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The importance of extensive optimizations during the design of electric machines entails a need for fast and accurate simulation
tools. For that reason, Fourier-based analytical models have gained a lot of popularity. The problem, however, is that these models
typically require a current density as input.This is in contrast with the fact that the greatmajority ofmodern drive trains are powered
with the help of a pulse-width modulated voltage-source inverter. To overcome that mismatch, this paper presents a coupling of
classical Fourier-based models with the equation for the terminal voltage of an electric machine, a technique that is well known in
finite-element modeling but has not yet been translated to Fourier-based analytical models. Both a very general discussion of the
technique and a specific example are discussed. The presented work is validated with the help of a finite-element model. A very
good accuracy is obtained.

1. Introduction

With evermore strict demands on the performance of electric
machines, the importance of optimizations during early
design stages is growing. Typically, such optimizations have
a very large design space. In order to limit the associated
computational burden, fast machine models are required.
Therefore, often very simple models are used [1, 2]. However,
typically, these models require a lot of simplifications or
experimental parameters. One class of models that combines
a high level of accuracy and a low computational time
is the class of Fourier-based analytical models. Moreover,
these Fourier-based analytical models do not require any
experimental parameters. It is therefore no surprise that the
interest in such models is very high [3–11].

The Fourier-based analytical models that are presented
in literature require a current density as input. The problem
is that nowadays most electric drives are powered with the
help of a pulse-width modulated voltage-source inverter. To
overcome that mismatch, this work extends the magnetic
calculations of Fourier-based models with the equation for
the terminal voltage of an electric machine. By doing so, it
is possible to directly account for a voltage source instead

of the classical approach of imposing a current density.
The technique of combining magnetic calculations with the
equation for the terminal voltage has already proven its worth
in finite-element models [12]. However, to date, it has not
yet been translated to Fourier-based analyticalmodels.More-
over, despite its apparent simplicity, a general formulation of
the technique is not obvious. For those reasons, this work
presents both a general discussion and a specific example
on how to couple classical Fourier-based models with the
equation for the terminal voltage.

The presented work consists of three major parts.
Firstly, a very general discussion on the technique of

coupling magnetic calculations with the equation for the
terminal voltage of electric machines is presented. This
discussion is spread over Sections 2–5. Section 2 introduces
the magnetic calculations of classic Fourier-based models.
In Sections 3 and 4, the equation for the terminal voltage is
rewritten so that it can be used in Fourier-based analytical
models. These two aspects are combined in Section 5, result-
ing in a model that directly accounts for the terminal voltage
of electric machines.

In the second part of this work, the theoretical discussion
of part one is concretized with the help of an example.
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The machine that is considered is a rotating, radial-flux
permanent-magnet synchronous machine (PMSM) for high-
speed applications. This machine is discussed in Section 6.

The same machine topology is used in the third part to
validate the presented work with the help of a finite-element
model. This is done in Section 7. Section 8 concludes the
work.

2. Fourier-Based Analytical Models

By means of introduction, this section briefly discusses
Fourier-based analytical models. The goal is to present a set
of equations that defines the magnetic field as a function of
the geometry, the remanent magnetic flux density, and the
current density.

Typically, Fourier-based models use a potential formu-
lation, that is, the magnetic vector potential (MVP) or
the Magnetic Scalar Potential (MSP), to rewrite Maxwell’s
equations in the form of a second-order partial-differential
equation. Because of the fact that it is themost generally valid
formulation, the focus in this work is on the MVP.

The magnetic vector potential, which is denoted by A, is
defined through its curl:

B = ∇ × A, (1)

where B is the magnetic flux density.
The magnetic field and therefore the MVP depend on

time and space. Fourier-based models rely on periodicities in
these time and spatial dependencies to formulate a solution
forA. While time is simply denoted by 𝑡, a coordinate system
has to be chosen to describe the spatial dependency. This
choice usually depends on the shape of the studied problem.
For the sake of generality, an arbitrary coordinate system
(𝑞, 𝑝, 𝑙) is defined so that the spatial periodicity is along the
𝑝-axis.The 𝑝-direction is referred to as the parallel direction.
The 𝑞-direction is referred to as the normal direction and the
𝑙-direction is the longitudinal direction.Note that, in practice,
most authors use a Cartesian coordinate system (𝑞 = 𝑦, 𝑝 =

𝑥, 𝑙 = 𝑧), a cylindrical coordinate system (𝑞 = 𝑟, 𝑝 = 𝜑, 𝑙 = 𝑧),
or an axisymmetric coordinate system (𝑞 = 𝑟, 𝑝 = 𝑧, 𝑙 = 𝜑).
More information on the use of these coordinate systems can
be found in [6].

For simplicity, in this work, it is assumed that the studied
problem is invariant along the longitudinal axis; that is, the
problem can be regarded in two dimensions.This approxima-
tion is very generally used and implies that the MVP’s only
nonzero component is the one along the 𝑙-direction [3–9].
Evidently, this nonzero component is independent from the
invariant direction. Mathematically, this assumption implies
the following:

A = 𝐴 (𝑞, 𝑝, 𝑡) ⋅ e𝑙. (2)

In rotational machines with a radial flux, for example, usually
a cylindrical system with the 𝑧-direction along the machine’s
axis is used.Theproblem is then often assumed to be invariant
along the machine’s axis, that is, along the 𝑧-direction.

2.1. Governing Equation. As already mentioned, the MVP
is used to rewrite Maxwell’s equations in the form of a
differential equation. Assuming quasistatic conditions, this
governing equation is written as [3, 4]

∇

2A − 𝜇𝜎

𝜕A
𝜕𝑡

= −𝜇Jext − ∇ × Brem, (3)

where the time-derivative term accounts for eddy-currents
and the two terms in the right-hand side of (3) account for
the sources, that is, externally imposed current densities and
remanent magnetic flux densities.

2.2. Subdomains. In order to simplify the governing equa-
tion, the problem is now divided in𝑁] regions with constant
electromagnetic properties, that is, constants 𝜇 and 𝜎. Such
regions are called subdomains; they are denoted with index
]. Usually, the governing equation will reduce to a Laplace, a
Poisson, or a Helmholtz equation in each of the subdomains.

2.3. Separation of Variables. Using separation of variables
to solve (3) in subdomain ], 𝐴(])(𝑞, 𝑝, 𝑡) can be written as
follows:

∞

∑

𝑛=−∞

∞

∑

𝑘=−∞

𝐴

(])
𝑛,𝑘

(𝑞) 𝑒

𝑗((2𝑘𝜋/𝑇𝑝)(𝑝−𝑝
(])
0
)−(2𝑛𝜋/𝑇𝑡)𝑡) (4)

with

𝐴

(])
𝑛,𝑘

(𝑞) = 𝑈

(])
𝑛,𝑘

𝑓

(])
𝑛,𝑘

(𝑞) + 𝑉

(])
𝑛,𝑘

𝑔

(])
𝑛,𝑘

(𝑞) + ℎ

(])
𝑛,𝑘

(𝑞) , (5)

where 𝑛 and 𝑘 are the time- and spatial-harmonic orders,
𝑝

(])
0

is the starting angle of subdomain ], 𝑈(])
𝑛,𝑘

and 𝑉

(])
𝑛,𝑘

are
integration constants, 𝑓

(])
𝑛,𝑘

(𝑞) and 𝑔

(])
𝑛,𝑘

(𝑞) are 𝑞-dependent
functions that are defined by the governing equation, and
𝑇𝑡 and 𝑇𝑝 are the time and spatial periods. ℎ

(])
𝑛,𝑘

(𝑞) is the
particular solution of the governing equation, which is
either zero or dependent on the source terms in subdomain
] (J(])ext and B(])rem).

Note that in practice the infinite summations have to
be truncated. The highest time- and spatial-harmonic orders
that are considered are ℎ𝑛 and ℎ𝑘, respectively.

2.4. Boundary Conditions. The next step is to link the solu-
tions in the different subdomains back together. This is done
by imposing physical boundary conditions, that is, Ampère’s
law and Gauss law for magnetism. On the boundary between
subdomains ] and ] + 1, these conditions are written as
follows:

n × (H(]) −H(]+1)) = K(]), (6a)

n ⋅ (B(]) − B(]+1)) = 0, (6b)

where H(]) is the magnetic field strength in subdomain ]
and K(]) is the current density on the boundary between
subdomains ] and ]+1. Using the definition of the MVP and
themagnetic constitutive relation, these boundary conditions
can be written in terms of the MVP [3–9].
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2.5. System of Equations. In a final step, a system of equations
is constructed by combining the equation for the MVP (4)
with the boundary conditions (6a) and (6b). As shown in [3],
the system can be solved separately for every time-harmonic
order (𝑛). In matrix form, the result is then written as follows:

[𝐶

1

𝑛
] ⋅ [𝑋𝑛] = − [𝐶

2

𝑛
] ⋅ [𝐽𝑛] + [𝐶

3

𝑛
] ⋅ [𝐵𝑛] , (7)

where [𝑋𝑛] is a 2(2ℎ𝑘 + 1)𝑁] × 1 matrix, every row of which
refers to an integration constant. Analogously, [𝐵𝑛] is a (2ℎ𝑘+
1)𝑁] × 1 matrix that contains all of the spatial-harmonic
coefficients of the remanent magnetic induction in each of
the subdomains. [𝐽𝑛] contains the current densities in each
of the subdomains. Although some authors account for the
spatial dependency of the current density in the subdomains
[11, 13], usually the current density is assumed to be constant
in a subdomain. For simplicity reasons, this assumption is
also adopted in this work. [𝐽𝑛] is then a 𝑁] × 1 matrix, with
each row referring to the current density in a subdomain.
[𝐶

1

𝑛
], [𝐶2
𝑛
], and [𝐶

3

𝑛
] are coefficient matrices with respective

size of 2(2ℎ𝑘 + 1)𝑁] × 2(2ℎ𝑘 + 1)𝑁], 2(2ℎ𝑘 + 1)𝑁] × 𝑁], and
2(2ℎ𝑘 + 1)𝑁] × (2ℎ𝑘 + 1)𝑁]. These matrices depend on the
machine’s geometry and are therefore not regarded here.

The above implies that the system contains 2(2ℎ𝑘 + 1)𝑁]
unknown integration constants and an equal amount of
boundary conditions.

By solving (7) for every time-harmonic order, the MVP
is uniquely defined in every subdomain.This implies that the
magnetic field in the studied machine is known. However, if
the current densities, that is, [𝐽𝑛], are unknown, the system is
underdetermined and extra𝑁] equations are required. In the
following sections, these equations will be derived from the
equation for the terminal voltage of an electric machine.

2.6. Assumptions. The analytical approach described in
the above requires some basic assumptions. Primarily, the
machine is assumed to operate in steady state. This assump-
tion is necessary in order to impose a time periodicity, as
explained in Section 2. A second assumption is that the
problem can be regarded in 2 dimensions. Although this
assumption is not strictly necessary, it greatly simplifies the
calculus. Thirdly, the situation is assumed to be quasistatic.
Again, this approximation results in a reduced computational
complexity. For that same reason, the externally imposed
current density is assumed to be spatially constant in every
current-carrying region, for example, a slot. Finally, the
machine’s soft-magnetic material is assumed to be infinitely
permeable. This assumption is mandatory to analytically
solve the governing equation.

These five assumptions are listed as follows:

(i) Steady-state operation.

(ii) 2D approximation of the problem.

(iii) Quasistatic situation.

(iv) Uniform current density in every subdomain.

(v) Infinite permeability of the iron.

3. Terminal Voltage and Current Density

The previous section introduced the calculation of the mag-
netic field of an electric machine with the help of the Fourier-
based modeling technique. As can be seen from (3), one of
the inputs of such a model is the current density. In order
to input the terminal voltages instead, this section links the
current densities of every subdomain to the applied terminal
voltages. The discussion starts from the classical equation
for the terminal voltage of an arbitrary coil 𝑐 in an electric
machine:

V(𝑐) (𝑡) = 𝑅𝑖

(𝑐)
(𝑡) +

𝑑𝜓

(𝑐)

tot (𝑡)

𝑑𝑡

.
(8)

The flux coupled with a coil 𝑐 (𝜓

(𝑐)

tot(𝑡)) can be divided in a
component related to the active part of the coil (𝜓(𝑐)(𝑡)) and
a component related to the end-windings (𝜓(𝑐)ew(𝑡)).The above
then results in the following:

V(𝑐) (𝑡) = 𝑅𝑖

(𝑐)
(𝑡) +

𝑑𝜓

(𝑐)

ew (𝑡)

𝑑𝑡

+

𝑑𝜓

(𝑐)
(𝑡)

𝑑𝑡

= 𝑅𝑖

(𝑐)
(𝑡) + 𝐿ew

𝑑𝑖

(𝑐)
(𝑡)

𝑑𝑡

+

𝑑𝜓

(𝑐)
(𝑡)

𝑑𝑡

.

(9)

Note that it is assumed that every coil has the same ohmic
resistance 𝑅 and the same end-windings inductance 𝐿ew.
These values can be obtained with classical formulas, such as
the ones found in [14].

The functions in (9) can be written in terms of their
Fourier series:
∞

∑

𝑛=−∞

𝑉

(𝑐)

𝑛
𝑒

−𝑗𝑛𝜔𝑡
=

∞

∑

𝑛=−∞

𝑅𝐼

(𝑐)

𝑛
𝑒

−𝑗𝑛𝜔𝑡
+ 𝐿ew

𝑑𝐼

(𝑐)

𝑛
𝑒

−𝑗𝑛𝜔𝑡

𝑑𝑡

+

𝑑Ψ

(𝑐)

𝑛
𝑒

−𝑗𝑛𝜔𝑡

𝑑𝑡

,

(10)

where 𝜔 is the machine’s mechanical pulsation, which equals
2𝜋/𝑇𝑡.

The above can be rewritten for every time-harmonic
order 𝑛 separately:

𝑉

(𝑐)

𝑛
= 𝑅𝐼

(𝑐)

𝑛
− 𝑗𝑛𝜔𝐿ew𝐼

(𝑐)

𝑛
− 𝑗𝑛𝜔Ψ

(𝑐)

𝑛
. (11)

Imply that the current’s 𝑛th harmonic order can be calculated
as follows:

𝐼

(𝑐)

𝑛
=

𝑉

(𝑐)

𝑛
+ 𝑗𝑛𝜔Ψ

(𝑐)

𝑛

𝑅 − 𝑗𝑛𝜔𝐿ew
. (12)

The amplitude of the 𝑛th harmonic order of the current
density in a subdomain ], for example, a slot, can now be
calculated as follows:

𝐽

(])
𝑛

=

1

𝑆

(])

𝑁𝑐

∑

𝑐=1

𝑁

(𝑐,])
𝐼

(𝑐)

𝑛

=

1

𝑆

(])

𝑁𝑐

∑

𝑐=1

𝑁

(𝑐,])
(𝑉

(𝑐)

𝑛
+ 𝑗𝑛𝜔Ψ

(𝑐)

𝑛
)

𝑅 − 𝑗𝑛𝜔𝐿ew
.

(13)
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In (13), 𝑁(𝑐,]) is the amount of conductors that coil 𝑐 has in
subdomain ] and 𝑁𝑐 is the amount of coils in the machine.
𝑆

(]) is the surface of subdomain ]. It can easily be reasoned
that substitution of (13) in the governing equation will allow
for directly accounting for the terminal voltage as a source.
However, Ψ(𝑐)

𝑛
has to be calculated from the magnetic field,

that is, from the solution of the governing equation. This
prevents a direct coupling between the calculation of the
magnetic field and the equation for the terminal voltage.
To overcome that problem, Ψ(𝑐)

𝑛
is rewritten in terms of the

magnetic vector potential in the following section.

4. Flux Linkage

The goal of this section is to express the flux related to the
active part of an arbitrary coil 𝑐 as a function of the magnetic
vector potential. In a first step, the flux coupled with a single
turn of the coil is derived; in a second step, the flux coupled
with the entire coil is regarded.

4.1. Flux Coupled with a Single Turn. The physical flux
through a single turn 𝜏 of coil 𝑐 is calculated as the integration
of the flux density over a surface spanned by that turn:

𝜙

(𝜏)
(𝑡) = ∬

𝑆𝜏

B ⋅ 𝑑a = ∮

𝐶𝜏

A ⋅ 𝑑s, (14)

where the definition of the MVP and Stokes theorem were
used. 𝑆𝜏 is the surface of the turn and 𝐶𝜏 is the boundary of
that surface.

Since the magnetic vector potential is assumed to only
have an 𝑙-component, the integration of A along the turn’s
contour will only be nonzero along the 𝑙-direction. Noting
that the MVP is independent of 𝑙, this implies that the
integration along the contour of the turn can be rewritten as
follows:

𝜙

(𝜏)
(𝑡) = 𝑙𝑠 (𝐴

(]+)
(𝑞𝜏+ , 𝑝𝜏+ , 𝑡) − 𝐴

(]−)
(𝑞𝜏− , 𝑝𝜏− , 𝑡)) , (15)

where 𝑙𝑠 is the longitudinal length of the studied machine. ]+
is the subdomain in which the direction of the integration
is along the positive 𝑙-axis; A and 𝑑s then have the same
direction and sense. ]− represents the subdomain in which
the coil returns; the integration direction is opposed to the
𝑙-axis and thus to A.

𝑞𝜏+ and 𝑞𝜏− are the normal positions of turn 𝜏 and 𝑝𝜏+ and
𝑝𝜏− are the tangential positions of turn 𝜏.

The direction of the integration is chosen so that it
corresponds to the reference direction of the current. This
implies that the going conductor of turn 𝜏 is located in
subdomain ]+ and the returning conductor is located in
subdomain ]−.

Equation (15) can now be rewritten as follows:

𝜙

(𝜏)
(𝑡) =

𝑁]

∑

]=1
𝑤

(])
𝜏

𝑙𝑠𝐴
(])

(𝑞

(])
𝜏

, 𝑝

(])
𝜏

, 𝑡) , (16)

where 𝑤

(])
𝜏

is 1 in the subdomain that contains the going
conductor of 𝜏, −1 in the subdomain that contains the
returning conductor, and 0 in the other subdomains.

Usually, the exact position of the turn cannot be deter-
mined; that is, (𝑞(])

𝜏
, 𝑝

(])
𝜏

) is unknown. For that reason, most
authors either choose an arbitrary position or use the average
MVP in the considered subdomain. Doing so results in one
MVP value for every subdomain; this value will be referred to
as 𝛼(])(𝑡) in the following.The flux coupled with a single turn
𝜏 of coil 𝑐 can then be written as follows:

𝜙

(𝜏)
(𝑡) =

𝑁]

∑

]=1
𝑤

(])
𝜏

𝑙𝑠𝛼
(])

(𝑡) . (17)

4.2. Flux Coupled with a Coil. The flux coupled with coil 𝑐
is calculated by summing the fluxes coupled with each of its
turns. From (17), it can be written that

𝜓

(𝑐)
(𝑡) =

𝑁]

∑

]=1
𝑙𝑠𝑊
(𝑐,])

𝛼

(])
(𝑡) , (18)

where

𝑊

(𝑐,])
= ∑

𝜏

𝑤

(])
𝜏

, (19)

which implies that 𝑊(𝑐,]) equals 𝑁

(𝑐,]) if subdomain ] con-
tains going conductors of 𝑐,𝑊(𝑐,]) equals−𝑁(𝑐,]) if subdomain
] contains returning conductors of 𝑐, and 𝑊

(𝑐,]) equals 0 if
subdomain ] does not contain any conductors of coil 𝑐.

The 𝑛th time-harmonic coefficient of 𝜓(𝑡)

(𝑐) can now be
written as follows:

Ψ

(𝑐)

𝑛
=

𝑁]

∑

]=1
𝑙𝑠𝑊
(𝑐,])

𝛼

(])
𝑛

, (20)

where 𝛼

(])
𝑛

is the 𝑛th time-harmonic coefficient of 𝛼(])(𝑡).
Since𝛼(])(𝑡) is a direct function of theMVP in subdomain

], which in turn is determined by the integration constants
and the source terms, (20) can be written in matrix form as
follows:

Ψ

(𝑐)

𝑛
= 𝑙𝑠 [𝑊

(𝑐)
]

⋅ ([𝐶

4

𝑛
] ⋅ [𝑋𝑛] + [𝐶

5

𝑛
] ⋅ [𝐽𝑛] + [𝐶

6

𝑛
] ⋅ [𝐵𝑛]) ,

(21)

where [𝑊

(𝑐)
] is a 1 × 𝑁] matrix describing the winding

configuration of coil 𝑐; that is, [𝑊(𝑐)]1,] = 𝑊

(𝑐,]). [𝐶4
𝑛
], [𝐶5
𝑛
],

and [𝐶

6

𝑛
] are coefficient matrices with respective sizes of𝑁] ×

2(2ℎ𝑘 + 1)𝑁],𝑁] ×𝑁], and𝑁] × (2ℎ𝑘 + 1)𝑁]. The content of
[𝐶

4

𝑛
], [𝐶5
𝑛
], and [𝐶

6

𝑛
] greatly depends on the studied geometry.

For that reason, it will not be regarded here. However, [𝐶4
𝑛
],

[𝐶

5

𝑛
], and [𝐶

6

𝑛
] can directly be derived from the MVP.

It can easily be seen that the above effectively expresses
the flux linkage of coil 𝑐 in terms of the machine’s geometry,
the integration constant, and the classical source terms
(Jext and Brem).

5. A New System of Equations

In (7), the system of a traditional Fourier-based analytical
model is introduced. However, as mentioned in Section 2,
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that system is underdetermined if the current densities are
not known. In Section 3, an equation for the current density
was proposed (13); combining this equationwith the equation
for the flux coupled with a coil (20) gives the following:

𝐽

(])
𝑛

=

𝑁𝑐

∑

𝑐=1

𝑁

(𝑐,])
(𝑉

(𝑐)

𝑛
+ 𝑗𝑛𝜔∑

𝑁]
𝑖]=1

𝑙𝑠𝑊
(𝑐,𝑖])

𝛼

(𝑖])
𝑛

)

𝑆

(])
(𝑅 − 𝑗𝑛𝜔𝐿ew)

. (22)

Considering (21), this can be written in matrix notation as
follows:

𝐽

(])
𝑛

= [𝑀

(])
] ⋅ [𝑉𝑛] + 𝑗𝑛𝜔𝑙𝑠 [𝑀

(])
] ⋅ [𝑊]

⋅ ([𝐶

4

𝑛
] ⋅ [𝑋𝑛] + [𝐶

5

𝑛
] ⋅ [𝐵𝑛] + [𝐶

6

𝑛
] ⋅ [𝐽𝑛]) ,

(23)

where [𝑉𝑛] is𝑁𝑐 × 1matrix containing the terminal voltages
of every coil. [𝑊] is the 𝑁𝑐 × 𝑁] winding matrix of the
machine. This means that [𝑊]𝑐,] = 𝑊

(𝑐,]). [𝑀(])] in turn is a
1×𝑁𝑐matrix, the 𝑐th element ofwhich is calculated as follows:

[𝑀

(])
]

1,𝑐
=

𝑁

(𝑐,])

𝑆

(])
(𝑅 − 𝑗𝑛𝜔𝐿ew)

. (24)

The above equation for the current density is valid in each of
the𝑁] subdomains. A matrix notation for the resulting set of
equations can be found:

[𝐽𝑛] = [𝑀] ⋅ [𝑉𝑛] + 𝑗𝑛𝜔𝑙𝑠 [𝑀] ⋅ [𝑊]

⋅ ([𝐶

4

𝑛
] ⋅ [𝑋𝑛] + [𝐶

5

𝑛
] ⋅ [𝐽𝑛] + [𝐶

6

𝑛
] ⋅ [𝐵𝑛]) ,

(25)

where [𝑀] is 𝑁] × 𝑁𝑐 matrix whose ]th row equals [𝑀

(])
].

Rearranging gives the following:

[𝐶

7

𝑛
] ⋅ [𝑋𝑛] + [𝐶

8

𝑛
] ⋅ [𝐽𝑛]

= [𝐶

9

𝑛
] ⋅ [𝐵𝑛] + [𝐶

10

𝑛
] ⋅ [𝑉𝑛] ,

(26)

where [𝐶7
𝑛
], [𝐶8
𝑛
], [𝐶9
𝑛
], and [𝐶

10

𝑛
] are matrices with respective

sizes of 𝑁] × 2(2ℎ𝑘 + 1)𝑁], 𝑁] × 𝑁], 𝑁] × (2ℎ𝑘 + 1)𝑁], and
𝑁] × 𝑁𝑐. They are calculated as follows:

[𝐶

7

𝑛
] = −𝑗𝑛𝜔𝑙𝑠 [𝑀] ⋅ [𝑊] ⋅ [𝐶

4

𝑛
] , (27a)

[𝐶

8

𝑛
] = 𝐼𝑁]

− 𝑗𝑛𝜔𝑙𝑠 [𝑀] ⋅ [𝑊] ⋅ [𝐶

5

𝑛
] , (27b)

[𝐶

9

𝑛
] = 𝑗𝑛𝜔𝑙𝑠 [𝑀] ⋅ [𝑊] ⋅ [𝐶

6

𝑛
] , (27c)

[𝐶

10

𝑛
] = [𝑀] , (27d)

where 𝐼𝑁]
is the identity matrix of size𝑁].

The above implies that the combination of (7) and (26)
is a system of equations that uniquely defines both the
integration constants and the current densities in each of the
subdomains.This system is written in matrix form as follows:

[

[

[𝐶

1

𝑛
] [𝐶

2

𝑛
]

[𝐶

7

𝑛
] [𝐶

8

𝑛
]

]

]

⋅ [

[𝑋𝑛]

[𝐽𝑛]

]

=
[

[

[𝐶

3

𝑛
] ⋅ [𝐵𝑛]

[𝐶

9

𝑛
] ⋅ [𝐵𝑛] + [𝐶

10

𝑛
] ⋅ [𝑉𝑛]

]

]

.

(28)
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Figure 1: Geometry and subdomains of the studied machine.

Solving this system for every time-harmonic order will
uniquely define the MVP and the current density in each
of the subdomains. It can readily be seen that (28) offers
to directly impose a voltage signal to the coils instead of
the classical approach of imposing a current density to the
subdomains.

6. Example

By means of example, this section discusses the determi-
nation of the coefficient matrices for a permanent-magnet
synchronous machine.The goal is to clarify the above theory.
The samePMSMtopologywill be used in Section 7 to validate
the presented work.

6.1. Geometry. The machine that is studied in this section is
a high-speed, radial-flux PMSM with a Shielding Cylinder
(SC). The latter is a conductive sleeve that is wrapped
around the magnets. Shielding Cylinders are often used in
high-speed PMSMs to reduce the rotor eddy-current losses,
thereby reducing the risk of permanent demagnetization of
the magnets.

The studied machine is shown in Figure 1. Its geometrical
parameters include outer radius of the rotor yoke (𝑟1), outer
radius of the magnets (𝑟2), outer radius of the SC (𝑟3), outer
radius of the air gap (𝑟4), outer radius of the slots (𝑟5), and
outer radius of the stator yoke (𝑟6). Each magnet spans an
angle of 𝜑𝑚 radians. The slots, which are indicated with a slot
number 𝑖, have a starting angle 𝛿𝑖 and an opening angle 𝛿.
The machine has a three-phase, single-layer, and distributed
winding with one slot per pole and per phase. Every phase
consists of 2 parallel coils, which in turn consist of𝑁𝑡 turns.

As already mentioned, the studied geometry is divided
into a number of subdomains. Those subdomains are shown
in Figure 1. Note that every slot is a separate subdomain,
indicated with an index 4𝑖 where 𝑖 is the slot number.
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Figure 2: Analytical and finite-element results for the magnetic flux density in the middle of the air gap at armature-reaction conditions.

Evidently, the machine’s 6 coils are distributed solely
over the slots. The externally imposed current densities in
subdomains 1, 2, and 3 are thus a priori known; they are
zero. This means that the dimension of [𝐽𝑛] is reduced to
the amount of current-carrying subdomains, that is, the 12
slots in this example. Moreover, the dimension of the electric
problem (26) is reduced to the 12 slots as well.

6.2.Magnetic Calculations. AFourier-based analyticalmodel
for the machine depicted in Figure 1 was introduced by the
authors in [3]. Using a cylindrical coordinate system fixed to
the rotor (𝑟, 𝜑, 𝑡), these authors presented solutions for the
MVP and a set of boundary conditions. This implies that the
results of [3] allow for easily determining [𝐶1

𝑛
], [𝐶2
𝑛
], and [𝐶

3

𝑛
].

For that reason, the determination of these matrices will not
be discussed in detail here.

6.3. Electric Calculations. The goal is now to determine
matrices [𝐶7

𝑛
], [𝐶8
𝑛
], [𝐶9
𝑛
], and [𝐶

10

𝑛
] from (27a), (27b), (27c),

and (27d) and [3]. In order to determine these matrices, [𝑀],
[𝑊], [𝐶4

𝑛
], [𝐶5
𝑛
], and [𝐶

6

𝑛
] have to be calculated.

Both [𝑀] and [𝑊] strongly depend on the winding
configuration of the machine; that is, they are dependent
on 𝑁

(𝑐,]). In this example, 𝑁

(𝑐,]) equals 𝑁𝑡 if coil 𝑐 has
conductors in subdomain ] and 0 if coil 𝑐 has no conductors
in subdomain ]. From Figure 1, the winding matrix [𝑊] can
easily be determined. Its first row, which corresponds to the
first coil of phase 𝑈, is as follows:

[𝑁𝑡 0 0 −𝑁𝑡 0 0 0 0 0 0 0 0] , (29)

where every column represents a slot, the first one being the
rightmost slot of Figure 1.

Similarly, [𝑀] can be obtained from Figure 1 and (24). Its
first row, corresponding to the rightmost slot in Figure 1, is as
follows:

[

𝑁𝑡

𝑆slot (𝑅 − 𝑗𝑛𝜔𝐿ew)
0 0 0 0 0] , (30)

where 𝑆slot is the surface of a slot and every column corre-
sponds to a coil, the first one being the first coil of phase
𝑈. Note that (29) and (30) regard all 12 slots and all 6 coils.
Because of the machine’s periodicity, it is possible to only
consider 6 slots and 3 coils.This of course reduces the amount
of unknowns. However, for the sake of generality, all 12 slots
and all 6 coils are regarded here.

From (20) and (21), it can be seen thatmatrices [𝐶4
𝑛
], [𝐶5
𝑛
],

and [𝐶

6

𝑛
] are determined by 𝛼

(])
(𝑡), that is, by the expression

for the MVP in each of the subdomains. In [3], an equation
for the MVP in slot 𝑖 was calculated as follows:

𝐴

(4𝑖)

𝑛,𝑘
(𝑟, 𝜑, 𝑡)

=

∞

∑

𝑛=−∞

∞

∑

𝑘=−∞

𝐴

(4𝑖)

𝑛,𝑘
(𝑟) 𝑒

𝑗((𝑘𝜋/𝛿)(𝜑−𝛿𝑖)+(𝑘𝜋/𝛿−𝑛)𝜔𝑡+(𝑘𝜋/𝛿)𝜑0)
,

(31)

where

𝐴

(4𝑖)

𝑛,𝑘
(𝑟)

=

{
{
{
{
{

{
{
{
{
{

{

𝑈

(4𝑖)

𝑛,0
+

𝜇0𝐽
(4𝑖)

𝑛

2

(𝑟

2

5
ln 𝑟

𝑟4

−

𝑟

2
− 𝑟

2

4

2

) , if 𝑘 = 0,

𝑈

(4𝑖)

𝑛,|𝑘|

(𝑟/𝑟5)
|𝑘𝜋/𝛿|

+ (𝑟/𝑟5)
−|𝑘𝜋/𝛿|

(𝑟4/𝑟5)
|𝑘𝜋/𝛿|

+ (𝑟4/𝑟5)
−|𝑘𝜋/𝛿|

, else.

(32)

As mentioned in Section 4, there are several ways to compute
𝛼

(])
(𝑡), that is, to approximate 𝐴

(])
(𝑞

(])
𝜏

, 𝑝

(])
𝜏

, 𝑡). In this work,
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an average value is computed by integrating the MVP over
the slot and dividing the result by the surface of the slot:

𝛼

(4𝑖)
(𝑡) =

1

𝑆slot
∫

𝑟5

𝑟4

∫

𝛿
𝑡

𝑖
+𝛿

𝛿𝑡
𝑖

𝑟𝐴

(4𝑖)
(𝑟, 𝜑, 𝑡) 𝑑𝜑 𝑑𝑟

=

∞

∑

𝑛=−∞

(𝑈

(4𝑖)

𝑛,0
+ 𝜒𝐽

(4𝑖)

𝑛
) 𝑒

−𝑗𝑛𝜔𝑚𝑡
,

(33)

where

𝜒 =

𝜇0

8

(4𝑟

4

5

ln 𝑟5 − ln 𝑟4

𝑟

2

5
− 𝑟

2

4

− 3𝑟

2

5
+ 𝑟

2

4
) , (34)

which implies that the 𝑛th time-harmonic order of𝛼(4𝑖)(𝑡) can
be calculated as follows:

𝛼

(4𝑖)

𝑛
= 𝑈

(4𝑖)

𝑛,0
+ 𝜒𝐽

(4𝑖)

𝑛
. (35)

Combining the above with (20) and (21), it can be concluded
that every row 𝑖 of [𝐶4

𝑛
] contains only one nonzero element,

that is, the element corresponding to 𝑈

(4𝑖)

𝑛,0
. This element

simply equals 1. [𝐶5
𝑛
] turns out to be a scalar matrix of size 12,

whose scalar is𝜒. [𝐶6
𝑛
] is a zeromatrix.The latter could indeed

be expected as there is no remanent magnetic flux density in
the slots.

As [𝑀], [𝑊], [𝐶4
𝑛
], [𝐶5
𝑛
], and [𝐶

6

𝑛
] are known, [𝐶7

𝑛
], [𝐶8
𝑛
],

and [𝐶

10

𝑛
] can easily be calculated from (27a), (27b), (27c),

and (27d). This implies that the complete electromagnetical
system (28) is now defined in terms of the machine’s geomet-
rical parameters, its winding distribution, and its mechanical
pulsation.

7. Validation

The goal of this section is to validate the work that was
presented in Sections 2–6. To do so, a voltage-powered
PMSM, as the one presented in Figure 1, is studied with the
Fourier-based analytical model. The results are compared to
results obtained from a finite-element model.

The parameters of the studied machine are shown in
Table 1.

A sinusoidal voltage with an amplitude of 150V and a fre-
quency of 1000Hz is applied to the machine. Because of this
very high frequency, Litz wire is used for the windings. This
implies that the ohmic resistance of the coils can be computed
with the help of Pouillet’s law. The inductance of the end-
windings was calculated using the formulas presented in the
book of Pyrhönen et al. [14]. The highest time- and spatial-
harmonic orders are 50; that is, ℎ𝑛 = ℎ𝑘 = 50.

Note that the interest here is to study the accuracy of the
armature-reaction field. Indeed, as saturation is neglected,
applying a voltage instead of a current has an effect on the
armature-reaction situation, not on the no-load situation. For
that reason, the remanentmagnetic flux of themagnets (Brem)

is set to 0T.
The calculated radial and tangential components of B in

the middle of the air gap are shown in Figures 2(a) and 2(b),

Table 1: Parameters of the studied machine.

Symbol Parameter Value
𝑟1 Rotor yoke outer radius 14.5mm
𝑟2 PM outer radius 18.0mm
𝑟3 SC outer radius 18.5mm
𝑟
4

Air gap outer radius 20.5mm
𝑟5 Slot outer radius 30.4mm
𝑟6 Machine outer radius 38.0mm
𝑙𝑠 Stack length 200.0mm
𝑁𝑠 Number of slots 12

𝛿 Slot opening angle (𝜋/𝑁𝑠) rad
𝐵rem PM remanent flux density 0T
𝑝 Number of pole pairs 2
𝜑𝑚 Magnet span 0.8(𝜋/𝑝) rad
𝑁𝑡 Number of turns per coil 5
𝑚 Number of phases 3
𝜎SC SC conductivity 5.96 ⋅ 10

7
Ωm

𝑅 Ohmic resistance of the coils 0.0106Ω

𝐿ew Inductance of the end-windings 1.25 ⋅ 10

−6H

respectively. The agreement between the results obtained
from the analytical model and the results obtained from
the finite-element model is very good. This proves that the
presented theory is indeed effective.

8. Conclusion

This work presents a technique to directly impose the ter-
minal voltage in Fourier-based analytical models for electric
machines.The idea is to combine themagnetic calculations of
classical Fourier-based analytical models with the equation
for the terminal voltage of an electric machine, a technique
that is well known in finite-element modeling but was not yet
translated to Fourier-based analytical models. Firstly, a very
general discussion on the technique and its implementation
is presented. This discussion is then illustrated by means of
an example. Finally, the work is validated with the help of
a finite-element model. The accuracy was found to be very
good.

It can be concluded that this work provides an extension
to the existing Fourier-based analytical models for electric
machines. It presents both a very general discussion and
an example on how to directly account for a voltage source
instead of having to impose current sources. As the great
majority of modern drive trains are powered with a voltage
source, the work offers more realistic analytical modeling of
electric machines. This conclusion is of great significance for
machine designers who require fast and accurate modeling
tools to cope with large design spaces.

Fourier-based models are a great tool because of their
accurate and fast calculations. However, they are relatively
complex when compared to more traditional analytical mod-
els. Although the work presented in this paper allows for
even better optimization procedures, it adds to the models
complexity. For that reason, machine designers should make
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a well-considered choice between amore realistic model with
voltage sources or a simpler model with current sources. It
would therefore be interesting to compare both approaches
in future work.
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