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Abstract

The ability to understand the story is essential to make humans unique from other
primates as well as animals. The capability of story understanding is crucial for Al
agents to live with people in everyday life and understand their context. However,
most research on story Al focuses on automated story generation based on closed
worlds designed manually, which are widely used for computation authoring.
Machine learning techniques on story corpora face similar problems of natural
language processing such as omitting details and commonsense knowledge. Since
the remarkable success of deep learning on computer vision field, increasing our
interest in research on bridging between vision and language, vision-grounded
story data will potentially improve the performance of story understanding and
narrative text generation.

Let us assume that AI agents lie in the environment in which the sensing
information is input by the camera. Those agents observe the surroundings,
translate them into the story in natural language, and predict the following event
or multiple ones sequentially. This dissertation study on the related problems:
learning stories or generating the narrative text from image streams or videos.
The first problem is to generate a narrative text from a sequence of ordered
images. As a solution, we introduce a GLAC Net (Global-local Attention Cas-
cading Network). It translates from image sequences to narrative paragraphs in
text as a encoder-decoder framework with sequence-to-sequence setting. It has
convolutional neural networks for extracting information from images, and recur-
rent neural networks for text generation. We introduce visual cue encoders with

stacked bidirectional LSTMs, and all of the outputs of each layer are aggregated



as contextualized image vectors to extract visual clues. The coherency of the
generated text is further improved by conveying (cascading) the information of
the previous sentence to the next sentence serially in the decoders. We evaluate
the performance of it on the Visual storytelling (VIST) dataset. It outperforms
other state-of-the-art results and shows the best scores in total score and all of
6 aspects in the visual storytelling challenge with evaluation of human judges.
The second is to predict the following events or narrative texts with the former
parts of stories. It should be possible to predict at any step with an arbitrary
length. We propose recurrent event retrieval models as a solution. They train
a context accumulation function and two embedding functions, where make
close the distance between the cumulative context at current time and the next
probable events on a latent space. They update the cumulative context with a
new event as a input using bilinear operations, and we can find the next event
candidates with the updated cumulative context. We evaluate them for Story
Cloze Test, they show competitive performance and the best in open-ended
generation setting. Also, it demonstrates the working examples in an interactive
setting.

The third deals with the study on composite representation learning for semantics
and order for video stories. We embed each episode as a trajectory-like sequence
of events on the latent space, and propose a ViStoryNet to regenerate video
stories with them (tasks of story completion). We convert event sentences to
thought vectors, and train functions to make successive event embed close each
other to form episodes as trajectories. Bi-directional LSTMs are trained as
sequence models, and decoders to generate event sentences with GRUs. We test
them experimentally with PororoQA dataset, and observe that most of episodes
show the form of trajectories. We use them to complete the blocked part of

stories, and they show not perfect but overall similar result.
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Those results above can be applied to Al agents in the living area sensing
with their cameras, explain the situation as stories, infer some unobserved parts,

and predict the future story.

Keywords: Visual Storytelling, Narrative Text Generation, Next Event Pre-
diction, Story Completion, Global-local Attention, Recurrent Event Retrieval
Model, Successive Event Order Embedding

Student Number: 2005-21534
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Chapter 1

Introduction

1.1 Story of Everyday lives in Videos and Story Un-

derstanding

The progress of information technology has rapidly increased the quantity of
data. The immense size of video data is uploaded to the internet everyday.
A great number of people use internet and social network services through
personal computers, and smart devices to record their behavior, knowledge, and
experience as life-logs. The logs can include a sequence of situations, actions or
dialogues of people that can be told as a story.

On the other hand, recently released are socially interactive household
robots such as NAO, Pepper!, and Jibo?. They have video cameras as eyes, and
microphones as ears to take visual-linguistic information of their environment
including a story as above. In a few years, the robots will live humans together,

and they should know common knowledge of everyday lives of humans. Since

Thttps://www.aldebaran.com/en
https://www.jibo.com/



the knowledge of the family members is personal and episodic, the robots should
learn via observation and interaction in the environment (Breazeal, 2004). Ideal
datasets for learning the temporal knowledge of family members include both
observation and interaction collected on real situated environments, but such
data to include contextual stories are not available in public yet. As alternatives,
we assume the robots learn by observation only, thus we will not consider tangible
information in interaction but focus on visual-linguistic media such as video or
some snapshots of images and texts. In this setting, we can utilize video-type
datasets including stories for our research.

In short, it is desirable to study on building situation-aware Al agents such
as household robots living together with humans. Ideally, learning by experience
would be one of good strategies for Al agents due to similarity of humans, but
currently, it is limited so far. So, learning by observation (learning by showing)
may be one of the alternative strategies, which is advantageous to use video-type
materials increasing everyday.?

Let us take one more step to further concretize our research from the above
scenario. Temporal knowledge of family members can be called situation to be
told by people. Since the term situation is not an explicit concept, it is not
easy to define and describe. From the philosophy of end-to-end training, we

can describe it using natural language, which is human-readable. Then we can

adopt the narrative text generation as a surrogate task for situation explanation.

Story generation tasks are one of interesting field so-called Narrative Intelligence
(NI) (Riedl, 2016; Mani, 2013) in Al academia. We can expect to combine the

research result from NI in the future.

31icense issues are still remained to solve.



Visual Story Learning
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Situation Expression
by Story Generation
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Figure 1.1 Research vision and a scenario: Building situation understanding Al
agents such as household robots living together with humans. They need to

learn by observation and interaction ideally.

1.2 Problems to be addressed

From the above section, we introduced a big scenario of situation-aware Al

agents. To convert our setting to a feasible problem, we induce narrative text

generation as situation explanation with visual-linguistic data including stories.

Our ultimate research goal is to develop narrative text generation systems

via learning stories from visual contents. Through this dissertation, we introduce

three works as main components for the above system as follows (Figure 1.2):

e The task of visual storytelling is to generate story paragraphs from image

sequences. This dissertation introduces GLAC Nets as solutions. It can be

used as ’situation interpretation from wvision’.

e The task of next event prediction is to predict the following events con-

sidering the context of input by the current. We present recurrent event
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retrieval models as solutions. It can be used as ’situation prediction’.

e The task of story regeneration is to generate the whole story from the
partial ones. We demonstrate the methods for embedding stories as tra-
jectory forms and ViStoryNet. It can be used as 'unseen event inference

from partially observed situation’.

Also, we utilize two visual-linguistic dataset and text story dataset as shown
Figure 1.2 and 1.3. In particular, visual-linguistic datasets are relatively rare.
PororoQA dataset (Kim et al., 2017) is one of kids video datasets. Our
purpose to use Kids video datasets is to take some advantages (Heo et al., 2010;
Ha et al., 2015; Kim et al., 2017): (1) omnibus style, which each episode has
simple and explicit storyline in short, (2) narrative order mostly using fabula,
which follows chronological sequencing of the events, whereas syuzhet is a term
to designate the way a story is organized to enhance the effect of storytelling
(Mani, 2013). (3) relatively small number of main characters and limited spatial
environment. This is effective to reduce computational burden and data sparsity.
Also, these properties are so desirable to provide as surrogate data similar to
that of everyday lives in compact and explicit way.

For the task of visual storytelling, we make use of the Visual Storytelling
dataset (VIST) (Huang et al., 2016). The VIST dataset is the first dataset
created vision-to-language of the form of sequence-to-sequence and other story
related tasks. The authors want it to be ”storyable”, thus they deeply use NLP
techniques to filter the albums in Flickr data to be what they want. The words in
the title are classified as an EVENT using WordNet3.0, the albums are allowed
to include with 10 to 50 photos where all album photos are taken within a
48-hour span and CC-licensed. It consists of story-like image sequences paired

with: descriptions to form a narrative over an image sequence (images/sentences
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Figure 1.2 Three problems to solve in this dissertation

. # of . Length of
# of stories instances Modality Stories Story Type
Image Annotated stories
VIST dataset Middle Middle sequence Fixed on Event-titled
[Hwang et al., “16] (~50,000) (~200,000) and (5) Image Collection
Story (text) from Flickr
Nonfictional daily
events with a
ROCStories High High Text only Fixed beginning
[Mostafazadeh et al., “16] (~100,000) (~500,000) (5) and ending, where
something happens
in between
Vision- Variable and Episodes of Kids’
PororoQA Dataset Low Low oriented Long Videos, ‘Pororo, the
[Kim, Heo, Choi, Zhang, ‘17] (< 200) (~20,000) Text pairs ot 2
. (>30) Little Penguin
(desc-diag)

Figure 1.3 Three datasets to be used in this dissertation



Task, Models and Methods Data Main Results

Global-local Attention Visual Storytelling (VIST) + Outperform other SOTA
Cascading Network (GLAC Net) | dataset methods.
* Task of Visual Storytelling - VIST Challenge * 1stplace in the challenge with
* Translation image sequences - Pairs of 5 images and story all of 6 aspects of human

to story sentences in text sentences evaluation
+ Effective Information Transfer - 50K stories

with 210K images

Recurrent Event Retrieval Model | ROCStory dataset « Stepwise Story Generation

(RERM) - Binary ending prediction * Compatible with human-

+ Task of Next Event Prediction - 5-sentence short stories interactive setting

* Iterative Event Retrieval - 100K episodes with 500K » State-of-the-art performance in

sentences open-length setting

ViStoryNet PororoQA dataset » Story Embedding of Trajectory

+ Task of Episode Regeneration |- Cartoon video series Form

* Sequential Event Order - 171 videos (avg. 40 steps) * Pointwise Event Interpolation
Embedding (SEOE) + BiLSTM | - 16K pairs * Regenerated description and
+ GRU gif / description / dialogues dialogues for Story Completion

Figure 1.4 Summary of contributions

aligned each). It consists of 50,200 sequences (stories) using 209,651 images
(train: 40,155, validation: 4,990, test: 5,055), and the length is 5.

1.3 Approach and Contribution

We propose three methods to learn latent embeddings to three problems in
Figure 1.1. A latent embedding approach is to find a intermediate latent space
and utilize it to solve the given problems. Each problem is solved with different
ideas based on latent embedding as shown in Figure 1.5.

For the problem to generate a story in text from a sequence of ordered
images, we introduce a GLAC Net (Global-local Attention Cascading Network).
It translates from image sequences to story paragraphs in text as a encoder-
decoder framework with sequence-to-sequence setting as shown in Figure 1.5

(a). It has convolutional neural networks for extracting information from images
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Figure 1.5 A comparative view of three approaches with respect to latent

embedding

and recurrent neural networks for text generation. We introduce visual cue

encoders with stacked bidirectional LSTMs, and all of the outputs of each layer

are aggregated as contextualized image vectors to extract visual clues. The

coherency of the generated story is further improved by conveying (cascading)

the information of the previous sentence to the next sentence serially in the

decoders. We evaluate the performance of it on the Visual storytelling (VIST)

dataset. It outperforms other state-of-the-art results and shows the best scores in

total score and all of 6 aspects in the visual storytelling challenge with evaluation

of human judges.
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For the problem to complete partially observed stories, we propose succes-
sive event order embedding (SEOE) for composite representation learning for
semantics and order for video stories. SEOE embeds each episode as a trajectory
form on the latent space, and we propose a ViStoryNet to regenerate video
stories (Heo et al., 2018). We convert sentences of events to thought vectors,
and train functions to make successive event embed close each other to form
episodes as trajectories as shown in Figure 1.5 (b). We test them experimentally
with PororoQA dataset, and observe that most of episodes show the form of
trajectories. We use them to complete the blocked part of stories, and they show
not perfectly but overall similar result.

For the problem to predict the following events or stories with former parts
of stories with the constraint to be possible at any step within an arbitrary
length, we propose recurrent event retrieval models (RERMs). Figure 1.5 (¢)
shows the concept of RERMs. They train a context accumulation function
and two embedding functions, where make close the distance between the
cumulative context at current time and the next probable events on a common
latent space. They update the cumulative context with a new event as a input
using bilinear operations, and we can find the next event candidates with the
updated cumulative context. We evaluate them for Story Cloze Test, they show
competitive performance and the best in open-ended generation setting.

Those results above can be applied to Al agents in the living area sensing
with their cameras, explain the situation as stories, infer some unobserved parts,
and predict the future story.

Additionally, we have done miscellaneous works for video story analysis
(Heo et al., 2010, 2015a; Heo and Zhang, 2016; Heo et al., 2016), probabilisic
global-local modelling (Heo et al., 2013), and probabilistic learning for human
behavior from smartphone lifelogs (Heo et al., 2012, 2015b).



1.4 Organization of Dissertation

The rest of this dissertation is organized as follows:

e Chapter 2 presents a background and a survey of the related work. Firstly,
we explain why we study stories. And then, we overview the works on
latent embedding and discuss studies on order and ordinal embedding.
After that, we show the works of story understanding. Next, we introduce

story generation methods in brief.

e Chapter 3 presents 'GLAC Net’ to generate a story in text from a sequence
of ordered images. We show 6 human evaluation criteria, then explain
glocal-lobal attention and cascading mechanisms as key elements to solve.
We show various example cases and the performance of automatic score

metrics and human evaluation.

e Chapter 4 proposes 'Recurrent Event Retrieval Models (RERMs)’ to
predict the following events or stories with former parts of stories. We
explain how to train a context accumulation function and two embedding
functions, where make close the distance between the cumulative context
at current time and the next probable events on a latent space. Then, it
is shown that experimental result for Story Cloze Test and some examples

of open-ended story generation.

e Chapter 5 we describe the study on composite representation learning
for semantics and order for video stories. We propose ’ViStoryNet’ to
regenerate (or complete) the whole stories. We explain how to build the

models and experimental results.

e In Chapter 6, the dissertation is summarized and discuss the directions

for future research.



Chapter 2

Background and Related Work

2.1 Why We Study Stories

When we deliver messages to others, use of visual information, such as images
or graphs, is more effective and intense in attracting attention and conveying
information than linguistic media such as text and voice only. Similarly, a story
is very powerful to deliver what speakers want. Stories make listeners involve
thinking, emotion, and imagination altogether, and engage with stories as if
their body and mind are in the narrative world. Narratives provide important
cognitive frameworks for the transfer and accumulation of experience. Humans
have tried to use their experience as well as other people’s actively to build up
the necessary ability to cope with harsh environment for survival. Jerome Bruner,
cognitive psychology and cognitive learning theory in educational psychology,

mentioned as follows (BRUNER, 1986):

Narrative (or story) deals in human or human-like intention and

action and the vicissitudes and consequences that mark their course.

10 AL



It strives to put its timeless miracles into the particulars of experience

and to locate the experience in time and place

To us, we interpret that stories are important function to share experience for
survival. The sharable, deliverable, and distributable nature of stories affects the
building of a socio-culture, i.e., folk psychology, and make form part of so-called
commonsense knowledge. Conversely, to deal with everyday stories as data is
closely related to learning commmonsense.

Arguably, the ability to engage in stories is the unique feature to make
humans humanly. From a talk in Pittsburgh in 1997, the late evolutionary
biologist Stephen J. Gould allegedly characterized humans as ”the primates
who tell stories.” Psychologist Robyn Dawes suggested that humans are ”the
primates whose cognitive capacity shuts down in the absence of a story.” (Dawes,
1999) Research suggests that anecdotes can be as persuasive as hard data, and
that jurors are influenced by the quality of the prosecution’s and defense’s stories
when deciding whether to find a defendant guilty. Similarly, even in science and
engineering, we seek explanations, not mere descriptions; in history, we want a
good narrative, not a mere sequence of events.

Stories have been studied in various forms across a range of disciplines, from
literary and media studies to psychology and linguistics. In Herman (2013)
book ’Storytelling and the Sciences of Mind’, narratives (or stories) work as
an instrument of mind, and then stories are chunking experience as source of
structure. Also, gathering the concept to be spread to other people, they are
extended to Folk Psychology.

But to get a handle on their potential role in human intelligence, it needs to
consider how they have cropped up in Al. Researchers in Al have explored a
potential role for stories since at least the 1990s. In a book ’Tell me a story: A

new look at real and artificial memory’ by Schank (1990), R. Schank argued for a

11 Sk



crucial link between narrative and intelligence, with narratives guiding learning,
structuring memory and supporting generalization. Winston (2011) claimed the
Strong Story Hypothesis, according to which ”storytelling and understanding
have a central role in human intelligence,” going on to suggest an artificial
system with some human-like capabilities . One reason Al systems might need
to understand or produce stories is because they interact with humans. Indeed,
there is an evidence that people trust robots more, and can work with them

more effectively, when the robots offer more human-like explanations.
2.2 Latent Embedding

From this section, we will introduce some technical related works to ours. Firstly,
the common features of our approaches is latent embedding.

Embedding methods are to convert data instances including discrete ob-
jects to continuous vectors where certain properties can be represented with
distances.! The properties can be the distances in the lower-dimensional space
(dimensionality reduction), the local distances (manifold learning) 2, the weights
of links in graphs (graph embedding) (Goyal and Ferrara, 2018), the semantics
of natural language entities such as words (word embedding) (Camacho-Collados
and Pilehvar, 2018) or sentences (sentence embedding) (Perone et al., 2018), or
the order of entities (order embedding) (Vendrov et al., 2016).

On the contrary, latent embedding (LE) is a generic approach to find a
useful intermediate space to solve the given problems. Traditionally, the most
well-known example of LE is the canonical-correlation analysis (CCA). CCA

is to find a common latent embedding space via seeking linear combinations

'Mathematically, embeddings are more abstract concept. We focus on practical use of
embedding in this dissertation.

2with the assumption to follow the manifold hypothesis: the data distribution is assumed
to concentrate near regions of low dimensionality. (Cayton, 2005; Ma and Fu, 2011)
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of two random variables X and Y which have maximum correlation (Hotelling,
1936; Hérdle and Simar, 2015). LE has been used in various methodologies and
applications since it has some advantageous properties. Firstly, it may alleviate
curse of dimensionality via embedding the raw instances of high-dimensional
features onto the lower-dimensional space. Secondly, it may provide distance-
measurable space on which certain information can be encoded on geometric
elements such as the position or the relation of inter-instances. Mostly, we can
get more efficient representation to highlight useful information retained in the
data. We would divide the LE related approaches into two categories from a
perspective on which role of the latent space takes: (1) common latent space,
and (2) intermediate representation in the encoder-decoder frameworks.

Common space learning uses joint embedding spaces to bridge the gap
between heterogeneous sources, e.g., image and label (zero-shot learning (Socher
et al., 2013; Akata et al., 2016; Changpinyo et al., 2016; Xian et al., 2016; Zhang
and Saligrama, 2016)), image and description (Frome et al., 2013; Kiros et al.,
2014), and two sentences in different languages (Johnson et al., 2016b). Also,
they can be used to consider various options in one way such as multi-class
classification (Amit et al., 2007; Weinberger and Chapelle, 2009) and answer
selection in question and answer (Yu et al., 2014; Wang and Nyberg, 2015;
Deepak et al., 2017). In this dissertation, we introduce two works to use this
approach. The first ones represents cumulative context in the stories in Chapter
4. Also, Chapter 5 shows how to embed episodes to form trajectories, then build
neural networks with them for the task of story completion.

Intermediate representation in the encoder-decoder framework forwards to
the decoding module from the encoding module. Mostly, the dimension of the
codes, the output of the encoder, is lower than that of the input. Typically,

encoders work as raw data converters to features, decoders generate the output
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as solutions. While auto-encoders are typical examples traditionally, practically
powerful cases have shown in the deep learning frameworks. The most related
configuration to ours is sequence-to-sequence architecture (Sutskever et al.,
2014a). It shows impressive results for language translation tasks (Cho et al.,
2014; Johnson et al., 2016b) and image captioning tasks (Vinyals et al., 2015). In
the subsection 2.5.2, we will review sequence-to-sequence with attention models

and works on vision-to-language translation.
2.3 Order Embedding and Ordinal Embedding

Since Mikolov et al. (2013)’s word2vec became popular, various neural embedding
methods have been developed from word, sentence, to structured objects such
as graphs, trees, and etc. We will focus on order embedding as background of
our work, and story generation for our experiments as applications.

Ordinal Embedding and Order Embedding Ordinal embedding is also
called non-metric multidimensional scaling consists of finding an embedding of
a set of objects based on pairwise distance comparisons (Borg and Groenen,
2005) with pioneering contributions from Shepard and Kruskal. Formally, given
a set of ordinal constraints of the form distance(i, j) < distance(k,l) for some
quadruples (4, j, k, 1) of indices, the goal is to construct a point configuration
z', ... 2™ in RP that preserves these constraints as well as possible. This problem
is relaxed with solving a semi-definite program, generalized non-metric MDS
was introduced (Agarwal et al., 2007). For embedding nearest neighbor graphs
onto Euclidean space, structure preserving embedding (SPE) was researched
based on similar approaches (Shaw and Jebara, 2009). Terada and von Luxburg
(Terada and Luxburg, 2014) showed that if a k-nearest neighbor graph is given
as local ordinal constraints, we can reconstruct the point set. Also, they showed

that statistical consistency is valid. Consistency can be extended from quadruple
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learning to triple learning as proven in (Arias-Castro et al., 2017).

In the machine learning community, the work of Jamieson and Nowak (2011)
investigates a lower bound for the minimum number of comparison queries of
the form “Is object xj closer to x; than z; 77 As ranking problems, an ordinal
embedding with pairwise comparison also researched (Jamieson and Nowak,
2011; Ailon, 2012; Wauthier et al., 2013).

In deep learning era, another important work is Vendrov et al. (2016). They
defined learning order embedding as by learning a mapping which is not distance-
preserving but order-preserving. They developed order embedding methods
with triplet ranking loss and order violation penalty for hypernym prediction,
textual entailment, and image captioning. This approach focus on the partial
order structure in the semantic hierarchical relations, and train their embedding
functions for partial order completion. From this work, other extended researches

are introduced (Li et al., 2017; Wehrmann et al., 2018).
2.4 Comparison to Story Understanding

It is difficulty task to measure how well stories understand, even to humans. The
first series of representative tasks for that are to generate description, explanation
and story itself, similar to image captioning for image understanding. The second
series are to answering to the questions. To quantify the performance, question
and answering is relatively easier with the measurable accuracy. On the other
hand, the task of story generation suffers from the lack of measuring tools. We
will discuss this issue in Chapter 3 again.

Textual Story Understanding As similar works without visual cues, we
can categorize into two tasks: question answering and generation. there are
text comprehension tasks such as bAbI tasks (Weston et al., 2015), SQuAD
(Rajpurkar et al., 2016) and Story Cloze Test (Mostafazadeh et al., 2016). They
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have been used for benchmarking new algorithms on document comprehension.

Visual Story Understanding Recently, research fields that combine com-
puter vision and natural language processing, such as image caption generation
and visual question answering (VQA), are also growing fast (Antol et al., 2015).
The image captioning system generates a natural language sentence describes
the scene with the image as an input; VQA system generates an answer to the
question by taking the natural language question and the related image. Even
though there are a lot of works for VQA as shown in this survey (Wu et al.,
2017), relatively less number of works for video QA (YouTube-8M (Abu-El-Haija
et al., 2016), MSR-VTT (Xu et al., 2016)) are due to high complexity and the
paucity of data. Still, more focused on activity recognition and pose estimation
such as Sport-1M (Karpathy et al., 2014), ActivityNet (Caba Heilbron et al.,
2015), and Kinetics (Kay et al., 2017; Carreira and Zisserman, 2017). To avoid
high complexity, some works focus more specific like TGIF-QA (Jang et al.,
2017) (the number of the repeated actions) and Mario-QA (Mun et al., 2017)
(limited to specific game environment).

To deal with stories with longer time scale, most of them are used augmented
information in text: aligning movies and books (Zhu et al., 2015), movie descrip-
tion (Rohrbach et al., 2015), movie QA on synopsis and script (Tapaswi et al.,
2016a), Pororo QA, which built from kid videos with dialogues and descriptions
(Kim et al., 2017). Very recently, new dataset is released on TV drama series

with QA annotation, TVQA (Lei et al., 2018).
2.5 Story Generation

Most traditional story generation systems have used planning-based approaches
(Lebowitz, 1985; Riedl and Young, 2010) or case-based reasoning (Gervés et al.,

2005) for entertainments and educations. While they show practically impressive
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results for story generation and story authoring applications (Kybartas and
Bidarra, 2017; Kapadia et al., 2017), they need a large size of domain knowledge
to concretize the story hypotheses: the characters involved, what their goals
are, how they interact, how they make effects on the world. Recently, machine
learning technologies have been focused for story generation on open domains
from available story corpora playing a role of domain knowledge.

Learning Textual Story Generations: While story generation technolo-
gies as authoring tools are actively researched area (Dai et al., 2017), we focus
on learning-based approaches. Mostly, text-based novels have researched on the
focus of plots, e.g., folktales (Finlayson, 2012), suspenses (O’Neill and Ried],
2014). For open-domain storytelling, some recent works focused on how to
construct narrative models automatically: crowd-sourced narrative learning
(Li and Riedl, 2015), Swanson and Gordon (2012) built SayAnything system
using textual case-based reasoning interactively with human’s response and
feedback. McIntyre and Lapata (2009) built story generation systems randomly
and ranking with coherence/interest score models trained with SVMs. Recently,
Martin et al. (2017) trained sequence-to-sequence models using recurrent neural
networks with memory cells to represent event-to-event, and event-to-sentence
relationships. And they utilized it to predict the next event and to generate

narratives.
2.5.1 Abstract Event Representations

To accomplish story generation, researchers have focused on the narrative
chains with NLP-based abstract representation. Chambers and Jurafsky (2008)
introduce narrative cloze test and learn causal event chains that revolve around
a protagonist. They developed an abstract representation that only care for the

verb that occurred and the type of depend-ency that connected the event to
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the protagonist. Pichotta and Mooney (2016) expanded it to a 5-tuple event
representation of (verb, subject, direct object, prepositional object, preposition).
Martin et al. (2017) refined the event representation with modifier term such as
(s,v,0,m) where v is a verb, s is the subject of the verb, o is the object of the verb,
and m is the modifier working as a wildcard. To pursue generalized semantics,
they use wordnet and verbnet. And story cloze test (SCT) (Mostafazadeh et al.,
2016) we will use mainly is the task of choosing the right ending between two
given sentences. SCT converted story generation into a binary classification

problem. 4-sentence story is given with two possible endings as the 5-th sentence.
2.5.2 Seqg-to-seq Attentional Models

Sequence-to-sequence models (Sutskever et al., 2014b) were introduced for
machine translation task based on source-target paired textual corpora. To
improve performance of the target text generation, attentional models provide
connections of all hidden information of encoders of sequence models (Bahdanau
et al., 2014; Luong et al., 2015) as Figure 3.2. Recently, self-attention (or intra-
attention) (Lin et al., 2017) and key-value attention (Vaswani et al., 2017)
introduced intra-connections on source or target language. Especially, global-
local attentional models (Luong et al., 2015) considered overall information
of encoded source (global) and that of focused position (local) together. It is
conceptually similar, but our proposed method are different in design level of
submodules, connection to submodules each other caused from the focus on
multi-modal setting.

Images to Single-text: Since AlexNet (Krizhevsky et al., 2012) as a
milestone, object recognition and detection methods have grown explosively and
outperformed human ability of capturing objects in accuracy aspect (Geirhos

et al., 2017). While modeling the inter-relation between source-target texts for
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machine translation tasks, attention models for computer vision pursue modeling
salient areas in complex visual inputs such as Scene/video description tasks (Xu
et al., 2015; Johnson et al., 2016a; Karpathy and Fei-Fei, 2017; Donahue et al.,
2015) and image/video question answering tasks about the stories (Tapaswi

et al., 2016b; Kim et al., 2017, 2018).
2.5.3 Story Generation from Images

Huang et al. (2016) introduce the VIST dataset consisting of sequential images
and natural language sentences, and discussed how this data could be used for
visual storytelling tasks. They show the result of basic sequence-to-sequence
models as baselines.

Retrieval-based approaches The first work for multiple-frame to multi-
sentence modeling is done by Park and Kim (2015). They use a coherence model
in textual domain for resolving the entity transition patterns between sentences.
However, they define the coherence as rigid word reappearance frequency, which is
unable to address the semantic gap and therefore cannot fully express the deeply
meaning. Moreover, they focus on textual coherence without acknowledging the
problem of large visual variance. Liu et al. (2017) developed semantic embedding
of the image features on the bi-directional recurrent architecture to generate
a relevant story to the pictures. There are similar points to ours since it used
bi-directional recurrent architecture for embedding image sequence context with
the VIST dataset.

Adversarial training for generation Adversarial training strategies in
reinforcement learning framework were tested on this task (Wang et al., 2018b,a).
They have generator networks and reward models separately, the result of
generators provides examples to calculate the reward with the reward models

such as discriminators (Wang et al., 2018a) or regressors (Wang et al., 2018b).
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The rewards give feedbacks to generators to generate more realistic fake examples.

In the work (Wang et al., 2018a), the first discriminator checks whether an

image and the corresponding sentence is well-matched, generated, or shuffled.

The second one classifies whether a paragraph story comes from the dataset, it
is generated one, or shuffled sentence in order. It has shown the state-of-the-art

performance with respect to automated metric scores.
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Chapter 3

Visual Storytelling via
Global-local Attention Cascading
Networks

3.1 Introduction

In some years, deep learning have brought about breakthroughs in processing
image, video, speech and audio. The field of natural language processing (NLP)
has been also interested in deep learning, e.g., sentence classification (Kim,
2014), language modeling (Bengio et al., 2003; Mikolov et al., 2013), machine
translation (Sutskever et al., 2014b; Bahdanau et al., 2014; Vaswani et al., 2017),
and question answering (Hermann et al., 2015).

Naturally, bridging images and texts by deep learning has been following
(Belz et al., 2018) such as image captioning (Vinyals et al., 2015; Xu et al., 2015;
Karpathy and Fei-Fei, 2017), visual question answering (Antol et al., 2015; Kim
et al., 2016), and image generation from caption (Reed et al., 2016; Zhang et al.,
2017).
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(3)

\_ (1

4 Captions

(1) A group is gathered in one corner to perform music.
(2) Awoman lights a candle at church along with others.
(3) A priest performs a religious ceremony in a church.
)
)

(4) Awoman holds one of many candles in a darkened room.
k(ﬁ A few people in church robes are reading the bible .

S
4 Stories )
Annotation 1: | joined wizard school 3 years ago, today is my final test in order for me
to graduate. Here is my subject of the test, | must turn her into something else.
| speak up words and secret sayings that | was taught to pass my wizard test.
Proudly, success ! | have turned the blonde girl into a brunette girl. | have passed my test
Time to show the grand wizard my secret sayings so he can grade me and
| can pass wizard school. It is nice !

Annotation 2: The music part at church had just finished. We were standing in front of
nice candles. The kids were sad that they didn’t go out to play outside. That night was
nice to enjoy refreshing. It would be great if | ¢can visit here again next weekend.

. /

Figure 3.1 Examples of the task of visual storytelling and image captioning.
Both of captions and stories are annotated by human workers. Two stories are
very different. Blue emotional words and red clauses from story text are more
subjective than captions. Best viewed in color.

Narratives (or stories) are fundamental parts of human intelligence as well as
social intelligence (Herman, 2013; Winston, 2011; Chomsky, 2010). They serve
as vehicles to share experience, information and intentions via languages. With
the perspective, to generate a narrative paragraph of multiple coherent sentences
from an ordered photo stream is an interesting and fundamental challenge on
both computer vision and natural language processing (NLP). This task is
called as "Visual Storytelling’ (Huang et al., 2016). This is challenging because
of the difficulties such as detecting the visual clues spread on photo streams,
understanding contexts or situations, constructing narrative structures, and
generating the paragraph written in an expressive way for storytelling.

So far, most of researches have much focused on visual captioning (Vinyals
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Figure 3.2 Comparative view of sequence-to-sequence models and image-to-text
models. For text-to-text translation, seqg-to-seq models with attention were
introduced (Bahdanau et al., 2014; Luong et al., 2015). In multi-modal cases, it
is important to extract features of salient parts, and deliver them to appropriate
position. The rightmost figure shows the global-local configuration for our
problem setting to use context information with attention and direct relation
from input objects to output objects.

et al., 2015; Xu et al., 2015; Karpathy and Fei-Fei, 2017; Donahue et al., 2015;
Belz et al., 2018) to show impressive results, which aim at describing the content
of an image or a video in an objective expression style. Still, their capability of
story generation is restrictive.

In this paper, we further investigate the capabilities in understanding more
visual scenarios, composing more structured expressions, and creating better
narrative paragraphs from image sequences. The main challenges of this task
are as follows; At first, different from single image captioning, we should gen-
erate multiple coherent sentences to be focused on one theme, well-structured,
grammatical and well-organized. All the while, they should be image-specific
sentences within the context of overall images while those properties are main-
tained. Secondly, stories are more diverse than descriptions. If visual cues are
appropriately relevant on the story text, humans may accept totally different

stories as shown in Fig 3.1. This observation is valid on the VIST dataset
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(Huang et al., 2016), too. Technically, it causes the severe problem of automatic
evaluation using popular metrics such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE (Lin, 2004), and CIDEr (Vedantam
et al., 2015), which are all compared to golden answers. As the more diverse
stories are acceptable, the probabilities to match with golden answers get lower.
As reported in (Kilickaya et al., 2017), the correlation coefficients to human
evaluation are not so good: most correlated one is METEOR with the value
~0.44 on the composite dataset! For the VIST dataset, (Huang et al., 2016)
looked for the best correlated metric: METEOR with p=0.22. Notably, one of
recent works (Wang et al., 2018b) using reinforcement learning (RL) with metric
scores as rewards showcases an adversarial example with average METEOR

score as high as 40.2:

We had a great time to have a lot of the. They were to be a of the.
They were to be in the. The and it were to be the. The, and it were
to be the.

Conversely, they report to observe many relevant and coherent stories with
low scores (nearly zero). To avoid this problem, we take a detour to utilize
mainly human evaluation to measure their performances with criteria proposed
in the Visual Storytelling challenge (Huang et al., 2018b).

To deal with the difficulties, we propose Global-local Attention Cascading
Network (GLAC Net) that a sequence-to-sequence model with combination
of global-local attention and context cascading mechanism. The model incor-
porates two simple attention: a global level to process overall encoding of
context /narrative structure to text generator; a local one that chooses a certain

image from a sequence of visual cues. Specifically, we introduce the visual cue

La mixture of Flickr8k, Flickr30k and MS-COCO
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Figure 3.3 Density estimate plots over automated metric scores with variants of
human answers on the image captioning task (Kilickaya et al., 2017) based on
Flickr8k, Flickr30k and MS-COCO dataset. While METEOR shows the best
correlation, the average value is ~ 0.44.

encoder with stacked bi-directional LSTMs, and all of outputs of each layers
are aggregated as contextualized image vectors. It can be interpreted as giving
a multi-level representation, i.e., overall context encoding level (global) and
image feature level (local). We give local attention on image features directly
(Figure 3.2). Then, both of them are combined and sent to RNN-based sentence
generators.

The next point is context cascading mechanisms. To improve the coherency
of generated stories, we design models to convey the last hidden vector in the
sentence generator to the next sentence generator as initial hidden vector while
keeping the concept of global-local attention model.

Recently, the VIST dataset was released for the task of visual storytelling,
which is composed of five-sentence stories, descriptions and the corresponding
sequences of five images (Huang et al., 2016). We test our methods with them
and outperform the state-of-the-art (SOTA) works with all 6 aspects of human

evaluation criteria proposed by (Huang et al., 2018a), which was proved from
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the 1% visual storytelling challenge ? by human judges.
3.2 Evaluation for Visual Storytelling

Before we introduce how to deal with the task of visual storytelling, which is to
generate a story of sentence sequence from a given sequence of images, we consider
evaluation criteria to establish our goals of modeling. Due to the emergence
of inter-relationship of sentences in the generated stories, we need appropriate
measures what good stories are. While typical automatic evaluation metrics for
sequence generation tasks such as BLEU, METEOR, ROUGE, CIDEr, SPICE,
and WMD are based on similarity to golden answers, they are not appropriate
as objective functions (Wang et al., 2018b), and the correlations to human
evaluation are not so high (Kilickaya et al., 2017). Different from single-sentence
generation tasks, we should consider the properties of the generated sentences
to be focused on one theme, well-structured, grammatical and well-organized.
Recently, one of interesting criteria were introduced in the visual storytelling

challenge (Huang et al., 2018b,a) as follows:

1. ”The story is focused”: Each sentence of the story is relevant to the

rest of the story?

2. ”The story is coherent”: The story is well-structured, grammatical

and well-organized?

3. ”I would share”: If they were users’ photos, the users have a will to

share their experience with their friends?

4. ”Written by a human”: The story sounds like it was written by a

human?

2Here is the page for visual storytelling challenge: http://www.visionandlanguage.net/
workshop2018/
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5. ”Visually grounded”: The story directly reflects concrete entities in the

photos?

6. ”Detailed”: The story provides an appropriate level of detail?

Even though they need human labors for evaluation, it is advantageous to cover
several aspects such as overall properties (1,2), degree of satisfaction (3), human
likeness (4), and image-specificity (5,6). Those provide a good guideline what

kinds of points should be considered into models.

3.3 Global-local Attention Cascading Networks (GLAC
Net)

We formulate the task of visual storytelling as a sequence-to-sequence learning
problem, which the input is a sequence of images and the output is a sequence of
sentences including the corresponding stories. Briefly, our methods are composed
of two stages: (1) representation learning of image sequences as encoders, and
(2) textual story generators as decoders. We are given a sequence of images V' =
{v1,v9,...,v7p} and the corresponding sequence of sentences S = {s1, $2, ..., S7}.
Note that the length of V and S is the same value T'. Each s; = {w1, wa, ..., wp }
in S is a sequence of words, which is not limited rigorously in only one sentence,
it can have one or two sentences. The length 77 in s; is not fixed depending on
the sequence. To indicate the starting point and the end point of s;, we add
<START> and <END> symbols as special words in the word vocabulary.
Similar to sequence-to-sequence model setting (Sutskever et al., 2014b), we
define the objective of training as to estimate the conditional probability p(S|V)
with LSTM language model to decode textual stories.
p(S|V) = p(s1, s2, ..., sT|v1, V2, -+ ,UT)
T (3.1)

=[IpGstlst, - sia, 01, vr)
t=1
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Note that the formulation becomes the same to the image captioning framework
(Vinyals et al., 2015) if " = 1.

Different from the text, the variance of values in V representing at the
pixel-level is very high even though the context of V is the same. To get better
estimated probabilities, we can encode images using pretrained Convolutional
Neural Networks (CNNs) such as VGGNet (Simonyan and Zisserman, 2015) or
ResNet (He et al., 2015), which have been used for various computer vision tasks,
and are currently state-of-the-art for object recognition and detection. These
features represent single images as real-valued vectors with smaller number of

dimension than the one of image pixels.
XCNN = {(L‘l,{L'Q, ...,{L‘T} = CNN(V) (32)

Then, we can rewrite more effective formula p(S|Xcnn) instead of p(S|V). Xenn

is the features of each image separately.
3.3.1 Encoder: Contextualized Image Vector Extractor

Similar to (Bahdanau et al., 2014), we use bi-directional LSTMs (BiLSTM)
as main components of context encoders. BiILSTM consists of forward and
backward LSTM’s. The forward LSTM 7 reads the input sequence as it is
ordered, and computes a sequence of forward hidden states (7?1> R ,h_>T) The
backward LSTM 7 reads the input sequence in the reverse order, and generates
a sequence of backward hidden states (;1_1, ‘e ,l<l_T) Typically, the layer output
h: at time t is the concatenation of two directional outputs [E; E]

Recently, context word embeddings, e.g., CoVe (McCann et al., 2017) and
ELMo (Peters et al., 2018) were developed to provide transferrable pre-trained
encoder for a variety of NLP tasks similar to CNNs trained on ImageNet for

computer vision. They embed words as additional real vectors to include the
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Figure 3.4 Our proposed model architecture for visual storytelling. Basic encoder-
decoder structure. Note that activation function (ReLU), dropout, batch nor-
malization, and softmax layer are omitted for readability. Best view in color.

context information within the sentence using the outputs of each layers of
stacked BiLSTM. Inspired from the contextualized word embeddings, we design
an encoder module of neural networks to convert sequences of image vectors onto
contextualized ones within the given image sequence. Specifically, we introduce
the visual cue encoder with stacked BiLSTM with residual connections, and all
of each layer’s output are aggregated as contextualized image vectors for one
image in the visual cue as shown Figure 3.4. We check the quality of generated
result depending on the number of layers, stacked models show slightly better
than single-layer one.

For each image feature z;, a L-layer BILSTMs computes a set of 2L repre-

—
sentations: hy ; = [ht,j? m] is the concatenated output for each BiLSTM layer
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where j is the layer index (7 =1,---,L).
For the aggregation functions of all output of BiLSTM layers, we consider
concatenation of all layers (all), concatenation of the input and the last layers

(tb), element-wise summation (ews), element-wise product (ewp), and mixed

operations.
all __ . . .
=[x by he ]
ttb = [ﬂft; ht,L]

(3.3)
P R I SRR o 797

ewp

t :ZEt@ht,l@"'@ht,L

Note that the dimension of all layer concatenate aggregation is increasing
depending on L, and for the operations of ews or ewp, it needs to match the

dimensions of x; and hy ;.

3.3.2 Decoder: Story Generator with Attention and Cascading
Mechanism

Importance of visual storytelling is how to generate image-specific sentences
within the context of overall images. To achieve the above goal, we design our
models to use both of context information from the output of encoders and raw
image features together.

In the typical global attention (Bahdanau et al., 2014; Luong et al., 2015) in
Figure 3.2, they can refer all hidden information. We give hard constraints on
global attention and local attention since our input object is not a word but an
image.

Let us define sentence generator GG, which can generate one or two sentences

with arbitrary length.

(Si, i) = G(o1:1,1, li—1) (3.4)
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where o171, is the d x T matrix of output of the encoder (if d is the value of
dimension), /; is the final hidden state of generator G of iy, iteration and needs
to define [y vector before use. G can be implemented with arbitrary RNNs, we
use LSTMs. S; is the iy, generated result.

From our experiments, we observe that the constraint to give better perfor-

mance (Figure 3.7) as following:

(Sz,ll) = G(Oi,L;li—l) (35)

From the result, different from standard attention models, we do not need to
use activation functions to induce probabilistic distributions such as softmax.?
Also, the GLAC Net implements them in a very simple way via hard connections
from the aggregated outputs of encoders or each image feature onto each
corresponding sentence generator while standard attentional configuration may
need a large number of parameters. The coherency of the generated story is
further improved by conveying (cascading) the information of the previous
sentence to the next sentence serially in the decoders.

The outputs of encoders include overall information of the sequence (global).
On the other hand, the image-specific features are constrained only on the image
(local). The aggregated vector of them (global+local vector) is obtained from
the global-local attention containing the story flow and the information of each

image. They can be represented as "hard’ attention each on the specific inputs

or the encoding vectors.

Cascading mechanism

In GLAC Net, we need to design our decoders to generate several sentences

sequentially. To implement this, we introduce the cascading mechanism to use

3That is because it is equivalent to choose one among one candidate.
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hidden states as conveyer channels. It needs to initialize the hidden values of
the first sentence generator as zeros. It is different from the standard image-
sentence connection setting shown in image captioning papers (Vinyals et al.,
2015; Karpathy and Fei-Fei, 2017; Xu et al., 2015), which the outputs of CNN
encoders are connected to the initial hidden states of sentence generators.
Instead, we connect the outputs of encoders to the every input layers of sentence
generators in all steps as Figure 3.4. Then, the hidden values in the final step
are used as the initial hidden values of the next sentence generator. When we
need to remove the mechanism for ablation study, we disconnect the cascading
information flow from the previous sentence generator to the next one.
Following the standard sequence-to-sequence problem setting, we use each
s; is produced one word at a time. We use cross-entropy loss over the training

data.
Avoiding Duplicates

As simple heuristics to avoid duplicates in the decoders, we sample words one
hundred times from the word probability distribution of the LSTM output, and
choose the most frequent word from the sampled pool. This reduces the number
of repetitive expressions and improve the diversity of the generated sentences.
On the process of generating sentences of the story, We also count the selected
words. The selection probabilities of the words are decreased according to the

frequency of each word as Equation 3.6, and normalized.

1
1+ k- countyord

p(word) = p(word) x (3.6)

where k is a constant for sensitivity. We use k=5.
To build grammatically correct sentences, the probabilities of some function
words such as prepositions and pronouns are not changed regardless of the

frequency of occurrence.
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A man

A black playing The boy is A soccer ball Two balls
frisbee is soccer throwinga  is over a and a
DIl sitting on outside of a  soccer ball  roof by a frisbee are
to ogf 2 roof white house by thered  frisbeeina on top of a
P " with a red door. rain gutter.  roof.
door.
Now the
- discus,
A discus got Why not try Up the It didn't soccer ball,
getting it work so we
SIS stuck up on . soccer ball . and
the roof. down with a goes tried a volleyball
’ soccer ball? ’ volley ball.
are all stuck
on the roof.

Figure 3.5 A VIST dataset example. DII: Descriptions of images in isolation.
SIS: Stories of images in sequence.

3.4 Experimental Results
3.4.1 VIST Dataset

VIST dataset is the first dataset particularly created for sequential vision-
to-language and other story related tasks (Huang et al., 2016). It consists of
story-like image sequences paired with: (1) descriptions for each image in isolation
(DII) (~ 80% only), (2) descriptions to form a narrative over an image sequence
(images/sentences aligned each) (SIS) as shown in Figure 3.5. It consists of
50,200 sequences (stories) using 209,651 images (train: 40,155, validation: 4,990,
test: 5,055), and the length is 5.

3.4.2 Experiment Settings

We follow the split of VIST dataset and adopted both the automatic metrics
(BLEU, METEOR and ROUGE-L) and the six human evaluation criteria. Every

scores are evaluated on the test dataset. We utilize the open source evaluation
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Validation Test
Configuration Perplexity | Perplexity | B-1 B-2 B-3 B-4 | ROUGE-L | METEOR
Seq2Seq (Beam=10) - - - - - - - 0.231
Seq2Seq (Greedy) - - - - - - - 0.278
Seq2Seq (-Dups) - - - - - - - 0.301
Seq2Seq (+Grounded) - - - - - - - 0.314
Sentence-Concat 30.58 31.02 0.411 | 0.198 | 0.096 | 0.050 0.257 0.301
Story-Flat 28.35 28.32 0.271 | 0.139 | 0.070 | 0.037 0.204 0.232
CRCN - - 0.367 | 0.132 | 0.042 | 0.016 0.195 0.231
SRT - - 0.409 | 0.202 | 0.099 | 0.052 0.259 0.303
Ours (-Cascading) 20.24 20.54 0.440 | 0.219 | 0.104 | 0.053 0.259 0.301
Ours (-Global) 18.32 18.47 0.369 | 0.173 | 0.082 | 0.041 0.250 0.291
Ours (-Local) 18.21 18.33 0.373 | 0.181 | 0.091 | 0.049 0.251 0.294
Ours (-Count) 18.13 18.28 0.334 | 0.156 | 0.077 | 0.041 0.245 0.276
Ours 18.13 18.28 0.406 | 0.194 | 0.091 | 0.045 0.246 0.296
Ours (4 stacked BiILSTM-+all) 18.27 18.32 0.385 | 0.191 | 0.097 | 0.052 0.255 0.301
Ours (4 stacked BILSTM+sum) 18.33 18.35 0.370 | 0.183 | 0.092 | 0.049 0.252 0.300
Ours (4 stacked BiLSTM+product) 20.14 20.07 0.325 | 0.139 | 0.066 | 0.034 0.232 0.282
Ours (3 stacked BiLSTM+-all) 18.31 18.36 0.378 | 0.188 | 0.096 | 0.052 0.251 0.302
Ours (3 stacked BILSTM+sum) 18.28 18.37 0.374 | 0.186 | 0.095 | 0.051 0.252 0.302
Ours (3 stacked BiLSTM+product) 18.43 18.51 0.379 | 0.187 | 0.094 0.05 0.256 0.299
Ours (2 stacked BiLSTM+-all) 18.29 18.34 0.376 | 0.187 | 0.096 | 0.053 0.255 0.303
Ours (2 stacked BILSTM+sum) 18.28 18.37 0.374 | 0.186 | 0.095 | 0.051 0.252 0.301
Ours (2 stacked BiLSTM+product) 18.37 18.43 0.372 | 0.182 | 0.092 | 0.049 0.253 0.300
Ours (1 stacked BiLSTM+-all) 18.30 18.37 0.366 | 0.182 | 0.093 | 0.050 0.250 0.298
Ours (1 stacked BILSTM+sum) 18.27 18.34 0.379 | 0.187 | 0.095 | 0.051 0.255 0.299
Ours (1 stacked BiLSTM+product) 18.25 18.34 0.372 | 0.182 | 0.049 | 0.253 0.253 0.302

Table 3.1 Performance evaluation results with automatic metrics. Baselines
are reported in (Huang et al., 2016). B-1~4 designate BLEU-1~4. Compared
with the performance of baselines (Huang et al., 2016), the GLAC Net is very
competitive without beam search methods. From the results of "GLAC Net
(-Count)’” and 'Baselines (-Dups)’, the heuristics are helpful to reduce redundant
sentences and improve the scores. Compared to LSTM Seq2Seq models, GLAC
Net-based model shows better performance in general. While GLAC Net (-
Cascading) looks like the best, the human evaluation demonstrates that the
GLAC Net shows the best in total score and their 4 aspects out of 6 ones.
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code? used in (Yu et al., 2017).

The generated result for the challenge and their demo systems with your
images can be accessed at http://glac.droppages.com/.

Compared methods for both of automatic and human evaluation are as

follows:

e Story-Concat (Vinyals et al., 2015): Concatenation of popular image
captioning models with CNN-RNN framework to generate captions for

single images.

e Story-Flat (Huang et al., 2016): Basic sequence-to-sequence model as a
translation task. two unidirectional GRUs are used for image sequence

encoding and sentence generation each.

e CRCN (Park and Kim, 2015): CRCN combines CNN, RNN and an entity-
based local coherence model to learn the semantic relations from streams
of images and texts. It is a retrieval-based approach to be less performed

in case of the large number of instances.

e SRT (Wang et al., 2018a): Generative adversarial training on the CNN,
RNN and two discriminators to generate adversarial signals as rewards.
The first discriminator checks whether an image and the corresponding
sentence is well-matched, generated, or shuffled. The second one classifies
whether a paragraph story comes from the dataset, it is generated one, or
shuffled sentence in order. It has shown the state-of-the-art performance

with respect to automated metric scores.

‘https://github.com/lichengunc/vist_eval. For the Visual storytelling challenge, the
official evaluation code to calculate METEOR is offered: https://github.com/windx0303/
VIST-Challenge-NAACL-2018. This tool scores more higher around 0.001 due to consideration
of sets of golden answers.
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As ablation study, we evaluate the effects of the GLAC Net, we perform
ablation experiments as shown in Table 3.1 (automatic metric), Table 3.2 and
Figure 3.7 (human evaluation). We consider various models: simple LSTM
Seq2Seq network, GLAC Net without context cascading, GLAC Net without
global information, GLAC Net without local information, GLAC Net without
heuristics of duplicate avoidance, and complete GLAC Net.

For human evaluation, we recruit 316 human judges on Amazon Mechanical
Turks. Workers were asked to rate 200 randomly selected stories® on the six
aspects, using a 5-point Likert scale from ’Strongly Disagree (1)’,’Disagree (2)’,
'Neither Disagree nor Agree (3)’, ’Agree (4)’, to ’Strongly Agree (5)’. We take

3.51 evaluations per story averagely after removing wrong submissions.
3.4.3 Network Training Details

The training image data is resized to 256 x 256 in advance. At the training
stage, each image is augmented by 224 x 224 random cropping and horizontal
flip process, and the value of each pixel is normalized to [0,1]. All parameters
are trained with the Adam optimizer. The learning rate and weight decay
values are 0.001 and le-5, respectively. Each word is embedded into a vector
of 256 dimensions, and the LSTM is trained using teacher forcing. We also use
batch normalization and dropout techniques to prevent overfitting and improve
performance in training. We use 64 batch size and the training data reshuffled

at every epoch. 6

5Strictly, we used 200 stories in the opened sample pages in https://github.com/
windx0303/VIST-Challenge-NAACL-2018. We asked organizers how to pick them, we got
the answer 'randomly’.

5As the used hyperparameters of GLAC Net, input dimension of image features is 1024,
hidden dimensions are 1024, aggregation function is 'tb’ and the number of layers of stacked
BiLSTM is 2.
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[ female ] she was they had a everyone was even the little

was so happy happy with lot of fun . having a ones enjoyed
to see her her . great time . themselves .
grandson .

the firework  there was so  the show was the finale was i hope we
show was much to see . great. spectacular.  can go back
amazing . soon .

i went on it was a long itook a walk the view was there was a
vacation last  drive . through the  amazing . lot of water .
weekend . park .

the bride and they are the brides the ceremony the flower

groom are getting maids pose is a big girl is having
ready for married . together . moment . a blast .

their big day .

0
N/

7 A

the local there were so some of the i boughta my favorite
market was a many shops looked few souvenirs part was the
lot of fun . different very for the kids . bike ride .
kinds of interesting .
things to

choose from .

Figure 3.6 Samples of story generation results with visual cues
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3.4.4 Qualitative Analysis

As shown in Figure 3.6, 3.8, 3.9 and 3.10, the exemplar generated stories with
GLAC Net from test dataset are presented. The context of successive images is
well reflected, and the content of each image is properly described.

In the first story in Figure 3.6, every picture shows very similar scenes
that person is hugging a baby. The generated stories shows that our models
are good at gender/age recognition, pronoun usage. In the second story, the
words in the generated sentences and objects from the images are well-matched

5" image).

and visually-grounded: car and drive (2" image), sea and water (
In the third story, there is no clue that the story will be related to wedding.
Catching overall context from visual cues, the sentence in the first part can be
generated properly. Generally, all stories in Figure 3.6 show the structure of
stories. Especially, the second one in Figure 3.6 is generated with only firework
images.

Figure S1 shows that the generated stories depending on decoding methods
(showing usefulness of proposed heuristics) and training epoch with greedy

generation (showing stability of our method). Figure S2 presents the generated

stories with diverse ablation settings.

Figure S3 shows more generated cases of good, acceptable and wrong quality.

In the wrong cases, overall structure is still maintained.
3.4.5 Quantitative Analysis

The automatic evaluation results are shown in Table 3.1. Compared with the
performance of baselines (Huang et al., 2016), the GLAC Net is very competitive
without beam search methods. From the results of 'GLAC Net (-Count)’ and
'Baselines (-Dups)’ in Table 3.1, the heuristics are helpful to reduce redundant

sentences and to improve the scores. Compared to GLAC Net-based model
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(4) Written by human? (5) Visually grounded (6) Detailed

Figure 3.7 The six score results of the human evaluations of the narrative text
generation by GLAC Net, ablation models and compared methods. GLAC Net
shows the best scores in 1~4 criteria. Though SRT still shows the best in 5~6
ones, GLAC Net is very competitive. Best view in color.

I would ‘Written Visually- Total
Model Focused | Coherent Share by human | grounded | Detailed | score
GLAC Net (ours) 3.548 3.524 3.075 3.589 3.236 3.323 20.295
DG-DLMX 3.347 3.278 2.871 3.222 2.886 2.893 18.498
NLPSA501 3.111 2.870 2.769 2.870 3.072 2.881 17.574
AREL 3.236 3.065 2.767 3.029 3.032 2.867 17.995
Human (Public Test set) ‘ 4.025 3.975 3.772 4.003 3.965 3.857 23.596
GLAC Net (ours) 3.588 3.547 3.061 3.382 3.282 3.306 20.167
GLAC Net (-Cascading) 2.803 3.047 2.547 2.340 2.952 2.918 16.606
GLAC Net (—Global) 3.405 3.198 2.191 2.341 2.162 2.254 15.551
GLAC Net (-Local) 3.359 3.186 2.600 2.671 2.466 2.344 16.627
Sentence Concat 2.955 2.988 2.692 2.816 3.101 3.127 17.680
Story-Flat 3.118 2.888 2.746 2.826 3.056 3.060 17.693
CRCN 2.092 2.502 1.970 2.239 1.952 2.106 12.861
SRT 3.322 3.257 3.019 3.122 3.340 3.411 19.472

Table 3.2 Human evaluation results on the VIST dataset. The upper part shows
the announced results of 4 teams of the 1st Visual Storytelling Challenge (Huang
et al., 2018a). Our model outperforms all other teams on all of 6 aspects. AREL
means Adversarial REward Learning. The lower part presents the results of
ablation study with GLAC Nets and those of other previous methods (Vinyals
et al., 2015; Huang et al., 2016; Park and Kim, 2015; Wang et al., 2018a) or
their variants. GLAC Net shows the best performance in total score as well as 4
aspects out of 6 ones.
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shows better performance in general. While GLAC Net (-Cascading) looks like
the best, the human evaluation shows the GLAC Net is the best one in every
aspects in Table 3.2 and Figure 3.7. As we mentioned in Section 1, automatic
metric scores partially effective on human evaluation.

In Figure 3.7, the 6 score results of the human evaluations of the story
generation by GLAC Net, ablation models and compared methods. GLACNet
shows the best scores in 1~4 criteria. SRT still shows the best in 5~6 ones.

The lower part of Table 3.1 shows the result of automatic metric scores
(BLEU, ROUGE-L, METEOR and perplexity). Due to budget problem, we
don’t perform human experiment on the effect of number of stacks and the
aggregation functions. By our observation with self-evaluation of 25 randomly
selected cases, they show little significant difference. GLAC Net is the model
with 2 stacked BiLSTM and tb aggregation function in the encoder. It shows

moderately better scores in overall, and better qualitative results.
3.5 Summary

We propose the GLAC Net that uses global-local attention and context cascading
mechanisms to generate stories from a sequence of images. The model is designed
to maintain the overall context of the story from the image sequence and to
generate context-aware sentences for each image. In the experiment using the
VIST dataset, the proposed model proves to be effective and outperforming
with total score and 4 aspects of human evaluation criteria out of 6. It shows
our method is more focused on overall structure than detailed.

Although the experimental results are promising, the task of visual story-
telling remains a challenge. We plan to extend and refine the GLAC architecture
to further improve its performance considering local information. In addition, a

subject to be studied in the future is how to generate various stories based on
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a presentation is taking

the man stands next to a

at the end he asks if

Human’s place in the convention there is tons of wording prgjector trying to show |the man wraps up his anyone would like
on the screen . evidence of the presentation . .
center . presentation questions answered .
Generated the man was giving a he was very happy to be .
speech there he was very excited . he was very happy . he was a great speaker .
) oing over to see m she lives in a ver it is always so beautiful | i was so ha to see of course her dog is also
Human’s going y y ! PRy 9
grandma for christmas beautiful house outside |out there this time of my grandma and her part of the family ! we
1 this year . of the city . ear . reat aunt . had a great time .
Yy Yy 9 9
Human’s we started the holidays | the streets where calm i went for an afternoon | the family sat together the night came to an
> by <unk> up a tiny outside . everyone was walk to my favorite spot |and celebrated christmas |end and everyone slowly
christmas tree . celebrating the holidays . [before heading home . went home .
Human’s we visited family for they live out in the btgcealtjrseee?tIz)sszéhce;dleaves they were so happy that | even the dog had a
3 christmas . country far from the city . outside we had arrived . marry christmas .
the family was having a | they went outside to they saw a tree that was | they also took photos .
Generated party . play . very pretty . with the dog . they had a great time .

Figure 3.8 The generated story examples for GLAC Net and their ground-truth
annotated by humans. Even though they are different stories with the same
image sequences, the generated ones are acceptable. We can also observe that
(1) the length of the generated sentences relatively short. (2) the expression
style is concise and abstract, (3) Mostly written in the past tense (more than
98% in the test set)

the purpose and theme from the same image sequence.
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Human’s
1

Human'’s
2

Human’s

Generated

the school was full of
information .

the men we re dressed in
safety suits .

lorganized the event was .

i did n't know how well

all the men were
coordinated .

i drove my car home .

the action day event had
plenty of information
available for its attendees

the staff worked very
hard to maintain safety
land security throughout
the event .

people from all walks of
life came to participate .

the march wrapped up

land a great time was had
by all .

we were having so much
fun leaving was the
hardest part of the day .

a tourist is viewing the
attractions .

the guards are clearing
lout the area .

the people are protesting

the guards are stopping

the protest .

a man is handing a taxi
driver money .

the protesters were very
excited .

they were all protesting .

they were giving a
speech .

they were very happy to
see their cause .

they were very glad that
they were there .

Figure 3.9 More examples of GLAC Net and their ground-truth annotated by

humans.
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Human’s
2

Generated

i love the view from my
office .

so often when i look out
the window, there are
birds .

this little guy was
perched here fro quite
awhile this morning .

this one stopped by
only for a few minutes .

this afternoon i was able
to watch this one for
awhile . being i love
birds, it s no wonder i
love my view .

i saw the bird as soon
as i walked in and froze .

i did n't know if i should
photograph it quietly or
<unk> it away thru and
open window .

i was enamored by the
lighting upon the bird .

i tried to photograph it ,
but of course it moved
around when it
recognized that i was
there .

i ended up getting an
okay photo , just not
the one i wanted .

the family was excited
to go on a trip .

they saw a dog and the
dog .

this guy got up in
the morning and
made breakfast .

he drove to school
and sat through
traffic .

they saw a cat .

they saw a koala .

they also saw a dog .

gas was pretty

average that day ,
so he stopped and
filled up his tank .

he got to school
and got his books for
his classes .

he studied

throughout the day ,
making sure to finish
his homework .

a typical day for my
son . he helps with
breakfast .

i let him drive
because he just got
his license and needs
the practice .

i think we "Il wait on
filling up and see if
the gas price goes
down .

the halls are a busy
place before classes .

the kids get a break
to read during the
day before heading
home to do
homework .

the man was happy
to be at the
restaurant .

he was excited
about the new car .

the family was there
to celebrate .

they were having a
great time .

they were very
happy .

Figure 3.10 Wrongly generated cases for GLAC Net and their ground-truth
annotated by humans. Overall stories do not deviated on one theme, and some
of the visual clues are visually-grounded on the images.
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Chapter 4

Common Space Learning on
Cumulative Contexts and the
Next Events: Recurrent Event
Retrieval Models

4.1 Overview

This chapter introduces methods to predict the next sentences from the former
parts of documents at any step within an arbitrary length, which is an open-
ended next sentence prediction problem. The problem can be seen to choose
automatically a sequence of events, situations, actions or dialogues that can be
told as a story (Martin et al., 2017). If the procedure run automatically and
sequentially, our methods can apply to story generation problem (Mostafazadeh
et al., 2016; Martin et al., 2017; Huang et al., 2016).

Even though recurrent neural networks (RNNs) shows surprisingly successful
cases, it is still difficult to catch the context through several sentences due to an

enormously large number of possible scenarios without any constraints (Bowman
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et al., 2016) !

In this chapter, we focus on retrieval approaches for sentences of events. If

the number of possible sentences are abundant, it is useful to solve the problem.

We propose recurrent event retrieval models (RERMs) to predict the following
events or stories with former parts of stories. RERMs are composed of a context
accumulation function and two embedding functions, where make close the
distance between the cumulative context at current time and the next probable
events on a latent space. They update the cumulative context with a new event
as a input using bilinear operations on common latent space, and we can find the
next event candidates with the updated cumulative context. While it can limit
the representational power depending on the number of possible candidates, it
is advantageous to focus on the coherence of stories avoiding the difficulty of
surface realizing narrative generation. Fortunately, released was ROCStories
dataset (Mostafazadeh et al., 2016) to be composed of approximately 100K
textual five-sentence commonsense stories for Story Cloze Test (SCT). As a
result, the number of possible sentences are around 500K. As RERM evaluation,
they show competitive performance for SCT, and the state-of-the-art results in
open-ended sequence generation setting. Also, they can be applied to generating

stories with humans feedback interactively.

4.2 Problems of Context Accumulation

In this section, let us define our problem. Consider the dataset D = {S1, So, ..., Sy }

has IV sequences consisting of arbitrary objects e € E, where E is the set of
possible objects. The sequence is a variable length of the objects. And there

is context c¢; at step t. We define sequential retrieval process and the context

Tt is similar to dialogue generation tasks. Currently, researches are focused on task-oriented
bot and chit-chat bot (Chen et al., 2017).
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integration function fi,seq to accumulate the contexts and reflect new events
together. The process can iterate the procedure with updating the integrated

context:

Ct+1 = finteg(cta 6) (41)

Also, we define score function s with the integrated context vector ¢; at time
step t and certain object e, and we can infer the next object e* via choosing the
one of the highest score (or top-n selection) s with the integrated context vector
ct:

e* =inference(ci, E) = argmax . s(ct, €) (4.2)

where E is a set of reference objects such as sentences, images, or videos in the
database. If we generate several steps, then it iterate from cue object e to ¢,
recurrently.

Our goal is to find models capable to learn the context integration functions

in order to get good accuracy of inference.

4.3 Recurrent Event Retrieval Models for Next Event
Prediction

In this section, we propose novel models to achieve the goal: Recurrent Event
Retrieval Models (RERMs). We design RERMs to match contexts and the next
events on the common low-dimensional embedding space with each mapping
functions, and to integrate them recurrently as shown in Figure 4.1. So, we
introduce two embedding functions to deliver objects to the spaces. To represent
an event object in the dataset D, we have preprocessing procedure onto one
vector. For example, we can use skip-thought vectors as vector representation for
sentences of events. They have two embedding functions from sentence embedding

space, and have one accumulation operator to accumulate the previous context
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Figure 4.1 (a) Concept view of Recurrent Event Retrieval Models (RERMs).
Every time step, the context vector is updated with certain input object e, and
we can infer the next object e* via choosing the one of the highest score (or
top-n selection) s with the integrated context vector ¢;. (b) Functions and spaces
of RERMs. They have two embedding functions from sentence embedding space,
and one accumulation operator for the previous context ¢;—1 and the current
input object e;. The result ¢; is embedded onto the other space to compare the
similarity scores. We search the closest answers on this space.
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¢¢—1 and the current input object e;. The result ¢; is embedded onto the other
embedding space to compare the similarity scores. We search the closest answers
on this space.

To train all of the functions introduces above, we define the objective

functions. In our setting, we modify the error function for sequence setting:
Err: Z Z max{0,0 — s(ct, cry1) + s(eg, cx)} (4.3)
c k

where ¢ is margin, s is the score function to measure how similar from each
other. This objective function is very similar to triplet ranking loss with anchor,
positive example and negative examples popular used in deep metric learning.

We can use cosine similarity function for training phase, and adding penalty
terms for diverse candidates considering the length of story-like sequences for
open-ended generation. Practically, we can choose k as the negative examples
randomly in the dataset.

Since our representation includes recurrent connections, the computational
graphs are unfolded to the length of sequences to be deep structure. To find
the appropriate structure for RERMs, we define the general form of embedding
nets, context integration nets as shown in Figure 4.2. It is similar to multi-hop

end-to-end memory network structure (Sukhbaatar et al., 2015), our models

should choose one at every iteration with the labels for coherency consideration.

The general form of embedding nets is standard 1 or 2 layered networks of inner

product layer with tanh activation (MLP module).

fle)=ay- farrp(e) + By - firpp(freats(e)) (4.4)

where the embedding function f is a linear combination of MLP of the input

and MLP of the features of the input.

hi(et,e) =apl-ct ©@e+ Pl -t @ e+, - CBP(ct,e) (4.5)
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ha(cr) = an2 - firpp(ct) + B2 - (4.6)
finteg(ct> 6) = hl(hQ(ct)7 6) (47)

where the integration function fj,se4 is a linear combination of MLP of the
previous context, residual connection of it, and the new event input.

Fortunately, linear matrices show good representational power in the case
of cross-modal learning or zero-shot learning. The general form of context
integration nets has several options: MLP modules, residual connection, and
integration operators. Dotted line in the middle in 4.2 (b) can be replaced with
element-wise sum, element-wise product or CBP operation. MLP module is not

used when we choose CBP as an integration operator.
4.4 Experimental Results

We test on the Story Cloze Test (SCT) as textual stories. Even though the
length of stories is fixed, we can test at an arbitrary position.

We formulate a story generation problem as choosing sequentially the proper
next events coherently. Naturally, sequential behaviors of humans are not de-
terministic. So, we should take probabilistic approaches or several candidates
together like beam search strategies to consider several possible ways to do as
the next one. Additionally, if human’s feedback is available, it is valuable to
utilize it. It can induce that the system works interactively. Also, it can update
the database on the fly if necessary. Taking all these good points, we build
generalized matching modules from the current context to the next events using
neural networks with ranking losses to drive semantically consistency, retrieving
top-n results easily. When we consider predicting the very next events from the
current input, it means that Markov assumption is assumed, which only care

the 1-step (or more fixed step) previous input. So, we attach context integration

1 3
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Figure 4.2 Component definition of RERMs: (a) A general form of embedding
nets. 1 or 2 layered networks of inner product layer with tanh activation (MLP)
module. (b) A general form of context integration nets with MLP module,
residual connection and integration operators. Dotted line in the middle can be
replaced in other options in (c). The box in (b) between input and operator
designate MLP modules.
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modules to pursue maintaining all the previous situations. The followings explain

the modules respectively.
4.4.1 Preliminaries

Skip-thought Vector: Event representation with multimodal sources is very
complicated to process as information. Most popular method for natural language
sentence-to-vector conversion is skip-thought vector (STVec) (Kiros et al., 2015).
STVec converts one textual sentence to one multi-dimensional real-valued vector
(a.k.a thought vector) for general event in text, scene description, or dialogues.
It is inspired by the skip-gram structure in popular word2vec (Mikolov et al.,
2013). The key concept of word2vec is that the word meaning is determined by
the surrounding words. Similarly, the STVec model is trained to reconstruct the
surrounding sentences to map the sentences that have semantic meaning onto
similar vectors using RNN adding GRU memory cells as language models. Kiros
et al. trained 11,038 books with 74,004,228 sentences for STVec, frequently used
to represent semantic closeness of sentences

Compact Bilinear Pooling: To deal with multi-modal sources, one of
possible way is to use bilinear features from video and text. The bilinear features
are very high dimensional, typically on the order of hundreds of thousands to a
few million, which drives them impractical. Compact bilinear pooling (CBP)
(Gao et al., 2016) is to make two compact bilinear representations with the
same discriminative power as the full bilinear representation but with only a
few thousand dimensions. CBP is easily expanded to multimodal fusion, it has
been applied to visual QA and movie QA problems successfully (Fukui et al.,
2016; Na et al., 2017; Tapaswi et al., 2016a).

Performance Metrics: In our experiments, we measure SCT performance

for reference, and use 2 metrics: Perplexity and BLEU score, which are based on

-1
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SCT Perplexity Bleu

Configuration
Validation Test Step? Step3 Step4 Step5 Step2 Step3 Step4 Step S
Separate 0.642 0639 17298 17586 18120 18306 0.139 0.140 0.123 0.128
MLP + residual 0636 0657 17657 17403 17942 181.37 0115 0108 0096 0093
sum 0.625 0631 20007 20631 21270 21543 0139 0.129 0.108 0.104
MLP + sum 0623 0636 17948 18523 18937 19297 0126 0.123 0.105 0.100
CBP 0658 0661 19149 17755 19070 18972 0.099 0.097 0.087 0.081

MLP+pr0duct 0624 0641 16420 176.80 19242 19457 0070 0073 0063 0.069
MLP+gate+pr0d 0640 0651 18901 20548 20565 20818 0104 0097 0085 0.084

Figure 4.3 Performance table of RERMs for exploring the networks. The best
SCT performance is shown in CBP configuration for recurrent context integration
without MLP module. BLEU scores are higher in separate cases, which means
no recurrent connection. Perplexity values are the configuration of preferring
sparse information: MLP + product, CBP.

language models or on the golden answers. We can use the next event information
as golden answers for BLEU. Perplexity is the measure of how “surprised” a
model is by a training set. We use it to check a sense of how well the probabilistic
model we trained can predict the data. We built the model using an n-gram
length of 1. And BLEU score compares the similarity between the generated
output and the “ground truth” with respect to n-gram precision. Those are
not perfect measure how well generated stories are acceptable for humans, but
other researches use them actively (Martin et al., 2017) in NLP researches. For
our experiment, we use adam optimizer and step scheduling for controlling
learning rate (initial value: 0.0005, x0.5 per 50 epoch). Negative examples per

one positives: 1499.

4.4.2 Story Cloze Test

Story cloze test (SCT) (Mostafazadeh et al., 2016) is ‘fill-in-the-blank’ task

considering the context of 4-sentence story. The candidate sentences for the



blank in the 5-th position are only 2, as to be cast to binary classification
problems. Dataset is composed of the Train (98,161 episodes, 490805 sentences),
Validate and Test gold data sets (1871 episode each). We use the separation to

train our systems, and all of sentences (490,805) in the Train as reference event.

A lot of researchers published their results as shown Table 4.1. However,
their approaches are mostly focused on classification, only some of works only
possible to generate new candidates or to apply many candidates (in other
words, ‘generative’). And it is not scalable to apply to arbitrary length of story
(‘open-length’). Our system is approximately generative (not purely generative,
it is close to generative considering the number of candidates) and open-length
without classification-based learning. Figure 4 and 5 show the performance
table of SCT. The best SCT performance is shown in CBP configuration for
recurrent context integration without MLP module. BLEU scores are higher in
separate cases, which means no recurrent connection. Perplexity values are the

configuration of preferring sparse information: MLP + product, CBP.
4.4.3 Open-ended Story Generation

For story generation test, we can control the diversity of candidates controlling

the score as follows:

SCOT€operall(Cq, €i) = scorey(cq, e;) — A - similarity(cq, €;) (4.8)

The score; is the same formula with the objective function. We use cosine

similarity as the similarity function to same with objective function.

The duplicated sentences are blocked when finding the close candidates.

Since named entity recognition can be applied, subjects and objects are changed
to the pronoun and check the duplication.

Figure 4.4 shows an example of generated case as following one of the instance

3 11 3
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Table 4.1 Performance table of RERMs for Story Cloze Test (SCT). Even though
our systems trained for generation, they show relatively good performance
(Mostafazadeh et al., 2017; Wang et al., 2017; Chaturvedi et al., 2017).

METHOD GENERATIVE OPEN-LENGTH VALIDATION  TEST
HumaN - - 1.000 1.000
RANDOM Y Y 0.514 0.513
FREQUENCY Y Y 0.506 0.520
N-GRAM-OVERLAP Y Y 0.477 0.494
GENSIM Y Y 0.545 0.539
SENTIMENT-FULL Y Y 0.489 0.492
SENTIMENT-LAST Y Y 0.514 0.522
SKIP-THOUGHTS Y Y 0.536 0.552
NARRATIVE-CHAINS-AP Y Y 0.472 0.478
NARRATIVE-CHAINS-STORIES Y Y 0.510 0.494
DSSM Y Y 0.604 0.585
GRU N Y 0.573 0.561
CONDITIONAL GAN (WANG ET AL., 2017) N Y 0.625 0.609
DAVAR LEXICON (FLOR) N Y 0.654 0.620
(ROEMMELE) N N - 0.672
(BUGERT) N N - 0.700
STYLISTIC FEAT (SCHWARTZ) N N - 0.752
FRAME-+EMOTION+TOPIC (CHATURVEDI) N N - 0.776
Ours (CBP) Y Y 0.661 0.658
OURS (SEPARATE) Y Y 0.647 0.647
Ours (MLP+suMm) Y Y 0.660 0.641
OuRrs (MLP+SUM+RESIDUAL) Y Y 0.651 0.637
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story in the dataset. The figure shows sentences in the cue box are input to
RERMs. Then, RERMs outputs top-9 or 10 candidates sentences as the result
of top-k closest to the cumulative context point. From (1) to (5), we can see
the plausible candidates. Sometimes the right answers are not included in the
candidate box. Also, not all of sentences are correct semantically and logically.
However, most of them are very plausible with respect to the context.

Figure 4.5 shows an other example of step-wise story generation not following
the original episode, but choosing other storyline. Still, RERMs show plausible

candidates.
4.5 Summary

This chapter introduces recurrent event retrieval models (RERMSs) for open-
ended story generation. It is important to be opened at any time step and
endlessly via retrieving the related objects considering cumulative context. It
explores the appropriate embedding functions and the accumulation operator
for RERMs. Additionally, it can be used for interactive setting with humans.
Potentially, it can be used for situation inference and easily updated on the

conversation with humans.
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2. She shed a tear at the pain and her leg was sore for days.
3. She fell from her bike and bruised her knee.
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5. She ended up walking the bike up the hill instead of riding.
6. She will never forget the day she broke her ankle.
7. She was sad that she would have to postpone her sewing lessons.
8. Suddenly, she fell off the bike and scraped hurt her knee.
9. She is taken to the hospital for her injuries.
\1 0.She needed to beat her coffee crash before volleyball practice. )

®)

Figure 4.4 A RERM demonstration of step-wise story generation with one
episode in ROCStories dataset. Sentences in the cue box are input to RERMs.
Then, RERMs outputs top-9 or 10 candidates sentences as the result of top-k
closest to the cumulative context point. From (1) to (5), we can see the plausible
candidates. Sometimes the right answers are not included in the candidate box.
Also, not all of sentences are correct semantically and logically. However, most
of them are very plausible with respect to the context.
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Figure 4.5 An RERM demonstration of step-wise story generation not following
the original episode, but choosing other storyline. Still, RERMs show plausible

candidates.
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Chapter 5

ViStoryNet: Order Embedding of
Successive Events and the
Networks for Story Regeneration

5.1 Introduction

This chapter introduces the frameworks to regenerate episodes to complete the
partially blocked ones on time axis. We train 5~7 minute-long videos including
stories with the successive event order supervision for contextual coherence. We
explore the question of the successive event order embedding (SEOE) to provide
the scaffolds to construct composite representation of ordering and semantics
for story generation.

To improve the effectiveness of SEOE on the proposed frameworks, so we give
some constraints to reduce the problem complexity. Firstly, we use kids videos as
training dataset due to some advantages: (1) omnibus style, which each episode
has simple and explicit storyline in short, (2) narrative order mostly using fabula,

which follows chronological sequencing of the events, whereas syuzhet is a term
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to designate the way a story is organized to enhance the effect of storytelling.

(3) relatively small number of main characters and limited spatial environment.

This is effective to reduce computational burden and data sparsity. Potentially,
these properties are so desirable to provide as surrogate data similar to that of
everyday lives in compact and explicit way. Secondly, instead of attaching directly
video understanding technologies, we define a contextual event using both of the
description sentence including scene context and the dialogue sentence spoken by
character, and represent an episode as a sequence of contextual events. And we
build the encoder-decoder structure as shown in Figure 5.2, using skip-thought
vectors (Kiros et al., 2015) as encoders and sentence generators with standard
RNNs as decoders. On the latent space, we learn bi-directional Long Short-term
Memory (BiLSTM) with the successive event order embedding (SEOE). To
generate multi-step sequences, on the learning process, we control the mixing
rate with training data and the generated stories depending on the epoch, which
follows scheduled sampling methods (Bengio et al., 2015).

We use ‘PororoQA dataset’, which is the dataset from 3D animation videos
for kids, entitled ‘Pororo the Little Penguin’, consisting of 16,066 scene-dialogue
pairs created from the video of 20.5 hours in total length, 27,328 fine-grained
descriptive sentences for scene descriptions (Kim et al., 2017). With the models
to train them, we demonstrate the performance and the generated episodes.
We give empirical results for the effectiveness of SEOE. Also, each episode
shows a trajectory-like shape on the latent space of the model, which gives the
opportunities to interpolate and extrapolate with the geometric information for

the sequence models.
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5.2 Order Embedding with Triple Learning

In this section, we introduce the background of our works. Starting with classical
ordinal embedding, early work only addressed the continuous case, where the
2’s span a whole convex subset U C R?. In that setting, the goal of learning
embedding functions becomes to characterize isotonic functions on U, that is,

functions f: U — RY satisfying

lz=yll < llz' =y | = If@)—fl < £ = f@),Y2,y,2",y € U (5.1)

Also, we can say that a function f: U C R? is weakly isotonic if

o —yll <[l =zl = [[f(z) = fWI <lf(@) = fR),Va,y,2€ U (5.2)

It is also known that any locally weakly isotonic function on an open U is
also locally isotonic on U (Kleindessner and Luxburg, 2014).
Even though we have finite sample only, it is shown that bounded and

converged are the difference between isotonic functions and locally weakly
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Figure 5.1 Scenario: Robot Training by showing video series. As simplified data,
a video stream converted to the stream of snapshots of pairs of animated gifs
and dialogue texts.
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isotonic function ¢: Q — R? with similarity transformation S coincides with ¢

on 2 under some assumptions (Arias-Castro et al., 2017). It is not difficult in

finite R? space, we can change ordinal learning problem to learning with triples

including anchor x in the equation 5.2.

The locality property of ordinal embedding is that if a k-nearest neighbor

graph is given as local ordinal constraints, we can reconstruct the point set,

which is shown in (Terada and Luxburg, 2014). Its statistical consistency of the

embedding method is valid. The consistency can be extended from quadruple

learning to triple learning as proven in (Arias-Castro et al., 2017).
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Figure 5.2 Overall encoding-decoding structures for the story completion tasks.
A episode is mapped as a trajectory on the embedded event space.
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5.2.1 Embedding Ordered Objects in Sequences

We define the problem of sequence generation of order-preserving embedding.
In this task, we are given a set of positive examples P = (u,v) of ordered
pairs drawn from a sequence (X, <). And a set of negative examples N that
is not the next object. Since every object except the starting position or the
last position is in certain sequences, they have the previous object and the next
object. That means that all objects in the sequence is connected of the form of
chain. Considering the locality property, we can ignore the relationship from the
objects in the several steps later. So, we can only consider 3 objects - certain
object as an anchor, the next object as the positive example, an not-next object

as the negative example.

5.3 Problems and Contextual Events

5.3.1 Problem Definition

We define a story here since the definition of a story is so various (Mateas and
Sengers, 2003) depending applications. Since our problems highly depend on

videos, we should consider that.

e Contextual event is defined as a vector representing the context includ-
ing situations, actions and dialogues at some moment in videos. (we call it

short for “event” in the rest of the paper)

e Story (or episode) is defined as a discrete sequence of contextual events

aligned in the chronological order including one independent story.

Comparatively, a plot is distinguished from the story. In plots, the sequence
of events can be rearranged or some parts of them can be skipped for narrative
interestingness. We formulate a story generation task as regenerating the whole

story from the partial cues.
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Formally, the video dataset D = {S1,S2,---,Sny} has N episodes con-
sisting of a set of video scenes V' = {v;}; .. |y}, and a set of dialogues L =
{li}17...7| 1|> where v; is a sequence of image frames (3-second-long animated
GIF images), is a natural language sentence of a dialogue. Each episode
Sn = ((Uny,ln1); (Vngs lng)s -+ s (Unjg, s Injs, ) 1S @ n-th discrete sequence of pairs
of video scene vy, and dialogue sentence [,,. The sequence length ng, | can be
different depending on each episode. For every pair of video scene and dialogue
sentence, we encode it into one contextual event vector: e,, = encoder((vn,,ln,))-
We assume the encoder can convert the contextual information into a vector.!
Eventually, each episode is represented as S& = (en,, €ny, - - s€n, sn\)> which is
the sequence of variable number of chronologically ordered event vectors e; at
time index t. To get the partial cues, we define a mask M,, = {m;} ... IS, a8 a
binary sequence. Where the value of mask at time ¢ is 1, the event vector value
will be <None>. The partial cues can be built from M, and S,, and we can
define error function F between an original story .S,, and the generated story S,.
Our learning procedure searches for the story S to minimize the error function

as follows:

S* = argminE(Mn,Sn,gn;Q,D) (5.3)
S

We can define several tasks depending on the masking part: former part
generation, mid-part generation, and latter part generation. Note that we pursue
not only masking part, but also regenerate the whole story. Also, we will consider
the problem to capture the structure of the stories. And the problem to generate
new whole story based on the structure. Those problems are important to

computational narrative intelligence fields (Riedl, 2016), and the context-aware

"Human’s arbitrary thought can be represented in one vector or not? It is still controversial.
But it is not problematic in our work since our sentences are descriptive and relatively simple.
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oriented applications such as smart devices and household robots.

5.3.2 Contextual Event Vectors from Kids Videos

Video scene (Animated GIF) to sentence

Event detection and extraction from videos are not easy task, which can be so
variously defined depending on the problems. A few seconds of data are focused

for most works on video learning such as action recognition task (Simonyan and

Zisserman, 2015), upcoming behavior prediction task (Vondrick et al., 2016).

These works use spatio-temporal 3D convolution since the coherence between
frames very important for those problems. To deal with longer time scale, mostly
is used augmented information in text: aligning movies and books (Zhu et al.,
2015), movie QA on synopsis and script (Tapaswi et al., 2016b). Similar to the
latter, we try to annotate scene description sentences on visual animated scenes
to represent semantic information of scenes. It is desirable that each event should
have 5W1H information. But, not all scenes have every information explicitly. So,
we use scene descriptions augmented by humans on watching the corresponding
animated GIFs and dialogue texts (Kim et al., 2017). By this approach, we can
reduce the problem complexity and makes us focus on the SEOE. Additionally,
recent image captioning tools (Vinyals et al., 2015; Karpathy and Fei-Fei, 2017)
also available, we can fine-tune them with the description dataset.

As in 5.1, the snapshots of animated GIFs and texts pairs are used when
subtitles appear on the screen. As the formulated above, each snapshot has one
event. Humans do not constantly observe every sequential event in a real-world

situation to catch the context, but they observe only partly in a temporally

aperiodic manner. Sometimes they keep their eyes on carefully, but often they not.

Storytelling in a video also constructs narratives in a similar way, sometimes

authors intentionally use it. So, we assume that observers can perceive not
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seamlessly all of events but some parts of them. In other words, the observer can
miss some events in the environments. That is, we should consider that a story
we defined above can have intervening events between arbitrary two events, or

some events are skipped. We will consider that to design SEOE objectives.

Encoding Events with Skip-thought Vector

The encoder converts to one multi-dimensional real-valued vector (a.k.a thought
vector) from the scene description and the dialogue text. Most popular method for
this is skip-thought vector (STVec) (Kiros et al., 2015). It is a natural language
sentence-to-vector converter inspired by the skip-gram structure in popular
word2vec (Mikolov et al., 2013). The key concept of word2vec is that the word
meaning is determined by the surrounding words. Similarly, the STVec model is
trained to reconstruct the surrounding sentences to map the sentences that have
semantic meaning onto similar vectors using RNN adding GRU memory cells
(Chung et al., 2014) as language models. Kiros et al. (2015) trained 11,038 books
with 74,004,228 sentences for STVec, frequently used to represent semantic
closeness of sentences. So, we combine the information of a scene description
sentence and a dialogue text together by concatenating the output of ST Vecs

with scene description sentence and that of dialogue text as an event vector:

er = STVec(desc(v))||STVec(l:) (5.4)

Note that a short-term video clip vy is converted to scene description sentence
with desc(vy). Following an original setting, STVec converts one sentence into
4800 dimensional real-valued vector. Our event vector has 9600 dimensions
eventually.

Naturally, natural language sentences have a lot of variance. Converting the

sentences to STVec makes data less sparse? The answer is yes, but very little.
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The ratio of unique sentences in the dialogues is 74.11%, but that of STVec is
71.15%. In PororoQA dataset, one character named ‘Crong’ plays a role of a
baby dinosaur, he says mostly ‘crong’ instead of concrete answers. Overall, it
takes 3.70% of all dialogues. And the ratio of unique sentences in the descriptions
is 97.06%, and that of STVec is 96.99%. The ratio of unique event vector defined
above shows 99.94%, almost all of event vectors is not same each other. If we
use the frequencies of them, it would be problematic, we take the embedding

approach introduced in next section instead.

G D
«-- Decoder - t---------------------

pororo and Crong orange juice <EOS>

Scene Description Decoder

really try singing more  time <EOS>

1

Description: Dialogue Text:
Pororo, Crong and Eddy are really try singing one more time
sitting around the table.

Dialogue Text Decoder

O
X T Mean Squared
Successive Event Error Loss
 Encoder -| [-----------1 p------ [ T i Sequence model --| [-----1

Order Embedding

Skip-thought

vector X2 X3 X4 Xr-2 X1-1

! 1
Do
! 1
P
4800d vector 4800d vector ]
]
]
concatenation

9600d vector

Contrastive
Ranking Loss

Figure 5.3 Neural architecture of ViStoryNet for story learning and regeneration.
Encoder takes two sentences — scene description sentence and dialogue text
with skip-thought vectors. Next, Successive event order embedding with triplet
ranking loss maps the consecutive events onto ordinally close points. Those
results as inputs are given to sequence models — bidirectional LSTMs to predict
previous/next time step vectors. This model can predict missing parts of the
sequence. The vectors can be decoded with the sentence generator module as a
decoder.
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5.4 Architectures for the Story Regeneration Task

The overall structure of the proposed networks is composed of 4 parts: encoder,
decoder, sequence model and SEOE module shown in Figure 5.3.

The encoder and the decoder work as the interface for linguistic expression
to vectors of semantic information. On the other hand, SEOE induces composite
representation of order and semantics. On the space of the representation,
sequence models learn the inter-relation among the events of the composite
representation (embedded events). To discriminate the vector of the embedded
event space from an encoded vector e, introduced earlier, we use z,,, as a vector
in the embedded event space.

The followings are a summary of 4 components.

1) Encoder: the conversion function from an input video (a sequence of
pairs of animated GIFs and dialogue texts) to the sequence of events
S5 = (enys€nyy -+ seng ) With the concatenation of skip-thought vectors

of scene descriptions and dialogues

2) Order Embedding: the embedded vectors x; = fspog(e;) with the embed-
ding function to map the consecutive events onto ordinally close points in

the common latent space. We will explain it in Chapter 5.4.2.

3) Sequence Model: BiLSTMs (the forward LSTMs and the backward LSTMs)
and the combining function of the outputs of BiLSTMs. EZ is the hidden
state of the forward LSTMs at time ¢ and E is the hidden state of the
backward LSTMs at time t.

— —
ht = LSTMf(.CI}t_l, ht—l)
E = LSTMy(x41, m) (5.5)

. —
Tt = fcombine(ht7 E)
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4) Decoders: two functions from #; to the generated scene description desc(vy),

and the generated dialogue text l; each.

d/e;c(vt) = fdesc(:it)

X (5.6)
ly = fdiag('i't)
As a result, the output of sequence models Se = (21, %2, -+ ,27) with the length
T and the surface realized story S = ((desc(v1), 1), (desc(ve), l2), - - - , (desc(vr), IT))

is generated with two decoders.
5.4.1 Two Sentence Generators as Decoders

From the points in the embedded event space, decoders recover the event vector
to the corresponding sentences: scene description and dialogue text. The decoders
generate sentences from vectors in the latent space (as eq. 5.6). The output
vectors from sequence models Se are given as the inputs to the decoders. The
decoders are implemented with RNNs with GRU cells. The decoders work as
open-loop mode, they have no additional other input without initial hidden
vectors. The output vectors use as the input for the next time step. In this
setting, cross entropy loss is widely used for one-hot representation for words in
the dictionary. The output value 9, , and label y,, , with the w-th word, ¢-th
time step of RNNs have their probabilities given by softmax function, the cross

entropy loss as follows:

=22 wnloggun (5.7)

5.4.2 Successive Event Order Embedding (SEOE)

SEOE is the core module of this paper, which build for the structure for
contextual coherence. Based on the facts that every story has implicitly shared

situation in the short term, and narratives in videos are composed of selective
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shots of observations (not seamlessly continuous showing), we consider that
contextual events should be embedded separately and not evenly distant on
consecutive events. Also, it is enough to check neighbors of each nodes in the
chain graphs as shown in the previous section. Considering the assumptions and
properties, we adopt triplet ranking loss as objective function to learn SEOE.
By using this objective function, we focus on the ordinal information in the
sequences ignoring the inter-distance information.

x; is an embedded event vector at time t. The embedding function fspor
maps an event vector onto the embedded space. The goal of function fspor(e:)
is to make event vectors be reorganized on the latent space so that each episode
constructs to show trajectory-like relationship in the space by embedding con-

secutive events onto ordinally close points:

zy = fseor(e) (5.8)

This can be achieved with triplet ranking loss as follows:
meinz Zk: max{0, a — s(x¢, x441) + sz, xk) } (5.9)
x

where « is margin, s is score function to measure how far from each other.

We use cosine distance for it. k is any other indices except for ¢ + 1.
Function Forms of SEOE

As the function form of SEOESs, we test 1-layered or 2-layered fully connected
neural networks, which is necessary to represent more than isomorphic relation-
ship. These modules can easily integrate other neural networks. To use triplet
loss, we need one positive example and one negative example per one case. For
x¢, we can choose z;y1 as the positive example deterministically. The negative

examples are chosen randomly from the training set and resampled every epoch.
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(a) Event vector (9600d) Raw (b) Dialogue text vector (4800d)

Figure 5.4 t-SNE Visualization of (a) all of event vectors and (b) dialogue text
vectors before the SEOE procedure.

Visualization Result of SEOE

To observe the tendency of learning with SEOE, we visualize them with t-SNE.
Figure 5.4 shows the overall structure of event vectors e; . In the dialogue text,
sometime exactly the same sentences are shown such as greetings like ‘Hi, friends’
and ‘nice to meet you’. Some clusters are shown in Figure 5.4 (b) representing
frequent sentences, events vectors in Figure 5.4 (a) have less number of clusters.
Applying SEOE on the event vectors, we can visualize the overall structure built
by all events, and trajectory-like embedding results as shown in Figure 5.5. To
check how many events are follow this property, we analyze them with 2-nearest
neighbors for each event vectors on the episodes. The percentages are around

99.4% of event vectors follow the property. (1-layer NN: 99.41%, 2-layer NN:
99.37%, No embedding: 2.035%)
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Season 3, Episode: 1 Seéson 4, Episode: 20

Figure 5.5 Visualization of episodes of the trajectory-like form in the embedded
event space. The numbers designates the indices of events from the beginning.
We color the points with black close to the start, and red close to the end. The
tendency is maintained over all episodes without dependence of the length of
episodes.
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5.4.3 Sequence Models of the Event Space

Since our tasks need to generate sequences of events with multi-step prediction in
arbitrary directions, we use bi-directional Long Short-term Memory (BiLSTM)
adding the learning process following scheduled sampling methods (Bengio et al.,
2015). We control the mixing rate with training data and the generated stories
depending on the epoch. At the beginning, the portion of training data is high.
As the epoch goes by, the generated stories are involved gradually more. After
the certain epoch, the models are trained with the generated ones. This is helpful
to alleviate generating wrong answers in open-loop LSTMs.

Bi-directional LSTM (BiLSTM): Neural language models with long
short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated
Recurrent Unit (GRU) (Chung et al., 2014) are very powerful to be used in
sequence modeling to embrace long-term dependency information. BiLSTMs
pursue to increase the amount of input information available using both of two
directional hidden states. In our problems, we should predict arbitrary position
of events such as early part of the sequence given the latter part. To utilize
BiLSTMs, we use two LSTMs for forward direction and backward direction
each. The input indices are rather different, from 1 to zp_o for the forward
direction, from x3 to xzp for the backward direction as shown in Figure 5.3. We
combine those outputs with one fully connected layer of the concatenation of

two inputs as follows:
feombine (T ¢, xp) = tanh(W - (x¢||xp) + b) (5.10)

where 2 and x; are two input vectors, W is a weight matrix and b is a bias

vector.

To predict arbitrary missing parts, we can do similar to open-loop RNNs.

To learn the sequences, the next step vectors are used as targets. feompine 1S the
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function of the outputs of 2 LSTMs. (as eq. 5.5). Objective function is the mean
squared error (MSE) loss:

DO (@) (5.11)

Eventually, we use BILSTMs as regression models for the embedded event
vectors. As is done with mixture density networks (Graves, 2013) for generating
sequences with RNNs, MSE loss can be seen in a probabilistic manner if a

Gaussian distribution with fixed isotropic covariance on each output node.

5.5 Experimental Results
5.5.1 Experimental setup

We split all 171 episodes of the ‘PororoQA dataset’ into 90% training (154
episodes) / 10% test (17 episodes).? Lengths of episodes on trainset/testset are
similar (mean: 93.1 vs 101.76, std: 72.13 vs 80.73). The evaluation methods
are mean square error (MSE) between original vectors and generated ones
in embedded vector spaces. We test 3 tasks: former-part prediction, mid-part
prediction, latter-part prediction. MSE is advantageous to tune the overall
difference from the previous / current / next desired vectors together than the
difference at each time index. We check the effect of the masking lengths and

scheduled sampling.
5.5.2 Quantitative Analysis

Figure 5.6 shows the performance of 3 tasks. Additionally, the results using
scheduled sampling and the results of standard open-loop prediction only (nor-
mal). At first, single directional LSTMs show good for short-length prediction as
the length of masking part are decreased. (Figure 5.6 (a)). In Figure 5.6 (b), the

2In the standard approach, validation set is often used for model selection. In ours, the
learning curves show the convergence to the certain value. So, we split the dataset as above
and we stop the itera-tion after the error variance is enough small.

1 3
73 M=



13 1.8 18
12 > Hm — Y — Y = K= — X

{a) (b) (0
18 13 o
16 12 ——————Cc-—9 —~-Latter part prediction (Normal)

’ — kT T ' e—o—o——e——a |--Mid-part prediction (Normal)
1.4 ——p——A— 11 A i
—— s = -e-Former part prediction (Normal)
12 === - 10 = —~Latter part prediction (55)
L0 03 -+Mid-part prediction (SS)
08 . . T . 0.8 : . . | =-Former part prediction (SS)
5 10 15 20 25 5 10 15 20 25
(d) (e)

Figure 5.6 Plots for prediction errors (test data) on single directional LSTMs,

open-loop output of 2 LSTMs, and combined nodes of Bidirectional LSTMs.

Error metrics are the mean squared error (MSE). (solid line: scheduled sampling,
dotted line: normal)

prediction error of the result of single directional open-loop LSTMs. They show
similar tendencies with single LSTMs. In Figure 5.6 (c¢), BILSTMs show low
MSE and stable performance regardless of the length of masking part. In the
area in longer than 200, the number of episodes is just 1, the result is so noisy.
Entirely, scheduled sampling is helpful to be stable with respect to prediction

error. From the results, we can generate stories.
5.5.3 Qualitative Analysis

To do surface realization, we train two decoders overfitted intentionally with
the overall dataset, since we want to use decoders as the probe what events
are encoded only, not a generalized surface realizer. The performance of two
decoders is as shown in Table 5.1.

Interpolation via geometric mid-points: We can interpolate mid-point
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Data BLEU(1) | BLEU(2) | BLEU(3) | BLEU(4) | CIDEr | METEOR | ROUGE-L
Dialogue 0.989 0.987 0.986 0.984 8.901 0.849 0.882
Description | 0.942 0.935 0.931 0.927 9.501 0.686 0.970

Table 5.1 Decoder performance evaluation results. They are trained overfitted
intentionally. We want to use decoders as the probe what events are encoded
only, not a generalized surface realizer. The generated descriptions shows lower
scores, especially METEOR. Since the length of sentences of descriptions are
longer, it is natural phenomenon.

events between two arbitrary ones. At first, we check the effects of SEOE with
1-step gap interpolation. Since the number of instances is limited, 1-step gap
interpolation is not so interesting. But, we can see the noisy sentences are
intervened between them if events are not ordered. As shown in Figure 5.7,
we can observe that noisy events are appeared in case of without-SEOE. Also,
the decoding boundary is more accurate in the using-SEOE case. Figure 5.8
shows the example of 5-step gap interpolation results, which goes out from the
original storyline and come back. When we get the mid-points between two
events, it would get better results if we get them to follow the trajectories. Since
we use sequence models to track the trajectories in our system, it shows not
clear results if we just find geometric midpoints.

Regeneration with sequence models: Figure 5.9 shows one of randomly
chosen generated examples in the test data as the latter part generation problem.
We observe that almost every sentences are grammatically correct, and whole
story is reorganized and regenerated.

Figure 5.9 and 5.10 show randomly chosen one of relatively short episodes
(smaller than 50 step). Also, it is marked with color boxes as shown in Figure
5.10 to check how many sentences are similar. We use yellow color for perfect-
matched on the ground-truth. Blue one is for the matching case with on the

1-step shifted ones. Unless forcing to update with the cues, all of the stories
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Interpolation Result without SEOE

Description: Pororo and Crong are about to go to sleep in their bed

—> 0
Inst. Dialogue Text: Crong
(time t)
-1 Description: Pororo and Crong are about to sleep to sleep in their bed
Dialogue Text: Crong
2 Description: Pororo and Crong are about to sleep with their hands in their bed
Dialogue Text: Crong
3 Description: Pororo and Crong are having a conversation in his house to sleep and They are sleeping
= Dialogue Text: Crong
é 4 Description: Pororo is shaking his head to Crong and Pororo are sleeping in their house
% Dialogue Text: Crong
& 5 Description: Pororo is holding his withered plant, and Crong is still in his bed, and They are in Pororo's house
é Dialogue Text: Crong the flower
= 6 Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house
Dialogue Text: Crong the flower is
. Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house
Dialogue Text: Crong the flower is dying
s Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house
= Dialogue Text: Crong the flower is dying
Inst 9 Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house
. Dialogue Text: Crong the flower is dyin;
(time t+1) € & ying
Interpolation Result with SEOE
Description: Pororo and Crong are about to go to sleep in their bed
Inst — ‘ P! 2 4 P
. Dialogue Text: Crong
(time t)
roq Description: Pororo and Crong are about to sleep to sleep in their bed
Dialogue Text: Crong
2 Description: Pororo and Crong are about to sleep with their hands in their bed
Dialogue Text: Crong
3 Description: Pororo and Crong are having a conversation in his house to sleep and They are sleeping
= Dialogue Text: Crong
-g 4 Description: Pororo is shaking his head to Crong and Pororo are sleeping in their house
% Dialogue Text: Crong
g 5 Description: Pororo is holding his withered plant, and Crong is still in his bed, and They are in Pororo's house
‘E Dialogue Text: Crong the flower
L
6 Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house
Dialogue Text: Crong the flower is
; Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house
Dialogue Text: Crong the flower is dying
8 Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house

- Dialogue Text: Crong the flower is dying

Inst. 9 Description: Pororo is holding his withered plant, while Crong is still in his bed, and They are in Pororo's house

(time t+1) Dialogue Text: Crong the flower is dying

Figure 5.7 A comparative interpolation example of the 1-step gap with and
without SEOE. In case of without SEOE, noisy events are observed.
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Inst. ED, ‘Generated dialogue
: 0, 'Generated descript

(tlme t ) (1, "Generated dialogue ‘cro L'

(1, ‘Generated description:’, ["Pororo gets hit by Crong's toy arrow, and Pororo is in his house."])

(2, 'Generated dialogue:', ['cro .'])

(2, 'Generated description:', ['Pororo opens the door and says hi to Poby, Loopy, and Crong is sleeping.'])

(3, 'Generated dialogue:’, ['huh loopy is here too .'])

(3, 'Generated description:’, ['Pororo opens the door and says in his house.'])

(4, 'Generated dialogue:', ['loopy crong .'])

(4, 'Generated description:', ['Pororo asks to Loopy that Crong did try hula hoops, and Crong is pointing at the hoop.'])

(5, 'Generated dialogue:', ['loopy is in danger .'])

(5, 'Generated description:', ['Loopy asks to Pororo whether or not Pororo finishes fixing her for her clock.'])

(6, 'Generated dialogue:', ['loopy crong .'])
‘Generated description:', ["Loopy enters into Pororo's sleigh and Loopy are talking to each other in a snow forest."
(7, 'Generated dialogue:", ['come in .'])
(7, 'Generated description:', ["Looby enters into Pororo's house, and The woods are covered with snow, and The sky is blue and clear."])
(8, 'Generated dialogue:', ['come in .'])

‘cro .'])
rong does not_know where Pororo went, and Crong is in Pororo's house."])

Inst. (8, 'Generated description:', ["Loopby enters into Pororo's house, and The woods are covered with snow, and The sky is blue and clear."])
(time t+5 (9, 'Generated dialogue:’, ['come in .'])
(9, 'Generated description:', ["Loopy enters into Pororo's house, and The woods are covered with snow, and The sky is blue and clear."])

Figure 5.8 An interpolation example of the 5-step gap with SEOE.

are changed a little. There are some pairs that semantically same sentences or
only some words are different. We mark them as green one. We can observe that
large part of regenerated result of dialogues is recovered and the descriptions

are relatively small part is.
5.6 Summary

We propose story learning and regeneration framework for kids videos as sur-
rogate data of everyday lives. This type of datasets is meaningful to research
context understanding in real life. Descriptive story generators also are intro-
duced using the framework. Successive Event Order Embedding (SEOE) builds
composite representation of order and semantics, which shows the structure
of episodes and give stable regeneration result. We observe the potential to
interpolate events between arbitrary events, and we can get better results with
sequence models to span the event space. Note that it is still limited due to the

relatively small number of instances.
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<Start of Episode>

0 Generated [Diag): crong crong . [Desc]: Pororo and his friends are standing cutside the wooden house.
0 Right &ns [Diagl: where is it . [Desc]: Eddy is locking for scmething in Eddy's library
I Generated [Dlagl: where Ts 1t . [Descl: Eddy Ts walking on the snew, and Eddy suddenly noves Ris face and Eddy sailes,

| Right Ans [Diagl: i saw it soneshere around here . [Descl: Eddy is standing on the ladder and Eddy is Finding something on the bockshe
1f

2 Generated [Disal: 1 san 1t sonewhere around Fere [Descl: Ecdy is walking on the snow. and Eddy suddenly hear sonething and cowes to

the sky,
Z Right Ans [Diag): ah i found it .  [Desc]: Eddy found the book, and Eddy climbs downs a ladder.
3 Generated [Diagl: what should i do . [Desc]: Eddy says that it is the historical moment to invent novel chenicals.
3 Rioht Ans [Diaal: what should | nake today . [Descl: Eddy looks at the bock and auestions hinself.
4 Generated [Diaal: what should | nake today . [Descl: Ecdy looks at the bock and auestions hinself,
4 Right &ns [Diag]: that |ooks Desc) cane up with an idea and decides to make something.
5 Generated [Diag]: eddv . [Desc): Eddy cane wp with an idea.
5 Right Ans [Diag): . [Desc): Pororo and Crong visit Eddy.
B Generated [Diaal: wu cane down . [Descl: Pororo and creng are naking a car, and Peby holds a help in the other hand.
E Right &ns [Diagl® eddy . [Desc]: Pororo and crong calls out eddy.
7 Generated [Dlagl: | can put 1t out [Oescl: Eddy says Tirst will stop rignt friends.
7 Right Ans [Diagl: ves come in . [Desc]: Eddy al lows Pororo and Creng to cone in, and Crong opens the door.
erat faal: hi . [Descl® Petty and Locoy think that t licious,
_B Right &ns [Diagl: hi . [Desc]: Pororo and Crong say hi te Eddy.
9 Generated [Diagl: eddy what are you doing . [Descl: Eddy and Pororo are surprised, and Eddy Is little bit unpleasant.
9 Right _Ans [Diagl: eddy what are you doing Desc]: Behind Eddy, there is a car, and Pororo asks hin a ouestion.
10 Generated [Diazl: oh i an naking a new toy B [Desclt Eddy touches Eddy's head and explains that Eddy is waking a naw toy.
10 Right Ans [Diagl: on i an naking a new toy . [Desc]: Eddy touches Eddy's head and explains that Eddy is making a nev toy.
1T Generated [Dlagl: oh | an naking a new toy - [Desc]: Eddy looks at Petty and sailes.
i1 Right Ans [Diag]: toy cromg . [Desc): Pororo and Crong lock at the car_and run tomard the car.
12 Generated [Diaal: toy cremg . [Descl: The sides of mailbox is colored by pink, and The word, POST. is also written on the front s
ide of the mailbox,
12 Right Ans [Diagl: it looks great . [Desc): Pororo and Crong stand in front of the car. and They think the car is cool.
13 Generated [Diagl: i will take it to the playgrownd . [Desc): Eddy comes over and says Eddy's plan.
13 Right Ans [Diagl: i will take it to the plavgromd . [Desc] : Eddy comes over and says Eddyv's plan,
14 Generated (Diagl: | will take it to the playground . [Desc]* Eddy is looking for eddy friends,
14 Right &ns [Diag): to the playgromd . [Desc]: Crong is looking around the car, and Pororo asks a guestion.
15 Generated [Diagl: to the plavground [Desc]: Petty and Loopy think that the situation is strange.
15 Right Ans [Diacl: then all of us can ride in it . [Descl: Eddy stretches Eddyv's arns, and Eddy is taking the car to the plavereund fo
I_ENeryone,
16 Generated [Diagl: 1 will bring semething to drink sceething . [Desc]: Pororo agress with Eddy and wants to help Bddy.

|6 Right Ans [Diagl: i will bring it there .  [Descl: Pororo agrees with Eddv and wants to help Eddy.

I7 Generated [Diagl: let wo . [Descl: Pororo asks friends if Eddy did oo,

17 Right Ans [Diag): really . Desc] is surprised, and Pororo cones closer to the head of the car.
18 Generated [Diaal: | will be there first [Desc]: Pororo and Crong are -alt ina for Loopy.

18 Right Ans [Diacl: | will be there first . Desc] : und, and Edd E i
19 Generated [Diagl: i will be there first [Desc]: Pororo goes out of Eddy’ s house and Poby |s surnrused by' Forora,

19 Right Ans [Diag): crong .  [Desc): Pororo goes out o “s house, and is standing still, and Creng fol lows Pororo.
20 Generated [Diagl: crong . [Descl: Pororo goes out 01 Eddy"s house, and is approaching to Peroro.
20 Right Ans [Diagl: crong crong . Desc Pororo runs with the car, and Crong fol lews Pororo.
2l Generated (Diasl: we are safe . : The night arrives in the forest,
21 Right &ns [Diag]: it is hard . Desc Pororo stops at the top of the hill, and Crong stops too
22 Generated [Diagl: it is hard , [Descl: Poby savs that Harry is playing vith the ball, and Harry is excited,
72 Right Ans [Diagl: ereng . [Dese): Crona and Pororo are surorised, and Crong swings Crong's arns.
23 Generated [Diaal: crong . [Desc): Crong and Pororo are surorised, and Crona swinas Crong's arns.
Z3 Rignt Ans [Diagl: hey step there . [Descl: The car is going down a hill, and Porore follows, and Crong stamps Crong's fest rep
_eatedly

74 Generated [Diagl: hey stop there . [Descl: pororo runs toward creng with anary face, and crong and pororo suile at pororo.
24 Right Ans [Diaal: crong [Desc]: Crong thinks the situation is weird.
& Generated [Diagl® pororo crong . [Desc] Crong says Tt 1s not a fuck,
75 Right Ans [Diagl: crong . [Desc): Eddy calls Crong. and Crong looks back.
76 Generated [Diagl: what are you doing here . [Descl: Eddy asks Pororo what Crong is doing.

i Ans [Diag]: what are you doing here Desclt Eddy asks Crong what Crong is doing.
27 Generated [Diagl: what are you doing here . [Desc): Eddy asks Crong what Crong is doing.
Z7 Right Ans [Diag): cron Desc]: Cron ints scmething to Eddy.
28 Generated [Diagl: it Iooks fun [Desc]: Eddy lcoks angry, and Pororo says something to Eddy.
20 Right Ans [Diagl: oh no pororo disappeared in a new toy car | [Descl: Pororo is disappearing with a new toy car, and Eckly and Cro
ng are surprised

erat tagl: oh no pororo disappeared crong . [Descl: Pororo is disappearing with a new toy car, and Eddy and Crong are surprise
o) walking vhi nding

an Benerated [Dnag] P will nake you a sorry . [Desc]: Eddy, Eddy and Pororo are standing in front of the door, and Pororo is wavi
ng to Eddy saying what is going to his house
30 Right_Ans [Diag i hi loopy . [Descl: On a new tov car. Pororo say hi to Looov. and Pororo is going fast.
31 Generated (Diaal: hi loopy . [Descl: On a new toy car, crong talks to Loooy, and Eddy is [ittle bit surprised.

i jaal: 1: Loopy savs hi, but Pororo is too fast
32 Generated [Diagl: what are you doing . [Desc]: Pororo is surprised at Pororo’s house, and Pororo is also swiling,
32 Right Ans [Diac]l: what are vou doing [Descl: Loopy s looking at Pororo. and Locoy is surprised
33 Generated [(Diasl: there you oo . [Descl: Locoy and Eddy are amazed that Crong feels scaething.
33 Right Ans [Diagl® this is a new toy eddy made . [Descl: Pororo vells at Loopy that it is a Eddy's new car.
34 Generated [Diagl: this is a new toy eddy nace . [Descl: Pororo yells at Locoy that it is a Eddv's new car.
34 Right Ans niag : yahoo . [Desc): Pororo is enjoying a ride, and Pororo yells with Joy.
35 Generated [Diaal: vahoo . [Descl: Porore is anary and coming to crong with a sleish,
25 Right Ans [Diagl: lalalala lalalala . [Desc]: Loopy is valking merrily on a snowy land

<end of Episode>

Figure 5.9 One of latter part prediction examples with test data (given: 0 ~ 20).
Whole story is reorganized and generated.
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=Start of Episode>

0 Generated [Diag): crong crong . [Desc): Pororo and his friends are standing cutside the wooden house.
0 Right éns [Diag): where is it . [Descl: Eddy is looking for something in Eddy's library.
erat E isit . [Desc]: Eddy is walking on the snow, and Eddy suddenly moves his face and Eddy sl les,
1 Right Ans [Diagl: | saw it someshere around here . [Desc): Eddy is standing on the ladder and Eddy is Finding something on the bookshe

1.
Zh'lanted [Diag): i saw it someshere arcund here . [Descl: Eddy is valking on the snow, and Eddy suddenly hear something and comes to
he sky.

zmm Ans [Diag): ah i found it . (Desc] : Eddy found the book, and Eddy climbs dosns a ladder.
3 Generated [Diagl: what should i do . Desc] : Eddy swstrm it is the historical moaent to invent novel chemicals.
3 Right Ans [Di what should | make t . looks at the book and ions hinself.
4 Generated [ﬁil!]: what should | make today . M Eddv locks at the bock and auestions himself.
4 Right ans [Diag): that |ooks Desc) cane vith an idea and decides to make something.
5 Generated [Diagl: eddy . Thesc]: Eddy case o with an idea.
5 Right Ans [Diagl: eddy . [Desc]: Pororo and Crong visit Eddy.
6 Generated [Diagl: you came down . Desc]: Pororo and crong are naking a car, and Peby holds a help in the other hand.
6 Right Ans [Dlao]: eddy . [Desc] : Pororomdcrtm calls out eddy.
erat a T can ot . Says fIrst |
7 Right dns [Dlaql ves cone in . [Desc] = Eddy allo's Pororo and Crong to cone in, and Crong coens the door .
"B Generated [Diagl: hi . ty think that t icious.
A Right dns [Diaal: hi wmmm
9 Generated [Diagl: eddy what are you doing . [Descl: Eddy md Pororo are surprised, and Eddy is little bit unpleasant.
3 Right dns [Diag): eddy what are you doing . there is a car, and Pororo asks hin a tion,

10 Generated [Diagl: oh i an naking a new toy Descj EM&' touches Eddy’s head and explains that Eddy is making a nev toy.

10 Right dns [Diagl: oh i an naking a new toy . [Desc) : Eddv touches Eddv's head and explains that Eddv is making a nev tov.
1T Generated (Diag]: oh | an naking a new toy . TDesc]: Eddy looks at Petty and sailes.
: Desc] : lock at _the car_and run toward the car.
: The sides of mailbox is colored by pink, and The word, POST, is also written on the front s

_12 Right Ans [Diag]: it locks great esc] : Pororo and Crong 4
13 Generated [Diagl: | will take it to the playground [Desc] : Edf'y mles wer and says Erﬁv s plan,
Right Ans [Diag]: i 1 c): Eddy comes over and says Eddy's plan

Right Ans [Diag]: to the plavground : g k =
15 Generated [Diagl: to the playground . [ml Pelty mlmw think tnnt the situat fon is strange.
15 Right Ans [Diagl: then all of us can ride in it . [Desc): Eddy stretches Eddy's arms, and Eddy s taking the car to the playaround fo
r ever R
16 Generated [Diag]: | will bring sosething to drink something [Descl: Pororo agrees with Eddy and wants to help Eddy.
16 Right Ans [Diag]: 1 will brin: Il lhere . [Desc): Pororo agrees with Eddy and wants to help Eddy.
17 Generated [Diagl: let go . : Pororo asks friends if Eddy did go.
_17 Right Ans [Diagl: really . (Desc] : is surprised, and Pororo comes cloger to the head of the car,

18 renerared lnnaa] | will be there first ng: Poloro and Crcna are nltina for Lnow

esc] : s Edd . Sex
[Descl P'cuotooees«l oIEdwsm.se andPobviss-.rnrlsedbyPororo
f house, and still, and Crong follows Pororo,

G ra.to} al 5 [Desc]: Pororo ones out of Eddy’s house, and is approaching to Pororo.
20 Right_Ans [Dia: crong crong . : Pororo runs with the car, and Crong fol lows Pororo.

21 Gen:med Dla we are ss.fe . The nlﬂ arrives in the rorest

Ag rororo 2, A ONg PE B
amm : - &mmmmwluﬂ.m&wmm&wsun
23 Right Ans [Dlml rw stop tm a [Desc]: The car is going down a hill, and Pororo follows, and Crong stamps Crong's fest rep

—eatedly
24 Generated [Diagl: hey stop there . [Descl: pororo runs tovard crong vith angry face, and crong and pororo saile at porero,
24 Right dns [DIau] crong . [Descl: Crong thinks the situation is veird.

erat pOroro crong . TDesc]™ Crong savs It Is not a Tudk,
75 Ri Ans Dla Crof: H calls Cr and Cr | .
2 Generated [l)iag] what are you doing here . [Desc): Eddy asks Pororo what Crong is doing.
26 Right Ans [Diag what_are vou doing here [Desc): Eddv asks Crong what Crong is doing
27 Generated [Diag]: what are you doing here . [Desc): Eddy asks Crong what Crong is doing.
27 Right Ans [Diag]: crong . Desc]: Crong points something to Eddy.
28 Generated [Diagl: it looks fun . [Desc]: Eddy locks angry, and Pororo says something to Eddy.
28 Right Ans [Diagl: oh no pororo disacoeared in a nex toy car | [Desc]: Pororo is disappearing with a new toy car, and Eddy and Cro

ng are surprised,
2 Generated [Oiag]" oh no pororo disappeared crong . [Desc]: Pororo IS disappearing with a new Loy car, and Eddy and Lrong are surprise
d,

29 Right Ans [Diag): lalalala Dese]: Loopy is walking while sinaing

30 Generated [Diagl: i will make you a sorry . [Desc): Eddy, Eddy and Pororo are standing in front of the door, and Porore is wavi
ng to Eddy saving -hat is going to his house.

30 Right_Ans [Di hi | Descl: On a new toy car. Pororo sav hi to Loopy. and Pororo is going fast.

d doing v (.1 OO% A P A QO SUrD
33 Generated [Dlasl there you 90 [Desc] Loomr and Eddr are mzad tm I:mm feels so-ethma
Right Ans [Diag]: thlsisarut : Pororo

I'hl'oronllsat metlnt it Isamsmur

a ride, and Pororo yells with
Generated [Diag]: yahoo . : Pororo is angry and coming to crong with a sleigh.
35 Right Ans [Diagl: lalalala lalalala . [Descl : Loooy is valking merrily on a snowy land.

<end of Episode>

Figure 5.10 Comparative cover map of the generated result and ground-truth.
It is marked with color boxes to check how many sentences are similar. Yellow
color for perfect-matched on the ground-truth, blue one for the matching case
with on the 1-step shifted ones, and green one for the case that semantically
same sentences or only some words are different.

79 iR A J&"F}E ﬁ]'



Chapter 6

Concluding Remarks

6.1 Summary of Methods and Contributions

As research vision, I pursue building situation-aware Al agents. The proposed
methods can be applied to situation expression as visual storytelling, situation
inference as open story generation and situation inference from partially observed
stories.

We propose new architectures GLAC Nets for visual storytelling, SEOE
for embedding story to have the trajectory form, ViStoryNets for video story
regeneration, RERMs for open-ended story generation.

Also, this dissertation proposes several technical issues as follows: Embedding
story with the form of trajectories can be used for composite representation of
order and semantics. The scheduled sampling technique is helpful to multi-step
prediction in BiLSTM. Vision-to-language translation setting and global-local
attention setting is powerful not only to learn overall structures but also to

deliver information to the decoder. Cascading mechanism is useful to serial
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generation of sentences. Automated metric scores should be used very carefully
for the story generation tasks. Recurrent event retrieval models (RERMs) can

be trained in an self-supervised manner.
6.2 Limitation and Outlook

While some part of components can be covered with the proposed methods in
this dissertation, lots of parts are still remained to be developed. In particular,
a study on video story learning with kids videos suffers from the small size of
the dataset.

Recently, some researchers focus on some promising issues such as human-
intervened interface (visual dialog! (Das et al., 2017) and visual object discovery
via dialogue (guessWhat) ? (de Vries et al., 2017)), learning via navigating in
the environment (Room-to-Room (R2) navigation 3 (Anderson et al., 2018), and
embodied QA* (Das et al., 2018)). Those works can make good synergy effect

with the techniques of visual-linguistic story understanding and generation.
6.3 Suggestions for Future Research

In the our visionary scenario introduced in Chapter 1, we can see the further
direction to do more. The first promising topic is to build generalized situation
representation of image sequences. Even though the size of VIST dataset is
good, it is not enough to be able to transfer to other task except for event-like
picture streams. It needs to gather more data to be used for analyzing everyday
lives freely, it is not tested to be potentiality yet.

The second topic is to gear neural conversational models newly developed

Thttps://visualdialog.org/
https://guesswhat.ai/
3http://bringmeaspoon.org/
“https://embodiedqa.org/

]
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recently. Currently, the proposed system is based on story generation without
interaction with humans.

The last suggestion is to build capable to take the Strong Story Hy-
pothesis and the Directed Perception Hypothesis proposed by Winston
(2011).

The Strong Story Hypothesis: The mechanisms that enable humans
to tell, understand, and recombine stories separate human intelligence

from that of other primates.

The Directed Perception Hypothesis: The mechanisms that enable
humans to direct the resources of their perceptual systems to an-
swer questions about real and imagined events account for much of

commonsense knowledge.

As we mentioned in related work, the ability of story understanding is an innate
function, which makes humans unique. Important point of those hypothesis is
the capability to recombine stories as if two words are merged (Chomsky, 2010).

Since I believe that human-level Al should have the ability of story under-
standing, it needs to do research on the system to combine 'video story learning’,

'story generation’, and ‘recombining stories’ as concept blending.
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