1,546 research outputs found

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    [Subject benchmark statement]: computing

    Get PDF

    Numerical study of surface tension driven convection in thermal magnetic fluids

    Get PDF
    Microgravity conditions pose unique challenges for fluid handling and heat transfer applications. By controlling (curtailing or augmenting) the buoyant and thermocapillary convection, the latter being the dominant convective flow in a microgravity environment, significant advantages can be achieved in space based processing. The control of this surface tension gradient driven flow is sought using a magnetic field, and the effects of these are studied computationally. A two-fluid layer system, with the lower fluid being a non-conducting ferrofluid, is considered under the influence of a horizontal temperature gradient. To capture the deformable interface, a numerical method to solve the Navier???Stokes equations, heat equations, and Maxwell???s equations was developed using a hybrid level set/ volume-of-fluid technique. The convective velocities and heat fluxes were studied under various regimes of the thermal Marangoni number Ma, the external field represented by the magnetic Bond number Bom, and various gravity levels, Fr. Regimes where the convection were either curtailed or augmented were identified. It was found that the surface force due to the step change in the magnetic permeability at the interface could be suitably utilized to control the instability at the interface.published or submitted for publicationis peer reviewe

    Software Engineering for Millennials, by Millennials

    Full text link
    Software engineers need to manage both technical and professional skills in order to be successful. Our university offers a 5.5 year program that mixes computer science, software and computer engineering, where the first two years are mostly math and physics courses. As such, our students' first real teamwork experience is during the introductory SE course, where they modify open source projects in groups of 6-8. However, students have problems working in such large teams, and feel that the course material and project are "disconnected". We decided to redesign this course in 2017, trying to achieve a balance between theory and practice, and technical and professional skills, with a maximum course workload of 150 hrs per semester. We share our experience in this paper, discussing the strategies we used to improve teamwork and help students learn new technologies in a more autonomous manner. We also discuss what we learned from the two times we taught the new course.Comment: 8 pages, 9 tables, 4 figures, Second International Workshop on Software Engineering Education for Millennial

    Restoration of rhythmicity in diffusively coupled dynamical networks

    Get PDF
    We acknowledge financial support from the National Natural Science Foundation of China (No. 11202082, No. 61203235, No. 11371367 and No. 11271290), the Fundamental Research Funds for the Central Universities of China under Grant No. 2014QT005, IRTG1740(DFG-FAPESP), and SERB-DST Fast Track scheme for young scientist under Grant No. ST/FTP/PS-119/2013, NSF CHE-0955555 and Grant No. 229171/2013-3 (CNPq).Peer reviewedPublisher PD

    Engineering News, Fall 2019

    Get PDF
    https://scholarcommons.scu.edu/eng_news/1043/thumbnail.jp

    Voltage sources in 2D fourier-based analytical models of electric machines

    Get PDF
    The importance of extensive optimizations during the design of electric machines entails a need for fast and accurate simulation tools. For that reason, Fourier-based analytical models have gained a lot of popularity. The problem, however, is that these models typically require a current density as input. This is in contrast with the fact that the great majority of modern drive trains are powered with the help of a pulse-width modulated voltage-source inverter. To overcome that mismatch, this paper presents a coupling of classical Fourier-based models with the equation for the terminal voltage of an electric machine, a technique that is well known in finite-element modeling but has not yet been translated to Fourier-based analytical models. Both a very general discussion of the technique and a specific example are discussed. The presented work is validated with the help of a finite-element model. A very good accuracy is obtained

    Active Self-Assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time

    Get PDF
    We describe a computational model for studying the complexity of self-assembled structures with active molecular components. Our model captures notions of growth and movement ubiquitous in biological systems. The model is inspired by biology's fantastic ability to assemble biomolecules that form systems with complicated structure and dynamics, from molecular motors that walk on rigid tracks and proteins that dynamically alter the structure of the cell during mitosis, to embryonic development where large-scale complicated organisms efficiently grow from a single cell. Using this active self-assembly model, we show how to efficiently self-assemble shapes and patterns from simple monomers. For example, we show how to grow a line of monomers in time and number of monomer states that is merely logarithmic in the length of the line. Our main results show how to grow arbitrary connected two-dimensional geometric shapes and patterns in expected time that is polylogarithmic in the size of the shape, plus roughly the time required to run a Turing machine deciding whether or not a given pixel is in the shape. We do this while keeping the number of monomer types logarithmic in shape size, plus those monomers required by the Kolmogorov complexity of the shape or pattern. This work thus highlights the efficiency advantages of active self-assembly over passive self-assembly and motivates experimental effort to construct general-purpose active molecular self-assembly systems

    Discreteness in Time and Evaluation of the Effectiveness of Automatic Control Systems: Examples of the Effect of Discreteness on Mathematical Patterns

    Get PDF
    Discreteness is one of the fundamental categories in science, philosophy, mathematics, physics, and cybernetics. In the last 50 years, this concept and problem has occupied the minds of many practical engineers. There were situations in which discreteness began to play a major role, for example among the problems obstructing progress in automatic control systems and regarding the transition to digital systems. This chapter discusses the main approaches to the stability analysis of automatic control systems, proposed in fundamental works on the theory of automatic control (TAC). A proprietary approach is proposed, greatly simplifying engineering calculations, with almost no loss of analysis accuracy. It is shown, how this approach allows us to formulate new principles for the construction of seemingly well-known regulators—PID regulators and variable structure systems (VSS). In the last part of the chapter, it is proposed to analyze the famous paradoxes of science precisely from the point of view of the discreteness of the variables considered in these paradoxes. It is argued that it is discrete operations (not always correct) that are the causes of these paradoxes
    corecore