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Abstract

Acyclic cubical complexes have �rst been introduced by Bandelt and Chepoi in analogy
to acyclic simplicial complexes. They characterized them by cube contraction and elimination
schemes and showed that the graphs of acyclic cubical complexes are retracts of cubes charac-
terized by certain forbidden convex subgraphs. In this paper we present an algorithm of time
complexity O(m log n) which recognizes whether a given graph G on n vertices with m edges is
the graph of an acyclic cubical complex. This is signi�cantly better than the complexity O(m

√
n)

of the fastest currently known algorithm for recognizing retracts of cubes in general. ? 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

A cubical complex K is a �nite set of cubes of any dimension which is closed under
taking subcubes and nonempty intersections. The vertices ofK are the zero-dimensional
cubes of K and in the graph G of K two vertices are adjacent if they constitute a
one-dimensional cube. Suppose the complex K contains a maximal subcube Q which
can be subdivided into two complementary subcubes Q1 and Q2 such that no cubes
of K other than subcubes of Q intersect both Q1 and Q2. Then contraction of all
edges between Q1 and Q2 gives rise to a new cubical complex K′. Such an operation
is called a cube contraction and a cubical complex is called acyclic if there exists
a sequence of cube contractions eventually transforming it into the trivial one-vertex
complex. One says that such a complex has a cube contraction scheme.
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This is one of several possible de�nitions of acyclic cubical complexes which have
been introduced by Bandelt and Chepoi [5]. In the cited paper they also showed that
the graphs of acyclic cubical complexes are retracts of cubes characterized by certain
forbidden convex subgraphs. This characterization does not seem to give rise to an
e�cient algorithm for checking whether a given graph is the graph of an acyclic
cubical complex. It is the aim of this paper to derive such an algorithm. Its complexity
is O(m log n), where n is the number of vertices and m the number of edges of the graph
G underlying the given cubical complex K to be checked for acyclicity. This compares
favorably with the complexity O(m

√
n) of the presently fastest known algorithm for

recognizing retracts of cubes but still falls short of the complexity O(m) with which
cubes can be recognized, cf. [6,10].
Retracts of cubes constitute a rich class of graphs which coincides with the class

of median graphs, see [11] for a recent survey. Median graphs have originally been
introduced by Avann [3], Nebesk�y [14] and Mulder [12] as graphs in which there
exists a unique vertex x to every triple of vertices u; v; w such that x lies on shortest
paths between any pair of vertices from u; v; w. The vertex x is called the median of
the triple u; v; w. It is easy to see that median graphs are bipartite and that trees and
cubes are median graphs. That this class coincides with the class of retracts of cubes
is due to Bandelt [4].

2. Preliminaries

In this paper we shall consider �nite simple graphs, i.e. �nite undirected graphs
without loops or multiple edges. To �x notation, let G=(V; E) be such a graph, where
V denotes the vertex set of G and E its edge set. Also, for X ⊆V , let 〈X 〉 denote the
subgraph induced by X .
A subgraph H of a graph G is an isometric subgraph, if the distance dG(u; v) in G

between any pair of vertices u and v of H is equal to the distance dH (u; v) between u
and v in H . If there is no danger of confusion we will often write d(u; v) instead of
dG(u; v). Isometric subgraphs of cubes are called partial cubes and are also known as
partial binary Hamming graphs. Furthermore, we say H is a convex subgraph of G if
all shortest paths between vertices of H lie in H .
We have already mentioned that median graphs are retracts of cubes and vice versa.

Although we shall not use this fact as a de�nition of median graphs we wish to mention
that it implies that they are isometric subgraphs of cubes and also bipartite. For every
edge ab of a bipartite graph G it is useful to de�ne the following sets:

Wab := {w ∈ V |d(w; a)¡d(w; b)};
Wba := {w ∈ V |d(w; b)¡d(w; a)};
Uab := {u ∈ Wab | u is adjacent to a vertex in Wba};
Uba := {u ∈ Wba | u is adjacent to a vertex in Wab};
Fab := {uv | u ∈ Uab; v ∈ Uba}:
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It is well-known, cf. [12,13], that G is a median graph if and only if it is bipartite
and if the subgraphs 〈Uab〉 and 〈Uba〉 are convex for every edge ab. It is easy to see
that in this case Fab is a matching inducing an isomorphism between 〈Uab〉 and 〈Uba〉.
Also, in partial cubes any two sets Fab are either identical or distinct.
For a partial cube, and thus also for a median graph, �nding the sets Fab is actually

equivalent to isometrically embedding G into a cube. Suppose the number of distinct
sets Fab is k. Then we color the edges of G with k colors, choosing one color for every
set Fab, and note that one can show that in any shortest path in G no two edges have
the same color. Moreover, the set of colors of the edges of any two shortest paths P
and P′ between two vertices v and w of G are always the same. We then �x a vertex
v. For every vertex w we then consider a shortest path P from v to w and assign a
vector of length k to w as follows: If there is an edge of P colored with color i we set
the ith component of this vector 1, otherwise we set it 0. The vertices of G are then
embedded via the canonical labeling of the cube Qk with 0–1 vectors of length k.
If both 〈Uab〉 and 〈Uba〉 are cubes, then they must be convex in G. If G is the

graph of a cubical complex then contraction of the edges of Fab to single vertices
corresponds to a cube contraction as de�ned in the introduction. Of particular interest
are those contractions, where either 〈Uab〉 = 〈Wab〉 or 〈Uba〉 = 〈Wba〉. In such a case
we call this operation a contraction of a pendant cube, because if G is the graph of
a cubical complex this corresponds to the contraction of a so-called pendant cube of
the cubical complex. The proof of Proposition 1 of [5] makes use of the fact that an
acyclic cubical complex can be contracted to the one-vertex complex by contractions
performed only on pendant cubes and, moreover, such a sequence can be started from
any pendant cube.
In order to decide whether a given median graph G is the graph of an acyclic cubical

complex it thus su�ces to check whether there is a sequence of contractions of pendant
cubes reducing G to the one-vertex graph. This is not too di�cult once all the sets Fab
have been found. Our main di�culty will be to avoid having to check initially whether
the given graph G is a median graph, because currently the fastest known algorithm
for this task has complexity O(m

√
n). It is due to Hagauer et al. [8] and uses induction

based on the following theorem of Mulder [12,13]:

Theorem 1 (Mulder’s Convex Expansion Theorem). Let ab be an edge of a connected
bipartite graph G. Then G is a median graph if and only if the following three con-
ditions hold :
(i) Fab is a matching de�ning an isomorphism between 〈Uab〉 and 〈Uba〉.
(ii) 〈Uab〉 and 〈Uba〉 are convex in 〈Wab〉 and 〈Wba〉; respectively.
(iii) Both 〈Wab〉 and 〈Wba〉 are median graphs.

The algorithm uses (iii) as the induction hypothesis, �nds Fab and checks the validity
of (i) in O(m log n) steps, but needs O(m

√
n) steps to check condition (ii).

The idea of the algorithm in this paper for investigating whether a given graph G is
the graph of an acyclic cubical complex is based on the observation that every induced
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subgraph H of a median graph which is a cube is convex and that checking whether
the 〈Uab〉-s are cubes can be reduced to counting their vertices and edges.
However, instead of modifying the rather involved proof in [8] we shall present a

new, self-contained proof which is shorter and more transparent. It is also based on
Mulder’s convex expansion theorem and on several basic facts about median graphs and
isometric subgraphs of cubes in general. These facts and the algorithm of complexity
O(m log n) for checking whether a given graph G is a median graph with a cube
elimination scheme will be the subject of the next sections. By the results of Bandelt
mentioned in the introduction the algorithm checks whether the given graph G is the
graph of an acyclic cubical complex.

3. Median graphs

We have already mentioned that median graphs are partial cubes. Such graphs can
be characterized by the transitivity of a relation � introduced by Djokovi�c [7]. Given
a graph G the relation � is de�ned on E(G) as follows: one says two edges e= xy ∈
E(G) and f = uv ∈ E(G) are in relation �, in symbols e�f, if

d(x; u) + d(y; v) 6= d(x; v) + d(y; u):

� is re
exive and symmetric but need not be transitive. We denote its transitive closure
by �∗. It is easy to see that opposite edges of a four-cycle without diagonals are in
relation � and that adjacent edges of a bipartite graph cannot be in relation �.
For us the importance of this relation is due to a result of Winkler [15], who showed

that a bipartite graph is a partial cube if and only if � =�∗. Moreover, the sets Fab
are the equivalence classes of the edges ab with respect to �∗, and these are the sets
which we wish to determine. Unfortunately the fastest known algorithm for �nding �∗

in a bipartite graph has complexity O(mn) and cannot be of much use for our purpose,
see [2,9,10].
However, if one already knows that G is a median graph (without knowing its

embedding) one can determine �∗ more e�ciently by making use of a relation �. One
says two edges e; f of a graph are in relation � if they are either identical or if they
are opposite edges of a square without diagonals. Clearly �⊆� and thus �∗ ⊆�∗. By
(ii) of Theorem 1 and the fact that convex subgraphs are connected we immediately
infer that �∗ must be equal to �∗ and thus to � for median graphs. As we shall see
� and �∗ can be determined in O(m log n) steps for a class of graphs containing all
median graphs.
In our algorithms we shall always assume that G is connected and bipartite and that

the vertices of G are arranged in a breadth �rst search (BFS) order with respect to
a root v0. For a graph G given by its adjacency list this can be done in O(m) time
and thus is no restriction for our complexity considerations. Moreover, considering the
edges of G as oriented pairs of vertices, we call ab an up-edge if d(v0; a)¡d(v0; b)
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and a down-edge if d(v0; a)¿d(v0; b). (Since G is bipartite d(v0; a) cannot be equal
to d(v0; b).) Also, we call the set

Li = {v |d(v0; v) = i}
the ith level of G with respect to the root v0 and denote the index of the level of a
vertex v by l(v). Thus, if v ∈ Li, then l(v) = i.
It is clear what is meant by the down-degree �d(v) of a vertex v in G, it is the number

of neighbors of v in Ll(v)−1. For us it is important that the down degree of a vertex in a
subgraph G of a cube can never exceed log|V (G)|, see [8]. Clearly every (unoriented)
edge is a down-edge of exactly one of its endpoints. Thus,

∑
v∈V (G) �d(v) = m and

m6n log n for all subgraphs of cubes. Also, if G is a median graph and v a vertex
of down-degree k, then v is contained in a cube of dimension k which meets the
levels Ll(v); Ll(v)−1; Ll(v)−2; : : : ; Ll(v)−k . This has also been shown in [8]. For us the
main consequence of this fact is, that to any two down-edges ab; ac of a median graph
there exists a vertex d in level Ll(a)−2 which is adjacent to both b and c. We call the
property that such a vertex exists down-closure.

Lemma 2. A median graph G contains at most m log n squares and they can be found
in O(m log n) steps.

Proof. We �rst note that every square of a median graph meets three levels. For,
suppose the square abcd just meets levels Lk and Lk−1, where a; c ∈ Lk and b; d ∈
Lk−1. By down-closure we infer the existence of a vertex v ∈ Lk−2 which is adjacent to
both b and d. But then both b and d are medians of a; c and v, which is not possible.
(We observe that we have actually shown that the vertices a; c; v, together with b; d
form an induced subgraph K2;3 of G, which is not possible in a median graph.)

Given a vertex x we shall now �nd all squares containing x which meet the levels
Ll(x); Ll(x)−1 and Ll(x)−2 by the following procedure:

Algorithm 1. Let x be a vertex of G. Perform the following steps:
(i) List the down-neighbors of x in some order.
(ii) Let a be the �rst down-neighbor in this order. Label every down-neighbor of

a with [a].
(iii) Let b be the successor of a. Process the down-neighbors of b. If they are

unlabeled, label them [b]. If they are labeled (with a string of length 1) we have
found a square and we add b to the string with which this vertex is labeled.

(iv) Let z be a down-neighbor of x processed after a and b. Processing the down-
neighbors of z we attach the label [z] if they are unlabeled, notice that we have found
a square if they already have a label of length 1 and attach z to the label.
We remark that in a median graph labels of length 2 can be assigned only once. If

two identical labels of length two are found G cannot be a median graph. It is easy
to look for such labels. If we detect them, we reject G.
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If we �nd a label of length 3 then G contains a K2;3 and is not a median graph.
Again G is rejected as a non-median graph.
(v) Having processed all down-neighbors of x we erase the labels of the at most

log2 n vertices we have considered and store the information of the (at most log2n)
squares we have found.

Clearly the complexity of performing steps (i)–(v) is O(log2 n). Doing this for every
x we see that there are at most n log2 n=m log n squares in G and that the complexity
of �nding them all is O(m log n).

Lemma 3. The sets Fab of a median graph can be found in O(m log n) time.

Proof. By Lemma 2 there are at most m log n squares in G. Hence, the relation �
has at most 2m log n elements. To compute �∗ within the same time we proceed as
follows. Let � be the graph de�ned on V (�) = E(G), where e; f are adjacent if
e�f. Clearly, �∗ is de�ned by the connected components of �. They can be found
in |E(�)|=O(m log n) steps. The proof is then completed by the observation that the
�∗-classes of G are exactly the sets Fab.

As we already mentioned, for a partial cube �nding the sets Fab is equivalent to
isometrically embedding G into a cube. Hence we conclude:

Corollary 4. A median graph can be isometrically embedded into a cube in O(m log n)
time.

Corollary 4 was �rst obtained in [8] using a di�erent, more complicated approach.

4. Recognizing acyclic cubical complexes

In the previous section we showed that a median graph G can be isometrically
embedded into a cube with complexity O(m log n). However, although we can detect
some non-median graphs and reject them, Algorithm 1 already assumes that the graph
G is a median graph and accepts some non-median graphs. In particular, it may accept
graphs with squares meeting only two levels. We wish to reject such graphs.

Algorithm 2. Let G be a simple graph given by its adjacency list.
(1) Check the number of vertices and edges. If m¿n log n reject.
(2) Check connectedness, arrange vertices in BFS order with respect to an arbitrarily

chosen root and determine levels. If G is disconnected, reject.
(3) Check bipartiteness. If not bipartite, reject.
(4) Check the down-degree for every vertex. If a down-degree larger than log n is

found, reject G.
(5) Find squares that meet three levels by Algorithm 1.
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(6) Check down-closure. Reject G when down-closure is violated.
(7) Find � and �∗ with respect to these squares.
(8) Check whether any two distinct edges incident with the same vertex are in

di�erent �∗-classes. If this condition is violated, reject.

We observe that Algorithm 2 clearly accepts all median graphs. Also, with the
exception of steps (5) and (6), all steps of the algorithm are straightforward and
clearly have at most complexity O(m log n).
For step (5) we turn to the proof of Lemma 2 and the algorithm presented there.

The proof starts with the remark that a median graph has no squares that meet just
two levels. This condition need not be satis�ed for our graph G being investigated and
we will eventually have to detect and reject graphs with such squares. But we can use
this algorithm as it is to �nd all squares that meet three levels. Of course we wish
to reject all graphs in which a K2;3 is detected in step (iv). Clearly the number of
squares meeting three levels is at most m log n and the complexity of �nding them at
most O(m log n).
Down-closure of step (6) is easy to check. We �rst note that the algorithm in the

proof of Lemma 2 already rejects all graphs in which three down-neighbors of a vertex
x have a common down-neighbor. Thus, any two distinct pairs of down-edges of x have
distinct neighbors in level Ll(x)−2. However, two distinct down-edges of x might have
more than one common neighbor in Ll(x)−2. But then a label of length two in step
(iv) would be assigned twice. We can detect this within the same time complexity and
reject such graphs.
The rest is easy, because now we only have to count whether there are as many

squares with top vertex x as there are distinct pairs of down-edges from x.
Note that we still have not dealt with graphs containing squares meeting two levels

only. Let abcd be such a square and let l(a) = l(c) and l(a) + 1 = l(b) = l(d). By
down-closure there must be a vertex v in level Ll(a)−1 which is adjacent to both a and
c. But then the edges ab and ad are in relation � to the edge vc and thus in the same
�∗-class. Such graphs are detected and rejected in step (8).
In summary we can state:

Lemma 5. Algorithm 2 admits all median graphs and has time complexity O(m log n).
Moreover; for all admitted graphs it determines � and �∗ correctly.

Since �⊆� we infer that �∗ ⊆�∗. We would like to show �=�∗=� ∗. In general,
however, it is not even easy to show that for all graphs admitted �⊆ �∗ holds. Also, the
graphs admitted need not be isometrically embeddable into a cube. To see this, consider
a Q3, label the vertices by 0–1 vectors of length 3, remove the edge (0 1 1)(1 1 1) and
choose v0 = (0 0 0), as depicted in the left graph in Fig. 1. Also note that this graph
would not be admitted if we had chosen (0 1 1) as a base. One of the problems with
this graph is that edges of the same color do not induce isomorphisms. We can check
this, of course.
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Fig. 1. Two examples.

To do this we de�ne F∗
ab as the set of edges in relation �

∗ to ab. Suppose that ab
is an up-edge. Then we set

U ∗
ab = {x | xy ∈ F∗

ab and xy is an up-edge}
as the set of vertices and de�ne U ∗

ba analogously. Since every vertex x is in d(x) sets
F∗
ab the total number of vertices in the U

∗
ab’s and U

∗
ba’s equals 2m. Also, since every

edge is a down-edge with respect to one endpoint and an up-edge with respect to the
other, the total number of edges in the subgraphs 〈U ∗

ab〉 and 〈U ∗
ba〉 is thus bounded by

the total number of vertices times the bound log n for the down degree, i.e. these graphs
contain at most m log n edges. We can thus check within this complexity whether F∗

ab
induces an isomorphism from 〈U ∗

ab〉 onto 〈U ∗
ba〉.

Lemma 6. Algorithm 2 can be modi�ed such that an isomorphism induced by F∗
ab

between 〈U ∗
ab〉 and 〈U ∗

ba〉 can be checked within time complexity O(m log n).

Unfortunately even then the graphs admitted need not be partial cubes. To see this it
su�ces to introduce two new edges from the midpoint of the edge (0 0 0)(1 0 0) to the
midpoints of the edges (0 0 1)(1 0 1) and (0 1 0)(1 1 0) and start the modi�ed algorithm
from vertex (0 0 0) (see the second graph of Fig. 1).
What we are interested in, however, are graphs with a cube elimination scheme.

We thus wish to recognize subgraphs 〈Uab〉 which are cubes, and in particular those
which are pendant cubes. Since one can check in O(m) time whether a given graph is
a cube and since

∑
ab |〈Uab〉|62m log n we can determine all 〈U ∗

ab〉 which are cubes
in O(m log n) time. We can even check whether they have been properly colored by
our algorithm.

Lemma 7. Suppose 〈U ∗
ab〉 is isomorphic to the cube Qk and suppose the degree dG(x)

of every vertex x ∈ U ∗
ab equals k + 1. Then G is the graph of an acyclic cubical

complex if and only if G \〈U ∗
ab〉 is.
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Proof. If G is an acyclic cubical complex then 〈U ∗
ab〉 = 〈Uab〉 and by Theorem 1 we

conclude that G \〈U ∗
ab〉 is an acyclic cubical complex too.

If G\〈U ∗
ab〉 is an acyclic cubical complex it is a median graph. As a median graph it

has been properly colored by our algorithm. This implies that 〈U ∗
ba〉 is convex. Using

Mulder’s convex expansion theorem again G is a median graph, and since 〈U ∗
ab〉 is a

pendant cube G is the graph of an acyclic cubical complex.

Lemma 7 suggests a recursive procedure for checking whether G is the graph of an
acyclic cubical complex. In fact, since we have determined all possible candidates for
the Uxy in G it would su�ce to be able to determine the graphs 〈U ∗

xy〉\〈U ∗
ab〉 in time

proportional to the number of edges in 〈U ∗
ab〉.

This we can do by setting up our data structure accordingly [1]. We recall that
we assume that G is given by an adjacency list. This list should also include the
name (address) of the edges corresponding to the endpoints in every line. We add an
incidence list, i.e. to every edge e we list the two vertices incident with it, color and
orientation (up-edge or down-edge). Recall that color refers to the set F∗

ab to which the
edge e belongs.
Also, for every color i we get two graphs 〈U ∗

xy〉 and 〈U ∗
yx〉, where xy denotes any

edge of color i. For these graphs we prepare adjacency lists as for G. Also, we shall
keep track of the degrees (in the subgraphs considered) of the vertices and update
the numbers of edges and vertices for these graphs as well as the sum of the degrees
(in G).
We now remove the vertices of 〈U ∗

ab〉 from (a copy of) G and from the 〈U ∗
xy〉 and

〈U ∗
yx〉. We �rst observe that v belongs to Uxy if the color of xy is a color occurring

in 〈U ∗
ab〉 and that every vertex v is adjacent to all colors. However, we still screen the

edges incident with v to determine whether they are up- or down-edges in order to go
to the proper 〈U ∗

xy〉 or 〈U ∗
yx〉.

We can go immediately to the proper vertex in, say, 〈U ∗
xy〉 and delete the line of

that vertex. Before doing so we go through the list of neighbors of v though and for
every edge we go to the lines in which it is listed and remove it from these lines.
For every vertex and edge removed we adjust the edge- and vertex-counter and list
the new degree. Also, for every vertex removed the total of the sum of the degrees in
G \〈U ∗

ab〉 is reduced by the dimension, say k of 〈U ∗
ab〉.

To remove a vertex v we have to search for it in k lists, where k is the degree of
v reduced by 1. As the time for such a search is at most log n and since every vertex
is removed but once from G we stay within the time complexity of O(m log n). To
remove an edge we go through the vertices in the line to be removed. Every such
vertex contains the address of the edge to which it corresponds, this edge can be
deleted in constant time. Since the 〈Uab〉 contain altogether at most 2m log n edges, we
stay within the required time complexity.
Following this procedure our degree count enables us to keep an updated list of all

pendant cubes. If this list becomes empty before we end up at a one-vertex graph we
reject G, otherwise we �nd that G is the graph of an acyclic cubical complex.
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Theorem 8. Graphs of acyclic cubical complexes can be recognized within time com-
plexity O(m log n).
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