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Abstract

The ability to understand the story is essential to make humans unique from other

primates as well as animals. The capability of story understanding is crucial for AI

agents to live with people in everyday life and understand their context. However,

most research on story AI focuses on automated story generation based on closed

worlds designed manually, which are widely used for computation authoring.

Machine learning techniques on story corpora face similar problems of natural

language processing such as omitting details and commonsense knowledge. Since

the remarkable success of deep learning on computer vision field, increasing our

interest in research on bridging between vision and language, vision-grounded

story data will potentially improve the performance of story understanding and

narrative text generation.

Let us assume that AI agents lie in the environment in which the sensing

information is input by the camera. Those agents observe the surroundings,

translate them into the story in natural language, and predict the following event

or multiple ones sequentially. This dissertation study on the related problems:

learning stories or generating the narrative text from image streams or videos.

The first problem is to generate a narrative text from a sequence of ordered

images. As a solution, we introduce a GLAC Net (Global-local Attention Cas-

cading Network). It translates from image sequences to narrative paragraphs in

text as a encoder-decoder framework with sequence-to-sequence setting. It has

convolutional neural networks for extracting information from images, and recur-

rent neural networks for text generation. We introduce visual cue encoders with

stacked bidirectional LSTMs, and all of the outputs of each layer are aggregated
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as contextualized image vectors to extract visual clues. The coherency of the

generated text is further improved by conveying (cascading) the information of

the previous sentence to the next sentence serially in the decoders. We evaluate

the performance of it on the Visual storytelling (VIST) dataset. It outperforms

other state-of-the-art results and shows the best scores in total score and all of

6 aspects in the visual storytelling challenge with evaluation of human judges.

The second is to predict the following events or narrative texts with the former

parts of stories. It should be possible to predict at any step with an arbitrary

length. We propose recurrent event retrieval models as a solution. They train

a context accumulation function and two embedding functions, where make

close the distance between the cumulative context at current time and the next

probable events on a latent space. They update the cumulative context with a

new event as a input using bilinear operations, and we can find the next event

candidates with the updated cumulative context. We evaluate them for Story

Cloze Test, they show competitive performance and the best in open-ended

generation setting. Also, it demonstrates the working examples in an interactive

setting.

The third deals with the study on composite representation learning for semantics

and order for video stories. We embed each episode as a trajectory-like sequence

of events on the latent space, and propose a ViStoryNet to regenerate video

stories with them (tasks of story completion). We convert event sentences to

thought vectors, and train functions to make successive event embed close each

other to form episodes as trajectories. Bi-directional LSTMs are trained as

sequence models, and decoders to generate event sentences with GRUs. We test

them experimentally with PororoQA dataset, and observe that most of episodes

show the form of trajectories. We use them to complete the blocked part of

stories, and they show not perfect but overall similar result.
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Those results above can be applied to AI agents in the living area sensing

with their cameras, explain the situation as stories, infer some unobserved parts,

and predict the future story.

Keywords: Visual Storytelling, Narrative Text Generation, Next Event Pre-

diction, Story Completion, Global-local Attention, Recurrent Event Retrieval

Model, Successive Event Order Embedding

Student Number: 2005-21534
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Chapter 1

Introduction

1.1 Story of Everyday lives in Videos and Story Un-

derstanding

The progress of information technology has rapidly increased the quantity of

data. The immense size of video data is uploaded to the internet everyday.

A great number of people use internet and social network services through

personal computers, and smart devices to record their behavior, knowledge, and

experience as life-logs. The logs can include a sequence of situations, actions or

dialogues of people that can be told as a story.

On the other hand, recently released are socially interactive household

robots such as NAO, Pepper1, and Jibo2. They have video cameras as eyes, and

microphones as ears to take visual-linguistic information of their environment

including a story as above. In a few years, the robots will live humans together,

and they should know common knowledge of everyday lives of humans. Since

1https://www.aldebaran.com/en
2https://www.jibo.com/
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the knowledge of the family members is personal and episodic, the robots should

learn via observation and interaction in the environment (Breazeal, 2004). Ideal

datasets for learning the temporal knowledge of family members include both

observation and interaction collected on real situated environments, but such

data to include contextual stories are not available in public yet. As alternatives,

we assume the robots learn by observation only, thus we will not consider tangible

information in interaction but focus on visual-linguistic media such as video or

some snapshots of images and texts. In this setting, we can utilize video-type

datasets including stories for our research.

In short, it is desirable to study on building situation-aware AI agents such

as household robots living together with humans. Ideally, learning by experience

would be one of good strategies for AI agents due to similarity of humans, but

currently, it is limited so far. So, learning by observation (learning by showing)

may be one of the alternative strategies, which is advantageous to use video-type

materials increasing everyday.3

Let us take one more step to further concretize our research from the above

scenario. Temporal knowledge of family members can be called situation to be

told by people. Since the term situation is not an explicit concept, it is not

easy to define and describe. From the philosophy of end-to-end training, we

can describe it using natural language, which is human-readable. Then we can

adopt the narrative text generation as a surrogate task for situation explanation.

Story generation tasks are one of interesting field so-called Narrative Intelligence

(NI) (Riedl, 2016; Mani, 2013) in AI academia. We can expect to combine the

research result from NI in the future.

3License issues are still remained to solve.
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Figure 1.1 Research vision and a scenario: Building situation understanding AI
agents such as household robots living together with humans. They need to
learn by observation and interaction ideally.

1.2 Problems to be addressed

From the above section, we introduced a big scenario of situation-aware AI

agents. To convert our setting to a feasible problem, we induce narrative text

generation as situation explanation with visual-linguistic data including stories.

Our ultimate research goal is to develop narrative text generation systems

via learning stories from visual contents. Through this dissertation, we introduce

three works as main components for the above system as follows (Figure 1.2):

• The task of visual storytelling is to generate story paragraphs from image

sequences. This dissertation introduces GLAC Nets as solutions. It can be

used as ’situation interpretation from vision’.

• The task of next event prediction is to predict the following events con-

sidering the context of input by the current. We present recurrent event
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retrieval models as solutions. It can be used as ’situation prediction’.

• The task of story regeneration is to generate the whole story from the

partial ones. We demonstrate the methods for embedding stories as tra-

jectory forms and ViStoryNet. It can be used as ’unseen event inference

from partially observed situation’.

Also, we utilize two visual-linguistic dataset and text story dataset as shown

Figure 1.2 and 1.3. In particular, visual-linguistic datasets are relatively rare.

PororoQA dataset (Kim et al., 2017) is one of kids video datasets. Our

purpose to use Kids video datasets is to take some advantages (Heo et al., 2010;

Ha et al., 2015; Kim et al., 2017): (1) omnibus style, which each episode has

simple and explicit storyline in short, (2) narrative order mostly using fabula,

which follows chronological sequencing of the events, whereas syuzhet is a term

to designate the way a story is organized to enhance the effect of storytelling

(Mani, 2013). (3) relatively small number of main characters and limited spatial

environment. This is effective to reduce computational burden and data sparsity.

Also, these properties are so desirable to provide as surrogate data similar to

that of everyday lives in compact and explicit way.

For the task of visual storytelling, we make use of the Visual Storytelling

dataset (VIST) (Huang et al., 2016). The VIST dataset is the first dataset

created vision-to-language of the form of sequence-to-sequence and other story

related tasks. The authors want it to be ”storyable”, thus they deeply use NLP

techniques to filter the albums in Flickr data to be what they want. The words in

the title are classified as an EVENT using WordNet3.0, the albums are allowed

to include with 10 to 50 photos where all album photos are taken within a

48-hour span and CC-licensed. It consists of story-like image sequences paired

with: descriptions to form a narrative over an image sequence (images/sentences

4



Figure 1.2 Three problems to solve in this dissertation

Figure 1.3 Three datasets to be used in this dissertation
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Figure 1.4 Summary of contributions

aligned each). It consists of 50,200 sequences (stories) using 209,651 images

(train: 40,155, validation: 4,990, test: 5,055), and the length is 5.

1.3 Approach and Contribution

We propose three methods to learn latent embeddings to three problems in

Figure 1.1. A latent embedding approach is to find a intermediate latent space

and utilize it to solve the given problems. Each problem is solved with different

ideas based on latent embedding as shown in Figure 1.5.

For the problem to generate a story in text from a sequence of ordered

images, we introduce a GLAC Net (Global-local Attention Cascading Network).

It translates from image sequences to story paragraphs in text as a encoder-

decoder framework with sequence-to-sequence setting as shown in Figure 1.5

(a). It has convolutional neural networks for extracting information from images

6



Figure 1.5 A comparative view of three approaches with respect to latent
embedding

and recurrent neural networks for text generation. We introduce visual cue

encoders with stacked bidirectional LSTMs, and all of the outputs of each layer

are aggregated as contextualized image vectors to extract visual clues. The

coherency of the generated story is further improved by conveying (cascading)

the information of the previous sentence to the next sentence serially in the

decoders. We evaluate the performance of it on the Visual storytelling (VIST)

dataset. It outperforms other state-of-the-art results and shows the best scores in

total score and all of 6 aspects in the visual storytelling challenge with evaluation

of human judges.
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For the problem to complete partially observed stories, we propose succes-

sive event order embedding (SEOE) for composite representation learning for

semantics and order for video stories. SEOE embeds each episode as a trajectory

form on the latent space, and we propose a ViStoryNet to regenerate video

stories (Heo et al., 2018). We convert sentences of events to thought vectors,

and train functions to make successive event embed close each other to form

episodes as trajectories as shown in Figure 1.5 (b). We test them experimentally

with PororoQA dataset, and observe that most of episodes show the form of

trajectories. We use them to complete the blocked part of stories, and they show

not perfectly but overall similar result.

For the problem to predict the following events or stories with former parts

of stories with the constraint to be possible at any step within an arbitrary

length, we propose recurrent event retrieval models (RERMs). Figure 1.5 (c)

shows the concept of RERMs. They train a context accumulation function

and two embedding functions, where make close the distance between the

cumulative context at current time and the next probable events on a common

latent space. They update the cumulative context with a new event as a input

using bilinear operations, and we can find the next event candidates with the

updated cumulative context. We evaluate them for Story Cloze Test, they show

competitive performance and the best in open-ended generation setting.

Those results above can be applied to AI agents in the living area sensing

with their cameras, explain the situation as stories, infer some unobserved parts,

and predict the future story.

Additionally, we have done miscellaneous works for video story analysis

(Heo et al., 2010, 2015a; Heo and Zhang, 2016; Heo et al., 2016), probabilisic

global-local modelling (Heo et al., 2013), and probabilistic learning for human

behavior from smartphone lifelogs (Heo et al., 2012, 2015b).

8



1.4 Organization of Dissertation

The rest of this dissertation is organized as follows:

• Chapter 2 presents a background and a survey of the related work. Firstly,

we explain why we study stories. And then, we overview the works on

latent embedding and discuss studies on order and ordinal embedding.

After that, we show the works of story understanding. Next, we introduce

story generation methods in brief.

• Chapter 3 presents ’GLAC Net’ to generate a story in text from a sequence

of ordered images. We show 6 human evaluation criteria, then explain

glocal-lobal attention and cascading mechanisms as key elements to solve.

We show various example cases and the performance of automatic score

metrics and human evaluation.

• Chapter 4 proposes ’Recurrent Event Retrieval Models (RERMs)’ to

predict the following events or stories with former parts of stories. We

explain how to train a context accumulation function and two embedding

functions, where make close the distance between the cumulative context

at current time and the next probable events on a latent space. Then, it

is shown that experimental result for Story Cloze Test and some examples

of open-ended story generation.

• Chapter 5 we describe the study on composite representation learning

for semantics and order for video stories. We propose ’ViStoryNet’ to

regenerate (or complete) the whole stories. We explain how to build the

models and experimental results.

• In Chapter 6, the dissertation is summarized and discuss the directions

for future research.

9



Chapter 2

Background and Related Work

2.1 Why We Study Stories

When we deliver messages to others, use of visual information, such as images

or graphs, is more effective and intense in attracting attention and conveying

information than linguistic media such as text and voice only. Similarly, a story

is very powerful to deliver what speakers want. Stories make listeners involve

thinking, emotion, and imagination altogether, and engage with stories as if

their body and mind are in the narrative world. Narratives provide important

cognitive frameworks for the transfer and accumulation of experience. Humans

have tried to use their experience as well as other people’s actively to build up

the necessary ability to cope with harsh environment for survival. Jerome Bruner,

cognitive psychology and cognitive learning theory in educational psychology,

mentioned as follows (BRUNER, 1986):

Narrative (or story) deals in human or human-like intention and

action and the vicissitudes and consequences that mark their course.

10



It strives to put its timeless miracles into the particulars of experience

and to locate the experience in time and place

To us, we interpret that stories are important function to share experience for

survival. The sharable, deliverable, and distributable nature of stories affects the

building of a socio-culture, i.e., folk psychology, and make form part of so-called

commonsense knowledge. Conversely, to deal with everyday stories as data is

closely related to learning commmonsense.

Arguably, the ability to engage in stories is the unique feature to make

humans humanly. From a talk in Pittsburgh in 1997, the late evolutionary

biologist Stephen J. Gould allegedly characterized humans as ”the primates

who tell stories.” Psychologist Robyn Dawes suggested that humans are ”the

primates whose cognitive capacity shuts down in the absence of a story.” (Dawes,

1999) Research suggests that anecdotes can be as persuasive as hard data, and

that jurors are influenced by the quality of the prosecution’s and defense’s stories

when deciding whether to find a defendant guilty. Similarly, even in science and

engineering, we seek explanations, not mere descriptions; in history, we want a

good narrative, not a mere sequence of events.

Stories have been studied in various forms across a range of disciplines, from

literary and media studies to psychology and linguistics. In Herman (2013)

book ’Storytelling and the Sciences of Mind’, narratives (or stories) work as

an instrument of mind, and then stories are chunking experience as source of

structure. Also, gathering the concept to be spread to other people, they are

extended to Folk Psychology.

But to get a handle on their potential role in human intelligence, it needs to

consider how they have cropped up in AI. Researchers in AI have explored a

potential role for stories since at least the 1990s. In a book ’Tell me a story: A

new look at real and artificial memory’ by Schank (1990), R. Schank argued for a
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crucial link between narrative and intelligence, with narratives guiding learning,

structuring memory and supporting generalization. Winston (2011) claimed the

Strong Story Hypothesis, according to which ”storytelling and understanding

have a central role in human intelligence,” going on to suggest an artificial

system with some human-like capabilities . One reason AI systems might need

to understand or produce stories is because they interact with humans. Indeed,

there is an evidence that people trust robots more, and can work with them

more effectively, when the robots offer more human-like explanations.

2.2 Latent Embedding

From this section, we will introduce some technical related works to ours. Firstly,

the common features of our approaches is latent embedding.

Embedding methods are to convert data instances including discrete ob-

jects to continuous vectors where certain properties can be represented with

distances.1 The properties can be the distances in the lower-dimensional space

(dimensionality reduction), the local distances (manifold learning) 2, the weights

of links in graphs (graph embedding) (Goyal and Ferrara, 2018), the semantics

of natural language entities such as words (word embedding) (Camacho-Collados

and Pilehvar, 2018) or sentences (sentence embedding) (Perone et al., 2018), or

the order of entities (order embedding) (Vendrov et al., 2016).

On the contrary, latent embedding (LE) is a generic approach to find a

useful intermediate space to solve the given problems. Traditionally, the most

well-known example of LE is the canonical-correlation analysis (CCA). CCA

is to find a common latent embedding space via seeking linear combinations

1Mathematically, embeddings are more abstract concept. We focus on practical use of
embedding in this dissertation.

2with the assumption to follow the manifold hypothesis: the data distribution is assumed
to concentrate near regions of low dimensionality. (Cayton, 2005; Ma and Fu, 2011)
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of two random variables X and Y which have maximum correlation (Hotelling,

1936; Härdle and Simar, 2015). LE has been used in various methodologies and

applications since it has some advantageous properties. Firstly, it may alleviate

curse of dimensionality via embedding the raw instances of high-dimensional

features onto the lower-dimensional space. Secondly, it may provide distance-

measurable space on which certain information can be encoded on geometric

elements such as the position or the relation of inter-instances. Mostly, we can

get more efficient representation to highlight useful information retained in the

data. We would divide the LE related approaches into two categories from a

perspective on which role of the latent space takes: (1) common latent space,

and (2) intermediate representation in the encoder-decoder frameworks.

Common space learning uses joint embedding spaces to bridge the gap

between heterogeneous sources, e.g., image and label (zero-shot learning (Socher

et al., 2013; Akata et al., 2016; Changpinyo et al., 2016; Xian et al., 2016; Zhang

and Saligrama, 2016)), image and description (Frome et al., 2013; Kiros et al.,

2014), and two sentences in different languages (Johnson et al., 2016b). Also,

they can be used to consider various options in one way such as multi-class

classification (Amit et al., 2007; Weinberger and Chapelle, 2009) and answer

selection in question and answer (Yu et al., 2014; Wang and Nyberg, 2015;

Deepak et al., 2017). In this dissertation, we introduce two works to use this

approach. The first ones represents cumulative context in the stories in Chapter

4. Also, Chapter 5 shows how to embed episodes to form trajectories, then build

neural networks with them for the task of story completion.

Intermediate representation in the encoder-decoder framework forwards to

the decoding module from the encoding module. Mostly, the dimension of the

codes, the output of the encoder, is lower than that of the input. Typically,

encoders work as raw data converters to features, decoders generate the output
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as solutions. While auto-encoders are typical examples traditionally, practically

powerful cases have shown in the deep learning frameworks. The most related

configuration to ours is sequence-to-sequence architecture (Sutskever et al.,

2014a). It shows impressive results for language translation tasks (Cho et al.,

2014; Johnson et al., 2016b) and image captioning tasks (Vinyals et al., 2015). In

the subsection 2.5.2, we will review sequence-to-sequence with attention models

and works on vision-to-language translation.

2.3 Order Embedding and Ordinal Embedding

Since Mikolov et al. (2013)’s word2vec became popular, various neural embedding

methods have been developed from word, sentence, to structured objects such

as graphs, trees, and etc. We will focus on order embedding as background of

our work, and story generation for our experiments as applications.

Ordinal Embedding and Order Embedding Ordinal embedding is also

called non-metric multidimensional scaling consists of finding an embedding of

a set of objects based on pairwise distance comparisons (Borg and Groenen,

2005) with pioneering contributions from Shepard and Kruskal. Formally, given

a set of ordinal constraints of the form distance(i, j) < distance(k, l) for some

quadruples (i, j, k, l) of indices, the goal is to construct a point configuration

x1, · · · , xn in Rp that preserves these constraints as well as possible. This problem

is relaxed with solving a semi-definite program, generalized non-metric MDS

was introduced (Agarwal et al., 2007). For embedding nearest neighbor graphs

onto Euclidean space, structure preserving embedding (SPE) was researched

based on similar approaches (Shaw and Jebara, 2009). Terada and von Luxburg

(Terada and Luxburg, 2014) showed that if a k-nearest neighbor graph is given

as local ordinal constraints, we can reconstruct the point set. Also, they showed

that statistical consistency is valid. Consistency can be extended from quadruple
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learning to triple learning as proven in (Arias-Castro et al., 2017).

In the machine learning community, the work of Jamieson and Nowak (2011)

investigates a lower bound for the minimum number of comparison queries of

the form “Is object xk closer to xi than xj ?” As ranking problems, an ordinal

embedding with pairwise comparison also researched (Jamieson and Nowak,

2011; Ailon, 2012; Wauthier et al., 2013).

In deep learning era, another important work is Vendrov et al. (2016). They

defined learning order embedding as by learning a mapping which is not distance-

preserving but order-preserving. They developed order embedding methods

with triplet ranking loss and order violation penalty for hypernym prediction,

textual entailment, and image captioning. This approach focus on the partial

order structure in the semantic hierarchical relations, and train their embedding

functions for partial order completion. From this work, other extended researches

are introduced (Li et al., 2017; Wehrmann et al., 2018).

2.4 Comparison to Story Understanding

It is difficulty task to measure how well stories understand, even to humans. The

first series of representative tasks for that are to generate description, explanation

and story itself, similar to image captioning for image understanding. The second

series are to answering to the questions. To quantify the performance, question

and answering is relatively easier with the measurable accuracy. On the other

hand, the task of story generation suffers from the lack of measuring tools. We

will discuss this issue in Chapter 3 again.

Textual Story Understanding As similar works without visual cues, we

can categorize into two tasks: question answering and generation. there are

text comprehension tasks such as bAbI tasks (Weston et al., 2015), SQuAD

(Rajpurkar et al., 2016) and Story Cloze Test (Mostafazadeh et al., 2016). They
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have been used for benchmarking new algorithms on document comprehension.

Visual Story Understanding Recently, research fields that combine com-

puter vision and natural language processing, such as image caption generation

and visual question answering (VQA), are also growing fast (Antol et al., 2015).

The image captioning system generates a natural language sentence describes

the scene with the image as an input; VQA system generates an answer to the

question by taking the natural language question and the related image. Even

though there are a lot of works for VQA as shown in this survey (Wu et al.,

2017), relatively less number of works for video QA (YouTube-8M (Abu-El-Haija

et al., 2016), MSR-VTT (Xu et al., 2016)) are due to high complexity and the

paucity of data. Still, more focused on activity recognition and pose estimation

such as Sport-1M (Karpathy et al., 2014), ActivityNet (Caba Heilbron et al.,

2015), and Kinetics (Kay et al., 2017; Carreira and Zisserman, 2017). To avoid

high complexity, some works focus more specific like TGIF-QA (Jang et al.,

2017) (the number of the repeated actions) and Mario-QA (Mun et al., 2017)

(limited to specific game environment).

To deal with stories with longer time scale, most of them are used augmented

information in text: aligning movies and books (Zhu et al., 2015), movie descrip-

tion (Rohrbach et al., 2015), movie QA on synopsis and script (Tapaswi et al.,

2016a), Pororo QA, which built from kid videos with dialogues and descriptions

(Kim et al., 2017). Very recently, new dataset is released on TV drama series

with QA annotation, TVQA (Lei et al., 2018).

2.5 Story Generation

Most traditional story generation systems have used planning-based approaches

(Lebowitz, 1985; Riedl and Young, 2010) or case-based reasoning (Gervás et al.,

2005) for entertainments and educations. While they show practically impressive
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results for story generation and story authoring applications (Kybartas and

Bidarra, 2017; Kapadia et al., 2017), they need a large size of domain knowledge

to concretize the story hypotheses: the characters involved, what their goals

are, how they interact, how they make effects on the world. Recently, machine

learning technologies have been focused for story generation on open domains

from available story corpora playing a role of domain knowledge.

Learning Textual Story Generations: While story generation technolo-

gies as authoring tools are actively researched area (Dai et al., 2017), we focus

on learning-based approaches. Mostly, text-based novels have researched on the

focus of plots, e.g., folktales (Finlayson, 2012), suspenses (O’Neill and Riedl,

2014). For open-domain storytelling, some recent works focused on how to

construct narrative models automatically: crowd-sourced narrative learning

(Li and Riedl, 2015), Swanson and Gordon (2012) built SayAnything system

using textual case-based reasoning interactively with human’s response and

feedback. McIntyre and Lapata (2009) built story generation systems randomly

and ranking with coherence/interest score models trained with SVMs. Recently,

Martin et al. (2017) trained sequence-to-sequence models using recurrent neural

networks with memory cells to represent event-to-event, and event-to-sentence

relationships. And they utilized it to predict the next event and to generate

narratives.

2.5.1 Abstract Event Representations

To accomplish story generation, researchers have focused on the narrative

chains with NLP-based abstract representation. Chambers and Jurafsky (2008)

introduce narrative cloze test and learn causal event chains that revolve around

a protagonist. They developed an abstract representation that only care for the

verb that occurred and the type of depend-ency that connected the event to
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the protagonist. Pichotta and Mooney (2016) expanded it to a 5-tuple event

representation of (verb, subject, direct object, prepositional object, preposition).

Martin et al. (2017) refined the event representation with modifier term such as

(s,v,o,m) where v is a verb, s is the subject of the verb, o is the object of the verb,

and m is the modifier working as a wildcard. To pursue generalized semantics,

they use wordnet and verbnet. And story cloze test (SCT) (Mostafazadeh et al.,

2016) we will use mainly is the task of choosing the right ending between two

given sentences. SCT converted story generation into a binary classification

problem. 4-sentence story is given with two possible endings as the 5-th sentence.

2.5.2 Seq-to-seq Attentional Models

Sequence-to-sequence models (Sutskever et al., 2014b) were introduced for

machine translation task based on source-target paired textual corpora. To

improve performance of the target text generation, attentional models provide

connections of all hidden information of encoders of sequence models (Bahdanau

et al., 2014; Luong et al., 2015) as Figure 3.2. Recently, self-attention (or intra-

attention) (Lin et al., 2017) and key-value attention (Vaswani et al., 2017)

introduced intra-connections on source or target language. Especially, global-

local attentional models (Luong et al., 2015) considered overall information

of encoded source (global) and that of focused position (local) together. It is

conceptually similar, but our proposed method are different in design level of

submodules, connection to submodules each other caused from the focus on

multi-modal setting.

Images to Single-text: Since AlexNet (Krizhevsky et al., 2012) as a

milestone, object recognition and detection methods have grown explosively and

outperformed human ability of capturing objects in accuracy aspect (Geirhos

et al., 2017). While modeling the inter-relation between source-target texts for
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machine translation tasks, attention models for computer vision pursue modeling

salient areas in complex visual inputs such as Scene/video description tasks (Xu

et al., 2015; Johnson et al., 2016a; Karpathy and Fei-Fei, 2017; Donahue et al.,

2015) and image/video question answering tasks about the stories (Tapaswi

et al., 2016b; Kim et al., 2017, 2018).

2.5.3 Story Generation from Images

Huang et al. (2016) introduce the VIST dataset consisting of sequential images

and natural language sentences, and discussed how this data could be used for

visual storytelling tasks. They show the result of basic sequence-to-sequence

models as baselines.

Retrieval-based approaches The first work for multiple-frame to multi-

sentence modeling is done by Park and Kim (2015). They use a coherence model

in textual domain for resolving the entity transition patterns between sentences.

However, they define the coherence as rigid word reappearance frequency, which is

unable to address the semantic gap and therefore cannot fully express the deeply

meaning. Moreover, they focus on textual coherence without acknowledging the

problem of large visual variance. Liu et al. (2017) developed semantic embedding

of the image features on the bi-directional recurrent architecture to generate

a relevant story to the pictures. There are similar points to ours since it used

bi-directional recurrent architecture for embedding image sequence context with

the VIST dataset.

Adversarial training for generation Adversarial training strategies in

reinforcement learning framework were tested on this task (Wang et al., 2018b,a).

They have generator networks and reward models separately, the result of

generators provides examples to calculate the reward with the reward models

such as discriminators (Wang et al., 2018a) or regressors (Wang et al., 2018b).
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The rewards give feedbacks to generators to generate more realistic fake examples.

In the work (Wang et al., 2018a), the first discriminator checks whether an

image and the corresponding sentence is well-matched, generated, or shuffled.

The second one classifies whether a paragraph story comes from the dataset, it

is generated one, or shuffled sentence in order. It has shown the state-of-the-art

performance with respect to automated metric scores.
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Chapter 3

Visual Storytelling via
Global-local Attention Cascading
Networks

3.1 Introduction

In some years, deep learning have brought about breakthroughs in processing

image, video, speech and audio. The field of natural language processing (NLP)

has been also interested in deep learning, e.g., sentence classification (Kim,

2014), language modeling (Bengio et al., 2003; Mikolov et al., 2013), machine

translation (Sutskever et al., 2014b; Bahdanau et al., 2014; Vaswani et al., 2017),

and question answering (Hermann et al., 2015).

Naturally, bridging images and texts by deep learning has been following

(Belz et al., 2018) such as image captioning (Vinyals et al., 2015; Xu et al., 2015;

Karpathy and Fei-Fei, 2017), visual question answering (Antol et al., 2015; Kim

et al., 2016), and image generation from caption (Reed et al., 2016; Zhang et al.,

2017).
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Figure 3.1 Examples of the task of visual storytelling and image captioning.
Both of captions and stories are annotated by human workers. Two stories are
very different. Blue emotional words and red clauses from story text are more
subjective than captions. Best viewed in color.

Narratives (or stories) are fundamental parts of human intelligence as well as

social intelligence (Herman, 2013; Winston, 2011; Chomsky, 2010). They serve

as vehicles to share experience, information and intentions via languages. With

the perspective, to generate a narrative paragraph of multiple coherent sentences

from an ordered photo stream is an interesting and fundamental challenge on

both computer vision and natural language processing (NLP). This task is

called as ’Visual Storytelling’ (Huang et al., 2016). This is challenging because

of the difficulties such as detecting the visual clues spread on photo streams,

understanding contexts or situations, constructing narrative structures, and

generating the paragraph written in an expressive way for storytelling.

So far, most of researches have much focused on visual captioning (Vinyals
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Figure 3.2 Comparative view of sequence-to-sequence models and image-to-text
models. For text-to-text translation, seq-to-seq models with attention were
introduced (Bahdanau et al., 2014; Luong et al., 2015). In multi-modal cases, it
is important to extract features of salient parts, and deliver them to appropriate
position. The rightmost figure shows the global-local configuration for our
problem setting to use context information with attention and direct relation
from input objects to output objects.

et al., 2015; Xu et al., 2015; Karpathy and Fei-Fei, 2017; Donahue et al., 2015;

Belz et al., 2018) to show impressive results, which aim at describing the content

of an image or a video in an objective expression style. Still, their capability of

story generation is restrictive.

In this paper, we further investigate the capabilities in understanding more

visual scenarios, composing more structured expressions, and creating better

narrative paragraphs from image sequences. The main challenges of this task

are as follows; At first, different from single image captioning, we should gen-

erate multiple coherent sentences to be focused on one theme, well-structured,

grammatical and well-organized. All the while, they should be image-specific

sentences within the context of overall images while those properties are main-

tained. Secondly, stories are more diverse than descriptions. If visual cues are

appropriately relevant on the story text, humans may accept totally different

stories as shown in Fig 3.1. This observation is valid on the VIST dataset

23



(Huang et al., 2016), too. Technically, it causes the severe problem of automatic

evaluation using popular metrics such as BLEU (Papineni et al., 2002), ME-

TEOR (Banerjee and Lavie, 2005), ROUGE (Lin, 2004), and CIDEr (Vedantam

et al., 2015), which are all compared to golden answers. As the more diverse

stories are acceptable, the probabilities to match with golden answers get lower.

As reported in (Kilickaya et al., 2017), the correlation coefficients to human

evaluation are not so good: most correlated one is METEOR with the value

∼0.44 on the composite dataset1 For the VIST dataset, (Huang et al., 2016)

looked for the best correlated metric: METEOR with ρ=0.22. Notably, one of

recent works (Wang et al., 2018b) using reinforcement learning (RL) with metric

scores as rewards showcases an adversarial example with average METEOR

score as high as 40.2:

We had a great time to have a lot of the. They were to be a of the.

They were to be in the. The and it were to be the. The, and it were

to be the.

Conversely, they report to observe many relevant and coherent stories with

low scores (nearly zero). To avoid this problem, we take a detour to utilize

mainly human evaluation to measure their performances with criteria proposed

in the Visual Storytelling challenge (Huang et al., 2018b).

To deal with the difficulties, we propose Global-local Attention Cascading

Network (GLAC Net) that a sequence-to-sequence model with combination

of global-local attention and context cascading mechanism. The model incor-

porates two simple attention: a global level to process overall encoding of

context/narrative structure to text generator; a local one that chooses a certain

image from a sequence of visual cues. Specifically, we introduce the visual cue

1a mixture of Flickr8k, Flickr30k and MS-COCO
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Figure 3.3 Density estimate plots over automated metric scores with variants of
human answers on the image captioning task (Kilickaya et al., 2017) based on
Flickr8k, Flickr30k and MS-COCO dataset. While METEOR shows the best
correlation, the average value is ∼ 0.44.

encoder with stacked bi-directional LSTMs, and all of outputs of each layers

are aggregated as contextualized image vectors. It can be interpreted as giving

a multi-level representation, i.e., overall context encoding level (global) and

image feature level (local). We give local attention on image features directly

(Figure 3.2). Then, both of them are combined and sent to RNN-based sentence

generators.

The next point is context cascading mechanisms. To improve the coherency

of generated stories, we design models to convey the last hidden vector in the

sentence generator to the next sentence generator as initial hidden vector while

keeping the concept of global-local attention model.

Recently, the VIST dataset was released for the task of visual storytelling,

which is composed of five-sentence stories, descriptions and the corresponding

sequences of five images (Huang et al., 2016). We test our methods with them

and outperform the state-of-the-art (SOTA) works with all 6 aspects of human

evaluation criteria proposed by (Huang et al., 2018a), which was proved from
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the 1st visual storytelling challenge 2 by human judges.

3.2 Evaluation for Visual Storytelling

Before we introduce how to deal with the task of visual storytelling, which is to

generate a story of sentence sequence from a given sequence of images, we consider

evaluation criteria to establish our goals of modeling. Due to the emergence

of inter-relationship of sentences in the generated stories, we need appropriate

measures what good stories are. While typical automatic evaluation metrics for

sequence generation tasks such as BLEU, METEOR, ROUGE, CIDEr, SPICE,

and WMD are based on similarity to golden answers, they are not appropriate

as objective functions (Wang et al., 2018b), and the correlations to human

evaluation are not so high (Kilickaya et al., 2017). Different from single-sentence

generation tasks, we should consider the properties of the generated sentences

to be focused on one theme, well-structured, grammatical and well-organized.

Recently, one of interesting criteria were introduced in the visual storytelling

challenge (Huang et al., 2018b,a) as follows:

1. ”The story is focused”: Each sentence of the story is relevant to the

rest of the story?

2. ”The story is coherent”: The story is well-structured, grammatical

and well-organized?

3. ”I would share”: If they were users’ photos, the users have a will to

share their experience with their friends?

4. ”Written by a human”: The story sounds like it was written by a

human?

2Here is the page for visual storytelling challenge: http://www.visionandlanguage.net/
workshop2018/

26



5. ”Visually grounded”: The story directly reflects concrete entities in the

photos?

6. ”Detailed”: The story provides an appropriate level of detail?

Even though they need human labors for evaluation, it is advantageous to cover

several aspects such as overall properties (1,2), degree of satisfaction (3), human

likeness (4), and image-specificity (5,6). Those provide a good guideline what

kinds of points should be considered into models.

3.3 Global-local Attention Cascading Networks (GLAC
Net)

We formulate the task of visual storytelling as a sequence-to-sequence learning

problem, which the input is a sequence of images and the output is a sequence of

sentences including the corresponding stories. Briefly, our methods are composed

of two stages: (1) representation learning of image sequences as encoders, and

(2) textual story generators as decoders. We are given a sequence of images V =

{v1, v2, ..., vT } and the corresponding sequence of sentences S = {s1, s2, ..., sT }.

Note that the length of V and S is the same value T . Each si = {w1, w2, ..., wT ′}

in S is a sequence of words, which is not limited rigorously in only one sentence,

it can have one or two sentences. The length T ′ in si is not fixed depending on

the sequence. To indicate the starting point and the end point of si, we add

<START> and <END> symbols as special words in the word vocabulary.

Similar to sequence-to-sequence model setting (Sutskever et al., 2014b), we

define the objective of training as to estimate the conditional probability p(S|V )

with LSTM language model to decode textual stories.

p(S|V ) = p(s1, s2, ..., sT |v1, v2, · · · , vT )

=
T∏
t=1

p(st|s1, · · · , st−1, v1, · · · , vT )
(3.1)
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Note that the formulation becomes the same to the image captioning framework

(Vinyals et al., 2015) if T = 1.

Different from the text, the variance of values in V representing at the

pixel-level is very high even though the context of V is the same. To get better

estimated probabilities, we can encode images using pretrained Convolutional

Neural Networks (CNNs) such as VGGNet (Simonyan and Zisserman, 2015) or

ResNet (He et al., 2015), which have been used for various computer vision tasks,

and are currently state-of-the-art for object recognition and detection. These

features represent single images as real-valued vectors with smaller number of

dimension than the one of image pixels.

XCNN = {x1, x2, ..., xT } = CNN(V ) (3.2)

Then, we can rewrite more effective formula p(S|XCNN) instead of p(S|V ). XCNN

is the features of each image separately.

3.3.1 Encoder: Contextualized Image Vector Extractor

Similar to (Bahdanau et al., 2014), we use bi-directional LSTMs (BiLSTM)

as main components of context encoders. BiLSTM consists of forward and

backward LSTM’s. The forward LSTM
−→
f reads the input sequence as it is

ordered, and computes a sequence of forward hidden states (
−→
h1, · · · ,

−→
hT ). The

backward LSTM
←−
f reads the input sequence in the reverse order, and generates

a sequence of backward hidden states (
←−
h1, · · · ,

←−
hT ). Typically, the layer output

ht at time t is the concatenation of two directional outputs [
−→
ht ;
←−
ht ].

Recently, context word embeddings, e.g., CoVe (McCann et al., 2017) and

ELMo (Peters et al., 2018) were developed to provide transferrable pre-trained

encoder for a variety of NLP tasks similar to CNNs trained on ImageNet for

computer vision. They embed words as additional real vectors to include the
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Figure 3.4 Our proposed model architecture for visual storytelling. Basic encoder-
decoder structure. Note that activation function (ReLU), dropout, batch nor-
malization, and softmax layer are omitted for readability. Best view in color.

context information within the sentence using the outputs of each layers of

stacked BiLSTM. Inspired from the contextualized word embeddings, we design

an encoder module of neural networks to convert sequences of image vectors onto

contextualized ones within the given image sequence. Specifically, we introduce

the visual cue encoder with stacked BiLSTM with residual connections, and all

of each layer’s output are aggregated as contextualized image vectors for one

image in the visual cue as shown Figure 3.4. We check the quality of generated

result depending on the number of layers, stacked models show slightly better

than single-layer one.

For each image feature xt, a L-layer BiLSTMs computes a set of 2L repre-

sentations: ht,j = [
−→
ht,j ;
←−
ht,j ] is the concatenated output for each BiLSTM layer
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where j is the layer index (j = 1, · · · , L).

For the aggregation functions of all output of BiLSTM layers, we consider

concatenation of all layers (all), concatenation of the input and the last layers

(tb), element-wise summation (ews), element-wise product (ewp), and mixed

operations.

fall
t = [xt;ht,1; · · · ;ht,L]

f tb
t = [xt;ht,L]

fews
t = xt + ht,1 + · · ·+ ht,L

fewp
t = xt ⊙ ht,1 ⊙ · · · ⊙ ht,L

(3.3)

Note that the dimension of all layer concatenate aggregation is increasing

depending on L, and for the operations of ews or ewp, it needs to match the

dimensions of xt and ht,j .

3.3.2 Decoder: Story Generator with Attention and Cascading
Mechanism

Importance of visual storytelling is how to generate image-specific sentences

within the context of overall images. To achieve the above goal, we design our

models to use both of context information from the output of encoders and raw

image features together.

In the typical global attention (Bahdanau et al., 2014; Luong et al., 2015) in

Figure 3.2, they can refer all hidden information. We give hard constraints on

global attention and local attention since our input object is not a word but an

image.

Let us define sentence generator G, which can generate one or two sentences

with arbitrary length.

(Si, li) = G(o1:T,L, li−1) (3.4)
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where o1:T,L is the d× T matrix of output of the encoder (if d is the value of

dimension), li is the final hidden state of generator G of ith iteration and needs

to define l0 vector before use. G can be implemented with arbitrary RNNs, we

use LSTMs. Si is the ith generated result.

From our experiments, we observe that the constraint to give better perfor-

mance (Figure 3.7) as following:

(Si, li) = G(oi,L, li−1) (3.5)

From the result, different from standard attention models, we do not need to

use activation functions to induce probabilistic distributions such as softmax.3

Also, the GLAC Net implements them in a very simple way via hard connections

from the aggregated outputs of encoders or each image feature onto each

corresponding sentence generator while standard attentional configuration may

need a large number of parameters. The coherency of the generated story is

further improved by conveying (cascading) the information of the previous

sentence to the next sentence serially in the decoders.

The outputs of encoders include overall information of the sequence (global).

On the other hand, the image-specific features are constrained only on the image

(local). The aggregated vector of them (global+local vector) is obtained from

the global-local attention containing the story flow and the information of each

image. They can be represented as ’hard’ attention each on the specific inputs

or the encoding vectors.

Cascading mechanism

In GLAC Net, we need to design our decoders to generate several sentences

sequentially. To implement this, we introduce the cascading mechanism to use

3That is because it is equivalent to choose one among one candidate.
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hidden states as conveyer channels. It needs to initialize the hidden values of

the first sentence generator as zeros. It is different from the standard image-

sentence connection setting shown in image captioning papers (Vinyals et al.,

2015; Karpathy and Fei-Fei, 2017; Xu et al., 2015), which the outputs of CNN

encoders are connected to the initial hidden states of sentence generators.

Instead, we connect the outputs of encoders to the every input layers of sentence

generators in all steps as Figure 3.4. Then, the hidden values in the final step

are used as the initial hidden values of the next sentence generator. When we

need to remove the mechanism for ablation study, we disconnect the cascading

information flow from the previous sentence generator to the next one.

Following the standard sequence-to-sequence problem setting, we use each

si is produced one word at a time. We use cross-entropy loss over the training

data.

Avoiding Duplicates

As simple heuristics to avoid duplicates in the decoders, we sample words one

hundred times from the word probability distribution of the LSTM output, and

choose the most frequent word from the sampled pool. This reduces the number

of repetitive expressions and improve the diversity of the generated sentences.

On the process of generating sentences of the story, We also count the selected

words. The selection probabilities of the words are decreased according to the

frequency of each word as Equation 3.6, and normalized.

p̂(word) = p(word)× 1

1 + k · countword
(3.6)

where k is a constant for sensitivity. We use k=5.

To build grammatically correct sentences, the probabilities of some function

words such as prepositions and pronouns are not changed regardless of the

frequency of occurrence.
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Figure 3.5 A VIST dataset example. DII: Descriptions of images in isolation.
SIS: Stories of images in sequence.

3.4 Experimental Results

3.4.1 VIST Dataset

VIST dataset is the first dataset particularly created for sequential vision-

to-language and other story related tasks (Huang et al., 2016). It consists of

story-like image sequences paired with: (1) descriptions for each image in isolation

(DII) (∼ 80% only), (2) descriptions to form a narrative over an image sequence

(images/sentences aligned each) (SIS) as shown in Figure 3.5. It consists of

50,200 sequences (stories) using 209,651 images (train: 40,155, validation: 4,990,

test: 5,055), and the length is 5.

3.4.2 Experiment Settings

We follow the split of VIST dataset and adopted both the automatic metrics

(BLEU, METEOR and ROUGE-L) and the six human evaluation criteria. Every

scores are evaluated on the test dataset. We utilize the open source evaluation
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Validation Test
Configuration Perplexity Perplexity B-1 B-2 B-3 B-4 ROUGE-L METEOR

Seq2Seq (Beam=10) - - - - - - - 0.231
Seq2Seq (Greedy) - - - - - - - 0.278
Seq2Seq (-Dups) - - - - - - - 0.301
Seq2Seq (+Grounded) - - - - - - - 0.314

Sentence-Concat 30.58 31.02 0.411 0.198 0.096 0.050 0.257 0.301

Story-Flat 28.35 28.32 0.271 0.139 0.070 0.037 0.204 0.232

CRCN - - 0.367 0.132 0.042 0.016 0.195 0.231

SRT - - 0.409 0.202 0.099 0.052 0.259 0.303

Ours (-Cascading) 20.24 20.54 0.440 0.219 0.104 0.053 0.259 0.301
Ours (-Global) 18.32 18.47 0.369 0.173 0.082 0.041 0.250 0.291
Ours (-Local) 18.21 18.33 0.373 0.181 0.091 0.049 0.251 0.294
Ours (-Count) 18.13 18.28 0.334 0.156 0.077 0.041 0.245 0.276
Ours 18.13 18.28 0.406 0.194 0.091 0.045 0.246 0.296
Ours (4 stacked BiLSTM+all) 18.27 18.32 0.385 0.191 0.097 0.052 0.255 0.301
Ours (4 stacked BiLSTM+sum) 18.33 18.35 0.370 0.183 0.092 0.049 0.252 0.300
Ours (4 stacked BiLSTM+product) 20.14 20.07 0.325 0.139 0.066 0.034 0.232 0.282
Ours (3 stacked BiLSTM+all) 18.31 18.36 0.378 0.188 0.096 0.052 0.251 0.302
Ours (3 stacked BiLSTM+sum) 18.28 18.37 0.374 0.186 0.095 0.051 0.252 0.302
Ours (3 stacked BiLSTM+product) 18.43 18.51 0.379 0.187 0.094 0.05 0.256 0.299
Ours (2 stacked BiLSTM+all) 18.29 18.34 0.376 0.187 0.096 0.053 0.255 0.303
Ours (2 stacked BiLSTM+sum) 18.28 18.37 0.374 0.186 0.095 0.051 0.252 0.301
Ours (2 stacked BiLSTM+product) 18.37 18.43 0.372 0.182 0.092 0.049 0.253 0.300
Ours (1 stacked BiLSTM+all) 18.30 18.37 0.366 0.182 0.093 0.050 0.250 0.298
Ours (1 stacked BiLSTM+sum) 18.27 18.34 0.379 0.187 0.095 0.051 0.255 0.299
Ours (1 stacked BiLSTM+product) 18.25 18.34 0.372 0.182 0.049 0.253 0.253 0.302

Table 3.1 Performance evaluation results with automatic metrics. Baselines
are reported in (Huang et al., 2016). B-1∼4 designate BLEU-1∼4. Compared
with the performance of baselines (Huang et al., 2016), the GLAC Net is very
competitive without beam search methods. From the results of ’GLAC Net
(-Count)’ and ’Baselines (-Dups)’, the heuristics are helpful to reduce redundant
sentences and improve the scores. Compared to LSTM Seq2Seq models, GLAC
Net-based model shows better performance in general. While GLAC Net (-
Cascading) looks like the best, the human evaluation demonstrates that the
GLAC Net shows the best in total score and their 4 aspects out of 6 ones.
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code4 used in (Yu et al., 2017).

The generated result for the challenge and their demo systems with your

images can be accessed at http://glac.droppages.com/.

Compared methods for both of automatic and human evaluation are as

follows:

• Story-Concat (Vinyals et al., 2015): Concatenation of popular image

captioning models with CNN-RNN framework to generate captions for

single images.

• Story-Flat (Huang et al., 2016): Basic sequence-to-sequence model as a

translation task. two unidirectional GRUs are used for image sequence

encoding and sentence generation each.

• CRCN (Park and Kim, 2015): CRCN combines CNN, RNN and an entity-

based local coherence model to learn the semantic relations from streams

of images and texts. It is a retrieval-based approach to be less performed

in case of the large number of instances.

• SRT (Wang et al., 2018a): Generative adversarial training on the CNN,

RNN and two discriminators to generate adversarial signals as rewards.

The first discriminator checks whether an image and the corresponding

sentence is well-matched, generated, or shuffled. The second one classifies

whether a paragraph story comes from the dataset, it is generated one, or

shuffled sentence in order. It has shown the state-of-the-art performance

with respect to automated metric scores.

4https://github.com/lichengunc/vist_eval. For the Visual storytelling challenge, the
official evaluation code to calculate METEOR is offered: https://github.com/windx0303/
VIST-Challenge-NAACL-2018. This tool scores more higher around 0.001 due to consideration
of sets of golden answers.
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As ablation study, we evaluate the effects of the GLAC Net, we perform

ablation experiments as shown in Table 3.1 (automatic metric), Table 3.2 and

Figure 3.7 (human evaluation). We consider various models: simple LSTM

Seq2Seq network, GLAC Net without context cascading, GLAC Net without

global information, GLAC Net without local information, GLAC Net without

heuristics of duplicate avoidance, and complete GLAC Net.

For human evaluation, we recruit 316 human judges on Amazon Mechanical

Turks. Workers were asked to rate 200 randomly selected stories5 on the six

aspects, using a 5-point Likert scale from ’Strongly Disagree (1)’,’Disagree (2)’,

’Neither Disagree nor Agree (3)’, ’Agree (4)’, to ’Strongly Agree (5)’. We take

3.51 evaluations per story averagely after removing wrong submissions.

3.4.3 Network Training Details

The training image data is resized to 256 × 256 in advance. At the training

stage, each image is augmented by 224× 224 random cropping and horizontal

flip process, and the value of each pixel is normalized to [0,1]. All parameters

are trained with the Adam optimizer. The learning rate and weight decay

values are 0.001 and 1e-5, respectively. Each word is embedded into a vector

of 256 dimensions, and the LSTM is trained using teacher forcing. We also use

batch normalization and dropout techniques to prevent overfitting and improve

performance in training. We use 64 batch size and the training data reshuffled

at every epoch. 6

5Strictly, we used 200 stories in the opened sample pages in https://github.com/

windx0303/VIST-Challenge-NAACL-2018. We asked organizers how to pick them, we got
the answer ’randomly’.

6As the used hyperparameters of GLAC Net, input dimension of image features is 1024,
hidden dimensions are 1024, aggregation function is ’tb’ and the number of layers of stacked
BiLSTM is 2.
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Figure 3.6 Samples of story generation results with visual cues
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3.4.4 Qualitative Analysis

As shown in Figure 3.6, 3.8, 3.9 and 3.10, the exemplar generated stories with

GLAC Net from test dataset are presented. The context of successive images is

well reflected, and the content of each image is properly described.

In the first story in Figure 3.6, every picture shows very similar scenes

that person is hugging a baby. The generated stories shows that our models

are good at gender/age recognition, pronoun usage. In the second story, the

words in the generated sentences and objects from the images are well-matched

and visually-grounded: car and drive (2nd image), sea and water (5th image).

In the third story, there is no clue that the story will be related to wedding.

Catching overall context from visual cues, the sentence in the first part can be

generated properly. Generally, all stories in Figure 3.6 show the structure of

stories. Especially, the second one in Figure 3.6 is generated with only firework

images.

Figure S1 shows that the generated stories depending on decoding methods

(showing usefulness of proposed heuristics) and training epoch with greedy

generation (showing stability of our method). Figure S2 presents the generated

stories with diverse ablation settings.

Figure S3 shows more generated cases of good, acceptable and wrong quality.

In the wrong cases, overall structure is still maintained.

3.4.5 Quantitative Analysis

The automatic evaluation results are shown in Table 3.1. Compared with the

performance of baselines (Huang et al., 2016), the GLAC Net is very competitive

without beam search methods. From the results of ’GLAC Net (-Count)’ and

’Baselines (-Dups)’ in Table 3.1, the heuristics are helpful to reduce redundant

sentences and to improve the scores. Compared to GLAC Net-based model
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Figure 3.7 The six score results of the human evaluations of the narrative text
generation by GLAC Net, ablation models and compared methods. GLAC Net
shows the best scores in 1∼4 criteria. Though SRT still shows the best in 5∼6
ones, GLAC Net is very competitive. Best view in color.

I would Written Visually- Total
Model Focused Coherent Share by human grounded Detailed score

GLAC Net (ours) 3.548 3.524 3.075 3.589 3.236 3.323 20.295
DG-DLMX 3.347 3.278 2.871 3.222 2.886 2.893 18.498
NLPSA501 3.111 2.870 2.769 2.870 3.072 2.881 17.574
AREL 3.236 3.065 2.767 3.029 3.032 2.867 17.995

Human (Public Test set) 4.025 3.975 3.772 4.003 3.965 3.857 23.596

GLAC Net (ours) 3.588 3.547 3.061 3.382 3.282 3.306 20.167
GLAC Net (-Cascading) 2.803 3.047 2.547 2.340 2.952 2.918 16.606
GLAC Net (-Global) 3.405 3.198 2.191 2.341 2.162 2.254 15.551
GLAC Net (-Local) 3.359 3.186 2.600 2.671 2.466 2.344 16.627

Sentence Concat 2.955 2.988 2.692 2.816 3.101 3.127 17.680

Story-Flat 3.118 2.888 2.746 2.826 3.056 3.060 17.693

CRCN 2.092 2.502 1.970 2.239 1.952 2.106 12.861

SRT 3.322 3.257 3.019 3.122 3.340 3.411 19.472

Table 3.2 Human evaluation results on the VIST dataset. The upper part shows
the announced results of 4 teams of the 1st Visual Storytelling Challenge (Huang
et al., 2018a). Our model outperforms all other teams on all of 6 aspects. AREL
means Adversarial REward Learning. The lower part presents the results of
ablation study with GLAC Nets and those of other previous methods (Vinyals
et al., 2015; Huang et al., 2016; Park and Kim, 2015; Wang et al., 2018a) or
their variants. GLAC Net shows the best performance in total score as well as 4
aspects out of 6 ones.
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shows better performance in general. While GLAC Net (-Cascading) looks like

the best, the human evaluation shows the GLAC Net is the best one in every

aspects in Table 3.2 and Figure 3.7. As we mentioned in Section 1, automatic

metric scores partially effective on human evaluation.

In Figure 3.7, the 6 score results of the human evaluations of the story

generation by GLAC Net, ablation models and compared methods. GLACNet

shows the best scores in 1∼4 criteria. SRT still shows the best in 5∼6 ones.

The lower part of Table 3.1 shows the result of automatic metric scores

(BLEU, ROUGE-L, METEOR and perplexity). Due to budget problem, we

don’t perform human experiment on the effect of number of stacks and the

aggregation functions. By our observation with self-evaluation of 25 randomly

selected cases, they show little significant difference. GLAC Net is the model

with 2 stacked BiLSTM and tb aggregation function in the encoder. It shows

moderately better scores in overall, and better qualitative results.

3.5 Summary

We propose the GLAC Net that uses global-local attention and context cascading

mechanisms to generate stories from a sequence of images. The model is designed

to maintain the overall context of the story from the image sequence and to

generate context-aware sentences for each image. In the experiment using the

VIST dataset, the proposed model proves to be effective and outperforming

with total score and 4 aspects of human evaluation criteria out of 6. It shows

our method is more focused on overall structure than detailed.

Although the experimental results are promising, the task of visual story-

telling remains a challenge. We plan to extend and refine the GLAC architecture

to further improve its performance considering local information. In addition, a

subject to be studied in the future is how to generate various stories based on
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Figure 3.8 The generated story examples for GLAC Net and their ground-truth
annotated by humans. Even though they are different stories with the same
image sequences, the generated ones are acceptable. We can also observe that
(1) the length of the generated sentences relatively short. (2) the expression
style is concise and abstract, (3) Mostly written in the past tense (more than
98% in the test set)

the purpose and theme from the same image sequence.
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Figure 3.9 More examples of GLAC Net and their ground-truth annotated by
humans.
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Figure 3.10 Wrongly generated cases for GLAC Net and their ground-truth
annotated by humans. Overall stories do not deviated on one theme, and some
of the visual clues are visually-grounded on the images.
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Chapter 4

Common Space Learning on
Cumulative Contexts and the
Next Events: Recurrent Event
Retrieval Models

4.1 Overview

This chapter introduces methods to predict the next sentences from the former

parts of documents at any step within an arbitrary length, which is an open-

ended next sentence prediction problem. The problem can be seen to choose

automatically a sequence of events, situations, actions or dialogues that can be

told as a story (Martin et al., 2017). If the procedure run automatically and

sequentially, our methods can apply to story generation problem (Mostafazadeh

et al., 2016; Martin et al., 2017; Huang et al., 2016).

Even though recurrent neural networks (RNNs) shows surprisingly successful

cases, it is still difficult to catch the context through several sentences due to an

enormously large number of possible scenarios without any constraints (Bowman
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et al., 2016) 1

In this chapter, we focus on retrieval approaches for sentences of events. If

the number of possible sentences are abundant, it is useful to solve the problem.

We propose recurrent event retrieval models (RERMs) to predict the following

events or stories with former parts of stories. RERMs are composed of a context

accumulation function and two embedding functions, where make close the

distance between the cumulative context at current time and the next probable

events on a latent space. They update the cumulative context with a new event

as a input using bilinear operations on common latent space, and we can find the

next event candidates with the updated cumulative context. While it can limit

the representational power depending on the number of possible candidates, it

is advantageous to focus on the coherence of stories avoiding the difficulty of

surface realizing narrative generation. Fortunately, released was ROCStories

dataset (Mostafazadeh et al., 2016) to be composed of approximately 100K

textual five-sentence commonsense stories for Story Cloze Test (SCT). As a

result, the number of possible sentences are around 500K. As RERM evaluation,

they show competitive performance for SCT, and the state-of-the-art results in

open-ended sequence generation setting. Also, they can be applied to generating

stories with humans feedback interactively.

4.2 Problems of Context Accumulation

In this section, let us define our problem. Consider the dataset D = {S1, S2, ..., SN}

has N sequences consisting of arbitrary objects e ∈ E, where E is the set of

possible objects. The sequence is a variable length of the objects. And there

is context ct at step t. We define sequential retrieval process and the context

1It is similar to dialogue generation tasks. Currently, researches are focused on task-oriented
bot and chit-chat bot (Chen et al., 2017).
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integration function finteg to accumulate the contexts and reflect new events

together. The process can iterate the procedure with updating the integrated

context:

ct+1 = finteg(ct, e) (4.1)

Also, we define score function s with the integrated context vector ct at time

step t and certain object e, and we can infer the next object e∗ via choosing the

one of the highest score (or top-n selection) s with the integrated context vector

ct:

e∗ = inference(ct, E) = argmaxe∈E s(ct, e) (4.2)

where E is a set of reference objects such as sentences, images, or videos in the

database. If we generate several steps, then it iterate from cue object e to ct+1

recurrently.

Our goal is to find models capable to learn the context integration functions

in order to get good accuracy of inference.

4.3 Recurrent Event Retrieval Models for Next Event
Prediction

In this section, we propose novel models to achieve the goal: Recurrent Event

Retrieval Models (RERMs). We design RERMs to match contexts and the next

events on the common low-dimensional embedding space with each mapping

functions, and to integrate them recurrently as shown in Figure 4.1. So, we

introduce two embedding functions to deliver objects to the spaces. To represent

an event object in the dataset D, we have preprocessing procedure onto one

vector. For example, we can use skip-thought vectors as vector representation for

sentences of events. They have two embedding functions from sentence embedding

space, and have one accumulation operator to accumulate the previous context

46



Figure 4.1 (a) Concept view of Recurrent Event Retrieval Models (RERMs).
Every time step, the context vector is updated with certain input object e, and
we can infer the next object e∗ via choosing the one of the highest score (or
top-n selection) s with the integrated context vector ct. (b) Functions and spaces
of RERMs. They have two embedding functions from sentence embedding space,
and one accumulation operator for the previous context ct−1 and the current
input object et. The result ct is embedded onto the other space to compare the
similarity scores. We search the closest answers on this space.
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ct−1 and the current input object et. The result ct is embedded onto the other

embedding space to compare the similarity scores. We search the closest answers

on this space.

To train all of the functions introduces above, we define the objective

functions. In our setting, we modify the error function for sequence setting:

Err :
∑
c

∑
k

max{0, δ − s(ct, ct+1) + s(ct, ck)} (4.3)

where δ is margin, s is the score function to measure how similar from each

other. This objective function is very similar to triplet ranking loss with anchor,

positive example and negative examples popular used in deep metric learning.

We can use cosine similarity function for training phase, and adding penalty

terms for diverse candidates considering the length of story-like sequences for

open-ended generation. Practically, we can choose k as the negative examples

randomly in the dataset.

Since our representation includes recurrent connections, the computational

graphs are unfolded to the length of sequences to be deep structure. To find

the appropriate structure for RERMs, we define the general form of embedding

nets, context integration nets as shown in Figure 4.2. It is similar to multi-hop

end-to-end memory network structure (Sukhbaatar et al., 2015), our models

should choose one at every iteration with the labels for coherency consideration.

The general form of embedding nets is standard 1 or 2 layered networks of inner

product layer with tanh activation (MLP module).

f(e) = αf · f1
MLP (e) + βf · f2

MLP (ffeats(e)) (4.4)

where the embedding function f is a linear combination of MLP of the input

and MLP of the features of the input.

h1(ct, e) = αh1 · ct ⊙ e + βh1 · ct ⊗ e + γh · CBP (ct, e) (4.5)

48



h2(ct) = αh2 · f3
MLP (ct) + βh2 · ct (4.6)

finteg(ct, e) = h1(h2(ct), e) (4.7)

where the integration function finteg is a linear combination of MLP of the

previous context, residual connection of it, and the new event input.

Fortunately, linear matrices show good representational power in the case

of cross-modal learning or zero-shot learning. The general form of context

integration nets has several options: MLP modules, residual connection, and

integration operators. Dotted line in the middle in 4.2 (b) can be replaced with

element-wise sum, element-wise product or CBP operation. MLP module is not

used when we choose CBP as an integration operator.

4.4 Experimental Results

We test on the Story Cloze Test (SCT) as textual stories. Even though the

length of stories is fixed, we can test at an arbitrary position.

We formulate a story generation problem as choosing sequentially the proper

next events coherently. Naturally, sequential behaviors of humans are not de-

terministic. So, we should take probabilistic approaches or several candidates

together like beam search strategies to consider several possible ways to do as

the next one. Additionally, if human’s feedback is available, it is valuable to

utilize it. It can induce that the system works interactively. Also, it can update

the database on the fly if necessary. Taking all these good points, we build

generalized matching modules from the current context to the next events using

neural networks with ranking losses to drive semantically consistency, retrieving

top-n results easily. When we consider predicting the very next events from the

current input, it means that Markov assumption is assumed, which only care

the 1-step (or more fixed step) previous input. So, we attach context integration
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Figure 4.2 Component definition of RERMs: (a) A general form of embedding
nets. 1 or 2 layered networks of inner product layer with tanh activation (MLP)
module. (b) A general form of context integration nets with MLP module,
residual connection and integration operators. Dotted line in the middle can be
replaced in other options in (c). The box in (b) between input and operator
designate MLP modules.
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modules to pursue maintaining all the previous situations. The followings explain

the modules respectively.

4.4.1 Preliminaries

Skip-thought Vector: Event representation with multimodal sources is very

complicated to process as information. Most popular method for natural language

sentence-to-vector conversion is skip-thought vector (STVec) (Kiros et al., 2015).

STVec converts one textual sentence to one multi-dimensional real-valued vector

(a.k.a thought vector) for general event in text, scene description, or dialogues.

It is inspired by the skip-gram structure in popular word2vec (Mikolov et al.,

2013). The key concept of word2vec is that the word meaning is determined by

the surrounding words. Similarly, the STVec model is trained to reconstruct the

surrounding sentences to map the sentences that have semantic meaning onto

similar vectors using RNN adding GRU memory cells as language models. Kiros

et al. trained 11,038 books with 74,004,228 sentences for STVec, frequently used

to represent semantic closeness of sentences

Compact Bilinear Pooling: To deal with multi-modal sources, one of

possible way is to use bilinear features from video and text. The bilinear features

are very high dimensional, typically on the order of hundreds of thousands to a

few million, which drives them impractical. Compact bilinear pooling (CBP)

(Gao et al., 2016) is to make two compact bilinear representations with the

same discriminative power as the full bilinear representation but with only a

few thousand dimensions. CBP is easily expanded to multimodal fusion, it has

been applied to visual QA and movie QA problems successfully (Fukui et al.,

2016; Na et al., 2017; Tapaswi et al., 2016a).

Performance Metrics: In our experiments, we measure SCT performance

for reference, and use 2 metrics: Perplexity and BLEU score, which are based on
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Figure 4.3 Performance table of RERMs for exploring the networks. The best
SCT performance is shown in CBP configuration for recurrent context integration
without MLP module. BLEU scores are higher in separate cases, which means
no recurrent connection. Perplexity values are the configuration of preferring
sparse information: MLP + product, CBP.

language models or on the golden answers. We can use the next event information

as golden answers for BLEU. Perplexity is the measure of how “surprised” a

model is by a training set. We use it to check a sense of how well the probabilistic

model we trained can predict the data. We built the model using an n-gram

length of 1. And BLEU score compares the similarity between the generated

output and the “ground truth” with respect to n-gram precision. Those are

not perfect measure how well generated stories are acceptable for humans, but

other researches use them actively (Martin et al., 2017) in NLP researches. For

our experiment, we use adam optimizer and step scheduling for controlling

learning rate (initial value: 0.0005, ×0.5 per 50 epoch). Negative examples per

one positives: 1499.

4.4.2 Story Cloze Test

Story cloze test (SCT) (Mostafazadeh et al., 2016) is ‘fill-in-the-blank’ task

considering the context of 4-sentence story. The candidate sentences for the
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blank in the 5-th position are only 2, as to be cast to binary classification

problems. Dataset is composed of the Train (98,161 episodes, 490805 sentences),

Validate and Test gold data sets (1871 episode each). We use the separation to

train our systems, and all of sentences (490,805) in the Train as reference event.

A lot of researchers published their results as shown Table 4.1. However,

their approaches are mostly focused on classification, only some of works only

possible to generate new candidates or to apply many candidates (in other

words, ‘generative’). And it is not scalable to apply to arbitrary length of story

(‘open-length’). Our system is approximately generative (not purely generative,

it is close to generative considering the number of candidates) and open-length

without classification-based learning. Figure 4 and 5 show the performance

table of SCT. The best SCT performance is shown in CBP configuration for

recurrent context integration without MLP module. BLEU scores are higher in

separate cases, which means no recurrent connection. Perplexity values are the

configuration of preferring sparse information: MLP + product, CBP.

4.4.3 Open-ended Story Generation

For story generation test, we can control the diversity of candidates controlling

the score as follows:

scoreoverall(cq, ei) = score1(cq, ei)− λ · similarity(cq, ei) (4.8)

The score1 is the same formula with the objective function. We use cosine

similarity as the similarity function to same with objective function.

The duplicated sentences are blocked when finding the close candidates.

Since named entity recognition can be applied, subjects and objects are changed

to the pronoun and check the duplication.

Figure 4.4 shows an example of generated case as following one of the instance
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Table 4.1 Performance table of RERMs for Story Cloze Test (SCT). Even though
our systems trained for generation, they show relatively good performance
(Mostafazadeh et al., 2017; Wang et al., 2017; Chaturvedi et al., 2017).

Method Generative Open-Length Validation Test

Human - - 1.000 1.000
random Y Y 0.514 0.513
frequency Y Y 0.506 0.520
N-gram-overlap Y Y 0.477 0.494
Gensim Y Y 0.545 0.539
Sentiment-full Y Y 0.489 0.492
Sentiment-last Y Y 0.514 0.522
Skip-thoughts Y Y 0.536 0.552
Narrative-Chains-AP Y Y 0.472 0.478
Narrative-Chains-Stories Y Y 0.510 0.494
DSSM Y Y 0.604 0.585
GRU N Y 0.573 0.561
Conditional GAN (Wang et al., 2017) N Y 0.625 0.609
DAVAR lexicon (Flor) N Y 0.654 0.620
(Roemmele) N N - 0.672
(Bugert) N N - 0.700
stylistic feat (Schwartz) N N - 0.752
frame+emotion+topic (Chaturvedi) N N - 0.776

Ours (CBP) Y Y 0.661 0.658
Ours (Separate) Y Y 0.647 0.647
Ours (MLP+sum) Y Y 0.660 0.641
Ours (MLP+sum+residual) Y Y 0.651 0.637
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story in the dataset. The figure shows sentences in the cue box are input to

RERMs. Then, RERMs outputs top-9 or 10 candidates sentences as the result

of top-k closest to the cumulative context point. From (1) to (5), we can see

the plausible candidates. Sometimes the right answers are not included in the

candidate box. Also, not all of sentences are correct semantically and logically.

However, most of them are very plausible with respect to the context.

Figure 4.5 shows an other example of step-wise story generation not following

the original episode, but choosing other storyline. Still, RERMs show plausible

candidates.

4.5 Summary

This chapter introduces recurrent event retrieval models (RERMs) for open-

ended story generation. It is important to be opened at any time step and

endlessly via retrieving the related objects considering cumulative context. It

explores the appropriate embedding functions and the accumulation operator

for RERMs. Additionally, it can be used for interactive setting with humans.

Potentially, it can be used for situation inference and easily updated on the

conversation with humans.
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Figure 4.4 A RERM demonstration of step-wise story generation with one
episode in ROCStories dataset. Sentences in the cue box are input to RERMs.
Then, RERMs outputs top-9 or 10 candidates sentences as the result of top-k
closest to the cumulative context point. From (1) to (5), we can see the plausible
candidates. Sometimes the right answers are not included in the candidate box.
Also, not all of sentences are correct semantically and logically. However, most
of them are very plausible with respect to the context.
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Figure 4.5 An RERM demonstration of step-wise story generation not following
the original episode, but choosing other storyline. Still, RERMs show plausible
candidates.
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Chapter 5

ViStoryNet: Order Embedding of
Successive Events and the
Networks for Story Regeneration

5.1 Introduction

This chapter introduces the frameworks to regenerate episodes to complete the

partially blocked ones on time axis. We train 5∼7 minute-long videos including

stories with the successive event order supervision for contextual coherence. We

explore the question of the successive event order embedding (SEOE) to provide

the scaffolds to construct composite representation of ordering and semantics

for story generation.

To improve the effectiveness of SEOE on the proposed frameworks, so we give

some constraints to reduce the problem complexity. Firstly, we use kids videos as

training dataset due to some advantages: (1) omnibus style, which each episode

has simple and explicit storyline in short, (2) narrative order mostly using fabula,

which follows chronological sequencing of the events, whereas syuzhet is a term
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to designate the way a story is organized to enhance the effect of storytelling.

(3) relatively small number of main characters and limited spatial environment.

This is effective to reduce computational burden and data sparsity. Potentially,

these properties are so desirable to provide as surrogate data similar to that of

everyday lives in compact and explicit way. Secondly, instead of attaching directly

video understanding technologies, we define a contextual event using both of the

description sentence including scene context and the dialogue sentence spoken by

character, and represent an episode as a sequence of contextual events. And we

build the encoder-decoder structure as shown in Figure 5.2, using skip-thought

vectors (Kiros et al., 2015) as encoders and sentence generators with standard

RNNs as decoders. On the latent space, we learn bi-directional Long Short-term

Memory (BiLSTM) with the successive event order embedding (SEOE). To

generate multi-step sequences, on the learning process, we control the mixing

rate with training data and the generated stories depending on the epoch, which

follows scheduled sampling methods (Bengio et al., 2015).

We use ‘PororoQA dataset’, which is the dataset from 3D animation videos

for kids, entitled ‘Pororo the Little Penguin’, consisting of 16,066 scene-dialogue

pairs created from the video of 20.5 hours in total length, 27,328 fine-grained

descriptive sentences for scene descriptions (Kim et al., 2017). With the models

to train them, we demonstrate the performance and the generated episodes.

We give empirical results for the effectiveness of SEOE. Also, each episode

shows a trajectory-like shape on the latent space of the model, which gives the

opportunities to interpolate and extrapolate with the geometric information for

the sequence models.
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5.2 Order Embedding with Triple Learning

In this section, we introduce the background of our works. Starting with classical

ordinal embedding, early work only addressed the continuous case, where the

x’s span a whole convex subset U ⊂ Rd. In that setting, the goal of learning

embedding functions becomes to characterize isotonic functions on U , that is,

functions f : U 7→ Rd satisfying

∥x−y∥ < ∥x′−y′∥ =⇒ ∥f(x)−f(y)∥ < ∥f(x′)−f(y′)∥, ∀x, y, x′, y′ ∈ U (5.1)

Also, we can say that a function f : U ⊂ Rd is weakly isotonic if

∥x− y∥ < ∥x− z∥ =⇒ ∥f(x)− f(y)∥ < ∥f(x)− f(z)∥, ∀x, y, z ∈ U (5.2)

It is also known that any locally weakly isotonic function on an open U is

also locally isotonic on U (Kleindessner and Luxburg, 2014).

Even though we have finite sample only, it is shown that bounded and

converged are the difference between isotonic functions and locally weakly

Figure 5.1 Scenario: Robot Training by showing video series. As simplified data,
a video stream converted to the stream of snapshots of pairs of animated gifs
and dialogue texts.
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isotonic function ϕ : Ω 7→ Rd with similarity transformation S coincides with ϕ

on Ω under some assumptions (Arias-Castro et al., 2017). It is not difficult in

finite Rd space, we can change ordinal learning problem to learning with triples

including anchor x in the equation 5.2.

The locality property of ordinal embedding is that if a k-nearest neighbor

graph is given as local ordinal constraints, we can reconstruct the point set,

which is shown in (Terada and Luxburg, 2014). Its statistical consistency of the

embedding method is valid. The consistency can be extended from quadruple

learning to triple learning as proven in (Arias-Castro et al., 2017).

Figure 5.2 Overall encoding-decoding structures for the story completion tasks.
A episode is mapped as a trajectory on the embedded event space.
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5.2.1 Embedding Ordered Objects in Sequences

We define the problem of sequence generation of order-preserving embedding.

In this task, we are given a set of positive examples P = (u, v) of ordered

pairs drawn from a sequence (X, ⪯). And a set of negative examples N that

is not the next object. Since every object except the starting position or the

last position is in certain sequences, they have the previous object and the next

object. That means that all objects in the sequence is connected of the form of

chain. Considering the locality property, we can ignore the relationship from the

objects in the several steps later. So, we can only consider 3 objects - certain

object as an anchor, the next object as the positive example, an not-next object

as the negative example.

5.3 Problems and Contextual Events

5.3.1 Problem Definition

We define a story here since the definition of a story is so various (Mateas and

Sengers, 2003) depending applications. Since our problems highly depend on

videos, we should consider that.

• Contextual event is defined as a vector representing the context includ-

ing situations, actions and dialogues at some moment in videos. (we call it

short for “event” in the rest of the paper)

• Story (or episode) is defined as a discrete sequence of contextual events

aligned in the chronological order including one independent story.

Comparatively, a plot is distinguished from the story. In plots, the sequence

of events can be rearranged or some parts of them can be skipped for narrative

interestingness. We formulate a story generation task as regenerating the whole

story from the partial cues.

62



Formally, the video dataset D = {S1, S2, · · · , SN} has N episodes con-

sisting of a set of video scenes V = {vi}1,··· ,|V |, and a set of dialogues L =

{li}1,··· ,|L|, where vi is a sequence of image frames (3-second-long animated

GIF images), is a natural language sentence of a dialogue. Each episode

Sn = ((vn1 , ln1), (vn2 , ln2), · · · , (vn|Sn| , ln|Sn|)) is a n-th discrete sequence of pairs

of video scene vni and dialogue sentence lni . The sequence length n|Sn| can be

different depending on each episode. For every pair of video scene and dialogue

sentence, we encode it into one contextual event vector: eni = encoder((vni , lni)).

We assume the encoder can convert the contextual information into a vector.1

Eventually, each episode is represented as Se
n = (en1 , en2 , · · · , en|Sn|), which is

the sequence of variable number of chronologically ordered event vectors et at

time index t. To get the partial cues, we define a mask Mn = {mi}1,··· ,|Sn| as a

binary sequence. Where the value of mask at time t is 1, the event vector value

will be <None>. The partial cues can be built from Mn and Sn, and we can

define error function E between an original story Sn and the generated story Ŝn.

Our learning procedure searches for the story S to minimize the error function

as follows:

Ŝ∗ = argmin
S

E(Mn, Sn, Ŝn; θ,D) (5.3)

We can define several tasks depending on the masking part: former part

generation, mid-part generation, and latter part generation. Note that we pursue

not only masking part, but also regenerate the whole story. Also, we will consider

the problem to capture the structure of the stories. And the problem to generate

new whole story based on the structure. Those problems are important to

computational narrative intelligence fields (Riedl, 2016), and the context-aware

1Human’s arbitrary thought can be represented in one vector or not? It is still controversial.
But it is not problematic in our work since our sentences are descriptive and relatively simple.
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oriented applications such as smart devices and household robots.

5.3.2 Contextual Event Vectors from Kids Videos

Video scene (Animated GIF) to sentence

Event detection and extraction from videos are not easy task, which can be so

variously defined depending on the problems. A few seconds of data are focused

for most works on video learning such as action recognition task (Simonyan and

Zisserman, 2015), upcoming behavior prediction task (Vondrick et al., 2016).

These works use spatio-temporal 3D convolution since the coherence between

frames very important for those problems. To deal with longer time scale, mostly

is used augmented information in text: aligning movies and books (Zhu et al.,

2015), movie QA on synopsis and script (Tapaswi et al., 2016b). Similar to the

latter, we try to annotate scene description sentences on visual animated scenes

to represent semantic information of scenes. It is desirable that each event should

have 5W1H information. But, not all scenes have every information explicitly. So,

we use scene descriptions augmented by humans on watching the corresponding

animated GIFs and dialogue texts (Kim et al., 2017). By this approach, we can

reduce the problem complexity and makes us focus on the SEOE. Additionally,

recent image captioning tools (Vinyals et al., 2015; Karpathy and Fei-Fei, 2017)

also available, we can fine-tune them with the description dataset.

As in 5.1, the snapshots of animated GIFs and texts pairs are used when

subtitles appear on the screen. As the formulated above, each snapshot has one

event. Humans do not constantly observe every sequential event in a real-world

situation to catch the context, but they observe only partly in a temporally

aperiodic manner. Sometimes they keep their eyes on carefully, but often they not.

Storytelling in a video also constructs narratives in a similar way, sometimes

authors intentionally use it. So, we assume that observers can perceive not
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seamlessly all of events but some parts of them. In other words, the observer can

miss some events in the environments. That is, we should consider that a story

we defined above can have intervening events between arbitrary two events, or

some events are skipped. We will consider that to design SEOE objectives.

Encoding Events with Skip-thought Vector

The encoder converts to one multi-dimensional real-valued vector (a.k.a thought

vector) from the scene description and the dialogue text. Most popular method for

this is skip-thought vector (STVec) (Kiros et al., 2015). It is a natural language

sentence-to-vector converter inspired by the skip-gram structure in popular

word2vec (Mikolov et al., 2013). The key concept of word2vec is that the word

meaning is determined by the surrounding words. Similarly, the STVec model is

trained to reconstruct the surrounding sentences to map the sentences that have

semantic meaning onto similar vectors using RNN adding GRU memory cells

(Chung et al., 2014) as language models. Kiros et al. (2015) trained 11,038 books

with 74,004,228 sentences for STVec, frequently used to represent semantic

closeness of sentences. So, we combine the information of a scene description

sentence and a dialogue text together by concatenating the output of STVecs

with scene description sentence and that of dialogue text as an event vector:

et = STV ec(desc(vt))||STV ec(lt) (5.4)

Note that a short-term video clip vt is converted to scene description sentence

with desc(vt). Following an original setting, STVec converts one sentence into

4800 dimensional real-valued vector. Our event vector has 9600 dimensions

eventually.

Naturally, natural language sentences have a lot of variance. Converting the

sentences to STVec makes data less sparse? The answer is yes, but very little.
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The ratio of unique sentences in the dialogues is 74.11%, but that of STVec is

71.15%. In PororoQA dataset, one character named ‘Crong’ plays a role of a

baby dinosaur, he says mostly ‘crong’ instead of concrete answers. Overall, it

takes 3.70% of all dialogues. And the ratio of unique sentences in the descriptions

is 97.06%, and that of STVec is 96.99%. The ratio of unique event vector defined

above shows 99.94%, almost all of event vectors is not same each other. If we

use the frequencies of them, it would be problematic, we take the embedding

approach introduced in next section instead.

Figure 5.3 Neural architecture of ViStoryNet for story learning and regeneration.
Encoder takes two sentences – scene description sentence and dialogue text
with skip-thought vectors. Next, Successive event order embedding with triplet
ranking loss maps the consecutive events onto ordinally close points. Those
results as inputs are given to sequence models – bidirectional LSTMs to predict
previous/next time step vectors. This model can predict missing parts of the
sequence. The vectors can be decoded with the sentence generator module as a
decoder.
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5.4 Architectures for the Story Regeneration Task

The overall structure of the proposed networks is composed of 4 parts: encoder,

decoder, sequence model and SEOE module shown in Figure 5.3.

The encoder and the decoder work as the interface for linguistic expression

to vectors of semantic information. On the other hand, SEOE induces composite

representation of order and semantics. On the space of the representation,

sequence models learn the inter-relation among the events of the composite

representation (embedded events). To discriminate the vector of the embedded

event space from an encoded vector eni introduced earlier, we use xni as a vector

in the embedded event space.

The followings are a summary of 4 components.

1) Encoder: the conversion function from an input video (a sequence of

pairs of animated GIFs and dialogue texts) to the sequence of events

Se
n = (en1 , en2 , · · · , en|Sn|) with the concatenation of skip-thought vectors

of scene descriptions and dialogues

2) Order Embedding: the embedded vectors xt = fSEOE(et) with the embed-

ding function to map the consecutive events onto ordinally close points in

the common latent space. We will explain it in Chapter 5.4.2.

3) Sequence Model: BiLSTMs (the forward LSTMs and the backward LSTMs)

and the combining function of the outputs of BiLSTMs.
−→
ht is the hidden

state of the forward LSTMs at time t and
←−
ht is the hidden state of the

backward LSTMs at time t.

−→
ht = LSTMf (xt−1,

−−→
ht−1)

←−
ht = LSTMb(xt+1,

←−−
ht+1)

x̂t = fcombine(
−→
ht ,
←−
ht)

(5.5)
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4) Decoders: two functions from x̂t to the generated scene description d̂esc(vt),

and the generated dialogue text l̂t each.

d̂esc(vt) = fdesc(x̂t)

l̂t = fdiag(x̂t)
(5.6)

As a result, the output of sequence models Ŝe = (x̂1, x̂2, · · · , x̂T ) with the length

T and the surface realized story Ŝ = ((d̂esc(v1), l̂1), (d̂esc(v2), l̂2), · · · , (d̂esc(vT ), l̂T ))

is generated with two decoders.

5.4.1 Two Sentence Generators as Decoders

From the points in the embedded event space, decoders recover the event vector

to the corresponding sentences: scene description and dialogue text. The decoders

generate sentences from vectors in the latent space (as eq. 5.6). The output

vectors from sequence models Ŝe are given as the inputs to the decoders. The

decoders are implemented with RNNs with GRU cells. The decoders work as

open-loop mode, they have no additional other input without initial hidden

vectors. The output vectors use as the input for the next time step. In this

setting, cross entropy loss is widely used for one-hot representation for words in

the dictionary. The output value ŷw,n and label yw,n with the w-th word, t-th

time step of RNNs have their probabilities given by softmax function, the cross

entropy loss as follows:

−
∑
n

∑
w

[yw,n log ŷw,n] (5.7)

5.4.2 Successive Event Order Embedding (SEOE)

SEOE is the core module of this paper, which build for the structure for

contextual coherence. Based on the facts that every story has implicitly shared

situation in the short term, and narratives in videos are composed of selective
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shots of observations (not seamlessly continuous showing), we consider that

contextual events should be embedded separately and not evenly distant on

consecutive events. Also, it is enough to check neighbors of each nodes in the

chain graphs as shown in the previous section. Considering the assumptions and

properties, we adopt triplet ranking loss as objective function to learn SEOE.

By using this objective function, we focus on the ordinal information in the

sequences ignoring the inter-distance information.

xt is an embedded event vector at time t. The embedding function fSEOE

maps an event vector onto the embedded space. The goal of function fSEOE(et)

is to make event vectors be reorganized on the latent space so that each episode

constructs to show trajectory-like relationship in the space by embedding con-

secutive events onto ordinally close points:

xt = fSEOE(et) (5.8)

This can be achieved with triplet ranking loss as follows:

min
θ

∑
x

∑
k

max{0, α− s(xt, xt+1) + s(xt, xk)} (5.9)

where α is margin, s is score function to measure how far from each other.

We use cosine distance for it. k is any other indices except for t + 1.

Function Forms of SEOE

As the function form of SEOEs, we test 1-layered or 2-layered fully connected

neural networks, which is necessary to represent more than isomorphic relation-

ship. These modules can easily integrate other neural networks. To use triplet

loss, we need one positive example and one negative example per one case. For

xt, we can choose xt+1 as the positive example deterministically. The negative

examples are chosen randomly from the training set and resampled every epoch.
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Figure 5.4 t-SNE Visualization of (a) all of event vectors and (b) dialogue text
vectors before the SEOE procedure.

Visualization Result of SEOE

To observe the tendency of learning with SEOE, we visualize them with t-SNE.

Figure 5.4 shows the overall structure of event vectors et . In the dialogue text,

sometime exactly the same sentences are shown such as greetings like ‘Hi, friends’

and ‘nice to meet you’. Some clusters are shown in Figure 5.4 (b) representing

frequent sentences, events vectors in Figure 5.4 (a) have less number of clusters.

Applying SEOE on the event vectors, we can visualize the overall structure built

by all events, and trajectory-like embedding results as shown in Figure 5.5. To

check how many events are follow this property, we analyze them with 2-nearest

neighbors for each event vectors on the episodes. The percentages are around

99.4% of event vectors follow the property. (1-layer NN: 99.41%, 2-layer NN:

99.37%, No embedding: 2.035%)
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Figure 5.5 Visualization of episodes of the trajectory-like form in the embedded
event space. The numbers designates the indices of events from the beginning.
We color the points with black close to the start, and red close to the end. The
tendency is maintained over all episodes without dependence of the length of
episodes.
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5.4.3 Sequence Models of the Event Space

Since our tasks need to generate sequences of events with multi-step prediction in

arbitrary directions, we use bi-directional Long Short-term Memory (BiLSTM)

adding the learning process following scheduled sampling methods (Bengio et al.,

2015). We control the mixing rate with training data and the generated stories

depending on the epoch. At the beginning, the portion of training data is high.

As the epoch goes by, the generated stories are involved gradually more. After

the certain epoch, the models are trained with the generated ones. This is helpful

to alleviate generating wrong answers in open-loop LSTMs.

Bi-directional LSTM (BiLSTM): Neural language models with long

short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated

Recurrent Unit (GRU) (Chung et al., 2014) are very powerful to be used in

sequence modeling to embrace long-term dependency information. BiLSTMs

pursue to increase the amount of input information available using both of two

directional hidden states. In our problems, we should predict arbitrary position

of events such as early part of the sequence given the latter part. To utilize

BiLSTMs, we use two LSTMs for forward direction and backward direction

each. The input indices are rather different, from x1 to xT−2 for the forward

direction, from x3 to xT for the backward direction as shown in Figure 5.3. We

combine those outputs with one fully connected layer of the concatenation of

two inputs as follows:

fcombine(xf , xb) = tanh(W · (xf ||xb) + b) (5.10)

where xf and xb are two input vectors, W is a weight matrix and b is a bias

vector.

To predict arbitrary missing parts, we can do similar to open-loop RNNs.

To learn the sequences, the next step vectors are used as targets. fcombine is the
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function of the outputs of 2 LSTMs. (as eq. 5.5). Objective function is the mean

squared error (MSE) loss: ∑
x

∑
t

(xt − x̂t)
2 (5.11)

Eventually, we use BiLSTMs as regression models for the embedded event

vectors. As is done with mixture density networks (Graves, 2013) for generating

sequences with RNNs, MSE loss can be seen in a probabilistic manner if a

Gaussian distribution with fixed isotropic covariance on each output node.

5.5 Experimental Results

5.5.1 Experimental setup

We split all 171 episodes of the ‘PororoQA dataset’ into 90% training (154

episodes) / 10% test (17 episodes).2 Lengths of episodes on trainset/testset are

similar (mean: 93.1 vs 101.76, std: 72.13 vs 80.73). The evaluation methods

are mean square error (MSE) between original vectors and generated ones

in embedded vector spaces. We test 3 tasks: former-part prediction, mid-part

prediction, latter-part prediction. MSE is advantageous to tune the overall

difference from the previous / current / next desired vectors together than the

difference at each time index. We check the effect of the masking lengths and

scheduled sampling.

5.5.2 Quantitative Analysis

Figure 5.6 shows the performance of 3 tasks. Additionally, the results using

scheduled sampling and the results of standard open-loop prediction only (nor-

mal). At first, single directional LSTMs show good for short-length prediction as

the length of masking part are decreased. (Figure 5.6 (a)). In Figure 5.6 (b), the

2In the standard approach, validation set is often used for model selection. In ours, the
learning curves show the convergence to the certain value. So, we split the dataset as above
and we stop the itera-tion after the error variance is enough small.
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Figure 5.6 Plots for prediction errors (test data) on single directional LSTMs,
open-loop output of 2 LSTMs, and combined nodes of Bidirectional LSTMs.
Error metrics are the mean squared error (MSE). (solid line: scheduled sampling,
dotted line: normal)

prediction error of the result of single directional open-loop LSTMs. They show

similar tendencies with single LSTMs. In Figure 5.6 (c), BiLSTMs show low

MSE and stable performance regardless of the length of masking part. In the

area in longer than 200, the number of episodes is just 1, the result is so noisy.

Entirely, scheduled sampling is helpful to be stable with respect to prediction

error. From the results, we can generate stories.

5.5.3 Qualitative Analysis

To do surface realization, we train two decoders overfitted intentionally with

the overall dataset, since we want to use decoders as the probe what events

are encoded only, not a generalized surface realizer. The performance of two

decoders is as shown in Table 5.1.

Interpolation via geometric mid-points: We can interpolate mid-point
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Data BLEU(1) BLEU(2) BLEU(3) BLEU(4) CIDEr METEOR ROUGE-L

Dialogue 0.989 0.987 0.986 0.984 8.901 0.849 0.882

Description 0.942 0.935 0.931 0.927 9.501 0.686 0.970

Table 5.1 Decoder performance evaluation results. They are trained overfitted
intentionally. We want to use decoders as the probe what events are encoded
only, not a generalized surface realizer. The generated descriptions shows lower
scores, especially METEOR. Since the length of sentences of descriptions are
longer, it is natural phenomenon.

events between two arbitrary ones. At first, we check the effects of SEOE with

1-step gap interpolation. Since the number of instances is limited, 1-step gap

interpolation is not so interesting. But, we can see the noisy sentences are

intervened between them if events are not ordered. As shown in Figure 5.7,

we can observe that noisy events are appeared in case of without-SEOE. Also,

the decoding boundary is more accurate in the using-SEOE case. Figure 5.8

shows the example of 5-step gap interpolation results, which goes out from the

original storyline and come back. When we get the mid-points between two

events, it would get better results if we get them to follow the trajectories. Since

we use sequence models to track the trajectories in our system, it shows not

clear results if we just find geometric midpoints.

Regeneration with sequence models: Figure 5.9 shows one of randomly

chosen generated examples in the test data as the latter part generation problem.

We observe that almost every sentences are grammatically correct, and whole

story is reorganized and regenerated.

Figure 5.9 and 5.10 show randomly chosen one of relatively short episodes

(smaller than 50 step). Also, it is marked with color boxes as shown in Figure

5.10 to check how many sentences are similar. We use yellow color for perfect-

matched on the ground-truth. Blue one is for the matching case with on the

1-step shifted ones. Unless forcing to update with the cues, all of the stories
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Figure 5.7 A comparative interpolation example of the 1-step gap with and
without SEOE. In case of without SEOE, noisy events are observed.
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Figure 5.8 An interpolation example of the 5-step gap with SEOE.

are changed a little. There are some pairs that semantically same sentences or

only some words are different. We mark them as green one. We can observe that

large part of regenerated result of dialogues is recovered and the descriptions

are relatively small part is.

5.6 Summary

We propose story learning and regeneration framework for kids videos as sur-

rogate data of everyday lives. This type of datasets is meaningful to research

context understanding in real life. Descriptive story generators also are intro-

duced using the framework. Successive Event Order Embedding (SEOE) builds

composite representation of order and semantics, which shows the structure

of episodes and give stable regeneration result. We observe the potential to

interpolate events between arbitrary events, and we can get better results with

sequence models to span the event space. Note that it is still limited due to the

relatively small number of instances.
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Figure 5.9 One of latter part prediction examples with test data (given: 0 ∼ 20).
Whole story is reorganized and generated.
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Figure 5.10 Comparative cover map of the generated result and ground-truth.
It is marked with color boxes to check how many sentences are similar. Yellow
color for perfect-matched on the ground-truth, blue one for the matching case
with on the 1-step shifted ones, and green one for the case that semantically
same sentences or only some words are different.
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Chapter 6

Concluding Remarks

6.1 Summary of Methods and Contributions

As research vision, I pursue building situation-aware AI agents. The proposed

methods can be applied to situation expression as visual storytelling, situation

inference as open story generation and situation inference from partially observed

stories.

We propose new architectures GLAC Nets for visual storytelling, SEOE

for embedding story to have the trajectory form, ViStoryNets for video story

regeneration, RERMs for open-ended story generation.

Also, this dissertation proposes several technical issues as follows: Embedding

story with the form of trajectories can be used for composite representation of

order and semantics. The scheduled sampling technique is helpful to multi-step

prediction in BiLSTM. Vision-to-language translation setting and global-local

attention setting is powerful not only to learn overall structures but also to

deliver information to the decoder. Cascading mechanism is useful to serial
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generation of sentences. Automated metric scores should be used very carefully

for the story generation tasks. Recurrent event retrieval models (RERMs) can

be trained in an self-supervised manner.

6.2 Limitation and Outlook

While some part of components can be covered with the proposed methods in

this dissertation, lots of parts are still remained to be developed. In particular,

a study on video story learning with kids videos suffers from the small size of

the dataset.

Recently, some researchers focus on some promising issues such as human-

intervened interface (visual dialog1 (Das et al., 2017) and visual object discovery

via dialogue (guessWhat) 2 (de Vries et al., 2017)), learning via navigating in

the environment (Room-to-Room (R2) navigation 3 (Anderson et al., 2018), and

embodied QA4 (Das et al., 2018)). Those works can make good synergy effect

with the techniques of visual-linguistic story understanding and generation.

6.3 Suggestions for Future Research

In the our visionary scenario introduced in Chapter 1, we can see the further

direction to do more. The first promising topic is to build generalized situation

representation of image sequences. Even though the size of VIST dataset is

good, it is not enough to be able to transfer to other task except for event-like

picture streams. It needs to gather more data to be used for analyzing everyday

lives freely, it is not tested to be potentiality yet.

The second topic is to gear neural conversational models newly developed

1https://visualdialog.org/
2https://guesswhat.ai/
3http://bringmeaspoon.org/
4https://embodiedqa.org/
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recently. Currently, the proposed system is based on story generation without

interaction with humans.

The last suggestion is to build capable to take the Strong Story Hy-

pothesis and the Directed Perception Hypothesis proposed by Winston

(2011).

The Strong Story Hypothesis: The mechanisms that enable humans

to tell, understand, and recombine stories separate human intelligence

from that of other primates.

The Directed Perception Hypothesis: The mechanisms that enable

humans to direct the resources of their perceptual systems to an-

swer questions about real and imagined events account for much of

commonsense knowledge.

As we mentioned in related work, the ability of story understanding is an innate

function, which makes humans unique. Important point of those hypothesis is

the capability to recombine stories as if two words are merged (Chomsky, 2010).

Since I believe that human-level AI should have the ability of story under-

standing, it needs to do research on the system to combine ’video story learning’,

’story generation’, and ’recombining stories’ as concept blending.
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Geirhos, R., Janssen, D. H. J., Schütt, H. H., Rauber, J., Bethge, M., and

Wichmann, F. A. (2017). Comparing deep neural networks against humans:

object recognition when the signal gets weaker. CoRR, abs/1706.06969.

Gervás, P., Dı́az-Agudo, B., Peinado, F., and Hervás, R. (2005). Story plot

generation based on cbr. Knowledge-Based Systems, 18(4-5):235–242.

Goyal, P. and Ferrara, E. (2018). Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems, 151:78–94.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

Ha, J., Kim, K.-M., and Zhang, B.-T. (2015). Automated construction of visual-

linguistic knowledge via concept learning from cartoon videos. In AAAI, pages

522–528.
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초록

스토리를 이해하는 능력은 동물들 뿐만 아니라 다른 유인원과 인류를 구별짓는 중

요한 능력이다. 인공지능이 일상생활 속에서 사람들과 함께 지내면서 그들의 생활

속 맥락을 이해하기 위해서는 스토리를 이해하는 능력이 매우 중요하다. 하지만,

기존의 스토리에 관한 연구는 언어처리의 어려움으로 인해 사전에 정의된 세계 모

델하에서좋은품질의저작물을생성하려는기술이주로연구되어왔다.기계학습

기법을 통해 스토리를 다루려는 시도들은 대체로 자연어로 표현된 데이터에 기반

할 수 밖에 없어 자연어 처리에서 겪는 문제들을 동일하게 겪는다. 이를 극복하기

위해서는 시각적 정보가 함께 연동된 데이터가 도움이 될 수 있다. 최근 딥러닝

의 눈부신 발전에 힘입어 시각과 언어 사이의 관계를 다루는 연구들이 늘어나고

있다. 연구의 비전으로서, 인공지능 에이전트가 주변 정보를 카메라로 입력받는

환경 속에 놓여있는 상황을 생각해 볼 수 있다. 이 안에서 인공지능 에이전트는

주변을 관찰하면서 그에 대한 스토리를 자연어 형태로 생성하고, 생성된 스토리를

바탕으로 다음에 일어날 스토리를 한 단계에서 여러 단계까지 예측할 수 있다. 본

학위 논문에서는 사진 및 비디오 속에 나타나는 스토리(visual story)를 학습하는

방법, 내러티브 텍스트로의 변환, 가려진 사건 및 다음 사건을 추론하는 연구들을

다룬다.

첫 번째로, 여러 장의 사진이 주어졌을 때 이를 바탕으로 스토리 텍스트를 생성하

는문제(비주얼스토리텔링)를다룬다.이문제해결을위해글랙넷(GLAC Net)을

제안하였다. 먼저, 사진들로부터 정보를 추출하기 위한 컨볼루션 신경망, 문장을

생성하기 위해 순환신경망을 이용한다. 시퀀스-시퀀스 구조의 인코더로서, 전체

적인 이야기 구조의 표현을 위해 다계층 양방향 순환신경망을 배치하되 각 사진

별 정보를 함께 이용하기 위해 전역적-국부적 주의집중 모델을 제안하였다. 또한,

여러문장을생성하는동안맥락정보와국부정보를잃지않게하기위해앞선문장
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정보를 전달하는 메커니즘을 제안하였다. 위 제안 방법으로 비스트(VIST) 데이터

집합을 학습하였고, 제 1 회 시각적 스토리텔링 대회(visual storytelling challenge)

에서 사람 평가를 기준으로 전체 점수 및 6 항목 별로 모두 최고점을 받았다.

두 번째로, 스토리의 일부가 문장들로 주어졌을 때 이를 바탕으로 다음 문장을

예측하는 문제를 다룬다. 임의의 길이의 스토리에 대해 임의의 위치에서 예측이

가능해야하고,예측하려는단계수에무관하게작동해야한다.이를위한방법으로

순환사건인출모델(Recurrent Event Retrieval Models)을제안하였다.이방법은

은닉공간상에서현재까지누적된맥락과다음에발생할유력사건사이의거리를

가깝게 하도록 맥락누적함수와 두 개의 임베딩 함수를 학습한다. 이를 통해 이미

입력되어 있던 스토리에 새로운 사건이 입력되면 쌍선형적 연산을 통해 기존의

맥락을 개선하여 다음에 발생할 유력한 사건들을 찾는다. 이 방법으로 락스토리

(ROCStories) 데이터집합을 학습하였고, 스토리 클로즈 테스트(Story Cloze Test)

를 통해 평가한 결과 경쟁력 있는 성능을 보였으며, 특히 임의의 길이로 추론할 수

있는 기법 중에 최고성능을 보였다.

세 번째로, 비디오 스토리에서 사건 시퀀스 중 일부가 가려졌을 때 이를 복구하는

문제를 다룬다. 특히, 각 사건의 의미 정보와 순서를 모델의 표현 학습에 반영하

고자 하였다. 이를 위해 은닉 공간 상에 각 에피소드들을 궤적 형태로 임베딩하고,

이를 바탕으로 스토리를 재생성을 하여 스토리 완성을 할 수 있는 모델인 비스토

리넷(ViStoryNet)을 제안하였다. 각 에피소드를 궤적 형태를 가지게 하기 위해

사건 문장을 사고벡터(thought vector)로 변환하고, 연속 이벤트 순서 임베딩을

통해 전후 사건들이 서로 가깝게 임베딩되도록 하여 하나의 에피소드가 궤적의

모양을 가지도록 학습하였다. 뽀로로QA 데이터집합을 통해 실험적으로 결과를

확인하였다. 임베딩 된 에피소드들은 궤적 형태로 잘 나타났으며, 에피소드들을

재생성 해본 결과 전체적인 측면에서 유사한 결과를 보였다.

위 결과물들은 카메라로 입력되는 주변 정보를 바탕으로 스토리를 이해하고 일부

관측되지 않은 부분을 추론하며, 향후 스토리를 예측하는 방법들에 대응된다.

주요어: 시각적 스토리텔링, 서사 텍스트 생성, 다음 사건 예측, 스토리 완성, 전역-
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국부 주의집중, 순환 사건 인출 모델, 연속 이벤트 순서 임베딩
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