotations, and (ii) the availability of any

features which can act as objective references to the sequence at hand, such as audio and

visual features. These are in fact the only information at hand which can disambiguate

the existing annotations. Summarising, DPCCA (i) isolates annotator-specific spatial bias,

(ii) nullifies temporal discrepancies of annotators, (iii) exploits any available features, (iv)

models dynamics (v) ranks the efficacy of annotators and finally, (vi) provides a probabilistic

estimation of the “ground truth” as a representation of a clean, shared space underlying all

annotations.

Temporal Alignment of Human Behaviour (Chapters 9 and 10)

As mentioned in Section 1.2, the problem of temporal alignment of human behaviour, and

sequences is general, carries particular significance and is often encountered within the realms

of computer vision. In this thesis we approach this problem with two different models, which

both share the same principles of design (see also, Section 1.3.1). The first method, DPCCA,

is a probabilistic approach which, as discussed above, is particularly fitted for the problem of

fusing annotations, providing the modelling of latent dynamics as well inferring a probabilistic

measure of uncertainty. The second method, which we coin Robust Canonical Correlation

Analysis (RCCA), is particularly suited to high-dimensional data which are corrupted by

non-Gaussian noise, as are e.g., occlusions and other forms of gross noise.

• Probabilistic Temporal Alignment via DPCCA (DPCTW). In Chapter 9, we

derive a probabilistic, private/shared space model which can be used in order to tempor-

ally align sequences. Unlike previous works targeting temporal alignment, this method

can handle an arbitrary number of sequences, model temporal dynamics, as well as in-

fer the shared space of all sequences in a probabilistic manner. The advantage of this

formulation is that information which is private to a specific sequence is isolated in the

private space and does not influence the shared space. With the private space modelling

noise and bias, the shared space captures the commonality of the observations, which

is subsequently temporally aligned. This effectively allows for temporally aligning the

shared characteristics of temporal sequences, even though each may carry some unique
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information. Finally, DPCCA allows for a ranking of the observation sequences in terms

of the contribution to the “shared” information conveyed by the entirety of observation

sequences.

• Robust Temporal Alignment via RCCA (RCTW). Most of the CCA variants in

literature are based on a the Gaussian-noise assumption. Nevertheless, in many real-

world applications, the presence of gross types of noise is observed (E.g., gross errors due

to incorrect localization and tracking, presence of partial occlusion, as well as outliers).

These types of errors rarely follow a Gaussian distribution, which as aforementioned is

the de-facto assumption in most methods. To this end, in Chapter 10 we propose a

robust variant of Canonical Correlation Analysis, utilising low-rank approximation and

sparse errors. Given a set of high-dimensional observations corrupted by gross noise and

by incorporating a temporal alignment step, the method is able to temporally align the

observation sequences in a clean (from gross errors) latent space. As we show in both

real and synthetic experiments, this method is able to outperform other static variants

of CCA which appear unable to cope with gross noise.

Modelling Temporal Dynamics (Chapters 5, 6, 9, 11)

As discussed, the concept of modelling temporal dynamics and in effect temporal dependencies

is extremely crucial in terms of analysing human behaviour, especially when the observations

consists of video or audio sequences and not of static images. The modelling of dynamics is a

common feature which is exhibited by the models proposed in this thesis. In Chapter 5, the

employed BLSTM-NNs are inherently able to model such dependencies, and in-effect the pro-

posed output-associative fusion, consisting of BLSTM-NNs, is able to model both short and

long term temporal dependencies. The probabilistic OA-RVM presented in Chapter 6 is able

to do so by applying a temporal window to the output features, thus utilising neighbouring

temporal information. The DPCCA (Chapter 9) model is equipped with latent spaces which

model temporal dependencies, in effect by modelling the temporal evolution of the signal in

latent states following a first-order, directed Markov chain. In fact, in Chapter 11, where

we propose a unified framework for probabilistic component analysis, imposing temporal de-

pendencies in probabilistic component analysis models becomes straightforward, by simply

incorporating a Markov Random Field (MRF) with temporal connectivity in the latent space.

Note that other models which do not model dynamics are primarily tested on static data and

are based on deterministic CCA, which is inherently a static model. Nevertheless, temporal

dependencies can be modelled by employing sliding temporal windows or other feature trans-

formations, such as temporal kernels. Finally, we summarise by highlighting that the results
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presented in this work crystallize the significance of modelling dynamics in the problem of

continuous emotion dimensions and human behaviour in general, as in all cases the inclusion

of temporal capabilities increases the obtained accuracy.

The Fusion of Multiple Modalities (Chapters 5, 7, 9, 10)

As aforementioned, many open problems in affective computing and human behaviour ana-

lysis revolves around fusion, where typically information from multiple modalities (such as

audio and video) convey complementary information. In the first part of thesis, and namely

in Chapters 5, 6 and 7, we perform an experimental evaluation of various fusion techniques

while providing answers to questions such as which modality is better for predicting which

emotion dimension, and which fusion method is more suitable for predicting specific emotion

dimensions. We compare against several widely used fusion techniques such as model-level

fusion, where fusion is performed as an added layer on already trained models and feature-

level fusion, where features from multiple cues and modalities are simply concatenated. We

propose fusing multiple modalities via model level BLSTM-NN fusion 5, while we also show

how one can fuse multiple observation sets by utilising a block matrix formulation in CCA

(Chapter 7. Subsequently, driven by a fundamental idea proposed in this thesis, namely that

emotion dimensions exhibit spatial and temporal correlations which can be utilised to improve

the accuracy of predictive analysis, in the related chapters we propose fusion techniques which

essentially incorporate output information and dependencies during learning from observa-

tions. This line of work has been described in the subsection Learning Continuous Emotion

Dimension via Exploiting Output Correlations previously in the current section.

Subsequently, in the second part of the thesis, we propose novel fusion techniques, mostly

founding on the shared-space principle. Firstly, in Chapter 9, we introduce a novel dynamic

model which aims to isolate private information specific for each observation sequence and

learn any arising commonality amongst the observation sets. Although the method can be

generally utilised for fusion, we apply the method in Chapter 9 to the fusion of annotations with

observations in order to assist the inference of the clean “ground truth” signal from multiple

noisy observations. Subsequently in Chapter 10, we introduce RCCA, a robust variant of CCA,

which aims to isolate gross errors and learn a clean, common subspace for the observation

sets. RCCA is utilised for robust fusion of multiple modalities. In Chapter 10, we evaluate

RCCA on many fusion related problems, such as the audio-visual fusion for the detection of

interest along with heterogeneous face fusion/recognition, where images of subjects attained

via different sensors (e.g., visual images, 3D maps (depth information), infrared images as well
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as hand-drawn sketches) are fused, and the extracted features are used for classifying. Note

that in this scenario, we also examine the very challenging scenario when one of the modalities

is missing during testing, as well as the scenario where the set of testing classes and training

classes is disjoint, and thus during testing the goal is to match the multiple modalities amongst

themselves to obtain a classification. Note that the methods defined within out unifying

framework for probabilistic component analysis (Chapter 11) are not currently developed for

fusion, but can be easily extended to do so.

Dimensionality Reduction via Probabilistic Component Analysis: Face Analysis

and Visualisation (Chapter 11)

In Chapter 11 we present a Unified framework for Probabilistic Component Analysis, suitable

for dimensionality reduction and feature extraction. The proposed framework has a great the-

oretical novelty, as for the first time, a probabilistic framework which unifies most well-known

Component Analysis (CA) techniques is presented. In more detail, we present novel probabil-

istic models for applying Principal Component Analysis (PCA), Linear Discriminant Analysis

(LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA)). The models

derived via our framework bear several advantages over equivalent methods, such as reduced

complexity in comparison to deterministic equivalents, explicit noise modelling, estimating

per-dimension variance (thus being able to rank the derived latent space in contrast to other

probabilistic component analysis techniques), as well as allowing for more robust inference

due to the probabilistic nature of the model. We evaluate the Expectation Maximisation

(EM) based models derived from our framework on various problems. Firstly, we apply our

EM Linear Discriminant Analysis (EM-LDA) on the problem of automatically detecting the

level of interest of a subject on naturalistic, spontaneous data acquired in the Lisbon Zoo by

a robot acting as a virtual guide. Furthermore, we evaluate the methods on the problem of

Feature Extraction for Face Recognition on various popular databases such as PIE, YALE and

AR under noisy settings. Finally, we evaluate the derived methods on the problem of high-

dimensional data visualisation on the Frey Faces data. Via our experiments, we show that

the theoretical advantages posed by our frameworks greatly reflect on the obtained results, as

models derived via our framework outperform other, compared methods.
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1.5 Thesis Outline

The rest of the thesis is structured as follows. In Chapter 2, we present an introduction to

the problem of affective analysis, covering mostly continuous dimensional emotion descrip-

tions, the perception of affect from multiple modalities, as well as discuss common feature

sets employed in the field. Subsequently, in Chapter 3 we introduce a set of machine learning
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techniques which are relevant to this thesis, such as regression, component analysis and time

warping for temporal alignment. The main body of this thesis is separated into two main

parts. While both parts revolve around both affective computing, machine learning and com-

puter vision, the first is primarily attentive to affective computing while the second is more

machine learning oriented.

In more detail, the first part, consisting of Chapters 5, 6 and 7, is more focused on exploring

the problems arising from adopting continuous and dimensional emotion descriptions. We per-

form an empirical analysis of the problem and identify the idiosyncrasies which, when taken

into account during the design of a system will prove beneficial. In more detail, we focus on

prediction by exploiting output-correlations (i.e., correlations amongst emotion dimensions),

an idea which is proposed and implemented in this work for the first time in literature (spe-

cifically, in [174]). In more detail, in Chapter 5 we perform an initial approach to the problem

by utilising various regression techniques such as the Bidirectional Long-Short Term Memory

Neural Networks (BLSTM-NN), while we examine the efficacy of utilising several modalities

and cues (visual consisting of facial expressions and shoulder movements, as well as audio cues)

in terms of predicting continuous emotions. We propose the utilisation of output-correlations

in a form of fusion (which we dub output-associative fusion), aiming to learn output patterns

commonly occurring in our data and in effect obtain better models for predictive analysis.

In Chapter 6, we formalise the concept of learning output correlations in emotion dimen-

sions further. We introduce a novel, probabilistic framework based on the Relevance Vector

Machine (RVM) which can learn spatio-temporal output dependencies while adopting sparse

probabilistic learning. Finally, Chapter 7 presents a simple idea on using Canonical Correla-

tion Analysis (CCA), a component analysis method aimed at analysing multiple observation

sets, in order to correlate observations to emotion dimensions, while removing any redundancy

arising in emotion dimensions. This is achieved by diagonalising the output covariance matrix,

and in effect facilitating the utilisation of single-output models without loss of information.

The second part of the thesis is more closely attached to component analysis. In more

detail, in Chapters 9, 10 and 11, we propose a set of novel probabilistic and deterministic

component analysis techniques and frameworks. While, as in the previous part, we are in

many cases driven by an attempt to solve a particular application related problem, this does

not constrain in any way the generality of application, as the solutions we provide are fitting

to many other fields and domains with similar settings, as we discuss. Firstly, in Chapters

9 and 10, we propose two different component analysis methods which have a common prin-

ciple: the discovery of a “shared-space”, an underlying commonality in all observation sets.
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Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), proposed in Chapter 9, is

a general method for probabilistically inferring the shared and private information conveyed

by observation sequences. Via this method, we tackle the problem of fusing a set of mul-

tiple annotations in a formant and elegant framework by preserving the common information

underlying all annotations. DPCCA also features temporal warping, ranking of annotations

as well as temporal modelling. In Chapter 10, we present the Robust Canonical Correlation

Analysis (RCCA), a robust variant of CCA which is able to isolate non-Gaussian noise due

to gross errors in the observation sets. RCCA is also extended with time warping, where the

temporal alignment takes place in the discovered error-free latent subspace. The applicability

of RCCA is evaluated on problems such as the temporal alignment of human behaviour, the

multi-modal fusion from multiple sensors (such as e.g., facial images obtained via 3D and

infrared sensors) as well as other related problems. Finally, our efforts in Chapter 11 are ini-

tially driven by a theoretical problem; the formulation of a unifying, probabilistic framework

which unifies all component analysis techniques, which can be formulated as trace optimisa-

tion problems with no domain constraints for the parameters. By utilising Markov Random

Fields (MRFs), we specify a probabilistic model which can be solved via Expectation Max-

imisation, and by manipulating the MRF latent prior one can achieve equivalent solutions

to CA methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis

(LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA). As discussed

and shown via various experiments such as level of interest classification, face recognition and

visualisation, the models derived via our framework offer various advantages with comparison

to other equivalent (in terms of projection) methods.
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Affect Sensing: Background & the

State-of-the-art
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This chapter revolves around affect sensing and analysis. In particular, herein we provide the

reader with the necessary background in affect sensing, focusing mostly in terms of continuous

emotion dimensions. Furthermore, we provide a review of related literature which is most

relevant to the general research directions followed by this thesis1. In more detail, in Section

2.1, we firstly discuss the adoption of a dimensional emotion descriptions, along with related

work mostly in terms of predictive analysis on continuous emotion dimensions. In Section

2.2, we discuss the transition from posed to spontaneous expressions, while in Section 2.3,

we review the basic concepts which relate to the perception of emotions from modalities

(such as the visual and audio), while also discussing their fusion. In Section 2.4, we further

discuss the significance of modelling temporal dynamics as far as the automatic sensing of

1We note that related work which is particular to specific chapters is further analysed in the relevant chapter
introduction.
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human behaviour is concerned. In Section 2.5, we detail the process of feature extraction from

relevant modalities, with particular emphasis placed on facial expressions from the visual

modality. Finally, we discuss issues related to the data, such as describing various commonly

employed databases (Section 2.6), while also referring to the problem of obtaining reliable

annotations (Section 2.7). Finally, we conclude the chapter in Section 2.8. For more details,

the reader may refer to [285], [98].

2.1 Continuous and Dimensional Emotion Descriptions

As discussed in Chapter 1, the adoption of continuous, dimensional emotion descriptions

arises as a direct consequence of several recent trends emerging in affect sensing, such as

the need to accommodate a wider variability of emotion descriptions along with capturing

emotions most often encountered in everyday life. The description of affect via the utilisation

of latent dimensions dates back to the work of Russell [216], with similar approaches taken

on in many works in psychology, such as [132, 244] and [242] (c.f., Figures 2.1 and 2.2).

unhappy

angry

suprised
Arousal

elated

happy

relaxed

tired

bored

Valenceneutral

(a) (b)

Figure 2.1: (a) Russell’s valence-arousal space. The angle is represented by α while the vector
ē represents the emotion (point) as a parameter of valence and arousal . (b) Nine facial
expressions arranged in the ordering of (a). Image adapted from [200].

While the main basic dimensions of emotion, valence and arousal, are deemed to capture most

affective variability encountered in interactive scenarios, other dimensions are often defined

in psychology literature, such as potency or power, referring to the degree of control that the

individual feels with respect to the emotional state [56, 163, 183]. In fact, several works consider

the dimensions of power and expectation to be significant carriers of affective information [79].

While the first databases adopting elicited spontaneous behaviours along with continuous
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Figure 2.2: Other 2D emotion categorisation approaches: (a) Approach of Larsen and Diener
[132] (b) Thayer [244], (c) Watson and Tellegen [242].

annotations where only annotated in terms of valence and arousal (e.g., the Sensitive Artificial

Listener, [64]), the introduction of more recent databases such as SEMAINE [157] adopted

affective annotations in terms of 5 total emotion dimensions, summarised in what follows.

• Valence refers to the positive or negative feeling of the subject’s emotional state.

• Arousal/Activation points to the subject’s feeling of dynamism or lethargy, i.e. how

passive or active the emotion state of the subject is.

• Power dimension consists of both power and control over the emotion, with more em-

phasis placed on the power which the emotion holds over the subject.

• Anticipation/Expectation relates to control in terms of the domain of information,

i.e. expecting an event or dialogue or not.

• Intensity, closely interweaved with arousal, points to how far the emotional state of the

subject diverts from a rational, cool state.

We clarify that each emotion dimension is usually normalised between [-1, 1], ranging from

e.g., negative to positive for Valence, passive to active for Arousal and so on. In cases where

an emotion dimension can be either present or absent, (and not ranging the spectrum between

two polar opposites), the normalisation is usually done between [0,1], actually representing

the intensity of the presence of the emotion (i.e. with 0 corresponding to not present and 1

present). For further details on different approaches to modelling human emotions and their

relative advantages and disadvantages, the reader is referred to [220, 87].
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There has been a significant increase of work in modelling continuous and dimensional

emotions during the past years. Since annotations are provided in a continuous space, many

systems that target automatic dimensional affect recognition, generally tend to quantize the

continuous range into certain levels. A commonly employed strategy is to map the problem

of classifying the six basic emotions to a three-class valence-related classification problem:

positive, neutral, and negative emotion classification (e.g., [283]). A similar simplification is

to reduce the dimensional emotion classification problem to a two-class problem (positive vs.

negative or active vs. passive classification) or a four-class problem ( classification into the

quadrants of 2D V-A space; e.g., [39], [80, 85, 110, 275]). For instance, [267] analyses four

emotions, each belonging to one quadrant of the V-A emotion space: high arousal positive

valence (joy), high arousal negative valence (anger), low arousal positive valence (relief), and

low arousal negative valence (sadness). Furthermore, [122] discriminates between high-low,

high-neutral and low-neutral affective dimensions, while [151] uses the SAL database and

quantizes the V-A into 4 or 7 levels and uses Conditional Random Fields (CRFs) to predict

the quantized labels.

Methods for discriminating between more coarse categories, such as low, medium and high

[126], excited-negative, excited-positive and calm neutral [41], positive vs. negative [172],

and active vs. passive [39] have also been proposed. Of these [39] uses the SAL (Sensitive

Artificial Listener) database and combines information from audio (acoustic cues) and visual

(Facial Animation Parameters used in animating MPEG-4 models) modalities. The authors of

[172] focus on audiovisual classification of spontaneous affect into negative or positive emotion

categories, and utilize 2- and 3-chain coupled Hidden Markov Models and likelihood space

classification to fuse multiple cues and modalities. Kanluan et al. [116] combine facial ex-

pression and audio cues exploiting SVM for regression (SVR) and late fusion, using weighted

linear combinations and discretized annotations (on a 5-point scale, for each dimension).

The works which model dimensional emotion descriptions in a continuum are even more

recent. Many of these works deal exclusively with speech (i.e., [275], [151], [91]). The work

presented in [275] utilizes a hierarchical dynamic Bayesian network combined with BLSTM-

NN performing regression and quantizing the results into four quadrants (after training).

The work by Wöllmer et al. uses Long Short-Term Memory neural networks and Support

Vector Machines for Regression (SVR) [151]. Grimm and Kroschel use SVRs and compare

their performance to that of the distance-based fuzzy k-Nearest Neighbour and rule-based

fuzzy-logic estimators [91]. The work of [96] focuses on dimensional prediction of emotions

from spontaneous conversational head gestures by mapping the amount and direction of head
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motion, and occurrences of head nods and shakes into arousal, expectation, intensity, power

and valence level of the observed subject using SVRs. Several recent works focus on multiple

modalities (e.g., combining visual and auditory cues). For instance, Eyben et al. [75] propose

a string-based approach for fusing the behavioural events from visual and auditive modalities

(i.e., facial action units, head nods and shakes, and verbal and nonverbal audio cues) to

predict human affect in a continuous dimensional space (in terms of arousal, expectation,

intensity, power and valence dimensions). Metallinou et al. in [164] focus on analysing the

vocal and body language behaviour (via MoCap features) of pairs of actors improvising dyadic

interactions. For each actor’s recording, they computed the Spearman correlation coefficient

between the mean annotation and the MLE curve. Activation and dominance were predicted

from visual and audiovisual cues reasonably well. Another representative approach is that

of Gilroy et al. [84] where a dimensional multimodal fusion scheme is proposed, in order

to support detection and integration of spontaneous affective behaviour of users (in terms of

audio, video and attention events) experiencing arts and entertainment. At this point, we note

that as discussed in Chapter 1 an important contribution of this thesis is the idea of utilising

relationships exhibited in emotion dimensions for learning. This has led to the adoption of

this idea by other researchers in the field, including recent works such as [206] and [13], which

utilise Conditional Random Fields (CRFs) to this end. Finally, it is interesting to note the

recent establishment of various workshops dedicated to the topic in related conferences, such as

the Emotion Synthesis, Representation, and Analysis in Continuous space workshop, dealing

particularly with the topic of continuous dimensional emotion descriptions, as well as the the

Audio/Visual Emotion Challenge and Workshop (AVEC) [257] which includes evaluation in

the continuous domains of valence and arousal.

2.1.1 Modelling the Level of Interest

Although the level of interest is not traditionally considered as part of the latent dimensions

which describe the affective state, the automatic detection of interest in audiovisual sequences

has been gaining rising attention amongst researchers, in both the fields of affective computing

and pattern recognition and machine learning [195, 227, 228]. From a psychology perspective,

interest has been extensively studied since 1910 [7], and has since then been considered as an

emotion by various experts [250, 236], while several works have stated that interest is correl-

ated to emotion dimensions, mostly with arousal and secondly with valence [130]. Interest is

commonly defined as an emotion that causes the subject to focus his or hers attention to the

event taking place [236], and in conclusion, one can consider the magnitude of interest as a

continuous dimension. As can be understood, the detection of interest (and, similarly, engage-
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ment) is crucial for a vast number of applications, ranging from virtual guides to interactive

learning systems as well as enhancing the experience of human-computer interaction. Most of

related work on the automatic detection of interest [228, 226, 227] treats interest as a discrete

emotion, focusing on classification in terms of discrimination between interest/non-interest,

as well as discriminating amongst classes e.g., disinterest, indifference and interest. This is in

line with traditional research in affective computing and emotion theory, which focuses only

on a set of discrete emotions, such as anger and joy, but lacks the expressive variability of a di-

mensional approach. We note that, as discussed in the introduction (Chapter 1), in this thesis

we attempt to treat interest as a continuous emotion dimension (c.f., Chapter 7, Chapter 10).

2.2 Posed vs. Spontaneous Emotional States

Affect recognition systems are often criticised in terms of the difficulties which arise when

deploying them under real-world conditions. This arises not only due to the constraints and

assumptions that are usually undertaken when training such systems (e.g., constraint, labor-

atory environment etc.), but also to the type of behaviour which is utilised for training. In

more detail, affect sensing traditionally focused on posed emotion expressions, i.e. where act-

ors or subjects where asked to exhibit an expression. As discussed in Chapter 1, this leads to

behaviours which are quite unlike their spontaneous equivalents, since spontaneous emotion

expressions are more complex and do not follow a set of strict temporal phases, e.g., beginning

and finishing in neutral, with all facial muscles relaxed. As a result, many researchers shifted

their attention to modelling spontaneous human affect, in order to accommodate the increas-

ing demand for robust affect sensing under real-world conditions. The practical implications

of this shift lead to a multitude of challenges, arising mostly from recordings taking place in

much more unconstrained scenarios, where there is less control over lighting conditions, the

movement of subjects is much less constrained while various occlusions may manifest in the

recordings, e,g., by body parts, other persons or even foreign objects (such as microphones or

headsets).

Many recent studies focus on the analysis of spontaneously manifesting affective states, by

utilising both facial expressions [18, 44, 256, 8] as well as acoustic features [20, 134]. Interesting

findings relate to the differences between spontaneous and posed expressions. There has been

a lot of work in detecting differences between spontaneous and posed behaviour by the Affect

Analysis Group2, while the temporal characteristics of phases as described in Section 2.4

have been found important in detecting spontaneous vs. posed smiles [44, 258]. It is also

2http://www.pitt.edu/ emotion/publications.html
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significant to note the importance of modality fusion in discriminating between posed and

spontaneous emotions. It is typical for spontaneous body expressions to be manifested along

with an agreeing facial expression. There are different views on whether body motions or

facial expressions are most expressive of the spontaneity of the emotional expression. The two

main factors that contribute to this is the difficulty of control and the conscious censoring that

humans can impose. Darwin’s views support the facial expressions, since as he claimed, the

body expressions are more easy to control. Looking at this problem from a different angle,

Ekman [71] supports that humans usually try to censor their face (since as Ekman supports,

humans are more concious of their facial expression) thus the body expressions would be more

prone to expressing uncensored information. There has been work that also suggests that

truthful and deceptive behaviour differs on the number of head movements [34, 33], or the

lack of accompanying gestures [60].

Some examples of systems discriminating spontaneous from posed behaviour include [258],

which discriminates spontaneous from posed smiles by utilising geometric features and multi-

modal fusion using head movement, facial expressions and shoulder gestures. Based on the

data, the temporal facial states are detected, along with the activated AUs, while GentleBoost

and Support Vector Machines (SVM) are used for the classification. Experimentation also

occurs with modifying the abstraction level of fusion (early, mid-level and late), while the

authors conclude that from the specific results, the head pose seems to be the most important

modality. Another example is that of Littlewort et al. [145], discriminating between real vs.

fake pain. The system utilises Action Units (AUs) to encode facial expressions, using 20 AU

classifiers with input data images of posed and spontaneous facial expressions. The authors

presented better accuracy compared to human FACS experts (72% to 52%), while they argue

that such a method could be also used for other spontaneous expressions. It is important

to note that in general, research on spontaneous vs. posed expressions, whether it is from

psychology or in developing affect recognition systems agrees that the temporal dynamics

appear to be highly significant in terms of determining one from another [285].

2.3 Modalities and Emotion Perception

In this section, we refer to the various modalities typically employed for affect sensing. We

firstly focus on the visual modality, where we discuss facial expressions and body gestures.

Subsequently, we discuss the perception of emotion from audio cues, as well as provide a brief

reference to measuring emotions from physiological parameters. Finally, we discuss the issue

of multi-modal fusion.
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2.3.1 Visual Modality

Facial Expressions

In order to model the multiple, complex human facial expressions, Ekman and Friesen de-

veloped the Facial Action Coding System (FACS) [72] in 1978. This model provided a tax-

onomy of facial expressions, and is widely accepted as a de-facto standard utilised in order to

categorise the facial expressions of emotions. Based on Carl-Herman Hjortsjö’s book on the

anatomy of facial features [104], the FACS model consists of 32 atomic facial muscle actions,

(Action Units, AUs), which in turn represent the contraction or relaxation of one of the facial

muscles (Fig. 2.4). An important advantage of the FACCS model is that the annotation of

facial expressions is moved away from a subjective, personal interpretation of the annotator to

an objective representation of human expressions, which is observer-independent - although

usually an expert is required to correctly identify the activated facial muscles and thus, the

activated AUs. A list of facial AUs can be found in Fig. 2.3.

Figure 2.3: Facial Action Units (AUs), with 9 AUs for the upper face and 18 for the lower,
containing images from [72] and [189]. Figure adapted from [214].

Body & Gestures

Researchers have long attributed the expression of emotional states through body movement

and bodily gestures (e.g. [100, 3, 167]), originating from the work of Darwin on the description

of animal and human emotion expression. Various research has also supported that emotional

states can be disambiguated via analysing body expressions [259], while also indicating that a

better appreciation of emotional states can be achieved by analysing the entire body. In some

limited cases, studies have shown that body gestures can be as significant as voice and facial

expression modality [47]. There has been research in combining posture and body information
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Figure 2.4: Left: Relation between muscular anatomy and muscular actions (Action Units).
Right: The AUs of FACS. Circle represents fixed point towards which skin is pulled along the
line during activation while number represents the AU. Both images adapted from [72].

with kinematics [67, 92, 93, 94], while there were also attempts to relate emotions to kinematic3

data (e.g., joint angle data for head tilt, rotation, neck flexion, shoulder abduction, elbow

flexion and knee flexion) and gait parameters4 (velocity, cadence or steps per minute). Results

for such attempts varied and demonstrated a difficulty in recognising emotions such as anger,

while attaining best performance in recognising sadness. The most characteristic parameters

expressing emotion were related to limb motion and general posture. It is important to note

that, in contrast to facial expressions, there is no standardised method in interpreting human

postures and gestures (like FACS) and no equivalent to AUs, although there have been efforts

in that direction (e.g. [127]).

2.3.2 Audio

Audio and speech are essential carriers of human affect. The acoustic behaviour of humans

is separated into the transfer of linguistic, paralinguistic and extralinguistic information, al-

though only linguistic and paralinguistic are communicative [133]. The linguistic part is refers

to language itself, being precisely the explicit verbal part of the communication. The paralin-

guistic element refers to the non-verbal part of the communication, which is used as to modify

the verbal meaning, or convey emotion (e.g. falsetto in mocking), whether it is expressed

unconsciously or consciously. Features such as volume, pitch and intonation are related to

3Kinematics is a branch of classical mechanics which relates to the description of motion
4Gait analysis is related to the quantization of parameters in order to help athletes improve their perform-

ance or identify posture related problems
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paralinguistics. The extralinguistic element refers to informative but not communicative in-

formation which might e.g. identify the speaker from overall pitch and loudness of speech.

The extralinguistic part refers to information which has no conventional meaning, but is un-

intentional, for example pitch differentiation based on age and sex [51]. Usually in emotion

[285, 97] and speech recognition [223], the discrimination is between verbal (linguistic) and

non-verbal (paralinguistic, extralinguistic) elements of speech. Important information with re-

spect to the expression of emotions is deemed to be conveyed in the paralinguistic part, while

it has been reported that spoken messages are not reliable in expressing affective behaviour

[169], as e.g. a different selection of words is used by different persons in order to express the

same affective state, while other difficulties can be for instance, in cases where human speakers

refer to emotional states which are irrelevant to their current emotional state. Despite the

difficulties, there have been attempts to generate dictionaries of words and affective states,

e.g. Whissell’s dictionary of affect in language [270], which is essentially a list of 4000 words,

with a 2D rating in the activation/evaluation space.

On the other hand, implicit paralinguistic messages are deemed to provide significant con-

tribution towards emotion recognition, while parameters which have been identified as strong

indicators of emotions are continuous acoustic measures, especially those who relate to the

pitch (fundamental frequency) such as frequency range, the mean, median and variability val-

ues [97]. Further detailed surveys in this area include [210] and [137], while a survey of acoustic

features is presented in [49]. It is important to note that while the identification of the optimal

feature set is yet an open problem, human listeners are accurate in detecting basic emotions

from prosody features (rhythm, stress, intonation) [210] and some non-basic affective states

from non linguistic vocalisations like laugh, cries, sighs and yawns [203]. A recent, systematic

survey on computational paralinguistics including tools and techniques can be found in [225].

2.3.3 Physiological Parameters & Heat

There have been other methods of attaining results and measurements of human affective

states, to which we will refer briefly in this section. Firstly, we refer to measuring physiological

parameters or bio-potential signals. The range of parameters ranges from measuring brain

signals by functional Near Infrared Spectroscopy (fNIS), scalp signals by electroencephalogram

(EEG), peripheral signals such as cardiovascular activity, electrodermal activity, Galvanic Skin

Response (GSR) and the electromyograph (EMG). It is believed that these measurements can

be translated to the valence-arousal emotion space. Furthermore, research results suggest a

correlation between emotional states and core body temperatures of mammals, e.g. the change
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in the facial temperature of monkeys when they are under stressful situations, or the body

temperature of rats under similar fearful situations. It is also notable that a correlation has

been found between measurements in blood flow and changes of affective states [252, 192],

due to thermo-muscular activity. Thus, by obtaining objective measurements of the skin

temperature change, there is a possibility of obtaining information for affect states of subjects.

Again, a generic framework for these measurements is yet to be defined. For more details, the

reader can refer to [97].

2.3.4 Fusing Modalities

A significant issue relating to affect sensing and automatic behaviour analysis lies in the

appropriate fusion of multiple modalities. Clearly, in human-to-human communication the

combination of information conveyed from speech, gestures and facial expressions is essential

in order to disambiguate the actual conveyed emotion [160, 159]. In human communication,

the modality information is fused either consciously or subconsciously. McNeil emphasises

what he calls the conceptual expression of gestures in combination with language, as he claims

that the speaker is thinking in images and in words, expressing words by language and images

by gestures. It is suggested facial expressions and vocal characteristics (tone of voice, prosody)

strongly influence each other ([155, 57, 239]). It has also been reported that body expressions

disambiguate the classification of facial expressions, as well as influence vocal features such as

tone [259]. Summarising, these findings point to the significance of properly fusing modalities

when analysing human behaviour. This includes balancing the contribution of modalities (i.e.,

properly weighting cues which are better for analysing particular behaviours). Also, in many

cases the modality information can be incongruent (i.e., disagreeing information). Meeren et

al. [162] investigate the agreement and conflict of facial and body modalities, by presenting

images of faces on body’s to participants, with agreeing (e.g. happy face on happy persons

body) or conflicting information (sad face on an exited persons body). The human participants

opted towards the trusting the body expression where the information was conflicting, leading

to an indication of the importance of bodily expression in the presence of ambiguous facial

expressions. The most common employed fusion techniques are feature-level fusion (where the

features are simply concatenated and normalised) and decision-level fusion, where a predictive

analysis algorithm is trained on single modalities, and the results are subsequently fused [285].

47



2. Affect Sensing: Background & the State-of-the-art

2.4 The Significance of Temporal Features

As has been hinted in previous sections, the modelling of temporal dynamics is of crucial

importance to affect recognition, since such information provides further indications regarding

the affective state of the subject, which may not be conveyed if one observes each temporal

instance in isolation. For example, in [44, 258], it is shown that the timing of smiles can

demonstrate whether a subect is posing a smile or not. The significance of modelling such

temporal characteristics has been shown in many studies, such as [6] where the importance of

time slices against stills in personality judging is denoted and in [221], where discussion involves

temporal features of ”social” expressions such as smiles and other expression components such

as yawning and eyebrow flashing. The sequence of temporal phases of facial expressions (based

on Ekman’s work [68]) can be described as follows.

• Neutral. The neutral phase is when there are no manifestations of muscle activation

and the face is considered to be relaxed.

• Onset. Onset phase occurs at the beginning of an action, where the activity in the

facial muscles begins, and gradually increases in intensity.

• Apex. Apex is the plateau when the intensity of the motion stabilises.

• Offset. The last phase is the offset phase, where the muscular action begins to relax.

Typically, human facial expressions follow the above pattern, especially when the expressions

are posed. In cases where the emotion can be spontaneous, it is likely that the sequence

will not follow the precise steps defined above (e.g., two consequent smiles, with the second

onset initiating during the first offset, i.e. offset → onset → apex). In Fig. 2.5, we show an

example of such a case by illustrating a plot annotated with the intensity changes as well as

the temporal phases. Furthermore, in Figure. 2.6 we show an example of a spontaneous smile,

where as can be seen, an offset face is preceded by another onset and apex, instead of resting

to the neutral position as usually happens in posed data.

Regarding the temporal structure of body gestures, there have been similar studies although

much less explored. In general, a gesture can assume up to five temporal phases [97, 161].

These are defined as (i) the preparation phase, where the body parts move to the posture

where the gesture stroke will commence from, (ii) the pre-stroke hold state, which occurs

when the body parts hold in position, (iii) the where the peak of intensity is acquired in the

stroke phase, (iv) the post-stroke hold, where the final gesture position is reached, and (iv) the
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Figure 2.5: A hypothetical example from [74], where temporal facial phases are portrayed as
functions of intensity. The neutral state is assumed to occur when intensity is around zero.

Figure 2.6: An example of a spotaneous smile from the UvE Nemo database. Note that the
sequence of temporal phases during activation is not so strict in spontaneous behaviour. As
can be seen, the expression changes from apex to apex in the second and third frames without
firstly going through the neutral state.

retraction phase, where the body parts returns to the previous state. As argued in [161, 272]

the only required part in this transitional process is the stroke, while all other phases are

optional.

2.5 Feature Extraction and Pre-processing

In this section, we will refer to the typically employed methodologies used to extract features

from various recordings. We mostly focus on facial expressions, which are utilised in the

vast majority of work presented in this thesis. Two separate steps are usually employed

when utilising facial expressions: the detection of the face, and subsequently the extraction

of features. For completion, we also briefly refer to feature extraction from body movements

and the audio modality.

2.5.1 Facial Expressions

Face Detection

In order to extract features from facial images, the first step consists of two parts: (i) determin-

ing whether a face exists or not in a given image, and (ii) determining the actual location of the

face. This process is typically called Face Detection. While seemingly a relatively easy prob-
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lem, especially when compared to highly complex modern computer vision problems, it can

become highly challenging when studied under real-world conditions, with the manifestation

of occlusions, uncontrolled variations in the head pose and varying illumination conditions.

Typically, the problem is simplified by various assumptions, e.g., that there is only one face

in the image [97] or by limitations in the posture of the person (front or profile view). Face

detection is usually based on classifiers trained with positive and negative examples of faces,

while modern methods for face detection are typically based on the Viola-Jones algorithm

[263], which has been extended and improved in [142, 77]. Detailed surveys regarding the

advances in face detection can be found in [294, 286].

Tracking

Having detected a face, a set of points must be localised on the face, e.g., via tracking. This

process, often called facial point detection, may be be omitted in case only the texture of the

face is required for the task-at-hand, but it is most often required since in most applications

faces need to be spatially aligned and registered. Such methods can be based on texture

or both texture and shape, whereas techniques based on shape also propagate information

which essentially constraints the solution space, by disregarding e.g., anatomically impossible

results. An example of a facial point detector based on local Gabor wavelets is presented in

[266], later improved in [255, 154] by introducing graph-based constraints in order to validate

the face shape. The main disadvantage of this family of detectors lies in being unable to

cope with non near-frontal images. More recent methodologies which can deal with large

pose variations as well as deal better with occlusions and varying illuminations have been

proposed in [301, 278]. A very well known method based on both texture and shape refers to

Active Appearance Models (AAM) [156]. In particular, AAMs define facial shapes via a 2D

triangular mesh, while Principal Component Analysis (PCA)5 is applied within each triangle

in order to model the variation within. The reconstruction error is optimised in order to

recover the optimal parameters via iterative gradient-descent. It is important to note that

other commonly employed tracking methods such as Eigentracking [27], Lucas-Kanade [148]

and Constraint Local Models (CLMs) [9] belong in the same family as AAMs, namely the

Parametrised Appearance Models (PAMs) [171].

Feature Extraction

Having detected a face, the next step consists of extracting the desired features. In what fol-

lows, we discuss the most commonly utilised feature sets, commonly categorised into geometric

5Component Analysis (CA) is more formally introduced in Chapter 3.
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and appearance based features [59, 285].

Geometric Features. As the name suggests, geometric features usually consist of encoded

information regarding the location and the shape of the face and facial features (e.g., location of

lips, eyes, nose and brows). The simplest feature set consists of 2D or 3D Cartesian coordinates,

although more complex representations have been utilised in related work, such as basis fitting

(e.g., polynomial and exponential), angle and distance-based representations. Furthermore,

other works [117] employ the parametrisation of shape components as a feature set, which in

many cases provides several useful invariant properties. There are many examples of works

which utilise geometric features in related work. To name a few, in [187, 188] a set of 20 facial

points is used in order to describe facial expressions. The derivation of further features such as

angles, distances and velocities has been used in works such as [256, 258]. Specifically, in [256],

the features are derived from 58 facial points, aiming to to capture the temporal structure of

Action Units, while in [258], 12 fiducial points along with head motion are utilised in order to

distinguish posed from spontaneous smiles. In [43], a model-based face tracked is utilised in

order to track facial features such as eyebrows, eyelids and mouth, along with head motion,

for the analysis of basic emotions. While geometric features are deemed unable to capture

particular Action Units (AUs) such as AU28 (inward lip sucking), since the change is only

visible in terms of texture, geometric features have been successfully utilised in the analysis

of facial expressions in many works [149, 186, 188, 256].

Appearance Features. Appearance features are essentially based on representations of tex-

ture information. Therefore, in contrast to geometric features, appearance features can capture

skin texture changes such as wrinkles and bulges [112, 197]. There is a multitude of appearance

feature sets utilised for affect sensing, including feature extraction via Component Analysis

methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA)

and Independent Component Analysis [19, 21]. A set of very commonly used descriptors (e.g.,

in [53, 295]) include the gradient-based descriptors such as Histogram of Gradient Orientations

[54] and the Scale Invariant Feature Transform (SIFT) [147]. An alternative feature set based

on the description of pixels relative to their neighbours is the Linear Binary Patterns (LBP)

method introduced in [180] and applied in many works pertaining to affect sensing, such as

[293, 4] as well being utilised in the provided feature set for the Audio/Visual Emotion Chal-

lenge 2013 [257]. Finally, we note that other feature sets which have been greatly applied in

affect sensing include the Gabor wavelets and Haar Filters [292, 150, 19, 271]. Each particular

feature set comes both with a set of advantages and disadvantages, in most cases determin-
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ing the tradeoff between accuracy, complexity and robustness to various transformations and

noise. For example, Gabor wavelets [135] essentially involve the modulation of a since wave

with a Gaussian envelope at multiple spatial scales, orientations and locations. Good results

have been obtained by utilising Gabor filters, while theoretically the process is assumed to be

similar to the human visual system [135]. While Gabors are deemed robust to misalignments,

they are also deemed very computationally expensive due to the presence of the convolution

operator. Also, a redundancy of features is also generated, which in turn is remedied by apply-

ing dimensionality reduction, usually via component analysis. Haar filters [271] correspond to

more coarse features, being more computationally efficient but less accurate in terms of texture

details. This is also an issue with the DCT [1], where texture variation from the frequency

domain is utilised. Since the high frequency coefficients are usually discarded, as they are

considered to be noise, the DCT may lead to a loss of texture details. Gradient-based feature

sets such as the Histograms of Oriented Gradients (HOG) [54] as well the Scale Invariant Fea-

ture Transform (SIFT) [147] are based on pixel gradients and are deemed especially robust in

terms of varying illumination and scale changes. Finally, Local Binary Patterns (LBP), [180]

encode a vector of 8 dimensions for each pixel, describing the pixel’s intensity with respect

to the neighbouring ones. LBPs are deemed computationally efficient and simple and robust

to illumination changes due to the relative description of the pixels intensity, while being less

robust to image rotations.

It is not clear whether appearance-based or feature-based extraction is best, since there have

been surveys suggesting the better performance of either appearance-based [17] or feature

based methods [245, 187, 256]. There have been attempts to produce hybrid systems (e.g.

[245, 289]), and it has been suggested that methods which combine the two approaches could

provide better results [184]. The main advantage of appearence-based feature sets lies in

representing subtle texture changes which can not be detected via geometric features, but it is

also a question of whether these changes are vital to a particular task. Geometric features on

the other hand are more intuitive as the descriptions can be easily grasped by humans, and

also facilitate the more direct modelling of dynamics and facial movement, since the features

are essentially spatial coordinates. The further interested reader can refer to [184] for more

details regarding feature extraction.

2.5.2 Body and Gesture

There have been many attempts in interpreting and capturing human gestures and body

posture, combining techniques from fields such as computer vision and image processing,
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mostly targeting Human Machine Interaction (HMI) systems. Specific systems that make use

of these capabilities are sign language recognition systems, computer control through gestures,

alternative computer interfaces and systems which target emotion recognition.

According to [97], methodologies relating to gesture and body recognition can be separated

into three categories:

• model-based, which depend on the body or body parts by modelling them or recovering

3D configuration from vision processing.

• appearance-based, which base the recognition process on 2D information, e.g. by

tracing edges which could form body contours..

• motion-based, where the main characteristic tracked is related to motion.

In general, gesture recognition is one of the most difficult tasks in computer vision, due to diffi-

culties commonly appearing in related scenarios (illumination, background/foreground separa-

tion, edge tracing, background, occlusions). There is also the issue of separating out irrelevant

body motions (which may occur during a proper gesture), determining when a gesture begins

manifesting and when it terminates, while also another problem is when a gesture overlaps

another.

There is quite a variety of techniques used for tracking, as covered in [65], while an example

of a system related to tracing specific features can be found in [178], where the system detects

shoulder positions by fitting a parabola to detected horizontal lines in the image and then

using the weighted Hough Transform to detect the shape. In [258], head motion is detected

with a cylindrical head tracker [277], while a 12 point tracker is used to capture facial features.

In order to track shoulder motion, a particle filtering technique is employed.

In general, body gesture recognition requires the calculation of different features, such as the

measuring the amount of motion compared to outline changes, hand velocity etc. It is again

noted that these methods are optimised for very constraint environments and the development

of generic body gesture systems is still an open issue. Relevant extensive surveys on these areas

include Yilmaz et al. [282] on general object recognition and specifically vision-based human

motion analysis, Mitra and Acharya’s [166], specific to hand gestures and facial expressions,

and Poppe [201], which surveys modern approaches to vision-based human motion while also

discussing theoretical issues of human motion in relation to modelling (e.g. kinematic models,

silhouettes, contours). There is also a discussion on the issue of estimation, i.e. finding the
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set of pose parameters to minimise the observation error in relation to the model (or example

set or projection function) used to estimate it. The field has advanced rapidly due to the

introduction of easily accessible 3D cameras (or scanners) such as the one utilised by the

Microsoft Kinect project [291].

2.5.3 Audio

The optimal set of acoustic features always depends on the particular problem at hand, as

well as the inherent characteristics of the dataset employed. In general, commonly employed

features include the fundamental frequency (or pitch), as well as the signal energy [285]. A

summary of acoustic features in relation to emotion expressions is presented in Table 2.1

(adopted from [49]). Regarding spectral features, the Mel-Frequency Cepstrum Coefficients

(MFCCs) are deemed one of the most commonly used feature sets. The mel-frequency bands

are equaly spaced on the mel scale6 and thus are considered to better approximate the response

of the human auditory system. Other examples of acoustic features include the voice quality

[36], as well as the measurement of pauses and silences [62]. Following the shift towards

spontaneous emotion detection, several approaches combined acoustic features and spoken

words, while others used linguistic features to improve spontaneous emotion recognition. A

notable example of a popular acoustic feature extraction toolkit is described in [76], while

further details with respect to acoustic features can be found in [285], [225].

Table 2.1: Sound features in relation to emotional states. Table adopted from [49].

Anger Happiness Sadness Fear Disgust

Rate Slightly faster Faster or slower Slightly slower Much faster Very much faster
Pitch Average Very much higher Much higher Slightly lower Very much higher Very much lower
Pitch Range Much wider Much wider Slightly narrower Much wider Slightly wider
Intensity Higher Higher Lower Normal Lower
Voice Quality Breathy, chest Breathy, blaring tone Resonant Irregular voicing Grumble chest tone
Pitch Changes Abtrupt on stressed Smooth, upward Downward in ections Normal Wide, downward
Aritculation Tense Normal Slurring Precise Normal

2.6 Databases

An important problem that researchers in this field are often confronted with is the proper

acquisition and labelling of data. We have already referred to the problem of determining

spontaneous vs. posed data (Section 2.2) and in general, the long-term goal of realising

systems which perform automatic spontaneous emotion recognition. In fact, strictly speaking

6The mel scale is defined as a scale of pitches which are judged to be equi-distant from one another by
human listeners.
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the available databases can be separated into the following, depending on the setting of the

recordings.

• Posed, where the participants are requested to produce the affective state on demand,

usually in laboratory settings.

• Induced, where the experiment takes place in controlled environments which are de-

signed in order to induce the affective states, e.g. by projecting video clips to the

participants or capturing human-to-human or human-to-machine interaction [14].

• Spontaneous, as in occurring in real-life settings, e.g. in naturalistic human to human

communication.

Recording the subjects in such databases requires the use of cameras for facial and body ex-

pressions and microphones for recording the audio signals, while often motion capture systems

are used to record 3D postures and gestures. Ideally, these sensors should be minimally intrus-

ive to the actual recording process in order to minimise the effect on the subjects behaviour.

Issues relate to variant noise levels in the audio signal as well as various occlusions, e.g., of the

face by various equipment or body parts.

Most existing affective databases contain posed data, where the expressions exhibited by

the participants follow the neutral-onset-apex-offset-neutral transition of facial expressions.

This is due to the fact that posed data are easier to squire than spontaneous or induced,

while there are many difficulties in terms of capturing spontaneous manifestations, as they are

more difficult to elicit or capture, they are more influenced by the context and therefore more

difficult to analyse and track, are more noisy (e.g., more occlusions by body parts, different

angles and distances from the camera etc.) while even the annotation process (labelling) of

the data becomes more difficult.

Due to the rising interest in detecting spontaneous emotions there have been attempts to

generate databases of spontaneous emotions. While typically, the basic emotions are used

for categorisation in posed databases, spontaneous databases often use the may utilise more

descriptive approaches, such as dimensional emotions, including dimensions such as valence

and arousal. A database which contains both spontaneous and posed data is the MMI Database

[189], considered to be one of the most comprehensive set of facial behaviour recordings,

providing both images and videos depicting frontal and profile views. It includes more than

1500 samples, while the samples are encoded utilising the FACS system.
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In this thesis, we mostly utilise databases annotated in terms of continuous emotion dimen-

sions, namely the Sensitive Artificial Listener (SAL), as well as the Sustained Emotionally Col-

oured Machine-human Interaction using Nonverbal Expression (SEMAINE) databases. SAL is

essentially the first database which adopts a human-to-human interactive scenario with a goal

of eliciting spontaneous emotions, while also adopting continuous and dimensional emotion

annotations. SAL has been superseded by SEMAINE, which offers a similar scenario while

offering various advantages, including the improvement of annotation quality and quantity,

better input device quality with a reduction of noise, as well as more subjects and sessions.

We discuss more regarding these databases in what follows.

The SAL database

The Sensitive Artificial Listener Database (SAL-DB) [64] contains audio-visual, naturalistic

affective conversational data taking place between a participant and an avatar (operated by a

human): Poppy (happy), Obadiah (gloomy), Spike (angry) and Prudence (pragmatic). Each

avatar is considered to have a different personality: Poppy is happy, Obadiah is gloomy, Spike

is angry and Prudence is pragmatic.

Figure 2.7: Stills from the SAL database, where sessions involving the above subjects have
been annotated in the valence-arousal space.

The audiovisual sequences have been recorded at a video rate of 25 fps (352 x 288 pixels) and

at an audio rate of 16 kHz. The recordings were made in a controlled laboratory setting, using

one camera, a uniform background and constant lighting conditions. The SAL data has been

annotated by a set of annotators who provided continuous annotations with respect to valence

and arousal dimensions using the FeelTrace annotation tool [48]. Feeltrace allows annotators

to watch the audiovisual recordings and move their cursor, within the 2-dimensional emotion

space (valence and arousal) confined to [−1, 1], to rate their impression about the emotional
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state of the subject. Although there are approximately 10 hours of footage available in the SAL

database, V-A annotations have only been obtained for two female and two male subjects. This

is the portion of data we utilise throughout the experiments on SAL in this thesis (Chapters

5, 6). Example frames from the SAL database are shown in Fig. 2.7.

The SEMAINE database

The SEMAINE (Sustained Emotionally Coloured Machine-human Interaction using Nonverbal

Expression) database [157], contains a set of audio-visual recordings focusing on dyadic inter-

action scenarios, similarly to SAL. The recording scenario is similar to SAL, with the adoption

of HD video and a smoother frame rate (50 frames per second) in SEMAINE. The dyadic in-

teraction scenarios consist of a human subject, conversing with an operator, who assumes the

role of an avatar. Each operator assumes a specific personality, which is defined by the avatar

he undertakes: happy, gloomy, angry or pragmatic. This is in order to elicit spontaneous emo-

tional reactions by the subject that is conversing with the operator. As discussed in Section

2.1, SEMAINE has been annotated in terms of several emotion dimensions, particularly in

terms of valence, arousal (activation), power, expectation (anticipation) and intensity. Stills

from the SEMAINE database are shown in Fig. 2.8.

2.7 Continuous Annotations: Obtaining the Ground Truth

As discussed in the introduction of this thesis, obtaining annotations continuously in time is a

tedious and error-prone task, leading to many open challenges. In this section, we summarise

the aforementioned set of issues with respect to the database described above, namely SAL and

SEMAINE. The typical annotation tool which has been employed in both SAL and SEMAINE

is the Feeltrace tool [48], which allows the affective state of the individual to be evaluated in

terms of dimensions such as valence and arousal. In the case of audio-visual recordings, the

annotator which is responsible for the annotation observes and listens to the recording. The

annotator moves the mouse and in effect the cursor indicating the current annotation. The

annotation is usually performed real-time and later normalised from −1 to 1. The agreement of

annotators with regards to the mapping of the observed emotional stimulus in to a dimensional

space is difficult to achieve. Problems adopting labels related to emotions carry an inherent

issue of label subjectivity. When measuring quantities such as subject interest or emotion

dimensions such as valence, it is natural for some ambiguity to arise, especially when utilising

spontaneous data in naturalistic, interactive scenarios. This is essentially the trade-off between

capturing a larger spectrum of expressions, and minimising the space in order to reduce label
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ambiguity. Furthermore, the on-line nature of the annotation process renders the resulting

annotations vulnerable to various temporal lags which depend on the response time of the

annotator. In more detail, the annotator has to first interpret the emotional state observed,

subsequently map it to the emotion dimension annotated, and then perform a movement with

an input device (here, mouse) in order to reflect his understanding of the emotional state of

the subject. As can be understood, this leads to a temporal lag in the annotation with respect

to the video itself, which is dependent on many parameters such as the complexity of the

emotion being portrayed, a set of annotator specific human factors as well as any extra effort

required by the input device. Clearly, the task of obtaining a “gold standard” (i.e., the true

Figure 2.8: Frames grabbed simultaneously from the five video streams offered in SEMAINE.
The operator appears on the left, while the user on the right. The image has been adapted
from [157].

annotation, given a set of possibly noisy annotations) is it is clear that the task of obtaining

a “gold standard” (i.e. the “true” annotation, given a set of possibly noisy annotations),

is a quite tedious task, and researchers in the field have not been agnostic regarding this in

previous work [164]. In the majority of past research related to affect sensing though, usually a

form of averaging is employed for this task, assuming that the true annotations is represented

by a simple average of the multiple annotations [274], or utilising weighted averages, e.g.,

by the correlations of each annotator to the rest ([174], Chapter 5). Nevertheless, majority

voting (for discrete labels) or averaging (for continuous in space annotations) makes a set of

explicit assumptions, namely that all annotators are equally good, and that the majority of the

annotators will identify the correct label eliminating any ambiguity/subjectivity. Nevertheless,

in most in real-world problems these assumptions typically do not hold. As we discussed, even

in the case of SEMAINE and SAL, where the annotators are trained experts, they are not

infallible when it comes to a subjective process which incorporates all the pitfalls discussed

above, indicating the existence of a strong spatio-temporal bias. On top of that, in many cases

though, annotators can be inexperienced, naive or even uninterested in the annotation task.

This phenomenon has been amplified by the recent trend of crowdsourcing annotations (via

services such as Mechanical Turk), which allows gathering labels from large groups of users,

who usually have no formal training in the task-at-hand, shifting the annotation processes from
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a small group of experts to a massive but weak-annotator scale. In general, besides experts, we

can consider that annotators can be assigned to classes such as naive which commonly make

mistakes, adversarial or malicious annotators, that provide erroneous annotations on purpose,

or spammers that do not even pay attention at the sequence they are annotating. It should be

clear that if e.g., the majority of annotators are adversarial then majority voting will always

obtain the wrong label. This is also the case if the majority of annotators are naive, and

on a difficult/subjective data all make the same mistake. This phenomenon led to particular

interest manifesting in modelling annotator performance, c.f.[208, 209]. Note that due to the

discussed temporal lag exhibited by the annotators, simply averaging the annotations without

eliminating temporal discrepancies is very likely to lead to both phase and magnitude errors

(such as false peaks). We clarify here, that temporal lags depending on annotator response

times are always “later” in time (i.e. are positive temporal shifts). In effect, this means that

if we adopt simple averaging, there will always be a misalignment between the annotation and

the sequence-at-hand.

The idea of shifting the annotations in time in order to attain maximal agreement has been

touched upon in [173] and later in [152]. Nevertheless, these works refer to a constant time-

shift, which assumes that the annotator-lag is constant. This does not appear to be the case,

as the annotator-lag depends on time-varying conditions. Note that in Chapter 9, we present

a novel probabilistic model aiming to resolve such temporal errors in the annotations.

Finally, we discuss the method proposed in [208] towards the fusion of multiple annotations

and labels. In this work, an attempt is made to model the performance of annotators, who

assign a possibly noisy label. The latent “true” (binary) annotation is not known, and should

be discovered in the estimation process. By assuming independence of all annotators and

furthermore, assuming that annotator performance does not intrinsically depend on the an-

notated sample, each annotator can be characterised by his/her sensitivity and specificity. In

this naive Bayes scenario, the annotator scores are essentially used as weights for a weighted

majority rule, where if all annotators have the same annotator characteristics it collapses to

the majority rule7. Note that the more general approach of [208] indicates that in the absence

of a gold standard, neither simple nor weighted majority voting is optimal. In fact majority

voting can be seen only as a first guess aimed at assigning an uncertain consensus “true” la-

bel, which is then further refined using an iterative Expectation Maximisation (EM) process,

where both the “true” label and the annotator performance are recursively estimated.

7Detailed analysis of majority voting, including its weighted version, can be found in [128, 218].
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2.8 Conclusions

In this section, we provided a thorough examination of the background which relates to affect

sensing and analysis, covering the general directions employed by this thesis, as well as referring

to various related work. In what follows, we briefly summarise the relationship of the aspects

covered in this chapter with respect to the work presented in this thesis. In more detail, in the

first part of this thesis (Chapters 5, 6 and 7), we focus on presenting a set of methodologies

aiming at learning continuous emotion dimensions by further utilising relationships amongst

the output dimensions. We also present novel methodologies which utilise the fusion of multiple

modalities (including facial expressions, shoulder gestures and audio cues), as well as provide

an empirical analysis to the problems which arise from utilising continuous emotion dimensions.

In the second part of the thesis, we firstly focus on the problem of fusing multiple continuous

annotations (Chapter 9), and propose an approach which aims to deal with the multitude

of problems arising in this scenario. In Chapter 10, a robust, multi-modal fusion technique

is proposed, which is evaluated in terms of predicting continuous interest. In Chapter 11

we propose a unifying framework for probabilistic component analysis, giving rise to many

methods which can be applied for feature extraction in affect sensing. In the same chapter,

we apply the proposed EM-LDA to the problem of interest classification.
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Learning Techniques
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3.1 Introduction

In this chapter, we refer to a set of machine learning techniques which are closely to the content

of this thesis. Firstly, in Section 3.1.1 we discuss the issue of supervised and unsupervised

learning, as well as refer to generative and discriminative models. In Section 3.1.2 we provide a

high level introduction to the methods described, including regression and component analysis.

In Section 3.2, we discuss methods based on Recurrent Neural Networks (Section 3.2.1) and

Bayesian Regression (Section 3.2.2), while we briefly refer to Support Vector Regression (SVR)

in Section 3.2.3. Subsequently, in Section 3.3, we shift to component analysis and detail

various, commonly employed, component analysis methods. In Section 3.4, we discuss time

warping (temporal alignment) and provide a connection to component analysis, while finally,

in Section 3.5 we conclude the chapter.

3.1.1 Supervised vs. Unsupervised Learning

As in all learning problems, machine learning problems tangent to automatic behaviour ana-

lysis consist of a set of observations (features) and in many cases, a set of labels (annotations).
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In case a set of labels is available, the goal is to learn a mapping from the feature space to

the labels (e.g., learn a mapping from a face image to the emotion expressed by the image).

Otherwise, the goal becomes the extraction of a subspace from the original observation space

which preserves particular desired properties of the signal (e.g., given a set of images (obser-

vations), remove the features which characterise the identity of the subject and keep only the

features which pertain to the expression of the subject).

The above setting also determines, to a large degree, the type of learning method employed

for a particular task. In general, a learning problem can be approached either by supervised or

unsupervised learning. In case annotations (labels) are available, one can resort to the so-called

supervised learning methods. This implies that for a given problem, a set of annotations has

been obtained either manually or automatically. In automatic behaviour analysis, the typ-

ical case is that the annotations have been manually annotated - a costly task, as we discuss

throughout in this thesis. Usually, supervised learning leads to the adoption of discriminative

learning methods, which model the conditional distribution of the labels given the observa-

tions. In many cases, this has been shown to be beneficial in terms of classification accuracy,

since this distribution is exactly what is required in order to classify. Nevertheless, this comes

at a sacrifice of model flexibility. In case no labels are available, one has to resort to unsu-

pervised learning techniques in order to extract interesting information from the observations.

Unsupervised learning is highly affiliated with generative models, which focus on modelling

joint distributions (instead of conditional as for discriminative). In general though, it should

be clarified that discriminative methods can be extended for unsupervised tasks, and gener-

ative models can be extended to supervised or semi-supervised scenarios. In what follows, we

discuss regression and component analysis, with regression being a predictive analysis method

which is inherently supervised and discriminative, and component analysis, where methods

are inherently generative. Furthermore, Component Analysis methods can be both supervised

and unsupervised depending on the constraints that are imposed, e.g., if the constraints are

simply to maximise the variance of the data then no labels are needed; if while doing so we

are required to conform to class label constraints, then the method becomes supervised.

3.1.2 Regression and Component Analysis

In this section, we will introduce regression and component analysis more formally. Inter-

estingly enough, an incredible amount of research in machine learning over many decades is

based on a seemingly simple linear equation:

χ = wTψ. (3.1)
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Essentially a deterministic linear mapping, the goal of a problem utilising such a mapping is

only defined when both specific interpretations are assigned to each of the random variables

χ and ψ, as well as the desired behaviour of w is specified. In general, in machine learning

scenarios we have one or more set of observations, or input data. These essentially represent

any information we have with regards to the problem, and usually they will also be available

during testing, where we have already trained a system and deployed it in the target applic-

ation domain. This information can be e.g., in the form of features (or observations), which

are usually extracted via the procedures detailed in Section 2.5. Furthermore, in predictive

analysis scenarios (regression, classification), during training we also have a set of class labels

or outputs (annotations), which essentially encapsulate a form of class or target value which

may correspond to each training observation sample (in continuous scenarios), or can carry an

entire value for an entire segment or sequence. These labels essentially represent the targets

of the linear function presented in Eq. 3.1 (in case they are continuous). In other words, we

aim to learn a function mapping from the observations to the labels, or put simply, from the

inputs to the outputs. Once this function is learned, the inputs should enable the accurate

prediction of the outputs. Adopting the aforementioned scenario, let us assume we are given

observations xi and target values for each observation, yi. In this regression setting, Eq. 3.1

becomes

yi = wTxi

input: yi,xi. (3.2)

essentially meaning that one wants to obtain the best w which map the inputs xi as close

as possible to the given outputs yi. Having learnt the correct w, is the only requirement

for predicting y∗ given a test datum, x∗
i . Interestingly enough, most of the state-of-the-

art predictive analysis techniques employed in modern research and industry are based on

optimising this simple functional, ranging from simple linear regression to the Relevance Vector

Machine (RVM) [246] as well as the Support Vector Machine [66].

Regression and classification though are not the only techniques which are based on learning

a simple mapping. Component Analysis (CA), a significant branch of statistics and machine

learning, consists of a set of techniques which aim at factorising a given signal in a manner

which facilitates an employed task, e.g. clustering or even regression and classification. The

differentiating factor in unsupervised CA, is that essentially there are no target labels to learn a

mapping to1. CA techniques essentially infer a latent, unobserved space which satisfies a par-

ticular set of desired properties, with the most common being Principal Component Analysis

1While label information may be available and component analysis techniques can be easily adapted in
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(PCA), which essentially recovers a parsimonious explanation of the observations, providing

a latent space which maintains the variability of the input features while decorrelating them

and usually reducing their dimensionality. As described, in CA we usually have a set of ob-

servations (xi), and aim to discover the latent space which satisfies the desired properties (in

the form of constraints), yi with w again being the loadings. Eq. 3.1 can now be expressed as

yi = wTxi

input: xi. (3.3)

where the actual loadings are commonly found by formulating a trace-optimisation or least-

squares problem under particular constraints. Examples of such formulations will be discussed

in more depth in Section 3.3.

3.1.3 Non-linear Mappings

While, as aforementioned, the linear mapping is a basic functional commonly employed, in

many scenarios features need to be mapped in higher dimensional spaces: this is because

the data in their current form are simply not linearly separable. Typically, this is performed

by utilising the kernel trick in regression scenarios, that is, by estimating an implicit feature

space without actually estimating the coordinates of the data in the feature space, but rather

simply computing the inter products between the images of all pairs of data. This makes

the projection in many cases feasible, and also computationally efficient. E.g., in the RVM

which employs the regression linear mapping (Eq. 3.2), we simply need to replace xi for φ(xi),

leading to the mapping

yi = wTφ(xi) (3.4)

where φ(xi) = [K(xi,x1),K(xi,x2), . . . ,K(xi,xN )], with N being the number of samples and

K a non-linear function (kernel), such as e.g., the Radial Basis Function (RBF), defined as

K(xi,xj) = exp

{
−||xi − xj ||

l

}
. (3.5)

with l being the length scale. This process is similar in SVM and other non-linear regression

techniques and many kernel types may be utilised [262]. Summarising, this allows us to simply

pre-compute the kernels between all pairs of data and still apply a linear method.

many cases to account for labels (i.e. supervised component analysis), the methods do not map the features to
the labels but rather utilise the labels for optimally recovering the projections.
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3.1.4 Handling Noise

Another typical desired characteristic in machine learning is resilience to noise. This is a

common situation encountered in almost all learning scenarios, since data is nearly never

perfect. The typically assumed form of noise is Gaussian. In probabilistic scenarios, as e.g., in

RVM or Probabilistic PCA, this can be easily added to the model functional, by incorporating

a noise term ε. E.g., in RVM, the regression functional defined in Eq. 3.2 is extended as

yi = wTxi + εi

ε ∼ N (0, σ2), (3.6)

where ε represents the noise as independent samples from a zero-mean Gaussian noise process

with variance σ2. Interestingly enough, if one takes the Maximum Likelihood (ML) solution

of Eq. 3.6, one easily finds that the actual term being minimised (up to a constant) is the

least-squares penalty,

N∑
i=1

(yi −wTxi). (3.7)

In effect, this shows that least squares estimates are actually equivalent to producing the

maximum likelihood solution of Eq. 3.6, where the parameters and variables are linearly

related up to Gaussian noise.

3.2 Related Regression Techniques

In this section, we describe in more detail a set of related methods which are utilised in

the thesis. Firstly, in Section 3.2.1 we describe Recurrent Neural Networks (RNNs), and in

more detail one of the most recent reincarnations, Long Short-Term Memory Neural Networks

(LSTM-NNs). LSTMs are actually the first RNN variant being able to model long range

temporal dependencies, a crucial aspect in terms of analysing the inherently temporal char-

acteristics of human behaviour (as discussed in Chapter 2). Nevertheless, neural networks

have been heavily criticised in the past decades, mostly due to (i) the lack of efficient training

algorithms and (ii) the inherent lack of model interpretability; a mapping was learnt, but

this provided no information regarding the relative importance of the data as well as no in-

formation regarding uncertainty of predictions. The first issue, that of efficient training, was

recently resolved via the introduction of Hinton’s contrastive divergence method, significantly

speeding up the learning procedure, as well as the increase of computational capabilities of

modern computers and the utilisation of GPUs in training. Nevertheless, the second issue
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of interpretability remains, while many of the algorithms employed are based on empirical

evaluations and are not theoretically justified in terms of e.g., convergence or even the actual

approximation targets. In effect, this has led many researchers to characterise deep neural

networks as simply powerful empirical feature-extractors (often utilised as a “black-box”),

providing just a single step in the design of a large complex system. This leads to the second

model we discuss. The Relevance Vector Machine (RVM), detailed in Section 3.2.2 is a very

popular probabilistic regression technique (or more accurately, a Sparse Bayesian Regression

technique), which infers probabilistic distributions of datums utilising Bayesian Regression in

a fast and robust manner. RVM utilises only the set of data which are highly relevant to the

output datums, while providing parsimonious explanations of the data at hand.

3.2.1 Recurrent to Long Short-Term Memory Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are significant tools in the analysis of time series. While

traditional feedforward neural networks are allowed to only have forward connections (i.e. from

the input to the output), recurrent neural networks also employ feedback connections, thus

permitting the formation of cycles and loops. This adjustment facilitates the adaptation of

RNNs to past inputs, therefore incorporating temporal dependencies in the learning procedure,

thus enabling the analysis of temporally enriched sequences.

In mode detail, assuming that we have a regular feedforward network, given an input x at

time t, the network learns the following mapping:

y(t) = F(x(t)) (3.8)

That is, the network, which has an internal configuration consisting of weights on connections

between neurons along with the family of activation functions used, will map the input x(t)

at any time t to the output y(t). It is important to stress that the output depends only on the

current configuration and input. On the other hand, a recurrent network can operate on an

internal state space, which ideally contains all relevant information from the past behaviour

of the system. This extends the network capabilities by allowing it to capture temporal

information and exploiting them during learning. Thus, the recurrent network’s output at

time t, y(t) would be a function of the current state of the network s(t), which in turn depends

on the previous state s(t− 1) and the current input x(t):

y(t) = F ′(s(t)) (3.9)
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s(t) = G′(s(t− 1), x(t)) (3.10)

It is interesting to observe that this Markovian-like dependencies expressed in the above

equations are very similar to typical Linear Dynamical Systems, only we essentially have a

neural network function instead of a simple linear mapping. To contrast the computational

power of recurrent neural networks in comparison to regular feedforward networks, it is enough

to say the following: while a feedforward network, given enough hidden nodes can approximate

any spatially finite function, recurrent neural networks (again assuming any number of hidden

nodes) can represent any Turing Machine [102], while if real weights are used, the network

can function as a super-Turing Machine [234], notions which are much more powerful than

approximating finite functions.

In this section, we will refer to a neural network with one hidden layer, the input layer and

the output layer. For referring to a node in the hidden or output layer, the subscripts h and o

will be used respectively. We consider the input to have a size of n, while we consider m nodes

in the hidden layer and m nodes in the output layer. The activation of a neuron belonging to

the hidden layer of such a feedforward network will have an activation value yh(t):

yh(t) = σ(neth(t)) (3.11)

neth(t) =
n∑
i

xi(t)whi + βh (3.12)

That is, the output is the net input to the neuron applied to the activation function σ (typically

a non-linear such as the logistic function). The net input to the hidden node is the sum of

the weights coming to node h from each input i (the input vector x has a size of n), while β

is the bias of node h.

Assume a simple recurrent network, where besides the feedforward connections, the nodes

of the hidden layers have one step delay feedback connections, that is the previous activation

of the nodes in that layer is taken into account. Since there are more connections, a new set

of weights vij is required. Again looking at the activation of a node in the hidden layer, yh(t),

Equation 3.11 remains the same. What changes is the neth(t):

neth(t) =

n∑
i

xi(t)whi +

m∑
j

yj(t− 1)vhj + βh (3.13)

where m is the number of nodes which have the feedback connection to node h and yj(t− 1)

is the previous activation of each of them. In the example presented in the section, we stated
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that feedback loops occur only in the hidden layer, so the equations for the output nodes of

the network are the same as the feedforward networks:

yo(t) = σ(neto(t)) (3.14)

neto =
m∑
j

yj(t)uoj + βo (3.15)

Where uoj are weights from the hidden nodes j to the output node o and again, σ is the

activation function and βo the bias of the output node.

There is a vast amount of literature concerning recurrent neural networks, e.g., state-space

models where the previous activation of the hidden layer is considered part of the next input,

input-output recurrent models where the actual output of the network is being fed back to

the input, recurrent multilayer perceptrons where each computation layer has a feedback,

and second order networks where the previous outputs are actually multiplied. For more

details regarding recurrent neural networks along with optimisation details (utilising Back-

Propagation Through Time) we refer the reader to [125] and [113].

Long Short-Term Memory Neural Networks

One of the most significant issues when utilising RNNs was the apparent inability to model

temporal dependencies longer than a few time steps away due to to the so-called vanishing-

gradient problem [106]. Essentially, the problem refers to the inability of conventional training

algorithms for RNNs to keep the error signals which are flowing backwards in time from

either vanishing exponentially or increasing exponentially, leading to an inherent inability to

model long range dependencies. This has been shown extensively in Hochreiter’s analysis [105]

while also discussed in [23, 106]. To this end, the LSTM Neural Networks (LSTM-NNs) were

introduced by Graves and Schmidhuber [89] to overcome this issue. Essentially, the LSTMs

are the most recent incarnation of RNNs before the rise to prominence of the recent “Deep

Learning” trend.

LSTMs introduce recurrently connected memory blocks instead of traditional neural network

nodes, which contain memory cells and a set of multiplicative gates. The gates essentially allow

the network to learn when to maintain, replace or reset the state of each cell. As a result, the

network can learn when to store or relate to context information over long periods of time,

while the application of non-linear functions (similar to transfer functions in traditional NN)

enables learning non-linear dependencies
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Figure 3.1: Illustration of (a) the simplest LSTM network, with a single input, a single output,
and a single memory block in place of the hidden unit, and (b) a typical implementation of
an LSTM block, with multiplication units (Π), an addition unit (Σ) maintaining the cell state
and typically non-linear squashing function units.

In more detail, in Fig. 3.1b, the three types of gates are visualised: the input, output and

forget gates. As aforementioned, they can be thought of as providing write, read and reset

access to what is called a cell state (σ), which represents temporal network information. This

can be seen from examining the state updates at time t:

σ(t) = yφ(t)σ(t− 1) + yig(t)gin(t)

The next state σ(t) is defined as the sum of the forget gate at time t (yφ(t)) multiplied by the

previous state, σ(t− 1) and the squashed input to the cell gin(t) multiplied by the input gate

yig(t). Thus, the forget gate can reset the state of the network, i.e. when yφ ≈ 0 then the next

state does not depend on the previous one:

σ(t) ≈ yig(t)gin(t)

This is similar when the input gate is near zero. Then, the next state depends only on the

previous state and the forget gate value. The output of the cell is is the cell state, as regulated

by the value of the output gate (Fig. 3.1b). This configuration enforces constant error flow

and overcomes the vanishing gradient problem.

Bidirectional LSTMs

In addition, traditional RNNs process input in a temporal order, thus learning input patterns

by relating only to past context. Bidirectional RNNs (BRNNs) [230, 12] instead modify the

learning procedure to overcome the latter issue of the past and future context: they present

each of the training sequences in a forward and a backward order (to two different recurrent
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networks, respectively, which are connected to a common output layer). In this way, the BRNN

is aware of both future and past events in relation to the current timestep. The concept is

directly expanded for LSTMs, referred to as Bidirectional Long Short-Term Memory neural

networks (BLSTM-NN). BLSTM-NN have been shown to outperform unidirectional LSTM-

NN for speech processing (e.g., [89]) and have been used for many learning tasks. They have

been successfully applied to continuous emotion prediction from speech (e.g., [151], [275])

proving that modelling the sequential inputs and long range temporal dependencies appear to

be beneficial for the task of automatic emotion prediction.

3.2.2 Relevance Vector Machine

The Relevance Vector Machine (RVM), introduced by Tipping in [246] is a Bayesian regression

technique, aimed at providing parsimonious, probabilistic solutions for regression and classi-

fication. In more detail, we assume a regression problem with N training examples, (xi, ti).

As briefly mentioned in Section 3.1.2, within the Bayesian framework applied in RVM, our

goal is to learn the functional

ti = wTφ(xi) + εi (3.16)

where the εi are assumed to be independent Gaussian samples with zero mean and σ2 variance,

εi ∼ N (0, σ2), and φ is a typically non-linear projection of the input features, xi. The method

infers the set of weights w along with the noise estimation, given the training data. In general,

in most regression techniques one wishes to penalise the growth of the weights w in order to

constrain the complexity of the inferred function and thus obtain more parsimonious solutions.

In deterministic scenarios, i.e. in SVM, this can be employed by e.g. l2-regularisation, by

directly penalising the norm of the weights, i.e. ||w||2. In a probabilistic scenario as in

RVM, this is performed by utilising prior probability distributions on w, thus expressing our

preference for smoother and less complex functions. Specifically in RVM, the weight prior is

defined by utilising a zero-mean Gaussian distribution

P (w|αi) = N (0, α−1
i ), (3.17)

where αi describes the precision (i.e. inverse variance) of each weight, wi. In effect, this

controls the strength of the prior individually for each weight, since essentially the prior is

data dependent. An important property of the RVM is that the αi hyperpriors are hierarchical,
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i.e. a set of scale parameters in the form of Gamma distributions are employed:

P (α) =
N∏
i=1

Gamma(αi|γθ̂) (3.18)

P (σ−2) = Gamma(σ−2|γθ) (3.19)

where the γθ stand for the parameters of the gamma distribution. By setting these parameters

to small values, uniform hyperpriors are obtained. An advantage of adopting these “improper

priors” lies in the provided scale-invariance, since all scales are equally likely. Furthermore,

these priors are essentially a form of automatic relevance determination priors. Put simply,

these broad priors over the hyperparameters allow for the posterior mass to concentrate at

very large values of αi and thus sending the weight posterior to zero. This essentially defines

the sparse properties of the model: the weights for specific data which is deemed unnecessary

will be sent to zero, thus ignoring the sample and being able to learn simpler, less complex

models. It is interesting to study the sparseness of RVM a bit further. If we consider the

distribution of w when marginalising out the hyperparameters, i.e. the α, we have

P (wi) =

∫
P (wi|αi)p(αi)dαi. (3.20)

This in fact results in a Student-t distribution, thus justifying the sparseness properties. This

is due to compounded a Gaussian distribution with an unknown variance following an inverse

gamma distribution, which has been subsequently marginalised out. This is illustrated in

Fig. 3.2. Finally, we note that the sparse property of RVM, along with the existence of fast,

0

0

Gaussian

0

0

0

0

Student t

0

0

Figure 3.2: Comparing a two dimensional Gaussian prior with a two dimensional Student-t
prior. The probability mass is concentrated at the origin and along the spines, where one of
the weights is zero. Image adapted from [246].

computationally efficient and incremental methods for learning [249], deem RVM a suitable
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model for processing large amounts of data under realistic conditions, where a large amount

of this data may be corrupted by noise. We will discuss more on extending RVM in Chapter

6, while we refer the interested reader to [246, 249], Chapter 7 of [26] and Chapter 13 of [168]

for more details.

3.2.3 Support Vector Machines for Regression

In this section, we briefly summarise a commonly employed technique, Support Vector Ma-

chines for Regression [66] (SVR). In SVR, a non-linear function (conceptually similar to RVM)

is optimised by the model, in a mapped feature space, induced by the kernel used (as discussed

in Section 3.1.2). An important advantage of SVMs is the convex optimization function em-

ployed which guarantees that the optimal solution is found. The goal is to optimize the

generalization bounds for regression by a loss function which is used to weight the actual error

of the point with respect to the distance from the correct prediction. To this aim, various

loss functions maybe employed (e.g., quadratic loss function, Laplacian loss function, and

ε-insensitive loss function). The ε-insensitive loss function, introduced by Vapnik, is an ap-

proximation of the Huber loss function and enables a more reliable generalization bound [50].

This is due to the fact that unlike the Huber and quadratic loss functions (where all the data

may be support vectors), utilising an ε-insensitive loss function leads to a sparse selection of

support vectors. Sparse data representations have been shown to reduce the generalization

error [264] (see Chapter 3.3 of [222] for details). Finally, SVM is commonly used in related

work on predicting continuous affect (e.g., [151, 91, 116]).

3.3 Component Analysis

A major part of this thesis is based on Component Analysis (CA), a set of statistical tech-

niques aimed at factorising observations into components, based on certain constraints which

capture desirable properties of the resulting spaces. As mentioned earlier, CA constitutes an

important step in systems tangent to computer vision and machine learning. The roots of CA

can be traced back to 1901, with the introduction of Principal Component Analysis (PCA)

by Karl Pearson [193]. PCA was later developed independently in 1933 [108] by Hotelling,

three years before Hotelling introduced Canonical Correlation Analysis (CCA) [109]. While

the main goal of PCA is to identify the principal directions of maximal variance of a set of

observations2 CCA generalises this to two observation sets, by finding the projection directions

2The actual definition of PCA as initially posed by Pearson [193] was defined as the linear projection
minimising the average projection cost, which is defined as the mean squared distance between points and
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under which the sets are maximally correlated. CCA has essentially risen from the need to

study multiple observation sets, and led to other significant work in the following decades,

such as Tucker’s Inter-Battery Factor Analysis (IBFA) [253]. In what follows, we summarise

two basic component analysis techniques, PCA and CCA, in order to facilitate discussions in

later chapters. Throughout this description we consider, without any loss of generality, a zero

mean set of F -dimensional observations of length T , {x1, . . . ,xT }, represented by a matrix

X = [x1, . . . ,xT ]. All CA methods discover an N -dimensional latent space Y = [y1, . . . ,yT ]

which preserves certain properties of X.

3.3.1 Principal Component Analysis (PCA)

PCA discovers a lower dimensionality space (the principal subspace), where the variance of

the observations is maximised. The deterministic model of PCA finds a set of projection bases

W, with the latent space Y being the projection of the training set X (i.e., Y = WTX)).

Since we aim to maximise the projected variance, the optimization problem can be defined as

Wo = argmax
W

tr
[
WTSW

]
, s.t. WTW = I (3.21)

where S = 1
T

∑T
i=1 xix

T
i is the total scatter matrix and I the identity matrix. One can

alternatively arrive at the same optimisation problem by formulating the analogous problem

of minimising the reconstruction error and end up in the same algorithm. The above trace is

maximised by setting W to the N projection basis corresponding to the N eigenvectors of S

corresponding to the largest N eigenvalues.

PCA has also been studied in terms of probabilistic formulations. In more detail, approaches

towards Probabilistic PCA (PPCA) were proposed independently in [211] and [248]. In [248]

a linear Gaussian generative model was adopted as:

xi = Wyi + εi, yi ∼ N (0, I), εi ∼ N (0, σ2I) (3.22)

where W ∈ �F×N is the matrix that relates the latent variable yi with the observed samples

xi and εi is the noise which is assumed to be an isotropic Gaussian model. The motivation

is that, when N < F , the latent variables will offer a more parsimonious explanation of the

dependencies between the observations. The Maximum Likelihood (ML) and Expectation

Maximisation (EM) solutions for parameter and moments E[yi] and E[yiy
T
i ] can be found in

their projections. Hotelling defined PCA as the orthogonal projection of the data onto a lower dimensional
linear space (the principle suspace) where the variance of the projected data is maximised [108]. Both of these
definition lead to the same algorithm.
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[26, 248]. Several variations have from the proposed since, e.g. by incorporating sparseness and

non-negative constraints [235] or utilising joint generative/regression frameworks (the so-called

Supervised Probabilistic Principal Component Analysis (SPPCA) [284]). In SPPCA, a model

xi = Wxyi+ εxi is assumed to generate the data, while a second generative framework models

a set of outputs zi on the latent variables yi as zi = Wzyi+εyi , yi ∼ N(0, I), εxi ∼ N(0, σ2I),

εyi ∼ N(0, σ2I). zi can represent outputs from a regression task or can stand for continuous

class labels.

3.3.2 Canonical Correlation Analysis (CCA)

CCA has risen out of the need to study samples from “multiple batteries”3. Since CCA deals

with multiple sets of observations, we assume the observation matrices X1 and X2. The

projected data should be maximally correlated, i.e.

arg max
W1,W2

WT
1 ΣX1X2W2√

WT
1 ΣX1X1W1

√
WT

2 ΣX2X2W2

. (3.23)

where ΣXY corresponding to the empirical covariance matrix on sample matrices X and Y,

i.e. ΣXY = cov(X,Y ). Due to scale invariance of the correlation with respect to the loadings,

the problem can be posed as

max
W1,W2

WT
1 X1X

T
2 W2 (3.24)

s.t. WT
1 X1X

T
1 W1 = I, WT

2 X2X
T
2 W2 = I. (3.25)

where the solution is found by solving the generalised eigenvalue problem

X1X
T
2 (X2X

T
2 )

−1X2X
T
1 w1 = λX1X

T
1 w1 (3.26)

and using the top eigenvectors for the loadings (where λ is the eigenvalue corresponding to

the eigenvector w1). Most related to our work is the least-squares formulation of this problem

[58, 240], where the solution of CCA can by found by solving

argmin
W1 ,W2

||WT
1 X1 −WT

2 X2||2F

s.t. WT
1 X1X

T
1 W1 = I, WT

2 X2X
T
2 W2 = I. (3.27)

3Battery (tests) refers to a series of psychological, behaviour or cognitive assessment tests. This term
was often used in statistics since data from multiple batteries were essentially the one of the first datasets
which consisted of multiple modalities, leading to several significant publications in the field of statistics being
published, e.g., in Psychometrika, a psychology oriented journal.
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Probabilistic formulations of CCA have been explored in various forms, with the most recent

being the work of Bach and Jordan [11], where a latent variable model with a maximum

likelihood solution co-directional to deterministic CCA is defined as

z ∼ N (0, I)

x1|z ∼ N (W1z,Ψ1)

x2|z ∼ N (W2z,Ψ2). (3.28)

where Ψi stands for the covariance matrix. The interest in this particular formulation lies in

the fact that the common space (linked to the random variable z) is explicitly represented,

instead of discovered by minimising the sum-of-squares of the projected observation sets, as

in the deterministic formulation. This work has later been extended by Klami and Kaski to

include private spaces (i.e. modelling information specific to one observation set), thus making

the model more similar to Inter Battery Factor Analysis (IBFA) [253], and its probabilistic

interpretation by Browne [32]. In more detail, the model is defined as

z ∼ N (0, I),

z1 ∼ N (0, I),

z2 ∼ N (0, I)

x1 ∼ N (W1z+B1z1,Σ1)

x2 ∼ N (W2z+B2z2,Σ2)

(3.29)

with Σi representing a diagonal covariance matrix, indicating the independence of the noise

component over the features. In this particularly useful formulation, the shared space is mod-

elled in the latent variable z, while the remaining variation is modelled via the latent variables

zi, with both latent spaces being transformed to the observation space via linear mappings,

specific to the observation set.

3.4 Time Warping

The problem of temporally aligning multiple signals is commonly encountered in many mani-

festations, and can be a common problem in cases of analysing signals obtained from multiple

modalities (e.g., unsynchronised audio and video). In general, the alignment of temporal se-

quences is a very challenging problem, where besides computer vision [86, 114, 265, 297, 298,

296], has also been raised in the fields of bioinformatics [144] and speech processing [120, 219].
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One can define the temporal alignment problem as finding the temporal coordinate transform-

ation which renders the given sequences to be aligned in time. Traditionally, this problem can

be solved via dynamic programming, utilising the so-called Dynamic Time Warping (DTW)

technique. Given sequences X1 ∈ R
D×T1 and X2 ∈ R

D×T2 , DTW can be defined as a least-

squares problem as follows:

argmin
Δ1 ,Δ2

||X1Δ1 −X2Δ2||2F (3.30)

whereas now Δ1 ∈ {0, 1}T1×TΔ and Δ2 ∈ {0, 1}T2×TΔ are binary selection matrices, with

TΔ the aligned, common length. In this way, the warping matrices Δ effectively re-map the

samples of each sequence. The Δ matrices are essentially a matrix representation of the warp-

ing path p, which is a vector of the mapped indices from the original sequence to the resulting

time-warped (i.e. X1Δ
T
1 = X1(p1)). Although the number of possible alignments is expo-

nential in TxTy, employing dynamic programming can recover the optimal path in O(TxTy)

(i.e. polynomial time), with the optimal TΔ automatically inferred. Furthermore, a set of con-

straints must be satisfied, namely (i) the boundary conditions: the first index of each p must

be 1, and the last should map to the last frame of each sequence (T1, T2), (ii) the monotonicity

condition: the p vectors must be in increasing order (not strictly increasing, since repetitions

are allowed), and (iii) the continuity condition: [pt+1
1 , pt+1

2 ]− [pt1, p
t
2] ∈ {[0, 1], [1, 0], [1, 1]}. Al-

though DTW provides an optimal solution, at least for 1 dimensional time-series, it comes with

many disadvantages, such as the inability to process sequences with varying dimensionality

(i.e. D1 �= D2) as well as being highly susceptible to various forms of noise. As we will discuss

in what follows, a solution that makes time warping a much more flexible method, and thus

more appropriate for high-dimensional data usually associated with human behaviour analysis

comes through incorporating time-warping with component analysis.

3.4.1 Time Warping and Component Analysis

The incorporation of Component Analysis (CA) and Time Warping (TW) is a natural con-

sequence of the need to process and align high-dimensional data in modern scenarios, with

more corruptions and noise. By utilising CA one can avoid applying time-warping to portions

of the signal which are uninteresting: one can time-warp only the part of the signal which is

relevant to the task, for example, one can align only the portion of each signal which is shared

amongst all warped sequences while removing noisy components. The incorporation of CA

and TW comes naturally: most CA methods assuming a generalised eigenvalue problem are

also subject to least-squares formulations [58, 241]. This is very important in terms of incor-

porating them with time-warping algorithms, since both problems can be naturally combined
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into one least squares problem. For example, by taking the DTW (Eq. 3.27) and the CCA

formulations (Eq. 3.30), one can arrive at the following problem:

argmin
W1 ,W2,Δ1 ,Δ2

||WT
1 X1Δ1 −WT

2 X2Δ2||2F

s.t. WT
1 X1Δ1Δ

T
1 X

T
1 W1 = I (3.31)

WT
2 X2Δ2Δ

T
2 X

T
2 W2 = I (3.32)

WT
1 X1Δ1Δ

T
2 X

T
2 W2 = diag, (3.33)

X1Δ11 = 0,X2Δ21 = 0. (3.34)

where the added constraints ensure rotation, scaling and translation invariance. This leads to

the Canonical Time Warping (CTW) model [298], successfully combining multi-series com-

ponent analysis (CCA) with DTW in a model which allows for aligning signals from multiple

modalities and varying dimensionality. At this point, it is worth mentioning that in the re-

lated statistical field of Functional Data Analysis (FDA) [207, 90], where the observed data are

represented as functional data (e.g., utilising basis such as exponential, polynomial etc.), func-

tional PCA has been applied along with time-warping (or registration as it is called in FDA).

A related idea of utilising functional basis for time-warping has been introduced in [296], where

the generalised time warping methodology introduced has been combined with CCA. Finally,

the dynamic manifold temporal warping (DMTW) [86] and the manifold warping (MW) [265]

extend the CTW to handle more complex spatial transformations through manifold learning.

3.5 Conclusions

In this chapter, we discussed a set of related machine learning techniques which are closely

related to this thesis, focusing mostly on regression and component analysis. In what follows,

we briefly map the techniques discussed in this chapter to the content of this thesis. Regarding

the first part of the thesis, BLSTM-NN are utilised in Chapter 5, while the RVM is extended in

Chapter 6. Finally, we propose a novel regression framework based on CCA in Chapter 7. As

far as the second part of the thesis is concerned, it is entirely devoted to component analysis

methods. In particular, Chapter 9 provides a probabilistic, shared-space component analysis

method aiming mostly at fusing multiple annotations. Chapter 10 presents a novel, robust

variant of CCA, which is able to learn a low-rank subspace while isolating gross errors in a

sparse component. Finally, in Chapter 11, we propose a novel, unified framework for probab-

ilistic component analysis, which is able to encapsulate methods such as Principal Component

Analysis (PCA), Locality Preserving Projections (LPP), Linear Discriminant Analysis (LDA)

and Slow Feature Analysis (SFA).
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Chapter 4

Introduction

Risen from the need to analyse emotions occurring spontaneously under real-world conditions,

researchers adopted the continuous emotion dimensions in order to facilitate the description

of typically encountered emotional states. In this part of the thesis, we explore the newly

introduced problem of predicting and analysing human emotional states in terms of emotion

dimensions. We are mostly motivated by various research findings in psychology which demon-

strate that emotion dimensions exhibit some form of correlation. The idea posed herein, is

that be exploiting such correlations and relationships, one can improve the accuracy of the

predictive task at hand. The content of this chapter is summarised in what follows.

Chapter 5

In this chapter, we present one of the first studies in related work in terms of learning continu-

ous and dimensional emotions, initially published in [174]. In particular, we present the first

approach in literature towards automatic, dimensional and continuous affect predictions in

terms of valence and arousal, based on all facial expressions, shoulder gestures and audio cues

(at time of publication). Based on Bidirectional Long-Short Term Memory Neural Networks

(BLSTM-NN), the presented approach is aimed at both learning long-range temporal depend-

encies, a crucial requirement for the given problem, as well modelling dependencies in the

output dimensions. This work is in fact, to the best of our knowledge, the first work which ex-

plicitly aims to improve accuracy by modelling output relationships in emotion dimensions. In

mode detail, in Chapter 5, we initially perform a comparison of BLSTM-NN to another, com-

monly used regression technique in the field, Support Vector Machines (SVMs). Subsequently,

we focus on the fusion of multiple modalities, and compare two commonly employed fusion

techniques, feature-level and model-level fusion, to the proposed output-associative fusion
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based on LSTM-NN. Result-wise, BLSTM-NN and the proposed fusion technique overper-

form other, compared methods, establishing the significance of properly modelling temporal

dependencies in the given problem, as well as exploiting output correlations.

Chapter 6

In Chapter 6 we present one of the first probabilistic methods particularly focused on the

predictive analysis of continuous dimensional emotion dimensions. While the work presented

in Chapter 5 was based on neural networks (NN), many researchers have criticised the inherent

lack of interpretability of trained NN as well as the lack of an estimation of uncertainty. In

contrast to NN, the Bayesian framework we adopt in this chapter provides an elegant solution

to the problem, while estimating a sparse, parsimonious solution. In more detail, in Chapter 6

we present an extension of the Relevance Vector Machine (RVM, c.f., Chapter 3), which we coin

Output-Associative Relevance Vector Machine (OA-RVM). By utilising an augmented design

matrix with a temporal window, OA-RVM allows for learning temporal output dependencies

manifesting in emotion dimensions within a probabilistic robust framework, inheriting the

advantages posed by the original RVM framework while remaining in the same computational

complexity class. Experiments are performed on all audio, visual and shoulder movement cues,

while utilising a small number of data for training. Results show that OA-RVM significantly

outperforms other regression techniques such as SVM and RVM.

Chapter 7

Finally, in Chapter 7, we firstly focus on empirically answering several important questions

which have remained relatively unexplored in related literature, such as the correlation of each

emotion dimension (i) with respect to other emotion dimensions, (ii) to basic emotions (e.g.,

happiness, anger) as well as (iii) to the level of interest. In more detail, in order to study the

level of interest in comparison to other emotion dimensions, we essentially treat interest as

a continuous emotion dimension, ranging from disinterested to enthusiastic. As a measure of

comparison, we utilise audiovisual features. Interestingly enough, results show that (i) each

emotion dimension is more correlated with other emotion dimensions rather than with face and

acoustic features, and similarly (ii) that each basic emotion is more correlated with emotion

dimensions than with audio and video features. Regarding interest, we find that interest is

most correlated with the emotion dimension of arousal, while secondly with valence.

It is interesting to note here, that since each emotion dimension is better correlated to other

emotion dimensions rather than to face or audio cues (which are of much higher dimensionality
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than annotations), the idea of dimensionality reduction for this problem is further motivated.

Furthermore, this empirical study further motivates the idea of exploiting output correlations

in this problem. In this light, we present a method based on Canonical Correlation Analysis

(CCA) for exploiting output correlations and learning emotion dimensions1. This work, which

we coin Correlated Spaces Regression (CSR) deviates from the previous methods towards

learning emotion dimensions as it is mostly focused on generating the appropriate features

for utilising in terms of predictive analysis, therefore acting as a bridge between the more

application-oriented, first part of the thesis, to the more technical-based second part, which

focuses on component analysis. The basic idea lies in projecting both the features/observations

and the outputs onto a latent space on which they are maximally correlated. The implica-

tions are two-fold. Firstly, this process maximally correlates the features with the outputs by

projecting on a dimensionality reduced latent space, thus providing appropriate features for

predictive analysis. Secondly, the output-dimensions are de-correlated via an orthogonal pro-

jection, thus enabling the utilisation of single-dimensionality regression to optimally learn the

function mapping to the outputs. In essence, this method is highly useful for problems where

we have multi-dimensional outputs, since any redundancy in the outputs is removed while the

feature space dimensionality is reduced significantly without penalising predictive accuracy.

As we show, this type of fusion provides better results than other alternatives employed in

related work.

1Although Canonical Correlation Analysis is a shared-space component analysis method and in theory this
Chapter is also relevant to the second part of this thesis, we describe this method in the first part since (i) the
main contribution of this work is in the application domain, specifically to facilitate regression by extracting
the appropriate features while capturing the dependencies of emotion dimensions in the form of correlations,
and (ii) the method is based on an already existing component analysis technique, namely CCA.
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5.1 Introduction

Motivated by evidence in psychology pointing out various correlations and relationships between

emotion dimensions such as valence and arousal, in this chapter we introduce a novel, output-

associative fusion methodology based on Bidirectional Long-Short Term Memory Neural Net-

works (BLSTM-NNs), which are able to learn both long and short term temporal dependencies.

In this chapter, (i) the first approach towards automatic, dimensional and continuous affect

prediction based on facial expression, shoulder gesture, and audio cues is presented1, and (ii)

a framework that integrates temporal correlations between continuous dimensional outputs

1At time of publication of [175].
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(valence and arousal) to improve regression predictions is proposed. Our motivation for the

latter is essentially based on psychological evidence reporting that the valence and arousal

dimensions are inter-correlated [181],[5], [129], [138]. Despite this fact, automatic modelling

of these correlations has not been attempted before this work.

The chapter is organised as follows. Initially, in Section 5.2 we outline the basic meth-

odology employed. In Section 5.3 we briefly describe the dataset employed along with any

pre-processing tasks. Section 5.4 explains audio and visual feature extraction and tracking.

Section 5.5 describes the learning techniques and the evaluation measures employed for con-

tinuous emotion prediction, and introduces the output-associative fusion framework, while

in Section 5.6 we discuss the experimental results. Finally, in Section 5.7 we conclude the

chapter.

5.2 Methodology
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Figure 5.1: Methodology employed: Pre-processing, segmentation, feature extraction and
prediction.

The methodology proposed in this chapter consists of pre-processing, segmentation, feature

extraction, and prediction components, and is illustrated in Fig. 5.1. The first two stages, that

of pre-processing and segmentation, depend mostly on the set of annotations provided with the

SAL database (in terms of valence and arousal dimensions). We introduce various procedures

to (i) obtain the ground-truth corresponding to each frame by maximizing inter-annotator

agreement, and (ii) to determine the audiovisual segments that capture the transition from one

emotional state to another (and back). Essentially, these procedures automatically segment
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spontaneous multi-modal data in terms of negative and positive audiovisual segments that

contain an offset before and after (i.e., the baseline) the displayed expression (Section 5.3.3).

During the feature extraction stage, the pre-segmented audiovisual segments from the SAL

database are used. For the audio modality, the Mel-frequency Cepstrum Coefficients (MFCC)

[115], as well as prosody features, such as pitch and energy features are extracted. To capture

the facial and shoulder motion displayed during a spontaneous expression we use the Patras

- Pantic particle filtering tracking scheme [190] and the standard Auxiliary Particle Filtering

(APF) technique [199], respectively.

The final stage, that is based on all the aforementioned steps, consists of affect predic-

tion, multi-cue and multi-modal fusion, and evaluation. SVRs and BLSTM-NNs are used

for single-cue affect prediction. Due to the their superior performance, BLSTM-NNs are

further used for feature and model-level fusion of multiple cues and modalities. An output-

associative fusion framework, that employs a first layer of BLSTM-NNs for predicting V-A

values from the original input features, and a second layer of BLSTM-NN using these pre-

dictions jointly as intermediate features to learn the V-A inter-dependencies (correlations), is

introduced next. Performance comparison shows that the proposed output-associative fusion

framework provides a significantly improved prediction accuracy compared to feature- and

model-level fusion via BLSTM-NNs.

5.3 Dataset and Pre-processing

5.3.1 Dataset

We use the Sensitive Artificial Listener Database (SAL-DB) [64], which was described earlier

in Chapter 2. SAL contains spontaneous data capturing the audiovisual interaction between

a human and an operator undertaking the role of an avatar with four personalities: Poppy

(happy), Obadiah (gloomy), Spike (angry) and Prudence (pragmatic). We utilise the valence

and arousal annotations provided for SAL. Although there are approximately 10 hours of

footage available in the SAL database, V-A annotations have only been obtained for two

female and two male subjects. We used this portion for our experiments.

5.3.2 Challenges

Using spontaneous and naturalistic data that have been manually annotated along a continuum

presents us with a set of challenges which essentially motivate the adopted methodology.

87



5. Continuous Prediction of Spontaneous Affect from Multiple Cues and Modalities in
Valence–Arousal Space

The first issue is known as reliability of ground truth. In other words, achieving agreement

amongst the annotators (or observers) that provide annotations in a dimensional space is very

challenging [95]. In order to make use of the manual annotations for automatic recognition,

most researchers take the mean of the observers ratings, or assess the annotations manually.

In Section 5.3.3, we describe the process of producing the ground-truth with respect to the

annotators’ annotations, in order to maximize the inter-annotator agreement.

The second issue is known as the baseline problem. This is also known as the concept of

having ‘a condition to compare against’ in order for the automatic recognizer to successfully

learn the recognition problem at hand [95]. For instance, in the context of acted (posed) facial

expression recognition, the subjects are instructed to express a certain emotional state starting

(and ending) with an expressionless face. Thus, posed affect data contain all the temporal

transitions (neutral - onset - apex - offset - neutral) that provide a classifier with a sequence

that begins and ends with an expressionless display: the baseline. Since such expressionless

states are not guaranteed to be present in spontaneous data [95, 136], we use the transition

to and from an emotional state (i.e., the frames where the emotional state changes) as the

baseline to compare against.

The third issue refers to unbalanced data. In naturalistic settings it is very difficult to

elicit balanced amount of data for each emotion dimension. For instance, [38] reported that

a bias toward quadrant 1 (positive arousal, positive valence) exists in the SAL database.

Other researchers (e.g., [42]) handle the issue of unbalanced classes by imposing equal a priori

probability. As classification results strongly depend on the a priori probabilities of class

appearance, we attempt to tackle this issue by automatically pre-segmenting the data at

hand. More specifically, the segmentation stage consists of producing (approximately equal

number of) negative and positive audiovisual segments with a temporal window that contains

an offset before and after the displayed expression (i.e., the baseline).

5.3.3 Data Pre-processing and Segmentation

The data pre-processing and segmentation stage consists of (i) producing ground-truth by

maximizing inter-annotator agreement, (ii) eliciting frames that capture the transition to and

from an emotional state, and (iii) automatic segmentation of spontaneous audiovisual data.

A detailed description of these procedures is presented in [173].

In general, the V-A annotations of each annotator are not in total agreement , mostly due

to the variance in human observers’ perception and interpretation of emotional expressions.
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Figure 5.2: Illustration of tracked facial points (Tf1–Tf20) and shoulder points (Ts1–Ts5).

Thus, in order to deem the annotations comparable, we normalized the data and provided some

compensation for the synchronization issues. We experimented with various normalization

techniques and opted for the one that minimized the inter-annotator MSE. To tackle the

synchronization issues, we allow the time-shifting of the annotations for each specific segment

up to a threshold of 0.5 sec. given that this increases the agreement between annotators.

In summary, achieving agreement from all participating annotators is difficult and not always

possible for each extracted segment. Thus, we use the inter-annotator correlation to obtain

a measure of how similar one annotator’s annotations are to the rest. This is then used as a

weight to determine the contribution of each annotator to the ground truth.

More specifically, the averaged correlation cor′S,cj assigned to annotator cj is defined as

follows:

cor′S,cj =
1

|S| − 1

∑
i∈S,ci �=cj

cor(ci, cj) (5.1)

where S is the relevant session annotated by |S| number of annotators, and each annotator

annotating S is defined as ci ∈ S.

Typically, an automatically produced segment consist of a single interaction of the subject

with the avatar (operator), starting with the final seconds of the avatar speaking, continu-

ing with the subject responding (and thus reacting and expressing an emotional state) and

concluding where the avatar starts responding. Given that in naturalistic data, emotional

expressions are not generally preceded by neutral emotional states [95, 136], we considered

this window to provide the best baseline possible. For more details, we refer the reader to

[173]. It should be noted that this method is purely based on the annotations, unlike other

methods which are based on features, e.g. turn-based segmentation based on voice activity

detection [151].

89



5. Continuous Prediction of Spontaneous Affect from Multiple Cues and Modalities in
Valence–Arousal Space

5.4 Feature Extraction

In this section we describe the audio and visual features that have been extracted using the

automatically segmented audiovisual SAL data.

5.4.1 Acoustic Features

Extracted acoustic features include Mel-frequency Cepstrum Coefficients (MFCC) [115] and

prosody features (the energy of the signal, the Root Mean Squared Energy and the pitch

obtained by using a Praat pitch estimator [191]). Mel-frequency Cepstrum (MFC) is a repres-

entation of the spectrum of an audio sample which is mapped onto the nonlinear mel-scale of

frequency to better approximate the human auditory system’s response. The MFC coefficients

(MFCC) collectively make up the MFC for the specific audio segment.

We used 6 cepstrum coefficients, thus obtaining 6 MFCC and 6 MFCC-Delta features for

each audio frame. We have essentially used the typical set of features used for automatic

affect recognition [285], [196]. Along with pitch, energy and RMS energy, we obtained a set

of features with dimensionality d = 15 (per audio frame). Note that we used a 0.04 second

window with a 50% overlap (i.e. first frame 0-0.04, second from 0.02-0.06 and so on) in order

to obtain a double frame rate for audio (50 Hz) compared to that of video (25 fps). This is

an effective and straightforward way to synchronise the audio and video streams.

5.4.2 Facial Expression Features

To capture the facial motion displayed during a spontaneous expression we track 20 facial

feature points (FFP), as illustrated in Fig. 5.2. These points are the corners of the eyebrows

(4 points), eyes (8 points), nose (3 points), the mouth (4 points) and the chin (1 point). To

track these facial points we used the Patras - Pantic particle filtering tracking scheme [190].

Prior to tracking, initialization of the facial feature points has been done using the method

introduced in [266]. For each video segment containing n frames, we obtain a set of n vectors

containing 2D coordinates of the 20 points tracked in n frames (Tf = {Tf1 . . . Tf20} with

dimensions n ∗ 20 ∗ 2).

5.4.3 Shoulder Features

The motion of the shoulders is captured by tracking 2 points on each shoulder and one stable

point on the torso, usually just below the neck (see Fig. 5.2). The points to be tracked are

initialized manually in the first frame. We then use the standard Auxiliary Particle Filtering
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(APF) [199] to track the shoulder points. This scheme is less complex and faster compared to

the Patras - Pantic particle filtering tracking scheme, it does not require learning the model of

prior probabilities of the relative positions of the shoulder points, while resulting in sufficiently

high accuracy. The shoulder tracker results in a set of points Ts = {Ts1 . . . Ts5} with dimensions

of n ∗ 5 ∗ 2.

5.5 Dimensional Affect Prediction

5.5.1 Learning Techniques

As aforementioned, in this chapter we utilise BLSTM-NN for regression. BLSTM-NNs are

a recent extension of Recurrent Neural Networks (RNNs), that are able to model both long-

term and short-term dependencies in observations. Furthermore, for comparison we utilise

non-linear Support Vector Regression (SVR), as it is commonly employed in the prediction

of continuous affect [151, 91, 116]). For more details with regards to BLSTM-NNs and SVR,

please refer to Chapter 3.

5.5.2 Evaluation Metrics

Finding optimal evaluation metrics for dimensional and continuous emotion prediction and

recognition remains an open research issue [95]. The mean squared error (MSE) is the most

commonly used evaluation measure by related work in the literature (e.g., [151, 91, 116]) while

correlation coefficient is also employed by several studies (e.g., [91, 116]).

MSE evaluates the prediction by taking into account the squared error of the prediction

from the ground truth. Let θ̂ be the prediction and θ be the ground truth. MSE is then

defined as:

MSE =
1

n

n∑
f=1

(θ̂(f)− θ(f))2 = σ2
θ̂
+ E([θ̂ − θ])2 (5.2)

As can be seen from Eq. 5.2, MSE is the sum of the variance and the squared bias of the

predictor, where E is the expected value operator. Therefore, the MSE provides an evaluation

of the predictor based on its variance and bias. This also applies for other MSE-based metrics,

such as the root mean squared error (RMSE), defined as RMSE =
√
MSE. In this work

we use the RMSE since it is measured in the same units as our actual data (as opposed to

the squared units measuring MSE). We note that MSE-based evaluation has been criticized

for heavily weighting outliers [24]. Most importantly, it is unable to provide any structural

information regarding how θ and θ̂ change together, i.e. the covariance of these values. The
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correlation coefficient (COR), that we employ for evaluating the prediction and ground truth,

compensates for the latter, and is defined as follows:

COR(θ̂, θ) =
COV {θ̂, θ}

σθ̂σθ
=

E[(θ̂ − μθ̂)(θ − μθ)]

σθ̂σθ
(5.3)

where σ stands for the standard deviation, COV stands for the covariance while μ symbolises

the mean (expected value).

COR provides an evaluation of the linear relationship between the prediction and the ground

truth, and subsequently, an evaluation of whether the model has managed to capture linear

structural patterns inhibited in the data at hand. As for the covariance calculation, since the

means are subtracted from the values in question, it is independent of the bias (and differs

from the MSE-based evaluation).

In addition to the two aforementioned metrics, we propose the use of another metric which

can be seen as emotion-prediction-specific. Our aim is to obtain an agreement level of the

prediction with the ground truth by assessing the valence dimension, as being positive (+)

or negative (-), and the arousal dimension, as being active (+) or passive (-). Based on this

heuristic, we define a sign agreement metric (SAGR) as follows:

SAGR =
1

n

n∑
f=1

δ(sign(θ̂(f)),sign(θ(f))) (5.4)

where δ is the Kronecker delta function, defined as:

δ(a,b) =

⎧⎨
⎩1, a = b

0, a �= b.
(5.5)

As a proof of concept, we provide two cases from our experiments that demonstrate how

each evaluation metric contributes to the evaluation of the prediction with respect to the

ground truth. In Fig. 5.3 we present two sub-optimal predictions from audio cues, for the

valence dimension, using two BLSTM-NNs with different topologies. Notice how each metric

informs us of a specific aspect of the prediction. The MSE of Fig. 5.3a is smaller than Fig.

5.3b, demonstrating that the first case is numerically closer to the ground truth than the

second case. Despite this fact, the first prediction does not seem to follow the ground truth

structurally, it rather fluctuates around the mean of the prediction (generating a low bias).

This is confirmed by observing COR which is significantly higher for the second prediction

case (0.566 vs. 0.075). Finally, SAGR demonstrates that the first prediction case is in high
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Figure 5.3: Illustration of how MSE-based (both MSE and RMSE), COR and SAGR evaluation
metrics provide different results for two different predictions on the same sequence (gt: ground
truth, pd: prediction).

agreement with the ground truth, in terms of classifying the emotional states as negative or

positive. In summary, the MSE and the COR seem to capture the most important structural

characteristics of the prediction, while SAGR confirms the previous.

Our empirical evaluations show that there is an inherent trade off involved in the optimiza-

tion of these metrics, an issue which lies within each employed learning technique. By using all

three metrics simultaneously we attain a more detailed and complete evaluation of predictor

vs. ground truth, i.e., (i) a variance-and-bias-based evaluation with MSE (how much predic-

tion and ground truth values vary), (ii) a structure-based evaluation with COR (how closely

the prediction follows the structure of the ground truth), and (iii) class related evaluation with

SAGR (how much prediction and ground truth agree on the positive vs. negative, and active

vs. passive aspect of the exhibited expression). Of course, the set of utilised metrics should

be compliant to the problem settings at hand.

5.5.3 Single-cue Prediction

The first step in our experiments consists of prediction based on single cues. Let D = {V,A}
represent the set of dimensions, C the set of cues consisting of the facial expressions, shoulder

movement and audio cues. Given a set of input features xc = [x1c , . . . ,xnc ] where n is the

training sequence length and c ∈ C, we train a machine learning technique fd, in order to

predict the relevant dimension output, yd = [y1, . . . , yn], d ∈ D.

fd : x 
→ yd (5.6)
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Figure 5.4: Illustration of (a) model-level fusion and (b) output-associative fusion using fa-
cial expression and audio cues. Model-level fusion combines valence predictions from facial
expression and audio cues by using a third network for the final valence prediction. Output-
associative fusion combines both valence and arousal values predicted from facial expression
and audio cues, again by using a third network which outputs the final prediction.

This step provides us with a set of predictions for each machine learning technique, and each

relevant dimension employed.

5.5.4 Feature-level Fusion

Feature-level fusion is obtained by concatenating all the features from multiple cues into one

feature vector which is then fed into a machine learning technique. In our case, the audio

stream has a double frame rate with respect to the video stream (50 Hz vs. 25 fps). When

fusing audio and visual features (shoulder or facial expression cues) at the feature-level, each

video feature vector is repeated twice, and the ground truth for the audio cues is then used

for training and evaluation. This practice is in accordance with similar works in the field that

focus on human behaviour understanding from audiovisual data (e.g., [196]).

5.5.5 Model-level Fusion

In the decision-level data fusion, the input coming from each modality and cue is modelled

independently, and these single-cue and single-modal recognition results are combined in the

end. Since humans display multi-cue and multi-modal expressions in a complementary and

redundant manner, the assumption of conditional independence between modalities and cues

in decision-level fusion can result in loss of information (i.e. mutual correlation between the

modalities). Therefore, we opt for model-level fusion of the continuous predictions as this has

the potential of capturing correlations and structures embedded in the continuous output of

the regressors (from different sets of cues). This is illustrated in Fig. 5.4b.
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More specifically, during model-level fusion, a function learns to map predictions to a di-

mension d from the set of cues as follows:

fmlf : fd(x1)× · · · × fd(xm) 
→ yd (5.7)

where m is the total number of fused cues.

5.5.6 Output-associative Fusion

In the previous sections, we have treated the prediction of valence or arousal as a 1D regression

problem. However, as aforementioned, psychological evidence shows that valence and arousal

dimensions are correlated [181],[5],[281].

In order to exploit these correlations and patterns, we propose a framework capable of learn-

ing the dependencies that exist amongst the predicted dimensional values. We use BLSTM-NN

as the basis for this framework as they appear to outperform SVR in the prediction task at

hand (see Section 5.6). Given the setting described in Section 5.5.3, this framework learns

to map the outputs of the intermediate predictors (each BLSTM-NN as formulated in Eq.

5.6) onto a higher (and final) level of prediction by incorporating cross-dimensional (output)

dependencies (see Fig. 5.4a). This method, that we call output-associative fusion, can be

represented by a function foaf :

foaf : fAr(x1)× fV al(x1) · · · × fAr(xm)× fV al(xm) 
→ yd (5.8)

where m is again the total number of fused cues. As a result, the final output, taking

advantage of the temporal and bidirectional characteristics of the regressors (BLSTM-NNs),

depends not only on the entire sequence of input features xi but also on the entire sequence

of intermediate output predictions fd of both dimensions (see Fig. 5.4a).

5.5.7 Experimental Setup

Prior to experimentation, all features used for training the machine learning techniques have

been normalized to the range of [-1,1], except for the audio ones, which have been found to

perform better with z-normalization (i.e., normalizing to mean=0 and standard deviation=1).

For validation purposes we use a subset of the SAL-DB that consists of 134 audiovisual

segments (a total of 30,042 video frames) obtained by the automatic segmentation procedure

(see [173]). We employ subject-dependent leave-one-out-validation evaluation as most of the
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works in the field report only on subject-dependent dimensional emotion recognition when the

number of subjects and data are limited (e.g., [151]).

For automatic dimensional affect prediction we employ two state-of-the-art machine learning

techniques: Support Vector Machines for Regression (SVR) and bidirectional Long Short-Term

Memory Neural Networks (BLSTM-NN). Experimenting with SVR and BLSTM-NN requires

that various parameters within these learning methods are configured and the interaction

effect between various parameters is investigated. For SVR we experiment with Radial Basis

Function (RBF) kernels (e(−γ‖x−x′‖2)) as the results outperformed our initial polynomial kernel

experiments. To this aim, kernel specific parameters, such as the γ RBF kernel parameter

(which determines how closely the distribution of the data is followed) and the polynomial

kernel degree as well as generic parameters, including the outlier cost C, the tolerance of

termination and the ε of the loss function need to be optimized. We perform a grid search

(using the training set) and select the best performing set of parameters to be used.

The respective parameter optimization for BLSTM-NNs refers to mainly determining the

topology of the network along with the number of epochs, momentum and learning rate. Our

networks typically have one hidden layer and a learning rate of 10−4. The momentum is varied

in the range of [0.5, 0.9]. All these parameters can be determined by optimizing on the given

training set (e.g., by keeping a validation set aside) while avoiding overfitting.

5.6 Experimental Evaluation

5.6.1 Single-cue Prediction

To evaluate the performance of the employed learning techniques for continuous affect pre-

diction, we firstly experiment with single cues. Table 5.1 presents the results of applying

BLSTM-NN and SVR (with a radial basis function kernel) for the prediction of valence and

arousal dimensions.

We initiate our analysis with the valence dimension. From both BLSTM-NNs and SVR, it

is obvious that the visual cues appear more informative than audio cues. Facial expression

cues provide the highest correlation with the ground truth (COR=0.71) compared to shoulder

cues (COR=0.59) and audio cues (COR=0.44). This fact is also confirmed by the RMSE and

SAGR values. Facial expression cues provide the highest SAGR (0.84) indicating that the

predictor was accurate in predicting an emotional state as positive or negative for 84% of the

frames.
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Table 5.1: Single-cue prediction results for valence and arousal dimensions (F: Facial Ex-
pressions, S: Shoulder Cues, A: Audio). Evaluation is performed by utilising the Root Mean
Squared Error (RMSE), the correlation coefficient (COR) and the sign agreement (SAGR).

BLSTM-NN SVR

RMSE COR SAGR RMSE COR SAGR

Valence
F 0.17 0.712 0.841 0.21 0.551 0.740
S 0.21 0.592 0.781 0.25 0.389 0.718
A 0.22 0.444 0.648 0.25 0.146 0.538

Arousal
F 0.25 0.493 0.681 0.27 0.418 0.700
S 0.29 0.411 0.687 0.27 0.388 0.667
A 0.24 0.586 0.764 0.26 0.419 0.716

Works on automatic affect recognition from audio have reported that arousal can be much

better predicted than valence using audio cues [91], [251]. Our results are in agreement with

such findings, for prediction of the arousal dimension audio cues appear to be superior to visual

cues. More specifically, audio cues (using BLSTM-NNs) provide COR=0.59, RMSE=0.24, and

AGR=0.76. The facial expression cues provide the second best results with COR=0.49, while

the shoulder cues are deemed less informative for arousal prediction. These findings are also

confirmed by the SVR results.

In Table 5.1, we present a comparison of the performance of the employed learning tech-

niques. We clearly observe that BLSTM-NNs outperform SVRs. In particular, COR and

SAGR metrics provide better results for BLSTM-NNs (for all cues and all dimensions). The

RMSE metric also confirms these findings except for the prediction of arousal from shoulder

cues. Overall, we conclude that capturing temporal correlations and remembering the tempor-

ally distant events (or storing them in memory) is of utmost importance for continuous affect

prediction.

5.6.2 Multi-cue and Multi-modal Fusion

The experiments in the previous section have demonstrated that using BLSTM-NNs provide

better results (for all cues and all dimensions) than using SVRs. Therefore, BLSTM-NNs

are employed for feature-level and model-level fusion, as well as output-associative fusion

(described in Section 7.7). Experimental results are presented in Table 5.2, along with the

statistical significance test results. We performed statistical significance tests (t-test) using

alpha = 0.05 (95% confidence interval). We performed t-tests to compare the RMSE results

of the proposed output-associative fusion to that of the best of model-level or feature-level

fusion result (for each cue combination). Table 5.2 shows the significant results marked with

a †. Overall, the output-associative fusion appears to be significantly better than the other

97



5. Continuous Prediction of Spontaneous Affect from Multiple Cues and Modalities in
Valence–Arousal Space

Table 5.2: Fusion results for the three methods employed. The best results are obtained by
employing output-associative fusion. Significant results are marked with a †. For comparison
purposes, the average agreement level between human annotators is also shown. Evaluation
is performed by utilising the Root Mean Squared Error (RMSE), the correlation coefficient
(COR) and the sign agreement (SAGR).

output-associative model-level feature-level
RMSE COR SAGR RMSE COR SAGR RMSE COR SAGR

Valence
FS 0.15 0.777 0.89 0.16 0.774 0.890 0.19 0.676 0.845
SA 0.18 0.664 0.825 0.19 0.653 0.830 0.21 0.583 0.733
FA 0.16† 0.760 0.892 0.17 0.748 0.856 0.20 0.604 0.790

FSA 0.15† 0.796 0.907 0.16 0.782 0.892 0.19 0.681 0.856
annotators 0.141 0.85 0.86 0.141 0.85 0.86 0.141 0.85 0.86

Arousal
FS 0.24† 0.536 0.719 0.25 0.479 0.666 0.27 0.508 0.731
SA 0.23† 0.602 0.763 0.26 0.567 0.637 0.28 0.461 0.685
FA 0.22† 0.628 0.800 0.23 0.605 0.800 0.24 0.589 0.763

FSA 0.21† 0.642 0.766 0.22 0.639 0.763 0.26 0.500 0.700
annotators 0.145 0.87 0.84 0.145 0.87 0.84 0.145 0.87 0.84

fusion methods, except for prediction of valence from face-shoulder and shoulder-audio cue

combinations.

Looking at Table 5.2, feature-level fusion appears to be the worst performing fusion method

for the task and data at hand. Although in theory the cross-cue temporal correlations can

be exploited by feature-level fusion, this does not seem to be the case for the problem at

hand. This is possibly due to the increased dimensionality of the feature vector along with

synchronicity issues between the fused cues.

In general model-level fusion provides better results than feature-level fusion. This can

be justified by the fact that the BLSTM-NNs are able to learn temporal dependencies and

structural characteristics manifesting in the continuous output of each cue. Model-level fu-

sion appears to be much better for predicting the valence dimension rather than the arousal

dimension. This is mainly due to the fact that the single-cue predictors for valence dimension

perform better, thus containing more correct temporal dependencies and structural charac-

teristics (while the weaker arousal predictors contain less of these dependencies). Both fusion

techniques re-confirm that visual cues are more informative for valence dimension than audio

cues. Finally, the fusion of all cues and modalities provides us with the best (most accurate)

results.

Regarding the arousal dimension, we observe that the performance gap between model-level

and feature-level fusion is smaller compared to that of valence dimension. For instance, for

the fusion of face and shoulder cues, the feature-level fusion provided better COR and SAGR
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results (but a worse RMSE) than model-level fusion.

Facial expression and audio cues have been the best performing single cues for continuous

emotion prediction (see Section 5.6.1). Therefore it is not surprising that fusion of these two

cues provides the best feature-level fusion results. For model-level fusion instead, the best

results are obtained by combining the predictions from all cues and modalities.

Finally, the proposed output-associative fusion provides the best results, outperforming both

feature-level and model-level fusion. Similar to the model-level fusion case, the best results

(for both dimensions) are obtained when predictions from all cues and modalities are fused.

We denote that the performance increase of output-associative fusion is higher for the arousal

dimension (compared to the valence dimension). This could be justified by the fact that the

single-cue predictors for valence perform better than for arousal (Table 5.1) and thus, more

correct valence patterns are passed onto the output-associative fusion.

Table 5.2 also shows the average agreement level between human annotators in terms of

RMSE, COR and SAGR metrics (calculated for each dimension separately). It is interesting

to note that when predicting the valence dimension, the proposed output-associative fusion

(i) appears to outperform the average human annotator in terms of SAGR criterion, and (ii)

provides prediction results that are relatively close to human annotators (in terms of RMSE

and COR).

In Fig.5.5, we illustrate a set of predictions obtained via output-associative fusion. As can

be observed from the figure, the prediction results closely follow the structure and the values

of the ground truth.

Overall, the temporal dynamics of spontaneous multi-modal behaviour (e.g., when a facial

or a bodily expression starts, reaches an apex, and ends) have not received much attention in

the affective and behavioural science research fields. More specifically, it is virtually unknown

whether and how the temporal dynamics of various communicative cues are inter-related (e.g.,

whether a smile reaches its apex while the person is shrugging his shoulders). The facial,

shoulder and audio cues explored in this chapter possibly have different temporal dynamics.

Accordingly, the BLST-NN are able to incorporate and model the temporal dynamics of each

modality independently (and appropriately) in the output-associative and model-level fusion

schemes. This may be one reason why output-associative and model-level fusion appear to

perform better than feature-level fusion.
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Figure 5.5: Example valence (5.5a, 5.5b) and arousal (5.5c, 5.5d) predictions obtained by
output-associative fusion. (gt: ground truth, pd: prediction)

5.7 Conclusions

Affect sensing and recognition field has recently shifted its focus towards subtle, continuous,

and context-specific interpretations of affective displays recorded in naturalistic and real-world

settings, and towards combining multiple modalities for automatic analysis and recognition.

The work presented in this chapter converges with this recent shift by (i) extracting audiovisual

segments from databases annotated in dimensional affect space and automatically generating

the ground truth, (ii) fusing facial expressions, shoulder and audio cues for dimensional and

continuous prediction of emotions, (iii) experimenting with state-of-the-art learning techniques

such as BLSTM-NNs and SVRs, and (iv) incorporating correlations between valence and

arousal values via output-associative fusion to improve continuous prediction of emotions.

Based on the experimental results provided in Section 5.6 we are able to conclude the

following:

• Arousal can be much better predicted than valence using audio cues. For valence dimen-

sion instead, visual cues (facial expressions and shoulder movements) appear to perform
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better. This has also been confirmed by other related work on dimensional emotion

recognition [151], [91], [251]. Whether such conclusions hold for different context and

different data remains to be evaluated.

• Emotional expressions change over the course of time, and usually have start, peak, and

end points (temporal dynamics). It appears that such temporal aspects (dynamics) are

crucial in predicting both valence and arousal dimensions. A learning technique, such as

the BLSTM-NNs, that can exploit these aspects, appears to outperform SVR (the static

learning technique at hand).

• As confirmed by the psychological theory, valence and arousal are correlated. Such

correlations appear to exist in our data where fusing predictions from both valence

and arousal dimensions (via output-associative fusion) improves the results compared to

using predictions from either valence or arousal dimension alone (both for feature-level

and model-level fusion).

• In general, multi-modal data appear to be more useful for predicting valence than for

predicting arousal. While arousal is better predicted by using acoustic features alone,

valence is better predicted by using multi-cue and multi-modal data.

Overall, we conclude that compared to an average human annotator, the proposed system

is well able to approximate the valence and arousal dimensions. More specifically, for valence

dimension our output-associative fusion framework approximates the inter-annotator RMSE

(≈ 0.141) and inter-annotator correlation (0.84) by obtaining a RMSE =0.15 and COR ≈ 0.8

(see Table 5.2). It also achieves a higher SAGR (≈ 0.91) than the inter-annotator SAGR

(0.86).
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Chapter 6

Output-Associative RVM Regression

for Dimensional and Continuous

Emotion Prediction
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6.1 Introduction

Kernel methods such as Support Vector Machines (SVM), Relevance Vector Machines (RVM)

and Gaussian Processes (GP) are amongst the most dominant techniques used in machine

learning and computer vision. Many problems in these fields are inherently related to the

prediction of multi-dimensional, inter-correlated structured outputs (e.g. pose normalization,

pose estimation). While most machine learning techniques aim at capturing input relationships

and patterns (e.g. extracted features), many problems expose an inherent dependency amongst

the output dimensions (e.g. emotion dimensions). Not being able to learn such co-occurrences
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can result in less robust and less accurate predictors, that will not be able to exploit specific

output configurations manifested in the training data.

With these intrinsic motivations, we introduce the output-associative RVM (OA-RVM) re-

gression, a framework that extends the traditional RVM regression by being able to learn

temporal output correlations, while maintaining the advantage of a sparse formulation, fitting

for large datasets. As we show by means of various experiments, OA-RVM appears to be ad-

vantageous against traditional RVM not only in terms of a variance-and-bias-based evaluation

with Root Mean Squarred Error (RMSE, i.e., how much prediction and ground-truth values

vary), but also with a structure-based evaluation with the correlation coefficient (COR, i.e.,

evaluating the covariance of the prediction with the ground truth), resulting in a more ac-

curate and robust model. In order to evaluate whether the proposed technique’s performance

is cue and modality invariant, we focus on a highly challenging, yet a very suitable problem:

dimensional and continuous emotion prediction from nonverbal heterogeneous cues (i.e., facial

expressions, shoulder movements and audio cues).

Our motivation for the work presented in this chapter is three-fold. As in Chapter 5, we

are primarily motivated by psychological evidence hinting that the V-A dimensions are inter-

correlated [181, 5, 129, 138]. The proposed framework aims to enable the learning of such

correlations and generate more substantiated predictions by embedding in the model an initial

output estimation (using RVM) together with the original input features. Secondly, temporal

dynamics play a significant role in emotion recognition [95, 285]. The proposed OA-RVM

regression aims to capture the temporal dynamics by employing a temporal window (covering

a set of past and future outputs) in order to accommodate temporal (output) patterns both

in past and future context. Thirdly, dimensional and continuous prediction of emotions is a

relatively unexplored area in the field of affective computing, and which prediction method

is best suited to the task is still unknown. Therefore, as well as validating the proposed

OA-RVM model with comprehensive experiments, we also compare it to traditional regression

techniques such as RVM and Support Vector Regression (SVR).

The rest of this chapter is organized as follows. In Section 6.2, we mention some related work

on output-associative regression which has been applied to different problems. In Section 6.3,

we describe the proposed OA-RVM model, while also covering issues such as parametrisation

and complexity. Subsequently, in Section 6.4, we describe the data and feature utilised in our

experiments, while in Section 6.6, we present the experiments and discuss the results. Finally,

we conclude the chapter in Section 6.7.
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6.2 Related Work on Output-Associative Structured

Regression

Although the idea of explicitly modelling the relationships amongst emotion dimensions in

order to facilitate learning is has been unexplored before [174], various machine learning tech-

niques exist that aim at capturing spatial output-associations. For example, Kernel Depend-

ency Estimation (KDE) [269], utilises Kernel Principal Component Analysis and ridge regres-

sion for modelling output structure. KDE was later reformulated in [46], where a cost function

was optimised directly thus disregarding the need for KPCA. KDE has been mostly applied

to problems such as string matching and image reconstruction. Other attempts towards such

solving such problems lie in extensions of Kernel Ridge Regression (KRR) and SVR (Support

Vector Regression), which optimise an output-associative function [28]. Furthermore, in [29]

the Twin Gaussian Process (TGP) is proposed, which employs GP priors for modelling input

and output relations, while adopting the Kullback-Leibler divergence for optimisation. Both

of these models have been applied to modelling human pose estimation. We choose to extend

RVM as it is considered to be more efficient than traditional GP, and is known to provide

a sparse solution. Note that other works on extending RVM have also been proposed, e.g.

[165] proposed a robust RVM which models outlier noise while [243] proposed a multi-variate

version of RVM.

Compared to the models presented in [28, 29] we offer a specific output temporal window

parameter for fine-tuning our model. Furthermore, compared to [28], our OA-RVM regression

framework offers a probabilistic formulation of the output-associative function by following

the original RVM framework, and thus provides explicit modelling of the noise component.

6.3 The OA-RVM Framework

In this section we describe the proposed OA-RVM framework. The outline of the proposed

method is presented in Fig. 6.1. The tracked / extracted features (from facial expressions,

shoulder movements and audio) are fed into an initial (cue-specific) regressor, which in our case

is chosen to be RVM (trained separately for each cue). An initial, noisy prediction is obtained

by RVM. A temporal window v is applied on the multi-dimensional output of Valence and

Arousal, thus constructing a set of new vectors which we call output features (yv
i ). Both the

input features xi and the output features yv
i are fed into the OA-RVM model which learns

specific weights for each input and output feature vector. The final prediction is a linear

combination of the kernel-projected input and output features.
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Figure 6.1: Outline of the proposed method. The tracked features (from facial expressions,
shoulder movements and audio) are fed into an initial regressor (here, RVM) to obtain an
initial prediction. A temporal window v is applied on the multi-dimensional output of Valence
and Arousal, constructing the output feature vectors (yv

i ). Both the input features xi and the
output features yv

i are fed into the OA-RVM model which provides the final prediction.

Formally, we assume a (multidimensional) regression problem with N training examples,

(xi, ti)
1. In the Bayesian framework applied in RVM (see also, Chapter 3), our goal is to learn

the functional

ti = wTφ(xi) + εi (6.1)

where the εi are assumed to be independent Gaussian samples with zero mean and σ2 variance,

εi ∼ N (0, σ2). φ is a typically non-linear projection of the input features, xi. The method

infers the set of weights w along with the noise estimation, given the training data.

In OA-RVM, we firstly increment Eq. 6.1 as follows

ti = wTφw(xi) + uTφu(y
v
i ) + εi (6.2)

Where each yv
i is a vector of multi-dimensional outputs over a temporal window of [i−v, i+v]2

The yv
i features are called the output features, while x are called the input features, henceforth.

Note that the output features can be estimated by predicting the multi-dimensional ground

truth using any (noisy and imperfect) prediction scheme. The goal now becomes learning not

only the set of weights (w) for the input features, but also the set of weights (u) for the output

features along with the noise estimate, (εi).

In this section we describe the Bayesian framework that our model is based on. Firstly,

we consider Φw (NxMw) to be the basis matrix attained by applying a selected kernel to
1We denote that ti is a multidimensional vector containing all the values to be predicted for each frame (in

our case, both valence and arousal). Nevertheless, the methods we apply are inherently single output methods.
Thus, a different function is learnt for each output dimension (ti).

2For frame based online application, we can limit the context to past input only, i.e. [i−v, i]. Furthermore,
the output window regards only the output dimensions since we study the effect of output-covariances.
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the input features x, and Φv
u (NxMu) respectively, for the output features yv (Mu and Mw,

referring to the number of basis vectors). Then, by extending Eq. 6.2 we obtain:

t = Φww +Φv
uu+ ε = Φwuwu + ε (6.3)

where Φwu = [Φw|Φv
u] is the Nx(Mw +Mu) OA-RVM design matrix:

Φwu =

⎡
⎢⎢⎣
Kw(x1,x1) . . . Kw(x1,xn) Ku(y

v
1 ,y

v
1) . . . Ku(y

v
1 ,y

v
n)

...
...

...
...

Kw(xn,x1) . . . Kw(xn,xn) Ku(y
v
n,y

v
1) . . . Ku(y

v
n,y

v
n)

⎤
⎥⎥⎦

with Kw and Ku being the kernel applied to input and output features respectively. Typ-

ically, an extra unit column is appended to the kernel to account for the bias. Furthermore,

wu = [w1 . . .wMw |u1 . . .uMu ]
T represents the concatenated vector of weights.

Thus, the complete data set likelihood is formulated as:

P (t|w,u, σ2) =
N∏
i=1

N(wTφw(xi) + uTφu(y
v
i ), σ

2)

=
N∏
i=1

N(wu
T [φw(xi)|φu(y

v
i )], σ

2) (6.4)

Following the Bayesian approach of RVM [246], we need to set the hyperpriors on our

weights. Each set of weights (w,u) is assigned a Gaussian zero-mean prior to express preference

over smaller weights, thus infer smoother, less complex functions and induce sparsity:

P (w|α) =

Mu∏
i=0

N (0, α−1
i ) (6.5)

P (u|ζ) =
Mw∏
i=1

N (0, ζ−1
i ) (6.6)

We have now introduced two vectors of hyperparameters, α controlling the distribution of

the weights w (as originally used in RVM), and ζ controlling the distribution of the weights

u (for our output features).
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6.3.1 Inference

The goal is to infer the unknown parameters of our problem given the training data. The

posterior is decomposed as:

P (w,u,α, ζ, σ2|t) = P (t|w,u,α, ζ, σ2)P (w,u,α, ζ, σ2)

p(t)
(6.7)

Ideally, given a new test data x∗, we would like to predict target t∗:

p(t∗|t) =

∫
P (t∗|w,u,α, ζ, σ2)P (w,u,α, ζ, σ2|t)dwdudαdζdσ2 (6.8)

Unfortunately, the above equation is intractable, thus an approximation is needed. Therefore,

similarly to the original RVM formulation [246], we decompose the posterior as follows:

P (w,u,α, ζ, σ2|t) = P (w,u|t,α, ζ, σ2)P (α, ζ, σ2|t) (6.9)

Using the Bayes theorem we obtain:

P (w,u|t,α, ζ, σ2) =
P (t|w,u, σ2)P (w,u|α, ζ)

P (t|α, ζ, σ2)
(6.10)

This calculation is tractable, since all components are Gaussian distributions and it is well

known that products and divisions of Gaussian distributions result also in Gaussian dis-

tributions. We will firstly examine the joint probability. By assuming independence, we

obtain P (w,u|α, ζ), a zero-mean Gaussian distribution with a covariance matrix AZ =

diag(α1 . . . αMw , ζ1 . . . ζMu).

P (t|α, ζ, σ2) =

∫
P (t|w,u, σ2)P (w,u|α, ζ)dwdu (6.11)

is a convolution of Gaussian and after replacing with wu, Az and Φwu, it can be shown [246]

to be a zero-mean Gaussian distribution with covariance matrix σ2I+ΦwuA
−1
Z ΦT

wu.

Finally, Eq. 6.10 is considered to be a Gaussian distribution with a mean μ = σ2ΣΦT
wut

and a covariance matrix Σ = (AZ + σ2ΦT
wuΦwu)

−1.

Returning to the second component P (α, ζ, σ2|t) of the posterior in Eq. 6.9, by following

the Bayes rule, we find it to be proportional to:

P (α, ζ, σ2|t) ∝ P (t|α, ζ, σ2)P (α)P (ζ)P (σ2) (6.12)
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By assuming uniform uninformative hyperpriors [246], we need to maximize the marginal

likelihood, P (t|α, ζ, σ2) with respect to the hyperparameters. Again, we have a convolution

of Gaussians (Eq. 6.11) which in turn generates another zero mean Gaussian distribution

with covariance matrix σ2I + ΦwuAz
−1ΦT

wu. The maximization of the marginal likelihood

can be performed by expectation maximization as described in [246] or the faster marginal

maximization algorithm proposed in [249]. The most probable values (MP ) are selected by the

chosen optimization procedure ([246, 249]), while we adopt an approximation of P (α, ζ, σ2|t)
in Eq. 6.9 by replacing the distribution with a delta function at its mode.

6.3.2 Prediction

Given a new (multi-dimensional) input data x∗,yv
∗ , we want to calculate t∗ given the training

data. By considering αz = [a1 . . . aMw , ζ1 . . . ζMu ] and using Eq. 6.8 and Eq. 6.10 we obtain:

P (t∗|t,αzMP , σ
2
MP ) =

∫
P (t∗|wu, σ

2
MP )P (wu|t,αzMP , σ

2
MP )dwu (6.13)

Again, this is a convolution of Gaussians and it can be shown that

P (t∗|t,αzMP , σ
2
MP ) ∼ N(t∗|σ2

∗) (6.14)

where

t∗ = μT
wu[φw(x∗)|φu(y

v
∗ )] (6.15)

σ2
∗ = σ2

MP + [φw(x∗)|φu(y
v
∗ )]

TΣ[φw(x∗)|φu(y
v
∗ )] (6.16)

with t∗ being the test point prediction, and σ2
∗ being the prediction variance (relating to

confidence in the obtained prediction). The parameter vector μwu contains the weights for

the input and output relevance vectors, i.e. μwu = [μw|μu]. The basis matrix for a new set of

test points should now contain both the distances from the new test input features x∗ to all the

input feature relevance vectors, as well as the test output feature yv
∗ distances to the output

feature relevance vectors. The graphical model of OA-RVM with respect to the original RVM

can be seen in Fig. 6.2. An overview of the OA-RVM training and prediction procedures is

presented in Alg. 1.
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Figure 6.2: Graphical model comparison of RVM and OA-RVM. Shaded nodes are observed
variables.

Algorithm 1 OA-RVM algorithm

Training. Data: (xi, ti), i=1,. . . , N
1. Obtain output features yv

i

2. Construct basis matrix Φwu = [Φw|Φv
u]

2a. Apply kernel Kw for obtaining Φw for input features x
2b. Apply kernel Ku for obtaining Φv

u for output features yv

3. Marginal Likelihood Maximization
3a. Determine hyperparameters (α, ζ, σ2)
3b. μ = σ2ΣΦT

wut, Σ = (AZ + σ2ΦT
wuΦwu)

−1

Prediction for test point x∗:
1. Obtain output features yv

∗
2. Predict and estimate variance:
2a. t∗ = μT

wu[φw(x∗)|φu(y
v
∗ )]

2b. σ2
∗ = σ2

MP + [φw(x∗)|φu(y
v
∗ )]

TΣ[φw(x∗)|φu(y
v
∗ )]

6.3.3 Window Size

The output feature window length v for OA-RVM is treated as a regular parameter in the

framework. Therefore, many heuristics and validation techniques can be employed in order to

define the parameter for a given training set. The most direct method would be to perform

cross-validation (i.e. similarly to SVM) in order to determine the optimal value for the specific

error metric employed. Another way is to compare the maximised marginal likelihood of each

model trained with a specific window size (i.e. a Maximum Likelihood test). Assuming we

have a set V of windows to be evaluated, for each vi ∈ V the marginal likelihood Lvi ∼
N(0, σ2I+ [Φw|Φvi

u ]Az
−1[Φw|Φvi

u ]
T
) is maximized. The window size providing the maximum

likelihood can then be selected, i.e. v = argmaxvi Lvi .
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6.3.4 A Generalised View

In this section we aim to provide a more general perspective of the proposed framework while

comparing it to other static regression frameworks (e.g. SVM and RVM).

In a typical static regression framework (e.g. SVM and RVM), we consider only the current

input to participate in the prediction, i.e.

P (ti|x1 . . .xi . . .xN) = P (ti|xi)

In the proposed framework, each prediction not only depends on the current input but also

on the output features, which essentially represent a temporal noisy version of the targets to

be estimated:

P (ti|x1 . . .xi . . .xN) = P (ti|xi,y
v
i )

The output features yv
i represent a noisy prediction of the targets over time (a pre-defined

temporal window). Therefore,

P (ti|x1 . . .xi . . .xN) = P (ti|xi, t̂i−v, . . . , t̂i, . . . , t̂i+v)

where each t̂i is the noisy prediction of ti at input datum i. The prediction is thus conditioned

both on the current input frame, as well as the noisy prediction of the multi-dimensional

targets over the specified temporal window.

Conditioning on the intermediate noisy predictions can be considered as a form of ensemble

learning, specifically of stacked generalisation [276, 31] with continuous labels. A specific

stacked generalisation algorithm could also be investigated for training OA-RVM to obtain

insight on its benefits for method generalisation.

6.3.5 Complexity

The optimisation algorithm of RVM generally involves the optimisation of a non-convex func-

tion. The inversion of an MxM matrix is required, where M is the number of basis vectors in

the model, thus inducing O(M3) computational complexity. In OA-RVM, without loss of gen-

erality, we assume that we have 2M basis vectors: A dimensionality of M for the input features

and an additional M for the output features. Thus, the complexity is O((2M)3) = O(M3).

Furthermore, the output features in OA-RVM are obtained by utilising the original RVM al-

gorithm. If for a d-dimensional output problem, the complexity of the original RVM algorithm

is O(dC), then for OA-RVM the complexity would be 2O(dC) which is still O(dC). In con-

clusion, the theoretical complexity of OA-RVM is of the same order as RVM. Nevertheless, in
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practise OA-RVM has a higher computational complexity than RVM, since it involves execut-

ing the original RVM algorithm as well as OA-RVM, which implies an augmented kernel with

twice the number of candidate basis vectors compared to RVM.

6.4 Dataset and Feature Extraction

As a proof of concept, the proposed OA-RVM regression is applied to the highly challenging

problem of dimensional and continuous prediction of emotions from heterogeneous nonverbal

cues, namely facial expressions, shoulder movements and audio cues. Our aim is to explore

how the behavior of the OA-RVM model changes (in terms of prediction accuracy and spatio-

temporal structure) depending on the expressive cue / modality employed.

6.4.1 Data Set

For experimental validation we use the Sensitive Artificial Listener (SAL) Database [64]. As

described in Chapter 2, SAL contains audio-visual, naturalistic affective conversational data

taking place between a participant and an avatar (operated by a human). Similarly to Chapter

5, as our aim is to achieve continuous emotion prediction, we could only take advantage of

the amount of data which was annotated in the valence-arousal dimensional affect space. This

corresponds to a portion of the database that contains data from 4 subjects (subjects 1 and 2

are female, and subjects 3 and 4 are male) and their respective annotations (provided by 3-4

annotators). Based on the annotations provided, we used a set of automatic segmentation and

ground truth generation algorithms [173] that generates segments of positive/negative emo-

tional displays. More specifically, we generated segments capturing transitions to an emotional

state and back (e.g., going from non-positive to positive and back to non-positive). Hence-

forth, we refer to these classes as positive for the transition to a positive emotional state, and

negative for the transition to a negative emotional state. In total, we used 61 positive and 73

negative segments, and approximately 30,000 video frames.

6.4.2 Facial Expressions

For extracting facial expression features, we employ the Patras - Pantic particle filtering track-

ing scheme [190] for tracking the facial feature movements displayed during the naturalistic

interactions. We track the corners of the eyebrows (4 points), the eyes (8 points), the nose

(3 points), the mouth (4 points) and the chin (1 point). For each video segment containing n

frames, the tracker results in a feature set with dimensions n ∗ 20 ∗ 2. We register each set of

points in a given frame to the corresponding coordinate system centred at the fixed point of
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the face (the average of the inner eye points and the tip of the nose). We thus end up with a

simple translation applied to every point in every frame (also using the fixed point itself as a

feature). Fig. 2.7(a) shows examples from the data set employed together with the tracking

of the facial feature points.

6.4.3 Shoulder Movements

The motion of the shoulders is captured by tracking 2 points on each shoulder and one stable

point on the torso, usually just below the neck (see Fig. 2.7(b)). We initialize the tracked

points in the first frame of each sequence manually, while the standard Auxiliary Particle

Filtering (APF) [199] is subsequently used to track the shoulder points. This scheme is less

complex and faster compared to the Patras - Pantic particle filtering tracking scheme, it does

not require learning the model of prior probabilities of the relative positions of the shoulder

points, while resulting in sufficiently high accuracy. For each video segment containing n

frames, the tracker results in a feature set with dimensions n ∗ 5 ∗ 2.

6.4.4 Acoustic Features

Utilised acoustic features include Mel-frequency Cepstrum Coefficients (MFCC, MFCC-Delta)

[115] and prosody features (the energy of the signal, the Root Mean Squared Energy and the

pitch obtained by using a Praat pitch estimator [191]).

We used 6 cepstrum coefficients, thus obtaining 6 MFCC and 6 MFCC-Delta features for

each audio frame. We have essentially extracted the typical set of features used by other works

(e.g., [196]) for automatic affect recognition. Along with pitch, energy and RMS energy, we

obtained a set of features with dimensionality 15 (per audio frame).

6.5 Why Output-Association for Continuous Emotion

Prediction?

In this section, we demonstrate how the proposed OA-RVM regression framework is efficiently

applicable to the problem of automatic emotion prediction in a continuous dimensional space.

We focus our analysis and discussion on Fig. 6.3. The figure illustrates how employing the

original RVM and the proposed OA-RVM provides continuous prediction of valence and arousal

dimensions for one training sequence (consisting of 315 frames).

The predictions generated by RVM are shown in Fig. 6.3(a,b) while the OA-RVM generated
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Figure 6.3: Illustration of how employing the original RVM and the proposed OA-RVM provide
continuous prediction of valence and arousal dimensions for one training sequence (315 frames). (a,b)
RVM prediction with RVs used for OA-RVM, (c,d) OA-RVM prediction with a window of v = 0 and
IF-RV frames, and (e,f) OA-RVM with prediction with a window of v = 4.
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predictions with a window of v = 0 and v = 4 are shown in Fig. 6.3(c,d) and Fig. 6.3(e,f),

respectively. The ground truth for both the valence and the arousal dimensions is shown in

all figures as gTruth, for comparison purposes. The generated predictions for valence appear

on the left column of Fig. 6.3, while the generated predictions for arousal appear on the right.

The window of v = 0 is meant to represent the most sparse results, while a window of v = 4

is deemed sufficient for a sequence of 315 frames as it embeds 9 temporal steps (frames) in

terms of past (4 frames), present (current frame) and future (4 frames) context.

In this particular sequence, the subject appears to be displaying negatively valenced emo-

tions (e.g., sadness, disappointment), with a decreasing arousal over time (towards a more

passive emotional state). In the figure we observe how the RVM framework generates predic-

tions (depicted with RVM line) by using 32 relevance vectors (RVs) for valence (Fig. 6.3a)

and 39 RVs for arousal (Fig. 6.3b). Fig. 6.3(c,d) then illustrates how the proposed OA-RVM

framework generates predictions for the sequence at hand, for valence and arousal, with a

temporal window of v = 0. Note how OA-RVM is able to learn a smoother and more accurate

model by using 7 RVs for valence and 6 RVs for arousal, respectively.

As specified in Eq. 6.2, OA-RVM depends on both the input features (x, depicted as IF

in the figure) and the output features (yv, depicted as OF in the figure). To illustrate the

behavior of the framework, we decompose the relevance vectors (RVs) selected by OA-RVM

into the RVs centered around the input features (RV-IF) and the RVs centred around the

output features (RV-OF).

For the valence dimension, the 7 RVs used for the OA-RVM model can be decomposed into

4 RVs corresponding to input features (the relevant frames shown in Fig. 6.3c) and 3 RVs

corresponding to output features (shown in Fig. 6.3(a,b) as Val OA-RV ). A similar analysis

is performed for the arousal dimension. For the sequence at hand, in Fig. 6.3d we can see

that 6 RVs are needed by OA-RVM. Note how for this prediction, only one input feature RV

is used by OA-RVM. The remaining 5 RVs centered around the output features are depicted

in Fig. 6.3(a,b) as Ar OA-RV. An interesting observation is that, in frame 1 and frame 15 the

arousal begins to decrease, and is accompanied by a change of sign in the valence dimension.

The OA-RVM framework is able to capture this in its valence and arousal prediction via two

common RVs centred around the output-features in frame 1 and frame 15.

To conclude this section, in Fig. 6.3(e,f), we show the results of applying OA-RVM with

a temporal window of v = 4 (Eq. 6.2). Note how the learned OA-RVM model provides a

nearly perfect fit by using no more RVs than the original RVM model (from which the output
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features are generated). Yet, both the MSE and COR metrics are improved. Although the

complexity of the model is observed to increase with an increase in the window size, overall,

the OA-RVM model appears to generalise to new data very well while avoiding overfitting.

6.6 Experimental Evaluation

Experimental Setting

We apply the proposed OA-RVM regression to the highly challenging problem of dimensional

and continuous prediction of emotions from heterogeneous nonverbal cues, namely facial ex-

pressions, shoulder movements and audio cues. Our aim is to conduct comprehensive ex-

periments in order to explore how the behavior of the OA-RVM model changes (in terms of

prediction accuracy and spatio-temporal structure) depending on the expressive cue / modality

employed.

We use the traditional RVM as the baseline for our comparisons with OA-RVM. We also

use SVR as it is one of the most widely adopted regression techniques in the field. The kernel

used for the construction of the basis matrices is a Gaussian, K(x, xi) = exp
{
(−(x− xi)

2)/r2
}

where r stands for the width of the function. The window parameter v in the output-associative

functional we employ (Eq. 6.1) is generally varied in the range [0 − 30] and determined by

cross-validation. It should be noted that for the probabilistic regression methods (RVM, OA-

RVM), the hyperparameters are determined by optimizing the likelihood function (by using

fast marginal likelihood maximization algorithm proposed in [249]). We use RVM to obtain

the initial (noisy) output estimation (i.e., the output features) for OA-RVM. For SVR we

apply cross-validation employing an ε-insensitive loss function.

In our current setting, we assume that the segments contained in our data set have been

coarsely classified into either positive or negative, prior to the prediction (regression) proced-

ure3. The classification stage is beyond the scope of this chapter, and can be achieved by

applying an accurate (coarse) classifier, e.g. [172], as the basis for the current framework.

This assumption is motivated by the fact that we would like to focus on the prediction results

in detail, and study them in isolation for each class (e.g., which dimension is easier to predict

for which class). Based on the aforementioned assumptions, we conduct experiments using

subject-independent cross-validation, where we train the model using data from three subjects

and evaluate the trained model using the data from the subject left out for evaluation. Results

are averaged across four-fold subject-independent cross-validation.

3Note that each sequence usually contains some portion of both positively / negatively valenced frames.
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Note that subject-independent evaluation using this database is considered highly challen-

ging [151] as annotated data is only available for a small number of subjects. More specifically,

during training, the model is able to learn only a limited (subject-specific) subspace of the

human affective variability. Moreover, performing regression in a continuous space (rather

than classification into a predetermined set of labels) poses additional challenges.

As evaluation metrics we use both the root mean squared error (RMSE) and the correlation

(COR) between the prediction and the ground truth values. RMSE evaluates the prediction

by taking into account the squared error of the prediction from the ground truth. As discussed

in Chapter 5, the RMSE, which represents the bias error and variance of the prediction, can

be misleading with regards to how realistic the prediction of a regression technique can be.

The correlation coefficient (COR) provides an evaluation of the linear relationship between

the prediction and the ground truth, and subsequently, an evaluation of whether the model

has managed to capture the linear structural patterns inhibited in the data at hand.

Experimental Results and Analysis

In this section, we will discuss the results of the proposed OA-RVM model, focusing on pre-

diction accuracy as evaluated by the root mean squared error (RMSE), presented in Table 6.1,

and the correlation coefficient (COR) presented in Table 6.2.

Table 6.1: Evaluating SVM, RVM and OA-RVM for the task of predicting arousal and valence
from face, shoulder and audio cues. Results are averaged across four-fold subject-independent
cross-validation. The evaluation is based on the Root Mean Squared Error (RMSE).

Valence Arousal

Class Cue SVM RVM OA-RVM SVM RVM OA-RVM

POS

Face 0.200 0.166 0.160 0.157 0.166 0.147
Shoulders 0.257 0.177 0.171 0.164 0.146 0.132

Audio 0.176 0.179 0.171 0.146 0.144 0.130

NEG
Face 0.150 0.940 0.088 0.365 0.374 0.342

Shoulders 0.110 0.103 0.097 0.355 0.371 0.354
Audio 0.101 0.102 0.097 0.339 0.339 0.300

Firstly, we observe that for both emotion dimensions and classes, OA-RVM outperforms

RVM and SVM in terms of both COR and RMSE. The improvement is especially noticeable

in terms of COR rather than RMSE. This can be justified by the fact that the goal of OA-

RVM is to enforce common, temporal output patterns, thus increasing the covariance of the

prediction with the ground truth. The prediction results provided by SVR and RVM are
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Table 6.2: Evaluating SVM, RVM and OA-RVM for predicting arousal and valence from face,
shoulder and audio cues. Results are averaged across four-fold subject-independent cross-
validation. Errors obtained by evaluating the correlation coefficient (COR) of the prediction
to the ground truth.

Valence Arousal

Class Cue SVM RVM OA-RVM SVM RVM OA-RVM

POS

Face 0.28 0.30 0.43 0.09 0.09 0.16
Shoulders 0.01 0.16 0.32 0.12 0.19 0.30

Audio 0.02 0.03 0.19 0.04 0.07 0.21

NEG

Face 0.14 0.20 0.27 0.13 0.18 0.27
Shoulders 0.14 0.28 0.29 0.09 0.09 0.22

Audio 0.01 0.05 0.10 0.23 0.23 0.38

fairly similar, with RVM in general achieving better correlation with the ground truth. In

what follows, we discuss the results for OA-RVM.

Focusing on the RMSE results of each class in isolation, we denote that for the positive class

arousal appears to be easier to predict than valence. Nevertheless, for the same class, the COR

achieved is higher for valence, showing that the structure of the valence dimension is modelled

more accurately. When analysing the results obtained for the negative class we observe that

valence prediction is better than arousal prediction. In fact, considering the RMSE metric,

arousal prediction for the negative class appears to be the most challenging case for OA-RVM

prediction framework.

Let us now compare the results obtained by employing different sets of nonverbal cues. When

utilising the facial expression cues, the correlation between the prediction and the ground truth

appears to be equivalent for both emotion dimensions. In general, correlation obtained for the

negative class appears to be highly dependent on the set of cues employed.

Related work on dimensional emotion recognition reported that arousal can be much better

predicted than valence using audio cues [151], [91], [251]. Results obtained from our exper-

iments are in line with such findings, showing that audio cues appear to provide the best

prediction results (in terms of RMSE) for the arousal dimension. When considering the COR

metric and the negative class, audio cues again appear to provide the best prediction results

(0.38) compared to facial expression (0.27) and shoulder cues (0.22). For the positive class,

while the audio cues still provide better correlation compared to using the facial expression

cues, the shoulder cues appear very capable of capturing the arousal structure (and perform

better than the audio cues).
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Figure 6.4: Comparing the prediction correlation (COR) and root mean squared error (RMSE)
for Valence (VAL) and Arousal (AR), when utilising facial expressions (FACE), shoulder move-
ment (SHOULD) and audio cues (AUD).

It is well known that the facial expression cues are very informative for predicting valence.

Our RMSE-based results confirm this, utilizing the facial expression cues provides better

prediction results for the valence dimension. The shoulder cues also appear to be better at

capturing useful information regarding the valence dimension compared to the audio cues.

When evaluating the valence prediction models in terms of the correlation metric, the models

trained using the visual cues in general appear to perform better than the models trained using

the audio cues (see Table 6.2). Additionally, for the negative class, the prediction models

trained on the shoulder cues appear to slightly outperform the models trained on the facial

expression cues.

In Fig. 6.4, we illustrate the average results for both classes evaluated in terms of RMSE and

COR. Overall, we observe that regardless of the set of cues utilized or dimensions predicted,

there is a significant increase in terms of correlation when applying OA-RVM. As denoted

earlier, compared to OA-RVM and RVM, SVM provides the lowest correlation. Additionally,

it can be seen that prediction models trained with facial expressions provide the lowest RMSE

for the valence dimension, and the prediction models trained using the audio cues provide the

lowest RMSE for the arousal dimension.

In Fig. 6.5 we also provide an illustrative comparison between the predictions generated by
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Figure 6.5: An illustrative comparison between the predictions generated by OA-RVM and
RVM, on test data, with respect to the ground truth, utilizing different cues: (a) facial ex-
pressions, (b) shoulder movements, and (c) audio cues.

OA-RVM and RVM, on test data, with respect to the ground truth (utilizing different cues).

Overall, naturalistic emotional expressions are highly subject-dependent [95]. However, from

our experiments we conclude that automatic, subject-independent, dimensional and continuous

prediction of emotions becomes feasible by utilising input and output associations as well as

temporal context.

Psychological research findings suggest that there exist gender-related differences in ex-

pressing emotions (e.g., women appear to be more facially expressive than men [124]). In

our experiments we found no consistent differentiations between male and female subjects.

However, the data set employed is relatively small in order to draw generalising conclusions

regarding gender-related differences.

6.7 Conclusions and Discussion

In this chapter, we proposed a novel Output-Associative Relevance Vector Machine (OA-RVM)

regression framework that augments traditional RVM by being able to learn non-linear input-

output dependencies. Instead of depending solely on the input patterns, OA-RVM models

output structure and covariances within a predefined temporal window, thus capturing past
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and future context. We successfully applied the proposed framework for dimensional and con-

tinuous prediction of emotions from heterogeneous nonverbal cues (facial expressions, shoulder

movement and audio cues) and demonstrated its advantages and efficiency over a comprehens-

ive set of experiments using subject-independent cross-validation. Our experimental results

show that:

• OA-RVM outperforms both RVM and SVR in terms of prediction accuracy (RMSE) and

prediction structure (COR), regardless of the set of cues utilized or emotion dimensions

predicted. Employing a temporal (output) window, which induces the learning of past

and future context, contributes significantly to the prediction accuracy. The size of the

optimal temporal window may vary depending on the task and the data at hand.

• Although there is an inherent, subject-dependent characteristic attributed to naturalistic

emotional expressions; automatic, subject-independent, dimensional and continuous pre-

diction of emotions is possible by utilising input and output associations, and temporal

context.
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7.1 Introduction

Motivated by the challenges arising from adopting continuous emotion dimensions, the focus

of this chapter can be separated into three parts. Firstly, in Section 7.3.1 and 7.3.2 we provide

empirical, quantitative results on several important questions related to the correlations of

emotion dimensions. Secondly, in Section 7.3.3, we study the Level of Interest (LOI) as a

continuous dimension, and evaluate the relationship of interest to other emotion dimensions.
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Finally, in Section 7.4 we present a regression algorithm which correlates both labels and

multi-modal features by projecting them on a common space, eliciting an elegant framework

for multi-modal fusion, dimensionality reduction and output-correlations learning. Finally,

conclusions are drawn in Section 7.5. In the remainder of the introduction, we discuss the

chapter organisation in more detail.

Analysing emotion dimension correlations. The occurrence of inter-correlations amongst

emotion dimensions such as valence and arousal has been well-supported by various research in

psychology [129], and has recently been explored in affective computing in terms of valence and

arousal (Chapter 6, [176]). Nevertheless, to the best of our knowledge, none of the previous

work studies (i) correlation between emotion dimensions in isolation, (i.e. without including

features), and (ii) the correlations of emotion dimensions to basic emotions such as joy and

sadness. Furthermore, most works only employ valence and arousal without addressing di-

mensions such as power and expectation. We address all of these points in this work. Firstly,

by using a set Rs of 5 dimensions (Valence, Arousal, Power, Expectation and Intensity) [157],

in our first experiment (Section 7.3.1), we essentially pose the problem of predicting dimension

k given the rest. We also perform experiments using facial/acoustic features for comparison.

Interestingly enough, we show that the correlation of the k− 1 other dimensions to dimension

k is higher than the correlation of audio/face features to dimension k.

In our second experiment (Section 7.3.2), we attempt to answer an interesting question

which has not been explored so far: how correlated are emotion dimensions to basic emotions?

Intuitively, the correlation should be high, since in theory there is a (rather abstract and

relatively ambiguous) mapping from these dimensions to basic emotions (e.g., high valence,

positive arousal can point to joy, excitement etc.). To verify this intuition empirically, we use a

set of basic emotions Ls (e.g., anger, happiness). Using the set of dimensions Rs, we evaluate

how correlated the emotion dimensions are to basic emotions, in comparison to facial points

and audio cues. Our findings are in line with the previous experiment: Emotion dimensions

are positively correlated with the intensity of basic emotions, exhibiting higher correlations

than facial/acoustic features.

Continuous Interest & Emotion Dimensions. Evidence from the field of psychology
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points to various correlations between emotion dimensions and interest [130]. Nevertheless,

this has remained unexplored in the field of affective computing and machine learning, mostly

due to the fact that interest has been regarded as a discrete emotion rather than a latent

dimension. In this chapter, we model interest as a continuous dimension. In more detail,

in Section 7.3.3, we provide, to the best of our knowledge, the first1 empirical experimental

evidence on continuous annotations which show that interest is highly correlated with specific

emotion dimensions such as arousal, valence and intensity. Furthermore, our analysis reveals

that although we use a disjoint set of annotators for interest, correlations between interest and

other emotion dimensions are still high, thus motivating the utilisation of models exploiting

output-correlations for detecting interest (c.f., Chapters 5, 6, [13, 176]).

Exploiting emotion dimension correlations. An important contribution lies in the

introduction of the Correlated-Spaces Regression (CSR), a principled, novel framework based

on canonical correlation analysis, which elegantly combines multi-modal fusion, the learning

of output-correlations and supervised dimensionality reduction. Presented in Section 7.4, the

proposed algorithm, heavily motivated by conclusions drawn from our empirical study, is

shown to increase the accuracy of both single-cue and fused experiments and up to a point,

“heal” the relatively weak correlation of facial/acoustic features to the emotion dimensions2.

7.2 Data & Feature Extraction

Semaine Database. For evaluation, we employ the SEMAINE database [157], which con-

tains a set of audio-visual recordings of subjects interacting with operators. As described in

Chapter 2, each operator assumes a certain personality, i.e. happy, gloomy, angry and prag-

matic, with a goal of inducing spontaneous emotions during a naturalistic conversation. We

use a portion of the database running approximately 85 minutes, which has been annotated

for the emotion dimensions at hand by 5 raters, from which we use the averaged annotation3.

Furthermore, following the procedure in the next section, we obtained interest annotations

1At time of publication of [177].
2Regarding dimensionality reduction for regression, c.f. [119].
3For the basic emotion experiments, we use only the subset of this data which was annotated in terms of

basic emotions.
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from 8 annotators. For extracting facial expression features, we employ an Active Appearance

Model (AAM) based tracker [182], designed for simultaneous tracking of 3D head pose, lips,

eyebrows, eyelids and irises in video sequences. For each video frame, we obtain 113 2D-points,

resulting in an 226 dimensional feature vector. To compensate for translation variations, we

center the coordinate system to the fixed point of the face (average of inner eyes and nose),

while for scaling we normalise by dividing with the inter-ocular distance. Regarding acoustic

features, we utilise MFCC and MFCC-Delta coefficients along with prosody features (energy,

RMS Energy and pitch). We used 13 cepstrum coefficients for each audio frame, essentially

employing the typical set of features used for automatic affect recognition [285]. We obtain

a feature vector with dimensionality d = 29, obtaining a frame-rate equivalent to 100-fps. To

match the video fps, the acoustic features used are vertically concatenated for each pair of

consecutive frames, thus obtaining 58 dimensional feature vectors. For feature-level fusion,

the vectors are concatenated, resulting to 284 dimensions.

Obtaining Interest Annotations. In this section, we detail the process which we fol-

lowed in order to obtain continuous interest annotations. Firstly, the instructions given to

the annotators were based on earlier work [227], and have been readjusted in order to fit to

a continuous scale and enriched in order to correspond to the conversational setting of the

SEMAINE database. They are as follows:

• Interest Rating in [−1,−0.5): the subject is disinterested in the conversation, can be

mostly passive or appear bored, does not follow the conversation and possibly wants to

stop the session.

• Interest Rating in [−0.5, 0): the subject appears passive, replies to the interaction part-

ner, possibly with hesitation, just because he/she has to reply (unmotivated). The

subject appears indifferent.

• Interest Rating approx. 0: the subject seems to follow the conversation with the interac-

tion partner, but it can not be recognized if he/she is interested. The subject is neutral.

• Interest Rating in (0, 0.5]: The subject seems eager to discuss with the interaction part-

ner, and interested in getting involved in the conversation. The subject is interested.

• Interest Rating in (0.5, 1]: The subject seems pleased to participate in the conversation,
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can show some signs of enthusiasm, is expressive in terms of (positive) emotions (e.g.,

laughing at a joke, curious to discuss a topic).

7.3 Analysis of Emotion Dimensions and Interest

In this section we present several experiments evaluating the correlations of emotion dimen-

sions. For regression, we employ the Relevance Vector Machine (RVM [246]), which given

the input-output pair (xi,yi) models the function yi = wTφ(xi) + εi, εi ∼ N (0, σ2) with

φ(xi,xj) = exp
{
− ||xi−xj ||

l

}
being the RBF kernel. Using the extracted features and annota-

tions (Section 7.2) we perform cross-validation. For evaluation, we use the mean-squared error

(MSE) to measure bias error and the correlation coefficient (COR) to measure the correlation

deviation. We mostly refer to COR, since (i) it is most commonly used in related work [229],

and (ii) the MSE bias errors are relatively very small.

7.3.1 Inter-Correlations and Multimedia

In this section we pose the problem of predicting an emotion dimension given a set of an-

notated dimensions. Let us assume we have a set of ρ annotations R = {r1, . . . , rρ} with

ri ∈ R
1×T . In this experiment, we assume that R consists of dimensions valence, arousal,

power, expectation and intensity, i.e. ρ = 5. Our problem can then be defined as

f : R\k → r̂k, ∀k ∈ {1, . . . , ρ} (7.1)

where R\k denotes the entire set of annotations excluding dimension k and r̂k the estimated

values of dimension k. The performance of the learnt functions is then compared against the

performance obtained when using facial expressions and audio cues as features, in order to

obtain a comparative measure of performance. By this experiment, we essentially ask the

following question: Which signal is most correlated with a specific emotion dimension k, the

features extracted from audio/video cues or the annotations for the rest of the dimensions,

R\k? Results are presented in Table 7.1 and Fig. 7.2. It is very interesting to observe that

by using all the emotion dimensions except the one being tested provides better results for all

dimensions at hand. This important observation empirically confirms that each and every emo-

tion dimension has higher correlation with the rest of the dimensions than with the audio/face
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Table 7.1: Results for predicting each emotion dimension, using the other four dimensions as
features (Rs), compared to using facial features (F), acoustic features (A) and the feature-level
fusion of face and audio (F+A). Results shown are based on the Mean Squared Error (MSE)
and the correlation coefficient (COR).

Valence Arousal Power Expectation Intensity

MSE COR MSE COR MSE COR MSE COR MSE COR
Rs\k 0.074 0.28 0.051 0.47 0.088 0.28 0.037 0.15 0.067 0.30
Face 0.088 0.14 0.061 0.41 0.131 0.06 0.024 0.02 0.066 0.17

Audio 0.072 0.14 0.050 0.44 0.082 0.05 0.018 0.01 0.042 0.26
F+A 0.880 0.16 0.055 0.44 0.080 0.06 0.020 0.02 0.058 0.20

features. It is also interesting to observe that for the arousal and the intensity dimensions, the

audio cues appear to perform better than the facial features in terms of correlation coefficient,

a conclusion that confirms previous findings (c.f., Chapter 5 and [174]).

7.3.2 Correlations to Basic Emotions

Another question we address in this work refers to the correlations amongst the dimensional

emotion descriptions, as perceived by Russel [216] and a set of emotions which are of discrete

nature (e.g., basic emotions). Although emotion dimensions can be inherently more expressive

in comparison to discrete emotions such as joy and sadness, no explicit mapping between the

two descriptions has been established. One would of course assume that e.g., negative valence

with negative arousal maps to sadness or boredom, nevertheless this is more of an abstract and

relatively ambiguous correspondence. In this section we evaluate the correlations of emotion

dimensions when learning to predict emotions such as anger, happiness, sadness, surprise etc.

In more detail, given the set R, as defined in Section 7.3.1 (consisting of dimensions valence,

arousal, power, expectation and intensity) we aim to predict a specific emotion belonging in

the set L = {l1, . . . , lν}, i.e.

f : R → L̂k, ∀k ∈ {1, . . . , ν} (7.2)

Results are presented in Tab, 7.2 and Fig. 7.2, where we also use face/acoustic features for

comparison. The first conclusion is that the emotion dimensions (namely valence, arousal,

power, expectation and intensity) are highly correlated with the discrete emotions we study.

Similarly to the results regarding the previous experiment, the dimension to discrete-emotion
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Table 7.2: Predicting each basic emotion using the five emotion dimensions as features (Rs\k),
compared to using facial features (F) and acoustic features (A). Results shown are based on
the Mean Squared Error (MSE) and the correlation coefficient (COR).

COR Anger Happiness Sadness Contempt Amusement

Rs 0.74 0.48 0.67 0.33 0.49
F 0.06 0.11 0.13 0.05 0.06
A 0.02 0.10 0.10 0.11 0.02

MSE Anger Happiness Sadness Contempt Amusement

Rs 0.07 0.10 0.06 0.02 0.07
F 0.21 0.21 0.26 0.34 0.15
A 0.17 0.17 0.10 0.21 0.09

correlation is quite higher compared to face or acoustic features. The most correlated discrete

emotion to emotion dimensions appears to be anger.

7.3.3 Interest and Emotion Dimensions

In this section, we attempt to empirically evaluate the correlation of interest with other emotion

dimensions. The question is of high interest for many algorithms which aim to model output-

structure (e.g., Chapters 5 and 6, [13]). This has been partly demonstrated for various emotion

dimensions in the previous section. In this case we examine the problem from a different per-

spective. The interest annotations differ from the annotations provided with SEMAINE by (i)

the set of annotators are disjoint from the annotators for SEMAINE, and (ii) the annotation

tool employed for interest is joystick-based, (with a neutral position of 0, i.e. when no force is

applied on the joystick), while for SEMAINE, a mouse-based tool was used (FeelTrace [157]).
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Figure 7.1: Examples from SEMAINE where (a) interest is positively correlated with valence,
since the subject is in a joyful mood, (b) interest is negatively correlated with valence since
the subject is angry/sad but interested in the conversation.
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Firstly, we study the correlations of other emotion dimensions included in SEMAINE to the

obtained interest annotations. By analysing the entire annotation set based on the correlation

coefficient, we find that interest seems to be highly correlated firstly with arousal (.74), and

secondly with valence (.49) and intensity (.48). We note that these findings are in accordance

to previous work on evaluating the dependencies between interest, valence and arousal [130].

Plots comparing valence and interest annotations can be seen in Fig. 7.1.

Secondly, we perform experiments to evaluate the correlations between emotion dimensions

and interest based on prediction accuracy. In what follows, we denote S as the set of emotion

dimensions (valence, arousal, power, intensity and expectation), and I as the interest annota-

tion. For each emotion dimension k in S, we learn the mapping f : S\k → k, where S\k is the

set of all emotion dimensions in S except k. We repeat the experiment with SI = S ∪ I in

place of S, i.e. we also use interest along with emotion dimensions. Results are presented in

Table 7.3. As can be seen, the correlation (COR) for most emotion dimensions increases when

also using interest as a feature. As expected, the most significant increase occurs for arousal.

Interestingly, this experimentally validates that although the annotations have been obtained

via different tools and a disjoint set of annotators, still the obtained signals exhibit linear and

non-linear correlations.

Table 7.3: Results for each emotion dimension, using (i) other emotion dimensions as features
(S\k), and (ii) other emotion dimensions and interest dimension as features (SI\k). Results
shown are based on the Mean Squared Error (MSE) and the correlation coefficient (COR).

Valence Arousal Power Expectation Intensity

MSE COR MSE COR MSE COR MSE COR MSE COR

S\k 0.074 0.28 0.051 0.47 0.088 0.28 0.037 0.15 0.067 0.30

SI\k 0.063 0.30 0.052 0.56 0.088 0.23 0.039 0.16 0.052 0.330

7.4 Correlated-Spaces Regression

Inspired by the results described in previous sections, we demonstrate a method which exploits

output-correlations, while performing multi-modal fusion and dimensionality reduction. Note

that the latter experiments also motivate the idea of dimensionality reduction on this problem:
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7.4. Correlated-Spaces Regression
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Figure 7.2: (a,c) Using emotion dimensions (Rs) for predicting basic emotions, (b) using k− 1

emotion dimensions (Rs\k) for predicting dimension k.

In the experiments in Section 7.3.1, R\k consists of 4-dimensional feature vectors and attains

better performance than, i.e. the 226-dimensional facial expression vectors. We show how by

exploiting feature-label, inter-feature and inter-label correlations we can significantly improve

the results.

Let us assume that for a training sequence s, we have a set of annotations for emotion

dimensions Rs, containing the five dimensions used in Section 7.3.1, along with a given set of

features, Fj,s, j = {1, . . . , μ} which can contain e.g., video or/and audio cues. Canonical Cor-

relation Analysis (CCA) enables the discovery of projections of the features onto a space where
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7. Correlated-Spaces Regression for learning continuous emotion dimensions

they are maximally correlated. We reformulate the problem to match our context as follows

argmin
VFs ,VR

||FsVFs −RsVR||F2

s.t. FsVFsV
T
Fs
FT
s = RsVRV

T
RR

T
s = I

Fs = [F1,s, . . . ,Fj,s], V
T
Fs

= [VT
F1,s

, . . . ,VT
Fμ,s

]T , (7.3)

where I is the identity matrix. Therefore, by applying CCA on both the labels and the features,

we are in a sense employing supervision on the feature projections, i.e. performing supervised

component analysis. This is due to the fact that the labels and features are projected into a

common space where they maximally correlate. In fact, for problems where labels are discrete

classes, it has been shown that applying CCA on both features and binary labels collapses

to applying Linear Discriminant Analysis [11], where FsVF are the discriminant projections.

Furthermore, as an implication of the orthogonality constraints of the problem statement in

Eq. 7.3, the projected label space will be uncorrelated, thus enabling regessors to learn output-

correlations which exist in the label space. Finally, due to the block-matrix formulation we

learn correlated features from all feature sets, i.e. we perform multi-modal supervised fusion.

Our model is described in Alg. 3, and visually depicted in Fig. 7.3. During training, the

Algorithm 2 Correlated-Spaces Regression

Data: Train=(Rs,F1,s, . . . ,Fμ,s) Test=(F1,t, . . . ,Fμ,t)

Result: R̂t

train

Set [VR,

VFs︷ ︸︸ ︷
VF1

, . . . ,VFμ
] to the leading eigenvectors of[

0 FsR
T
s

RsF
T
s 0

] [
VFs

VR

]
=

[
FsF

T
s 0

0 RsR
T
s

] [
VFs

VR

]
Λ

(Problem defined in Eq. 7.3)
Fc

i,s = Fi,sVFi
, ∀i ∈ {1, . . . , μ} f : Fc

1:μ,s → RsVR

test

Fc
i,t = Fi,tVFi , ∀i ∈ {1, . . . , μ} R̂c

t ← f(Fc
1:μ,t) R̂t = R̂c

tV
−1
R

projection vectors for the continuous label space VR and the feature sets employed F1:μ are

obtained. Using these projection matrices, the training features F1:μ,s and labels Rs are pro-

jected onto the space where they maximally correlate, obtaining the matrices Fc
1:μ,s and Rc

s.
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7.4. Correlated-Spaces Regression

Table 7.4: Results for predicting each emotion dimension using Correlated-Spaces Regression
(CSR) utilising facial features (FCSR), acoustic features (ACSR) and the fusion of face and
audio ({F+A}CSR) using CSR, utilising the Mean Squared Error (MSE) and the correlation
coefficient (COR).

Valence Arousal Power Expectation Intensity

MSE COR MSE COR MSE COR MSE COR MSE COR
FCSR 0.070 0.20 0.046 0.46 0.080 0.11 0.020 0.06 0.044 0.29
ACSR 0.070 0.15 0.510 0.45 0.075 0.11 0.022 0.02 0.040 0.29

{F,A}CSR 0.056 0.21 0.050 0.46 0.063 0.12 0.020 0.07 0.044 0.29
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Figure 7.3: Correlated-Spaces Regression model, following Algorithm 3.

The regressor is subsequently optimised on this space

f : Fc
1:μ,s → Rc

s (7.4)

For testing, we obtain a set of features F1:μ,t, which we project as Fc
i,t = Fi,tVFi . The learnt

function f is evaluated on Fc
i,t, obtaining the predictions R̂c

t , which are then projected back

to the annotation space. Results with our method are presented in Table 7.4. As can be

clearly seen, our method performs much better than using simply the raw features or per-

forming feature-level fusion, as seen in Table 7.1. In fact, it is interesting to observe that in

some dimensions, our method achieves comparable correlation to using all the other annota-

tions/labels as features (Rs, Section 7.3.1). Essentially this means that the model manages to
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7. Correlated-Spaces Regression for learning continuous emotion dimensions

capture output-correlations and in addition propagate this information during dimensionality

reduction onto the projected features.

7.5 Conclusions

In this work, we performed a thorough investigation on the inter-correlation of emotion dimen-

sions and their correlation to basic emotions. We have shown that there are more dominant

correlations within emotion dimensions rather than to face or acoustic features. Further-

more, we also introduced the level of interest as a continuous dimension, and evaluated the

correlations of the Level of Interest to emotion dimensions, finding that interest is mostly

correlated with arousal and secondly with valence. Most importantly, we presented CSR, a

CCA-based algorithm which learns output-correlations while performing multi-modal fusion

and supervised dimensionality reduction. Our algorithm increases the accuracy both in terms

of multi-modal fusion and single-cue regression, successfully learning output structure and

maximising input-output correlations. Our algorithm can be straight-forwardly applied to

any learning problem with a set of feature modalities and multi-dimensional output vectors.
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Part II

Component Analysis for Affective

Behaviour
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Chapter 8

Introduction

The first part of this thesis dealt mostly with the problem of analysing continuous dimensional

emotion annotations. Several conclusions of previous chapters influence the direction which

this path takes. For example, the conclusion of Chapter 7 points to the finding that emotion

dimensions appear better correlated with each other, rather than to observations such as facial

features and audio cues. Beyond motivating the utilisation of emotion dimension relationships

for learning (as presented in the previous part), these results also motivate the utilisation of

component analysis and dimensionality reduction, since as it appears, the high dimensional

observations seem to convey redundant information which is not so well correlated with the

annotations. This also justifies why low-dimensional features, such as the shoulder movement

feature set utilised in the previous part (consisting of 10 dimensions) as well as the audio fea-

tures (15 dimensions) perform comparably, in most cases, to facial expression features (with

a dimensionality of 80 or more). Beyond the motivation for lower dimensionality represent-

ations, this also points to an issue which has not been adequately dealt with, both in other

related work, as well as in the previous chapters. As discussed in the introductory chapter,

the annotations obtained for continuous emotion dimensions are performed on-line, and are

thus vulnerable to temporal lags and discrepancies which depend on the response time of each

annotator. If the fusion of annotations is performed without taking into account the various

temporal discrepancies arising in the annotations, the resulting annotation will be misaligned

to the corresponding samples of the ground truth. In essence, this affects the correlation
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8. Introduction

of the two signals e.g., in episodes with large variance. Note that simple averaging will not

eliminate such lags, even if in the unrealistic case where they are constant in time, since lags

depending on annotator response time are always positive shifts in time. Motivated by this, a

large portion of this part is dedicated to the fusion of multiple, continuous annotations, where

as we show in Chapter 9, when temporal discrepancies are eliminated, the features become

much better correlated to the annotations.

Technically, the second part of this thesis is focused on Component Analysis (CA). As

defined in Chapter 3, Component Analysis (CA) is a set of statistical methods aiming to

factorise a signal into components which are relevant for a particular task at hand. CA is a

particularly fitting paradigm for dealing with the multiple challenges arising in affect sens-

ing. In what follows, we propose a set of novel CA models, mostly focusing on probabilistic

and robust formulations, with which we are able to deal with many emerging challenges in

automatic behaviour understanding via elegant and principled novel methods. Examples of ap-

plications include the fusion of multiple annotations, the robust fusion of temporal sequences,

the temporal alignment of human behaviour as well as the utilisation of probabilistic feature

extraction in terms of face visualisation and analysis. We summarise the work presented in

this part in what follows, by following a coarse categorisation of the models presented into

shared-space models (which aim at discovering a shared space underlying multiple observa-

tions) and probabilistic component analysis models aimed at analysing a single observation

set.

Shared-Space Component Analysis (Chapters 9, 10)

We firstly introduce two novel methodologies based on a shared-space formulation. The aim

of such models is to discover the common, underlying signal shared by many observation sets

(shared space) while isolating uninteresting characteristics exhibited by each observation set

separately (private space). The inferred shared space is particularly important for tasks such

as fusion of multiple modalities as well as the temporal alignment of sequences. Any prior

information regarding this spaces is incorporated into this models via priors in the probabilistic

case and matrix norms in the deterministic case, e.g., smoothing the shared space via a Linear

Dynamic System prior or modelling gross non-Gaussian noise by utilising robust norms. In
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what follows, we introduce two novel Shared-Space Component Analysis models.

(i) Firstly, in Chapter 9 we propose the Dynamic Probabilistic Canonical Correlation Ana-

lysis (DPCCA). The main motivation behind this model is the fusion of multiple con-

tinuous annotations, which as discussed in the thesis introduction (Chapter 1), is one of

the major challenges arising in the analysis of continuous dimensional emotions. Inspired

by the concept of learning private-shared spaces, the proposed model is able to learn the

common signal which underlies all annotations, while isolating annotator-specific char-

acteristics which are attributed to bias and noise. By imposing Markov dependencies

on the latent spaces, DPCCA is further able to model the temporal dynamics of the

annotations, and further smooth out various errors arising during the annotation pro-

cess. Finally, in order to “heal” the various temporal discrepancies which manifest in

the annotations, DPCCA is further integrated with a temporal alignment process which

is applied on the derived, clean shared space, resulting to the inferred “ground truth”.

The incorporation of the temporal warping leads to the DPCCA with Time Warpings

model (DPCTW). Although most component analysis methods are inherently unsuper-

vised (i.e., no label information is used, just observations), in Chapter 9 we subsequently

introduce various supervised variants of DPCCA, both in a discriminative and super-

vised manner. Supervision can be particularly useful for fusing noisy annotations, since

the observations can be used in order to impose supervision, as they are essentially the

only objective reference to the sequence at hand. We show that the resulting family of

models (i) can be used as a unifying framework for solving the problems of temporal

alignment and fusion of multiple annotations in time, (ii) can automatically rank and

filter annotations based on latent posteriors or other model statistics, and (iii) that

by incorporating dynamics, modelling annotation-specific biases, noise estimation, time

warping and supervision, while DPCTW outperforms state-of-the-art methods for both

the aggregation of multiple, yet imperfect expert annotations as well as the alignment

of affective behavior.

(ii) In Chapter 10, we introduce a robust, shared-space component analysis method. Based

on Canonical Correlation Analysis (CCA), the proposed Robust CCA (RCCA) is able to
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8. Introduction

handle gross errors in the data. Such errors are often in abundance in data acquired un-

der real-world conditions, due to occlusions, errors in localization and tracking and other

forms of data corruption. Furthermore, gross errors rarely follow a Gaussian distribu-

tion, which is the de-facto assumption in the vast majority of machine learning methods.

RCCA assumes that the given observations can be separated into a matrix of low-rank

components shared by all observation sets, while any noise terms can be isolated into

a sparse, private component specific to each observation set, while simultaneously max-

imising the correlation of the observations in the error-free space. We further increment

RCCA with temporal warpings, enabling the temporal alignment of high-dimensional

observation sequences with gross noise and corruptions. In terms of experiments, we

evaluate RCCA in many, challenging scenarios such as (i) the robust audio-visual fusion

for the prediction of the level of interest, (ii) robust fusion for heterogeneous face recog-

nition, as well as (iii) the temporal alignment of facial action units and human walking

sequences. We note that for (ii), the fusion scenario is more challenging, in the sense

that only one of the fused modalities is available during testing. RCCA outperforms

other CCA variants as well as state-of-the-art methods for temporal alignment.

A Unified Framework for Probabilistic Component Analysis (Chapter 11)

Although CA has received great attention by many researchers over the past decades, much

fewer works exist on probabilistic CA. Furthermore, in terms of deterministic component

analysis, various frameworks have been introduced which aim to unify many CA techniques

under unifying frameworks, thus both enabling the better understanding of such methods as

well providing novel methods to the community. Nevertheless, no such unifying probabilistic

framework has been proposed thus far. In Chapter 11, we introduce the first unifying probab-

ilistic component analysis framework which unifies all CA methods where the corresponding

deterministic formulation leads to a trace optimisation problem without domain constraints

for the parameters. In more detail, we unify methods such as Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow

Feature Analysis (LPP), some of which have no probabilistic equivalent in literature so far.

The framework is based on modelling the latent variables as Markov Random Fields (MRFs),
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while each component analysis method arises when utilising a specific MRF prior. We show

that the methods derived via our framework recover projections which are co-directional to the

deterministic solutions in the Maximum Likelihood case (ML), while we propose a novel Ex-

pectation Maximisation (EM) framework for component analysis. We generalise the proposed

methodologies to arbitrary connectivities via parametrizable MRF products, thus facilitating

the generation of novel component analysis techniques. We evaluate the proposed models on

problems such as level of interest detection, face recognition as well as face recognition and

visualisation of high-dimensional data. The methods derived via the proposed probabilistic

framework well-outperform related probabilistic and deterministic techniques.
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Dynamic Probabilistic CCA for

Analysis of Affective Behaviour and

Fusion of Continuous Annotations

Contents

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.2 Contributions and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3 Multiset Probabilistic CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.4 Dynamic Probabilistic CCA (DPCCA) . . . . . . . . . . . . . . . . . . . . 149

9.5 DPCCA with Time Warpings . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.6 Features for Annotator Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.7 Ranking and Filtering Annotations . . . . . . . . . . . . . . . . . . . . . . 159

9.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.1 Introduction

In this chapter, we introduce a novel, probabilistic dynamic model which is tailored to the

problem of fusing multiple, continuous annotations. As mentioned in the introduction of this
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9. DPCCA for Analysis of Affective Behaviour and Fusion of Continuous Annotations

thesis, the annotation process itself is a tedious, expensive and highly error prone process,

which in turn greatly affects the level of difficulty in terms of processing such annotations and

deriving the “ground truth” that will be utilised in predictive analysis scenarios, that is, in

order to train machine learning models.

We remind the reader that the annotation process in terms of continuous emotion dimen-

sions is both continuous in space and time. That is, experts annotate in real-time audiovisual

sequences of spontaneous emotion expressions, in terms of emotion dimensions such as valence

(ranging from unpleasant to pleasant) and arousal (ranging from relaxed to aroused). This

leads to a series of problems which have been detailed in Chapter 1 such as rendering the

annotation subject to individual human judgement (i.e. varying perceptions of the intensity

of an emotional state), varying temporal lags exhibited by annotators due to person-specific

response times1, as well as various types of noise introduced by the input device or the an-

notation procedure. The latter issues arise not only due to human factors (such as annotator

skill and expertise as well as annotator characteristics such as age, fatigue and stress) but also

to the fuzziness of the meaning associated with various labels related to human behaviour.

The only information which can be utilised in order to improve the quality of the derived

ground truth can be obtained by (i) exploiting the fact that there exist multiple annotations,

which in turn can provide e.g., common truths but in isolation may provide biased and un-

interesting information, and (ii) by utilising any extracted features from the sequence being

annotated, e.g., facial expressions or audio information, in order to aid the derivation of the

ground truth. Both of these points are addressed within the proposed DPCCA model. In

more detail, in this chapter we propose DPCCA, a probabilistic method following a private-

shared space formulation which models latent dynamics via Markov dependencies. DPCCA

is able to (i) isolate any annotator-specific bias in the private space, (ii) nullify any temporal

discrepancies present in the annotations by time warping (iii) utilise any extracted features for

the ground truth derivation, (iv) model latent dynamics of annotations, (v) provide a ranking

of the annotations in terms of uncertainty, and in conclusion, is able to infer a clean version

1i.e., each annotator firstly perceives the emotional state observed, and subsequently applies a force on the
input device, i.e. move the mouse or joystick; this can not be entirely synchronised to the video stream and to
the precise frame at which the emotional state is manifested.
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of the “ground truth”, as a representation of the noise-free, shared information conveyed by

all annotations. As can be seen, the aim of DPCCA is to overcome all challenges arising in

fusing continuous dimensional emotion annotations from multiple experts, as also discussed in

Chapter 1.

The rest of the chapter is organised as follows. In Section 9.2, we perform a summarising

comparison on related work, as discussed in Chapters 2 and 3. In Section 9.3, we describe

PCCA and present our extension to multiple sequences. In Sec.9.4, we introduce our proposed

Dynamic PCCA, which we subsequently extend with latent space time-warping (DPCTW)

as described in Section 9.5. In Section 9.6, we introduce two supervised variants of DPCTW

which incorporate inputs in a generative (Section 9.6.1) and discriminative (Section 9.6.2)

manner, while in Section 9.7 we present an algorithm based on the proposed family of models

which ranks and filters annotators. In Section 9.8, we present various experiments on both

synthetic (Section 9.8.1) and real (Section 9.8.2, 9.8.3) experimental data, emphasising the

advantages of the proposed methods on both the fusion of multiple annotations and sequence

alignment. Finally, conclusions are drawn in Section 9.9.

9.2 Contributions and Related Work

The usually employed technique in terms of fusing multiple annotations in affect sensing is

based on simply averaging the annotations (or taking the majority value) [99], thus assuming

that the average annotation approximates the true annotation which is conveyed by the an-

notators. As discussed in Chapter 2, simply averaging is suboptimal, as (i) we assume that all

annotators are likely capable without modelling their precision (since averaging is the expected

value of each annotation weighted with equal probability), and (ii) we propagate noise and

temporal discrepancies in the generated ground truth. Since annotators are usually “laggy”

(i.e. they exhibit a positive temporal delay), this essentially means that the annotation will

always exhibit some lag compared to the annotated sequence.

A state-of-the-art approach in fusing multiple continuous annotations that can be applied

to emotion descriptions is proposed by Raykar et al. [209]. In this work, each noisy annotation
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is considered to be generated by a Gaussian distribution with the mean being the true label

and the variance representing the annotation noise.

A main drawback of [209] lies in the assumption that temporal correspondences of samples

are known. One way to find such arbitrary temporal correspondences is via time warping. A

state-of-the-art approach for time warping, Canonical Time Warping (CTW) [298], combines

Dynamic Time Warping (DTW) and Canonical Correlation Analysis (CCA) with the aim of

aligning a pair of sequences of both different duration and different dimensionality. CTW

accomplishes this by simultaneously finding the most correlated features and samples among

the two sequences, both in feature space and time. This task is reminiscent of the goal of

fusing expert annotations. However, CTW does not directly yield the prototypical sequence,

which is considered as a common, denoised and fused version of multiple experts’ annotations.

As a consequence, this renders neither of the two state-of-the-art methods applicable to our

setting.

The latter observation precisely motivates our work; inspired by Probabilistic Canonical

Correlation Analysis (PCCA) [121], we initially present the first generalisation of PCCA to

learning temporal dependencies in the shared/individual spaces (Dynamic PCCA, DPCCA).

By further augmenting DPCCA with time warping, the resulting model (Dynamic PCCA

with Time Warpings, DPCTW) can be seen as a unifying framework, concisely applied to

both problems. The individual contributions of this work can be summarised as follows:

• In comparison to state-of-the-art approaches in both fusion of multiple annotations and

sequence alignment, our model bears several advantages. We assume that the “true” an-

notation/sequence lies in a shared latent space. E.g., in the problem of fusing multiple

emotion annotations, we know that the experts have a common training in annotation.

Nevertheless, each carries a set of individual factors which can be assumed to be un-

interesting (e.g., annotator/sequence specific bias). In the proposed model, individual

factors are accounted for within an annotator-specific latent space, thus effectively pre-

venting the contamination of the shared space by individual factors. Most importantly,

we introduce latent-space dynamics which model temporal dependencies in both com-
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mon and individual signals. Furthermore, due to the probabilistic and dynamic nature

of the model, each annotator/sequence’s uncertainty can be estimated for each sample,

rather than for each sequence.

• In contrast to current work on fusing multiple annotations, we propose a novel framework

able to handle temporal tasks. In addition to introducing dynamics, we also employ tem-

poral alignment in order to eliminate temporal discrepancies amongst the annotations.

• We present an elegant extension of DTW-based sequence alignment techniques (e.g.,

Canonical Time Warping, CTW) to a probabilistic multiple-sequence setting. We ac-

complish this by treating the problem in a generative probabilistic setting, both in the

static (multiset PCCA) and dynamic case (Dynamic PCCA).

9.3 Multiset Probabilistic CCA

We consider the probabilistic interpretation of CCA, introduced by Bach & Jordan [11] and

generalised by Klami & Kaski [121]2. In this section, we present an extended version of PCCA

[121] (multiset PCCA3) which is able to handle any arbitrary number of sets. We consider a

collection of datasets D = {X1,X2, ...,XN}, with each Xi ∈ R
Di×T where Di is the dimen-

sionality and T the number of instances. By adopting the generative model for PCCA, the

observation sample n of set Xi ∈ D is assumed to be generated as

xi,n = f(zn|Wi) + g(zi,n|Bi) + εi, (9.1)

where Zi = [zi,1, . . . , zi,T ] ∈ R
di×T and Z = [z1, . . . , zT ] ∈ R

d×T are the independent latent

variables that capture the set-specific individual characteristics and the shared signal amongst

all observation sets, respectively. f(.) and g(.) are functions that transform each of the latent

signals Z and Zi into the observation space. They are parametrised by Wi and Bi, while the

noise for each set is represented by εi, with εi⊥εj , i �= j. Similarly to [121], zn, zi,n and εi are

considered to be independent (both over the set and the sequence) and normally distributed:

zn, zi,n ∼ N (0, I), εi ∼ N (0, σ2
nI). (9.2)

2[121] is also related to Tucker’s inter-battery factor analysis [253, 32]
3In what follows we refer to multiset PCCA as PCCA.
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By considering f and g to be linear functions we have f(zn|Wi) = Wizn and g(zi,n|Bi) =

Bizi,n, transforming the model presented in Eq. 9.1, to

xi,n = Wizn +Bizi,n + εi. (9.3)

Learning the multiset PCCA can be accomplished by generalising the EM algorithm presen-

ted in [121], applied to two or more sets. Firstly, P (D|Z,Z1, . . . ,ZN ) is marginalised over

set-specific factors Z1, . . . ,ZN and optimised on each Wi. This leads to the generative model

P (xi,n|zn) ∼ N (Wizn,Ψi), where Ψi = BiB
T
i + σ2

i I. Subsequently, P (D|Z,Z1, . . . ,ZN ) is

marginalised over the common factor Z and then optimised on each Bi and σi. When gener-

alising the algorithm for more than two sets, we also have to consider how to (i) obtain the

expectation of the latent space and (ii) provide stable variance updates for all sets.

Two quantities are of interest regarding the latent space estimation. The first is the com-

mon latent space given one set, Z|Xi. In the classical CCA this is analogous to finding the

canonical variables [121]. We estimate the posterior of the shared latent variable Z as follows:

P (zn|xi,n) ∼ N (γixi,n, I− γiWi),

γi = WT
i (WiW

T
i +Ψi)

−1. (9.4)

The latent space given the n-th sample from all sets in D, which provides a better estimate

of the shared signal manifested in all observation sets is estimated as

P (zn|x1:N,n) ∼ N (γx1:N,n, I− γW),

γ = WT (WWT +Ψ)−1, (9.5)

while the matrices W, Ψ and Xn are defined as WT = [WT
1 ,W

T
2 , . . . ,W

T
n ], Ψ as the block

diagonal matrix of Ψi=1:N
4 and xT

1:N,n = [xT
1,n,x

T
2,n, . . . ,x

T
1:N,n]. Finally, the variance is

recovered on the full model, xi,n ∼ N (Wizn +Bizi,n, σ
2
i I), as

σ2
i =tr(S−XE[ZT |X]CT

−CE[Z|X]XT −CE[ZZT |X]CT )i
T

Di
, (9.6)

4For brevity of notation, we use 1 : N to indicate elements [1, . . . , N ], e.g., X1:N ≡ [X1,X2, . . . ,XN ]
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where S is the sample covariance matrix, B is the block diagonal matrix ofBi=1:N ,C = [W,B],

while the subscript i in Eq. 9.6 refers to the i-th block of the full covariance matrix. Finally,

we note that the computational complexity of PCCA for each iteration is similar to determ-

inistic CCA (cubic in the dimensionality of the datasets and linear in the number of samples).

PCCA though also recovers the private space.

9.4 Dynamic Probabilistic CCA (DPCCA)

The PCCA model described in Section 9.3 exhibits several advantages when compared to

the classical formulation of CCA, mainly by providing a probabilistic estimation of a latent

space shared by an arbitrary collection of datasets along with explicit noise and private space

estimation. Nevertheless, static models are unable to learn temporal dependencies which are

very likely to exist when dealing with real-life problems. In fact, dynamics are deemed essential

for successfully performing tasks such as emotion recognition, AU detection etc. [285].

Motivated by the former observation, we propose a dynamic generalisation of the static

PCCA model introduced in the previous section, where we now treat each Xi as a temporal

sequence. For simplicity of presentation, we introduce a linear model5 where Markovian de-

pendencies are learnt in the latent spaces Z and Zi. In other words, the variable Z models the

temporal, shared signal amongst all observation sequences, while Zi captures the temporal, in-

dividual characteristics of each sequence. It is easy to observe that such a model fits perfectly

with the problem of fusing multiple annotations, as it does not only capture the temporal

shared signal of all annotations, but also models the unwanted, annotator-specific factors over

time. Essentially, instead of directly applying the doubly independent priors to Z as in Eq.

9.2, we now use the following:

p(zt|zt−1) ∼ N (Azzt−1,VZ), (9.7)

p(zi,t|zi,t−1) ∼ N (Azizi,t−1,VZi), n = 1, . . . , N, (9.8)

5A non-linear DPCCA model can be derived similarly to [118, 83].
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9. DPCCA for Analysis of Affective Behaviour and Fusion of Continuous Annotations

where the transition matrices Az and Azi model the latent space dynamics for the shared and

sequence-specific space respectively. Thus, idiosyncratic characteristics of dynamic nature ap-

pearing in a single sequence can be accurately estimated and prevented from contaminating

the estimation of the shared signal.

The resulting model bears similarities with traditional Linear Dynamic System (LDS) mod-

els (e.g. [212]) and the so-called Factorial Dynamic Models, c.f. [82]. Along with Eq. 9.7,9.8

and noting Eq. 9.3, the dynamic, generative model for DPCCA6 can be described as

xi,t = Wi,tzt +Bizi,t + εi, εi ∼ N (0, σ2
i I), (9.9)

where the subscripts i and t refer to the i-th observation sequence timestep t respectively.

9.4.1 Inference

To perform inference, we reduce the DPCCA model to a LDS7. This can be accomplished by

defining a joint space ẐT = [ZT ,ZT
1 , . . . ,Z

T
N ], Ẑ ∈ R

d̂×T where d̂ = d+
∑N

i di with parameters

θ = {A,W,B,Vẑ, Σ̂}. Dynamics in this joint space are described as Xt = [W,B]Ẑt+ε, Ẑt =

AẐt−1 + u, where the noise processes ε and u are defined as

ε ∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
0,

⎡
⎢⎢⎣

σ2
1I

. . .

σ2
NI

⎤
⎥⎥⎦

︸ ︷︷ ︸
Σ̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.10)

u ∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0,

⎡
⎢⎢⎢⎢⎢⎣

Vz

Vz1

. . .

VzN

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Vẑ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.11)

6The model of Raykar et al. [209] can be considered as a special case of (D)PCCA by setting W = I, B = 0
(and disregarding dynamics).

7For more details on LDS, please see [212] and [26], Chapter 13.
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9.4. Dynamic Probabilistic CCA (DPCCA)

where Vz ∈ R
d×T and Vzi ∈ R

di×T . The other matrices used above are defined as XT =

[XT
1 , . . . ,X

T
N ], WT = [WT

1 , . . . ,W
T
N ], B as the block diagonal matrix of [B1, . . . ,BN ] and A

as the block diagonal matrix of [Az,Az1 , . . . ,AzN ]. Similarly to LDS, the joint log-likelihood

function of DPCCA is defined as

lnP (X,Z|θ) =lnP (ẑ1|μ, V ) +
T∑
t=2

lnP (ẑt|ẑt−1,A,Vẑ)

+
T∑
t=1

lnP (xt|ẑt,W,B, Σ̂). (9.12)

In order estimate the latent spaces, we apply the Rauch-Tung-Striebel (RTS) smoother on Ẑ

(the algorithm can be found in [212], A.3). In this way, we obtain E[ẑt|XT ], V [ẑt|XT ] and

V [ẑtẑt−1|XT ]8.

9.4.2 Parameter Estimation

The parameter estimation of the M-step has to be derived specifically for this factorised model.

We consider the expectation of the joint model log-likelihood (Eq. 9.12) wrt. posterior and

obtain the partial derivatives of each parameter for finding the stationary points. Note the W

and B matrices appear in the likelihood as:

Eẑ[lnP (X, Ẑ)] =− T

2
ln|Σ̂| − Eẑ

[
T∑
t=1

(xt − [W,B]ẑt)
T

Σ̂−1 (xt − [W,B]ẑt)

]
+ . . . . (9.13)

Since they are composed of individual Wi and Bi matrices (which are parameters for each

sequence i), we calculate the partial derivatives ∂Wi and ∂Bi in Eq. 9.13. Subsequently, by

setting to zero and re-arranging, we obtain the update equations for each W∗
i and B∗

i :

W∗
i =

(
T∑
t=1

xi,tE[zi,t]−B∗
iE[zi,tz

T
t ]

)(
T∑
t=1

E[ztz
T
t ]

)−1

(9.14)

8We note that the complexity of RTS is cubic in the dimension of the state space. Thus, when estimating
high dimensional latent spaces, computational or numerical issues may arise (due to the inversion of large
matrices). If any of the above is a concern, the complexity of RTS can be reduced to quadratic [260], while
inference can be performed more efficiently similarly to [82].
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B∗
i =

(
T∑
t=1

xi,tE[z
T
t ]−W∗

iE[ztz
T
i,t]

)(
T∑
t=1

E[zi,tz
T
i,t]

)−1

(9.15)

Note that the weights are coupled and thus the optimal solution should be found iteratively.

As can be seen, in contrast to PCCA, in DPCCA the individual factors of each sequence are

explicitly estimated instead of being marginalised out. Similarly, the transition weight updates

for the individual factors Zi are as follows:

A∗
z,i =

(
T∑
t=2

E[zi,tz
T
i,t−1]

)(
T∑
t=2

E[zi,t−1z
T
i,t−1]

)−1

(9.16)

where by removing the subscript i we obtain the updates for Az, corresponding to the shared

latent space Z. Finally, the noise updates VẐ and Σ̂ are estimated similarly to LDS [212].

9.5 DPCCA with Time Warpings

Both PCCA and DPCCA exhibit several advantages in comparison to the classical formulation

of CCA. Mainly, as we have shown, (D)PCCA can inherently handle more than two sequences,

building upon the multiset nature of PCCA. This is in contrast to the classical formulation of

CCA, which due to the pairwise nature of the correlation operator is limited to two sequences9.

This is crucial for the problems at hand since both methods yield an accurate estimation of the

underlying signals of all observation sequences, free of individual factors and noise. However,

both PCCA and DPCCA carry the assumption that the temporal correspondences between

samples of different sequences are known, i.e. that the annotation of expert i at time t directly

corresponds to the annotation of expert j at the same time. Nevertheless, this assumption is

often violated since different experts exhibit different time lags in annotating the same process.

Motivated by the latter, we extend the DPCCA model to account for this misalignment of data

samples by introducing a latent warping process into DPCCA, in a manner similar to [298].

In what follows, we firstly describe some basic background on time-warping and subsequently

proceed to define our model.

9The recently proposed multiset-CCA [101] can handle multiple sequences but requires maximising over
sums of pairwise operations.
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9.5.1 Time Warping

The basics of time warping have been described in Chapter 3. Nevertheless, in order to make

this chapter self-complete, we briefly summarise related work in what follows. Dynamic Time

Warping (DTW) [205] is an algorithm for optimally aligning two sequences of possibly differ-

ent lengths. Given sequences X ∈ R
D×Tx and Y ∈ R

D×Ty , DTW aligns the samples of each

sequence by minimising the sum-of-squares cost, i.e. ||XΔx −YΔy||2F , where Δx ∈ R
Tx×TΔ

and Δy ∈ R
Ty×TΔ are binary selection matrices, with TΔ the aligned, common length. In this

way, the warping matrices Δ effectively re-map the samples of each sequence. Although the

number of possible alignments is exponential in TxTy, employing dynamic programming can

recover the optimal path in O(TxTy). Furthermore, the solution must satisfy the boundary,

continuity and monotonicity constraints, effectively restricting the space of Δx, Δy [205]. An

important limitation of DTW is the inability to align signals of different dimensionality. Mo-

tivated by the former, CTW [298] combines CCA and DTW, thus alowing the alignment of

signals of different dimensionality by projecting into a common space via CCA. The optim-

isation function now becomes ||VT
xXΔx −VT

y YΔy||2F , where X ∈ R
Dx×Tx ,Y ∈ R

Dy×Tx , and

Vx,Vy are the projection operators (matrices).

9.5.2 DPCTW Model

We define DPCTW based on the graphical model presented in Fig. 9.1. Given a set D of N

sequences of varying duration, with each sequence Xi = [xi,1, . . . ,xi,Ti ] ∈ R
Di×Ti , we postulate

the latent common Markov process Z = {z1, . . . , zt}. Firstly, Z is warped using the warping

operator Δi, resulting in the warped latent sequence ζi. Subsequently, each ζi generates each

observation sequence Xi, also considering the annotator/sequence bias Zi and the observation

noise σ2
i . We note that we do not impose parametric models for warping processes. Inference

in this general model can be prohibitively expensive, in particular because of the need to

handle the unknown alignments. We instead propose to handle the inference in two steps: (i)

fix the alignments Δi and find the latent Z and Zi’s, and (ii) given the estimated Z,Zi find
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the optimal warpings Δi. For this, we propose to optimise the following objective function:

L(D)PCTW =
N∑
i

N∑
j,j �=i

||E[Z|Xi]Δi − E[Z|Xj ]Δj ||2F
N(N − 1)

(9.17)

where when using PCCA, E[Z|Xi] = WT
i (WiW

T
i +Ψi)

−1Xi (Eq. 9.4). For DPCCA, E[Z|Xi]

is inferred via RTS smoothing (Section 9.4). A summary of the full algorithm is presented in

Algorithm 3.

At this point, it is important to clarify that our model is flexible enough to be straight-

forwardly used with varying warping techniques. For example, the Gauss-Newton warping

proposed in [296] can be used as the underlying warping process for DPCCA, by replacing the

projected data VT
i Xi with E[Z|Xi] in the optimisation function. Algorithmically, this only

changes the warping process (line 3, Algorithm 3). Finally, we note that since our model iter-

ates between estimating the latent spaces with (D)PCCA and warping, the computational com-

plexity of time warping is additive to the cost of each iteration. In case of the DTW alignment

for two sequences, this incurs an extra cost of O(TxTy). In case of more than two sequences,

we utilise a DTW-based algorithm, which is a variant of the so-called Guide Tree Progressive

Alignment, since the complexity of dynamic programming increases exponentially with the

number of sequences. Similar algorithms are used in state-of-the-art sequence alignment soft-

ware in biology, e.g., Clustar [131]. The complexity of the employed algorithm is O(N2T 2
max)

where Tmax is the maximum (aligned) sequence length and N the number of sequences. More

efficient implementations can also be used by employing various constraints [205].

9.6 Features for Annotator Fusion

In the previous sections, we considered the observed data to consist only of the given an-

notations, D = {X1, . . . ,XN}. Nevertheless, in many problems one can extract additional

observed information, which we can consider as a form of complementary input (e.g., visual

or acoustic features). In fact, in problems where annotations are subjective and no objective

ground truth is available for any portion of the data, such input can be considered as the only

objective reference to the annotation/sequence at hand. Thus, incorporating it into the model

can significantly aid the determination of the ground truth.
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Figure 9.1: Graphical model of DPCTW. Shaded nodes represent the observations. By ignor-
ing the temporal dependencies, we obtain the PCTW model.

Motivated by the latter argument, we propose two models which augment DPCCA/DPCTW

with inputs. Since the family of component analysis techniques we study are typically unsu-

pervised, incorporating inputs leads to a form of supervised learning. Such models can find

a wide variety of applications since they are able to exploit label information in addition to

observations. A suitable example lies in dimensional affect analysis, where it has been shown

that specific emotion dimensions correlate better with specific cues, (e.g., valence with facial

features, arousal with acoustic features (Chapter 5, [174, 99]). Thus, one can know a-priori

which features to use for specific annotations.

Throughout this discussion, we assume that a set of complementary input or features

Y = {Y1, . . . ,Yν} is available, where Yj ∈ R
Dyj×Tyj . While discussing extensions of DP-

CCA, we assume that all sequences have equal length. When incorporating time warping,

sequences can have different lengths.
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Algorithm 3 Dynamic Probabilistic CCA with Time Warpings (DPCTW)

Data: D = X1, . . . ,XN , XT = [XT
1 , . . . ,X

T
N ]

Result: P (Z|X1, . . .XN ), P (Z|Xi),Δi, σ
2
i , i = 1 : N

repeat
Obtain alignment matrices (Δ1, . . . ,ΔN ) by optimising Eq. 9.17 on E[Z|XT

1 ], . . . ,E[Z|XT
N ]

XT
Δ = [(X1Δ1)

T , . . . , (XNΔN )T ]
repeat

Estimate E[ẑt|XT
Δ], V [ẑt|XT

Δ] and V [ẑtẑt−1|XT
Δ] via RTS for i = 1, . . . , N do

repeat
Update W∗

i according to Eq. 9.14 Update B∗
i according to Eq. 9.15

until Wi, Bi converge
Update A∗

i according to Eq. 9.16
end

Update A∗,V∗
Ẑ
, Σ̂∗ according to Section 9.4.2

until DPCCA converges
for i = 1, . . . , N do

θi =

{[
Az 0
0 Ai

]
,Wi,Bi,

[
VZ 0
0 Vi

]
, σ2

i I

}
Estimate E[ẑt|XT

i ], V [ẑt|XT
i ] and V [ẑtẑt−1|XT

i ] via RTS on θi.
end

until LDPCTW converges
∗ Since E[ẑt|XT

i ] is unkown in the first iteration, use Xi instead.

9.6.1 Supervised-Generative DPCCA (SG-DPCCA)

We firstly consider the model where we simply augment the observation model with a set of

features Yj . In this case, the generative model for DPCCA (Eq. 9.9) is:

xi,t = Wi,tzt +Bizi,t + εi, (9.18)

yj,t = hj,s(zt|Wj,t) + hj,p(zj,t|Bj) + εj , (9.19)

where i = {1, . . . , N} and j = {N+1, . . . , N+ν+1}. The arbitrary functions hmap the shared

space to the feature space in a generative manner, while εj ∼ N (0, σ2
j I). The latent priors

are still defined as in Eq. 9.7,9.8. By assuming that h is linear, we can group the parameters

W = [W1, . . . ,WN , . . . ,WN+ν ], B as the block diagonal of ([B1, . . . ,BN , . . . ,BN+ν ]) and Σ̂

as the block diagonal of ([σ2I1, . . . , σ
2IN , . . . , σ2IN+ν ]). Inference is subsequently applied as

described in Section 9.4.
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This model, which we dub SG-DPCCA, in effect captures a common shared space of both an-

notations X and available features Y for each sequence. In our generative scenario, the shared

space generates both features and annotations. By further setting hj,p to zero, one can force the

representation of the entire feature spaceYj onto the shared space, thus imposing stronger con-

straints on the shared space given each annotation Z|Xi. As we will show, this model can help

identify unwanted annotations by simply analysing the posteriors of the shared latent space.

We note that the additional form of supervision imposed by the input on the model is remin-

iscent of SPCA for PCA [284]. The discriminative ability added by the inputs (or labels) also

relates DPCCA to LDA [11]. The graphical model of SG-DPCCA is illustrated in Fig. 9.2(b).

SG-DPCCA can be easily extended to handle time-warping as described in Section 9.5 for

DPCCA (SG-DPCTW). The main difference is that now one would have to introduce one

more warping function for each set of features, resulting in a set of N + ν functions. Denoting

the complete data/input set as Do = {X1, . . . ,XN ,Y1, . . . ,Yν}, the objective function for

obtaining the time warping functions Δi for SG-DPCTW can be defined as:

LSDPCTW o =

N+ν∑
i

N+ν∑
j,j �=i

||E[Z|Do
i ]Δi − E[Z|Do

j ]Δj ||2F
(N + ν)(N + ν − 1)

. (9.20)

9.6.2 Supervised-Discrimative DPCCA (SD-DPCCA)

The second model augments the DPCCA model by regressing on the given features. In this

case, the posterior of the shared space (Eq. 9.7) is formulated as

p(zt|zt−1,Y1:ν ,A,Vẑ) ∼

N (Azzt−1 +
ν∑

j=1

hj(Yj |Fj),Vz), (9.21)

where each function hj performs regression on the featuresYj , while Fj ∈ R
d×Dyj are the load-

ings for the features (where the latent dimensionality is d). This is similar to how input is mod-

elled in a standard LDS [83]. To find the parameters, we maximise the complete-data likelihood

(Eq. 9.12), where we replace the second term referring to the latent probability with Eq. 9.21,

T∑
t=2

lnP (ẑt|ẑt−1,Y1:ν ,A,Vẑ). (9.22)
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In this variation, the shared space at step t is generated from the previous latent state zt−1 as

well as the features at step t − 1,
∑ν

j=1 yj,t−1 (Fig. 9.2(c)). We dub this model SD-DPCCA.

Without loss of generality we assume h is linear, i.e. hj,s = Wj,tzt, while we model the

feature signal only in the shared space, i.e. hj,p = 0. Finding the saddle points of the deriv-

atives with respect to the parameters yields the following updates for the matrices Az and

Fj , ∀j = 1, . . . , ν:

A∗
z =

⎛
⎝ T∑

t=2

E[ztz
T
t−1]−

ν∑
j=1

F∗
jyj,t

⎞
⎠(

T∑
t=2

E[zt−1z
T
t−1]

)−1

, (9.23)

F∗
j =

⎛
⎝E[zt]−A∗

zE[zt−1]−
ν∑

i=1,i �=j

F∗
iYi

⎞
⎠Y−1

j . (9.24)

Note that as with the loadings on the shared/individual spaces (W and B), the optimisation

of Az and Fj matrices should again be determined recursively. Finally, the estimation of VZ

also changes accordingly:

V∗
z = 1

T−1

∑T
t=2(E[ztz

T
t ]− E[ztz

T
t−1]A

∗T
z

−A∗
zE[zt−1z

T
t ] +A∗

zE[zt−1z
T
t−1]A

∗T
z

+
∑ν

j=1(A
∗
zE[zt−1]Y

∗T
j F∗T

j + F∗
jYjE[z

T
t−1]A

∗T
z

+F∗
jYj

∑ν
i=1,i �=j Y

T
i F

∗T
i − E[zt]Y

T
j F

∗T
j

−F∗
jYjE[z

T
t ])).

(9.25)

SD-DPCCA can be straight-forwardly extended with time-warping as with DPCCA in Sec-

tion 9.5, resulting in SD-DPCTW. Another alignment step is required before performing the

recursive updates mentioned above in order to find the correct training/testing pairs for zt and

Y. Assuming the warping matrices are Δz and Δy, then in Eq. 9.23 z is replaced with Δzz

and y with Δyy. The influence of features Y on the shared latent space Z in SD-DPCCA

and SG-DPCCA is visualised in Fig. 9.2.

9.6.3 Varying Dimensionality

Typically, we would expect the dimensionality of a set of annotations to be the same. Nev-

ertheless in certain problems, especially when using input features as in SG-DPCCA (Section
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Figure 9.2: Comparing the model structure of DPCCA (a) to SG-DPCCA (b) and SD-DPCCA
(c). Notice that the shared space z generates both observations and features in SG-DPCCA,
while in SD-DPCCA, the shared space at time t is generated by regressing from the features
y and the previous shared space state zt−1.

9.6.1), this is not the case. Therefore, in case the observations/input features are of varying

dimensionalities, one can scale the third term of the likelihood (Eq. 9.12) in order to balance

the influence of each sequence during learning regardless of its dimensionality:

T∑
t=1

(
ν∑

j=1

1

Dyj

ln
(
P (yt,j |ẑt,Wj ,Bj , σ

2
j )
)
+

N∑
j=1

1

Di
ln
(
P (xt,j |ẑt,Wj ,Bj , σ

2
i )
))

. (9.26)

9.7 Ranking and Filtering Annotations

In this section, we will refer to the issue of ranking and filtering available annotations. Since

in general, we consider that there is no “ground truth” available, it is not an easy task to

infer which annotators should be discarded and which kept. A straightforward option would

be to keep the set of annotators which exhibit a decent level of agreement with each other.

Nevertheless, this naive criterion will not suffice in case where e.g., all the annotations exhibit

moderate correlation, or where sets of annotations are clustered in groups which are intra-

correlated but not inter-correlated.

The question that naturally arises is how to rank and evaluate the annotators when there
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is no ground truth available and their inter-correlation is not helpful. We remind that DP-

CCA maximises the correlation of the annotations in the shared space Z, by removing bias,

temporal discrepancies and other nuisances from each annotation. It would therefore be reas-

onable to expect the latent posteriors for each annotation (Z|Xi), to be as close as possible.

Furthermore, the closer the posterior given each annotation (Z|Xi) to the posterior given all

sequences (Z|D), the higher the ranking of the annotator should be, since the closer it is, the

larger the portion of the shared information is contained in the annotators signal.

The aforementioned procedure can detect spammers, i.e. annotators who do not even pay

attention at the sequence they are annotating and adversarial or malicious annotators that

provide erroneous annotations due to e.g., a conflict of interests and can rank the confidence

that should be assigned to the rest of the annotators. Nevertheless, it does not account for

the case where multiple clusters of annotators are intra-correlated but not inter-correlated. In

this case, it is most probable that the best-correlated group will prevail in the ground truth

determination. Yet, this does not mean that the best-correlated group is the correct one. In

this case, we propose using a set of inputs (e.g., tracking facial points), which can essentially

represent the “gold standard”. The assumption underlying this proposal is that the correct

sequence features should maximally correlate with the correct annotations of the sequence.

This can be straightforwardly performed with SG-DPCCA, where we attain Z|Y (shared space

given input) and compare to Z|Xi (shared space given annotation i).

The comparison of latent posteriors is further motivated by R.J. Aumann’s agreement the-

orem [10]: “If two people are Bayesian rationalists with common priors, and if they have

common knowledge of their individual posteriors, then their posteriors must be equal”. Since

our model maintains the notion of “common knowledge” in the estimation of the shared space,

it follows from Aumann’s theorem that the individual posteriors Z|Xi of each annotation i

should be as close as possible. This is a sensible assumption, since one would expect that if all

bias, temporal discrepancies and other nuisances are removed from annotations, then there is

no rationale for the posteriors of the shared space to differ.

A simple algorithm for filtering/ranking annotations (utilising spectral clustering [233]) can

be found in Algorithm 4. The goal of the algorithm is to find two clusters, Cx and Co,
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containing (i) the set of annotations which are correlated with the ground truth, and (ii) the

set of “outlier” annotations, respectively. Firstly, DPCCA/DPCTW is applied. Subsequently,

a similarity/distance matrix is constructed based on the posterior distances of each annotation

Z|Xi along with the features Z|Y. By performing spectral clustering, one can keep the cluster

to which Z|Y belongs (Cx) and disregard the rest of the annotations belonging in Co. The

ranking of the annotators is computed implicitly via the distance matrix, as it is the relative

distance of each Z|Xi to Z|Y. In other words, the feature posterior is used here as the “ground

truth”. Depending on the application (or in case features are not available), one can use the

posterior given all annotations, Z|X1, . . . ,XN instead of Z|Y. Examples of distances/metrics

that can be used include the alignment error (see Section 9.5) or the KL divergence between

normal distributions (which can be made symmetric by employing e.g., the Jensen-Shannon

divergence, i.e. DJS(P ||Q) = 1
2DKL(P ||Q) + 1

2DKL(Q||P )).

Algorithm 4 Ranking and filtering annotators

Data: X1, . . . ,XN ,Y
Result: Rank of each Xi, Cc

begin
Apply SG-DPCTW/SG-DPCCA(X1, . . . ,XN,Y) Obtain P (Z|Y), P (Z|Xi), i = 1, . . . , N
Compute Distance Matrix S of [P (Z|X1), . . . , P (Z|XN ), P (Z|Y)] Normalise S, L ←
I −D− 1

2SD− 1
2 {Cx, Co} ← Spectral Clustering(L) Keep Cx where P (Z|Y) ∈ Cx Rank

each Xi ∈ Cx based on distance of P (Z|Xi) to P (Z|Y)
end
In case Y is not available, replace P (Z|Y) with P (Z|X1:N ).

We note that in case of irrelevant or malicious annotations, we assume that the correspond-

ing signals will be moved to the private space and will not interfere with the time warping.

Nevertheless, in order to ensure this, one can impose constraints on the warping process. This

is easily done by modifying the DTW by imposing e.g., slope or global constraints such as

the Itakura Parallelogram or the Sakoe-Chiba band, in order to constraint the warping path

while also decreasing the complexity (c.f., Chap. 5, of [205]). Furthermore, other heuristics

can be applied, e.g. firstly filter out the most irrelevant annotations by applying SG-DPCCA

without time warping, or threshold the warping objective directly (Eq. 9.17).
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9.8 Experimental Evaluation

In order to evaluate the proposed models, in this section, we present a set of experiments on

both synthetic (Section 9.8.1) and real (Section 9.8.2 & 9.8.3) data.

9.8.1 Synthetic Data

For synthetic experiments, we employ a setting similar to [298]. A set of 2D spirals are gener-

ated as Xi = UT
i Z̃M

T
i +N, where Z̃ ∈ R

2×T is the true latent signal which generates the Xi,

while the Ui ∈ R
2×2 and Mi ∈ R

Ti×m matrices impose random spatial and temporal warp-

ing. The signal is furthermore perturbed by additive noise via the matrix N ∈ R
2×T . Each

N(i, j) = e × b, where e ∼ N (0, 1) and b follows a Bernoulli distribution with P (b = 1) = 1

for Gaussian and P (b = 1) = 0.4 for spike noise. The length of the synthetic sequences varies,

but is approximately 200.

This experiment can be interpreted as both of the problems we are examining. Viewed as a

sequence alignment problem the goal is to recover the alignment of each noisy Xi, where in this

case the true alignment is known. Considering the problem of fusing multiple annotations,

the latent signal Z̃ represents the true annotation while the individual Xi form the set of

noisy annotations containing annotation-specific characteristics. The goal is to recover the

true latent signal (in DPCCA terms, E[Z|X1, . . . ,XN ]).

The error metric we used computes the distance from the ground truth alignment (Δ̃) to

the alignment recovered by each algorithm (Δ) [296], and is defined as:

error =
dist(Π, Π̃) + dist(Π̃,Π)

TΔ + T̃Δ

,

dist(Π1,Π2) =

T 1
Δ∑

i=1

min({||π(i)
1 − π

(j)
2 ||})T

2
Δ

j=1), (9.27)

where Πi ∈ R
T i
Δ×N contains the indices corresponding to the binary selection matrices Δi,

as defined in Section 9.5.1 (and [296]), while π(j) refers to the j-th row of Π. For qualitative

evaluation, in Fig. 9.3, we present an example of applying (D)PCTW on 5 sequences. As

can be seen, DPCTW is able to recover the true, de-noised, latent signal which generated the
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Figure 9.3: Noisy synthetic experiment. (a) Initial, noisy time series. (b) True latent signal
from which the noisy, transformed spirals where attained in (a). (c) The alignment achieved by
DPCTW. The shared latent space recovered by (d) PCTW and (e) DPCTW. (f) Convergence
of DPCTW in terms of the objective (Obj) (Eq. 9.17) and the path difference between the
estimated alignment and the true alignment path (PDGT).
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Figure 9.4: Synthetic experiment comparing the alignment attained by DTW, CTW, GTW,
PCTW and DPCTW on spirals with spiked and Gaussian noise.

noisy observations (Fig. 9.3(e)), while also aligning the noisy sequences (Fig. 9.3(c)). Due to

the temporal modelling of DPCTW, the recovered latent space is almost identical to the true

signal Z̃ (Fig. 9.3(b)). PCTW on the other hand is unable to entirely remove the noise (Fig.

9.3(d)). Fig. 9.4 shows further results comparing related methods. CTW and GTW perform

comparably for two sequences, both outperforming DTW. In general, PCTW seems to perform

better than CTW, while DPCTW provides better alignment than other methods compared.
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9.8.2 Real Data I: Fusing Multiple Annotations

In order to evaluate (D)PCTW in case of real data, we employ the SEMAINE database [158].

The database contains a set of audio-visual recordings of subjects interacting with operators.

Each operator assumes a certain personality - happy, gloomy, angry and pragmatic - with

a goal of inducing spontaneous emotions by the subject during a naturalistic conversation.

We use a portion of the database containing recordings of 6 different subjects, from over 40

different recording sessions, with a maximum length of 6000 frames per segment. As the data-

base was annotated in terms of emotion dimensions by a set of experts (varying from 2 to 8),

no single ground truth is provided along with the recordings. Thus, by considering X to be

the set of annotations and applying (D)PCTW, we obtain E[Z|D] ∈ R
1×T (given all warped

annotations)10, which represents the shared latent space with annotator-specific factors and

noise removed. We assume that E[Z|D] represents the ground truth. An example of this pro-

cedure for (D)PCTW can be found in Fig. 9.5. As can be seen, DPCTW provides a smooth,

aligned estimate, eliminating temporal discrepancies, spike-noise and annotator bias. In this

experiment, we evaluate the proposed models on four emotion dimensions: valence, arousal,

power, and anticipation (expectation).

To obtain features for evaluating the ground truth, we track the facial expressions of each

subject via a particle filtering tracking scheme [190]. The tracked points include the corners

of the eyebrows (4 points), the eyes (8 points), the nose (3 points), the mouth (4 points) and

the chin (1 point), resulting in 20 2D points for each frame.

For evaluation, we consider a training sequence X, for which the set of annotations Ax =

{a1, . . . ,aR} is known. From this set (Ax), we derive the ground truth GT X - for (D)PCTW,

GT X = E[Z|Ax]. Using the tracked points PX for the sequence, we train a regressor to learn

the function fx : PX → GT X. In (D)PCTW, Px is firstly aligned with GT x as they are not

necessarily of equal length. Subsequently given a testing sequence Y with tracked points Py,

using fx we predict each emotion dimension (fx(Py)). The procedure for deriving the ground

truth is then applied on the annotations of sequence Y, and the resulting GT y is evaluated

10We note that latent (D)PCTW posteriors used, e.g. Z|Xi are obtained on time-warped observations, e.g.
Z|XiΔi (See Alg. 3)
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Figure 9.5: Applying (D)PCTW to continuous emotion annotations. (a) Original valence
annotations from 5 experts. (b,c) Alignment obtained by PCTW and DPCTW respectively,
(d,e) Shared space obtained by PCTW and DPCTW respectively, which can be considered as
the “derived ground truth”.

against fx(Py). The correlation coefficient of the GT y and fx(Py) (after the two signals are

temporally aligned) is then used as the evaluation metric for all compared methods.

The reasoning behind this experiment is that the “best” estimation of the ground truth (i.e.

the gold standard) should maximally correlate with the corresponding input features - thus

enabling any regressor to learn the mapping function more accurately.

We also perform experiments with the supervised variants of DPCTW, i.e. SG-DPCTW

and SD-DPCTW. In this case, a set of features Y is used for inferring the ground truth, Z|D.

Since we already used the facial trackings for evaluation, in order to avoid biasing our results11,

we use features from the audio domain. In particular, we extract a set of acoustic features con-

sisting of 6 mel-frequency Cepstrum Coefficients (MFCC), 6 MFCC-Delta coefficients along

with prosody features (signal energy, root mean squared energy and pitch), resulting in a 15

dimensional feature vector. The acoustic features are used to derive the ground truth with

our supervised models, exactly acting an objective reference to our sequence. In this way, we

11Since we use the facial points for evaluating the derived ground truth, if we had also used them for deriving
the ground truth we would bias the evaluation procedure.
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impose a further constraint on the latent space: it should also explain the audio cues and

not only the annotations, given that the two sets are correlated. Subsequently, the procedure

described above for unsupervised evaluation with facial trackings is employed.

For regression, we employ RVM [246] with a Gaussian kernel. We perform both session-

dependent experiments, where the validation was performed on each session separately, and

session-independent experiments where different sessions were used for training/testing. In this

way, we validate the derived ground truth generalisation ability (i) when the set of annotators

is the same and (ii) when the set of annotators may differ.

Session-dependent and session-independent results are presented in Tables 9.1 and 9.2. We

firstly discuss the unsupervised methods. As can be seen, taking a simple annotator average

(A-AVG) gives the worse results (as expected), with a very high standard deviation and weak

correlation. The model of Raykar et al. [209] provides better results, which can be justified

by the variance estimation for each annotator. Modelling annotator bias and noise with

(D)PCCA further improves the results. It is important to note that incorporating alignment

is significant for deriving the ground truth; this is reasonable since when the annotations are

misaligned, shared information may be modelled as individual factors or vice-versa. Thus,

PCTW improves the results further while DPCTW provides the best results, confirming our

assumption that combining dynamics, temporal alignment, modelling noise and individual-

annotator bias leads to a more objective ground truth. Finally, regarding supervised models

SG-DPCTW and SD-DPCTW, we can observe that the inclusion of acoustic features in the

ground truth generation improves the results, with SG-DPCTW providing better correlated

results than SD-DPCTW. This is reasonable since in SG-DPCTW the features Y are explicitly

generated from the shared space, thus imposing a form of strict supervision, in comparison to

SD-DPCTW where the inputs essentially elicit the shared space.

Ranking Annotations

We perform the ranking of annotations as proposed in Algorithm 4 to a set of emotion dimen-

sion annotations from the SEMAINE database.

In Fig. 9.6(a), we illustrate an example where an irrelevant structured annotation (sinusoid),
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Table 9.1: Comparison of ground truth evaluation based on the correlation coefficient (COR),
on session dependent experiments. The standard deviation over all results is denoted by σ.

SD-DPCTW SG-DPCTW DPCTW PCTW DPCCA PCCA RAYKAR [209] A-AVG

COR σ COR σ COR σ COR σ COR σ COR σ COR σ COR σ
Valence 0.78 0.18 0.78 0.17 0.77 0.18 0.70 0.18 0.64 0.21 0.63 0.20 0.61 0.20 0.54 0.36
Arousal 0.75 0.18 0.77 0.19 0.75 0.22 0.64 0.22 0.63 0.23 0.63 0.26 0.60 0.25 0.42 0.41
Power 0.78 0.13 0.85 0.10 0.77 0.16 0.76 0.10 0.68 0.16 0.67 0.18 0.62 0.22 0.42 0.36

Expectation 0.82 0.09 0.83 0.10 0.78 0.11 0.75 0.16 0.68 0.16 0.74 0.17 0.62 0.20 0.48 0.40

Table 9.2: Comparison of ground truth evaluation based on the correlation coefficient (COR),
on session independent experiments. The standard deviation over all results is denoted by σ.

SD-DPCTW SG-DPCTW DPCTW PCTW DPCCA PCCA RAYKAR [209] A-AVG

COR σ COR σ COR σ COR σ COR σ COR σ COR σ COR σ
Valence 0.73 0.19 0.73 0.19 0.72 0.22 0.66 0.24 0.62 0.28 0.58 0.23 0.57 0.27 0.53 0.33
Arousal 0.74 0.15 0.74 0.17 0.71 0.20 0.61 0.23 0.59 0.23 0.52 0.28 0.50 0.29 0.33 0.40
Power 0.72 0.28 0.75 0.24 0.72 0.34 0.70 0.19 0.60 0.26 0.58 0.27 0.57 0.27 0.39 0.31

Expectation 0.76 0.21 0.76 0.15 0.73 0.20 0.70 0.18 0.63 0.20 0.64 0.25 0.63 0.22 0.44 0.39

has been added to a set of five true annotations. Obviously the sinusoid can be considered a

spammer annotation since essentially, it is independent of the actual sequence at hand. In the

figure we can see that (i) the derived ground truth is not affected by the spammer annotation,

(ii) the spammer annotation is completely captured in the private space, and (iii) that the

spammer annotation is detected in the distance matrix of E[Z|Xi] and E[Z|X].

In Fig. 9.6(b), we present an example where a set of 5 annotations has been used along with

8 spammers. The spammers consist of random Gaussian distributions along with structured

periodical signals (i.e. sinusoids). We can see that it is difficult to discriminate the spammers

by analysing the distance matrix of X since they do maintain some correlation with the true

annotations. By applying Algorithm 4, we obtain the distance matrix of the latent posteriors

Z|Xi and Z|D. In this case, we can clearly detect the cluster of annotators which we should

keep. By applying spectral clustering, the spammer annotations are isolated in a single cluster,

while the shared space along with the true annotations fall into the other cluster. This is also

obvious by observing the inferred weight vector (W), which is near-zero for sequences 6-

14, implying that the shared signal is ignored when reconstructing the specific annotation

(i.e. the reconstruction is entirely from the private space ). Finally, this is also obvious by

calculating the KL divergence comparing each individual posterior Z|Xi to the shared space
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posterior given all annotations Z|D, where sequences 6-14 have a high distance while 1-5 have

a distance which is very close to zero.

In Fig. 9.6(c), we present another example where in this case, we joined two sets of an-

notations which were recorded for two distinct sequences (annotators 1-6 for sequence A and

annotators 7-12 for sequence B). In the distance matrix taken on the observations X, we can

see how the two clusters of annotators are already discriminable, with the second cluster,

consisting of annotations for sequence B, appearing more correlated. We use the facial track-

ings for sequence A (tracked as described in this section) as the features Y, and then apply

Algorithm 4. As can be seen in the distance matrix of [Z|Xi,Z|Y], (i) the two clusters of

annotators have been clearly separated, and (ii) the posterior of features Z|Y clearly is much

closer to annotations 1-6, which are the true annotations of sequence A.

9.8.3 Real Data II: Action Unit Alignment

In this experiment we aim to evaluate the performance of (D)PCTW for the temporal align-

ment of facial expressions. Such applications can be useful for methods which require pre-

aligned data, e.g. AAM (Active Appearance Models). For this experiment, we use a portion of

the MMI database which contains more than 300 videos, ranging from 100 to 200 frames. Each

video is annotated (per frame) in terms of the temporal phases of each Action Unit (AU) mani-

fested by the subject being recorded, namely neutral, onset, apex and offset. For this experi-

ment, we track the facial expressions of each subject capturing 20 2D points, as in Section 9.8.2.

Given a set of videos where the same AU is activated by the subjects, the goal is to tem-

porally align the phases of each AU activation across all videos containing that AU, where the

facial points are used as features. In the context of DPCTW, each Xi is the facial points of

video i containing the same AU, while Z|Xi is now the common latent space given video i,

the size of which is determined by cross-validation, and is constant over all experiments for a

specific noise level.

In Fig. 9.7 we present results based on the number of misaligned frames for AU alignment,

on all action unit temporal phases (neutral, onset, apex, offset) for AU 12 (smile), on a set of 50

pairs of videos from MMI. For this experiment, we used the facial features relating to the lower
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Figure 9.6: Annotation filtering and ranking (black - low, white - high). (a) Experiment
with a structured false annotation (sinusoid). The shared space is not affected by the false
annotation, which is isolated in the individual space. (b) Experiment with 5 true and 9
spammer (random) annotations. (c) Experiment with 6 true annotations, 7 irrelevant but
correlated annotations (belonging to a different sequence). The facial points Y, corresponding
to the 6 true annotations, were used for supervision (with SG-DPCCA).
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face, which consist of 11 2D points. The features were perturbed with sparse spike noise in

order to simulate the misdetection of points with detection-based trackers, in order to evaluate

the robustness of the proposed techniques. Values were drawn from the normal distribution

N (0, 1) and added (uniformly) to 5% of the length of each video. We gradually increased the

number of features perturbed by noise from 0 to 4. To evaluate the accuracy of each algorithm,

we use a robust, normalised metric. In more detail, let us say that we have two videos, with fea-

turesX1 andX2, and AU annotationsA1 andA2. Based on the features, the algorithm at hand

recovers the alignment matrices Δ1 and Δ2. By applying the alignment matrices on the AU

annotations (A1Δ1 andA2Δ2), we know to which temporal phase of the AU each aligned frame

of each video corresponds to. Therefore, for a given temporal phase (e.g., neutral), we have a

set of frame indices which are assigned to the specific temporal phase in video 1, Ph1 and video

2, Ph2. The accuracy is then estimated as Ph1∩Ph2
Ph1∪Ph2

. This essentially corresponds to the ratio of

correctly aligned frames to the total duration of the temporal phase accross the aligned videos.

As can be seen in the average results in Fig. 9.7, the best performance is clearly obtained

by DPCTW. It is also interesting to highlight the accuracy of DPCTW on detecting the apex,

which essentially is the peak of the expression. This can be attributed to the modelling of

dynamics, not only in the shared latent space of all facial point sequences but also in the do-

main of the individual characteristics of each sequence (in this case identifying and removing

the added temporal spiked noise). PCTW peforms better on average compared than CTW

and GTW, while the latter two methods perform similarly. It is interesting to note that GTW

seems to overpeform CTW and PCTW for aligning the apex of the expression for higher noise

levels. Furthermore, we point-out that the Gauss-Newton warping used in GTW is likely to

perform better for longer sequences. Example frames from videos showing the unaligned and

DPCTW-aligned videos are shown in Fig. 9.8 .
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Figure 9.7: Accuracy of DTW, CTW, GTW, PCTW and DPCTW on the problem of action
unit alignment under spiked noise added to an increasing number of features for AU = 12
(smile).
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Figure 9.8: Example stills from a set of videos from the MMI database, comparing the original
videos to the aligned videos obtained via DPCTW under spiked noise on 4 2D points. (a)
Blinking, AUs 4 and 46. (b) Mouth open, AUs 25 and 27.
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9.9 Conclusions

In this work, we presented DPCCA, a novel, dynamic and probabilistic model based on the

multiset probabilistic interpretation of CCA. By integrating DPCCA with time warping, we

proposed DPCTW, which can be interpreted as a unifying framework for solving the problems

of (i) fusing multiple imperfect annotations and (ii) aligning temporal sequences. Furthermore,

we extended DPCCA/DPCTW to a supervised scenario, where one can exploit inputs and

observations, both in a discriminative and generative framework. We show that the family of

probabilistic models which we present is this chapter is able to rank and filter annotators merely

by utilising inferred model statistics. Finally, our experiments show that DPCTW features

such as temporal alignment, learning dynamics, identifying individual annotator/sequence

factors and incorporating inputs are critical for robust performance of fusion in challenging

affective behaviour analysis tasks.
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Robust Canonical Correlation Analysis

with Time Warpings
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10.1 Introduction

In this chapter, we present a robust variant of Canonical Correlation Analysis (CCA) which

we coin Robust Canonical Correlation Analysis (RCCA). The main advantage of this method

lies in being able to model non-Gaussian, sparse noise which commonly occurs in real-world

scenarios and applications, unlike methods based on traditional Canonical Correlation Ana-

lysis (CCA). Via RCCA, we decompose the observed sequences into a low-dimensional, low-

rank component and a sparse component which models gross noise. RCCA thus facilitates

the fusion of sequences arising from different modalities while being corrupted with gross

noise. Subsequently, we turn to the problem of the accurate temporal alignment of se-
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10. Robust Canonical Correlation Analysis with Time Warpings

quences under gross noise, a highly challenging problem arising in fields such as computer

vision [86, 114, 265, 297, 298, 296], bioinformatics [144] and speech processing [120, 219]. In

Chapter 3 we introduced Dynamic Time Warping (DTW) and other related CCA based warp-

ing techniques, while in Chapter 9, where we aimed at the fusion of multiple annotations,

we pointed out the lack of these models in terms related to the problem, such as learning

temporal dynamics and explicitly modelling noise. In this chapter, we focus on the temporal

alignment of high dimensional data under the presence of gross noise. In fact, most extensions

of Dynamic Time Warping are also based on CCA [298] and while successful, they inherit the

same issues as CCA in the presence of gross Gaussian noise. We extend RCCA to handle

temporal warpings in RCTW, by learning low-rank projections while simultaneously finding

the temporal alignment that maximises the spatial correlation in the error-free space. In other

words, the RCTW aligns the corrupted sequences in a error-free common low-rank latent sub-

space which is robustly estimated, even in the presence of gross errors. The projections are

obtained by minimizing the weighted sum of nuclear and �1 norms, by solving a sequence of

convex optimization problems, while the temporal alignment is found by applying the DTW in

an alternating fashion. The RCCA and RCTW models are mainly motivated by the success of

robust principal component analysis (RPCA) [37] and inductive RPCA (IRPCA) [15] in gross

error correction, and especially from the successful combination of rank minimization principles

with spatial alignment [194]. Summarising, the contributions of this chapter are as follows.

• A novel method, i.e. RCCA is proposed as a robust-to-gross-errors variant of CCA.

RCCA is further extended to a novel, robust method for the temporal alignment of

high-dimensional data sequences despite large occlusions and corruptions.

• An efficient algorithm for RCCA and RCTW is derived by solving a sequence of convex

problems. Each of the these convex problems is solved efficiently by employing first-order

optimization techniques.

• Different sets of experiments on synthetic and real data validate that the proposed RCCA

manages to robustly fuse multiple modalities and features, while RCTW accurately aligns

grossly corrupted data sequences compared to state-of-the-art alignment methods.
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The chapter is organized as follows. We introduce both the RCCA and RCTW in Section

10.2. Subsequently, in Section 10.3 we perform various experiments utilising both models with

experiments both on synthetic and real data. In terms of real data, we utilise RCCA for (i) the

fusion of audio-visual data for the detection of interest, and (ii) heterogeneous face recognition.

We evaluate RCTW on (i) the temporal alignment of human walking sequences, and (ii) on

the problem of temporal action unit alignment. Conclusions are drawn in Section 10.4.

10.2 Methodology

Canonical Correlation Analysis (CCA), as introduced in Chapter 3, is a shared-space com-

ponent analysis method which is typically utilised for problems such as the fusion of multiple

observation sets and modalities, multi-view analysis [231, 45], while often is utilised along

with Dynamic Time Warping (DTW) in order to achieve the temporal alignment of multiple

sequences with varying dimensionality and varying length [296, 298, 232]. The classical for-

mulation of CCA carries the assumption that all errors follow a Gaussian distribution with a

small variance. This is a typical assumption employed in most machine learning systems thus

far, as employing Gaussian noise is the simplest assumption one can make without further

complicating the model at hand. In this chapter, we propose a robust variant of CCA that is

able to handle gross errors in the observation sets and is thus suitable for deployment under

real-world conditions, where such errors are in abundance.

More formally, we assume X and Y to be high-dimensional observation sets, likely corrupted

with gross noise, where X ∈ R
dx×T and Y ∈ R

dy×T . Each of these observation sets may

represent e.g., features extracted from modalities to be fused (e.g., facial trackings and audio

cues). The Robust Canonical Correlation Analysis (RCCA), based on the desired low-rankness

of the projections as well as the sparsity of the noise terms, can be formulated as

argmin
Px,Py ,Ex,Ey

rank(Px) + rank(Py)

+λ1‖Ex‖0 + λ2‖Ey‖0 +
μ

2
‖PxX−PyY‖2F

s.t. X = PxX+Ey,Y = PyY +Ey. (10.1)
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10. Robust Canonical Correlation Analysis with Time Warpings

where as can be seen, RCCA uncovers a low-rank subspace Px, Py, by estimating the gross

distortion terms for each modality, Ex and Ey, where λ1, λ2 and μ are non-negative parameters.

Unfortunately, Problem (10.1) is deemed difficult to solve due to the discrete nature of the

rank function [261] and the �0 norm [170]. Nevertheless, it has been proved that the convex

envelope of the �0 norm is the �1 norm [63], while the convex envelope of the rank function is

the nuclear norm [78]. Therefore, convex relaxations of (10.1) can be obtained by replacing

the �0 norm and the rank function with their convex envelopes. The resulting problem

argmin
Pz ,Pa,Ez ,Ea

‖Pz‖∗ + ‖Pa‖∗

+λ1‖Ez‖1 + λ2‖Ea‖1 +
μ

2
‖PzZ−PaA‖2F

s.t. Z = PzZ+Ez,A = PaA+Ea. (10.2)

can be solved by employing the Linearized Alternating Directions Method (LADM) [143], a

variant of the alternating direction augmented lagrange multiplier method [25]. The algorithm

is detailed in Alg. 5. We note that the singular value thresholding operator can be defined

for any matrix M [35], as: Dτ [M] = USτV
T where M = UΣVT is the singular value

decomposition (SVD) and Sτ [q] = sign(q)max(|q|− τ, 0) the shrinkage operator [37] (extended

to matrices via element-wise application). Before moving on to discuss the optimisation, we

move on to discuss the extension of this model to include time warpings, as this is in fact a

more general case which includes the RCCA.

10.2.1 RCCA with Time Warpings (RCTW)

Problem (10.1) can be easily extended in order to handle sequences of different lengths. Dy-

namic Time Warping (DTW) has already been described in Chapter 3, but to make this

chapter self-sufficient we summarise the definition here. Given two data sequences X =

[x1|x2| . . . |xTx ] ∈ R
d×Tx and Y = [y1|y2| . . . |yTy ] ∈ R

d×Ty , the DTW aligns the sequences

by solving [219]:

argmin
Δx,Δy

1

2
‖XΔx −YΔy‖2F , s.t. Δx ∈ {0, 1}Tx×T ,Δy ∈ {0, 1}Ty×T , (10.3)
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where Δx and Δy are binary selection matrices encoding the alignment path. Although the

number of possible alignments is exponential in TxTy, the DTW is able to recover the optimal

alignment path in O(TxTy) by employing dynamic programming.

In order to extend RCCA with time warpings, we formulate an analogous problem to (10.1)

as follows.

argmin
Px,Py,Ex,
Ey,Δx,Δy

rank(Px) + rank(Py) + λx‖Ex‖0 + λy‖Ey‖0

+
μ

2
‖PxXΔx −PyYΔy‖2F

s.t. X = PxX+Ex,Y = PyY +Ey,

Δx ∈ {0, 1}Tx×T ,Δy ∈ {0, 1}Ty×T .

(10.4)

where now, the observations X and Y are of varying time lengths, i.e. X ∈ R
dx×Tx and

Y ∈ R
dy×Ty , while Δx and Δy are binary selection matrices, same as in the DTW case, which

encode the alignment path. Similarly to Problem 10.1, Problem 10.4 is difficult to solve, and

by adopting a convex relaxation as above, we arrive at:

argmin
Px,Py,Ex,
Ey,Δx,Δy

‖Px‖∗ + ‖Py‖∗ + λx‖Ex‖1 + λy‖Ey‖1

+
μ

2
‖PxXΔx −PyYΔy‖2F

s.t. X = PxX+Ex,Y = PyY +Ey,

Δx ∈ {0, 1}Tx×T ,Δy ∈ {0, 1}Ty×T .

(10.5)

where accordingly to Problem (10.2), can be solved via LADM. In what follows, we describe

the LADM solution to the RCTW problem defined above. Note that the solution for RCCA

problem (in cases our samples are aligned in time and of same length) can be equivalently

obtained by setting Δx = Δy = I, i.e. by simply omitting the Δx and Δy matrices and of

course, the update step for these parameters.

As aforementioned, problem (10.5) can be solved iteratively by employing the linearized

alternating directions method (LADM) [143], a variant of the alternating direction augmented
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10. Robust Canonical Correlation Analysis with Time Warpings

Lagrange multiplier method (ADM) [25]. That is, (10.5) is solved by minimizing the (partial)

augmented Lagrangian function:

L(Px,Py,Ex,Ey,Δx,Δy,Λ1,Λ2)

= ‖Px‖∗ + ‖Py‖∗ + λx‖Ex‖y + λ2‖Ey‖1
+

μ

2
‖PxXΔx −PyYΔy‖2F

+ tr
(
Λ1

T (X−PxX−Ex)
)

+ tr
(
Λ2

T (Y −PyY −Ey)
)

+
μx

2
‖X−PxX−Ex‖2F +

μy

2
‖Y −PyY −Ey‖2F

s.t. Δx ∈ {0, 1}Tx×T ,Δy ∈ {0, 1}Ty×T ,

(10.6)

where Λ1,Λ2 are the Lagrange multipliers for the equality constraints in (10.5) and μx, μy are

nonnegative penalty parameters. By employing the LADM, (10.6) is minimized with respect

to each variable in an alternating fashion and finally the Lagrange multipliers are updated at

each iteration as outlined in Algorithm 5. The derivation of Algorithm 5 is provided next.

If only Px is varying and all the other variables are kept fixed, we simplify (10.6) writing

L(Px) instead of L(Px,Py,Ex,Ey,Δx,Δy,Λ1,Λ2). Let t denote the iteration index, given

Px[t], Py[t], Ex[t], Ey[t], Δx[t], Δy[t],Λ1[t], and Λ2[t], the iterative scheme of LADM for (10.6)

reads as follows:

Px[t+1] = argmin
Px[t]

L(Px[t]) (10.7)

Ex[t+1] = argmin
Ex[t]

L(Ex[t]) (10.8)

Py[t+1] = argmin
Py[t]

L(Py[t]) (10.9)

Ey[t+1] = argmin
Ey[t]

L(Ey[t]) (10.10)

(Δx[t+1],Δy[t+1]) = argmin
Δx[t],Δy[t]

L(Δx[t],Δy[t]) (10.11)

Solving subproblems (10.7) and (10.9). By fixing the other variables, subproblem (10.7) is
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reduced to

argmin
Px[t]

‖Px‖∗ +
μ

2
‖PxXΔx −PyYΔy‖2F

+ tr
(
Λ1

T (X−PxX−Ex)
)
+

μx

2
‖X−PxX−Ex‖2F .

(10.12)

Although the standard procedure for solving nuclear norm regularized least squares problems

is the singular value thresholding operator [35], it cannot be directly applied in case of (10.12),

due to the existence of the second term (i.e., μ
2‖PxXΔx −PyYΔy‖2F ). To this end, following

[143], the differentiable terms in (10.12) i.e., the function f(Px) =
μ
2‖PxXΔx −PyYΔy‖2F +

tr
(
Λ1

T (X−PxX−Ex)
)
+ μx

2 ‖X−PxX−Ex‖2F is linearly approximated with respect to Px

at Px[t] as follows:

f(Px) ≈ f(Px[t]) + tr
(
(Px −Px[t])

T∇f(Px[t])
)

+
μxηx
2

‖Px −Px[t]‖2F ,
(10.13)

where, ηx is a proximal parameter. The gradient of f(Px[t]) with respect to Px[t] is given by:

∇f(Px[t]) = μx(Px[t]XXT +Ex[t]X
T −XXT )

+ μ(Px[t]XΔx[t]Δ
T
x[t]X

T −Py[t]YΔy[t]Δ
T
x[t]X

T )

−Λ1[t]X
T .

(10.14)

Consequently, an approximate solution of (10.12) can be obtained as follows:

Px[t+1] ≈ argmin
Px

‖Px‖∗ + f(Px[t])

+ tr
(
(Px −Px[t])

T∇f(Px[t])
)
+

μxηx
2

‖Px −Px[t]‖2F

= argmin
Px

‖Px‖∗ +
μxηx
2

‖Px − (P[t] −
1

μxηx
∇f(Px[t])‖2F

= D 1
μxηx

[
Px[t] −

1

μxηx
∇f(Px[t])

]
.

(10.15)

The singular value thresholding operator defined for any matrix Q as [35]: Dτ [Q] = USτV
T

with Q = UΣVT being the singular value decomposition and Sτ [q] = sgn(q)max(|q| − τ, 0) is

the shrinkage operator [37], which can be extended to matrices by applying it element-wise.
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The solution of (10.9) in analogy with (10.7) is given by

Py[t+1] = D 1
μyηy

[
Py[t] −

1

μyηy
∇f(Py[t])

]
, (10.16)

where∇f(Py[t]) = μx(Py[t]YYT+Ey[t]Y
T−YYT )+μ(Py[t]YΔy[t]Δ

T
y[t]Y

T−Px[t]XΔx[t]Δ
T
y[t]Y

T )−
Λ2[t]Y

T .

Solving subproblems (10.8) and (10.10). By fixing the other variables, subproblem (10.8) is

reduced to
argmin
Ex[t]

λx‖Ex‖1 + tr
(
Λ1

T (X−PxX−Ex)
)

+
μx

2
‖X−PxX−Ex‖2F .

(10.17)

The subgradient of (10.17) provides a closed-form solution for Ex[t+1] by employing the shrink-

age operator:

Ex[t+1] = Sλx
μx

[X−Px[t+1]X+
1

μx
Λ1[t]]. (10.18)

In a similar manner to (10.8), the solution of (10.10) is given by:

Ey[t+1] = Sλy
μy

[Y −Py[t+1]Y +
1

μy
Λ2[t]]. (10.19)

Solving (10.11). Subproblem (10.11) is solved by applying the DTW on the clean latent

spaces defined by Px[t+1]X,Py[t+1]Y. Thus the warping matrices are obtained as follows:

[Δx[t+1],Δy[t+1]] = DTW(Px[t+1]X,Py[t+1]Y). (10.20)

The Algorithm 1 terminates when the following criteria are satisfied [143]:

max
(‖X−Px[t+1]X−Ex[t+1]‖F

‖X‖F
,

‖Y −Py[t+1]Y −Ey[t+1]‖F
‖Y‖F

)
< ε1,

(10.21)

and

max
(‖Px[t+1] −Px[t]‖F

‖X‖F
,
‖Py[t+1] −Py[t]‖F

‖Y‖F
,

‖Ex[t+1] −Ex[t]‖F
‖X‖F

,
‖Ey[t+1] −Ey[t]‖F

‖Y‖F
)
< ε2.

(10.22)
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Algorithm 5 Solving (10.6) by the LADM method.

Input: Data sequences: X ∈ R
d×Tx and Y =∈ R

d×Ty , parameters: λx = 1/
√
max(d, Tx),

λy = 1/
√
max(d, Ty).

Output: The projection matrices: Px,Py, the warping matrices Δx,Δy, and the error
matrices Ex,Ey.

1: Initialize: Set Px[0],Py[0],Ex[0], and Ey[0] to zero matrices of compatible dimensions. Ini-
tializeΔx[0] andΔy[0] by the DTW. t = 0 μ[0] = μx[0] = μy[0] = 10−6, ρ = 1.9, ηx = 1.02σ2

x,
ηy = 1.02σ2

y , where σx, σy are the largest singular values of X and Y, respectively.
ε1 = 10−4, ε2 = 10−5.

2: while not converged do
3: Fix the other variables, and update Px[t+1] by:

Px[t+1] ← D 1
μx[t]ηx

[Px[t] − 1/(μx[t] · ηx)∇f(Px[t])].

4: Fix the other variables, and update Ex[t+1] by:

Ex[t+1] ← S λ1
μx[t]

[X−Px[t+1]X+ 1
μx[t]

Λ1[t]].

5: Fix the other variables, and update Py[t+1] by:
Py[t+1] ← D 1

μy[t]ηy

[Py[t] − 1/(μy[t] · ηy)∇f(Py[t])].

6: Fix the other variables, and update Ey[t+1] by:

Ey[t+1] ← S λ2
μy[t]

[Y −Py[t+1]Y + 1
μy[t]

Λ2[t]].

7: Fix the other variables, and update the warping paths Δx[t+1],Δy[t+1] by:
[Δx[t+1],Δy[t+1]] ← DTW(Px[t+1]X,Py[t+1]Y).

8: Update the Lagrange multipliers by:
Λ1[t+1] ← Λ1[t] + μx[t](X−Px[t+1]X−Ex[t+1]).
Λ2[t+1] ← Λ2[t] + μy[t](Y −Py[t+1]Y −Ey[t+1]).

9: Update μx[t+1] by:
10: if μx[t]‖Px[t+1] −Px[t]‖F /‖X‖F ≤ ε2 then
11: μx[t+1] ← min(ρ · μx[t], 10

6).
12: end if
13: if μy[t]‖Py[t+1] −Py[t]‖F /‖Y‖F ≤ ε2 then
14: μy[t+1] ← min(ρ · μy[t], 10

6).
15: end if
16: Update μ[t+1] by: μ[t+1] ← min(μx[t+1], μy[t+1])
17: Check convergence conditions in (10.22) and (10.21).
18: t ← t+ 1.
19: end while
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The dominant cost of each iteration in Algorithm 5 is the computation the singular value

thresholding operator (i.e., Step 3 and Step 5). Thus, the complexity of each iteration is O(d2 ·
T ). Regarding the convergence of Algorithm 5, there is no established convergence proof of the

ADM for more than two blocks of variables [25, 194].Nevertheless, weak convergence results

can be derived if the block of variables is assumed to be bounded. However, the application

of ADM in optimization problems with more than two blocks of variables (e.g., [15, 194])

yields algorithms whose convergence is empirically guaranteed. This can be attributed to the

convexity of (10.6) with respect to all the blocks of variables.

If the dimensions of the data sequence are different i.e., X ∈ R
dx×Tx and Y ∈ R

dy×Ty

with dy �= dx, then the dimensionality of the largest sequence can be reduced to that of the

smallest by a random projection matrix drawn from a normal zero-mean distribution. Such

a random projection matrix provides with high probability a stable embedding [16] preserving

the Euclidean distances between all vectors in the original space in the feature space of reduced

dimensions. Furthermore, if both data sequences are high-dimensional such as videos, random

projections could be applied to both of the for computational tractability.

10.3 Experimental Evaluation

In this section, we evaluate the performance of RCCA and RCTW with several experiments,

both on real and synthetic data. Firstly, we show a set of synthetic experiments in Section

10.3.1. Subsequently, we evaluate RCCA on problems relating to fusion, including audio-

visual fusion for the prediction of interest (Section 10.3.2) as well as Heterogeneous Face

Recognition and Matching (Section 10.3.3). We compare to state-of-the-art CCA variants,

such as the classical CCA, the Common Orthogonal Basis Extraction (COBE) [299], the Joint

and Individual Variation Explained (JIVE) [146], as well as least-squares formulations of CCA

utilising l1 and l2 norms [240]. Subsequently, we evaluate RCTW on problems such as the

temporal alignment of human behaviour against state-of-the-art temporal alignment methods,

namely the CTW [298] and the GTW [296]. We note that the alignment error, similarly to
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Chapter 9, is evaluated by employing the following metric [296]:

Err =
dist(Π∗, Π̂) + dist(Π̂,Π∗)

m∗ + m̂
,

dist(Π1,Π2) =

m1∑
i=1

min({‖π(i)
1 − π

(j)
2 ‖2})m2

j=1), (10.23)

where m∗ is the length of Π∗ and m̂ is the length Π̂.

10.3.1 Synthetic Data

INPUT RCCA CCA LS-CCA COBE JIVE

Figure 10.1: Evaluating RCCA and other compared methods on a given input of distorted by
noise 3D spirals.

For the synthetic experiments a similar setting to [298] was employed, utilising 3D spirals.

We note that this experiment is mostly focused on temporal warping, but as a proof of concept,

in Fig. 10.1 we compare the resulting subspace when given a set of 3D spirals distorted by

additive non-Gaussian noise. Clearly, RCCA is able to isolate the noise in the error matrices

and infer the clean latent space. Regarding RCTW, we generate the 3D spirals data as follows:

X = SxZTx ∈ R
3×Tx , Y = SyZTy ∈ R

3×Ty , where Z ∈ R
3×T is the true latent data sequence.

Sx,Sy ∈ R
3×3 and Tx ∈ R

Tx×T ,Ty ∈ R
Ty×T are random spatial and temporal warping

matrices, respectively. Next, both X and Y are corrupted by adding gross non-gaussian noise

to a percentage of samples (i.e., columns of X and Y) ranging from 5 to 55%. In Fig. 10.2 we

present averaged results on 50 data sequences, where the latent data sequence Z is perturbed

by 50 different random spatial and temporal transformations. The mean alignment error of

the compared techniques is presented in Fig. 10.5a. It is clear from the results that RCTW

outperforms the compared approaches, exhibiting a stable and low path alignment error.
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Figure 10.2: Comparison of the performance of the CTW, the GTW, and the RCTW on
synthetic data alignment. The mean alignment path (left) and the mean alignment error
(right) obtained by the CTW, the GTW, and the RCTW (left) by applying 50 different
random spatial and temporal transformations on the latent data sequence Z.

10.3.2 Audio-Visual Fusion via RCCA

The automatic detection of the level of interest in audiovisual sequences is a problem which

has been gaining rising attention in the field of machine learning and pattern recognition

[195, 227, 228], as it has crucial value for a vast span of applications such as affect-sensitive

interfaces, interactive learning systems etc. In this section, we evaluate RCCA on the problem

of fusion multi-modal signals for the automatic estimation of the level of interest. The exper-

imental setting we follow is precisely the same as the one used in Chapter 7, where we utilise

interest annotations we obtained for the SEMAINE database [157], which contains recordings

of naturalistic dyadic interactions (Chapter 2). Similarly to Chapter 7, we utilise an Active

Appearance Model (AAM) based tracker [182], designed for simultaneous tracking of 3D head

pose, lips, eyebrows, eyelids and irises in videos and thus obtain 113 2D-points, resulting in an

226 dimensional feature vector per frame, while utilising 13 MFCC cepstrum coefficients for

each audio frameCross-validation is performed given the features and annotations. Regression

was performed via a Relevance Vector Machine (RVM) [246] (c.f., Chapter 3). Given the

input-output pair (xi,yi), RVM models the function yi = wTφ(xi) + εi, εi ∼ N (0, σ2). For

the design matrix, we use an RBF Kernel, φ(xi,xj) = exp
{
− ||xi−xj ||

l

}
. Results are evaluated
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based on the Mean Squared Error (MSE) and the Correlation Coefficient (COR).

Results are presented in Table 10.1. We focus our discussion mostly on the COR, since

the MSE is typically very small. There are several interesting observations. Firstly, audio

cues appear better for predicting interest in contrast to facial features. This is expected,

since according to theory [130], interest is more correlated with arousal, which is the primary

dimension for which audio cues are known to perform better [174, 99], while this has also been

confirmed by other works on interest recognition (c.f., [227]). Furthermore, it is clear that

feature level fusion and classical CCA fusion are not able to out-perform single-cue prediction.

In fact, CCA fusion merely manages to achieve equal accuracy to using simply audio cues.

COBE, JIVE and LS-CCA�2 achieve similar results, while they are outperformed by LS-

CCA�1. It is clear that RCCA outperforms all compared techniques, by correctly estimating

a low-rank subspace where the input modalities are maximally correlated, free of gross noise

contaminations, capturing both intra and inter-cue correlations.

Table 10.1: Results for predicting interest from emotion dimensions in the SEMAINE database,
using facial trackings (Face), audio cues (Audio), feature-level fusion (Fl), CCA-based fusion
(CCAf ), Robust CCA fusion (RCCAf ) and other compared techniques. Evaluation is based
on the Mean Squared Error (MSE) and the correlation coefficient (COR).

Face Audio Fl CCAf RCCAf COBEf JIVEf LS-CCA�1,f LS-CCA�2,f

MSE 0.033 0.031 0.031 0.031 0.029 0.030 0.03 0.031 0.032

COR 0.432 0.460 0.443 0.458 0.490 0.463 0.46 0.48 0.464

10.3.3 Heterogeneous Face Recognition via RCCA

For our experiments, we utilise the CASIA Heterogeneous Face Biometrics database [140],

which consists of static face images captured in different (heterogeneous) spectral bands, e.g.

visual (VIS) spectrum, the near infrared (NIR) spectrum or measurements of the 3D facial

shape (3D). The database contains a total of 100 subject, with 4 VIS and 4 NIR face images

per subject, while for 3D faces, 2 images are included per subject for 92 subjects, and 1 per

subject for the other 8 subjects. An example of the data is shown in Fig. 10.3. In our

experiment, we use a subset of the data for which all VIS, NIR and 3D spectrum images are
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10. Robust Canonical Correlation Analysis with Time Warpings

available, consisting of 100 subjects and a total of approx 600 images. We perform two sets of

distinct experiments, where in each we consider two modalities: Firstly, X =VIS and Y =3D,

and secondly X =VIS and Y =NIR, where X and Y represent the relevant data matrices.

In each experiment, we train using both modalities, inferring projections to the shared space.

During testing, only one modality is present; therefore, the shared space is recovered by

projecting the queried modality onto the shared space, via the projections inferred during

training. Secondly, we utilise the CUHK [268] database. We utilise a portion of the database

Figure 10.3: Example data included in the CASIA HFB [140] (male and female subject, visual,
infra-red and 3d) and CUHK [268] (female and male subject, visual and sketch) databases.

containing 188 subjects, where for each subject a visual image along with a sketch is provided

(See Fig. 10.3). We use 100 subjects for training and 88 for testing. Since the sets of training

and testing identities are disjoint, we perform correlation-based matching on the testing set in

order to match the sketches to the visual images and vice-versa in the projected space learnt

during training. Finally, in order to evaluate the compared methods under noisy scenarios, we

adopt six noise levels for our experiments, with each level corresponding to the percentage of

corrupted images and the percentage of the image which is corrupted. We uniformly select a

number of images from the dataset, which are subsequently corrupted by superimposing black

patches on a certain percentage of the image area. Results utilising all compared methods

are presented in Fig. 10.4. Clearly, the results indicate that RCCA overperforms compared

methods in the presence of noise, which is the typical case under real-world scenarios.

10.3.4 Temporal Alignment of Human Walking

In this set of experiments, the performance of the RCTW in alignment of human actions is

assessed by conducting experiments on the KTH database [224]. To this end, 25 pairs of

sequences consisting of videos performing the same action (walking) were randomly selected.

Variations within the pairs appear in clothing, background or view angle. To make the experi-

ment more challenging, we occlude 30% of each frame. In Fig. 10.5b the mean alignment error
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Figure 10.4: Error resulting from compared methods on the CASIA HFB and CUHK data-
bases.

obtained by the CTW, the GTW and the RCTW on corrupted human walking sequences is

depicted. Clearly, the RCTW outperforms the CTW and the GTW with respect to alignment

error. An illustrative example of aligning occluded human walking sequences with the RCTW

is depicted in Fig. 10.6. It can be observed that the occlusions have been removed.

10.3.5 Temporal Action Unit Alignment

The MMI dataset [189] has been employed in order to assess the performance of the RCTW

on the temporal alignment of facial expressions. The MMI database [189] consists of more

than 300 videos which have been annotated in terms of action units (AUs). In particular, each

video contains frame-by-frame annotations of each action unit activated covering all temporal

phases (i.e., neutral, onset, apex, offset) of each AU. We use a subset of the database with
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Figure 10.5: (a) Mean alignment error obtained by the CTW, the GTW, and the RCTW,
as a function of the percentage of corrupted samples on synthetic data sequences. (b) Mean
alignment error obtained by the CTW, the GTW and the RCTW on human walking sequences
by the KTH.
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(a) (b) (c)

Figure 10.6: Alignment of occluded human walking sequences obtained by the RCTW. (a)
The initial occluded walking sequences i.e., X, Y. (b) Aligned sequences onto the error-free
latent common space which has been robustly estimated by the RCTW. (c) Magnitude of the
recovered gross errors.

approximately 50 pairs of videos of 8 different subjects where action unit 12 is activated.

The experiment proceeds as follows. Firstly, we extract a set of 20 facial points using a

person independent tracker presented in [190]. We use 8 2D points (16 dimensional feature

vector) which refer to the lower face. Subsequently, we corrupt the facial features with sparse

spike noise in order to evaluate the robustness of the compared algorithms. In particular, we

draw values from a random normal distribution and add uniformly to 5% of the frames of
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Figure 10.7: Action Unit alignment comparing the RCTW, the CTW, and the GTW. (a)
Average error, (b) error for apex phase, (c) example video, where four frames grabbed from
the entire duration of both videos are shown. For each frame the first image shows the first
video, while the rest of the three show the corresponding (aligned) frame of the second video
for each of the methods employed.

each video. This type of noise is common when using detection-based trackers, in which case

a point can be misdirected for several frames.

Results are presented in Fig. 10.7. The error we used is the percentage of misaligned frames

for each pair of videos, normalised per frame (i.e. divided by the aligned video length). We

present results on average (for the entire video, Fig. 10.7a) and results regarding the apex

(which is the ’peak’ of the expression, Fig. 10.7b). In the presented results, the number of

features corrupted by noise increases to 4 out of 8 (which essentially means that 50% of our

features are corrupted by noise). It is clear from the results that the RCTW can outperform
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10. Robust Canonical Correlation Analysis with Time Warpings

both the CTW and the GTW in this scenario, maintaining relatively low error even when

heavily increasing the presence of noise.

10.4 Conclusions

In this chapter, by exploiting recent advances on matrix rank minimization we proposed one

of the first robust variants of CCA, and the first method which simultaneously discovers a

subspace in which two sequences maximally correlate, and at the same time removes possibly

gross errors from the data. The proposed method outperforms state-of-the-art techniques in

many problems related to fusion and alignment, such as (i) the temporal alignment of action

units and human walking sequences in the presence of gross errors, (ii) the robust audio-visual

fusion under various noise levels for the detection of interest, as well as (iii) the problem of

heterogeneous face recognition.
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11. A Unified Framework for Probabilistic Component Analysis

11.1 Introduction

Unification frameworks in machine learning provide valuable material towards the deeper un-

derstanding of various methodologies, while also they form a flexible basis upon which further

extensions can be easily built. One of the first attempts to unify methodologies was made in

[212]. In this seminal work, models such as Factor analysis (FA), Principal Component Ana-

lysis (PCA), mixtures of Gaussian clusters (MGC), vector quantization (VQ), Linear Dynamic

Systems (LDS), Hidden Markov Models (HMM) and Independent Component Analysis (ICA)

were unified as variations of unsupervised learning under a single basic generative model.

Component Analysis (CA)1 unification frameworks proposed in previous works, such as [52],

[2], [123], [30], [58] and [241], provide significant insights on how CA methods such as Prin-

cipal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Laplacian Eigenmaps

and others can be formulated as (i) least squares problems under mild conditions, (ii) graph

embedding schemes solved as generalised eigenvalue problems, (iii) as trace optimisation prob-

lems with generalised orthogonalities, and (iv) as optimisation problems over manifold spaces.

Nevertheless, while some probabilistic equivalents of, e.g. PCA have been developed (c.f., [248]

[211]), to this date no unification framework has been proposed for probabilistic component

analysis.

Motivated by the latter, in this chapter we propose the first probabilistic unified framework

for component analysis. Based on Markov Random Fields (MRFs), our framework unifies

all component analysis techniques whose corresponding deterministic problem is solved as a

trace optimisation problem without domain constraints for the parameters, such as Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Pro-

jections (LPP) and Slow Feature Analysis (SFA). Our framework provides further insight on

component analysis methods from a probabilistic perspective. This entails providing probab-

ilistic explanations for the data at hand with explicit variance modelling, as well as reduced

complexity compared to the deterministic equivalents. These qualities are even more valuable

1Component Analysis has been introduced in Chapter 3.
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in case of methods for which no probabilistic equivalent exists in literature so far (such as LPP,

a probabilistic equivalent of which is presented in this chapter). Furthermore, our generalised

framework provides a straight-forward methodology for producing novel component analysis

techniques by imposing specific parametrisations on products of MRFs.

The rest of the chapter is organised as follows. We initially introduce previous work on com-

ponent analysis, while highlighting the novelties/advantages of methods generated following

the proposed framework (Section 11.2). Subsequently, we formulate the joint (complete-data)

Probability Density Function (PDF) of a set of observations and latent variables. We show

that the Maximum Likelihood (ML) solution of this joint PDF is co-directional to the solutions

obtained when solving the deterministic PCA, LDA, LPP and SFA, by changing only the prior

distribution of the latent variable (Section 11.3), thus theoretically proving the equivalence of

our probabilistic models to the corresponding deterministic. As we show, the prior distribution

models the latent dependencies and thus determines the resulting component analysis tech-

nique. E.g, when using a fully connected Markov Random Field (MRF) for the latent prior

distribution, we derive PCA. When choosing the product of a fully connected MRF and an

MRF connected only to within-class data, we derive LDA. LPP is derived by choosing a locally

connected MRF, while finally, SFA is produced when the joint prior is a linear Markov-chain.

Based on the aforementioned PDF we subsequently propose Expectation Maximization (EM)

algorithms for learning the parameters of the model (Section 11.4). Furthermore, we gen-

eralize the algorithm to products of arbitrarily-many MRFs with arbitrary parametrization,

thus providing an elegant framework for producing novel component analysis techniques. An

example is shown in Section 11.6, where we propose a novel, part-based component analysis

technique. In Section 11.7, with a set of both synthetic and real data, we demonstrate the

usefulness and advantages of this family of probabilistic component analysis methods, which

are shown to outperform their deterministic (and probabilistic, given they exist) equivalents,

while finally, we conclude the chapter in Section 11.8.
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11.2 Prior Art and Novelties

An important contribution of this chapter lies in the proposed unification of probabilistic

component techniques, giving rise to the first framework that reduces the construction of

probabilistic component analysis models to the design of an appropriate prior, thus defining

the latent connectivity.

In Chapter 3, we already introduced component analysis and detailed some common variants

such as PCA and CCA. In this section, we describe several component analysis techniques

which are utilised in this chapter, such as LDA, LPP and SFA, while also describing the state-

of-the-art in probabilistic alternatives. While doing so, we highlight the other novelties and

advantages that our proposed framework entails wrt. each alternative formulation. To make

the chapter self-sufficient, we also include a reminder of methods related to PCA. Throughout

this chapter we consider, without any loss of generality, a zero mean set of F -dimensional

observations of length T , {x1, . . . ,xT }, represented by a matrix X = [x1, . . . ,xT ]. All CA

methods discover an N -dimensional latent space Y = [y1, . . . ,yT ] which preserves certain

properties of X.

11.2.1 Principal Component Analysis (PCA)

As described in Chapter 3, PCA2 recovers a set of loadings W, satisfying Y = WTX where

Y denotes the recovered latent space. By considering S = 1
T

∑T
i=1 xix

T
i to be the total scatter

matrix and, the optimisation problem is as follows

Wo = argmax
W

tr
[
WTSW

]
, s.t. WTW = I (11.1)

where S = 1
T

∑T
i=1 xix

T
i The optimal N projection basis Wo are recovered correspond to

the N eigenvectors of S which in turn correspond to the N largest eigenvalues. Probabilistic

variants of PCA have been proposed independently in [211] and [248], where the following

2We denote deterministic component analysis methods by their initials, e.g. PCA for Principal Component
Analysis. Other, existing probabilistic techniques are prefixed with P, e.g. PPCA for Probabilistic PCA. The
methods we propose in this chapter are prefixed with ML and EM for Maximum Likelihood and Expectation
Maximisation respectively, e.g. EM-PCA.
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linear generative model was adopted,

xi = Wyi + εi, yi ∼ N (0, I), εi ∼ N (0, σ2I) (11.2)

where W ∈ �F×N is the loading matrix and εi represents noise. When N < F , the lat-

ent variables are expected to offer a parsimonious explanation of the dependencies between

observations.

11.2.2 Linear Discriminant Analysis (LDA)

Let us now further assume that our data X is further separated into K disjoint classes

C1, . . . , CK having Ti samples and T =
∑K

c=1 |Cc|. The Fisher’s Linear Discriminant Analysis

(LDA) finds a set of projection bases W s.t. [280]

Wo = argminW tr
[
WTSwW

]
, s.t. WTSW = I (11.3)

where Sw =
∑K

c=1

∑
xi∈Cc(xi−μCi)(xi−μCi)

T and μCi the mean of class i. The idea is to find

a latent space Y = WTX such that the within-class variance is minimized in a whitened space.

The solution is given by the eigenvectors of Sw that correspond to the N − K eigenvectors

(corresponding to the N −K smallest eigenvalues) of the whitened data (i.e. by removing the

variance after applying PCA). 3

Several probabilistic latent variable models which exploit class information have been re-

cently proposed (c.f., [202, 290, 111]). In [202, 290] another two related attempts were made

to formulate a PLDA. Considering xi to be the i-th sample of the c-th class, the generative

model of [202] can be described as:

xi = Fhc +Gwic + εic, hc,wic ∼ N (0, I), εic ∼ N (0,Σ) (11.4)

where hc represents the class-specific weights and wic the weights of each individual sample,

with G and F denoting the corresponding loadings. Regarding [290], the probabilistic model

is as follows:

xi = Fchc + εic, hc,Fic ∼ N (0, I), εic ∼ N (0,Σ) (11.5)

3We adopt this formulation of LDA instead of the equivalent of maximizing the trace of the between-class
scatter matrix [22], since this facilitates our following discussion on Probabilistic LDA alternatives.
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We note that the two models become equivalent when choosing a common F (Eq. 11.5) for all

classes while also disregarding the matrixG. In this case, the ML solution is given by obtaining

the eigenvectors corresponding to the largest eigenvalues of Sw. Hence, the solution is vastly

different than the one obtained by deterministic LDA (which keeps the smallest ones, Eq. 11.3),

resembling more to the solution of problems which retain the maximum variance. In fact, when

learning a different Fc per class, the model of [290] reduces to applying PPCA per class.

To the best of our knowledge the only probabilistic model where the ML solution is closely

related to that of deterministic LDA is [111]. The probabilistic model is defined as follows:

x ∈ Ci, x|y ∼ N (y,Φw), y ∼ N (m,Φb), VTΦbV = Ψ and VTΦwV = I, A = V−T ,

Φw = AAT Φ = AΨAT , where the observations are generated as:

xi = Au, u ∼ N (V, I), v ∼ N (0,Ψ). (11.6)

The drawback of this model is that it requires all classes to contain the same number of samples

[111]. As we will show, we overcome this limitation in our formulation.

11.2.3 Locality Preserving Projections (LPP)

Locality Preserving Projections (LPP) is the linear alternative of Laplacian Eigenmaps [179].

The aim is to obtain a set of projection bases W and a latent space Y = WTX which

preserves the local neighbourhoods of the original samples. First, let us define a set of weights

that represent locality. Common choices for the weights are the heat kernel uij = e
− ||xi−xj ||2

γ

or a set of constant weights (uij = 1 if the i-th and the j-th vectors are adjacent and uij = 0

otherwise, while uij = uji). LPP finds a set of projection basis matrix W by solving the

following problem:

Wo = argminW
∑T

i,j=1

∑N
n=1 uij ||wT

nxi −wT
nxj ||2

= argminW tr
[
WTXLXTW

]
s.t. WTXDXTW = I

(11.7)

where U = [uij ], L = D − U and D = diag(U1) (where diag(a) is the diagonal matrix

having as main diagonal vector a and 1 is a vector of ones). The objective function with

the chosen weights wij results in a heavy penalty if the neighbouring points xi and xj are
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mapped far apart. Therefore, its minimization ensures that if xi and xj are near, then the

projected features yi = WTxi and yj = WTxi are near as well. To the best of our knowledge

no probabilistic models exist for LPPs. In the following (Section 11.3, 11.4), we show how a

probabilistic version of LPPs arises by choosing an appropriate prior over the latent space yi.

11.2.4 Slow Feature Analysis

Now let us consider the case that the columns of xi are samples of a time series of length T . The

aim of Slow Feature Analysis (SFA) is given T sequential observation vectors X = [x1 . . .xT ],

to find an output signal representation Y = [y1 . . .yT ] for which the features change slowest

over time [273]. By assuming again a linear mappingY = WTX for the output representation,

SFA minimizes the slowness for these values, defined as the variance of the first derivative of

Y. Formally, W of SFA is computed as

Wo = argmin
W

tr
[
WT ẊẊW

]
, s.t. WTSW = I, (11.8)

where Ẋ is the first derivative matrix (usually computed as the first order difference i.e.,

ẋj = xj − xj−1). An ML solution of the SFA was recently proposed in [254]. The idea was to

incorporate a Gaussian linear dynamical system prior over the latent space Y. The proposed

generative model is

P (xt|W,yt, σx) = N (W−1yt, σ
2
xI)

P (yt|yt−1, λ1:N , σ1:N ) =
∏N

n=1 P (yn,t|yn,t−1, λn, σ
2
n)

P (yn,t|yn,t−1, λn, σ
2
n) = N (λnyn,t−1, σ

2
n)

P (yn,1|σ2
n,1) = N

(
0, σ2

n,1

)
.

(11.9)

As we will show, SFA is indeed a special case of our general model.

Summarizing, in the following sections we formulate a unified, probabilistic framework for

component analysis which: (1) incorporates PCA as a special case, (2) produces a probabilistic

LDA which (i) has an ML solution for the loading matrix W which is co-directional to the

deterministic LDA (Eq. 11.3) and (ii) does not make any assumptions regarding the number of

samples per class (as in [111]), (3) provides the first, to the best of our knowledge, probabilistic
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model which explains LPP, (4) naturally incorporates the recently proposed ML framework

of SFA [254] as a special case, (5) provides variance estimates for observations as well as

latent dimensions (differentiating our approach from existing probabilistic component analysis

techniques (e.g., PPCA, PLDA) by providing more robust estimates, and (6) provides an

elegant framework for producing novel component analysis techniques (as we show in Section

11.6).

11.3 A Unified ML Framework for Component Analysis

In this section, we present the proposed Maximum Likelihood (ML) framework for probabil-

istic component analysis and show how PCA, LDA, LPP and SFA can be generated within

this framework, also proving equivalence with known deterministic models. Furthermore, to

demonstrate how our framework can be easily used in order to generate novel component

analysis techniques, in Section 11.6 we introduce a novel component analysis method, whose

ML solution is found merely by following the this section.

Firstly, to ease computations, we assume the generative model for the i-th observation, xi

to be defined as

xi = W−1yi + εi, εi ∼ N(0, σ2
xI). (11.10)

In order to fully define the likelihood we need to define a prior distribution on the latent

variables y. We will prove that by choosing one of the priors defined below and subsequently

taking the ML solution wrt. parameters, we end up generating the aforementioned family of

probabilistic component models. The priors, parametrised by β = {σ1:N , λ1:N} (illustrated in

Fig. 11.1) are:

• An MRF with full connectivity - each latent node yi is connected to all other latent nodes

yj , j �= i.

P (Y|β) = 1
Z exp

{
−1

2

∑N
n=1

∑
i∈T

1
|Ti|

∑
j∈Ti

1
σ2
n
(yn,i − λnyn,j)

2
}

≈ 1
Z exp

{
−1

2

∑N
n=1

∑
i∈T

1
|T |
∑

j∈T
1
σ2
n
(yn,i − λnyn,j)

2
}

= 1
Z exp

{
−1

2

(
tr
[
Λ(1)YYT

]
+ tr

[
Λ(2)YMYT

])}
,

(11.11)
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where T = {1, . . . , T}, Ti = T \ i, M � − 1
|T |11

T , Λ(1) �
[
δmn

λ2
n+1
σ2
n

]
andΛ(2) �

[
δmn

2λn
σ2
n

]
.

• A product of two MRFs. In the first, each latent node yi is connected only to other latent

nodes in the same class (yj , j ∈ C̃i). In the second, each latent node (yi) is connected to all

other latent nodes (yj , j �= i).

P (Y|β) = 1
Z exp

{
−1

2

∑N
n=1

∑T
i=1

1
|C̃i|

∑
j∈C̃i

λn
σ2
n
(yn,i − yn,j)

2
}

exp
{
− 1

2

∑N
n=1

∑T
i=1

1
T−1

∑T
j=1

(1−λn)2

σ2
n

(yn,i − yn,j)
2
}

= 1
Z exp

{
−1

2

(
tr
[
Λ(1)YMcY

T
]
+ tr

[
Λ(2)YMtY

T
])}

,

(11.12)

where Mc � I − diag[C1, . . . ,CC ], Cc � 1
Nc

1c1
T
c , Mt � I + M, Λ(1) �

[
δmn(

λn
σ2
n
)
]
and

Λ(2) �
[
δmn

(1−λn)2

σ2
n

]
, while C̃i = {j : ∃ Cl s.t. {xj ,xi} ∈ Cl, i �= j}.

• A product of two MRFs. In the first, each latent node yi is connected to all other latent

nodes that belong in yi’s neighbourhood. This neighbourhood is symmetrically defined as

N s
i = N s

j = {i ∈ Nj ∪ j ∈ Ni}. In the second, we only have individual potentials per node.

P (Y|β) = 1
Z exp

(
− 1

2

∑N
n=1

∑T
i=1

1
|N s

i |
∑

j∈N s
i

λn
σ2
n
(yn,i − yn,j)

2
)

exp
(
− 1

2

∑N
n=1

∑T
i=1

(1−λn)2

σ2
n

y2n,i

)
= 1

Z exp
{
−1

2

(
tr
[
Λ(1)YL̃YT

]
+ tr

[
Λ(2)YD̃YT

])} (11.13)

where L̃ and D̃ are normalised versions of L and D as defined in the relevant section for LPPs

(Section 11.2.3) i.e. L̃ = D−1L and D̃ = I , while Λ(1) and Λ(2) are defined as above.

• A linear dynamical system prior over the latent space.

P (Y|β) = 1
Z exp

{
−∑N

n=1

(
1

2σ2
n,1

y2n,1 +
1

2σ2
n

∑T
t=2[yn,t − λnyn,t−1]

2
)}

≈ 1
Z exp

{
−1

2

(
tr
[
Λ(1)YK1Y

T
]
+ tr

[
Λ(2)YYT

])} (11.14)

where K1 = P1P
T
1 and P1 is a T × (T − 1) matrix with elements pii = 1 and p(i+1)i = −1

(the rest are zero). The approximation holds when T → ∞. Again, Λ(1) and Λ(2) are defined

as above.

In all cases the partition function Z is defined as Z =
∫
P (Y)dY. The motivation behind

choosing the above priors over the latent space was given by the influential analysis made in
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11. A Unified Framework for Probabilistic Component Analysis

[103] where the connection between (the deterministic) LPPs, PCA and LDA was explored.

A further piece of the puzzle was added by the recent work [254] where the linear dynamical

system prior (Eq. 11.14) was used in order to provide a derivation of SFA in a ML framework.

By formulating the proper priors for these models we unify these subspace methods in a single

probabilistic framework of a linear generative model along with a prior of the form

P (Y) ∝ exp
{
−1

2

(
tr
[
Λ(1)YB(1)YT

]
+ tr

[
Λ(2)YB(2)YT

])}
. (11.15)

The differentiation amongst these models lies in the neighbourhood over which the potentials

are defined. In fact, the varying neighbouring system is translated into the matrices B(1) and

B(2) in the functional form of the potentials, essentially encapsulating the latent covariance

connectivity. E.g., for Eq. 11.11, B(1) = I and B(2) = M, for Eq. 11.12, B(1) = Mc and

B(2) = Mt, for Eq. 11.13, B(1) = L and B(2) = D and finally for Eq. 11.14, B(1) = K and

B(2) = I (also see Table 11.2).

In the following we will show that ML estimation using these potentials is equivalent to

the deterministic formulations of PCA, LDA and LPP. SFA is a special case for which it was

already shown in [254] that a potential of the form of Eq. 11.14 within an ML framework

produces a projection with the same direction as Eq. 11.8.

Adopting the linear generative model in Eq. 11.10, the corresponding conditional data

(observation) probability is a Gaussian,

P (xt|yt,W, σ2
x) = N (W−1yt, σ

2
x). (11.16)

Having chosen a prior of the form described in Eq. 11.15 we can now derive the likelihood of

our model as follows:

P (X|Ψ) =

∫ T∏
t=1

P (xt|yt,W, σ2)P (Y|σ2
1:N , λ1:N )dY (11.17)

where the model parameters are defined as Ψ = {σ2
x,W, σ2

1:N , λ1:N}. In the following we will

show that by substituting the above priors in Eq. 11.17 and maximising the likelihood we

obtain loadings W which are the same (up to a scale ambiguity) to the deterministic PCA,

LDA and LPPs and SFA.

200



11.3. A Unified ML Framework for Component Analysis

Firstly, by substituting the general prior (Eq. 11.15) in the likelihood (Eq.

P (X|Ψ) =
∫ ∏T

t=1 P (xt|yt,W, σ2) 1
Z exp{

−1
2

(
tr
[
Λ(1)YB(1)YT

]
+ tr

[
Λ(2)YB(2)YT

])}
dY.

(11.18)

In order to obtain a zero-variance limit ML solution, we map σx → 0

P (X|Ψ) =
∫ ∏T

t=1 δ(xt −W−1yt)
1
Z exp{

−1
2

(
tr
[
Λ(1)YB(1)YT

]
+ tr

[
Λ(2)YB(2)Y T

])}
dY

(11.19)

By completing the integrals and taking the logarithms, we obtain the conditional log-likelihood:

L(Ψ) = logP (X|θ) = − logZ + T log |W| − 1
2

tr
[
Λ(1)WXB(1)XTWT +Λ(2)WXB(2)XTWT

] (11.20)

where logZ is a constant term independent of W. By maximising for W ( ∂L
∂W = 0) we obtain

TW−T −
(
Λ(1)WXB(1)XT +Λ(2)WXB(2)XT

)
= 0

I = Λ(1)WXB(1)XTWT +Λ(2)WXB(2)XTWT .
(11.21)

It is easy to prove that since Λ(1),Λ(2) are diagonal matrices, the W which satisfies Eq.

11.21 simultaneously diagonalises (up to a scale ambiguity) XB(1)XT and XB(2)XT . By

substituting the B matrices (as defined in Table 11.2) in Eq. 11.21, we now consider all cases

separately:

• PCA. By utilising Eq. 11.11, Eq. 11.21 is reformulated as WXXTWT =
[
Λ(1)

]−1

hence W is given by (up to a scale ambiguity) the eigenvectors of the total scatter

matrix S.

• LDA. By substituting Eq. 11.12 in Eq. 11.21, we arrive at Λ(1)WXMXTWT +

Λ(2)WXXTWT = I. Thus, W is given by the directions that simultaneously diagonalise

S and Sw.

• LPP. By using Eq. 11.13 then Eq. 11.21 yieldsΛ(1)WXL̃XTWT +Λ(2)WXD̃TXTWT

= I, therefore W is given by the directions that simultaneously diagonalise XLXT and

XDXT .
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11. A Unified Framework for Probabilistic Component Analysis

• SFA. Finally, for SFA, by utilising Eq. 11.14, Eq. 11.21 becomes Λ(1)WXKXTWT +

Λ(2)WXXTWT = I, and W is given by the directions that simultaneously diagonalise

XKXT and XXT .

The above shows that the ML solution following our framework is equivalent to the determ-

inistic models of PCA, LDA, LPP and SFA. The direction of W does not depend of σ2
n and

λn, which can be estimated by optimizing Eq. 11.20 with regards to these parameters. In this

work we will provide update rules for σn and λn using an EM framework (Section 11.4). As

can be observed, the ML loading W does not depend on the exact setting of λn, so long as they

are all different. If 0 < λn < 1, ∀ n, then larger values of λn correspond to more expressive (in

case of PCA), more discriminant (for LDA), more local (regarding LPP) and slower latents

(in case of SFA). This corresponds directly to the ordering of the solutions from PCA, LDA,

LPP and SFA. To recover exact equivalence to LDA, LPP, SFA another limit is required that

corrects the scales. There are several choices, but a natural one is to let σ2
n = 1 − λ2

n. This

choice in case of LDA and SFA fixes the prior covariance of the latent variables to be one

(WTXXW = I) and it forces WTXDXW = I in case of LPP. This choice of σn has been

also discussed in [254] for slow feature analysis. We note that in case of PCA, we should set

σn to be analogous to the corresponding eigenvalue of the covariance matrix, since otherwise

the method will result to a minor component analysis.

11.4 A Unified Expectation Maximization for Component

Analysis

In the following we propose a unified EM framework for component analysis. This framework

can treat all priors with undirected links (such as Eq. 11.11, Eq. 11.12 and Eq. 11.13). The

EM of the prior in Eq. 11.14 contains only directed links with no loops, and thus can be solved

(without any approximations) similarly to the EM of a linear dynamical system [26]. If we

treat the SFA links as undirected, we end up with an autoregressive component analysis (see

Section 11.4.1).

In order to perform EM with an MRF prior we adopt the simple and elegant mean field
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11.4. A Unified Expectation Maximization for Component Analysis

approximation theory [204, 40, 287], which essentially allows computationally favourable fac-

torizations within an EM framework. Let us consider a generalisation of the priors we defined

in Section 11.3 to M MRFs:

P (Y|β) =
∏
μ∈M

1

Zμ
exp {Qμ} (11.22)

Qμ = −
N∑

n=1

fμ(λn)

2σ2
n

1

c

∑
i∈ωi

1

cμj

∑
j∈ωμ

j

(yn,i − φμ(λn)yn,j)
2

where c and cμj are normalisation constants, while fμ and φμ are functions of λn. Without loss

of generality and in order to preserve clarity of notation, we assume that c = 1, cμj = |ωμ
j | and

ωμ
i = [1, . . . , T ]. Furthermore, we now assume the linear model

xi = Wyi + εi, εi ∼ N (0, σ2
x). (11.23)

For clarity, the set of parameters associated with the prior (i.e. energy function) are denoted

as β = {σ1:N , λ1:N}, the parameters related to the observation model θ = {W, σx}, while the

total parameter set is denoted as Ψ = {θ, β}.

In agreement with [40], we replace the marginal distribution P (Y|β) by the mean-field

P (Y|β) ≈
T∏
i=1

P (yi|mM
i , βM). (11.24)

Since different CA models have different latent connectivities (and thus different MRF config-

urations), the mean-field influence on each latent point yi now depends on the model-specific

connectivity via mM
i , a function of E[yj ]. After calculating the normalising integral for the

priors Eq. 11.11-11.13 and given the mean-field, it can be easily shown that Eq. 11.22 follows

a Gaussian distribution,

P (yi|mM
i , β) = N (mM

i ,ΣM), (11.25)

mM
i =

∑
μ∈M

(
fμ(λn)φμ(λn)

FM (λn)
μωμ

j

)
=
∑
μ∈M

Λμμωμ
j

(11.26)

ΣM =

[
δmn

σ2
n

FM (λn)

]
(11.27)
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11. A Unified Framework for Probabilistic Component Analysis

Table 11.1: MRF configuration for PCA, LDA and LPP, where Ti = {1 . . . T} \ {i}

M = {α, β} FM =
∑

μ fμ fa φα ωα
j fβ φβ ωβ

j

PCA (11.11) 1 1 λn Ti
LDA (11.12) λn + (1− λn)

2 λn 1 C̃i (1− λn)
2 1 Ti

LPP (11.13) λn + (1− λn)
2 λn 1 N s

i (1− λn)
2 0 {1}

with μωμ
j
= 1

|ωμ
j |
∑

j∈ωμ
j
E[yn,j ] and FM (λn) =

∑
μ∈M fμ(λn).

Therefore, by simply replacing the parametrisation of the priors we defined in Eq. 11.11

(PCA), 11.12 (LDA) and 11.13 (LPP) (see also Table 11.1) for the mean and variance (Eq.

11.26 and Eq. 11.27), we obtain the posterior distribution for each CA method we propose.

The means mM
i for PCA, LDA and LPP are obtained as

m
(PCA)
i = Λμ−i

m
(LDA)
i = Λ(α)μ−i +Λ(β)μC̃i

m
(LPP)
i = Λ(α)μN s

i

(11.28)

and the variances ΣM as

Σ(PCA) =
[
δmnσ

2
n

]
Σ(LDA) = Σ(LPP) =

[
δmn

(
σ2
n

λn+(1−λn)2

)] (11.29)

where μ−i = 1
T−1

∑T
j �=i E

M[yj ] is the mean, μC̃i = 1
|C̃i|

∑
j∈C̃i E

M[yj ] the class mean, and

μN s
i

= 1
|N s

i |
∑T

j∈N s
i
E
M[yj ] the neighbourhood mean. Furthermore, Λ = [δmnλn], Λ(α) =[

δmn

(
λn

λn+(1−λn)2

)]
and Λ(β) =

[
δmn

(
(1−λn)2

λn+(1−λn)2

)]
.

In order to complete the expectation step, we infer the first order moments of the latent

posterior, defined as

P (yi|xi,m
M
i ,ΨM) =

P (xi|yi, θ
M)P (yi|mM

i , βM)∫
yi
P (xi|yi, θM)P (yi|mM

i , βM)dyi
. (11.30)

Since the posterior is a product of Gaussians4 , we have

P (yi|xi,m
M
i ,ΨM) = N (yi|(WTxi +ΣM−1

mM
i )A, σM2

x A) (11.31)

4The result can be easily obtained by completing the square for yi.
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with A = (WTW + (Σ̂M)−1)−1 and Σ̂
M

=
[
δmn(Σ

M
mn/σ

M2

x )
]
. Therefore E

M[yi] is equal to

the mean, and E
M[yiy

T
i ] = σM2

x A+ E[yi]E[yi]
T .

Having recovered the first order moments, we move on to the maximisation step. In or-

der to maximize the marginal log-likelihood, logP (X|ΨM) we adopt the usual EM bound

[212],
∫
Y P (Y|X,ΨM) logP (X,Y)dY. By adopting the approximation proposed in [40], the

complete-data likelihood is factorised as

P (Y,X|ΨM) ≈
T∏
i=1

P (xi|yi, θ
M)P (yi|mM

i , βM). (11.32)

Therefore, the maximisation term (EM bound) becomes∑T
i=1

∫
yi
P (yi|xi,m

M
i ,ΨM) logP (xi,yi|ΨM)dyi. (11.33)

As can be seen the likelihood can be separated due to the logarithm for estimating θM =

{WM, σM
x } and β = {σM

1:N , λM
1:N} as follows:

θM = argmax
{∑T

i=1

∫
yi
P (yi|xi,m

M
i ,ΨM) logP (xi|yi, θ

M)dyi

}
. (11.34)

βM = argmax
{∑T

i=1

∫
yi
P (yi|xi,m

M
i ,ΨM) logP (yi|mM

i , βM)dyi

}
. (11.35)

Subsequently, we maximise the log-likelihoods wrt. the parameters, recovering the update

equations (as detailed in the appendix). For θ, by maximising Eq. 11.34, we obtain

WM =

(
T∑
i=1

xiE
M[yi]

T

)(
T∑
i=1

E
M[yiy

T
i ]

)−1

(11.36)

σM2

x = 1
FT

∑T
i=1{||xi||2 − 2EM[yi]

T (WM)Txi

+Tr[EM[yiy
T
i ](W

M)TWM]}.
(11.37)

Similarly, by maximising Eq. 11.35 for β, we obtain:

σM2

n =
FM(λn)

T

T∑
i=1

(EM[y2n,i]− 2EM[yn,i]m
M
n,i +mM2

n,i ) (11.38)

where, as defined in Eq. 11.27, for PCA FM(λn) = 1, and for LDA and LPP FM(λn) =

λn+(1−λn)
2. For λn we choose the updates as described in Section 11.3. In what follows,

we discuss some further points wrt. the proposed EM framework.
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11.4.1 Discussion

Comparison to other probabilistic variants of PCA. It is clear that regarding the

proposed EM-PCA, the updates for θ = {W, σ2
x} as well as the distribution of the latent

variable yi are the same with previously proposed probabilistic approaches [211, 248]. The

only variation is the mean of yi, which in our case is shifted by the mean field, Σ̂(PCA)−1
m

(PCA)
i ,

while in addition, our method models per-dimension variance (σn), deeming the framework

suitable for scenarios where the noise varies amongst dimensions. Note that in order to fully

identify with the PPCA proposed in [248], we can set λn = 0, and σn = 1. In case we set just

λn = 0 and σn �= 1 we attain a Factor Analysis variant.

EM for SFA. The SFA prior in Eq. 11.14 allows for two interpretations of the SFA graph-

ical model: both as an undirected MRF and directed graphical model (Dynamic Bayesian

Network, DBN). Based on the undirected MRF interpretation, SFA would trivially fit into the

EM framework described in this section, where m
(SFA)
i = ΛE[yi−1] and Σ(SFA) = Σ(PCA) (Eq.

11.28 and 11.29). In fact, this undirected reading of SFA can lead to an autoregressive [215]

SFA model, able to model bi-directional dependencies over the latent variables, which can be

easily extended to higher orders. When considering the SFA prior as a directed Markov chain,

one can resort to exact inference techniques applied on DBNs. In fact, the EM for SFA can be

reduced to solving a standard Linear Dynamic System [26] (LDS). The observed distribution

follows Eq. 11.23, while the latent space is generated as P (yt|yt−1) ∼ N (Λyt−1,Γ), where

Γmn = δmnσ
2
n with the constraint that Λ is diagonal and that σ2

n = 1 − λ2
n. By applying

smoothing (e.g., Rauch-Tung-Striebel) we obtain E[yt],Var[yty
T
t ] and Var[yty

T
t−1]. The up-

dates for W and σ2
x are the same as Eq. 11.36 and Eq. 11.37. The updates for Λ = [δmnλn]

are derived similarly to LDS [26], while enforcing σ2
n = 1− λ2

n as discussed in Section 11.3

Complexity. The EM algorithm for our models is an iterative procedure for recovering the

latent space which preserves the characteristics enforced by the selected latent neighbourhood.

Our analysis is similar to PCCA [211, 248]. For N << T,F the complexity at each iteration

is bounded by O(TNF ), unlike deterministic models which is O(T 3). This is due to the

covariance appearing only in trace operations, and is of high value for our proposed EM based

models, especially in case of EM-LPP where no probabilistic equivalent exists.
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Figure 11.1: MRF connectivies utilised for deriving PCA, LDA, LPP, SFA and Spatial
Structure-aware Component Analysis under our unifying framework. (a) Fully connected
MRF (for PCA), (b) within-class connected MRF (LDA, along with (a)), (c) locally connec-
ted MRF with individual potentials for LPP, (d) A linear chain leading to Autoregressive SFA
(when directed leading to SFA), (e) Spatial Structure-Aware method (Section 11.6).
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Table 11.2: Matrices B(1) and B(2) which determine latent connectivity and in conclusion, the
derived component analysis model.

PCA LDA LPP SFA SLDA MFA NPDA

B(1) =
I I− diag[C1, . . . ,CC ] L = D−W K = PPT I− diag(C1, . . . ,Cr) L

C̃Ns
i

i

L
C̃Ns

i
i

Cc � 1
Nc

1c1T
c Cr = 1

|Cr|

B(2) = − 1
T
11T I− 11T D = diag(W1) I I− 1

T
1T 1T

T L
C̃Ns

i
j �=i

L
C̃Ns

i
j �=i

,wNLDA
i,j

Table 11.3: The mean mM
i of the posterior latent distribution of each component analysis

technique, which along with the covariance (which is the same for all methods except PCA)
defines the model at hand.

PCA LDA LPP SLDA MFA NPDA

mM
i Λμ−i Λ(α)μ−i +Λ(β)μC̃i

Λ(α)μNs
i

Λ(α)μ−i +Λ(β)μCr
i

Λ(α)μC̃Ni
i

+Λ(β)μC̃Ni
j �=i

Λ(α)μC̃Ni
i

+Λ(β)μC̃w,Ni
j �=i

Mixtures. The family of models presented in this chapter can be easily extended to handle

mixtures of component analysers. This is extremely important in many cases, where more than

one Gaussians are required to fit the data. Particularly in our case, we can have mixtures

of different component analysis methods. The derivation follows [26] and is detailed in the

appendix of this thesis.

Probabilistic LDA Classification. We can exploit the probabilistic nature of the pro-

posed EM-LDA in order to probabilistically infer the most probable class assignment for unseen

data. Instead of using the inferred projection, we can essentially utilise the log-likelihood of

the model. In more detail, we can estimate the marginal log-likelihood for each test point x∗

being assigned to each class c:

arg cmax
{
logP (x∗|mMc ,ΨM)

}
(11.39)

where by adopting the usual EM bound (as shown in Eq. 11.33), this boils down to

arg cmax
∫
y∗
i
P (y∗

i |x∗
i ,m

Mc ,ΨM) logP (x∗
i ,y

∗
i |ΨM)dy∗

i (11.40)

where P (y∗
i |x∗

i ,m
M,ΨM) is estimated as in Eq. 11.31, by utilising the inferred model para-

meters (ΨM) along with the class model. Note that since the posterior mean given xi depends
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on all other observations excluding i (Eq. 11.28), we only need to store the class mean estim-

ated as a weighted average of all training data and all training data in class c, as

mMc = Λ(α) 1

T

T∑
j=1

E
M[yj ] +Λ(β) 1

|Cc|
∑
j∈Cc

E
M[yj ] (11.41)

This is in contrast to traditional methods where all the (projected) training data have to be

kept. Furthermore, during evaluation, we only need to estimate the likelihood of each test

datum’s assignment to each class (O(|C|), rather than compare each test datum to the entire

training set (O(T )).

11.5 Variants of LDA / Supervised LPP

In order to demonstrate the flexibility of the proposed framework, in this section we discuss

several variants of LDA such as Subclass Discriminant Analysis (SDA) [300], Marginal Fisher

Analysis (MFA) [279] and Nonparametric Discriminant Analysis (NPDA) [141], and show how

they can be easily incorporated into the proposed framework. We note that MFA and NPDA

can also be considered as variants of LPP since (i) the locality is preserved (by accounting

for nearest neighbours of each point) and (ii) the class information is used to impose further

constraints on locality (i.e. supervision).

Firstly, Subclass Discriminant Analysis determines the number of subclasses in each class

via clustering, essentially estimating the optimal number of Gaussians per class. This results

in an LDA model where the underlying distribution of each class is a mixture of Gaussians. In

our framework, assuming we discover r subclasses for each class, our LDA prior (Eq. 11.12)

is reformulated as follows

P (Y|β) = 1
Z exp

{
−1

2

∑N
n=1

∑T
i=1

1
|C̃r

i |
∑

j∈C̃r
i

λn
σ2
n
(yn,i − yn,j)

2
}

exp
{
− 1

2

∑N
n=1

1
T

∑T
i=1

1
T−1

∑T
j=1

(1−λn)2

σ2
n

(yn,i − yn,j)
2
} (11.42)

where Cr
l denotes the set of data points xj belonging to subclass l, while we define C̃r

i = {j :

∃ Cr
l s.t. {xj ,xi} ∈ Cr

l , i �= j}. For the ML solution, we replace the matrices B(1) and B(2) (see

Eq. 11.15) to B(1) = I − diag(C1, . . . ,Cr) where Cr = 1
|Cr|1r1

T
r and B(2) = I − 1

T 1T1
T
T . For

EM, m
(SLDA)
i = Λ(α)μ−i +Λ(β)μCr

i
where now, μC̃i =

1
|C̃r

i |
∑

j∈C̃r
i
E[yj ] and ΣSLDA = ΣLDA.
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Marginal Fischer Analysis (MFA) imposes a local structure on discriminant analysis tech-

niques by using local neighbourhoods in the definition of the scatter within-class and between-

class scatter matrices. Following MFA, the within-class matrix is measured as the sum of

distances between each sample xi and its nearest neighbours within the same class. We de-

note the latter set as C̃N s
i

i , where j ∈ C̃N s
i

i iff {j ∈ N s
i ∩ j ∈ C̃i}. The between-class matrix

penalises the nearest neighbours xj of each sample xi belonging though to different classes.

We denote the set of (indices) neighbours of xi belonging to a different class than i as C̃N s
i

j �=i,

where j ∈ C̃N s
i

j �=i iff {j ∈ N s
i ∩ j �∈ C̃i}. In this case, we can straight-forwardly reformulate our

LDA prior (Eq. 11.12) as follows

P (Y|β) = 1
Z exp

{
−1

2

∑N
n=1

∑T
i=1

1

|C̃Ns
i

i |

∑
j∈C̃Ns

i
i

λn
σ2
n
(yn,i − yn,j)

2

}
exp

{
− 1

2

∑N
n=1

∑T
i=1

1
T−1

∑T

j∈C̃Ns
i

j �=i

(1−λn)2

σ2
n

(yn,i − yn,j)
2
} (11.43)

Regarding the ML solution, given our general model (Eq. 11.15), for MFA we have B(1) =

L
C̃Ns

i
i

and B(2) = L
C̃Ns

i
j �=i

, where L
C̃Ns

i
i

denotes the Laplacian built on the neighbourhood defined

by C̃N s
i

i and L
C̃Ns

i
j �=i

the Laplacian built on the neighbourhood defined by C̃N s
i

j �=i. The ML solution

diagonalises both XL
C̃Ns

i
i

X and XL
C̃Ns

i
j �=i

X (see Eq. 11.21). Regarding our EM framework,

m
(MFA)
i = Λ(α)μC̃Ni

i

+Λ(β)μC̃Ni
j �=i

where now, μC̃Ni
i

= 1

|C̃Ni
i |

∑
j∈C̃Ni

i

E[yj ], μC̃Ni
j �=i

= 1

|C̃Ni
j �=i|

∑
j∈C̃Ni

j �=i

E[yj ],

and ΣMFA = ΣLDA.

The formulation for Nonparametric LDA (NLDA) [141] is quite similar to the above dis-

cussion on MFA, with an introduction of an extra weighting for the scatter-between matrix

wNLDA
i,j , which depends on the classes of yi and yj and the nearest neighbours of yi [141].

The weight is essentially the ratio of the minimum distance of yi to the nearest neighbours

(of the same or different class) to the sum of those distances. Within our framework, this

method is very similar to the MFA formulation. For the ML solution, we have B(1) = L
C̃Ns

i
i

and B(2) = L
C̃Ns

i
j �=i,w

NLDA
i,j

, where L
C̃Ns

i
j �=i,w

NLDA
i,j

is the Laplacian built on C̃N s
i

j �=i, w
NLDA
i,j , where each

entry has been weighted by wNLDA
i,j . Regarding EM, this only changes the corresponding mean
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of m
(MFA)
i , μC̃Ni

j �=i

to μC̃w,N i
j �=i

= 1

|C̃Ni
j �=i|

∑
j∈C̃Ni

j �=i

wNLDA
i,j E[yj ].

11.6 Spatial Structure-Aware Dimensionality Reduction

In order to demonstrate the utilisation of the proposed framework in terms of generating new

component analysis techniques, we propose a novel 2D component analysis method, which we

coin as Spatial Structure-aware Component Analysis (SACA). The model consists of imposing

an MRF over a grid (i.e., an image, or segments/parts of a structure), thus preserving spatial

relationships in the discovered latent space. We now assume our observations (which can

be image descriptors) X are taken over a discrete grid uv ∈ I = [1 . . . T1] × [1 . . . T2], with

T = T1×T2. We follow the linear generative model described in Eq. 11.10 and define an MRF

prior over the latent space as

P (Y|β) = 1

Z
exp

{
−1

2

N∑
n=1

∑
uv

{{
λn

2σn
2 (yn,uv − yn,(u+1)v)

2

}

+
λn

2σn
2 (yn,uv − yn,u(v+1))

2 +
(1− λn)

2

σn2
y2n,uv

}}

=
1

Z
exp

{
−1

2

(
tr[(ẎuẎ

T
u + ẎvẎ

T
v )Λ

(1)] +tr[YYTΛ(2)])
)}

=
1

Z
exp

{
tr
[
Λ(1)YK̂YT

]
+ tr[Λ(2)YYT ]

}
(11.44)

where uv now runs through the 2D grid, Λ(1) and Λ(2) are defined as above and Ẏu = [yuv −
y(u+1)v], Ẏv = [yuv − yu(v+1)] and K̂ = [K1KT1 ] where Kj = PjP

T
j with each Pj being a

T × (T − 1) matrix with elements pjj = 1 and p(i+j)i = −1 (the rest of the elements are zero).

One can easily observe that the SACA prior falls into the general prior category we defined in

Eq. 11.15, with B(1) = K̂ and B(2) = I.

Therefore, following Eq. 11.21, the optimal weight matrix is found by setting

I = Λ(1)WXK̂XTWT +Λ(2)WXXTWT . (11.45)

It should be clear that since Λ(1), Λ(2) are diagonal matrices the above is satisfied if and only

if W performs joint diagonalization of ẊuẊ
T
u + ẊvẊ

T
v (or, equivalently, XK̂X) and XXT .
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We note that this is also the solution of the deterministic optimization problem

W =argmin
W

p∑
j=1

T1∑
u=1

T2∑
v=1

(
||wT

j (x(u+1)v − xuv||2

+||wT
j (xu(v+1) − xuv)||2

)
=argmin

W
tr[WT (ẊuẊ

T
u + ẊvẊ

T
v )W]

s.t.WTXXTW = I. (11.46)

We highlight the fact that we formulated a novel component analysis technique just by defining

the the latent MRF (Eq. 11.44). The weight updates were then just retrieved by replacing

in Eq. 11.21. We note that the SACA MRF connectivity falls trivially into the generalised

framework we defined in Section 11.4, with mSACA
uv = 1

2
λn

λn+(1−λn)2
(E[yu+1,v] + E[yu,v+1]) and

Σ(SACA) = Σ(LDA).

11.7 Experimental Evaluation

As proof of concept, we provide experiments both on synthetic (Section 11.7.1) and real-world

data (Section 11.7.2, 11.7.3, 11.7.4). By the presented experiments, we aim to (i) experiment-

ally validate the equivalence of the proposed probabilistic models to other models belonging

in the same class (be it deterministic or probabilistic), and (ii) experimentally evaluate the

performance of our models against others in the same class.

11.7.1 Synthetic Data

We demonstrate the application of our proposed probabilistic component analysis techniques

on a set of synthetic data (see Fig. 11.2), generated utilising the Dimensionality Reduction

Toolbox. In more detail, we compare the corresponding deterministic formulations of PCA,

LDA and LLE to our proposed probabilistic models. The aim of this experiment is mainly to

qualitatively illustrate the equivalence of the proposed methods (by observing how the probab-

ilistic projections match the deterministic equivalents). Furthermore, the variance modelling

per latent dimension in our EM-LDA is clear in E[y] of the proposed EM-LDA (Fig. 11.2,

Col. 3). This will prove beneficial prediction-wise, as we show in the following section.
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OBSERVATIONS DETERMINISTIC PROJ PROBABILISTIC E[Y] PROBABILISTIC PROJ.
LP

P
LD

A
PC

A

Figure 11.2: Synthetic experiments with deterministic LLE, LDA and PCA compared to our
proposed probabilistic methods. For the deterministic models, the projections are shown in
the 2nd column. For our probabilistic equivalents, we show the E[y] (3rd column) along with
the projections (4th column). A neighbourhood of 12 was used in the case of LLE.

11.7.2 Real Data: Face Recognition via EM-LDA

One of the most common applications of LDA is face recognition. Therefore, we utilise various

databases in order to verify the performance of our proposed EM-LDA. In more detail, we

utilise the popular Extended Yale B database [81], as well as the PIE [237] and AR databases

[153]. The experiments span a wide range of variability, such as various facial expressions

(PIE, AR), illumination changes (Yale B, PIE) as well as pose changes (PIE).

Database Description: PIE, Yale B and AR

The CMU PIE database [237] contains faces under varying pose, illumination, and expres-

sion,consisting of more than 41000 images for a total of 68 subjects. We used a total of 170

images near frontal images for each subject. For training, we randomly selected a subset

consisting of 5 images per subject, while for testing, the remaining images were used.
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11. A Unified Framework for Probabilistic Component Analysis

The extended Yale B database [81] contains a total of 16128 images of 38 subjects under

9 poses and 64 illumination conditions. We utilised a subset of 64 near frontal images per

subject. For training, a random selection of a subset with 5 images per subject was used,

while the rest of the images where used for testing.

Finally, the AR database [153] consists of more than 4000 frontal view face images of 126

subjects, while each subject is portrayed in upto 26 images, taken in two sessions, where

the second was captured two weeks later from the first. Each session contains images under

different facial expressions, illumination changes and occlusions. In our experiment, we focus

on facial expressions. We firstly randomly select 100 subjects. Subsequently, use the images

which portray varying facial expressions from session 1, while using the corresponding images

from session 2 for testing.

Experimental Setting and Results

In related experiments, we compared our EM-LDA against deterministic LDA, the Fukunaga-

Koontz variant (FK-LDA) [288] and PLDA [202] (which has been shown to outperform other

probabilistic methods such as [111] in [139]) under the presence of Gaussian noise. We used the

gradients of each image pixel as features, since as we experimentally verified, this improved the

results for all compared methods. The errors of each compared method applied each database,

accompanied by increasing Gaussian noise in the input, is shown in Fig. 11.3. Although PLDA

offers a substantial improvement wrt. deterministic LDA and performs better than FK-LDA,

it is clear that the proposed EM-LDA outperforms other compared LDA variants. This can

be attributed to the explicit variance modelling (both for observations and per dimension) in

our models, which appears to enable more robust classification.

11.7.3 Real Data: Level of Interest Detection

Automatically estimating the level of interest is a problem which has been gaining much atten-

tion by researchers lately, mostly to the vast applicability of such models, ranging from virtual

guides to interactive learning systems as well as other applications pertaining to human-

machine interaction. In this section, we aim to evaluate the performance of the proposed
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Figure 11.3: Recognition error for the databases PIE, YALE and AR under increasing Gaussian
noise, comparing LDA, FK-LDA [288] the proposed EM-LDA and PLDA [202].

EM-LDA on the problem of level of interest detection. To this end, we focus on data consist-

ing of video recordings of visitors to the Lisbon Zoo in 2013, interacting with a robot acting

as a virtual guide. Sample images of the dataset can be seen in Fig. 11.4. The aforemen-

tioned data has been labelled in terms of three classes: no interest, When the subject is not

interested in the interaction, is unmotivated and possibly wants to terminate it, interest, when

the subject appears interested and eager to participate in the interaction, and high interest,

when the subject appears pleased to participate in the interaction, and may show signs of

enthusiasm or positive emotion expressions (e.g. laughter). We utilise the tracker described

in [9], which is based on a discriminative regression based approach for Constrained Local

Models (Discriminative Response Map Fitting). We utilise both face pose estimation (pitch,

yaw and roll angles) along with 66 estimated facial landmarks (capturing eyebrows, eyes, nose

and mouth/lips). For these experiments, we perform frame-based evaluation on both a binary

interest detection problem (no-interest vs. interest) as well as the more complex 3 class prob-
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Figure 11.4: Sample frames from the data used for the level of interest experiment.

lem of no-interest vs. interest vs. high interest. We maintain a balanced set for both training

and testing, by selecting a random 1000 frames for each class, later separated into balanced

training and testing sets. In order to evaluate in terms of noise-resilience, as in Section 11.7.2,

we add increasing Gaussian noise to the features. As in previous experiments, we evaluate the

proposed EM-LDA to deterministic LDA, Fukunaga-Koontz LDA (FK-LDA) [288] and PLDA

[202]. Results of the described experiments are presented in Table 11.4. While FK-LDA seems

to perform better than LDA under noisy scenarios, PLDA appears to overperform both, while

clearly, EM-LDA achieves the best error rates against all compared methods.

11.7.4 Real Data: Face Visualisation via EM-LPP

One of the typical applications of Neighbour Embedding methods is the visualisation of ,

usually high-dimensional, data at hand. In particular, LPPs have often been used in visualising

faces, providing an intuitive understanding of the variance and structural properties of the data

[211], [103]. In order to evaluate the proposed EM-LPP, which is to the best of our knowledge
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Table 11.4: Error obtained by applying the proposed EM-LDA, PLDA [202], classical LDA
and FK-LDA [288] to the problem of interest detection (2-CLASS Interest vs. No Interest,
3-CLASS: No Interest vs. Low Interest vs. High Interest)

2-CLASS Interest Detection 3-CLASS Interest Detection

NOISE FK-LDA LDA EM-LDA PLDA FK-LDA LDA EM-LDA PLDA
0.00 0.21 0.26 0.15 0.23 0.33 0.31 0.26 0.32
0.05 0.33 0.29 0.26 0.29 0.40 0.39 0.25 0.38
0.10 0.38 0.37 0.32 0.36 0.45 0.43 0.37 0.39
0.15 0.43 0.41 0.37 0.41 0.50 0.50 0.41 0.44
0.20 0.46 0.46 0.40 0.44 0.53 0.56 0.47 0.47
0.25 0.45 0.46 0.42 0.45 0.56 0.57 0.50 0.51

the first probabilistic equivalent to LPP [179], we experiment on the Frey Faces database5

[213], which contains 1965 images, captured as sequential frames of a video sequence. We

apply a similar experiment to [103]. We firstly perturbed the images with random Gaussian

noise, while subsequently we apply EM-LPP and LPP. The resulting space is illustrated in

Fig. 11.5. It is clear that the deterministic LPP was unable to cope with the added Gaussian

noise, failing to capture a meaningful data clustering. Note that the proposed EM-LPP was

able to well capture the structure of the input data, modelling both pose and expression within

the inferred latent space.

11.8 Conclusions

In this chapter we introduced a novel, unifying probabilistic component analysis framework,

which reduces the construction of probabilistic component analysis models to essentially select-

ing the proper latent neighbourhood via the design of the latent connectivity. Our framework

can thus be used to introduce novel probabilistic component analysis techniques by formulat-

ing new latent priors as products of MRFs. In this work, we have shown specific priors which

when used, generate probabilistic models corresponding to PCA, LPP, LDA and SFA, while

by doing so we introduced the first, favourable complexity-wise, probabilistic equivalent to

LPP. Furthermore, we introduced a novel component analysis technique via our framework,

5http://www.cs.nyu.edu/~roweis/data.html
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Figure 11.5: Applying the proposed EM-LPP to the Frey Faces database, where each image
is perturbed with random Gaussian noise. The latent projections obtained via LPP [179] and
EM-LPP are illustrated in the figure. The inferred space in (a,b) is also annotated with face
images from the database.

suitable for part-based dimensionality reduction. Finally, by means of theoretical analysis

and experiments, we have demonstrated various advantages that our proposed methods pose

against existing probabilistic and deterministic techniques.
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Chapter 12

Discussion and Conclusions

12.1 Thesis Summary

In this thesis, a set of various novel methodologies were presented, aimed at solving a set of

emerging challenges related to the fields of affective computing, machine learning and com-

puter vision. During the last decade, the vast amounts of data that have been made available

(initiating the so-called “Big-Data” era), along with the ongoing demand for applications that

are able to cope under real-world conditions led to a series of shifts in the research direction

employed in these fields. As a consequence, researchers transitioned from analysing posed

expressions, usually from static images, to utilising high-quality video sequences with subjects

portraying spontaneous behaviour. A further shift relates to moving away from adopting basic

emotion categories in order to describe the affective state of the subject (e.g., anger, surprise),

towards utilising more flexible and versatile emotion descriptions, such as the continuous emo-

tion dimensions, which in effect model a much wider range of affective variability and can better

capture the majority of emotions experienced in our everyday lives (e.g., excitement, boredom,

interest). The work described in this thesis follows these shifts, by tackling highly challenging

problems emerging from the adoption of these new directions in the affective sciences.

The first part of this thesis focused on learning continuous emotion dimensions. With the

problem of analysing affect based on latent, continuous emotion dimensions still at its infancy
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at the time this research was initiated, the problem was firstly approached by providing some

of the first studies on predicting continuous emotion dimensions from multiple modalities (i.e.

exploiting facial expressions, shoulder movements as well as acoustic features). An important

contribution of our work lies in proposing and implementing the novel idea of modelling cor-

relations and temporal patterns amongst output-dimensions in order to improve the accuracy

of learning algorithms. To this end, we present several methods fitted to the task, such as

utilising stacked Bidirectional Long-Short Term Memory Neural Networks for fusion (Chapter

5) in order to model both temporal and spatial relationships amongst the outputs. In Chapter

6 we derive a novel probabilistic regression technique based on the Relevance Vector Machine

(RVM), which is able to account for such correlations. Finally, in Chapter 7 we describe

Correlated Spaces Regression (CSR), a framework based on Canonical Correlation Analysis

(CCA) which is suitable for both capturing the structure of output vectors, correlating the in-

puts with the outputs, as well as removing output redundancy. Since the outputs are projected

into an uncorrelated space, this method facilitates the utilisation of single-output regression.

In the same chapter, we also presented a set of experimental results regarding questions such

as the correlations arising amongst emotion dimensions, as well as measuring the correlation

of other emotions (such as the level of interest and other basic emotions) to the typically

employed set of emotion dimensions. These empirical results end up motivating the utilisation

of learning models which take into account the correlation of output dimensions, while also

motivating the application of component analysis in order to extract more meaningful (as in

more correlated with output emotion dimensions) features.

Conclusions drawn in the first part of this thesis highlight significant features which aid the

development of systems aimed towards continuous and dimensional emotion analysis, such as

modelling the temporal dynamics of both the input modalities (e.g., facial expressions, acous-

tic features) as well as the output emotion dimensions, the fusion of cues and modalities which

may convey complementary information as well as the exploitation of the correlation of emotion

dimensions. Nevertheless, an important limitation of the models presented in the first part,

as well as most of the state-of-the-art methodologies, lies in utilising a simple average opera-

tion for fusing the multiple expert annotations for each emotion dimension. This approach is

deemed suboptimal, since as repeatedly highlighted in this thesis, the annotation of emotion di-
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mensions, usually performed by multiple experts, exhibits a significant spatio-temporal person-

specific bias, while also being exposed to other forms of noise and irrelevant to-the-task inform-

ation. By simply taking the average of all annotations as the ground truth, one makes impli-

cit assumptions, namely (i) that all annotators are equally capable, (ii) that each annotation

sample corresponds to the analogous sample of the sequence at hand, and (iii) that spatial noise

can be cancelled out. Essentially, these assumptions are not valid in realistic scenarios, e.g.,

since the annotators usually have varying response times, the annotation sample will always

have a positive temporal shift with respect to the sequence being annotated. In fact, the tem-

poral discrepancies arising in the annotations can partially justify why in Chapter 7, we found

that emotion dimensions seem to be better correlated to each other rather than to features such

as facial expressions. As understandable, the fusion of multiple, continuous annotations is one

of the most significant challenges in terms of modelling continuous emotion dimensions, as it is

crucial to obtain a clean ground truth in order to properly train machine learning techniques.

In the second part of the thesis, we firstly dealt particularly with the problem of fusing

multiple continuous annotations, having in mind that in order to solve this problem we need

to eliminate both person-specific bias and noise, as well as heal any temporal discrepancies

amongst the annotations. In Chapter 9, we turn to methods related to component analysis,

initially focusing on a particular subset that we refer to as shared-space component analysis. In

general, shared-space methods aim to capture a commonality manifesting amongst all obser-

vations, while some methods also model the individual (private) portions of the signal, which

are specific to one set of observations. Based on the intuitive similarity of the shared-space

of multiple observations to the ground truth derived from multiple annotations, in Chapter

9, we proposed a novel, shared-space method (Dynamic Probabilistic Canonical Correlation

Analysis, DPCCA) which aims to provide a probabilistic representation of the ground truth

as the inferred shared space, clean from spatio-temporal bias. DPCCA is able to decontamin-

ate the annotations from any bias and person-specific characteristics by isolating them in the

private space of the model, while learning the shared information conveyed by all annotators.

Moreover, by utilising a time warping process, DPCCA temporally aligns the clean annota-

tions, thus resolving any temporal discrepancies amongst the nnotations. DPCCA, as shown

in Chapter 9, is also able to incorporate feature sets (such as e.g., tracked points encapsulating
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facial expressions) during inference, in order to improve the derived annotation.

Subsequently, in Chapter 10, we follow on with our work on shared-space component analysis

by proposing a novel, robust framework for multi-modal fusion and temporal alignment (Ro-

bust Canonical Correlation Analysis, RCCA), suitable for grossly corrupted high-dimensional

observations. The robust property entails that the method can handle instances of non-

Gaussian noise, commonly occurring in data acquired under real-world conditions. The method

is evaluated on problems such as the robust temporal alignment of human behaviour, the robust

audio-visual fusion for predicting the level of interest, as well as heterogeneous face recogni-

tion. It is worth noting that for some of the fusion experiments, we adopt the challenging

scenario where one of the fused modalities is missing during testing.

Finally, Chapter 11 is focused on the problem of dimensionality reduction (and in partic-

ular, feature extraction) via probabilistic component analysis. In more detail, the chapter

is focused on providing a theoretical unification of component analysis methods. In general,

unifying frameworks are of crucial importance to sciences in general, as they facilitate the

deeper understanding of a collection of methodologies. In this light, in Chapter 11 we presen-

ted the first, unifying framework for probabilistic component analysis, which unifies most well

known component analysis techniques which can be formulated as a trace optimisation problem

without domain constraints for the parameters. In particular, by formulating a probabilistic

framework utilising Markov Random Fields (MRFs), we show how methods such as Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Pro-

jections (LPP) and others can be easily generated by manipulating the latent connectivity

imposed by the utilised MRFs. By means of various experiments, we demonstrated the effic-

acy of the generated component analysis methods, on problems such as the detection of the

level of interest and the visualisation and analysis of facial images. As we can conclude by

the various experiments presented as well as the theoretical justification, methods derived via

our framework pose several advantages against other related formulations, while our unifying

framework facilitates the straightforward generation of novel component analysis techniques.
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12.2 Future Work

There are many future research directions that arise from the work presented in this thesis.

Application-wise, the proposed methods may be trained and evaluated on larger datasets, with

the utilisation of cross-database evaluation. In fact, we expect cross-database evaluations to

further demonstrate the advantage of applying fusion of multiple annotations as presented in

Chapter 9, since the individual bias of disjoint sets of annotators (typically the case when

utilising more than one databases) is expected to have a much higher variance. Furthermore,

the methods presented in Chapters 5 and 6 for exploiting output correlations may be tested

utilising more emotion dimensions than valence and arousal, in order to gain insight into

how the models perform when more outputs are provided and if any performance gain is to be

achieved. Specifically for OA-RVM (Chapter 6), it would be interesting to increment the model

in order to learn temporal dependencies arising in the input features, while a further extension

is to incorporate the temporal window parameter formally into the optimisation function in

order to eliminate the need for cross-validation. Moreover, it would be interesting to explore

the utilisation of other temporal kernels for constructing the design matrix of OA-RVM and

perform related comparisons. Regarding Correlated-Spaces Regression (CSR, Chapter 7), a

possible extension is to utilise a robust variant of Canonical Correlation Analysis (CCA) within

CSR, in order to accommodate for other types of noise than Gaussian. Furthermore, CSR

is an inherently static method due to the dependence on CCA. The modelling of temporal

dependencies within such methods may be approached either via feature transformations or

by reformulating the method and incorporating temporal constraints.

In Chapter 9, we presented DPCCA, a novel probabilistic method aimed at the temporal

alignment and fusion of multiple sequences, such as dimensional emotion annotations. As

aforementioned, the model can also take into consideration any input features (such as facial

and acoustic features) when deriving the ground truth. An extension that may be explored

lies in incrementing DPCCA in order to discover non-linear relationships. This is likely to

be helpful e.g., when considering the relationship of high-dimensional feature spaces to the

low-dimensional ground truth, which is likely to be non-linear. Furthermore, it is interesting

to experiment with the warping process itself, e.g., by utilising warping constraints adapted
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to the problem and data at hand in order to favour correcting lags which are more typical

in annotations or to avoid warping more than the expected delay time for a given annota-

tion task. Such experimentation is deemed highly appropriate in order to deal with specific

idiosyncrasies which may arise in the data-at-hand. In Chapter 10, we presented a robust-to-

gross-noise variant of Canonical Correlation Analysis (CCA). Future work on this model lies

directly in the limitations posed, namely (i) being confined to two observation sets, and (ii)

requiring the observation sets to be equal in terms of dimensionality (or pre-processed to be

so). Extensions would require reformulating the problem to learn projections onto a common

space regardless of dimensionality (thus rendering any relevant pre-processing unnecessary),

as well as being able to handle multiple observation sets (i.e. a multi-set variant of RCCA).

Finally, Chapter 11 is essentially a technical work which introduces a novel viewpoint in terms

of providing a unifying framework for probabilistic component analysis methods. There is a

multitude of future work spurring from the unifying framework. For example, exploiting the

advantages of discriminative models by utilising e.g., Gaussian Processes instead of Markov

Random Fields in order to learn non-linear mappings while still preserving the interesting

characteristics of the observations. Furthermore, by introducing hierarchical hyperpriors, the

unifying framework can be incremented in order to provide robust and sparse properties, thus

inducing more easily generalisable models via the unifying framework. Finally, the framework

can be extended to a supervised setting where some form of label information is available,

in order to constraint the latent spaces. The framework may also be extended to multiset

settings, where more than one observation sets are considered.

12.3 Conclusions

This work, in its entirety consists of a novel set of solutions for multiple highly challenging

problems, revolving around the fields of affect sensing, machine learning and computer vis-

ion. The thesis is diverse, both in terms of focus and contribution, adopting both application

oriented challenges and devising novel models aimed at solving them, such as the problem of

fusing multiple expert annotations, as well as reaching out for theoretical answers to problems

of a unifying nature, such as the unification of probabilistic component analysis. This is a
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characteristic not only of the field itself, but also of a modern scientific direction, based on the

increasing amount of information and knowledge exchanged between scientific disciplines as

well the ever-easy access to scientific knowledge itself. This is in fact, a discourse of scientific

languages, and the base of such communication lies in a common language amongst discip-

lines. Stay for too long confined within the symbolic barriers of your scientific language, you

become constraint by it, limit your creativity and gradually loose the ability to understand

the language of others while becoming less understandable to them, rendering any attempts

on the communication and exchange of knowledge impotent. Nevertheless, spend too little

time within it, and you can not understand it yourself. As it is often said, only one who truly

understands something can explain it simply, that is, in the non-scientific, common language.

There is clearly a balance to be struck. It is the authors hope that this thesis provides a small

contribution towards this direction.
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[76] F. Eyben, M. Wöllmer, and B. Schuller. Opensmile: the munich versatile and fast

open-source audio feature extractor. In Proceedings of the international conference on

Multimedia, pages 1459–1462. ACM, 2010. 54

[77] I. Fasel, B. Fortenberry, and J. Movellan. A generative framework for real time object

detection and classification. Computer Vision and Image Understanding, 2005. 50

[78] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Dept. Electrical

Engineering, Stanford University, CA, USA, 2002. 176

[79] J. R. Fontaine, K. R. Scherer, E. B. Roesch, and P. C. Ellsworth. The world of emotions

is not two-dimensional. Psychological science, 18(12):1050–1057, 2007. 38

[80] N. Fragopanagos and J. G. Taylor. Emotion recognition in human-computer interaction.

Neural Networks, 18(4):389–405, 2005. 40

[81] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination

cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI,

23(6):643–660, 2001. 213, 214

[82] Z. Ghahramani, M. I. Jordan, and P. Smyth. Factorial hidden markov models. In

Machine Learning. MIT Press, 1997. 150, 151

234



Bibliography

[83] Z. Ghahramani and S. T. Roweis. Learning nonlinear dynamical systems using an em

algorithm. In Advances in Neural Information Processing Systems 11, pages 599–605.

MIT Press, 1999. 149, 157

[84] S. Gilroy, M. Cavazza, M. Niiranen, E. Andre, T. Vogt, J. Urbain, M. Benayoun,

H. Seichter, and M. Billinghurst. Pad-based multimodal affective fusion. In Proc. of

Int. Conf. on Affective Computing and Intelligent Interaction Workshops, pages 1–8,

2009. 41

[85] D. Glowinski, A. Camurri, G. Volpe, N. Dael, and K. Scherer. Technique for automatic

emotion recognition by body gesture analysis. In Proc. of Computer Vision and Pattern

Recognition Workshops, pages 1–6, 2008. 40

[86] D. Gong and G. Medioni. Dynamic manifold warping for view invariant action recog-

nition. In Proc. 13th IEEE Int. Conf. Computer Vision, pages 571–578, 2011. 75, 77,

174

[87] D. Grandjean, D. Sander, and K. R. Scherer. Conscious emotional experience emerges

as a function of multilevel, appraisal-driven response synchronization. Consciousness

and Cognition, 17:484–495, 2008. 39

[88] M. Graver. Cicero on the emotions: Tusculan Disputations 3 and 4. University of

Chicago Press, 2002. 11

[89] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. Neural Networks, 18:602–610, 2005. 68,

70

[90] S. Graves, G. Hooker, and J. Ramsay. Functional data analysis with r and matlab, 2009.

77

[91] M. Grimm and K. Kroschel. Emotion estimation in speech using a 3d emotion space

concept. In In Proc. IEEE Automatic Speech Recognition and Understanding Workshop,

pages 381–385, 2005. 40, 72, 91, 97, 101, 118

235



Bibliography

[92] M. Gross, E. Crane, and B. Fredrickson. Effect of felt and recognized emotions on gait

kinematics. American Society of Biomechanics Conference, Palo Alto, CA, 2007. 45

[93] M. Gross, E. Crane, and B. Fredrickson. Expression of emotion changes gait kinematics.

International Society for Posture and Gait Research, Burlington, VT, 2007. 45

[94] M. Gross, G. Gerstner, D. Koditschek, B. Fredrickson, and E. Crane. Emotion recog-

nition from body movement kinematics. American Society of Biomechanics, Portland,

OR, 2004. 45

[95] H. Gunes and M. Pantic. Automatic, dimensional and continuous emotion recognition.

Int. Journal of Synthetic Emotions, 1(1):68–99, 2010. 12, 15, 88, 89, 91, 104, 120

[96] H. Gunes and M. Pantic. Dimensional emotion prediction from spontaneous head ges-

tures for interaction with sensitive artificial listeners. In Proc. of International Confer-

ence on Intelligent Virtual Agents, pages 371–377, 2010. 40

[97] H. Gunes, M. Piccardi, and M. Pantic. From the lab to the real world: affect recognition

using multiple cues and modalities. In Affective computing: focus on emotion expression,

synthesis, and recognition, pages 185–218. InTech Education and Publishing, Vienna,

Austria, 2008. 12, 46, 47, 48, 50, 53

[98] H. Gunes and B. Schuller. Categorical and dimensional affect analysis in continuous

input: Current trends and future directions. Image and Vision Computing, 2012. 38

[99] H. Gunes, B. Schuller, M. Pantic, and R. Cowie. Emotion representation, analysis and

synthesis in continuous space: A survey. In Automatic Face & Gesture Recognition and

Workshops (FG 2011), 2011 IEEE International Conference on, pages 827–834. IEEE,

2011. 145, 155, 185

[100] N. Hadjikhani and B. de Gelder. Seeing fearful body expressions activates the fusiform

cortex and amygdala. Current Biology, 13(24):2201–2205, December 2003. 44

[101] M. A. Hasan. On multi-set canonical correlation analysis. In Proc. of the Int. Joint

Conf. on Neural Networks, IJCNN’09, pages 2640–2645, Piscataway, NJ, USA, 2009.

IEEE Press. 152

236



Bibliography

[102] T. S. Hava and D. S. Eduardo. Turing computability with neural nets. Applied Math-

ematics Letters, 4:77–80, 1991. 67

[103] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face recognition using laplacianfaces.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):328–340, 2005.

200, 216, 217

[104] C. Hjortsjo. ”Man’s face and mimic language”. ”Malmo, Studentlitteratur”, ”1970”. 44

[105] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis,

Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991.

68

[106] S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 6(2):107–116, 1998.

68

[107] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

9:1735–1780, 1997. 21

[108] H. Hotelling. Analysis of a complex of statistical variables into principal components.

J. Educational Psychology, 24:417–441, 1933. 72, 73

[109] H. Hotelling. Relations between two sets of variates. Biometrika, 8:321–377, 1936. 72

[110] S. Ioannou, A. Raouzaiou, V. Tzouvaras, T. Mailis, K. Karpouzis, and S. Kollias.

Emotion recognition through facial expression analysis based on a neurofuzzy method.

Journal of Neural Networks, 18:423–435, 2005. 40

[111] S. Ioffe. Probabilistic Linear Discriminant Analysis. In Computer Vision ECCV 2006,

pages 531–542, 2006. 195, 196, 197, 214

[112] A. K. Jain and S. Z. Li. Encyclopedia of Biometrics: I-Z., volume 1. Springer, 2009. 51

[113] L. C. Jain and L. R. Medsker. Recurrent Neural Networks: Design and Applications.

CRC Press, Inc., Boca Raton, FL, USA, 1999. 68

237



Bibliography

[114] I. N. Junejo, E. Dexter, I. Laptev, and P. Perez. View-independent action recognition

from temporal self-similarities. IEEE Trans. Pattern Analysis and Machine Intelligence,

33(1):172–185, 2011. 75, 174

[115] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Nat-

ural Language Processing, Computational Linguistics and Speech Recognition. Prentice

Hall, second edition, 2008. 87, 90, 113

[116] I. Kanluan, M. Grimm, and K. Kroschel. Audio-visual emotion recognition using an emo-

tion recognition space concept. Proc of the 16th European Signal Processing Conference,

2008. 40, 72, 91

[117] A. Kapoor, Y. Qi, and R. Picard. Fully automatic upper facial action recognition. In

Proc. of the IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, pages

195–202, 2003. 51

[118] M. Kim and V. Pavlovic. Discriminative Learning for Dynamic State Prediction. IEEE

Trans. Pattern Anal. Mach. Intell., 31(10):1847–1861, 2009. 149

[119] M. Kim and V. Pavlovic. Central subspace dimensionality reduction using covariance

operators. IEEE TPAMI, 33(4):657–670, 2011. 125

[120] B. King, P. Smaragdis, and J. Mysore. Noise-robust dynamic time warping using plca

features. pages 1973–1976, 2012. 75, 174

[121] A. Klami and S. Kaski. Probabilistic approach to detecting dependencies between data

sets. Neurocomput., 72(1-3):3946, Dec. 2008. 146, 147, 148

[122] A. Kleinsmith and N. Bianchi-Berthouze. Recognizing affective dimensions from body

posture. In Proc. of the Int. Conf. on Affective Computing and Intelligent Interaction,

pages 48–58, 2007. 40

[123] E. Kokiopoulou, J. Chen, and Y. Saad. Trace optimization and eigenproblems in dimen-

sion reduction methods. Numerical Linear Algebra with Applications, 18(3):565–602,

2011. 24, 192

238



Bibliography

[124] A. M. Kring and A. H. Gordon. Sex differences in emotion: Expression, experience, and

physiology. Journal of Personality & Social Psychology, 74(3):686 – 703, 1998. 120

[125] M. Kubat. Neural networks: a comprehensive foundation by Simon Haykin, Macmillan,

1994, ISBN 0-02-352781-7. Knowl. Eng. Rev., 13(4):409–412, 1999. 68

[126] D. Kulic and E. A. Croft. Affective state estimation for human-robot interaction. IEEE

Trans. on Robotics, 23(5):991–1000, 2007. 40

[127] R. Laban and L. Ullmann. The Mastery of Movement. Princeton Book Company

Publishers; 4 Revised edition, 1988. 45

[128] L. Lam and S. Suen. Application of majority voting to pattern recognition: an analysis

of its behavior and performance. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 27(5):553–568, 1997. 59

[129] R. Lane et al. Cognitive Neuroscience of Emotion. Oxford University Press, 2000. 14,

17, 86, 104, 124

[130] P. J. Lang, M. K. Greenwald, M. M. Bradley, and A. O. Hamm. Looking at pictures:

Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30(3):261–273,

1993. 41, 125, 130, 185

[131] M. A. Larkin, G. Blackshields, N. Brown, R. Chenna, P. McGettigan, et al. Clustal w

and clustal x version 2.0. Bioinformatics, 23(21):2947–2948, 2007. 154

[132] R. Larsen and E. Diener. Affect intensity as an individual difference characteristic: A

review. Journal of research in personality, 1987. 38, 39

[133] J. Laver. Principles of Phonetics (Cambridge Textbooks in Linguistics). Cambridge

University Press, June 1994. 45

[134] C. Lee and S. Narayanan. Toward detecting emotions in spoken dialogs. IEEE Trans.

on Speech and Audio Processing, 2005. 42

239



Bibliography

[135] T. S. Lee. Image representation using 2d gabor wavelets. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 18(10):959–971, 1996. 52

[136] R. Levenson. Emotion and the autonomic nervous system: A prospectus for research

on autonomic specificity. Social Psychophysiology and Emotion: Theory and Clinical

Applications, pages 17–42, 1988. 88, 89

[137] M. Lewis. Handbook of emotions. Guilford Press, 2008. 46

[138] P. A. Lewis, H. D. Critchley, P. Rotshtein, and R. J. Dolan. Neural correlates of pro-

cessing valence and arousal in affective words. Cerebral Cortex, 17(3):742–748, MAR

2007. 14, 17, 86, 104

[139] P. Li, Y. Fu, U. Mohammed, J. H. Elder, and S. J. Prince. Probabilistic models for

inference about identity. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 34(1):144–157, 2012. 214

[140] S. Z. Li, Z. Lei, and M. Ao. The HFB face database for heterogeneous face biomet-

rics research. In Computer Vision and Pattern Recognition Workshops, 2009. CVPR

Workshops 2009. IEEE Computer Society Conference on, pages 1–8. IEEE, 2009. 185,

186

[141] Z. Li, D. Lin, and X. Tang. Nonparametric discriminant analysis for face recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4):755–761, 2009.

209, 210

[142] R. Lienhart and J. Maydt. an extended set of haar-like features for rapid object detec-

tion. IEEE ICIP, 2002. 50

[143] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty

for low-rank representation. In Proc. 2011 Neural Information Processing Systems Conf.,

pages 612–620, Granada, Spain, 2011. 176, 177, 179, 180

[144] J. Listgarten, R. Neal, S. Roweis, and A. Emili. Multiple alignment of continuous time

series. volume 17, 2005. 75, 174

240



Bibliography

[145] G. Littlewort, M. Bartlett, and K. Lee. Faces of pain: automated measurement of spon-

taneous facial expressions of genuine and posed pain. Proceedings of the 9th international

conference on Multimodal interfaces, 2007. 43

[146] E. F. Lock, K. A. Hoadley, J. Marron, and A. B. Nobel. Joint and individual variation

explained (jive) for integrated analysis of multiple data types. The annals of applied

statistics, 7(1):523, 2013. 182

[147] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, 60(2):91–110, 2004. 51, 52

[148] B. Lucas and T. Kanade. An iterative image registration technique with an application

to stereo vision. In Proc. of the Int. Joint Conf. on Artificial Intelligence, pages 121–130,

1981. 50

[149] S. Lucey, A. B. Ashraf, and J. Cohn. Investigating spontaneous facial action recognition

through aam representations of the face. Face recognition, pages 275–286, 2007. 51

[150] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expressions with

gabor wavelets. In Automatic Face and Gesture Recognition, 1998. Proceedings. Third

IEEE International Conference on, pages 200–205. IEEE, 1998. 51

[151] M. Wollmer, and F. Eyben, and S. Reiter, and B. Schuller, and C. Cox, and E. Douglas-

Cowie, and R. Cowie . Abandoning emotion classes - towards continuous emotion re-

cognition with modelling of long-range dependencies. In Proc. of 9th Interspeech Conf.,

pages 597–600, 2008. 40, 70, 72, 89, 91, 96, 101, 117, 118

[152] S. Mariooryad and C. Busso. Analysis and compensation of the reaction lag of evalu-

ators in continuous emotional annotations. In in Affective Computing and Intelligent

Interaction (ACII 2013), 2013. 59

[153] A. M. Martinez. The AR face database. CVC Technical Report, 24, 1998. 213, 214

[154] B. Martinez, M. F. Valstar, X. Binefa, and M. Pantic. Local evidence aggregation

for regression-based facial point detection. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 35(5):1149–1163, 2013. 50

241



Bibliography

[155] W. M. Massaro and M. M. Cohen. Fuzzy logical model of bimodal emotion perception:

Comment on “the perception of emotions by ear and by eye”; by de gelder and vroomen.

Cognition &amp; Emotion, 14(3):313–320, 2000. 47

[156] I. Matthews and S. Baker. Active appearance models revisited. International Journal

of Computer Vision, 60(2):135–164, 2004. 50

[157] G. McKeown et al. The semaine database: Annotated multimodal records of emotionally

colored conversations between a person and a limited agent. IEEE TAC, 2012. 14, 15,

39, 57, 58, 124, 125, 129, 184

[158] G. McKeown, M. F. Valstar, R. Cowie, and M. Pantic. The semaine corpus of emotionally

coloured character interactions. In 2010 IEEE Int. Conf. on Multim. and Expo, pages

1079 –1084, 2010. 164

[159] D. McNeill. The conceptual basis of language / David McNeill. Lawrence Erlbaum

Associates ; distributed by the Halsted Press, Division of Wiley, Hillsdale, N.J. : New

York :, 1979. 47

[160] D. McNeill. So you think gestures are nonverbal? Psychological Review, 92:350–371,

1985. 47

[161] D. Mcneill. Language and Gesture (Language Culture and Cognition). Cambridge Uni-

versity Press, August 2000. 48, 49

[162] H. K. Meeren, C. C. Van Heijnsbergen, and B. De Gelder. Rapid perceptual integration

of facial expression and emotional body language. Proc. of the National Academy of

Sciences of the USA, 102:1651816523, 2005. 47

[163] A. Mehrabian and J. A. Russell. An Approach to Environmental Psychology. MIT Press,

1980. 38

[164] A. Metallinou, A. Katsamanis, Y. Wang, and S. Narayanan. Tracking changes in con-

tinuous emotion states using body language and prosodic cues. In Acoustics, Speech and

Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 2288–2291.

IEEE, 2011. 41, 58

242



Bibliography

[165] K. Mitra, A. Veeraraghavan, and R. Chellappa. Robust rvm regression using sparse

outlier model. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition,

pages 1887–1894, 2010. 105

[166] S. Mitra and T. Acharya. Gesture recognition: a survey. Systems, Man, and Cybernetics,

Part C: Applications and Reviews, IEEE Trans., 2007. 53

[167] J. Montepare, E. Koff, D. Zaitchik, and M. Albert. The use of body movement and

gestures as cues to emotions in younger and older adults. Journal of Nonverbal Behavior,

23:133–152, 1999. 44

[168] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. 72

[169] R. R. N. Ambady. Thin slices of expressive behavior as predictors of interpersonal

consequences : a meta-analysis. Psychological Bulletin, 111(2):256–274, 1992. 46

[170] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput.,

24(2):227–234, 1995. 176

[171] M. H. Nguyen and F. De la Torre. Local minima free parameterized appearance models.

In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,

pages 1–8. IEEE, 2008. 50

[172] M. A. Nicolaou, H. Gunes, and M. Pantic. Audio-visual classification and fusion of

spontaneous affective data in likelihood space. In In Proc. of IEEE Int. Conf. on Pattern

Recognition, pages 3695–3699, 2010. 40, 116

[173] M. A. Nicolaou, H. Gunes, and M. Pantic. Automatic segmentation of spontaneous

data using dimensional labels from multiple coders. In Proc. of LREC Int. Workshop

on Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality,

pages 43–48, 2010. 59, 88, 89, 95, 112

[174] M. A. Nicolaou, H. Gunes, and M. Pantic. Continuous prediction of spontaneous affect

from multiple cues and modalities in valence-arousal space. IEEE TAC, 2011. 25, 34,

58, 81, 105, 128, 155, 185

243



Bibliography

[175] M. A. Nicolaou, H. Gunes, and M. Pantic. Continuous prediction of spontaneous affect

from multiple cues and modalities in valence-arousal space. Affective Computing, IEEE

Transactions on, 2(2):92–105, 2011. 85

[176] M. A. Nicolaou, H. Gunes, and M. Pantic. Output-associative rvm regression for dimen-

sional and continuous emotion prediction. In Proceedings of IEEE FG’11, pages 16–23,

Santa Barbara, CA, USA, March 2011. 124, 125

[177] M. A. Nicolaou, S. Zafeiriou, and M. Pantic. Correlated-spaces regression for learning

continuous emotion dimensions. In Proceedings of the 21st ACM international conference

on Multimedia, pages 773–776. ACM, 2013. 125

[178] H. Ning, T. Han, Y. Hu, Z. Zhang, Y. Fu, and T. Huang. a realtime shrug detector.

Proc. of the IEEE Int. Conf. on Automatic Face and Gesture Recognition, 2006. 53

[179] X. Niyogi. Locality preserving projections. In Advances in neural information processing

systems 16: proceedings of the 2003 conference, volume 16, page 153. The MIT Press,

2004. 196, 217, 218

[180] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 24(7):971–987, 2002. 51, 52

[181] A. M. Oliveira, M. P. Teixeira, I. B. Fonseca, and M. Oliveira. Joint model-parameter

validation of self-estimates of valence and arousal: Probing a differential-weighting model

of affective intensity. In Proc. of the 22nd Annual Meeting of the Int. Society for Psy-

chophysics, pages 245–250, 2006. 17, 86, 95, 104

[182] J. Orozco et al. Hierarchical on-line appearance-based tracking for 3d head pose, eye-

brows, lips, eyelids and irises. Image and Vision Computing, February 2013. 126, 184

[183] C. E. Osgood, G. Suci, and P. Tannenbaum. The measurement of meaning. University

of Illinois Press, Urbana, IL, 1957. 38

244



Bibliography

[184] M. Pantic and M. Bartlett. Machine analysis of facial expressions. In K. Delac and

M. Grgic, editors, Face Recognition, pages 377–416. I-Tech Education and Publishing,

Vienna, Austria, July 2007. 52

[185] M. Pantic, A. Nijholt, A. Pentland, and T. S. Huanag. Human-centred intelligent hu-

man? computer interaction (hci2): how far are we from attaining it? International

Journal of Autonomous and Adaptive Communications Systems, 1(2):168–187, 2008. 15

[186] M. Pantic and I. Patras. Detecting facial actions and their temporal segments in nearly

frontal–view face image sequences. In Proc. of the IEEE Int. Conf. on Systems, Man

and Cybernetics, volume 4, pages 3358–3363, 2005. 51

[187] M. Pantic and I. Patras. Dynamics of facial expression: Recognition of facial actions and

their temporal segments from face profile image sequences. IEEE Trans. on Systems,

Man, and Cybernetics, Part B, 2006. 51, 52

[188] M. Pantic and L. Rothkrantz. Facial action recognition for facial expression analysis

from static face images. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 2004.

51

[189] M. Pantic, M. Valstar, R. Rademaker, and L. Maat. Web-based database for facial

expression analysis. IEEE International Conference on Multimedia and Expo, 2005.,

2005. 44, 55, 187

[190] I. Patras and M. Pantic. Particle filtering with factorized likelihoods for tracking facial

features. In Proc. of IEEE Int. Conf. on Automatic Face and Gesture Recognition, pages

97–102, 2004. 87, 90, 112, 164, 188

[191] B. Paul. Accurate short-term analysis of the fundamental frequency and the harmonics-

to-noise ratio of a sampled sound. In In Proceedings of the Institute of Phonetic Sciences,

pages 97–110, 1993. 90, 113

[192] I. Pavlidis, J. Levine, and P. Baukol. Thermal imaging for anxiety detection. In CVBVS

’00: Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spec-

245



Bibliography

trum: Methods and Applications (CVBVS 2000), page 104, Washington, DC, USA, 2000.

IEEE Computer Society. 47

[193] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical

Magazine, 2:559–572, 1901. 72

[194] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. Rasl: Robust alignment by sparse and

low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Analysis

and Machine Intelligence, 34:2233–2246, 2012. 174, 182

[195] A. Pentland and A. Madan. Perception of social interest. In Proc. IEEE Int. Conf. on

Computer Vision, Workshop on Modeling People and Human Interaction (ICCV-PHI),

2005. 26, 41, 184

[196] S. Petridis, H. Gunes, S. Kaltwang, and M. Pantic. Static vs. dynamic modeling of

human nonverbal behavior from multiple cues and modalities. In Proc. of ACM Int.

Conf. on Multimodal Interfaces, pages 23–30, 2009. 90, 94, 113

[197] P. Petta, C. Pelachaud, and R. Cowie. Emotion-oriented systems. The Humaine Hand-

book, ISBN, 2011. 51

[198] R. W. Picard. Affective computing. MIT Technical Report, 1995. 12

[199] M. K. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filters. J. Am.

Statistical Association, 94(446):590–616, 1999. 87, 91, 113

[200] R. Plutchik and H. R. Conte. Circumplex models of personality and emotions. Wash-

ington, DC: American Psychological Association, 1997. 38

[201] R. Poppe. Vision-based human motion analysis: An overview. Computer Vision and

Image Understanding, 2007. 53

[202] S. J. D. Prince and J. H. Elder. Probabilistic linear discriminant analysis for inferences

about identity. In ICCV, 2007. 195, 214, 215, 216, 217

246



Bibliography

[203] R. Provine. Yawns, laughs, smiles, tickles, and talking. In J. A. Russell and J. M.

Fernandez-Dols, editors, The Psychology of Facial Expression, pages 158–175. 1997. 46

[204] W. Qian and D. Titterington. Estimation of parameters in hidden markov models. Phil.

Trans. of the Royal Society of London. Series A: Physical and Engineering Sciences,

337(1647):407–428, 1991. 203

[205] L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice Hall, united

states ed edition, Apr. 1993. 153, 154, 161
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Appendix A

Unified Framework for Probabilistic

Component Analysis

In what follows, we detail a set of derivations regarding the proposed Unified Framework

on Probabilistic Component Analysis (Chapter 11). In more detail, we go through the full

derivation of EM-PCA, as well as present an extension of the family of models presented in

Chapter 11 to mixtures of component analysers.

A.1 EM for PCA

Firstly, we define a fully connected prior on the latent variables:

P (Y|β) = 1

Z
exp

⎧⎨
⎩−

N∑
n=1

1

2σ2
n

T∑
i=1

1

T − 1

T∑
j=1,j �=i

(yn,i − λnyn,j)
2

⎫⎬
⎭ (A.1)

where β = {σ1:N , λ1:N}. By expanding the normalising integral we obtain1

P (yi|E[yj ]j �=i, β) =
exp
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(A.2)

1In Chapter 11 we use the general P (yi|m(R)
i , β) for P (yi|E[yj ]j �=i, β), where here m

(R)
i = m

(PCA)
i
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where the internal part of the exponent becomes:

−1

2

N∑
n=1

1

σ2
n

T∑
i=1

1

T − 1

T∑
j=1,j �=i

(y2n,i − 2λnyn,iE[yn,j ] + λ2
nE[y

2
n,j ])

= −1

2

N∑
n=1

1

σ2
n

T∑
i=1

⎛
⎝y2n,i − 2yn,i

⎡
⎣λn

1

T − 1

T∑
j=1,j �=i

E[yn,j ]

⎤
⎦+

[
λ2
n

1

T − 1
E[y2n,j ]

]⎞⎠

= −1

2

N∑
n=1

1

σ2
n

T∑
i=1

⎛
⎝yn,i − λn

1

T − 1

∑
j �=i

E[yn,j ]

⎞
⎠2

+ c (A.3)

hence,

P (yi|E[yj ]j �=i, β) ∼ N (yi|mi,Σ) (A.4)

where mi = Λ 1
T−1

∑T
j �=i E[yj ], Σ = diag(σ2

1, . . . , σ
2
N ), and Λ = diag(λ1, . . . , λn).

Therefore:

P (yi|E[yj ]j �=i,Ψ) =
P (xi|yi, θ)P (yi|E[yj ]j �=i, β)∫

yi
P (xi|yi, θ)P (yi|E[yj ]j �=i, β)dyi

(A.5)

where θ = {W, σx} and Ψ = {θ, β}. The observed probability is defined as

P (xi|yi, θ) = N (xi|Wyi, σ
2
xI) (A.6)

and the mean of the posterior is found as

E[yi] =

∫
yi
yiP (xi|yi, θ)P (yi|E[yj ]j �=i, β)dyi∫

yi
P (xi|yi, θ)P (yi|E[yj ]j �=i, β)dyi

(A.7)

where by considering Eq. A.4 and A.6

E[yi] = E
[
N (xi|Wyi, σ

2
xI)N (yi|mi,Σ)

]
(A.8)

where we have a product of Gaussians whose expected value (mean) we are interested in. By

completing the square for yi:

E[yi] =
(
WTW + Σ̂

−1
)−1 (

WTxi + Σ̂
−1

mi

)
(A.9)
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where now Σ̂mn = δmn

[
Σmn
σ2
x

]
. Similarly for the variance,

E[yiy
T
i ] = σ2

x
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WTW + Σ̂

−1
)−1

+ E[yi]E[yi]
T (A.10)

Having recovered the first order moments, we move on to the maximisation step. By denot-

ing Ψ as the complete set of parameters, we optimise:

θ = {W, σx} = argmax
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(A.11)

Subsequently, we maximise the log-likelihood wrt the parameters, recovering the update equa-

tions:
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(A.13)

∂L(W, σx)

∂σx
= 0 ⇒ σ2
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FT
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(A.14)

When maximising the σn and λn parameters, the maximisation step is as follows:
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β = {σn, λn} = argmax
T∑
i=1
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where
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where ∫
yi

yT
i Σ

−1yiP (yi|E[yj ]j �=i,xi,Ψ)dyi = Tr[E[yiy
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−1] (A.20)
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the log-likelihood now becomes:

= T ln
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(2π)N/2
− T
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and finally, by taking the derivatives:

∂L

∂σn
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1

σn
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A.2 Mixtures of Component Analysers

In several applications, fitting a single Gaussian to the data is unrealistic and proves to be

suboptimal. In this section, we formulate a mixture model for our unified framework for prob-

abilistic component analysis, in effect providing mixture models for PCA, LDA, LPP and SFA.

Note that in this section, we drop the dependence on the MRF model in order to avoid clutter-

ing the notation. Assuming the linear model utilised in Chapter 11, the joint-data likelihood

for a mixture of M component analysers with T the number of data samples can be defined as

P (x,y1, . . . ,yM ) =

T∏
i=1

[
M∏

m=1

πzim
m P (xi|ym

i )P (ym
i )

]
(A.26)

where πi is the corresponding mixing proportion with πi ≥ 0 and
∑M

i πj = 1, while zij

is a binary vector labelling which mixture model is responsible for each data point i. The
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log-likelihood is defined as

Lc =
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M∑
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zimln [πmP (xi|ym
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i |mm
i , β)] (A.27)
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In the expectation step, we recover the first order moments for each mixture component m

as

E[ym
i ] =

∫
ym
i

ym
i P (ym

i |xi,m
m
i ,Ψ)dym

i (A.29)

=
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WT
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+ E[ym
i ]E[ym
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while the expected value of zim, which represents the responsibility of mixture m for data

point xi is found as

E[zim] =
πm
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i |mm
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i
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n πn
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Where P (xi|Ψm) = N (BmWmAΣ̂−1
m mi, σ

2
xBm), withA = (WT

mWm+Σ̂−1)−1 andBm = (I−
WmAWT

m)−1. Taking the expectation of the likelihood with respect to posterior distributions

and obtaining the derivative for each parameter, we obtain the maximisation step updates.

Note that the constraint
∑

i πi = 1 needs to be incorporated, and can be achieved using a

Lagrange multiplier, similarly to [247]. This leads to the update

πm =
1

T

T∑
i=1

E[zim]. (A.32)
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The weights for each mixture model m are updated as

Wm =
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i ]T

][
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i ym

i ]T ]
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(A.33)

while the variances are found as
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