8 research outputs found

    DATA DRIVEN INTELLIGENT AGENT NETWORKS FOR ADAPTIVE MONITORING AND CONTROL

    Get PDF
    To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments

    A Bio-inspired Load Balancing Technique for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of multiple distributed nodes each with limited resources. With their strict resource constraints and application-specific characteristics, WSNs contain many challenging trade-offs. This thesis is concerned with the load balancing of Wireless Sensor Networks (WSNs). We present an approach, inspired by bees’ pheromone propagation mechanism, that allows individual nodes to decide on the execution process locally to solve the trade-off between service availability and energy consumption. We explore the performance consequences of the pheromone-based load balancing approach using a system-level simulator. The effectiveness of the algorithm is evaluated on case studies based on sound sensors with different scenarios of existing approaches on variety of different network topologies. The performance of our approach is dependant on the values chosen for its parameters. As such, we utilise the Simulated Annealing to discover optimal parameter configurations for pheromone-based load balancing technique for any given network schema. Once the parameter values are optimised for the given network topology automatically, we inspect improving the pheromone-based load balancing approach using robotic agents. As cyber-physical systems benefit from the heterogeneity of the hardware components, we introduce the use of pheromone signalling-based robotic guidance that integrates the robotic agents to the existing load balancing approach by guiding the robots into the uncovered area of the sensor field. As such, we maximise the service availability using the robotic agents as well as the sensor nodes

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    The automotive industry is facing challenges in producing electrical, connected, and autonomous vehicles. Even if these challenges are, from a technical point of view, independent from each other, the market and regulatory bodies require them to be developed and integrated simultaneously. The development of autonomous vehicles implies the development of highly dependable systems. This is a multidisciplinary activity involving knowledge from robotics, computer science, electrical and mechanical engineering, psychology, social studies, and ethics. Nowadays, many Advanced Driver Assistance Systems (ADAS), like Emergency Braking System, Lane Keep Assistant, and Park Assist, are available. Newer luxury cars can drive by themselves on highways or park automatically, but the end goal is to develop completely autonomous driving vehicles, able to go by themselves, without needing human interventions in any situation. The more vehicles become autonomous, the greater the difficulty in keeping them reliable. It enhances the challenges in terms of development processes since their misbehaviors can lead to catastrophic consequences and, differently from the past, there is no more a human driver to mitigate the effects of erroneous behaviors. Primary threats to dependability come from three sources: misuse from the drivers, design systematic errors, and random hardware failures. These safety threats are addressed under various aspects, considering the particular type of item to be designed. In particular, for the sake of this work, we analyze those related to Functional Safety (FuSa), viewed as the ability of a system to react on time and in the proper way to the external environment. From the technological point of view, these behaviors are implemented by electrical and electronic items. Various standards to achieve FuSa have been released over the years. The first, released in 1998, was the IEC 61508. Its last version is the one released in 2010. This standard defines mainly: • a Functional Safety Management System (FSMS); • methods to determine a Safety Integrated Level (SIL); • methods to determine the probability of failures. To adapt the IEC61508 to the automotive industry’s peculiarity, a newer standard, the ISO26262, was released in 2011 then updated in 2018. This standard provides guidelines about FSMS, called in this case Safety Lifecycle, describing how to develop software and hardware components suitable for functional safety. It also provides a different way to compute the SIL, called in this case Automotive SIL (ASIL), allowing us to consider the average driver’s abilities to control the vehicle in case of failures. Moreover, it describes a way to determine the probability of random hardware failures through Failure Mode, Effects, and Diagnostic Analysis (FMEDA). This dissertation contains contributions to three topics: • random hardware failures mitigation; • improvementoftheISO26262HazardAnalysisandRiskAssessment(HARA); • real-time verification of the embedded software. As the main contribution of this dissertation, I address the safety threats due to random hardware failures (RHFs). For this purpose, I propose a novel simulation-based approach to aid the Failure Mode, Effects, and Diagnostic Analysis (FMEDA) required by the ISO26262 standard. Thanks to a SPICE-level model of the item, and the adoption of fault injection techniques, it is possible to simulate its behaviors obtaining useful information to classify the various failure modes. The proposed approach evolved from a mere simulation of the item, allowing only an item-level failure mode classification up to a vehicle-level analysis. The propagation of the failure modes’ effects on the whole vehicle enables us to assess the impacts on the vehicle’s drivability, improving the quality of the classifications. It can be advantageous where it is difficult to predict how the item-level misbehaviors propagate to the vehicle level, as in the case of a virtual differential gear or the mobility system of a robot. It has been chosen since it can be considered similar to the novel light vehicles, such as electric scooters, that are becoming more and more popular. Moreover, my research group has complete access to its design since it is realized by our university’s DIANA students’ team. When a SPICE-level simulation is too long to be performed, or it is not possible to develop a complete model of the item due to intellectual property protection rules, it is possible to aid this process through behavioral models of the item. A simulation of this kind has been performed on a mobile robotic system. Behavioral models of the electronic components were used, alongside mechanical simulations, to assess the software failure mitigation capabilities. Another contribution has been obtained by modifying the main one. The idea was to make it possible to aid also the Hazard Analysis and Risk Assessment (HARA). This assessment is performed during the concept phase, so before starting to design the item implementation. Its goal is to determine the hazards involved in the item functionality and their associated levels of risk. The end goal of this phase is a list of safety goals. For each one of these safety goals, an ASIL has to be determined. Since HARA relies only on designers expertise and knowledge, it lacks in objectivity and repeatability. Thanks to the simulation results, it is possible to predict the effects of the failures on the vehicle’s drivability, allowing us to improve the severity and controllability assessment, thus improving the objectivity. Moreover, since simulation conditions can be stored, it is possible, at any time, to recheck the results and to add new scenarios, improving the repeatability. The third group of contributions is about the real-time verification of embedded software. Through Hardware-In-the-Loop (HIL), a software integration verification has been performed to test a fundamental automotive component, mixed-criticality applications, and multi-agent robots. The first of these contributions is about real-time tests on Body Control Modules (BCM). These modules manage various electronic accessories in the vehicle’s body, like power windows and mirrors, air conditioning, immobilizer, central locking. The main characteristics of BCMs are the communications with other embedded computers via the car’s vehicle bus (Controller Area Network) and to have a high number (hundreds) of low-speed I/Os. As the second contribution, I propose a methodology to assess the error recovery system’s effects on mixed-criticality applications regarding deadline misses. The system runs two tasks: a critical airplane longitudinal control and a non-critical image compression algorithm. I start by presenting the approach on a benchmark application containing an instrumented bug into the lower criticality task; then, we improved it by injecting random errors inside the lower criticality task’s memory space through a debugger. In the latter case, thanks to the HIL, it is possible to pause the time domain simulation when the debugger operates and resume it once the injection is complete. In this way, it is possible to interact with the target without interfering with the simulation results, combining a full control of the target with an accurate time-domain assessment. The last contribution of this third group is about a methodology to verify, on multi-agent robots, the synchronization between two agents in charge to move the end effector of a delta robot: the correct position and speed of the end effector at any time is strongly affected by a loss of synchronization. The last two contributions may seem unrelated to the automotive industry, but interest in these applications is gaining. Mixed-criticality systems allow reducing the number of ECUs inside cars (for cost reduction), while the multi-agent approach is helpful to improve the cooperation of the connected cars with respect to other vehicles and the infrastructure. The fourth contribution, contained in the appendix, is about a machine learning application to improve the social acceptance of autonomous vehicles. The idea is to improve the comfort of the passengers by recognizing their emotions. I started with the idea to modify the vehicle’s driving style based on a real-time emotions recognition system but, due to the difficulties of performing such operations in an experimental setup, I move to analyze them offline. The emotions are determined on volunteers’ facial expressions recorded while viewing 3D representa- tions showing different calibrations. Thanks to the passengers’ emotional responses, it is possible to choose the better calibration from the comfort point of view

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Algorithmes de localisation distribués en intérieur pour les réseaux sans fil avec la technologie IEEE 802.15.4

    Get PDF
    The Internet of Things is finally blooming through diverse applications, from home automation and monitoring to health tracking and quantified-self movement. Consumers deploy more and more low-rate and low-power connected devices that provide complex services. In this scenario, positioning these intelligent objects in their environment is necessary to provide geo-localized services, as well as to optimize the network operation. However, indoor positioning of devices using only their radio interface is still very imprecise. Indoor wireless localization techniques often deduce from the Radio frequency (RF) signal attenuation the distances that separate a mobile node from a set of reference points called landmarks. The received signal strength indicator (RSSI), which reflects this attenuation, is known in the literature to be inaccurate and unreliable when it comes to distance estimation, due to the complexity of indoor radio propagation (shadowing, multi-path fading). However, it is the only metric that will certainly be available in small and inexpensive smart objects. In this thesis, we therefore seek algorithmic solutions to the following problem: is it possible to achieve a fair localization using only the RSSI readings provided by low-quality hardware? To this extent, we first study the behavior of the RSSI, as reported by real hardware like IEEE 802.15.4 sensor nodes, in several indoor environments with different sizes and configurations , including a large scale wireless sensor network. Such experimental results confirm that the relationship between RSSI and distance depends on many factors; even the battery pack attached to the devices increases attenuation. In a second step, we demonstrate that the classical log-normal shadowing propagation model is not well adapted in indoor case, because of the RSSI values dispersion and its lack of obvious correlation with distance. We propose to correct the observed inconsistencies by developing algorithms to filter irrelevant samples. Such correction is performed by biasing the classical log-normal shadowing model to take into account the effects of multipath propagation. These heuristics significantly improved RSSI-based indoor localization accuracy results. We also introduce an RSSI-based positioning approach that uses a maximum likelihood estimator conjointly with a statistical model based on machine learning. In a third step, we propose an accurate distributed and cooperative RSSI-based localization algorithm that refines the set of positions estimated by a wireless node. This algorithm is composed of two on-line steps: a local update of position¿s set based on stochastic gradient descent on each new RSSI measurement at each sensor node. Then an asynchronous communication step allowing each sensor node to merge their common local estimates and obtain the agreement of the refined estimated positions. Such consensus approach is based on both a distributed local gradient step and a pairwise gossip protocol. This enables each sensor node to refine its initial estimated position as well as to build a local map of itself and its neighboring nodes. The proposed algorithm is compared to multilateration, Multi Dimensional Scaling (i.e. MDS) with modern majorization problem and classical MDS. Simulation as well as experimental results obtained on real testbeds lead to a centimeter-level accuracy. Both landmarks and blind nodes communicate in the way that the data processing and computation are performed by each sensor node without any central computation point, tedious calibration or intervention from a human.L¿internet des objets se développe à travers diverses applications telles que la domotique, la surveillance à domicile, etc. Les consommateurs s¿intéressent à ces applications dont les objets interagissent avec des dispositifs de plus en plus petits et connectés. La localisation est une information clé pour plusieurs services ainsi que pour l¿optimisation du fonctionnement du réseau. En environnement intérieur ou confiné, elle a fait l¿objet de nombreuses études. Cependant, l¿obtention d¿une bonne précision de localisation demeure une question difficile, non résolue. Cette thèse étudie le problème de la localisation en environnement intérieur appliqué aux réseaux sans fil avec l¿utilisation unique de l¿atténuation du signal. L¿atténuation est mesurée par l¿indicateur de l¿intensité du signal reçu (RSSI). Le RSSI est connu dans la littérature comme étant imprécis et peu fiable en ce qui concerne l¿estimation de la distance, du fait de la complexité de la propagation radio en intérieur : il s¿agit des multiples trajets, le shadowing, le fading. Cependant, il est la seule métrique directement mesurable par les petits objets communicants et intelligents. Dans nos travaux, nous avons amélioré la précision des mesures du RSSI pour les rendre applicables à l¿environnement interne dans le but d¿obtenir une meilleure localisation. Nous nous sommes également intéressés à l¿implémentation et au déploiement de solutions algorithmiques relatifs au problème suivant : est-il possible d¿obtenir une meilleure précision de la localisation en utilisant uniquement les mesures de RSSI fournies par les n¿uds capteurs sans fil IEEE 802.15.4 ? Dans cette perspective, nous avons d¿abord étudié le comportement du RSSI dans plusieurs environnements intérieurs de différentes tailles et selon plusieurs configurations , y compris un réseau de capteurs sans fil à grande échelle (SensLAB). Pour expliquer les résultats des mesures, nous avons caractérisé les objets communicants que nous utilisons, les n¿uds capteurs Moteiv TMote Sky, par une série d¿expériences en chambre anéchoïque. Les résultats expérimentaux confirment que la relation entre le RSSI et la distance dépend de nombreux facteurs même si la batterie intégrée à chaque n¿ud capteur produit une atténuation. Ensuite, nous avons démontré que le modèle de propagation log-normal shadowing n¿est pas adapté en intérieur, en raison de la dispersion des valeurs de RSSI et du fait que celles-ci ne sont pas toujours dépendantes de la distance. Ces valeurs devraient être considérées séparément en fonction de l¿emplacement de chaque n¿ud capteur émetteur. Nous avons proposé des heuristiques pour corriger ces incohérences observées à savoir les effets de la propagation par trajets multiples et les valeurs aberrantes. Nos résultats expérimentaux ont confirmé que nos algorithmes améliorent significativement la précision de localisation en intérieur avec l¿utilisation unique du RSSI. Enfin, nous avons étudié et proposé un algorithme de localisation distribué, précis et coopératif qui passe à l¿échelle et peu consommateur en termes de temps de calcul. Cet algorithme d¿approximation stochastique utilise la technique du RSSI tout en respectant les caractéristiques de l¿informatique embarquée des réseaux de capteurs sans fil. Il affine l¿ensemble des positions estimées par un n¿ud capteur sans fil. Notre approche a été comparée à d¿autres algorithmes distribués de l¿état de l¿art. Les résultats issus des simulations et des expériences en environnements internes réels ont révélé une meilleure précision de la localisation de notre algorithme distribué. L¿erreur de localisation est de l¿ordre du centimètre sans aucun n¿ud ou unité centrale de traitement, ni de calibration fastidieuse ni d¿intervention humaine

    Actas de las VI Jornadas Nacionales (JNIC2021 LIVE)

    Get PDF
    Estas jornadas se han convertido en un foro de encuentro de los actores más relevantes en el ámbito de la ciberseguridad en España. En ellas, no sólo se presentan algunos de los trabajos científicos punteros en las diversas áreas de ciberseguridad, sino que se presta especial atención a la formación e innovación educativa en materia de ciberseguridad, y también a la conexión con la industria, a través de propuestas de transferencia de tecnología. Tanto es así que, este año se presentan en el Programa de Transferencia algunas modificaciones sobre su funcionamiento y desarrollo que han sido diseñadas con la intención de mejorarlo y hacerlo más valioso para toda la comunidad investigadora en ciberseguridad

    Tavaszi Szél, 2015

    Get PDF
    corecore