33 research outputs found

    Cubic Partial Cubes from Simplicial Arrangements

    Full text link
    We show how to construct a cubic partial cube from any simplicial arrangement of lines or pseudolines in the projective plane. As a consequence, we find nine new infinite families of cubic partial cubes as well as many sporadic examples.Comment: 11 pages, 10 figure

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    A counterexample to Thiagarajan's conjecture on regular event structures

    Full text link
    We provide a counterexample to a conjecture by Thiagarajan (1996 and 2002) that regular event structures correspond exactly to event structures obtained as unfoldings of finite 1-safe Petri nets. The same counterexample is used to disprove a closely related conjecture by Badouel, Darondeau, and Raoult (1999) that domains of regular event structures with bounded â™®\natural-cliques are recognizable by finite trace automata. Event structures, trace automata, and Petri nets are fundamental models in concurrency theory. There exist nice interpretations of these structures as combinatorial and geometric objects. Namely, from a graph theoretical point of view, the domains of prime event structures correspond exactly to median graphs; from a geometric point of view, these domains are in bijection with CAT(0) cube complexes. A necessary condition for both conjectures to be true is that domains of regular event structures (with bounded â™®\natural-cliques) admit a regular nice labeling. To disprove these conjectures, we describe a regular event domain (with bounded â™®\natural-cliques) that does not admit a regular nice labeling. Our counterexample is derived from an example by Wise (1996 and 2007) of a nonpositively curved square complex whose universal cover is a CAT(0) square complex containing a particular plane with an aperiodic tiling. We prove that other counterexamples to Thiagarajan's conjecture arise from aperiodic 4-way deterministic tile sets of Kari and Papasoglu (1999) and Lukkarila (2009). On the positive side, using breakthrough results by Agol (2013) and Haglund and Wise (2008, 2012) from geometric group theory, we prove that Thiagarajan's conjecture is true for regular event structures whose domains occur as principal filters of hyperbolic CAT(0) cube complexes which are universal covers of finite nonpositively curved cube complexes

    On embeddings of CAT(0) cube complexes into products of trees

    Full text link
    We prove that the contact graph of a 2-dimensional CAT(0) cube complex X{\bf X} of maximum degree Δ\Delta can be coloured with at most ϵ(Δ)=MΔ26\epsilon(\Delta)=M\Delta^{26} colours, for a fixed constant MM. This implies that X{\bf X} (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ)\epsilon(\Delta) trees, and that the event structure whose domain is X{\bf X} admits a nice labeling with ϵ(Δ)\epsilon(\Delta) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the computation of the bounds in Theorem 1. Some figures repaire

    A survey of the theory of hypercube graphs

    Get PDF
    We present a comprehensive survey of the theory of hypercube graphs. Basic properties related to distance, coloring, domination and genus are reviewed. The properties of the n-cube defined by its subgraphs are considered next, including thickness, coarseness, Hamiltonian cycles and induced paths and cycles. Finally, various embedding and packing problems are discussed, including the determination of the cubical dimension of a given cubical graph.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27522/1/0000566.pd

    Recognizing graphs of acyclic cubical complexes

    Get PDF
    AbstractAcyclic cubical complexes have first been introduced by Bandelt and Chepoi in analogy to acyclic simplicial complexes. They characterized them by cube contraction and elimination schemes and showed that the graphs of acyclic cubical complexes are retracts of cubes characterized by certain forbidden convex subgraphs. In this paper we present an algorithm of time complexity O(mlogn) which recognizes whether a given graph G on n vertices with m edges is the graph of an acyclic cubical complex. This is significantly better than the complexity O(mn) of the fastest currently known algorithm for recognizing retracts of cubes in general

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Finding all Convex Cuts of a Plane Graph in Cubic Time

    Get PDF

    Finding all Convex Cuts of a Plane Graph in Polynomial Time

    Full text link
    Convexity is a notion that has been defined for subsets of \RR^n and for subsets of general graphs. A convex cut of a graph G=(V,E)G=(V, E) is a 22-partition V1∪˙V2=VV_1 \dot{\cup} V_2=V such that both V1V_1 and V2V_2 are convex, \ie shortest paths between vertices in ViV_i never leave ViV_i, i∈{1,2}i \in \{1, 2\}. Finding convex cuts is NP\mathcal{NP}-hard for general graphs. To characterize convex cuts, we employ the Djokovic relation, a reflexive and symmetric relation on the edges of a graph that is based on shortest paths between the edges' end vertices. It is known for a long time that, if GG is bipartite and the Djokovic relation is transitive on GG, \ie GG is a partial cube, then the cut-sets of GG's convex cuts are precisely the equivalence classes of the Djokovic relation. In particular, any edge of GG is contained in the cut-set of exactly one convex cut. We first characterize a class of plane graphs that we call {\em well-arranged}. These graphs are not necessarily partial cubes, but any edge of a well-arranged graph is contained in the cut-set(s) of at least one convex cut. We also present an algorithm that uses the Djokovic relation for computing all convex cuts of a (not necessarily plane) bipartite graph in \bigO(|E|^3) time. Specifically, a cut-set is the cut-set of a convex cut if and only if the Djokovic relation holds for any pair of edges in the cut-set. We then characterize the cut-sets of the convex cuts of a general graph HH using two binary relations on edges: (i) the Djokovic relation on the edges of a subdivision of HH, where any edge of HH is subdivided into exactly two edges and (ii) a relation on the edges of HH itself that is not the Djokovic relation. Finally, we use this characterization to present the first algorithm for finding all convex cuts of a plane graph in polynomial time.Comment: 23 pages. Submitted to Journal of Discrete Algorithms (JDA
    corecore