
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Novel Validation Techniques for Autonomous Vehicles / Sini, Jacopo. - (2020).
Original

Novel Validation Techniques for Autonomous Vehicles

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2949235 since: 2022-01-12T11:53:28Z



Doctoral Dissertation
Doctoral Program in Control and Computer Enginering (XXXIII cycle)

Novel Validation Techniques for
Autonomous Vehicles

Jacopo Sini
* * * * *

Supervisor
Prof. Massimo Violante

Doctoral Examination Committee:
Prof. Andrea ACQUAVIVA (Università degli Studi di Bologna – ITALIA)
Prof.ssa Fernanda LIMA KASTENSMIDT
(Università federale del Rio Grande do Sul – BRASILE)
Prof. Maurizio REBAUDENGO (Politecnico di Torino – ITALIA)
Prof. Luigi DILILLO
(Laboratoire d’Informatique, de robotique et de microélectronique de Montpellier - FRANCIA)
Prof. Paolo BERNARDI (Politecnico di Torino - ITALIA)

Politecnico di Torino
December 16, 2021



This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jacopo Sini

Turin, December 16, 2021

www.creativecommons.org


Summary

The automotive industry is facing challenges in producing electrical, connected,
and autonomous vehicles. Even if these challenges are, from a technical point of
view, independent from each other, the market and regulatory bodies require them
to be developed and integrated simultaneously.
The development of autonomous vehicles implies the development of highly de-
pendable systems. This is a multidisciplinary activity involving knowledge from
robotics, computer science, electrical and mechanical engineering, psychology, so-
cial studies, and ethics.
Nowadays, many Advanced Driver Assistance Systems (ADAS), like Emergency
Braking System, Lane Keep Assistant, and Park Assist, are available. Newer lux-
ury cars can drive by themselves on highways or park automatically, but the end
goal is to develop completely autonomous driving vehicles, able to go by themselves,
without needing human interventions in any situation.
The more vehicles become autonomous, the greater the difficulty in keeping them
reliable. It enhances the challenges in terms of development processes since their
misbehaviors can lead to catastrophic consequences and, differently from the past,
there is no more a human driver to mitigate the effects of erroneous behaviors.

Primary threats to dependability come from three sources: misuse from the
drivers, design systematic errors, and random hardware failures.
These safety threats are addressed under various aspects, considering the particular
type of item to be designed. In particular, for the sake of this work, we analyze
those related to Functional Safety (FuSa), viewed as the ability of a system to react
on time and in the proper way to the external environment.
From the technological point of view, these behaviors are implemented by electrical
and electronic items.
Various standards to achieve FuSa have been released over the years. The first,
released in 1998, was the IEC 61508. Its last version is the one released in 2010.
This standard defines mainly:

• a Functional Safety Management System (FSMS);

• methods to determine a Safety Integrated Level (SIL);

• methods to determine the probability of failures.

iii



To adapt the IEC61508 to the automotive industry’s peculiarity, a newer standard,
the ISO26262, was released in 2011 then updated in 2018.
This standard provides guidelines about FSMS, called in this case Safety Lifecycle,
describing how to develop software and hardware components suitable for func-
tional safety. It also provides a different way to compute the SIL, called in this
case Automotive SIL (ASIL), allowing us to consider the average driver’s abilities
to control the vehicle in case of failures. Moreover, it describes a way to determine
the probability of random hardware failures through Failure Mode, Effects, and
Diagnostic Analysis (FMEDA).

This dissertation contains contributions to three topics:

• random hardware failures mitigation;

• improvement of the ISO26262 Hazard Analysis and Risk Assessment (HARA);

• real-time verification of the embedded software.

As the main contribution of this dissertation, I address the safety threats due
to random hardware failures (RHFs).
For this purpose, I propose a novel simulation-based approach to aid the Failure
Mode, Effects, and Diagnostic Analysis (FMEDA) required by the ISO26262 stan-
dard. Thanks to a SPICE-level model of the item, and the adoption of fault injec-
tion techniques, it is possible to simulate its behaviors obtaining useful information
to classify the various failure modes. The proposed approach evolved from a mere
simulation of the item, allowing only an item-level failure mode classification up to
a vehicle-level analysis. The propagation of the failure modes’ effects on the whole
vehicle enables us to assess the impacts on the vehicle’s drivability, improving the
quality of the classifications. It can be advantageous where it is difficult to predict
how the item-level misbehaviors propagate to the vehicle level, as in the case of a
virtual differential gear or the mobility system of a robot. It has been chosen since
it can be considered similar to the novel light vehicles, such as electric scooters, that
are becoming more and more popular. Moreover, my research group has complete
access to its design since it is realized by our university’s DIANA students’ team.
When a SPICE-level simulation is too long to be performed, or it is not possible
to develop a complete model of the item due to intellectual property protection
rules, it is possible to aid this process through behavioral models of the item. A
simulation of this kind has been performed on a mobile robotic system. Behavioral
models of the electronic components were used, alongside mechanical simulations,
to assess the software failure mitigation capabilities.

Another contribution has been obtained by modifying the main one. The idea
was to make it possible to aid also the Hazard Analysis and Risk Assessment
(HARA).

iv



This assessment is performed during the concept phase, so before starting to design
the item implementation. Its goal is to determine the hazards involved in the item
functionality and their associated levels of risk. The end goal of this phase is a list
of safety goals. For each one of these safety goals, an ASIL has to be determined.
Since HARA relies only on designers expertise and knowledge, it lacks in objectivity
and repeatability.
Thanks to the simulation results, it is possible to predict the effects of the failures
on the vehicle’s drivability, allowing us to improve the severity and controllability
assessment, thus improving the objectivity. Moreover, since simulation conditions
can be stored, it is possible, at any time, to recheck the results and to add new
scenarios, improving the repeatability.

The third group of contributions is about the real-time verification of embedded
software. Through Hardware-In-the-Loop (HIL), a software integration verification
has been performed to test a fundamental automotive component, mixed-criticality
applications, and multi-agent robots.
The first of these contributions is about real-time tests on Body Control Modules
(BCM). These modules manage various electronic accessories in the vehicle’s body,
like power windows and mirrors, air conditioning, immobilizer, central locking.
The main characteristics of BCMs are the communications with other embedded
computers via the car’s vehicle bus (Controller Area Network) and to have a high
number (hundreds) of low-speed I/Os.
As the second contribution, I propose a methodology to assess the error recovery
system’s effects on mixed-criticality applications regarding deadline misses. The
system runs two tasks: a critical airplane longitudinal control and a non-critical
image compression algorithm. I start by presenting the approach on a benchmark
application containing an instrumented bug into the lower criticality task; then, we
improved it by injecting random errors inside the lower criticality task’s memory
space through a debugger. In the latter case, thanks to the HIL, it is possible
to pause the time domain simulation when the debugger operates and resume it
once the injection is complete. In this way, it is possible to interact with the target
without interfering with the simulation results, combining a full control of the target
with an accurate time-domain assessment.
The last contribution of this third group is about a methodology to verify, on multi-
agent robots, the synchronization between two agents in charge to move the end
effector of a delta robot: the correct position and speed of the end effector at any
time is strongly affected by a loss of synchronization.
The last two contributions may seem unrelated to the automotive industry, but
interest in these appliactions is gaining. Mixed-criticality systems allow reducing
the number of ECUs inside cars (for cost reduction), while the multi-agent approach
is helpful to improve the cooperation of the connected cars with respect to other
vehicles and the infrastructure.

v



The fourth contribution, contained in the appendix, is about a machine learning
application to improve the social acceptance of autonomous vehicles.
The idea is to improve the comfort of the passengers by recognizing their emotions.
I started with the idea to modify the vehicle’s driving style based on a real-time
emotions recognition system but, due to the difficulties of performing such opera-
tions in an experimental setup, I move to analyze them offline. The emotions are
determined on volunteers’ facial expressions recorded while viewing 3D representa-
tions showing different calibrations. Thanks to the passengers’ emotional responses,
it is possible to choose the better calibration from the comfort point of view.

vi





Acknowledgements

I would like to acknowledge my advisor, Prof. Massimo Violante, for offering me
this excellent chance, and all the people who collaborated with me during my PhD
programme as coauthor, Master’s Degree thesists, and some colleagues who worked
closely with me. These people are (in rigorous alphabetical order): Antonio Arena,
Concetta Argiri, Serhiy Avramenko, Enea Bagalini, Prof. Radu Bojoi, Ludovica
Bozzoli, Sebastiano Campisi, Alessio D’Andrea, Marco D’Auria, Stefano De Caro,
Riccardo Dessì, Vincenzo Dodde, Stefano Esposito, Flavio Fusetti, Rubin Gna-
niah, Chunying Ma, Francesco Mangiacane, Antonio Costantino Marceddu, Prof.
Bartolomeo Montrucchio, Alessandra Mugoni, Andrea Passarino, Luca Pecorella,
Davide Piumatti, Aldo Quario, Filippo Santonocito, Mariangela Saracco, Peter
Sarson, Prof. Matteo Sonza Reorda, Enrico Zanda.

viii



I would like to dedicate
this dissertation to my
loving parents Giovanni
Battista and
Vincenzina, and to my
aunt Donatella.



  



Contents

List of Tables xv

List of Figures xviii

1 Introduction 7
1.0.1 Software: an opportunity and an issue . . . . . . . . . . . . 8
1.0.2 The software complexity in the automotive industry . . . . . 9

1.1 Industry trends on automation of vehicles safety and driving functions 9
1.1.1 Commercial applications . . . . . . . . . . . . . . . . . . . . 10

1.2 Autonomous vehicles classification . . . . . . . . . . . . . . . . . . . 13
1.2.1 SAE J3016 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 ECR classification: a responsibilities-based point of view . . 14

1.3 Functional Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Overview and position of Functional Safety in the autonomous

driving framework . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 FIDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 AIAG&VDA FMEA manual . . . . . . . . . . . . . . . . . . 24

1.4 Technical contributions on this dissertation . . . . . . . . . . . . . . 24
1.4.1 Proposals that contribute to improving the FMEDA . . . . . 25
1.4.2 Proposals that contribute to improving the HARA . . . . . 25
1.4.3 Proposals that contribute on improving real-time software

validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Structure of this dissertation . . . . . . . . . . . . . . . . . . . . . . 27

2 Items development inside the ISO26262 framework 29
2.1 Safety Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Structure of the ISO26262 . . . . . . . . . . . . . . . . . . . 30
2.1.2 Functional Safety Management . . . . . . . . . . . . . . . . 30
2.1.3 Confirmation measures . . . . . . . . . . . . . . . . . . . . . 33

2.2 Concept Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Item definition . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Hazard Analysis and Risk Assessment . . . . . . . . . . . . 36

x



2.2.3 Safety Element out of Context . . . . . . . . . . . . . . . . . 43
2.3 Functional safety concept . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Functional parameters . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Safety architecture . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.3 ASIL decomposition . . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 Functional Safety Requirements . . . . . . . . . . . . . . . . 46

2.4 Implementation phases . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5 Technical safety concept . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6 FMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Hardware design and FMEDA . . . . . . . . . . . . . . . . . . . . . 53

2.7.1 Classification rules . . . . . . . . . . . . . . . . . . . . . . . 54
2.7.2 Rates and metrics . . . . . . . . . . . . . . . . . . . . . . . . 54
2.7.3 Failure metrics . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 FIDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8.1 Guide structure . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8.3 Model coverage . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.8.4 Reliability prediction . . . . . . . . . . . . . . . . . . . . . . 60
2.8.5 Predicted reliability evaluation guide . . . . . . . . . . . . . 62
2.8.6 General model . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.8.7 Life profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.9 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.10 Differencies between FMEA and FMEDA . . . . . . . . . . . . . . . 66
2.11 Software Development for Embedded Systems . . . . . . . . . . . . 66

2.11.1 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.11.2 V-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.11.3 Model-based software design . . . . . . . . . . . . . . . . . . 70
2.11.4 Software unit testing . . . . . . . . . . . . . . . . . . . . . . 70
2.11.5 Software integration testing . . . . . . . . . . . . . . . . . . 72

3 Simulation-based FMEDA 75
3.1 Industrial practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 The idea of automating the FME(D)A . . . . . . . . . . . . . . . . 76

3.2.1 Fault coverage measurement . . . . . . . . . . . . . . . . . . 77
3.2.2 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.3 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.1 Hypotesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.2 Evolution of the proposed approaches . . . . . . . . . . . . . 80

3.4 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5 First proposal - A simulation-based FME(D)A . . . . . . . . . . . . 86

3.5.1 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



3.5.2 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5.3 Failure modes effects assessment strategies . . . . . . . . . . 87
3.5.4 Assessment of SW mitigation capabilities on HW failures . . 89
3.5.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Second proposal - A real automation of FMEDA . . . . . . . . . . . 93
3.6.1 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.6.2 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6.3 Failure modes effects assessment strategies . . . . . . . . . . 100
3.6.4 Assessment of the SW mitigation capabilities on HW failures 102
3.6.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 102
3.6.6 Simulation results for [16] . . . . . . . . . . . . . . . . . . . 104
3.6.7 Simulation results for [18] . . . . . . . . . . . . . . . . . . . 106

3.7 Third proposal - Handmade vs. simulation-based approaches . . . . 110
3.7.1 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7.2 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7.3 Failure modes effects assessment strategies . . . . . . . . . . 110
3.7.4 Assessment of the SW mitigation capabilities on HW failures 111
3.7.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 111
3.7.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 112

3.8 Fourth proposal - From an item-level FMs classifications to a vehicle-
level one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.8.1 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.8.2 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.8.3 Failure modes effects assessment strategies . . . . . . . . . . 120
3.8.4 Assessment of the SW mitigation capabilities on HW failures 121
3.8.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 121
3.8.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 123

3.9 Fifth proposal - From safety to mission criticality: finding a tradeoff
between needs and model precision . . . . . . . . . . . . . . . . . . 129
3.9.1 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.9.2 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.9.3 Failure modes effects assessment strategies . . . . . . . . . . 137
3.9.4 Assessment of the SW mitigation capabilities on HW failures 138
3.9.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 138
3.9.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 139

3.10 Sixth proposal - Application to a mobile robotics case study . . . . 142
3.10.1 Description of the rover . . . . . . . . . . . . . . . . . . . . 145
3.10.2 FMEA of the rover . . . . . . . . . . . . . . . . . . . . . . . 146
3.10.3 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.10.4 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.10.5 Failure modes effects assessment strategies . . . . . . . . . . 150

xii



3.10.6 Assessment of the SW mitigation capabilities on HW failures 151
3.10.7 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 161
3.10.8 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 161

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4 Simulation-based HARA 169
4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.1.1 Research contribution . . . . . . . . . . . . . . . . . . . . . 172
4.2 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.2.1 Situation Analysis and Hazard Identification . . . . . . . . . 177
4.2.2 Hazard classification . . . . . . . . . . . . . . . . . . . . . . 177
4.2.3 ASIL determination . . . . . . . . . . . . . . . . . . . . . . . 178
4.2.4 Safety objective definition . . . . . . . . . . . . . . . . . . . 178
4.2.5 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.3 Benchmark case study . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.3.1 AEBS and its integration into the vehicle . . . . . . . . . . . 179
4.3.2 Fault model . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.3.3 The proposed methodology . . . . . . . . . . . . . . . . . . 180

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.4.1 EuroNCAP AEBS test protocol . . . . . . . . . . . . . . . . 183
4.4.2 NHTSA tests . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.4.3 European Commission Regulation 347/2012 tests . . . . . . 186
4.4.4 ASIL Assignment . . . . . . . . . . . . . . . . . . . . . . . . 187

5 Real-time software validation 189
5.0.1 Research contribution . . . . . . . . . . . . . . . . . . . . . 190

5.1 Automotive Body Control Modules . . . . . . . . . . . . . . . . . . 190
5.1.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . 192
5.1.2 Benchmark proof-of-concept setup . . . . . . . . . . . . . . . 194

5.2 Mixed-criticality systems . . . . . . . . . . . . . . . . . . . . . . . . 198
5.2.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . 200
5.2.2 Experimental results with the triggering of an unsolvable

known defect in a low criticality software component - [9] . . 209
5.2.3 Experimental results with FI, pause signal, and eDB - [10] . 211

5.3 Multi-agent robotic system (MAS) development . . . . . . . . . . . 214
5.3.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . 215
5.3.2 Benchmark application . . . . . . . . . . . . . . . . . . . . . 217
5.3.3 Control software and models . . . . . . . . . . . . . . . . . . 219
5.3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . 221

xiii



6 Conclusions and Future Work 227
6.1 Contributions on Simulation-based FMEDA . . . . . . . . . . . . . 227

6.1.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.1.3 Future development . . . . . . . . . . . . . . . . . . . . . . . 230

6.2 Contributions on Simulation-based HARA . . . . . . . . . . . . . . 231
6.2.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.2.3 Future development . . . . . . . . . . . . . . . . . . . . . . . 232

6.3 Contributions on Real-time software validation . . . . . . . . . . . . 232
6.3.1 Automotive Body Control Modules . . . . . . . . . . . . . . 233
6.3.2 Mixed-criticality avionic systems . . . . . . . . . . . . . . . 234
6.3.3 Multi-agent robotic systems . . . . . . . . . . . . . . . . . . 235

A Machine learning applications for the automotive industry 237
A.1 A formal model for the human emotions . . . . . . . . . . . . . . . 241

A.1.1 Facial expression databases . . . . . . . . . . . . . . . . . . 241
A.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.2.1 Generalization capability: underfitting and overfitting . . . . 244
A.2.2 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
A.2.3 Performance assessment metrics . . . . . . . . . . . . . . . . 245
A.2.4 Performance improvement techniques . . . . . . . . . . . . . 245

A.3 Recognition of emotions from facial expression . . . . . . . . . . . . 247
A.3.1 Facial Expressions Databases Classifier . . . . . . . . . . . . 248
A.3.2 Choice of the neural networks . . . . . . . . . . . . . . . . . 249

A.4 Neural Networks Training . . . . . . . . . . . . . . . . . . . . . . . 249
A.4.1 Training Environment Set-Up . . . . . . . . . . . . . . . . . 250
A.4.2 Training Results from [110] . . . . . . . . . . . . . . . . . . 251
A.4.3 Training results from [111] . . . . . . . . . . . . . . . . . . . 261

A.5 Autonomous driving algorithms assessment from [110]. . . . . . . . 266
A.5.1 Situations Preparation . . . . . . . . . . . . . . . . . . . . . 266
A.5.2 Criteria for Emotion Analysis . . . . . . . . . . . . . . . . . 266
A.5.3 Experimental Campaign . . . . . . . . . . . . . . . . . . . . 267
A.5.4 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . 267

A.6 Road Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
A.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

A.7.1 Training results . . . . . . . . . . . . . . . . . . . . . . . . . 272
A.7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Bibliography 275

xiv



List of Tables

2.1 Overview of verification measure. From [7]. o No requirement and
no recommendation for or against X required X* Scope of this review
also includes hazardous events rated as QM. . . . . . . . . . . . . . 34

2.2 Overview of verification measure. From [7]. o No requirement and
no recommendation for or against + Recommended ++ Required . 35

2.3 ISO 26262-3 Table B1: Examples of severity classification. . . . . . 40
2.4 Adapted from ISO 26262-3 Table 6 Class of controllability. The row

Driving factors is extracted from table B.6. . . . . . . . . . . . . . . 40
2.5 Adapted from ISO 26262-3 Table 6 Class of controllability. The

row Duration is extracted from table ISO26262:2018-3 B.2 The row
Frequency of situation is extracted from table ISO26262:2018-3 B.3. 41

2.6 Mapping of MSIL to ASIL. . . . . . . . . . . . . . . . . . . . . . . . 42
2.7 Random hardware failure metrics limits. . . . . . . . . . . . . . . . 57
3.1 Simulation results obtained from [15]. . . . . . . . . . . . . . . . . . 92
3.2 FMEDA assessment results obtained by the tool presented in [16]

considering 5 different workloads. . . . . . . . . . . . . . . . . . . . 105
3.3 FMEDA assessment results obtained by the tool presented in [18]. . 109
3.4 FMEDA assessment result comparison between the handmade and

the automatically performed one. . . . . . . . . . . . . . . . . . . . 112
3.5 Comparison between the failure classifications obtained by the auto-

matic tool and from the experts. . . . . . . . . . . . . . . . . . . . . 113
3.6 Comparison between the handmade and the automatic assessments.

The differences between the two classifications are highlighted. . . . 115
3.7 Simulation results. Conditions: FA indicates fault affected without

mitigation algorithm, while M indicates fault conditions with the
mitigation algorithm enabled . . . . . . . . . . . . . . . . . . . . . . 124

3.8 The classification criteria, with their tolerances, as defined in the
system design phase (as defined by the complex system designer). . 138

3.9 Failure modes classification results. . . . . . . . . . . . . . . . . . . 141

xv



3.10 Failures grouping summary. The characters a, b and x in the previ-
ous table indicate what components can fail in each group: compo-
nents marked as x can fail simultaneously in any number between 0
and 9; components marked as a can fail simultaneously in a maxi-
mum number of 2; components marked as b can fail simultaneously
in a maximum number of 3 for groups numbered 3,5,6,7,8 or in a
maximum number of 2 for groups numbered 10,11,12. . . . . . . . 153

3.11 Flags-failures associations. . . . . . . . . . . . . . . . . . . . . . . . 155
3.12 Flags-failures associations for all the components. . . . . . . . . . . 157
3.13 Traction subsystem mitigation levels. . . . . . . . . . . . . . . . . . 157
3.14 Failures-states-mitigations associations. . . . . . . . . . . . . . . . . 158
3.15 Flags-failures associations for all the components. . . . . . . . . . . 160
3.16 Simulation results for the traction subsystem. . . . . . . . . . . . . 165
3.17 Simulation results for the steering subsystem. . . . . . . . . . . . . 166
4.1 Severity classification rules. Table from [66]. . . . . . . . . . . . . . 181
4.2 Severity classification rules. Table from [66]. . . . . . . . . . . . . . 181
4.3 Results from the simulations inside the EuroNCAP scenarios. Table

from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.4 Results from the simulations inside the NHTSA scenarios. Table

from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.5 Results from the simulations inside the NHTSA scenarios. Table

from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.6 ASIL classification of the various tests. Table from [66]. . . . . . . . 187
5.1 Average time-domain performance comparison between the results

obtained in MIL and SIL. Table from [9]. . . . . . . . . . . . . . . . 209
5.2 Average time-domain performances comparison between a full soft-

ware implementation in the real-time computer and with the loop
closed on the DUT in fault-free conditions. Table from [9]. . . . . . 211

5.3 Time-domain performances comparison between the loop closed on
the DUT in fault-free and fault-affected situations. Table from [9]. . 211

5.4 Time-domain performances characteristics in fault-free conditions.
Table from [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.5 Hardware fault injection classification. Table from [10]. . . . . . . . 212
5.6 Software fault injection classification. Table from [10]. . . . . . . . . 213
5.7 Interference detection. Table from [10]. . . . . . . . . . . . . . . . . 213
A.1 Picture available for each emotion in the chosen databases. Table

from [110]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
A.2 Subdivision of the databases. Table from [110]. . . . . . . . . . . . 260
A.3 Test accuracies summary table (best values). Table from [110]. . . . 261
A.4 Picture available for each emotion in the databases trained in [111]. 262

xvi



A.5 Emotional effects of the benchmark tests. In the columns are indi-
cated the number of people that reacted to the considered situation
with the emotion on the left. Data obtained by the network in [115],
trained with the Ensemble 1 database using the data augmentation
(see section A.2.4) and the z-score normalization. Table from [110]. 269

A.6 Test accuracies summary table (best values) for all the trainings
described in this dissertatioin. Data retrieved from [110] (for the
trainings on Ensemble 1, Ensemble 2, CK+, and FER2013)
and form [111] (for the trainings on Ensemble 3 and IMFDB). . 273

xvii



List of Figures

1.1 An artistic representation of a System on Chip (SoC) Cypress PSoC
5. Figure from Cypress Semiconductor. . . . . . . . . . . . . . . . . 8

1.2 A crash (one fatality) involving a Tesla car occurred on March 2018
in California. Image from ABC News. . . . . . . . . . . . . . . . . . 11

1.3 A Waymo robotaxi. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 A Amazon Zoox robotaxi. . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 SAE J3016 Autonomous vehicles classification. . . . . . . . . . . . . 14
1.6 Operating modes classification proposed by Edge Case Research. . . 15
1.7 Relationship between the standars involved in the development of

autonomous driving systems . . . . . . . . . . . . . . . . . . . . . . 18
1.8 The HARA process inside the ISO26262 framework. Figure adapted

from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 The HARA process inside the ISO/PAS 21488 (SOTIF) framework.

Figure adapted from [6]. . . . . . . . . . . . . . . . . . . . . . . . . 21
1.10 The HARA process inside the UL 4600 framework. Figure adapted

from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.11 The structure of a UL 4600 Safety Case, with an EooC. Figure

adapted from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.12 Summary of the differencies between KPIs and SPIs. . . . . . . . . 23
1.13 Topics discussed in this dissertation, with common application on

automotive items and their position into the ISO26262 safety lifecycle. 25
2.1 The ISO26262:2018 structure . . . . . . . . . . . . . . . . . . . . . 30
2.2 Hierarchy of Safety Goals and Functional Safety Requirements. Fig-

ure adapted from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 HARA subdivision in phases. . . . . . . . . . . . . . . . . . . . . . 37
2.4 Exposure classification in duration or frequency. . . . . . . . . . . . 41
2.5 ASIL determination matrix. . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Relationship between design assumptions and SEooC development.

Figure adapted from [7]. . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 ISO26262-9 Figure 2 Classification scheme of ASILs when decom-

posing safety requirements. Figure adapted from [7]. . . . . . . . . 46
2.8 Failure classification between systematic and random (hardware). . 47

xviii



2.9 Failure classification between independent and dependent. . . . . . . 48
2.10 Dependent failure analysis. Figure from [7]. . . . . . . . . . . . . . 49
2.11 Time intervals relevant for safety. Figure from [7]. . . . . . . . . . . 50
2.12 System level development process with the main involved documents. 51
2.13 The 7 steps described by the AIAG and VDA FMEA manual. Figure

from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.14 The content of the outcome result of FMEDA analysis. . . . . . . . 54
2.15 The failure mode classificaton criteria. . . . . . . . . . . . . . . . . 55
2.16 Relationship between failure cause, mechanism, mode, and reliability

contribution factor. Figure adapted from FIDES. . . . . . . . . . . 60
2.17 The bathtube curve, showing the three periods of the life of a product. 61
2.18 Relations between the WPs from Configuration management plan to

Software verification Report. . . . . . . . . . . . . . . . . . . . . . . 67
2.19 Relations between the WPs to be prepared during the software im-

plementation process. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.20 The V-diagram of the software development. . . . . . . . . . . . . . 70
2.21 HIL conceptual structure compared with a real implementation, based

on a National Instruments cRIO as the real-time simulator and a
ZedBoard as the controller. . . . . . . . . . . . . . . . . . . . . . . . 74

3.1 A general three stages structure for an item. . . . . . . . . . . . . . 80
3.2 Workflow of the simulation-based methodology evolution. The de-

scriptions near the arrows explain the novelties between the proposals. 81
3.3 Structure of the seat belt reminder. . . . . . . . . . . . . . . . . . . 86
3.4 Schematic representation of the simulation-based approach proposed

in [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5 A schematic representation of the item described in [16]. . . . . . . 95
3.6 A schematic representation of the item described in [18]. . . . . . . 96
3.7 Schematic representation of an inverter connected with a with a star

winding brushless direct current (BLDC) permanent magnet motor. 99
3.8 The schematic of the analog conditioning stage described in [16]. The

red borders around the resistors R1 and R2 indicates the absence of
a defined parameter for their resistance values, since it is computed
at runtime by the sabouter. . . . . . . . . . . . . . . . . . . . . . . 99

3.9 The external interfaces of the SB used to inject stuck-at FMs in [16]
and [18]. The red borders around the FaultInjectiorSelector
constants indicates the absence of a defined value, since it is com-
puted runtime by the sabouter. . . . . . . . . . . . . . . . . . . . . 100

3.10 The implementation of the SB used to inject stuck-at FMs in [16]
and [18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.11 Examples of SBs, used to inject stuck-at FMs on pins, and simulation-
only components (in this case resistors) to inject short circuits be-
tween adjacent pins of a commercial microcontroller. . . . . . . . . 101

xix



3.12 The implementation of the detection algorithm for IGBTs in the [18]
paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.13 Schematic representation of the simulation-based approach proposed
in [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.14 Simulink model to perform simulations described in [17] . . . . . . . 111
3.15 The block diagram of the proposal. Figure adapted from [19]. . . . 118
3.16 The block diagram of the benchmark application. . . . . . . . . . . 119
3.17 Mitigation algorithm. Figure from [19]. . . . . . . . . . . . . . . . . 122
3.18 The triple curving simulated track. The arrows indicates the direc-

tion of the ride. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.19 Case b lateral errors with respect to the ideal trajectory. Adapted

from [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.20 Case b yaw angles measured with respect to the tangent of the ideal

trajectory. Adapted from [19]. . . . . . . . . . . . . . . . . . . . . . 126
3.21 Case c lateral displacement with respect to the ideal trajectory.

Adapted from [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.22 Case c yaw angles measured with respect to the tangent of the ideal

trajectory. Adapted from [19]. . . . . . . . . . . . . . . . . . . . . . 128
3.23 Case e yaw angles measured with respect to the tangent of the ideal

trajectory. Adapted from [19]. . . . . . . . . . . . . . . . . . . . . . 128
3.24 Representation of the proposed approach. Adapted from [39]. . . . . 132
3.25 Block diagram representation of the motor control system case study.

Adapted from [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.26 Schematic of the PSU. Figure from [39]. . . . . . . . . . . . . . . . 136
3.27 A boost cell of the PSU instrumented with simulation only switches.

Figure from [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.28 Schematic of the PSU. Figure from [39]. . . . . . . . . . . . . . . . 137
3.29 System level development process with the main involved documents. 144
3.30 A 3D rendering of the Ardito Rover developed by the D.I.A.N.A.

student’s team of Politecnico di Torino. . . . . . . . . . . . . . . . . 147
3.31 System level development process with the main involved documents. 152
3.32 Three stages structure of the a general item. . . . . . . . . . . . . . 162
4.1 The structural block diagram of an ADAS device. Figure from [66]. 172
4.2 The phases of the HARA, with indication of those ones that can be

performed by a simulation-based approach. . . . . . . . . . . . . . . 172
4.3 Block diagram representation of the proposed approach. . . . . . . . 175
4.4 Block diagram representation of the proposed approach, with the

HARA phases, mapped to its blocks. . . . . . . . . . . . . . . . . . 176
4.5 Representation of the situations analized in all the scenarios. . . . . 183

xx



4.6 Plot of the relative distance between the VUT and the TV over the
time for the case CCRb (12 m, 6 m/s2). The intersection between
the time axis and the relative distance curve represents the TTC.
Figure from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.7 Plot of the relative distance between the VUT and the TV over the
time for the case CCRb (40 m, 6 m/s2). The intersection between
the time axis and the relative distance curve represents the TTC.
Figure from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.1 ECU Simulink™ model, with description of mapping from the HMI
to logical resources of the reconfigurable hardware. On the top of the
three grayed areas, it is reported the source of the inports/outports
labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.2 The TXT XHIL Studio simulation editor. . . . . . . . . . . . . . . . 196
5.3 The TXT XHIL Studio simulation player. . . . . . . . . . . . . . . 196
5.4 Interaction between TXT XHIL Studio and NI VeriStand API. . . . 197
5.5 A benchmark of the proposed approach, performed on simplified

ECU implementing a turn indicators control software on an NXP
S32K144 reference board, shown in November 2017 at National In-
struments Days in Milan, Italy. . . . . . . . . . . . . . . . . . . . . 198

5.6 The block diagram of the approach presented in the [9] and [10]
papers. The blocks regarding the external debugger and the path to
perform the fault injection, present only in the approach presented
in [10], are bordered in red. In [9] there is only a signal to trigger
the known non-solvable defect affecting a low-DAL task, managed
by the HIL simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.7 The time domain performances characteristic of interest, for a 2nd
order system, from the control theory literature. . . . . . . . . . . . 203

5.8 The block diagram of the proposed HIL system. . . . . . . . . . . . 206
5.9 The pause/resume Finite State Machine (FSM described in the ap-

proach presented in [10]. . . . . . . . . . . . . . . . . . . . . . . . . 207
5.10 The block diagram of a generic MAS. Adapted from [11]. . . . . . . 215
5.11 Flowchart of the proposed approach. Figure from [11]. . . . . . . . 217
5.12 The mechanical structure of the benchmark MAS. Adapted from [11].218
5.13 The control software block diagram. . . . . . . . . . . . . . . . . . . 219
5.14 MIL/SIL estimated path. Figure from [11]. . . . . . . . . . . . . . . 222
5.15 Block diagram of the SW architecture adopted for HIL testing. . . . 223
5.16 A photograph of the experimental setup described in this proposal. 224
5.17 HIL worst-case estimated path. Figure from [11]. . . . . . . . . . . 225
5.18 Results obtained from 65 HIL simulations. Figure from [11]. . . . . 225
6.1 The mapping of the three proposed approach on the ISO26262:2018

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.1 Common questions on autonomous vechicles development aspects. . 238

xxi



A.2 Accuracy graph of the network in [115], trained with the CK+ database
using the data augmentation (see section A.2.4) and the z-score nor-
malization. Figure from [112]. . . . . . . . . . . . . . . . . . . . . . 253

A.3 Loss graph of the network in [115], trained with the CK+ database
using the data augmentation (see section A.2.4) and the z-score nor-
malization. Figure from [112]. . . . . . . . . . . . . . . . . . . . . . 253

A.4 Normalized confusion matrix of the network in [115], trained with
the CK+ database using the data augmentation (see section A.2.4)
and the z-score normalization. Figure from [112]. . . . . . . . . . . 254

A.5 Accuracy graph of the network in [115], trained with the FER2013
database with the FER+ annotations using the data augmentation
(see section A.2.4) and the z-score normalization. Figure from [112]. 255

A.6 Loss graph of the network in [115], trained with the FER2013 database
with the FER+ annotations using the data augmentation (see sec-
tion A.2.4) and the z-score normalization. Figure from [112]. . . . . 255

A.7 Normalized confusion matrix of the network in [115], trained with
the FER2013 database with the FER+ annotations using the data
augmentation (see section A.2.4) and the z-score normalization. Fig-
ure from [112]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

A.8 Normalized confusion matrix of the network in [140], trained with
the FER2013 database with the FER+ annotations using the data
augmentation (see section A.2.4) and the z-score normalization. Fig-
ure from [112]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A.9 Accuracy graph of the network in [115], trained with the Ensemble
1 database using the data augmentation (see section A.2.4) and the
z-score normalization. Figure from [112]. . . . . . . . . . . . . . . . 258

A.10 Loss graph of the network in [115], trained with the Ensemble 1
using the data augmentation (see section A.2.4) and the z-score nor-
malization. Figure from [112]. . . . . . . . . . . . . . . . . . . . . . 258

A.11 Normalized confusion matrix of the network in [115], trained with
the Ensemble 1 database using the data augmentation (see section
A.2.4) and the z-score normalization. Figure from [112]. . . . . . . . 259

A.12 Accuracy graph of the network proposed in [115], trained with the
database enseble 3 with the FER+ annotations using the data aug-
mentation (see section A.2.4) and the z-score normalization. Figure
from [111]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

A.13 Loss graph of the network proposed in [115], trained with the database
enseble 3 with the FER+ annotations using the data augmentation
(see section A.2.4) and the z-score normalization. Figure from [111]. 263

xxii



A.14 Normalized confusion matrix of the network proposed in [115], trained
with the database enseble 3 with the FER+ annotations using the
data augmentation (see section A.2.4) and the z-score normalization.
Figure from [111]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.15 Accuracy graph of the network proposed in [115], trained with the
database enseble 3 with the FER+ annotations using the data aug-
mentation (see section A.2.4) and the z-score normalization. Figure
from [111]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.16 Loss graph of the network proposed in [115], trained with the database
enseble 3 with the FER+ annotations using the data augmentation
(see section A.2.4) and the z-score normalization. Figure from [111]. 265

A.17 Normalized confusion matrix of the network proposed in [115], trained
with the database enseble 3 with the FER+ annotations using the
data augmentation (see section A.2.4) and the z-score normalization.
Figure from [111]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

A.18 Myself acting a neutral face as recognized by the neural network [115]
trained on FER2013 [116] with FER+ annotations [117]. Figure
from [112]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

A.19 Antonio Costantino Marceddu acting a neutral face as recognized
by the neural network [115] trained on FER2013 [116] with FER+
annotations [117]. Figure from [112]. . . . . . . . . . . . . . . . . . 271

xxiii



Acronyms

A/IS Autonomous and Intelligent System
ABS Anti-lock braking system (AntiBlockierSystem)
AC Alternate Current
ACC Advanced Cruise Control
ACCS Adaptive Cruise Control System
ADAS Advanced Driver Assistance System
ADS Automated Driving System
AEB/AEBS Advanced Emergency Braking (System)
AIAG Automotive Industry Action Group
ASIL Automotive Safety Integrated Level
BCM Body Control Module
BFIT BestFIT
BOM Bill Of Material
CAD Computer Aided Design
CAN Controller Area Network
CCRb Car-to-Car Rear Braking (from EuroNCAP AEBS test proto-

col)
CCRm Car-to-Car Rear Moving (from EuroNCAP AEBS test proto-

col)
CCRs Car-to-Car Rear Stationary (from EuroNCAP AEBS test pro-

tocol)
CCS Cruise Control System
CMP Configuration Management Plan

1



Acronyms

DAL Design Assurance Level
DC Direct Current
DDT Dynamic Driving Task
E-SM Encoder Installed on the Steering Motor (SM)
E-SRG Encoder installed on the Steering Reduction Gear (SRG)
E-TGR Encoder installed on the Traction Reduction Gear (TRG)
E-TM Encoder installed on the Traction Motor (TM)
ECR The company Edge Case Research
ECU Electronic Control Unit
eDB external DeBugger
ELECTRIMACS International conference of the IMACS TC1 Committee
ESP Electronic Stability Program
ETFA IEEE International Conference on Emerging Technologies and

Factory Automation
FCW Forward Collision Warning
FDIR Fault Detection Isolation and Recovery
FI Fault Injection
FM Failure Mode
FMEA Failure Mode Effects Analysis
FMECA Failure Mode, Effects, and Criticality Analysis
FMEDA Failure Mode, Effects, and Diagnostic Analysis
FMVSS Federal Motor Vehicle Safety Standards
FPK Forward Position Kinematic
FSC Functional Safety Concept
FSM Functional Safety Management
FSMS Functional Safety Management System
FSR Functional Safety Requirement

2



Acronyms

FuSa Functional Safety
GPIO General Purpose Input Output (port)
HAL Hardware Abstraction Layer
HARA Hazard Analysis and Risk Assessment
HAZOP HAZard and OPerability analysis
HIL Hardware-In-the-Loop
HMI Human-Machine Interface
HSI Hardware/Software Interaction
IEEE Institute of Electrical and Electronics Engineers
IGBT Insulated Gate Bipolar Transistor
IKPP Inverse Kinematic Path Planner
IOLTS IEEE International Symposium on On-Line Testing and Ro-

bust System Design
ISO International Standard Organization
KPI Key Performance Indicator
LATS IEEE Latin-American Test Symposium
LPQF Low Profile Quad Flat Package
MAS Multi-Agent System
MBSD Model-Based Software Design
MC/DC Modified Conditions/Decision Coverage
MCS Mixed-Criticality System
MIL Model-In-the-Loop
ML Machine Learning
MPSoC Multiprocessor System on a Chip
NCAP New Car Assessment Programme
NHTSA National Highway Traffic Safety Administration
ODD Operational Design Domains

3



Acronyms

OEDR Object and Event Detection and Response
OTA Over-The-Air
PEIC Power Electronics Innovation Center (of Politecnico di Torino)
PID Proportional-Integral-Derivative (control)
PIL Processor-In-the-Loop
PM Part Manufacturing
PSU Power Supply Unit
RADAR RAdio Detection And Ranging
RCP Rapid Control Prototyping
RHF Random Hardware Failure
RMS Root Mean Square
SA/HI Situation Analysis and Hazard Identification
SAE Society of Automotive Engineers
SG Safety Goal
SGR Steering Reduction Gear
SIL Safety Integrated Level
SIL Software-In-the-Loop
SM Steering Motor
SoC System on a Chip
SOTIF Safety Of The Intended Functionality
SPI Safety Performance Indicator
SPICE Simulation Program with Integrated Circuit Emphasis
SSUT SubSystem Under Test
SUT System Under Test
TC Traction Clutch
TGR Traction Reduction Gear

4



Acronyms

TM Traction Motor
TSC Technical Safety Concept
TSR Technical Safety Requirement
TTC Time To Collision
TV Target Vehicle
UAV Unmanned Aerial Vehicle
USB Universal Serial Bus
V&V Validation and Verification
VDA Verband der Automobilindustrie (German Association of the

Automotive Industry )
VUT Vehicle Under Test
WCET Worst-Case Execution Time
WP Work products

5



6



Chapter 1

Introduction

Microcontrollers’ adoption to control vehicle functions starts in the late ’70s,
pushed by the need to save fuel and early pollution control regulations for the au-
tomotive sector.
Early application of computer-based systems was for engine control purposes, par-
ticularly in the gasoline engine ignition system. These have been followed, in the
’80s, by the early electronic fuel injection systems, automatic transmission control,
and adaptive suspension, leading to integrated powertrain control.

In the ’90s, with the increasing diffusion of computing systems of smaller di-
mensions and with more computational power per cost unit, more vehicle functions
moved from mechanical/electromechanical implementations to a microcontroller,
enabling novel functions to improve the safety, through airbags, anti-lock braking
system (ABS), traction control, and electronic stability program. Other than these,
comfort enhancements start to be deployed, like power windows, power seats, cruise
control, automatic climate control, electronic cluster instrumentation, infotainment
and navigation systems, and many other advanced functionalities.

The diffusion of Systems-on-Chip (SoC), which are entire computer systems in a
single chip package, thanks to their versatility, computational power, and incredible
flexibility, started the smartphone era in the mid-2000.
In the automotive industry they enabled more sophisticated functionalities into
cars. Initially were introduced systems like parking sensors, cameras to depict the
environment surrounding the vehicle and simplify the maneuvers in small spaces,
adaptive cruise control (ACC) followed, in the last ten years, by more complex
Advanced Driver Assistance Systems (ADAS) based on RADARs, LiDAR, and
computer vision, like advanced emergency braking (AEB), collision avoidance and
mitigation, and lane assist systems.

In the last decade, we assisted into a trend of integration of subsystems to
answer three contemporary challenges the automotive industry is facing:

7



Introduction

Figure 1.1: An artistic representation of a System on Chip (SoC) Cypress PSoC 5.
Figure from Cypress Semiconductor.

• electrification: the trend to integrate electric propulsion systems, as the
unique motor or to improve the internal combustion engine efficiency;

• autonomous driving;

• connectivity: to make vehicle able to communicate with other vehicles, with
the road infrastructure, and with the cloud to stream music content, update
the navigation system with traffic conditions and, more importantly, allow for
updating the embedded software, especially for those software components
implemented through machine learning approach.

1.0.1 Software: an opportunity and an issue
The usage of computer systems on-board the vehicles offer an enormous variety

of benefits. However, there is also a dark side: by substituting physical processes
or mechanical links with software-programmed ones, it is possible to introduce
reliability problems that can cause misbehaviors. These can become an issue in
those cases where they can lead to huge loss of money (mission-critical) or to
accidents, affecting people’s health or the environment (safety-critical).

To avoid that, a new idea of safety, from a functionality perspective, called
Functional Safety, shall be adopted. This idea is not a novelty of the automotive

8



1.1 – Industry trends on automation of vehicles safety and driving functions

industry. However, it originates from the needs of nuclear, defense, and aerospace
industries that emerged in the ’60 when computer systems start to be adopted.

1.0.2 The software complexity in the automotive industry
A paper, released from a premium car manufacturer, [1] reports that their cars

embedded software is composed of about 100 million high-level language program-
ming statements, of which about 10 million are conditional ones. These are dis-
tributed over about three million functions called in 30 million points. Just to
allow the reader to figure out the complexity of its architecture, this software is
distributed on more than 120 Electronic Control Units (ECU) and manages about
7000 external signals.
Even if part of this complexity can originate itself by the software architecture
(like reuse of legacy code and third-part components), it is impossible to reduce it
significantly.

To solve the reliability problems originating from such complexity, quality1 of
the software shall be achieved by application of strict development policies to guar-
antee a low function nesting level and, by adopting guidelines as the MISRA one,
uniformity and readability of the source code and avoidance of undefined behavior
caused by the usage of implementation-specific instructions. Static analysis tools
can enforce all these requirements.
Moreover, AUTOSAR has been another step to simplify the complexity, at least
in the higher software abstraction level [2] by standardization of the interfaces be-
tween SW components.
As another solution, adopting the Model-Based Software Design approach allowed
to accelerate the software development keeping the same level of quality in terms
of the absence of defects. Moreover, it allows the use of the model itself as the code
documentation, obtaining platform-independent software unit implementation and
simplifying testing activities.

1.1 Industry trends on automation of vehicles safety
and driving functions

In the last years, it is possible to observe a consolidation of the race to au-
tonomous driving. From the business point of view, the main aspects characterizing
this period are:

1In this case, quality indicates the absence of systematic errors leading to behaviors different
from the ones required by the specifications. These are also known ad defects or, more colloquially,
as bugs.

9



Introduction

• huge investments for the production of newer models;

• car manufacturers tend to team to share technologies and divide the huge
required investments;

• the small manufacturers fail or be acquired by a bigger one.

1.1.1 Commercial applications
Privately owned passenger cars

Privately owned passenger cars with some level of driving automation have been
available since some years. These cars are based on a driver-monitored approach
and can be classified as Level 2 of the SAE classification, described in section 1.2.1,
or as having a Supervised operating mode as described in the ECR classification
explained in section 1.2.2.
These vehicles’ safety approach is based on the human driver, responsible for the
safety and continuously monitoring the vehicle’s automation, always keeping their
eyes on the road, ready to intervene.

In literature are reported:

• Multiple fatal crashes (fig.1.2) due to excessive driver complacency on the
automatic driving system and, sometimes, a time lower to 10 seconds between
the regular situation and the fatal crash;

• Tempe Arizona fatality in 2018, caused by, as stated in the preliminary re-
port [3] released by the National Transportation Safety Board (NTSB) by a
wrong human-machine interface and violation of the rules of the road by the
pedestrian, the only fatality of the accident, who crossed the road in an unau-
thorized zone walking a bicyle. All these conditions created a situation non
forecasted during the autonomous driving software development that had dif-
ficulties recognizing the obstacle as a pedestrian walking a bicycle. Moreover,
in this specific implementation, the vehicle operator’s intervention disables
the automatic emergency braking system of the car. The human operator, at
this point, was unable to brake in time to avoid the collision.

Considering vehicles at least at level 4 of the SAE (see sectio 1.2.1), or automated
in the ECR (see section 1.2.2) classification, where the driving safety is in charge
of the vehicle itself, we have these applications: low-speed shuttles, parcel delivery,
and fleet of vehicles (robotaxis).

10



1.1 – Industry trends on automation of vehicles safety and driving functions

Figure 1.2: A crash (one fatality) involving a Tesla car occurred on March 2018 in
California. Image from ABC News.

Low-speed shuttles

These public transportation vehicles can take up to 15 passengers on a fixed
route at low speed (below 30 km/h), and are under demonstration in various cities
worldwide. These shuttles can be classified as Level 5 of the SAE classification (see
section 1.2.1) or having a Automated operating mode in the ECR one (see section
1.2.2) due to their need for a crew member on-board to manage the non-driving
safety aspects.

Parcel delivery

Some lightweight (like tiny cars) vehicles are now under demonstration to trans-
port parcels from stores to houses. These vehicles are designed for short-range de-
livery inside cities. They can travel, based on the local rules and the chosen size,
on roads, sidewalks, bike lanes.

Their safety is based on their low speed and weight (hence low kinetic energy)
and on the presence of remote human operators ready to intervene in case a vehi-
cle asks for help. These special-purpose vehicles cannot be classified in the SAE
classification (see section 1.2.1) and have a Automated operating mode in the ECR
one (see section 1.2.2) since they need a remote human pilot in case of necessity.

11



Introduction

Some incidents have been reported, like the presence of a sidewalk bot blocking
a wheelchair ramp (Pittsburg, 2019) and tensions of pedestrians over the use of
sidewalk space.

Fleet of vehicles

Waymo (see fig.1.3) and Amazon Zoox (see fig.1.4) deployed some robotaxis on
a limited scale, while middle-mile trucks gained interest in 2020. Many players are
pushing into this area.
These robotaxis can be classified as Level 5 in the SAE classification (see section
1.2.1) and have a Autonomous operating mode in the ECR one (see section 1.2.2)
since they do not need a crew member on-board.

In early times the safety approach of these vehicles was based on the presence
on-board of a human safety driver. However, the current trend is to guarantee
operators’ availability whenever a car asks for help.

In California, USA, have been reported minor incidents during testing.

Figure 1.3: A Waymo robotaxi.

12



1.2 – Autonomous vehicles classification

Figure 1.4: A Amazon Zoox robotaxi.

1.2 Autonomous vehicles classification

1.2.1 SAE J3016
The document SAE J3016 Taxonomy and Definitions for Terms Related to On-

Road Motor Vehicle Automated Driving Systems has been initially released in Jan-
uary 2014 and has been updated twice, respectively, in September 2016 and June
2018.
It classifies different levels of automation by keeping into account the extension
(in terms of limited/unlimited) of the Operational Design Domains (ODD), in
where the vehicle is capable of performing the Dynamic Driving Task (DDT) au-
tonomously, and on the fallback mechanisms (between driver, fallback ready user,
system) chosen to guarantee the DDT safety (DDT fallback).
The DDT is split into two subcategories: Sustained lateral and longitudinal vehicle

13



Introduction

control and Object and Event Detection and Response (OEDR).
The SAE J3016 classification table is shown in fig.1.5.

Figure 1.5: SAE J3016 Autonomous vehicles classification.

1.2.2 ECR classification: a responsibilities-based point of
view

An alternative classification, proposed by the Edge Case Research in January
2021 [4], is based on a user-centric approach. Four different operating modes (cor-
responding almost to the levels 2, 3, 4, and 5 of the SAE J3016 classification) are
defined and, for each one of them, it is indicated who is responsible (between the
driver or the car) of the vehicle functions2 (driving, driving safety, and other safety).
A summary of these operating modes is shown in fig.1.6.

2Driving is the dynamic driving function, driving safety is the monitoring of the automation
systems, while other safety is all the other aspects (like verification of properly door closing and
that the seat belts are buckled).

14



1.2 – Autonomous vehicles classification

With respect to the SAE one, the advantage of this classification is that the driver’s
responsibilities are explicitly defined in each operating mode.

Figure 1.6: Operating modes classification proposed by Edge Case Research.

Assistive

In the assistive mode, the driver has to actively drive the car since only Ad-
vanced Driver Assistance Systems (ADAS) are available. Examples of ADAS are
Adaptive Cruise Control, Advanced Emergency Braking System, Lane Keeping As-
sist System, etc.

Supervised

In the supervised mode, the vehicle does all the dynamic driving tasks, but the
human driver is expected to pay continuous attention to the road and to intervene
if required by safety whether or not notified by the driving system that there is a
problem.
Examples of supervised driving systems commercially available are Tesla’s Autopi-
lot and General Motor’s Super Cruise.

15



Introduction

Automated

In the automated mode, the driver can take his/her eyes out of the road since
the car is both in charge of driving and ensuring driving safety. In this case, the
human driver cannot be blamed in case of a crash since safety is a responsibility of
the driving system.
Other safety operations different from the driving, like verify that the passengers
have their seat belts buckled, children are properly seated, manage the vehicle’s
evacuation in case of fire, are still in charge of an adult person on board the vehicle.
If an automated vehicle is used for a public transportation task, a crew member
must be on board at any time during the vehicle operation.

Autonomous

In the autonomous mode, there is no human on-site or even continuously mon-
itoring of what is going on during the vehicle operation: in this case, the vehicle
itself is responsible for the driving and all the other safety aspects.

1.3 Functional Safety
Even if the proposals described in this dissertation consider only the functional

safety (FuSa) aspects considered by the ISO26262, it is useful to describe how these
interact with all the other safety aspects.

Moreover, two conceptual instruments are described: the FIDES guide, to eval-
uate the probability of failure for the hardware components the item is composed of,
and an FMEA manual [5], to assess the impact of the possible failures the designed
item can embed or avoid the presence of defects it can embed.

1.3.1 Overview and position of Functional Safety in the au-
tonomous driving framework

Achieving Functional Safety is not a stand-alone process, but shall be integrated
alongside (autonomous) system safety, vehicle safety, cyber-security, dynamic driv-
ing functions intended functionalities, and quality management. The fig.1.7 shows
how these aspects interact to each other.
The involved standards are:

• System Safety

– UL 4600
Standard for Evaluation of Autonomous Products, released in April 2020.

• Vehicle Safety

16



1.3 – Functional Safety

– FMVSS
National Highway Traffic Safety Administration (NHTSA) issues Federal
Motor Vehicle Safety Standards (FMVSS) to implement United States
Congress laws.

– NCAP
Rules released by the independent agencies of the New Car Assessment
Program.

• Cyber-security

– SAE J3061
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems, released
in January 2016.

– ISO/SAE DIS 21434
Road Vehicles - Cybersecurity Engineering, released in February 2020.

• Dynamic Driving Function

– ISO/PAS 21488
Road vehicles — Safety of the intended functionality, released in January
2019.

– ISO/TR 4804
Road vehicles — Safety and cybersecurity for automated driving systems
— Design, verification and validation, released in December 2020.

• Functional Safety

– ISO 26262
Road vehicles — Functional safety, released in November 2011, lastly
updated in December 2018.

Functional Safety (FuSa), which has a central role in this dissertation, considers
the absence of unreasonable vehicle operation risks.
Moreover, the ISO 262626 considers only the risks associated with possible malfunc-
tions of Electrical and Electronical (E/E) components embedded into road vehicles.
In other words, the safety of the nominal functionality is not in the scope of FuSa,
which places itself alongside the safety of the nominal behaviors expected from the
dynamic driving function (addressed by UL 4600 for automated or autonomous ve-
hicles and by ISO/PAS 21488 SOTIF for ADAS). The end goal to achieve FuSa
is to design a system able to react on time and in the proper way to the external
world in every situation, also in case of failures affecting its components.

17



Introduction

Quality Management
ISO 9001 - IATF16949

System Safety
UL 4600

Vehicle safety
FMVSS - NCAP
Cyber-security

SAE J3061 - SAE 21434
Dynamic Driving Function

ISO/PAS 21488
ISO/TR 4804

Functional Safety
ISO26262

Figure 1.7: Relationship between the standars involved in the development of au-
tonomous driving systems

Mitigation of deliberate tamperings of the system and errors in the application
scope hypothesis are not topics of the FuSa, that addresses preventable misuse and
the absence of software/hardware defects or random hardware failures that can lead
to safety violations.

In any case, also the topics excluded by FuSa have to be taken into consideration,
inside the adopted quality management (QM) framework, during all the conceptu-
alization, design, production, maintenance, and decommissioning of safety-relevant
systems.

Evolution of the approach to achieve Functional Safety

This section is about the evolution of the process to achieve functional safety.
The discussion starts from the ISO26262 approach, released in 2011, targeting FuSa
of non-autonomous vehicle. After that, it is considered the one from the ISO/PAS
21488, released in January 2019 to keep into account the safety of the intended
functionality (SOTIF) of ADAS and vehicles classified at least as L2 in the SAE
(see section 1.2.1) or supervised in the ECR (see section 1.2.2) and the newer one,
released in April 2020 in the UL 4600, designed for vehicles up to L5 of SAE or
Autonomous in the ECR one.

The main difference between the ISO26262 concept and the newer ones is that
the first considers deterministic software, where each software unit behaves in a de-
terministic manner. In contrast, the last two addresses software developed through

18



1.3 – Functional Safety

machine learning approach, in where a complete description of the possible scenar-
ios in the real world is not possible. To better explain the differences in the HARA
processes of these standards, figures 1.8, 1.9, and 1.10 show their interaction with
design, testing, and deployment. These figures have been adapted from [6].

ISO 26262 The ISO26262 [7] is a standard dedicated to achieving FuSa in the
automotive industry.
It was published in its first edition in 2011, then updated in 2018.
Due to its central role in this dissertation, it is described in chapter 2. Section
2.1 describes the Safety Lifecycle, section 2.2 details the Concept Phase, section
2.3 is about the Functional Safety Concept (FSC), section 2.5 tell of the Technical
Safety Concept (TSC), section 2.4 describes the development at the system level,
section 2.7 explains how the design of safe hardware, while section 2.11 discuss the
development of safe software.

The approach to achieve FuSa proposed by ISO26262 is a traditional one. It
is based on a Hazard Analysis and Risk Assessment (HARA), similarly to the
approach presented in the IEC 61508.
It bases the required rigor for subsequential activities on an Automotive Safety
Integrated Level (ASIL). The assigned level represents the associated risk level
and, subsequentially, the safety integrity needed to perform functionalities of the
considered item.

The safety analysis is performed as described in the following.
The hazards list is obtained from the engineers’ knowledge, literature, or similar
items.
After the hazard list has been obtained, a risk assessment process is performed
(based again on the engineers’ knowledge) to assess the risk level for each one of
the hazards in terms of three risk parameters: severity, exposure, and controllability.
From the list of hazards, Safety Goals (SGs) have to be derived. Each of these SGs
is associated with an ASIL level depending on the risk level associated with the
hazards to which the driver or the people surrounding the vehicle can be exposed
if the SG is violated.

As the controllability risk parameter is taken into account, it is simple to under-
stand how the presence of a human driver is crucial in the risk assessment, making
the ISO26262 not suitable for autonomous driving vehicles (the only solution is to
associate the most restrictive controllability level), since there is no driver at all.

As shown in fig.1.8, the only feedback to the design phase is the HARA. After
that, no other feedbacks are expected. It can be suitable for normal vehicle func-
tions, like ABS, Cruise Control, airbags, where the environment is wholly known a
priori and the software developed to behave in a deterministic way. Hence, it does
not need any update to expect some newer calibrations or functionalities.

19



Introduction

Design

Hazard
Analysis

Figure 1.8: The HARA process inside the ISO26262 framework. Figure adapted
from [6].

ISO/PAS 21488 The approach proposed by the ISO 26262 is insufficient not
only when there is no driver but also when the environment is not completely
known a priori. In those cases, the software is designed relying on machine learning
approaches. Since it is not possible to keep into account all the possible cases it
is possible to encounter in the real world after the deployment, it is necessary to
extend the FuSa approach by also keeping into account the so-called Safety of the
Intended Functionality (SOTIF).
Three different moments are considered: design, testing, and deployment.
The design starts from the results of the HARA phase, as in the ISO26262. How-
ever, the testing has a different role concerning the ISO26262, where it is all about
proving the absence of SGs violations. ISO/PAS 21488, with its concept of safety of
the intended functionality (SOTIF), requires to question the nominal functionality
as well, as shown in fig.1.9.

When a disagreement w.r.t. the safe behavior is found, modifying the software
to solve the found issues is necessary. The software update has to be done contin-
uously during the vehicle lifecycle, hence to deploy them, an automatic Over The
Air (OTA) updating system is needed. It poses novel challenges on cybersecurity
aspects since the involved software is safety-relevant.
In the SOTIF framework, errors are defined as violations of Key Performance In-
dicators (KPIs).
The KPI-based approach is advantageous when non-deterministic software units,
like those based on machine learning approaches, are adopted. An example can be
Lane Assist, which is based on computer vision.
This is sufficient since the driver is still responsible for the vehicle’s safety, and
he/she cannot rely upon the assistance system.

UL 4600 The approach followed by ISO26262 and ISO/PAS 21488 is not suffi-
cient for those cases in where the vehicle has to drive by itself, without any human
intervention.

20



1.3 – Functional Safety

Design

SOTIF
triggering

events

Testing Deployment

Hazard
Analysis

Recalls

Driver
Experience

Figure 1.9: The HARA process inside the ISO/PAS 21488 (SOTIF) framework.
Figure adapted from [6].

In this case, a new approach, based on safety case(s) proposed in the UL 4600, has
to be adopted.
In this framework, as shown in fig.1.10, the design, testing, and deployment phases
are linked to a Safety Case.

Design

SOTIF
triggering

events

Testing Deployment

Hazard
Analysis

Safety Case
Incidents and
loss events

Run-time
safety monitor

Figure 1.10: The HARA process inside the UL 4600 framework. Figure adapted
from [6].

21



Introduction

Claim

Argument 2

Sub-Claim 2A

Sub-Argument 2A

Evidence 2A

EooC Interface

EooC Interface

Sub-Argument 2B

Evidence 2B

…

Ven
dor

pro
per

tar
y

Figure 1.11: The structure of a UL 4600 Safety Case, with an EooC. Figure adapted
from [6].

The safety case, as shown in fig. 1.11, is a gerarchical structure composed of
Claims, Arguments and Evidences.
Each argument of a claim can be split in sub-claims when needed.
Claims (or sub-claims) are properties of the system, for example, keep a sufficient
safety distance from the preceding vehicle.
Arguments are descriptions of why the claim is valid, for example, Detect preceding
vehicle(s), measure the distance from it, and act properly on brakes when needed.
The Evidence is a list of supporting arguments, like tests, analysis, simulation, etc,
to demonstrate that the considered claim is properly implemented.

A concept similar to the Safety Element out of Context (SEooC) (see section
2.2.3) of the ISO 26262 is contained into UL 4600, under the name of Element out
of Context (EooC).
It can be applied to the various class of components, like hardware components,
software units, sensors, trained neural networks, etc.
EooC is shipped with a safety case fragment. Its vendor does not need to expose
the entire safety case but, similarly to the safety manual of the ISO26262, it has to
provide an interface containing: properties and characteristics, assumptions that
the system must complain, fault model(s) used for the assessment, a partial UL
4600 clause coverage, and an assessment report.

The metric to obtain feedbacks on implementations is the Safety Performance
Indicators (SPI). SPIs have to be associated to claims or sub-claims to measure

22



1.3 – Functional Safety

their validity.
A claim can be perfect (required 100% of SPI success), or can be defined as a target
percentage.
During tests, an SPI value violation means the safety claim is invalid; hence they
monitor the validity of the safety case.
Root causes of safety claims violation can be:

• execution defects into the design process;

• design defects;

• hazards non considered or improperly managed;

• SOTIF analysis gaps;

• presence of bias in training data (for machine learning approaches);

• evidence gaps or defects;

• errors in the assumption.

KPIs and SPIs

The differences between Key Performance Indicators (KPIs) and Safety Perfor-
mance Indicators (SPIs) are summarized in fig. 1.12.

KPI vs. SPI
Is the car working the way
you think it should work?

How many time is the car
exceeding the assigned risk
budged, invalidating the
argument for why is your car
safe?

Figure 1.12: Summary of the differencies between KPIs and SPIs.

The KPIs are about the accuracy and precision of the claim implementation,
expressed in statistical terms. For sensors, KPIs can be the detection rate, the
signal-to-noise ratio (SNR), expressed in terms of average and variance.
The SPIs, instead, are more focused on safety of the functionality expressed by the

23



Introduction

considered claim. For example, an SPI can be the number of consecutive frames
containing false negatives, like an undetected obstacle on the road, or the number
of times the car violates the minimum clearance distance to an obstacle. In these
terms, SPIs can also consider concurrent multi-sensor detection failures or losses of
calibration.

1.3.2 FIDES
FIDES is a guide, released in 2004 and updated in 2009 by various companies

from the aerospace industry, to assess the probability of random hardware failures
of the components3 included in the considered hardware design. This guide is
described in section 2.8.

1.3.3 AIAG&VDA FMEA manual
This manual [5], jointly released by AIAG and VDA in June 2019, describes

how to perform the Failure Mode and Effect Analysis (FMEA) for automotive
applications.

This process, done during the concept phase (see 2.2) of the ISO 26262, has not
to be confused with the Failure Mode, Effects, and Diagnostic Analysis (FMEDA)
(see section 2.7), performed to assess the reliability of the hardware design, as
described in section 2.10.

1.4 Technical contributions on this dissertation
This dissertation proposes various technical contributions on functional safety

aspect. These are needed to increase the dependability of microcontroller-based
electric and electronics components in charge of performing safety-critical tasks.

The central idea of all these contributions is the simulation. These can be
summarized into three different topics (see fig.1.134):

• simulation-based FMEDA, with six proposals;

• simulation-based HARA, with a unique proposal;

• real-time software validation, with three proposals.

3The term component is used here with the definition indicated in the ISO 26262 standard.
It is possible to find a vocabulary to avoid confusion between ISO 26262 and FIDES in section
2.8.2.

4The figure shows the phases of the ISO26262 safety lifecycle where the proposals can be
applied. A detailed description of the Standard can be found at 2.

24



1.4 – Technical contributions on this dissertation

Simulation-based 
HARA Simulation-Based FMEDA

Can analyze:
• HW failure effect
• SW mitigation capabilities

Real-time SW 
validation

Can analyze:
• SW nominal performances
• SW mitigation capabilities

Handmade FMEDA
Can analyze:
• HW failure effect

Useful for ADASs, like:
• Lane Assist
• Emergency braking
• Park Assist
• Adaptive Cruise Control

Useful for all safety-critical 
applications like:
• ADAS
• Powertrain electronics
• Lighting
• Other body/comfort functions

Useful for all time-critical 
applications like:
• ADAS
• Powetrain electronics
• ABS
• Lighting

Figure 1.13: Topics discussed in this dissertation, with common application on
automotive items and their position into the ISO26262 safety lifecycle.

1.4.1 Proposals that contribute to improving the FMEDA
The FMEDA is described, by the ISO26262 part 6 (HW development), as a

technique to verify if a hardware design reaches the required reliability metrics
(reported in tab.2.7), based on the ASILs (see section 2.2) of the functions it is in
charge of.
The contributions presented on this topic are mainly applied to automotive industry
case studies. Notable exceptions are the two last proposals, described in sections
3.9 and 3.10, which are about, respectively, to an industrial and a mobile robotic
application.

FMEDA is mandatory from the ISO26262 to all the safety-relevant electronics,
but industries also apply it to not safety-relevant comfort/body functions of cars to
improve the availability of these systems and, consequently, customer satisfaction.

1.4.2 Proposals that contribute to improving the HARA
The hazard analysis and risk assessment is a crucial phase of the ISO26262

safety lifecycle. It is performed during the concept phase (described in part 3 of
the Standard). It aims to define the safety goals (see section 2.2) for the item under
development and associate an ASIL to each of them. This level is proportional to
the maximum risk level the people inside or surrounding the vehicle are exposed to
if the safety goal is violated.

The development of this approach started from the methodologies proposed to
perform the simulation-based FMEDA. These are described in the section 3.6 of

25



Introduction

this dissertation.
They have been adapted to HARA. This analysis is performed during the concept
phase so before the item’s schematics have been designed. The lack of schematics
makes it necessary to obtain models based only on the vehicle’s behavior. Moreover,
the failure modes are described only in terms of erroneous behaviors of the affected
item.

Thanks to these models, and a vehicle-level simulator, it is possible to assess how
the effects of the wrong behaviors of the item can affect the entire vehicle and hence
driving safety. The ISO26262 requires performing the assessment considering three
different risk parameters: severity, controllability, and exposure. Their combination,
by means of the determination matrix shown in fig.2.5, leads to an ASIL level
associated with the considered hazard. The proposed approach allows determining,
thanks to the simulation results, two of them: severity and controllability.

The main application of these techniques in the automotive industry is to test
and validate ADASs.

1.4.3 Proposals that contribute on improving real-time soft-
ware validation

Real-time software validation is crucial for safety-critical embedded systems
with hard real-time requirements.

These tests aim to verify that the embedded software, considered as the appli-
cation components integrated with the device drivers and other supporting compo-
nents, can run inside the allotted time slots without deadline misses and provide
the right results.

The core of this approach is the real-time simulator, composed of a software
infrastructure that can manage the communications between a host computer, pro-
viding the HMI, and a real-time computer, that is a special-purpose device in charge
to run the plant model in a real-time manner and to provide the plant responses
to the device under test.

Real-time software validation has been widely applied to closed-loop control
systems in almost all industrial sectors. For this scope, on the market are available
plenty of off-the-shelves tools. In the literature, such tests are called as Hardware-
In-the-Loop (HIL), as described in the section 2.11.5 of this dissertation. It is
evident that for these kinds of applications, there is no room for improvements.

But, following the current market trends, it is possible to find out that, for at
least three different applications domains, there are no proposals to perform HIL
testing on them:

• automotive body control modules [8], described in section 5.1;

• mixed-criticality avionic systems [9] [10], described in section 5.2;

26



1.5 – Structure of this dissertation

• multi-agent robotic systems [11], described in section 5.3.

The contributions on mixed-criticality and multi-agent robotic systems may seem
unrelated to the automotive industry, but interest in these applications is gaining.

Real-time software validation is mandatory and well discussed in the literature
for almost all safety-relevant electronics. Due to the difficulties of finding actual in-
dustry applications using these techniques, we decided to demonstrate the approach
on benchmark from other market fields. However, mixed-criticality systems allow
reducing the number of ECUs inside cars (for cost reduction), while the multi-agent
strategy is helpful to improve the cooperation of the connected cars with respect
to other vehicles and the infrastructure.

1.5 Structure of this dissertation
The rest of the dissertation is composed as follows.
Chapter 2 describes how items have to be designed inside the ISO26262 frame-

work.
Chapter 3 describes the achieved results on the topic of simulation-based FMEDA.
Chapter 4 describes the achieved results on the topic of simulation-based HARA.
Chapter 5 describes the achieved results on the topic of real-time SW Validation

techniques.
Chapter 6 draws the conclusion of this dissertation for the various topics.
Finally, Appendix A describes the achieved results on the topic of Machine

Learning (ML) Applications. Due to the choice not to include ML on the main
track of the thesis, this chapter also contains its concluding paragraph.

27



28



Chapter 2

Items development inside the
ISO26262 framework

This chapter describes the state of the art of functional safety in the automotive
industry. It is composed as follows.
Section 2.1 explains the ISO26262 safety lifecycle, providing information about the
structure of the Standard (see section 2.1.1), functional safety management (FSM)
(see section 2.1.2) and confirmation measures (see section 2.1.3).
Section 2.2 describes the concept phase (part 3 of the ISO26262) explaining its first
two main phases item definition and hazard analysis and risk assessment. The
third and last main phase, about the writing of the Functional safety concept, is
described in section 2.3.
The section 2.4 explains the workflow for the development at the system level (part
4 of the ISO26262), while section2.5 describes how to prepare the Technical Safety
Concept.
Sections 2.6 explains the Failure Mode and Effect Analysis conducted at the system
level, at the same time of the hazard analysis and risk assessment.
Section 2.10 clarifies the differences between the Failure Mode and Effect Analysis
and the Failure Mode, Effects, and Diagnostic Analysis performed during the hard-
ware design phase, described more in details into the sections 2.7 and 2.8 about
the product development at the hardware level (part 5 of the ISO26262). Section
2.9 describes fault injection.
Section 2.11 describes the product development at the software level (part 6 of the
ISO26262).

29



Items development inside the ISO26262 framework

2.1 Safety Lifecycle

2.1.1 Structure of the ISO26262
The ISO26262 is structured as shown in fig. 2.1.

Figure 2.1: The ISO26262:2018 structure

2.1.2 Functional Safety Management
Functional Safety Management (FSM) is the core of the ISO26262 since it is

needed to implement the safety lifecycle. It is not a standalone process to be added
inside the workflow of a company, but it can be considered as an add-on to the
adopted Quality Management (QM)1 system.
In particular, the availability of a well used QM process based on ISO 9001 and
IATF 16949 is a precondition and shall be used in combination with ISO 26262,

1Most adopted standards on QM are: ISO9001, QM9000, SPICE, CMMI, and IATF16949.

30



2.1 – Safety Lifecycle

ISO/PAS 21448, ISO/SAE AWI 21434, and UL 4600, depending on the level of
automation required by the vehicle. Hence, FSM is the enhancement of the quality
requirements needed to consider the Functional Safety aspects.

The FSM can be conceptually split into two sections: a project independent
and a project-specific one. About the project independent requirements, we have
to consider:

• education and qualification measures with the aspects of functional safety
(safety culture);

• how to establish a company-specific safety lifecycle including all the needed
supporting processes;

• establish an additional process of continuous improvement on the functional
safety;

• the need to implement the ISO9001 and the IATF 16949 before the FSM.

Work products for project-independent FSM

Main WPs to manage the project-independent FSM aspects are:

• organization-specific rules and processes for FuSa;

• evidence to demonstrate the management of employees’ competence level;

• evidence to demonstrate the QM system implemented inside the company;

• rules to report safety anomaly when identified.

A detailed description of these documents exulate from the purposes of this disser-
tation.

Activities for project-specific FSM

For each project the company intends to start, it is required to prepare a safety
plan.
The safety plan describes all the activities needed to achieve the FuSa.
Each one of these activities has to be described through:

• the objective of the activity;

• necessary results of other activities such as input document for the phase;

• the list of people responsible for the safety activities;

• date and duration of the safety activities;

31



Items development inside the ISO26262 framework

• the required resources;

• the interfaces to the suppliers;

• the identification of the corresponding WP documentation.

Other than that, the safety plan has to describe the verification and validation
activities2 or refer to the Validation and Verification (V&V) plan, specifying:

• verification methods chosen for each safety requirement (in terms of review,
analysis, simulation, and test);

• the corresponding verification steps shall be defined for every development
phase;

• policies to guarantee that the fulfillment of the requirements is validated by
using a test;

• document the test results.

Project-Specific Safety Management Roles

For each project, these roles are required:

• Safety Manager. He/she is responsible for the FSM. In particular, he/she
prepares and maintains the safety plan and monitors that the activities are
in line with it. Moreover, he/she has to plan the safety activities in the de-
velopment subphases of the safety life cycle, monitor the progress of safety
activities, maintain records, assign the safe activities for the team, and man-
age the deliverables of the safety activities.

• Project Manager : He/she appoints to the Safety Manager and is responsible
for ensuring that the safety activities are performed and verifies that the
compliance with the ISO26262 is achieved.
Another task is to allocate, during the project, sufficient resources for the
safety-related activities.

• Safety Team: the team responsible for performing the safety-related activities.

• Safety engineer : a member of the Safety Team.

2ISO26262:2018 part 8 clause 10

32



2.1 – Safety Lifecycle

2.1.3 Confirmation measures
The conformation measures have to be performed keeping into account degree

of independence requirements. The notations are defined as follows [7]:

• -: No requirements and no recommendations for or against regarding this
confirmation measure.

• I0: The confirmation measure should be performed. However, if it is per-
formed, different people shall perform it in relation to the people responsible
for creating the considered work product.

• I1: The confirmation measure shall be performed by different people in rela-
tion to the people responsible for creating the considered work product.

• I2: The confirmation measure shall be performed by people who are indepen-
dent of the team that is responsible for the creation of the considered work
product (for example, people not reporting to the same direct superior).

• I3: The confirmation measure shall be performed by a team that is indepen-
dent regarding management resources and release authority from the depart-
ment responsible for creating the considered work products.

In tables 2.1 and 2.2 are listed the required verification measure for each one of
the Work Product expected from the safety lifecycle.

33



Items development inside the ISO26262 framework

Ve
rifi

ca
tio

n
re

vi
ew

su
bj

ec
t

A
pp

lie
s

to
Q

M
A

SI
L

A
A

SI
L

B
A

SI
L

C
A

SI
L

D
H

az
ar

d
an

al
ys

is
an

d
ris

k
as

se
ss

m
en

t
of

th
e

ite
m

X
*

Fu
nc

tio
na

lS
af

et
y

C
on

ce
pt

o
X

Te
ch

ni
ca

lS
af

et
y

C
on

ce
pt

o
X

Sy
st

em
ar

ch
ite

ct
ur

al
de

sig
n

o
X

Sy
st

em
o

X
It

em
an

d
sy

st
em

in
te

gr
at

io
n

o
X

In
te

gr
at

io
n

an
d

ve
rifi

ca
tio

n
sp

ec
ifi

ca
tio

n
o

X
Sa

fe
ty

va
lid

at
io

n
sp

ec
ifi

ca
tio

n
o

X
H

ar
dw

ar
e

sa
fe

ty
re

qu
ire

m
en

t
o

X
H

ar
dw

ar
e

de
sig

n
o

X

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
ve

rifi
ca

tio
n

m
ea

su
re

.
Fr

om
[7

].
o

N
o

re
qu

ire
m

en
t

an
d

no
re

co
m

m
en

da
tio

n
fo

r
or

ag
ai

ns
t

X
re

qu
ire

d
X

*
Sc

op
e

of
th

is
re

vi
ew

al
so

in
cl

ud
es

ha
za

rd
ou

s
ev

en
ts

ra
te

d
as

Q
M

.

34



2.1 – Safety Lifecycle

Ve
rifi

ca
tio

n
re

vi
ew

su
bj

ec
t

A
pp

lie
s

to
Q

M
A

SI
L

A
A

SI
L

B
A

SI
L

C
A

SI
L

D
Ev

al
ua

tio
n

of
th

e
eff

ec
tiv

en
es

s
of

th
e

ar
ch

ite
ct

ur
e

of
th

e
ite

m
to

co
pe

w
ith

th
e

ra
nd

om
ha

rd
wa

re
fa

ilu
re

s
o

o
+

+
+

+
+

Ev
al

ua
tio

n
of

th
e

sa
fe

ty
go

al
vi

ol
at

io
n

du
e

to
ra

nd
om

ha
rd

wa
re

fa
ilu

re
s

o
o

+
+

+
+

+
So

ftw
ar

e
sa

fe
ty

re
qu

ire
m

en
ts

an
d

th
e

re
fin

ed
ha

rd
wa

re
-s

of
tw

ar
e

in
te

rfa
ce

re
qu

ire
m

en
ts

o
+

+
Sy

st
em

ar
ch

ite
ct

ur
al

de
sig

n
o

+
+

So
ftw

ar
e

un
its

o
+

+
So

ftw
ar

e
in

te
gr

at
io

n
o

+
+

So
ftw

ar
e

co
m

po
ne

nt
qu

al
ifi

ca
tio

n
o

+
+

Ev
al

ua
tio

n
of

ha
rd

wa
re

el
em

en
ts

o
+

+
D

ep
en

de
nt

fa
ilu

re
an

al
ys

is
o

+
+

Sa
fe

ty
an

al
ys

es
o

+
+

Ta
bl

e
2.

2:
O

ve
rv

ie
w

of
ve

rifi
ca

tio
n

m
ea

su
re

.
Fr

om
[7

].
o

N
o

re
qu

ire
m

en
t

an
d

no
re

co
m

m
en

da
tio

n
fo

r
or

ag
ai

ns
t

+
R

ec
om

m
en

de
d

+
+

R
eq

ui
re

d

35



Items development inside the ISO26262 framework

2.2 Concept Phase
The concept phase addresses possible hazards caused by misbehaviors of safety-

related E/E systems, keeping into account also the interactions between these sys-
tems.
This phase has a Functional Safety scope; hence hazards related to electric shock,
fire, smoke, heat, radiation, toxicity, flammability, corrosion, and similar, are not to
be considered unless directly caused by malfunctioning behaviors of the considered
E/E system, in the following referred as the item.

The main phases (and work products to be prepared) during the concept phase
are:

• Item Definition

• Hazard Analysis

• Functional Safety Concept (FSC)

This phase’s primary goals are: to determine the Hazards, the Safety Goals (SG)
associating to each one of them an Automotive Safety Integrated Level (ASIL).
Moreover, it is necessary to determine a list of Functional Safety Requirements
(FSR) for our item, and finally to provide a draft block diagram indicating the
responsibilities, in terms of SG and ASILs, for each one of the blocks of the designed
item.
In the rest of the dissertation, the Hazard Analysis phase will be called Hazard
Analysis and Risk Assessment (HARA).

Fig.2.2 illustrates the hierarchical approach by which the SGs are determined
as the result of HARA. The Functional Safety Requirements are then derived from
the SGs allocated to the System Architectural Design (described in part 4 of the
standard).

2.2.1 Item definition
In the definition, the item (or the system) under safety analysis is described.

The aim of this phase is defined in ISO26262:2018 part 3 clause 5. It has to provide
sufficient information about the item, its functionalities, dependencies, and inter-
action with other items/systems to support an adequate understanding, enough to
perform the HARA phase and write the FSC.

2.2.2 Hazard Analysis and Risk Assessment
The HARA has to be performed as described in ISO26262:2018 part 3 clause 6.

It aims to identify and classify the hazardous events caused by the item’s mal-
functioning behaviors and establish their risk potential to formulate the Safety

36



2.2 – Concept Phase

Results of Hazard Analysis and 
Risk Assessment

Safety Goal N

…

3-6
Safety Goal 1

3-6
Assigned ASIL

Safety Goal 2
3-6

Assigned ASIL Assigned ASIL

Functional safety
requirement3-7 Assigned

ASIL
Allocated
to element

Functional safety
requirement3-7 Assigned

ASIL
Allocated
to element

Functional safety
requirement3-7 Assigned

ASIL
Allocated
to element

Figure 2.2: Hierarchy of Safety Goals and Functional Safety Requirements. Figure
adapted from [7].

Goals with their corresponding ASILs related to preventing or mitigating hazardous
events, avoiding unreasonable risks.

HARA can be split into 5 phases, as shown in fig.2.3.

1. Situation 
Analysis and 

Hazard 
Identification

•Systematic specification of the 
driving situation

2. Hazard 
Classification

•Derivation of the risk 
parameters in terms of severity, 
exposure, and controllability

3. ASIL 
determination

•Combining the risk parameters using 
the Risk Matrix

4. Safety 
Objectives 
Definition

•Description of the Safety Goals

5. Review
•Check for 
completeness, accuracy 
and consistency of the 
classifications

Figure 2.3: HARA subdivision in phases.

37



Items development inside the ISO26262 framework

Situation Analysis and Hazard Identification

Situation Analysis and Hazard Identification (SI/HI), together with the Hazard
Classification (see 2.2.2), is performed with the end goal to determine the risk pa-
rameters (severity, exposure, and controllability) for each one of the hazards found.

It is performed by a systematic specification of the driving situations, followed by
an inductive analysis to determine all the hazards caused by the possible predictable
misbehavior of the considered item.

To complete the analysis, designers shall provide a list of the failures and hazards
considered out of the scope of the SI/HI.

HAZard and OPerability analysis (HAZOP) HAZOP is applied to deter-
mine potential malfunctions and potential vehicle-level hazards.
This method has been developed in heavy industry to get hazards from functions
related to processes (chemical, industrial, etc.) for which the keywords were made.
It is widely adopted in the automotive, with modifications of the keywords to adapt
them to vehicle functions.

A possible set of guidewords to evaluate malfunctions can be [12]:

• NO OR NOT: the negation of the design intent, function not provided.

• MORE THAN INTENDED: quantitative increase with respect to the de-
sign/set intent.

• LESS THAN INTENDED: quantitative decrease with respect to the de-
sign/set intent.

• NOT REQUESTED: functionality is provided when not required.

• INCORRECT DIRECTION: opposite functionality is provided.

• EARLY: relative to the expected deadline.

• LATE: relative to the expected deadline.

• LOCKED: functionality is provided even after that the request is removed.

Scenarios To obtain a list of scenarios, a set of Operational Situations and Op-
erating Modes have determined.

Designers can obtain Operational Situations and Operating Modes by analyzing:

• Local variability: road type, traffic, and environmental characteristics;

• Drivers and vehicle variables: speed, maneuver, driver conditions, etc.

and then, combining them by changing variable parameters:

38



2.2 – Concept Phase

• Location: parking area, intersection, city, country road, highway;

• Speed: low, medium, high, very high (> speed limits in highways);

• Traffic conditions: the presence of pedestrians, other vehicles preceding, on-
coming, or following.

• Maneuvers: light/heavy braking, emergency stop, light/heavy acceleration,
overtaking, cornering, turning, starting to move, driving straight.

• Driver on board or off board.

The cartesian combinations of these Operational Situations and Operating Modes
with the variable parameters lead to an enormous number (thousands) of possible
Scenarios. Still, some of them are incoherent (like starting to move/emergency
braking, braking/acceleration, high speed/driver off board, etc.) or forbidden by
traffic laws (like intersection/overtaking).
It would seem that the more detailed the list of Scenarios, the more you will be able
to provide a better description. However, unfortunately, designers must take into
account that, by fragmenting them excessively, it would be challenging to evaluate
the correct exposure, incurring the so-called exposure trick.
To avoid this, it is better to provide only evaluations of meaningful Scenarios where
a possible hazard can impact. The hazards have to be considered one at a time, and
a rationale shall be provided to describe the qualitative analysis of all variables.

Hazard Classification

The Hazard Classification derives the risk parameters in terms of severity, ex-
posure, and controllability.

To determine the parameters, similar public functional safety analysis and other
literature material shall be considered, adapting them, thanks to the analysis per-
formers’ knowledge, to the specific case under analysis.
The standard itself provides a list of examples.

Severity To determine the severity risk parameter, it is possible to use the defi-
nition reported in table 2.3.

Controllability To determine the controllability risk parameter, it is possible to
use the definition reported in table 2.4.

Exposure There are two ways of determining the probability, as shown in fig. 2.4.
Hence, the standard contains two different tables, one considering probability classes
of exposure in time, the other the probability of exposure inside a specific opera-
tional situation.

39



Items development inside the ISO26262 framework

Class S0 S1 S2 S3
Description No injuries Light and mod-

erate injuries
Severe and life-
threatening in-
juries (survival
uncertain) or fa-
tal injuries

Life-threatening
injuries (sur-
vival uncertain)
or fatal injuries

Reference for
single injuries
(from AIS scale)

AIS 0 and less
than 10% proba-
bility of IAS 1-6

More than 10%
probability of
AIS 1-6

More than 10%
probability of
AIS 3-6

More than 10%
probability of
AIS 5-6

Table 2.3: ISO 26262-3 Table B1: Examples of severity classification.

Class C0 C1 C2 C3
Description Controllable in

general
Simply control-
lable

Normally con-
trollable

Difficult to con-
trol or uncon-
trollable

Driving factors More than 99 %
of the average
drivers or other
traffic partici-
pants are able
to avoid harm

Between 90 %
and 99% of the
average drivers
or other traf-
fic participants
are able to avoid
harm

Less than 90 %
of the average
drivers or other
traffic partici-
pants are able
to avoid harm

Table 2.4: Adapted from ISO 26262-3 Table 6 Class of controllability.
The row Driving factors is extracted from table B.6.

To better explain the difference, in the table 2.5 are reported the definitions in
terms of Duration and frequency from tables B.2 and B.3 of part 3 of the ISO26262.

ASIL determination

The technical risk reduction measures to achieve an acceptable residual risk are
classified into four classes called Automotive Safety Integrity Level (ASIL): A, B,C
, D.
A critical remark is that the ASIL always refers to a specific safety goal (and safety
requirement).

The level is obtained by combining the three risk parameters using the risk
matrix shown in fig.2.5.

40



2.2 – Concept Phase

A function fails

Failure effect is 
directly 
recognizable

Failure effect is only 
recognizable in defined 
situations

Failure is the trigger

Situation is the trigger

E parameter classification in 
the duration i.e., time range 
(how long)

E parameter classification in 
the frequency range 
(how often)

Figure 2.4: Exposure classification in duration or frequency.

Class E1 E2 E3 E4
Description Very low proba-

bility
Low probability Medium proba-

bility
High probability

Duration (% of
average operat-
ing time)

Not specified ≤ 1% of average
operating time

1% to 10% of av-
erage operating
time

≥ 10% of av-
erage operating
time

Frequency of sit-
uation

Occurs less often
than once a year
for the great ma-
jority of drivers

Occurs a few
times a year
for the great
majority of
drivers

Occurs once a
month or more
often for an av-
erage driver

Occurs during
almost every
drive on average

Table 2.5: Adapted from ISO 26262-3 Table 6 Class of controllability.
The row Duration is extracted from table ISO26262:2018-3 B.2
The row Frequency of situation is extracted from table ISO26262:2018-3 B.3.

MSIL for motorvehicles

The second revision of the ISO26262 standard defines, for motorcycles, a quali-
tative way to assess the technical risk reduction measures to achieve an acceptable
residual risk subdivided into 4 classes. These are called Motocycle Safety Integrity
Level (MSIL).
MSIL can be A, B, C, D where MSIL D is comparable with ASIL C.
Like ASILs, also MSILs always refers to a specific safety requirement (and safety
goal). The mapping between MSIL and ASIL is shown in table 2.6.

41



Items development inside the ISO26262 framework

Probability
class

Controllability class
C1 C2 C3

Se
ve

rit
y c

las
s

S3

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S1

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

Figure 2.5: ASIL determination matrix.

MSIL ASIL
QM QM
A QM
B A
C B
D C

Table 2.6: Mapping of MSIL to ASIL.

Safety goals definition

Once all the hazards have been assessed, assigning them an ASIL level, it is
necessary to define the item’s safety goals (SG).
These are statements of what shall not happen, for example, the item does not
apply unintended acceleration to the vehicle.

To each one of the defined safety goals it has to be assigned an ASIL (the ASIL
is assigned to the safety goals and not to the item). This ASIL shall correspond to
the higher one given to the hazards to which the people inside or surrounding the
vehicle are exposed if the considered safety goal is violated.

42



2.3 – Functional safety concept

Independent review

The HARA phase has to be checked for completeness, accuracy, and consistency
of the classifications.
This review, as required by table D.1 of the ISO26262:2018 part 2 clause 2, shall
be performed, independently from the ASIL determined, by an independent per-
son, regarding management, resources, and release authority, from the department
responsible for the HARA phase itself (I3 level as described in 2.1.3).

2.2.3 Safety Element out of Context
Until now has been considered an item/system to be integrated into the con-

text of a particular vehicle. This assumption is not always valid, since to realize a
safety-related item, Commercial Off-the-Shelf (COTS) components can be adopted,
or the designed item can be a COTS by itself.
In these cases,we can consider them as Safety Element out of Context (SEooC).
A SEooC is a safety-related element not developed for a specific application (in-
tended as functionality/item/vehicle). Examples can be microcontrollers (elabo-
ration units not designed in the context of a particular item) or entire systems,
like transaxles and instrument clusters (not designed in the context of a specific
vehicle).

In other words, a SEooC is designed under the assumption that it is intended
to be used in multiple different applications, as long as the designers that are inte-
grating it can establish the validity of its design hypothesis during the integration
of the SEooC.
In developing a SEooC, its ASIL capabilities are determined by considering its com-
pliance with the assumed safety requirements assigned with a given ASIL.
Therefore, the SEooC must be designed and produced following all the requirements
specified by the ISO26262 standard for the assigned ASIL.

The hypothesis must be made regarding the intended functionality and use con-
text, including the expected external interfaces. These shall address a superset of
items so that the SEooC can be used later in multiple different, still similar, ap-
plications. The validity of the assumptions and the compatibility of the external
interfaces will be established in the actual item/system/vehicle context while inte-
grating the SEooC. The relationship between assumptions and SEooC is shown in
fig.2.6.

2.3 Functional safety concept
The functional safety concept (FSC) describes how to achieve the safety goals.

43



Items development inside the ISO26262 framework

Assumptions

Assumed
requirements

Assumptions on 
design external

to SEooC

SEooC
requirements

SEooC
design

Figure 2.6: Relationship between design assumptions and SEooC development.
Figure adapted from [7].

The FSC contains conceptual descriptions of the functional interactions required
to achieve the safety goals. These are written in the form of Functional Safety
Requirements (FSR).

FSC goal is done, from a practical point of view, to derive a set of FSRs and
allocate them to a (preliminary) architecture of the item or external measures.

It is convenient to provide also a state chart describing the various states where
the item can find itself. These states should be classified as:

• nominal operating modes;

• emergency operating modes;

• degraded operating modes;

• safe states.

A good description includes explanations about the transitions between the
states.

2.3.1 Functional parameters
The functional parameters to be specified are:

• Operating conditions;

• Fault tolerance times and intervals;

• Transitions to safe states or degraded/emergency operation modes;

• Functional redundancies.

44



2.3 – Functional safety concept

Warning and degradation concepts

Safety engineers can define a functionality as fail-safe or fail-operational. In a
fail-safe system, the safe state consists of disabling the functionality, while in a fail-
operational one, it continues to provide the functionality with reduced (degraded)
performances.
The process to provide a degraded performance without losing the functionality is
called graceful degradation.

Emergency running operation modes When by design, the item has to reach
a safe state for a specific failure, it is necessary to specify how to reach and maintain
it (when operations are needed).

Degraded operation modes When by design, for a specific failure, the item
has to react in a fail-operational manner, it is necessary to specify how to reach the
degraded state itself, its limitation with respect to the nominal operation state, and
how to maintain it (when operations to maintain the degraded state are needed).
Moreover, it is necessary to describe how to reach a safe state if another failure
occurs, preventing the degraded operation mode from continuing.

Driver’s actions that contribute to achieving the safety goal

If some driver’s operations are expected, these shall be described in the FSC.
Moreover, it is necessary to provide evidence about the fact that the average driver
reacts in this way, the effects in case he/she does not react at all or reacts in an
improver way, and eventually how to train drivers to respond appropriately.

2.3.2 Safety architecture
The FSC has to specify, through a block diagram representation, the functional

redundancies, and the individual functional block’s independence level.
For each of these blocks, it has to be specified its ASIL requirements and, when

required, the chosen ASIL decomposition.

2.3.3 ASIL decomposition
The ASIL decomposition is the distribution of the ASIL requirements over sev-

eral elements of the item. It requires sufficient independence of the decomposed
element. The rules for the decomposition are provided by the standard as shown
in fig.2.7.

45



Items development inside the ISO26262 framework

Figure 2.7: ISO26262-9 Figure 2 Classification scheme of ASILs when decomposing
safety requirements. Figure adapted from [7].

2.3.4 Functional Safety Requirements
The objective to keep in mind while describing the FSRs is to maximize the

vehicle’s availability, ensuring, at the same time, the safety of its operation.
The particular critical points for this purpose are selecting the safe states based on
the identified potential failure modes and specify how and when trigger transitions
between states, degraded operating modes, and safe states have to be performed.

Failure Classification

A failure can be classified (see fig.2.8) as systematic or random (hardware).
More in detail:

• Systematic failures are those, existing in the manufactured product, related in
a deterministic way to a certain cause, that can only be eliminated by a change
of design, manufacturing process, operational procedures, documentation, or
other relevant factors.
Software defects (see section 2.11.1) can raise only systematic failure.

46



2.3 – Functional safety concept

• Random failures are those that did not exist in the manufactured product and
can occur unpredictably during the lifetime of a hardware element following
a probability distribution (see section 2.8.4).
These failures can be permanent if the affected component is damaged, so
it is impossible to restore its characteristics, or transient, when the affected
component restarts to work correctly after a certain amount of time. Soft
errors of memories are examples of transient faults.

The FuSa approaches to systematic and random failures are different.
For the first group, the goal is prevention, thanks to a rigorous application of the
safety plan activities to avoid defects. For the latter, the goal is to implement safe
reactions when a random fault occurs.

Failure

Systematic Random (only
HW)

Permanent

Transient

Figure 2.8: Failure classification between systematic and random (hardware).

Moreover, as shown in fig.2.9 two or more failures can be Independent or De-
pendent.
The independent ones are those whose probability of simultaneous or successive
occurrence PA|B can be expressed as the simple product of their unconditional
probabilities PA and PB, hence PA|B = PA · PB.
On the other hand, the dependent one are those that are not statistically inde-
pendent, i.e., the probability of the combined occurrence PA|B of the failures is not
equal to the product of the probabilities of occurrence of all considered independent

47



Items development inside the ISO26262 framework

failures PA and PB, hence PA|B /= PA · PB.
The dependend failures can depend on each other in two different ways. If a failure
of an element of an item results from a root cause, inside or outside of the element,
and then it causes a failure of another element or elements of the same or different
item, the failures have a cascading relations. As opposite, they can share a common
cause, when the failure of two or more elements of an item resulting directly from
a single specific event or root cause is either internal or external to all of these
elements.

Failure

Independent Dependent

Cascading

Common Cause

Figure 2.9: Failure classification between independent and dependent.

While cascade failure analysis can only be conducted by going into the merits
of the specific implementation chosen for the item (both in hardware and soft-
ware terms), the presence of common cause failures can be avoided by conducting
dependent failure analysis, as shown in fig.2.10.

Timing aspects of the Functional Safety

To achive functional safety, the designed item has to react appropriately (by
avoiding errors, as described in section 2.3.4), and on time: we have to consider the
timing aspects needed to deal appropriately with the system we want to control.

The important time intervals from the safety point of view are:
• Fault detection Time Interval (FDTI): Maximum time-span from the occur-

rence of a fault to the detection of a fault.

48



2.3 – Functional safety concept

Figure 2.10: Dependent failure analysis. Figure from [7].

• Diagnostic Test Time Interval (DTTI): the amount of time between the ex-
ecutions of online diagnostic tests by a safety mechanism (incl. duration of
the execution of an online diagnostic test).

• Fault Reaction Time Interval (FRTI): time-span from the detection of a fault
to reaching a safe state or to reaching emergency operation.

• Fault Handling Time Interval (FHTI): FHTI = FDTI + FRTI.

• Fault Time Tolerance Interval (FTTI) [7]: time-span in which a fault or
faults can be present in a system before a hazardous event occurs.

• Fault Reaction Time Interval (FRTI) [7]: the time span from the detection of
a fault to reaching the safe state . Injection time ti: the time (from the start
of the simulation) in seconds when the considered fault has been injected.

• Detection time td: the time (from the start of the simulation) in seconds when
the system has detected the considered fault.

• Diagnostic Time Interval tdti: the difference between the detection time and
the injection time, hence tdd = td − ti.

• Mitigation time tm: the time when the mitigation algorithm has brought the
system to a safe state.

• Mitigation delay tmd: the difference between the time when the mitigation
algorithm has been put the system in a safe state and when the fault has
been injected, hence tmd = tm − ti. It is needed that tmd ≤ FTTI.

A graphical representation of these time intervals is shown in fig.2.11.

49



Items development inside the ISO26262 framework

Figure 2.11: Time intervals relevant for safety. Figure from [7].

2.4 Implementation phases
Once the Technical Safety concept (see section 2.5) has been prepared and ver-

ified through the confirmation measures, it is possible to start the product imple-
mentation phases.
The product implementation is managed by parts 4 (system design), 5 (hardware
design), and 6 (software development) of the ISO26262 standard. As shown in
fig.2.1 the hardware and software development proceed in parallel, except for the
Hardware/Software Interaction (HSI) analysis, which is the interface between the
hardware and software world and has to be performed during the system-level anal-
ysis by both hardware design and software development team.

HSI is the most critical point regarding item reliability, especially when random
hardware failure detection and mitigation are implemented in software.
Moreover, also the hardware-implemented protection mechanisms (like overcurrent
protection in motor control) can expect some software action after their interven-
tion.

A summary of the Concept Phase (see section 2.2) documents, their interaction
to each other, with the Funtional Safety Concept (FSC) (see section 2.3), the Tech-
nical Safety Concept (TSC) (see section 2.5) and the development at the system,
hardware, and software level are shown in fig.2.12.

50



2.4 – Implementation phases

Ite
m def
.

HA
RA

FS
C

TS
C

Ot
her

tec
hn

olo
gie

s

Ex
ter

na
l

me
asu

res

Co
ntr

olla
bil

ity

Product developmentatthe systemlevel

Product 
development

atthe HW level
Product 

development
atthe SW level

Co
nfi

rm
ati

on
me

asu
res

Release
for production

HSI

Fi
gu

re
2.

12
:

Sy
st

em
le

ve
ld

ev
el

op
m

en
t

pr
oc

es
s

w
ith

th
e

m
ai

n
in

vo
lv

ed
do

cu
m

en
ts

.

51



Items development inside the ISO26262 framework

2.5 Technical safety concept
Once we have the FSC, it is possible to start the development at the system

level, following the guidelines described by the ISO26262 part 4.
In particular, part 4-5 describes the general topics for the product development at
the system level, the planning of validation, and activities needed for safety audits
and assessment.

From the design point of view, the main document to produce during this phase
is the Technical Safety Concept (TSC).
This document derives from the FSR and the draft architecture reported in the
FSC.
In particular, it has to list, in the form of Technical Safety Requirements (TSR):

• mechanism to identify and control faults in the item/system itself;

• mechanism to identify and control fault in other systems;

• measures to achieve or maintain the safe state (transition, fault tolerance,
and emergency running interval);

• measures for implementing the warning and degradation concepts.

Other than these main points, it has also to describe:

• specifications for the item validation, in particular, separate validation plans
related to the safety requirements;

• mechanisms for latent faults avoidance, with a particular emphasis on the
test intervals;

• control mechanisms for latent faults (safety measures for dual-point failures).
In particular, these mechanisms must satisfy ASIL B for ASIL D safety goals,
ASIL A for ASIL B and C SGs, QM for ASIL A safety goals.

2.6 FMEA
The FMEA manual [5] considered into this dissertation has been jointly released

by AIAG and VDA in June 2019.
The process proposed into it is divided into seven steps.

The first three are about system analysis. Those are planning and preparation (1),
structure analysis (2), and function analysis (3). The next three steps regard the
failure analysis and risk mitigation and arefailure analysis (4), risk analysis (5),
and optimization (6).

52



2.7 – Hardware design and FMEDA

The last phase is about risk communication (7) through results and safety-related
documentation. The flow is shown in fig.2.13.

Figure 2.13: The 7 steps described by the AIAG and VDA FMEA manual. Figure
from [5].

The manual describes the design FMEA to assess designs, and the process
FMEA, to evaluate production processes. For this dissertation’s sake, we are in-
terested only in the design one. Phases 2, 3, 4, 5, and 6 differ between the two
flavors.

To avoid duplicating the description, the FMEA process of this manual and how
to aid it by a simulation-based approach are described in section 3.10.2.

2.7 Hardware design and FMEDA
The standard requires in its part 4, table 1, to perform a System Architectural

design analysis by means of deductive and inductive methodologies3.
The Failure Mode, Effects, and Diagnostic Analysis (FMEDA) is an inductive

methodology adopted to assess the possible consequences of random hardware fail-
ures that can affect the item. Another technique, FIDES, is needed to determine
the random hardware failure probability (called failure rate in the following) for
each one of the components of the design, and described in section 2.8, have to be
integrated into the ISO26262 framework.

In particular, the adoption of inductive methodologies is required to be per-
formed for all the ASIL levels.
Of these, the Failure Mode, Effect, and Diagnostic Analysis (FMEDA) has the

3Deductive and inductive techniques to examine the relationships between fault (or defect),
error and failure effects differs from each other by the methodology applied to the examination.
In the deductive techniques, the analysis starts from the failure effects up to their cause, while
in the inductive ones, the analysis starts from fault models up to a prediction of their effects.
Commonly used inductive approaches are FMEA, FMECA, and FMEDA, while the most used
deductive methodology is the Fault Tree Analysys (FTA). In this dissertation are analyzed only
inductive techniques.

53



Items development inside the ISO26262 framework

Component
Failure rate

[FIT]
Failure mode Failure mode rate 

of occurrence Failure mode effect

R1 2.25
Open 84% ?

Increase x2 8% ?
Decrease x2 8% ?

C1 0.26
Interruption 40% ?
Short circuit 10% ?
Decrease x2 50% ?

R2 2.25
Open 84% ?

Increase x2 8% ?
Decrease x2 8% ?

U1 0.75 Interruption of any pin 50% ?
Short of adjacent pins 50% ?

U2 0.59
Internal calculation error 50% ?
Interruption of any pin 25% ?
Short of adjacent pins 25% ?

Bill of 
materials
(BOM)

From failure mode catalog (e.g. IEC 
62380, MIL-HDBK-217, others…)

Based on the designer knowledge
of the circuit’s functionalities

Evaluated with 
a failure rate 
determination
method (e.g. 
FIDES)

Figure 2.14: The content of the outcome result of FMEDA analysis.

purpose of determining the hardware reliability metrics to verify that the design
fulfills the ASIL requirements.

2.7.1 Classification rules
The core of the FMEDA is the failure mode effect classification. The end result

of FMEDA is a table (see fig.2.14), where for each component of the item’s Bill Of
Material (BOM) is indicated its failure rate (computed by FIDES, see section 2.8)
and are listed its failure modes, the failure modes rate of occurrence and the failure
modes effects.

The goal of the FMEDA is to classify the failure mode effects by assessing if
they can be detected and can violate a Safety Goal by themselves, as shown in
fig.2.15.

2.7.2 Rates and metrics
Failure rate (of a component)

The failure rate, indicated in the following as λc, is the occurrence rate of random
hardware failures that can affect a component c expressed in FIT4.

4For the definition of FIT, see 2.8.4.

54



2.7 – Hardware design and FMEDA

Can the presence 
of a fault f be 

detected through 
a functional 

safety mechanism 
the item embeds?

Can the presence of 
an undetected fault f
provoke violation of

a Safety Goal?

YES
NO

NO YES

Safe Dangerous

Detected

Undetected

𝛌𝐒𝐃𝐟

𝛌𝐒𝐔𝐟

𝛌𝐃𝐃𝐟

𝛌𝐃𝐔𝐟

Figure 2.15: The failure mode classificaton criteria.

From λc of all the components, as the output of the hardware verification,
engineers shall provide evidence of their item’s robustness by computing the random
hardware, single point, and the latent fault metrics and showing that the metrics
fulfill the item ASIL’s target values.
Since a single component can fail in various ways, each one of them called a failure
mode, it is convenient to define an item failure mode rate of occurrence λf , from
which some rates and metrics are defined for a given failure mode f .
The λf for a component c are computed by multiplying λf by the considered failure
mode rate of occurrence f .

Item’s failure rate

The item failure rate, λ is the occurrence rate of the entire item expressed in
FIT. It is defined as the sum of the failure rates of all the components (or of all the
components failure modes) of the item Bill Of Material (BOM), as in the eq.2.1.

λ =
Components∑︂

∀c

λc =
Components failure modes∑︂

∀f

λf (2.1)

Dangerous Undetected (Single point fault) rate

The dangerous undetected rate λf
DU is the occurrence rate of faults that are not

detected through any of the functional safety mechanisms the item embeds, and

55



Items development inside the ISO26262 framework

that can lead by themselves (hence single point) to a violation of one or more safety
goals, thus causing harms to the item users.
The single point fault rate spf is defined as the sum of all the dangerous undetected
rates, as in the eq.2.2.

spf =
Components failure modes∑︂

∀f

λf
DU (2.2)

Dangerous detected (Residual fault) rate

The dangerous detected rate λf
DD is the occurrence rate of faults that are de-

tected through the functional safety mechanisms the item embeds. Anyway, if
undetected, the detection mechanisms obviously cannot trigger their mitigation
strategies, and these can lead to a violation of one or more safety goals (hence
residual), thus causing harm to the item users.
The residual fault rat0 e rf is defined as the sum of all the dangerous detected rates,
as in the eq.2.3.

rf =
Components failure modes∑︂

∀f

λf
DD (2.3)

Safe Undetected (Latent fault) rate

The safe undetected rate λf
SU is the occurrence rate of faults that are not de-

tected (hence latent) through any of the functional safety mechanisms the item
embeds and that cannot lead by themselves to a violation of one or more safety
goals. Anyway, items with faults of this type are penalized in the FMEDA since in
the event another one or even more faults occurs, the combination can violate one
or more safety goals, thus causing harm to the item users.
The latent fault rate lf is defined as the sum of all the safe undetected rates, as in
the eq.2.4.

lf =
Components failure modes∑︂

∀f

λf
SU (2.4)

Safe Detected rate

The safe detected rate λf
SD is the occurrence rate of faults detected through the

functional safety mechanisms the item embeds and that cannot lead by themselves
to a violation of one or more safety goals. It is defined as in the eq.2.5.

lf =
Components failure modes∑︂

∀f

λf
SD (2.5)

This rate is not used in the computation of the failure metrics.

56



2.8 – FIDES

2.7.3 Failure metrics
Given the above single point, residual and latent fault rates, three metrics are

defined.

Random hardware fault metric

rhf = spf + rf (2.6)

Single point fault metric

spfm = 1 − spf
λ

(2.7)

Latent fault metric

lfm = 1 − lf
λ

(2.8)

ASIL-related metrics limits

The hardware design verification is completed when the computed metrics fullfill
the requirements indicated in table 2.7 for rhf, spfm, and lfm based on the target
ASIL level.

Metric ASIL B ASIL C ASIL D

rhf ≤ 10−7h−1

≤ 100 FIT
≤ 10−7h−1

≤ 100 FIT
≤ 10−8h−1

≤ 10 FIT
spfm ≤ 90% ≤ 97% ≤ 99%
lfm ≤ 60% ≤ 80% ≤ 90%

Table 2.7: Random hardware failure metrics limits.

2.8 FIDES
The methodology to compute the probability of hardware random hardware

failures has been obtained from the FIDES guide 2009, released in September 2010.

57



Items development inside the ISO26262 framework

2.8.1 Guide structure
The FIDES guide is composed of two parts:

• predicted reliability evaluation guide;

• reliability process control and audit guide.

For the sake of this dissertation, only the first part of the guide is considered.
It has two objectives:

• make a realistic evaluation of the reliability of electronic products;

• provides a specific tool for the construction and control of the reliability
model.

2.8.2 Definitions
In this subsection are indicate some definitions useful to understand the rest of

the discussion.
These are: reliability, system, subsystem, equipment, subassembly, electronic compo-
nent, product, item, failure cause, failure mechanism, reliability contribution factor,
and failure mode.
Please note that some FIDES definitions are false friends with respect to the
ISO26262 ones. In these cases, the nearest concept inside the ISO26262 is indi-
cated.

Reliability

It is defined as the capability of an item to perform a required function under
given conditions for a given time interval.
Reliability is usually expressed qualitatively by appropriate characteristics. In some
applications, one of these characteristics is an expression of this capability by a
probability called reliability.

System

It is a set of equipment capable of making or supporting an operational role. A
complete system includes all equipment, hardware, software, service, and personnel
necessary for its operation so that it is sufficient to itself in its usage environment.
For example, automobile, aircraft, a microcomputer.

58



2.8 – FIDES

Subsystem

A subsystem5 is a set of equipment capable of performing an operational function
of a system. The subsystem is a major subdivision of the system.
For example, an ABS in an automobile, a GPS in an aircraft.

Equipment

This term denotes a group of items capable of performing a complete function.
For example, a computer in the ABS systems or a screen in a GPS.

Subassembly

This term denotes an item or an assembled group of items capable of performing
a function of the equipment.
For example, an electronic board in a computer, a hard disk.

Electronic component

This term denotes an element that will be assembled with other elements to
perform one or several functions.
For example, a transistor, resistor, capacitor.
This definition also includes the printed circuit board (PCB).

Product

It is the assembled entity for which reliability is being studied.

Item

An item6 is an elementary entity, not broken down, for which designers can
study the reliability.

Failure cause, mechanism, mode, and reliability contribution factors

The definitions of Failure cause, mechanism, mode, and reliability contribution
factors are shown in fig.2.16.

5It is almost equivalent to the item in the ISO2626.
6It is almost equivalent to the component in the ISO2626.

59



Items development inside the ISO26262 framework

Failure cause
Set of circumstances associated 
with the design, manufacturing 
or use that caused a failure

Failure mode
One of the possible states of an
item in failure for a
required function

Failure mechanism
Set of “cause-effect” relations of 
a physical, chemical, or other
process that relate the root cause
of the failure to the failure mode

Reliability
Contributing Factor
Manufacturing process or other
parameter exerting an influence
on the reliability of a component
or a system

Figure 2.16: Relationship between failure cause, mechanism, mode, and reliability
contribution factor. Figure adapted from FIDES.

2.8.3 Model coverage
The FIDES methodology takes into account:

• failures derived from development or manufacturing errors;

• overstresses (electrical, mechanical, thermal) related to the application and
not listed as such by the user (the occurrence of the overstress remained
concealed);

while not deal with:

• software failures;

• unconfirmed failures;

• failures related to preventive maintenance operations that were not carried
out;

• failures related to accidental aggressions when identified or proven, like failure
propagations, use outside its specifications, bad manipulations).

2.8.4 Reliability prediction
The reliability prediction given by the FIDES methodology is a failure rate λ.
The life of a product can be broken down into three periods, as shown in fig.2.17:

• infant mortality, early failures;

60



2.8 – FIDES

• useful life, characterized by an approximately constant failure rate;

• wear-out, characterized by an increase of the failure probability due to wear.

Infant 
mortality Maturity Wear out

Normal life/useful life periodλ(t)

t
Figure 2.17: The bathtube curve, showing the three periods of the life of a product.

The assumption done into the FIDES manual is that during useful life, the
failure rate of E/E components is independent of the functioning hours of the
product. The concept of random failure describes this assumption.
Since only random failures are taken into account, infant mortality and wear-out
periods are excluded from the prediction.

• The infant mortality period can be avoided thanks to burn-in processes during
the production phase if properly managed during the development of the
equipment or system;

• The wear-out period of the E/E components covered by FIDES is sufficiently
far in the future compared with the useful life of the equipment or the system.
Of course, checking this assumption is a key point during the design of a
product. With substitutions of components every certain time of life/usage,
preventative services can be required to fulfill this assumption.

Failure mechanism

Microscopically, very few failure mechanisms strictly satisfy a constant rate type
occurrence law. However:

• the dispersion of many failure mechanisms, although they are accumulative
and therefore increasing with time, is such that they can be deemed to be
constant over the life period considered;

61



Items development inside the ISO26262 framework

• the accumulation of large number and diverse components, even on a single
board, will be close to a constant;

• age differences between equipment in the same system or stock of pieces of
equipment will tend to make the rate constant for an observer at the system
level.

Time To Fail

In some exceptional cases, designers can use the physics of failures to predict the
probabilistic life values for a component called Time to Fail. This type of prediction
is complementary to the reliability prediction but cannot replace it.

Failure In Time

The random hardware failure probability is expressed, coherently as in the
FMEDA, in Failure In Time (FIT).
1 FIT corresponds to a probability of 1 failure over 1 billion hours, hence

1FIT = 1
10−9 h

2.8.5 Predicted reliability evaluation guide
Inputs for the FIDES analysis

To compute the component7 FITs, these information are required.

Environment and usage conditions

• Operating temperature.

• Amplitude and frequency of temperature cycles.

• Vibration amplitude.

• Relative humidity

• Ambient pollution level.

• Exposure to accidental overstress (depending on the application type).

7FIDES speaks about item but, to avoid confusion, I will use the term component following
the ISO26262 vocabulary.

62



2.8 – FIDES

Data on product definition

• Part list.

• Technical or technological characteristics of items8.

Application-related information

• Stress or overstress levels on component (dissipated power, stress under power,
etc.).

• Local aggravation (or moderation) to temperature or another environmental
parameter.

2.8.6 General model
The general model (see eq.2.9) computes the component failure rate taking into

account physical and process contributions.

λ =
(︄∑︂

Physical contributions
)︄

·
(︄∏︂

Process contributions
)︄

(2.9)

λ is the failure rate, ∑︁ Physical contributions represents a mainly additive construc-
tion term comprising physical and technological contributing factors to reliability,
while ∏︁ Process contributions represents a multiplication term, that represents the
impact of the development, production and operation process on reliability.

The equation eq. 2.9 can be rewrite as:

λ = λPhysical · ΠPM · ΠProcess (2.10)

where λPhysical represents the physical contribution, ΠPM (PM for Part Manufac-
turing) represents the quality and the technical control over the manufacturing of
the item, while ΠProcess represents the quality and technical control over the devel-
opment, manufacturing and usage process for the product containing the item.

2.8.7 Life profile
A complete description of the FIDES guide is outside of the purposes of this

dissertation.
A central concept of the FIDES guide is the life profile.

In determining a life profile for a reliability prediction, it is necessary to think about

8Items are elementary entities, not broken down, for which designers can study the reliability.
It almost corresponds to the components in the ISO 26262.

63



Items development inside the ISO26262 framework

what are causes that can produce failure during the item9 life.
It requires an engineering approach to reliability, and it is crucial for reliability
evaluation since it strongly influences prediction accuracy.

The FIDES model has been designed to be sensitive to physical contributing
factors. Choosing high or severe values when the life profile is being constructed
to remain conservative will eliminate a large proportion of the result’s predictive
value.

Safety engineers can limit the detail level and the accuracy of the life profile
description to the accuracy level with which the product life can be predicted.

General description of the life profile

The first step is to describe it from a qualitative point of view, identifying:

• the precise type of platform when the product10 is integrated into a system11;

• the location in the platform, if applicable;

• the geographic or climatic region considered;

• the type of use.

Choice of phases

The choices of phases must be sufficient to describe the different usage situations
as completely as possible.

To enable a good understanding of a complex life profile, it may be useful to
indicate, for each phase:

• a clear title;

• a descriptive paragraph.

A specific phase must be determined every time environmental conditions change
significantly in terms of the stresses encountered.
There is no universal method for breaking it down into phases. Usually is relevant
to perform the analysis by considering a typical product usage day.

9Component in the ISO26262
10Item or System in ISO26262
11Vehicle in the ISO26262

64



2.9 – Fault injection

Phase duration

It is recommended that designers should build up life profiles with a total du-
ration of 1 year, namely 8760 hours.
The objective is to determine failure rates expressed in calendar FITs, which is
recommended rather than using the failure rate expressed in other units, like per
hour of operation or per hour of mission. The phase duration must be expressed
in hours and chosen to describe the product’s activity as realistically as possible.

Since the failure rate λ has to be expressed in FIT (1 failure per 109 hours), it
is necessary to weigh the various phases duration in terms of hours per year, as in
eq. 2.11.

λPhysical =
Phases∑︂

i

(︄
Annual timei

8760 · λi

)︄
(2.11)

Applicability domain

The applicability domain, hence the physical contributing factors to be identified
for each one of the phases, are:

• temperature (and thermo-electrical) stress;

• temperature cycling12;

• humidity;

• vibration;

• chemical stress;

• application type.

In general, the reliability prediction is only applicable in the environment domain
for which the component is qualified.

2.9 Fault injection
A widely-used technique for evaluating the sensitivity of a system to faults (in

other words, to assess if a fault can lead to an error and hence to a failure) is fault
injection.

12To determine the thermal fatigue of the item (component in the ISO26262).

65



Items development inside the ISO26262 framework

Fault injection (FI) can be defined as the deliberate introduction of a fault into
a working system in order to evaluate the effects of such fault on it. From an op-
erative point of view, it consists of inserting misbehaviors that emulate the fault
(by a fault model) of choice and observing how the target system reacts to it when
processing a workload.
FI techniques are used in different fields, from aerospace to automotive, with dif-
ferent goals: validation of fault-tolerant solution, dependability validation, failure
prediction, and estimation of the fault tolerance level.
FI simulation is used to simulate a fault in a system even such fault is not actually
present or to inject the fault into a simulated system.

In addition to hardware faults, in recent years, the increasing complexity of
software, even in terms of code lines, led software faults to become the leading
cause of computer systems’ failure. The software fault injection was first adopted
in [13], but it is possible to find subsequent works in literature, like [14], that often
focus on the impact that a software defect (bug) might have on a critical system
and obtain the certifications when required.

2.10 Differencies between FMEA and FMEDA
In this dissertation, the terms FMEA and FMEDA, although often confused

in the literature due to the blurred boundary between the two processes, are used
differently.

FMEA is the process carried out before and during the ISO 26262 concept
phase (and therefore during the design at a high level of abstraction of the item
considered) to predict what its failures may be (described at the behavioral level)
and which measures can be taken into consideration already from this phase to try
to mitigate them.

FMEDA, on the other hand, is the process described in the section 2.7 and
required by ISO 26262 part 5, to evaluate the reliability of the designed hardware (in
conjunction with the embedded software used within its computing components).

2.11 Software Development for Embedded Sys-
tems

Developing software in charge to perform safety-critical tasks inside the frame-
work of the ISO 26262 requires following the strict development process described
in ints part 6.
The main specification work product involved in SW development is the Config-
uration management plan. From it, a Software Safety Requirements Specification
document is prepared.

66



2.11 – Software Development for Embedded Systems

Once we have the latter document, a Software Verification Plan is written to de-
scribe how to test the software and, after the software is implemented and tested,
a Software verification Report is prepared as proof of the conducted test and veri-
fication activities. The relations between these documents are shown in fig.2.18.

SW
Safety

Requirements
Specification

SW
Verification

Plan
SW 

Verification
Report

Configuration
management

plan

Figure 2.18: Relations between the WPs from Configuration management plan to
Software verification Report.

The Configuration management plan (CMP) is prepared taking into account the
Safety plan, the Organization-specific rules for functional safety, and the applicable
prerequisites of the lifecycle phases.
The CMP specifies the work products needed to reproduce the SW:

• models (and/or) Source Code13;

• software development environment (including its configurations);

• software deliveries (both source code and binaries);

13Models in case the Model-Based Software Design approach is adopted.

67



Items development inside the ISO26262 framework

• drivers;

• operating system;

• evidence of the various development activities.

Focusing on the software implementation process, the expected work products,
written alongside the already presented Software Safety Requirements Specification
are: Software Architectural Design Specification, Hardware/Software Interaction
Specification and a SW Unit Design Specification for each one of the software unit
envisaged in the architecture. The relations between these documents are shown in
fig.2.19.

Software
Safety

Requirements
Specification

Hardware/
Software

Interaction
specification

Software
Architectural

Design
Specification

SW
Unit

Design
Specification

Figure 2.19: Relations between the WPs to be prepared during the software imple-
mentation process.

The software is a particular product, different from the hardware components
since it cannot be affected by manufacturing errors, defective components, faults,
or aging. However, it can contain defects or systematic errors14.

14The commonly used term to define software defects or systematic errors is bug, but it is not
used in the ISO 26262 standard. In the rest of the dissertation, regarding software, the terms
fault, systematic error, defect, and bug, are used as synonyms to indicate a flaw in a component or
system that can cause it to fail systematically in performing its required function, or an incorrect
statement or data definition.

68



2.11 – Software Development for Embedded Systems

2.11.1 Vocabulary
These terms are defined in a specific way when we are dealing with software

development inside the ISO26262 framework.

Component

It is a non-system level element that is logically or technically separable and
comprises more than one HW part or SW unit.

HW part

It is a portion of an HW component at the first level of hierarchical decompo-
sition (example: resistor, CPU of a microcontroller).

Element

It can be a system, a component (HW or SW), a HW part, or a SW unit.

Embedded SW

It is the fully integrated software to be executed on a processing element.

Software Component (SWC)

A composition of one or more software units.

Software Unit

An atomic-level SW component of the SW architecture that can be subjected to
standalone testing15.

2.11.2 V-model
The V-diagram, shown in fig.2.20, is a widely adopted flow to manage software

development.
It is beneficial for developing safety-critical software since it clearly shows how to
map the development phases (on the left side) with the verification phases (on
the right side) and the interaction needed to solve the defects found during the
verification phase.

15The author would like to highlight how the possibility of testing is kept into account into the
definition of Software Unit due to the central role of testing in the ISO 26262.

69



Items development inside the ISO26262 framework

Access protection
(MPU, MMU, 
stack overflow)
Freedom from 
interferences

Model-based 
design
Handwritten code

Static code 
analysis (MISRA)

Code
completeness

Functional verification/
Analysis of timing
behavior

Integration tests

Unit
testing

System 
Design

Architectural 
Design

Sw Design 

Realization

System 
testing

Integration
testing

System and item integration

SW testing

SW verification

Figure 2.20: The V-diagram of the software development.

2.11.3 Model-based software design
A novel approach adopted to develop automotive software is the Model-Based

Software Design (MBSD).
The idea is to realize a semi-formal model of the software units and architectural
design in an environment like Mathworks© Simulink©. These models can be run
in the modeling environment, perform simulation, and translate thanks to Code
Generator Tools, like Mathworks Simulink Coder© and dSpace© Targetlink© into
C or C++ source code.
The obtained code can be integrated by hands alongside the handwritten code, or it
is possible to generate a complete embedded software thanks to Platform Support
Packages. The first approach is widely used in the production-level code, while
the latter for Rapid Control Prototyping (RCP). The following describes how to
test software inside the FuSa framework, also considering the MBSD approach.
Moreover, this description is useful since, in this dissertation, some algorithms
developed through MBSD are shown.

2.11.4 Software unit testing
As already described in section 2.11.1, the testing has a central role for FuSa.

It is so important that even the definition of software unit states that a software
unit is the minimum part of code that is standalone testable.
The goal of these tests is to avoid the presence of defects in the software that can
lead to systematic failures.

70



2.11 – Software Development for Embedded Systems

Various tests at various levels (unit, integration, system, see fig.2.20) have to be
performed. The lower level is unit testing, where a software unit is tested against
its requirement.

The idea is to define a software unit, hence implement it, then test the obtained
implementation. To test it, a complete set of stimuli have to be defined. To check if
all the cases are taken into account (stimulated), three metrics have been defined,
as described in the (see section 2.11.4).

Code coverage metrics

There are three different code coverage metrics:

• Statement coverage: the percentage of statements of a unit the test executed.

• Branch coverage: the percentage of branches of a unit the test executed.

• Modified condition/decision coverage (MC/DC): the percentage of the condi-
tions that affect independently the outcome of a unit the test executed.

Model-In-the-Loop (MIL)

MIL can be performed only on MBSD developed software. It consists of running
the SW unit inside the simulation environment on the development PC. It provides
information about the correctness of the implementation against its requirements.

Software-In-the-Loop (SIL)

SIL can be done on both MBSD or handwritten code, with different purposes.
In the first case, the output obtained in MIL is compared against the one obtained
by the automatically generated code, while in the latter, its purpose is to test the
handwritten code against its requirements.

Processor-In-the-Loop (PIL)

PIL is done by executing the source code on the target hardware. It can be
useful for two different purposes. The first is to verify if the toolchain is capable
of generating correct binaries (a particularly critical point is the compiler), while
the second is to allow measurements on the runtime required for the developed
software unit (see debug and trace), allowing optimization of the code without the
risk of introducing defects into the final code. This is also useful for measuring
the Worst-Case Execution Time (WCET), fundamental to running the software on
real-time computers.

71



Items development inside the ISO26262 framework

2.11.5 Software integration testing
Debuggers

In the previous paragraph, the main focus was verification, but we also want to
know how things are going, at runtime, inside the software. Usually, with integrated
development environments (IDE), it is simple to break the code execution and see
the memory content, but embedded systems do not have a keyboard or a screen.
Hence, the need to use external objects, called debugger, to interact with them.
Simpler debuggers can break the code execution and monitor a limited number of
variables on the programming computer. This approach can be adopted for most
of the project, but the need to insert breakpoints leads to breaking down the real-
time behavior of the software, making it not possible to debug while the target is
controlling the physical process.

Real-Time Testing

Performing the required operations on time has a crucial role in achieving FuSa,
as described in section 2.3.4.
Hence, the need to verify the correct timing of embedded software tasks.

Trace tools Thanks to debugging infrastructure embedded in some microcon-
trollers, more sophisticated debuggers offer the possibility to save the performed
operations on external memory and move them to the host pc. In this way, it is
possible, by observing what is going on in the data and address buses, analyze them
by an analysis tool, and reconstruct all the operations in a specific time window,
simplifying the debug operation.
Moreover, it allows to measure the runtime and to avoid instrument the code.
The most used device capable of tracing what is going on 32-bit ARM cores is the
Lauterbach Trace, with its host software called Trace32.

Hardware-In-the-Loop HIL is done to perform integration testing between the
various software units.
The software units are executed, integrated into the target platform alongside the
firmware components like device drivers. In this case, since all the embedded soft-
ware is loaded into the target, it is necessary to stimulate the item with signals
identical to the field from both the timing and the electrical points of view.

In other words, the idea is to "trick" the target that it is dealing with the real
world. It is possible by running a physical model of the controlled system on a
real-time computer and converting the simulation results into electrical signals by
output conditioning stages and digital-to-analog converters.
Similarly, the inputs to the simulation are adapted by input conditioning stages
and converted by analog-to-digital converters.

72



2.11 – Software Development for Embedded Systems

In this way, the signals are the same from the electrical point of view, and the
simulation of the plant, running in real-time, acts as the physical world.
A schematic representation, alongside a picture of the HIL system used on the
experiments described in section 5.2, published in the papers [9] and [10], is shown
in fig.2.21.

Based on the physical model of the controlled plant, this approach can appear
counterproductive since it requires more software development.
Two factors help to mitigate this disadvantage: on the one hand, models have to be
developed in any way to design the control algorithms and test them in MIL/SIL
approaches; on the other, it is possible to accelerate the model development by
adopting the MBSD to generate the model to be run on the real-time computer.
Moreover, since to perform HIL RCP devices are used, Platform Support Packages
are available on the market. Standard companion software (see section 5.1) used
to perform HIL are NI VeriStand, dSpace Controldesk, and LHP Panthera.

73



Items development inside the ISO26262 framework

Controller

Sen
sor

ss
tim

uli Conditioning

Real-time
simulation
system

Host computer

Model

Ac
tua

tor
com

ma
nd

s

Conditioning

Figure 2.21: HIL conceptual structure compared with a real implementation, based
on a National Instruments cRIO as the real-time simulator and a ZedBoard as the
controller.

74



Chapter 3

Simulation-based FMEDA

This chapter describes the contributions proposed during my Ph.D. course to
implement simulation-based approaches to perform the Failure Mode, Effects, and
Diagnostic Analysis (FMEDA).

The results shown in this chapter has been already published into seven papers
released from 2017 to 2021: [15], [16], [17], [18], [19], [20], and [21]. [21] is still under
review (april 2021).
Moreover, two Masters’ Degree thesis have been obtained from these activities. The
first has been written by Marco D’Auria [22] that collaborates to implement the
fourth proposal, published in [19], while the second has been written by Andrea
Passarino [40], that collaborates to implement the sixth proposal, contained into
the already unpublished manuscript [21].

The discussion, for each one of these proposals, has been split into eight points:

• proposed methodology;

• benchmark application;

• fault models;

• fault injection techniques;

• failure mode effects assessment;

• assessment of the embedded software detection and mitigation capabilities on
hardware failures;

• experimental setup;

• simulation results.

75



Simulation-based FMEDA

3.1 Industrial practice
The FMEDA (see section 2.7) is an industrial practice to compute, for a given

item implementation, its random hardware failure metrics (see section 2.7.3) re-
quired by the ISO26262-part 5. It starts from the Bill Of Material (BOM) and the
hardware design schematics to be verified. Then, resorting to hardware components
failure modes (FMs) rate catalogs, such as IEC 61709, and reliability calculation
models such as FIDES (see section 2.8), the components’ failure rates are computed.

To classify failure modes (one component can fail in more than one way) effects
among safe/dangerous and detected/undetected (see fig.2.15), designers inspect
the hardware schematics through inductive analysis. It is based mainly on the
designers’ knowledge and expertise on the circuit functionalities.

This approach is potentially error-prone and suffers from three shortcomings:

• with the growing complexity of embedded systems employed in safety-critical
applications, manual inspection of the schematic can become ineffective in
identifying all the possible misbehaviors;

• it is based on worst-case estimations, hence it can lead to overdesign;

• it is not easy to consider the detection and mitigation effects of the embedded
software.

Regarding the last point, as a matter of fact, the schematics to be verified often
includes integrated circuits (ICs), systems on chip (SoC), microcontrollers, micro-
processors, or DSPs. With the manual approach, it is challenging to consider the
contribution of the embedded software, which can affect the failure handling (how
the software contributes to the fault propagation) positively (mitigation) or nega-
tively.

When the process is completed, each component FIT λc is known and their
failure modes rates of occurrences, hence λf , and each failure mode (FM) has been
classified. It is possible to obtain λf

SD, λf
SU , λf

DD, λf
DU , hence to compute the

metrics required by the ISO26262 (see section 2.7.3). In the case the target metrics
values for the considered ASIL are not reached (see table 2.7), a redesign of the
item is needed.

3.2 The idea of automating the FME(D)A
In this chapter, the term FME(D)A is used instead of the more precise FMEA

and FMEDA to refer to the works present in the literature for the reasons explained
in the section 2.10. The concept intended by the authors of the presented works is
nearest to the FMEDA definition with respect to the FMEA one.

76



3.2 – The idea of automating the FME(D)A

The core idea on automating the FME(D)A process came from the paper [23],
where the authors describe their experiences in using fault injection to perform
some phases of the FMEA. Starting from the latter reference, the authors of [24]
applied a similar approach on a biomedical system, while in [25] it is described as
an automatic tool to estimate the hardware failures criticality.
All these three works lack in keeping into account the contribution of the embed-
ded software on the failure handling. This lack was the first reason for developing
a methodology capable of simulating both hardware components and embedded
software side by side. This aspect is essential as, as already seen in chapter 2,
hardware-software interaction analysis is crucial in the ISO26262 safety lifecycle
framework.
In the papers [26], and [27] it is presented a framework to perform FME(D)A at
the software level.
In particular, in [27], the impact that a software defect (bug) can have on other com-
ponents that depend on the corrupted code is evaluated, but without an analysis
on the validity of the injected faults1, which occurs in [28], where realistic soft-
ware faults are used, based on the most frequently occurring coding defects. This
methodology is multidisciplinary and borrows content from various fields of infor-
mation engineering (fault injection, fault modeling, simulation, electronic printed
circuit board design, embedded software development). Hence, a comparison with
similar proposals or against standard benchmarks is not possible.

3.2.1 Fault coverage measurement
Digital tests are graded (and compared to each other) using fault coverage

metrics. How to compute these metrics is well defined, thanks to the standard
IEEE 1804 and the market availability of various EDA tools, like Mentor Graphics
DefectSim™ and Synopsis TextMax™.

Also for software testing, statement, branches, and decision coverage metrics are
well defined and widespread accepted in the scientific community.

Unfortunately, analog tests are intrinsically more complicated with respect to
digital ones [29]. Hence, many approaches have been used in the last three decades,
yet nothing is standard. A standard is on the way, as the proposal IEEE P2427 [30].

1The term fault is used in this case referring to software, instead of defect, due to the use of
fault injection: in this specific case the text refers to inject transient random hardware failures
behaving as a wrong specific value inserted in the application text (instruction) or data memory
regions, and not in the deliberate instrumentation of a defect (bug) inside the source code. In the
rest of the chapter, the source code is considered as defect-free since the presence of systematic
failures is not kept into account in the FME(D)A analysis.

77



Simulation-based FMEDA

3.2.2 Fault models
Nowadays, the IEEE P2427 Working Group is underway to tackle this challenge

and define the standard.
The missions of the Working Group [29] are close to the needs of the ISO26262
FMEDA:

• Define the following processes:

– given a circuit, produce the failure modes list2;
– given a set of tests for that circuit, determine which defects are detected.

• Standardize the following information:

– definition and communication of defect models and detection criteria;
– reporting of defect coverage.

The IEEE P2427 Working Group’s fault model is defect-oriented, requires a circuit-
level (structural) model of the circuit to be applied, keeps into account defects3,
considers single failure at any given time and models failures considering only the
manufacturing flaws, under the assumption that a test that can detect zero-time
defects can be reused later in the life cycle.

The defects4 are considered as permanent and unexpected5. These can be mod-
eled in two different ways: [29] [31] [32] [33] :

• Catastrophic;

• Parametric.

The catastrophic defects are those one modelled as open or short circuits affecting
both components or the network topology. These can be obtained, in simulation,
by inserting switches between the terminals of the components or between nodes
that are unconnected by design (topological). Topological defects, in other words,
introduce further possible short circuits in the subsystem circuit diagram.
Even if the catastrophic defect models cover a significant number of possible sce-
narios, they are not sufficient to describe the complexity of analog circuit defects.

2The document [29], calls them universe of defects.
3A defect is an unintended significant change affecting a design intent primitive circuit element

or the connection between them. It is possible to consider it, in this dissertation, as a synonym
of failure mode.

4Failure modes.
5For the sake of this thesis, the term unexpected used in [29] can be considered as indicating

the concept of random failures, as described in the FIDES guide (see 2.8.4).

78



3.3 – Proposals

Hence the need to introduce the parametric defect models. These are described
as variations of components parameters (e.g., resistance, capacity) outside their
nominal ranges (defined as nominal value ± tolerance).

It is important to remark that in this dissertation only the catastrophic/parametric
classifications are from the IEEE P2427, while the used models are developed by
the authors of the various paper or from the literature, as specified for each proposal
in the relative fault model section.

At the moment, a widespread accepted standard about coverage computation
is not available; hence, no coverage metrics for analog tests are reported into this
dissertation.

3.2.3 Fault injection
The fault injection tecniques presented into these proposals are based on the

papers [34] and [35].
The authors of the following papers highlighted that fault injection make it possible
to achieve different goals:

• dependability validation [36];

• failure prediction at the item level [37];

• estimation of the fault tolerance level [38].

Moreover, the authors of [13] also consider when also the embedded software is
concerned, while in [14] is kept into account the effects that a software defect can
have on a safety-critical system.

From the fault injection point of view, the main novelties are the proposals of the
various setups to perform the injections inside the chosen simulation environments,
as described for each one of the proposals.

3.3 Proposals
To overcome the limitations of manual hardware design inspection, the proposals

described in this section have been devised.
When hardware design verification is started, it is therefore very likely that a model
of the item and a suitable set of workloads are available since they are used to
develop the control routines. These can be used as a starting point to improve
hardware verification.

79



Simulation-based FMEDA

3.3.1 Hypotesis
Safety engineers can make some assumptions about the architecture of the av-

erage automotive item6.
These items can be considered as composed of three stages, as shown in fig.3.1:

• Input conditioning stage, which is typically an analog circuit to adapt the
analog inputs the item acquires, from the environment or other items to the
input dynamics required by the processing stage embedded in the item;

• Processing stage, which is typically based on an SoC, microprocessor, or mi-
crocontroller the item embeds;

• Output conditioning stage, which is typically an analog circuit to adapt the
processing stage’s output dynamics to that required by actuators or other
items.

Input 
conditioning Processing Output

conditioning

Item
Inputs Outputs

+

-

R1

R2

C1

U1 U2

+

-

R3

R4
C2

U3

Figure 3.1: A general three stages structure for an item.

3.3.2 Evolution of the proposed approaches
The approach evolved over the years. Hence it can be described as six proposals,

from the first more straightforward iteration to the final one applied on the traction
system of a mobile robot. Figure 3.2 shows the relations between these proposals in
chronological order. The descriptions near the arrows explain the novelties between
the proposals.

6As described in the fifth and sixth proposals, it can be generalized to other application fields.

80



3.3 – Proposals

1st
proposal

2nd
proposal

3rd
proposal

4th
proposal

5th
proposal

6th
proposal

A simulation-based
FMEDA

Hand-made vs. 
simulation-based approach

From safety to mission
criticality: tradeoff between 

simulation duration and 
model complexity/precision

From item to 
vehicle-level classifications

Application to a 
mobile robotic case study

Possibility to simulate 
closed-loop control 
systems with actuators,
significative speed-up 
of the FMEDA process.

Comparison of the 
results obtained on 
the same item from 

both the classical 
handmade and the 

proposed simulation-
based approaches.

Possibility to
assess the 
software/vehicle 
interactions thanks 
to the vehicle 
simulator.

Possibility 
To assess with low 
simulation time the 
criticalities of subsystems’ 
FMs thanks to structural 
and behavioral models.

A real automation 
of FMEDA

Possibility to inject failures into 
actuators and mechanical 

components

Possibility to assess the 
mitigation capabilities 

of the embedded software
at the system level

Figure 3.2: Workflow of the simulation-based methodology evolution.
The descriptions near the arrows explain the novelties between the proposals.

First proposal - A simulation-based FME(D)A

The first proposal, presented in [15], investigates the technical viability of a
simulation-based FME(D)A.

The proposal is intended to analyze how to simulate the fault propagation to
an eventual error and hence a failure. The FMs effects are assessed thanks to the
simulation results.
For this purpose, the faults affecting input and output conditioning stages are
simulated, thanks to the fault models described in the following, resorting to a
SPICE-level simulator. Simultaneously, Mathworks Simulink is used to run the
software and analyze its contribution to fault propagations.
This propagation can be studied only from the input to the output conditioning
stages due to the lack of integration between the software environment and the
SPICE-level simulator. It prevents applying this first iteration of the approach to
closed-loop control systems.

The results obtained in this first iteration were encouraging but not yet effec-
tively applicable to an industrial project.

81



Simulation-based FMEDA

Second proposal - A real automation of FME(D)A

The first proposal [15] has many limitations. It demonstrated the viability of
aiding safety engineers to perform the ISO26262 FMEDA, but it requires much
manual work (to inject the failure and run the simulation) and make it difficult
to run the embedded software alongside the simulations in the case the item to be
assessed is a closed-loop control system.

To overcome these limitations, this second iteration, presented in the two papers
[16] and [18], proposes a new environment for automatic FME(D)A, allowing to
obtain:

• significant speedup of the analysis time due to centralizing the simulations’
management upon a MATLAB Script, since the SPICE-level simulations are
performed resorting to the Simulink Simscape toolbox [16]. This level of
integration with all tools running into the MATLAB/Simulink environment,
allowing the presence of automatic sabouter, fault list generator, and a useful
report generator to document the FME(D)A results automatically according
to the ISO26262 requirements;

• the possibility to assess FMs affecting closed-loop control systems and to
improve the classification rules [18] thanks to a model of the actuator (in this
case, an electrical motor) simulated alongside the item schematics.

Third proposal - Handmade vs. simulation-based approaches

The purpose of this proposal, published in [17], is to compare the results ob-
tained, on the same item (a monitoring circuit to verify the power consumption
of a video interface for an autonomous-driving vehicle), from a handmade and a
simulation-based FME(D)A performed with the approach presented in the second
proposal (paper [16]). The papers [17] and [16] are coeval.
The classification capabilities of the simulation-based approach are based on thresh-
olds between the maximum differences on voltages present in the fault-free and in
fault-affected conditions. No other knowledge about the item is used.

As a result, 91% of the FMs classifications obtained with the simulation-based
approach are identical or more conservative w.r.t. those obtained with the hand-
made methodology.

Fourth proposal - From an item-level FMs classification to a vehicle-level
one

The purpose of this proposal [19] is to describe a methodology to propagate the
FMs effects to the entire vehicle. A set of detection and mitigations algorithms to
be applied to a dual-motor axle have been proposed as a benchmark application.
Thanks to the vehicle-level simulator, the FMs effects are classified considering

82



3.3 – Proposals

their impact on the vehicle drivability. Due to this, the simulation results are
not presented as an FME(D)A table, with the FMs effects classification, but as
plots of the vehicle behavior, in terms of speed and yaw angle, in some interesting
scenarios. Like the one of this proposal, simulation-based approaches are widely
adopted during automotive software development, but to verify whether the system
can reach the nominal performance requirement in the early stages. It is proposed
to introduce this approach during the FME(D)A to produce results that can aid
these analysis also in those cases where the interactions between the item and the
vehicles that embeds it are complex.

Some interesting results about how to study the software/vehicle interaction
have been obtained, by considering the effects of two straightforward detection and
mitigation algorithms on a dual-motor axle. Hence, the approach demonstrated
itself able to aid functional safety engineers.

Fifth proposal - From safety to mission criticality: finding a tradeoff
between real needs and model precision

The contribution of this proposal is to describe a methodology for effectively
performing the Failure Mode, Effects, and Criticality Analysis (FMECA)7 required
by international safety standards in other areas. The benchmark application is a
control board designed to drive the electric motor of an industrial compressor. It
is considered as a complex cyber-physical system.
The introduced novelty mainly lies in the proposed simulation approach, which
allows for injecting FMs into a considered subsystem and analyzing their impact
on the whole cyber-physical system.

In particular, the proposed approach can identify the critical faults, whose num-
ber is often overestimated by other methods.
The proposed methodology relies on a multilevel simulation of a cyber-physical
system that mixes behavioral high-level and structural SPICE-level models of its
different subsystems.

In the proposed simulation methodology, to tradeoff between simulation accu-
racy and duration, all the subsystems are described with behavioral models, except
for the target one, called subsystem under test (SSUT), which can be affected by the
considered failure mode8. The adoption of a structural models allows high-quality
modeling of the FMs, while behavioral models allow studying the propagation of

7The FMECA is about the criticality of the FMs. Their classification criteria for this specific
application are different from the ones of the ISO26262 FME(D)A and are discussed in section
3.9.

8In [39] are called faults. However, to be coherent with the terminology adopted in this
dissertation, I prefer the term failure mode.

83



Simulation-based FMEDA

their effects to the other subsystems without making the complex system simulation
excessively time-consuming.

Sixth proposal - Development of a high-dependable mobile robot

This proposal, presented in a still unpublished manuscript, is about the FMEA,
HARA, and FME(D)A of a mission-critical mobile robot. The complete description
is available in
[40]. For the sake of this thesis, I describe only the FME(D)A, in this case per-
formed considering failures of an entire sensor or actuator.
From the safety point of view, the considered system is a fail-safe one; hence all the
safety-relevant failures are managed by shutting down the mobility subsystem of
the rover. Some non-safety-relevant failures are mitigated thanks to the embedded
software.
Moreover, sensors and actuators’ failure mitigation algorithms are assessed to demon-
strate their effectiveness without the need for a prototype.

This proposal can be considered as the merge of all the proposals discussed
into this and 4 chapters. As emerged from [18], safety engineers can also use these
models, thanks to their execution speed, to perform real-time validation of the
embedded software (see HIL in section 2.11.5 and real-time software validation in
chapter 5).
It solves two limitations seen in the previous proposal by making it possible to
inject failures in the actuators and mechanical components (limitation of the fourth
proposal [19]) and to assess the mitigation triggering capabilities of the embedded
software at the system level (limitation of the fifth proposal [39]). Due to the
complexity of the analysis, the mitigation effects of the proposed algorithms are
not described. No automatic rules are defined, but the DIANA team members
assess the simulation results to improve their design.
The results present in this dissertation are limited to the measures of time between
the fault injection and the triggering of the opportune mitigation strategies.

3.4 Research contributions
In the first [15] and second [16] proposals, the simulations are performed by

implementing the schematics of the item hardware components inside commercial
SPICE-level simulators (LTSpice and MathWorks Simulink Simscape) to simulate
both catastrophic and parametric failures.
More in detail, in the first proposal, there are no novelties in the fault injection per
se, but as best of my and my coauthor knowledge, it was the first application of such
simulation-based approach to perform the failure mode classifications as required
by the FME(D)A in compliance with the ISO26262. In the second proposal, it

84



3.4 – Research contributions

has been decided to describe a methodology suitable to simulate also closed-loop
control systems.

The third proposal does not introduce any novelties but tests the effectiveness of
the proposed simulation-based approach (in particular the methodology proposed
in the second proposal) against the traditional handmade approach [17]. My coau-
thors and I claim that this is a crucial benchmark since no other objective and
repeatable comparisons are possible, as previously described, due to the lack of
coverage metrics for analog tests.

The fourth proposal propagates the failure mode effects from the actuator (item)
level [18] to the whole vehicle, thanks to the presence of a vehicle-level simulator [19].
It allows assessing the failure effects on the vehicle drivability.

The fifth proposals, is based on the fourth proposal [19] and two other works fo-
cused on FMECA: [41] and [42]. It introduces the simulation-based approach of [19]
to the latter two methodologies, allowing to obtain an approach more accurate and
complete thanks to the possibility to adopt hybrid models where the fault-affected
subsystem is simulated with structural model and the fault-free ones are simulated
with behavioral ones. This allows improving the simulation speed without giving
up the accuracy of the fault models.

The sixth proposal presents a mobile robotic application, in this case, a Mars
exploration Rover designed by the student team DIANA of Politecnico di Torino.
It allows the possibility to inject mechanical failures thanks to the presence of com-
mercial behavioral models for both the actuators and mechanical components [43]
and to assess the effects of the failures at the rover level (as in the fourth proposal).

None of the contributions address ISO26262 FMEDA analysis on integrated cir-
cuits or systems-on-chip (SoC), as all semiconductor manufacturers provide ISO26262
metric calculation tools for their products based on the configuration chosen for each
specific application. The reader can find an example of a training course for the
tool provided by Texas Instruments at [44].

85



Simulation-based FMEDA

3.5 First proposal - A simulation-based FME(D)A
In this first proposal, presented in 2017 at Latin-America Test Symposium

(LATS) and published in its proceedings, starting from the stage schematic, a
SPICE-level network is produced for the input and output stages. Then, for each
FM of each component, a mutated schematic is prepared by hands, to simulate the
faulty circuit according to the considered FM.

The benchmark item chosen to demonstrate the approach is a seat belt reminder,
which is responsible for sensing if a passenger is seated and if the seat belt is buckled;
if not, it shall produce a seat belt alarm.
Assuming the HARA procedure ranked the item as ASIL C, considering the worst
case if the airbag deploys and the passenger is not wearing the seat belt, severe
injuries are possible due to the passenger’s head crashing into the airbag balloon
when being inflated.
The paper is considered only the portion of the item responsible for sensing the
passenger on the seat, which is based on the input stage shown in fig.3.3.

+

-

R1

R2
C1

U1 U2
Weight Alarm

Figure 3.3: Structure of the seat belt reminder.

Its input stage provides to the microcontroller an input voltage that is pro-
portional to the passenger weight so that it can provide an input in the range
[Wmin, Wmax]. The embedded software run by the microcontroller performs a range
check:

• in case of an out-of-range input, it signals the detection and an error;

• otherwise, it controls whether the seat belt is buckled when the input value
indicates that a passenger is occupying the seat; if the belt is not buckled, an
alarm is generated.

3.5.1 Fault models
Considering the components R1 and R2 shown in fig.3.3, which are resistors

based on a given technology, it is possible to identify, from failure catalogs, that
their relevant failure modes are three:

86



3.5 – First proposal - A simulation-based FME(D)A

• open circuit (with an occurrence of 50%, i.e., in the reliability analysis 50% of
the time the resistor is faulty, its failure mode corresponds to an open circuit);

• doubled resistance w.r.t. the nominal one (with an occurrence of 25%);

• halved resistance w.r.t. the nominal one (with an occurrence of 25%).

Considering the component C1, which is a capacitor, it is possible another three
failure modes:

• Interruption, simulated by opening a switch in series to the capacitor (occur-
rence of 40%);

• Short circuit, simulated by closing a switch in parallel to the capacitor (oc-
currence of 10%);

• decrease, simulated by halving its capacity parameter (occurrence of 50%).

Of these FMs, the open circuit/interruption and short circuit can be considered,
according to the classification made in the IEEE P2427 proposal, among catas-
trophic defects, while double/halved resistance and decrease (capacity) among the
parametric ones.

The failure mode effects of U1 and U2 that are ICs are classified as Dangerous
Detected(DD) for the motivation described in section 3.5.3.

3.5.2 Fault Injection
In this proposal [15], there is no automatic fault injection strategy: fault injec-

tion is performed modifying by hands the schematics before each simulation, with
the models described in section 3.5.1.

This process requires creating 10 different circuit schematics, one fault-free and
one for each of the considered failure modes of components R1, R2, and C1.

3.5.3 Failure modes effects assessment strategies
The first simple failure mode effects assessment is performed as follows.

A failure mode is injected9 in the item schematic by changing the parameters of
the affected component. It then analyzes how it propagates to the item outputs
when the item inputs are simulated with a user-provided workload.
Fault propagation is done using a mixed-level simulation environment where;

9As described in section 3.5.2, the process is handmade, but since the schematics of the analog
conditioning stages are modified, this process is legitimately called injection.

87



Simulation-based FMEDA

• failure mods affecting discrete components are analyzed using SPICE-level
simulation, studying the propagation from the item inputs to the processing
stage input, and from the processing stage outputs to the external environ-
ment (actuators or other items);

• the propagation of fault effects from processing stage inputs to its outputs,
i.e., through the item software, is done using Simulink.

The adoption of Simulink to evaluate its contribution on mitigation of failure
affecting the input conditioning stage, and to run the software itself, is consistent
with the current trend in the automotive industry of adopting model-based software
design (MBSD), as described in section 2.11.3.

Analysis for input conditioning stage

For each one of the FMs that can affect the input stage, a SPICE-level simula-
tion is executed.
By using workloads provided by the designers, the SPICE-level simulator computes
the outputs that the faulty input stage provides to the microcontroller inputs.
Thus, this step is intended to identify how the failure modes in the input condi-
tioning stage propagate to the microcontroller inputs. Once this step is completed,
it makes available the list of faulty inputs that the microcontroller acquires and
transforms into outputs through the software it executes.
To analyze how the faulty inputs propagate to the microcontroller outputs under
a given workload, a Simulink model runs the embedded software.
For each faulty microcontroller output (even derived from a simulation-based in-
jection as in [45]), a SPICE-level simulation of the fault-free output conditioning
stage is performed, to observe how the whole item reacts to faults into its input-
conditioning stage.

Analysis for the processing stage

As the FMs that may affect the processing stage are considered: internal calcu-
lation errors, interruption of any pin, and short circuits between adjacent pins.
For the sake of [15] paper, they are not considered, and we assume that the process-
ing stage is provided with adequate self-testing capabilities to detect any possible
processor failure. Since the processing stage is a single point of failure, any failure
mode affecting it is considered as dangerous detected unless proven otherwise (e.g.,
from the assumptions contained into its safety manual).

88



3.5 – First proposal - A simulation-based FME(D)A

Analysis for output conditioning stage

To analyze the impact on the outputs of the item of the FMs affecting the output
conditioning stage, it is necessary to obtain its input stimuli. Hence, a SPICE-level
simulation of fault-free input conditioning stage, followed by a run of the embedded
software, have to be performed. After that, SPICE-level simulations of the faulty
output can be performed.
Finally, the failure mode effect classification is done as described in section 3.5.4.

3.5.4 Assessment of SW mitigation capabilities on HW fail-
ures

The discrimination between dangerous (leading to a violation of a safety goal)
or safe (not leading to a violation of a safety goal) failure modes is based on the
produced simulation outputs by comparing the fault-free simulation results with
those obtained from the fault-affected one. If there is a discrepancy between the
two results, the failure is classified as dangerous.
The simulation has to include the detection mechanisms (hardware and software)
to perform the detection assessment.

It is possible to classify the item behavior in the presence of the considered
failure modes as follows:

• if the failure mode triggered any of the detection mechanisms (range checks)
the item embeds, and the item behavior does not lead to a violation of a
safety goal (as derived during the HARA phase, see section 2.2.2), the failure
mode is classified as safe undetected;

• if the failure mode is not detected, and the item behavior does not lead to a
violation of a safety goal, the failure mode is classified as safe undetected;

• if the failure mode is detected, and the item behavior leads to a violation
of a safety goal (even considering the embedded mitigation algorithms), the
failure mode is classified as dangerous detected;

• if the failure mode is not detected, and the item behavior leads to a violation
of a safety goal, the failure mode is classified as dangerous undetected.

The proposed approach can find out failure mode that propagates to errors and
failures. Still, the approach requires running separate simulations of the input con-
ditioning, processing, and output conditioning stage. It prevents the approach from
being used when there are feedback signals.
Moreover, it is also difficult to provide accurate rules to perform the assessment
different from a threshold of error between the fault-free and fault-affected simula-
tion results.

89



Simulation-based FMEDA

It is important to remember that the objective is to determine if a failure mode
can lead to a violation of one or more safety goals.

This approach, due to the missing integration between the SPICE-level simu-
lator and the embedded software, cannot be used to assess systems with feedbacks
between actuators and sensors, like closed-loop controllers.
This makes it impossible to assess software mitigation capabilities on failures af-
fecting output conditioning stages.

3.5.5 Experimental setup
This section provides a preliminary evaluation of the approach proposed in [15]

when a simple item is considered.
The simulations of the conditioning stages have been performed by Analog De-

vice LTSPICE, then its results about the input conditioning stage are moved to
Simulink to run the embedded software.

Workloads

The workload used for the assessment consists of voltage waveform produced
by the seat sensor to the weight input in three scenarios:

• no passenger seated;

• child seated of weight 30 kg;

• adult seated of weight 90 kg.
A model for each one of the considered FMs has been prepared and run for each

workload.

3.5.6 Simulation results
The obtained results are reported in table 3.1, where for each component we

reported:
• failure rate λf ;

• failure modes as from a failure mode catalog;

• failure mode rate of occurence fm.r.o;

• fault coverage fcoverage defined as the percentage of failure of a specific failure
mode that the functional safety mechanism is able to detect;

• residual contribution defined as = FIT · (1 − fcoverage), (see eq.2.3 for the
residual fault rate metric definition);

• failure mode effect classification.

90



3.5 – First proposal - A simulation-based FME(D)A

Simulation time

The simulation time for performing the whole process is about 50 minutes when
a desktop computer equipped with a 2.6 GHz Intel Core i7 processor and 16 GiB
of RAM is used.

Hardware random failure metrics

The FME(D)A metrics obtained by the simulation results shown in table 3.1
for the considered item are:

• random hardware fault metric (see section 2.7.3): rhf = 0.059 FIT ⇒ ASIL
D

• single point fault metric (see section 2.7.3): spfm = 100% ⇒ ASIL D

• latent fault metric (see section 2.7.3): lhf = 92% ⇒ ASIL D

As a result, comparing these with the table 2.7, we can conclude that this design
is compliant with the ISO26262 requirements for an ASIL C design.

91



Simulation-based FMEDA

C
om

po
ne

nt
Fa

ilu
re

ra
te

[F
IT

]
Fa

ilu
re

m
od

e
Fa

ilu
re

m
od

e
ra

te
of

oc
cu

rr
en

ce

Fa
ilu

re
m

od
e

eff
ec

t

Fa
ul

t
co

ve
ra

ge

R
es

id
ua

l
co

nt
ri

bu
ti

on
[F

IT
]

R
1

2.
25

O
pe

n
50

%
SD

10
0%

0
In

cr
ea

se
x2

25
%

SU
0%

5.
62

5
·1

0−
1

D
ec

re
as

e
x2

25
%

SD
0%

5.
62

5
·1

0−
1

C
1

0.
26

In
te

rr
up

tio
n

40
%

SU
0%

1.
04

0
·1

0−
1

Sh
or

t
ci

rc
ui

t
10

%
SU

0%
2.

60
0

·1
0−

1

D
ec

re
as

e
x2

50
%

SU
0%

1.
30

0
·1

0−
1

R
2

2.
25

O
pe

n
50

%
SD

10
0%

0
In

cr
ea

se
x2

25
%

SU
0%

5.
62

5
·1

0−
1

D
ec

re
as

e
x2

25
%

SD
10

0%
0

U
1

0.
75

In
te

rr
up

tio
n

of
an

y
pi

n
50

%
D

D
10

0%
0

Sh
or

t
of

ad
ja

ce
nt

pi
ns

50
%

D
D

10
0%

0

U
2

0.
59

In
te

rn
al

ca
lc

ul
at

io
n

er
ro

r
50

%
D

D
90

%
2.

95
0

·1
0−

1

In
te

rr
up

tio
n

of
an

y
pi

n
25

%
D

D
90

%
1.

47
5

·1
0−

2

Sh
or

t
of

ad
ja

ce
nt

pi
ns

25
%

D
D

90
%

1.
47

5
·1

0−
2

Ta
bl

e
3.

1:
Si

m
ul

at
io

n
re

su
lts

ob
ta

in
ed

fro
m

[1
5]

.

92



3.6 – Second proposal - A real automation of FMEDA

3.6 Second proposal - A real automation of FMEDA
This section discusses the proposal described in two papers.

The first one has been presented at the 2018 edition of the International Sympo-
sium on On-Line Testing And Robust System Design (IOLTS) and published in its
proceedings [16], while the second one at the 2019 International Conference of the
IMACS TC1 Committee (ELECTRIMACS) conference and published in 2020, as a
book chapter, in the Springer’s Series Lecture Note on Electrical Engineering [18].

The tool (of both papers) operates as shown in fig.3.4.
The fault list generator module takes the BOM of the item and a fault catalog,
containing the components’ FIT, failure modes list, and failure modes rates of oc-
currence.
Combining the BOM and the fault catalog generates the hardware faults list for
the considered item.
At this point, thanks to the (instrumented) schematic of the circuit, the tool sim-
ulates at SPICE-level firstly the item in fault-free (golden) conditions, and subse-
quentially, it injects the failures one by one.
After each simulation, the classifier compares, by some set of classification rules,
the simulation results with the golden ones and assign to each failure mode the
related effects as described in fig.2.15.
As the last operation, it computes the metrics and generates a human-readable
assessment report.

93



Simulation-based FMEDA

Fa
ult

 lis
t 

gen
era

tor
 

mo
du

le
Sa

bo
teu

r

Cla
ssi

fie
r

BO
M

Fa
ult

 
cat

alo
gu

e

Fa
ult

s l
ist

Hu
ma

n-r
ead

ab
le

ass
ess

me
nt

rep
ort

Cir
cui

t 
sim

ula
torComponents 

parameters

DU
T 

Sim
uli

nk
 m

od
el

Ite
m 

beh
avi

ou
r 

cla
ssif

ica
tio

n 
rul

es

Fa
ult

-fre
e

res
ult

s D
B

Wo
rkl

oad
s

list
Fa

ult
-

aff
ect

ed
res

ult
s D

B
Sim

ula
tio

n 
res

ult
s d

ata
 

str
uct

ure

Fi
gu

re
3.

4:
Sc

he
m

at
ic

re
pr

es
en

ta
tio

n
of

th
e

sim
ul

at
io

n-
ba

se
d

ap
pr

oa
ch

pr
op

os
ed

in
[1

6]

94



3.6 – Second proposal - A real automation of FMEDA

To demonstrate the methodology, a benchmark item declined into two different
versions has been implemented.
It is a control unit for an electric motor in charge to provide traction to a vehicle.
Its nominal functionality is the following.
The throttle pedal provides a voltage signal comprised between 0 and 1.2 Volts.
Its signal has to be amplified, with a gain G = Vout/Vin = 4, to the range 0-5 V to
be acquired by an ADC integrated into the microcontroller.
The considered amplifier is an OP-AMP-based unit, implemented on the item PCB
through some discrete components, one integrated circuit OP-AMP, and two resis-
tors, as shown in fig.3.510.
The ADC embedded into the microcontroller acquires the amplified analog signal

µP

𝑅!

𝑅"

PWM signals

Pedal
position

Figure 3.5: A schematic representation of the item described in [16].

and, in the case described in [16], it generates a PWM signal with a duty cycle
proportional to the read voltage, while in [18] it provides three different duty cycles
to drive the motor with a torque proportional to the pedal position.
By hypothesis in [16], due to the powertrain system frictions and to limit the vehicle
acceleration, the minimum duty cycle request is 20%, while the maximum is 80%.
If the request is outside this range, the embedded software stops the PWM signal
generation.

To obtain an accurate simulation, a model to represent the actual PCB topology
is needed. In this case, the layout of an evaluation board for an automotive-grade
SoC has been considered. This 32-bit unit is shipped in a 100 pin Low Profile
Quad Flat Package (LQPF). The throttle pedal, the inverter, and the motor itself
are considered outside the item.

10In electronics literature, this configuration is called a non-inverting voltage amplifier. Its gain
can be computed as in eq.3.1

95



Simulation-based FMEDA

In [18] simulations are performed in a similar way as in [16] but, in this case,
inverter and motor models are alongside the embedded software and a new high-
dependable fail-operational input conditioning stage, composed of three indepen-
dent channels read by separate ADCs, as shown in fig.3.6.

µP

𝑅!

𝑅"

PWM signals
Motor

Rotor position signals

Pedal
position

Power
electronics

x 3

Figure 3.6: A schematic representation of the item described in [18].

These two papers are considered as containing a single proposal since [18] is an
improved version of [16].
In particular [18] w.r.t. [16]:

• reports a handmade HARA of the considered item;

• the considered item contains a triple redundancy module (TRM) to improve
the reliability of the input conditioning state;

• the item embeds failure detection and mitigation algorithms;

• a simplified model is adopted (for the IGBTs) to tradeoff between simulation
quality and required time;

• a model of the driven electrical motor is inserted into the simulation;

• a subset of the inverter components is simulated to assess the implemented
detection algorithms.

As described in the following, thanks to the presence of the TRM and the detection
and mitigation algorithms, it is possible to see how the random hardware failure
rate metrics required by the ISO26262 FMEDA (see section 2.7.3) changes between
the two items.

The considered safety goals (SGs) for the item (electrical powertrain) are [18]:

96



3.6 – Second proposal - A real automation of FMEDA

• SG1: the motor torque (and speed outside transients) shall correspond to
the one requested by the driver by pushing the throttle pedal.
Its most severe violation can be summarized by a condition where the motor
torque is zero when a non-zero action is requested (no motor rotation when
requested).

• SG2: the motor torque when the throttle pedal is completely released shall
be zero (or correspond only in a regenerative braking action).
The most severe violation of this safety goal can be described as an unintended
vehicle acceleration.

As described in section 2.2, each one of the safety goals must be associated with an
ASIL level.
As in [18], an ASIL B is assigned to SG1, while an ASIL D11 to SG2.

3.6.1 Fault models
Electrical parameter changes

The simplest model to obtain, since it does not require the addition of sabotag-
ing components inside the schematic, consists of modifying the nominal electrical
parameter of the affected component according to the FM to be injected. For ex-
ample, the saboteur can inject a change in the resistance of a resistor to simulate
its detachment from the PCB or a short between its pins.
These electrical parameter changes models are considered, inside the IEEE P2427
framework, as parametric defect.

Simulation-only components

Unfortunately, in some cases, the previous approach is not sufficient to ade-
quately describe the FM; hence it is necessary to add components not present in
the design to instrument the simulation with the faulty behavior. For example,
to simulate a short circuit between the plates of a capacitor, it is not sufficient to
change its capacitance, but it is necessary to add a resistor in parallel to it. A sim-
ilar approach can be useful to simulate some failures affecting integrated circuits,
as short circuits between adjacent pins, that can be simulated by adding resistors
between the pins. In this case, we need that the model represents the physical lay-
out of the package. In fault-free conditions, these resistors have a resistance value
set to 108 Ω, while to obtain a short circuit, this value is lowered to about 1 Ω. To

11Usually this SG is considered ASIL C by adding assumptions on the mechanical braking sys-
tem of the vehicle, that allows the driver to reduce the acceleration of the vehicle, and influencing
the controllability risk parameter.

97



Simulation-based FMEDA

speed-up the simulation process, it is possible to avoid injecting those failures in
which the adjacent pin is unused and configured in a high-impedance state.
These simulation-only models are considered, inside the IEEE P2427 framework,
as catastrophic defect. As long as short circuits between unconnected nodes are
injected, topological catastrophic defects are injected.

Stuck-at simulation-only sabotaging component

A third approach, done by adding a sabotaging component, designed for this
specific purpose, between the IC and the rest of the schematics, is applied to simu-
late permanent stuck-at failures of pins. They are implemented as Simulink sublay-
ers composed of different switches, able to connect the affected pin to the ground
o to a controlled voltage generator.

Inverter IGBTs

In [18], also a model to represent FMs affecting the IGBTs of the inverter have
been considered.
As described in the literature, a complete and exhaustive failure model is challeng-
ing to obtain and cannot cover all possible scenarios.
In any case, all these efforts are not required for this proposal, since its objec-
tive is to reproduce the damage of the IGBTs without investigating the boundary
conditions which causes the failure (i.e., overcurrent conditions, breakdown of the
junctions, . . . ), but to study their failure modes effects on the behaviors of the
item. The interested reader can find a more accurate fault model in section 3.9.2,
fig.3.28, and [46].
To implement the model considered in this proposal, the SimScape MOSFET
block12 has been used. This drastically reduces the complexity of the fault model
and simulation times. Moreover, designers can easily implement it by adding stuck-
at saboteurs between the microcontroller pins in charge of generating the firing sig-
nals and the MOSFET gate, which can be set by the sabouter at any time during
the simulation.
Since this proposal uses the IGBTs simplified fault models with respect to the state
of the art [54], the rates of occurrence for the FMs of the microcontroller pin (stuck-
at) and IGBT have been combined. It leads to a failure mode rate of occurrence
of 86% for the stuck-at open circuit and the remaining 14% for the stuck-at close
one. A schematic representation of an inverter is shown in fig.3.7.

For the IGBTs are considered only catastrophic failure.

12provided into the SimScape ToolBox.
The simulations have been performed with version 2016a of MATLAB/Simulink. MathWorks
may change the toolbox’s name in more recent versions.

98



3.6 – Second proposal - A real automation of FMEDA

Figure 3.7: Schematic representation of an inverter connected with a with a star
winding brushless direct current (BLDC) permanent magnet motor.

3.6.2 Fault injection
The saboteur injects one at a time the failure modes into the system by changing

electrical parameters and properly managing the sabotaging and simulation-only
components.

Change of nominal parameters

The fault injection strategy for changing nominal parameters consists of letting
Simulink get their values, assigned by the saboteur, from the MATLAB workspace.
This strategy is used to simulate failures affecting the feedback network of the OP-
AMP in the analog conditioning stage needed to acquire the throttle pedal position
in both the papers [16], and [18], as shown in fig.3.8.

Figure 3.8: The schematic of the analog conditioning stage described in [16].
The red borders around the resistors R1 and R2 indicates the absence of a de-
fined parameter for their resistance values, since it is computed at runtime by the
sabouter.

99



Simulation-based FMEDA

Simulation-only components

When necessary, as described in fault models section 3.6.1, it is required to add
by hands components not present in the original design to inject the behavior needed
to simulate the failure mode. Typical use is to describe short circuits between the
plates of capacitors or pins of ICs, as shown in fig.3.11.

Sabotaging blocks

Sabotaging blocks (SBs) are simulation-only components designed for a specific
purpose. In this proposal, they are used to inject stuck-at FMs. The SB used in this
proposal is shown, colored in magenta, in the fig.3.9. Fig.3.9 shows the interfaces
of the SB, while fig.3.10 its implementation, composed of switches to change its
configuration between normal (pass-through), stuck-at high level (VCC), or stuck-
at low level (GND).

Figure 3.9: The external interfaces of the SB used to inject stuck-at FMs in [16]
and [18].
The red borders around the FaultInjectiorSelector constants indicates the ab-
sence of a defined value, since it is computed runtime by the sabouter.

A combined use of added components and sabotaging components is shown in
fig.3.11.

3.6.3 Failure modes effects assessment strategies
For the sake of risk assessment, are considered as dangerous those situations

where the motor provides a wrong angular speed or torque13, while the motor into
zero torque condition is considered as a safe one.

13The paper [16] considers a wrong angular speed proportional to the duty cycle. In contrast,
in [18], thanks to the presence of a model of the motor and a closed-loop control algorithm
(composed of three nested loops, with the inner one controlling the currents, the other the torque,

100



3.6 – Second proposal - A real automation of FMEDA

Figure 3.10: The implementation of the SB used to inject stuck-at FMs in [16]
and [18].

Figure 3.11: Examples of SBs, used to inject stuck-at FMs on pins, and simulation-
only components (in this case resistors) to inject short circuits between adjacent
pins of a commercial microcontroller.

As in the first case, the detected/undetected classification is obtained from the
results from simulations itself that runs the embedded software, but in this case,
thanks to the redundancies on the input conditioning stages, the software demon-
strated the ability to detect and mitigate the failures, avoiding the presence of
dangerous undetected or safe undetected failures on the input conditioning stage.
The detection algorithm for the failures affecting the IGBTs is shown in fig.3.12.

and the most external the speed) can control the electrical machine both with a speed or a torque
setpoint.

101



Simulation-based FMEDA

3.6.4 Assessment of the SW mitigation capabilities on HW
failures

In the case of [16], the failure mode effects classification in terms of safe/unsafe
(see fig.2.15) can be done by comparing the system outputs with the expected
ones, obtained from a set of rules or by comparing the system outputs in fault-free
(golden condition) with the ones obtained after the failure injection.
Instead, the detected/undetected classification is obtained from the simulation re-
sults that run the embedded software and contains the failure detection system as
part of the item.

On the other hand, in the [18] paper, the safe/unsafe classification is performed
by propagating the computed firing signals to the inverter switches, hence to the
motor model. The item behavior (propagated on the motor, so motor speed and
torque) are stored in databases and compared against the item behavior classifica-
tion rules.

The algorithm to detect failure modes, and triggers the mitigation measures, is
shown in fig.3.12.
The stript contained int the SwitchFailureFromCurrentsDetection functions is:
function [SLFailed, SHFailed] = SwitchFailureFromCurrentsDetection(min,max)

SLFailed=0;
SHFailed=0;
if(-min<max &&-min< 0.8*max)

SHFailed=1;
end
if(max<-min && max< 0.8*(-min))

SLFailed=1;
end

end

3.6.5 Experimental setup
The proposed approach has been implemented through an FME(D)A automa-

tion tool. It is fully implemented in the MATLAB/Simulink environment.
The schematics of the item under assessment is modeled through the Simulink
SimScape Toolbox, while the item software is modeled as a Simulink Matlab Func-
tion if it is handwritten code, or by Simulink, if a Model-Based Software Design is
adopted14. Fault list generator, saboteur, and classifier modules are implemented
as MATLAB functions. In this way, it is possible to obtain a unique executable
model that captures the relevant characteristics of both hardware and software.

14Model-In-the-Loop (MIL), as described in section 2.11.4.

102



3.6 – Second proposal - A real automation of FMEDA

Figure 3.12: The implementation of the detection algorithm for IGBTs in the [18]
paper.

In this version of the tool, if needed to add components to instrument the model
to simulate some failure modes, these sabotaging components, described in section
3.6.2, have to be added to the BOM.

Simulation runs as shown in fig.3.4, then the results are stored inside a MATLAB
array of structures.
Each structure into the array of results corresponds with a workload.
The top-level of each one of these structures has as many rows as the number of
BOM components. Each row contains the component name, nominal value, class,
FIT, and a second-level structure, with as many rows as the failure modes of the
considered components. They contain the failure mode probability, the value set
into the component to inject the failure modes itself and the fault coverage, and the
fields Safe, Detected, and Residual contribution filled at run-time by the classifier.

Thanks to this structure, when simulations with more than one workload are
done, the tool can compute the metrics and assess each workload. After that, it
combines all the evaluations in a summary report that allows designers to consider
all the worst conditions found in the different workloads.
For each row, the worst-case failure effect is selected, in descending order of severity,
as dangerous undetected (DU), safe undetected (SU), dangerous detected (DD), safe

103



Simulation-based FMEDA

detected (SD).
SUs are considered more critical w.r.t. the DDs because the FMs are assessed one
at a time, so the simulation cannot provide information on what happens if two or
more FMs are present simultaneously.
In any case, the presence of SUs is discouraged by part 5 of ISO 26262 since they
increase the latent fault metric of the design as described in section 2.7.3.

3.6.6 Simulation results for [16]
The FMEDA metrics obtained by the simulation results shown in table 3.2 for

the considered item are:

• random hardware fault metric (see section 2.7.3): rhf = 7.75 FIT ⇒ ASIL
D

• single point fault metric (see section 2.7.3): spfm = 6.06% ⇒ QM

• latent fault metric (see section 2.7.3): lhf = 93.94% ⇒ ASIL D

To obtain the simulation result presented in the table, it required about 40 minutes
to simulate on a notebook based on a 2,6 GHz Intel Core i7 (6th gen) CPU.

104



3.6 – Second proposal - A real automation of FMEDA

C
om

po
ne

nt
Fa

ilu
re

ra
te

[F
IT

]
Fa

ilu
re

m
od

e
Fa

ilu
re

m
od

e
ra

te
of

oc
cu

r-
re

nc
e

Fa
ilu

re
m

od
e

eff
ec

t

Fa
ul

t
co

v-
er

ag
e

R
es

id
ua

l
co

nt
ri

-
bu

ti
on

[F
IT

]

R
1

0.
75

op
en

84
.0

%
D

U
10

0.
0

%
1.

89
in

cr
ea

se
8.

0
%

D
U

10
0.

0
%

0.
18

de
cr

ea
se

8.
0

%
D

U
10

0.
0

%
0.

18

R
2

0.
75

op
en

84
.0

%
D

D
10

0.
0

%
0.

00
in

cr
ea

se
8.

0
%

D
U

10
0.

0
%

0.
18

de
cr

ea
se

8.
0

%
D

U
10

0.
0

%
0.

18

U
1

0.
75

In
te

rr
up

tio
n

of
an

y
pi

n
50

.0
%

D
D

10
0.

0
%

0.
00

Sh
or

t
of

ad
ja

ce
nt

pi
ns

50
.0

%
D

D
10

0.
0

%
0.

00

Fa
ul

tI
nj

Se
lP

in
PW

M
0.

75
St

uc
kA

tV
C

C
50

.0
%

D
U

10
0.

0
%

0.
50

St
uc

kA
tG

N
D

50
.0

%
D

U
10

0.
0

%
0.

50

Fa
ul

tI
nj

Se
lP

in
In

pu
t

0.
75

St
uc

kA
tV

C
C

50
.0

%
D

D
10

0.
0

%
0.

00
St

uc
kA

tG
N

D
50

.0
%

D
D

10
0.

0
%

0.
00

Fa
ul

tI
nj

Se
lP

ow
er

Su
pp

ly
0.

75
St

uc
kA

tV
C

C
50

.0
%

SU
10

0.
0

%
0.

50
St

uc
kA

tG
N

D
50

.0
%

D
U

10
0.

0
%

0.
50

Ta
bl

e
3.

2:
FM

ED
A

as
se

ss
m

en
t

re
su

lts
ob

ta
in

ed
by

th
e

to
ol

pr
es

en
te

d
in

[1
6]

co
ns

id
er

in
g

5
di

ffe
re

nt
wo

rk
lo

ad
s.

105



Simulation-based FMEDA

The simulation results show that the metrics are not compatible with the ASIL
D metrics requirements (see table 2.7) since as many as 8 failures over the 14
considered lead by themselves to a safety goal violation (in this simplified item,
a wrong angular speed provided by the motor) hence are classified as Dangerous
Undetected (DU)ones.
By reasoning on these, we can observe that 5 of them are related to the resistors R1
and R2 of the input conditioning stage. Since these resistors compose the feedback
network of the conditioning stage amplifier, which gain G is described by the eq.3.1

G = Vout

Vin

= 1 + R2

R1
(3.1)

their FMS lead to a change of G. This causes a corruption of the duty cycle request
voltage measured by the ADC of the SoC, causing the processor to generate a
PWM signal with an erroneous duty cycle. This wrong duty cycle leads the motor
to provide a wrong torque level, hence speed.
It highlights that the range check failure detection mechanism implemented in this
design is not able to detect failures in the input condition stage in all the possible
workload conditions.

Another two failure conditions are related to the pin to which is connected the
half-bridge since, in these conditions, the microcontroller cannot control the motor
at all. The last DU condition is related to a failure in the power supply that causes
a shutdown of the complete set of components installed on the PCB15.

3.6.7 Simulation results for [18]
The FMEDA metrics obtained by the simulation results shown in table 3.3 for

the considered item are:

• random hardware fault metric (see section 2.7.3): rhf = 1.21 FIT ⇒ ASIL
D

• single point fault metric (see section 2.7.3): spfm = 99% ⇒ ASIL D, with
random HW failure rate of the power supply unit, threated as a SEooC (see
section 2.2.3), ≤ 0.45 FIT.

• latent fault metric (see section 2.7.3): lhf = 100% ⇒ ASIL D

15From a rigorous point of view, since the zero torque is considered a safe state, these last three
failures are Safe Undetected. But, since a simplified classification rule has been implemented, in
the term the microcontroller provides a wrong duty cycle, these failure modes have been classified
as DU.

106



3.6 – Second proposal - A real automation of FMEDA

C
om

po
ne

nt
Fa

ilu
re

ra
te

[F
IT

]
Fa

ilu
re

m
od

e
Fa

ilu
re

m
od

e
ra

te
of

oc
cu

r-
re

nc
e

Fa
ilu

re
m

od
e

eff
ec

t

Fa
ul

t
co

v-
er

ag
e

R
1

(u
ni

t
1)

2.
25

op
en

84
%

SD
10

0%
in

cr
ea

se
8%

SD
10

0%
de

cr
ea

se
8%

SD
10

0%

R
2

(u
ni

t
1)

2.
25

op
en

84
%

SD
10

0%
in

cr
ea

se
8%

SD
10

0%
de

cr
ea

se
8%

SD
10

0%

O
P-

A
M

P
(u

ni
t

1)
0.

75
In

te
rr

up
tio

n
of

an
y

pi
n

50
%

SD
10

0%
Sh

or
t

of
ad

ja
ce

nt
pi

ns
50

%
SD

10
0%

R
1

(u
ni

t
2)

2.
25

op
en

84
%

SD
10

0%
in

cr
ea

se
8%

SD
10

0%
de

cr
ea

se
8%

SD
10

0%

R
2

(u
ni

t
2)

2.
25

op
en

84
%

SD
10

0%
in

cr
ea

se
8%

SD
10

0%
de

cr
ea

se
8%

SD
10

0%

O
P-

A
M

P
(u

ni
t

2)
0.

75
In

te
rr

up
tio

n
of

an
y

pi
n

50
%

SD
10

0%
Sh

or
t

of
ad

ja
ce

nt
pi

ns
50

%
SD

10
0%

R
1

(u
ni

t
3)

2.
25

op
en

84
%

SD
10

0%
in

cr
ea

se
8%

SD
10

0%
de

cr
ea

se
8%

SD
10

0%

R
2

(u
ni

t
3)

2.
25

op
en

84
%

SD
10

0%
in

cr
ea

se
8%

SD
10

0%
de

cr
ea

se
8%

SD
10

0%

107



Simulation-based FMEDA

C
om

po
ne

nt
Fa

ilu
re

ra
te

[F
IT

]
Fa

ilu
re

m
od

e
Fa

ilu
re

m
od

e
ra

te
of

oc
cu

r-
re

nc
e

Fa
ilu

re
m

od
e

eff
ec

t

Fa
ul

t
co

v-
er

ag
e

O
P-

A
M

P
(u

ni
t

3)
0.

75
In

te
rr

up
tio

n
of

an
y

pi
n

50
%

SD
10

0%
Sh

or
t

of
ad

ja
ce

nt
pi

ns
50

%
SD

10
0%

A
na

lo
gG

as
Pe

da
lC

h1
0.

75
St

uc
kA

tV
C

C
50

%
SD

10
0%

St
uc

kA
tG

N
D

50
%

SD
10

0%

A
na

lo
gG

as
Pe

da
lC

h2
0.

75
St

uc
kA

tV
C

C
50

%
SD

10
0%

St
uc

kA
tG

N
D

50
%

SD
10

0%

A
na

lo
gG

as
Pe

da
lC

h3
0.

75
St

uc
kA

tV
C

C
50

%
SD

10
0%

St
uc

kA
tG

N
D

50
%

SD
10

0%

M
ot

or
En

co
de

rC
h1

0.
75

St
uc

kA
tV

C
C

50
%

SD
10

0%
St

uc
kA

tG
N

D
50

%
SD

10
0%

M
ot

or
En

co
de

rC
h2

0.
75

St
uc

kA
tV

C
C

50
%

SD
10

0%
St

uc
kA

tG
N

D
50

%
SD

10
0%

M
ot

or
En

co
de

rC
h3

0.
75

St
uc

kA
tV

C
C

50
%

SD
10

0%
St

uc
kA

tG
N

D
50

%
SD

10
0%

Fa
ul

tI
nj

Se
lP

ow
er

Su
pp

ly
16

St
uc

kA
tV

C
C

50
%

D
U

10
0%

St
uc

kA
tG

N
D

50
%

D
U

10
0%

108



3.6 – Second proposal - A real automation of FMEDA

C
om

po
ne

nt
Fa

ilu
re

ra
te

[F
IT

]
Fa

ilu
re

m
od

e
Fa

ilu
re

m
od

e
ra

te
of

oc
cu

r-
re

nc
e

Fa
ilu

re
m

od
e

eff
ec

t

Fa
ul

t
co

v-
er

ag
e

Sw
itc

h1
1.

05
St

uc
k

at
op

en
co

nd
iti

on
86

%
SD

10
0%

St
uc

k
at

cl
os

ed
co

nd
i-

tio
n

14
%

D
D

10
0%

Sw
itc

h2
1.

05
St

uc
k

at
op

en
co

nd
iti

on
86

%
SD

10
0%

St
uc

k
at

cl
os

ed
co

nd
i-

tio
n

14
%

D
D

10
0%

Sw
itc

h3
1.

05
St

uc
k

at
op

en
co

nd
iti

on
86

%
SD

10
0%

St
uc

k
at

cl
os

ed
co

nd
i-

tio
n

14
%

D
D

10
0%

Sw
itc

h4
1.

05
St

uc
k

at
op

en
co

nd
iti

on
86

%
SD

10
0%

St
uc

k
at

cl
os

ed
co

nd
i-

tio
n

14
%

D
D

10
0%

Sw
itc

h5
1.

05
St

uc
k

at
op

en
co

nd
iti

on
86

%
SD

10
0%

St
uc

k
at

cl
os

ed
co

nd
i-

tio
n

14
%

D
D

10
0%

Sw
itc

h6
1.

05
St

uc
k

at
op

en
co

nd
iti

on
86

%
SD

10
0%

St
uc

k
at

cl
os

ed
co

nd
i-

tio
n

14
%

D
D

10
0%

Ta
bl

e
3.

3:
FM

ED
A

as
se

ss
m

en
t

re
su

lts
ob

ta
in

ed
by

th
e

to
ol

pr
es

en
te

d
in

[1
8]

.

109



Simulation-based FMEDA

3.7 Third proposal - Handmade vs. simulation-
based approaches

The paper [17] has been published in 2018 at the same time as the paper [16]
described in the second proposal. Its goal is to assess the effectiveness of the
proposed approach by comparing, on an industrial case, the classifications obtained
with the simulation-based methodology against the ones handmade by experts.
The methodology is described in the second proposal [16] and represented in fig.3.4.

The considered item, provided by a company, is a monitoring circuit that has
to check the power consumption of the video interface of the camera used by the
driving algorithms of an autonomous driving car. If the measured power consump-
tion is outside the expected range, it has to detect the failure.
At the end of the HARA, the worst violation of a safety goal due to a missing
functionality provided by the video interface has been classified as ASIL D; hence
the monitoring device, analyzed in this proposal, shall satisfy the requirements for
ASIL B items (see control mechanisms for latent faults in section 2.5).

The item schematic, represented inside the MATLAB/Simulink environment, is
shown in fig.3.13.
It is possible to see the presence of the simulation-only component (see section
3.6.1) C1R to simulate a short circuit between the capacitor plates.

3.7.1 Fault models
The fault models are described in section 3.6.1.

3.7.2 Fault injection
The fault injection is performed as described in section 3.6.2.

3.7.3 Failure modes effects assessment strategies
The safe/dangerous classification was based on comparisons with the results

obtained in fault-free conditions. The FM is considered as Safe if:

• the output signal produced by the faulty circuitry is within a tolerance of 5%
from that produced by the fault-free one;

• the output current flowing into the OP-AMP is not more than double of the
one measured in fault-free conditions.

If these conditions are not met, the FM is considered Dangerous.

110



3.7 – Third proposal - Handmade vs. simulation-based approaches

3.7.4 Assessment of the SW mitigation capabilities on HW
failures

There are no implemented mitigation capabilities in this particular setup since
there are no failure detection mechanisms (this item is a monitoring system).

3.7.5 Experimental setup
The tool in the one described in [16], already described in section 3.6. Its

architecture is shown in fig.3.4.
The Simulink model of the item is shown in fig.3.14, while in fig.3.13 it is

represented the analog circuit schematic represented in Simulink (corresponding to
the content of the green sublayer shown in fig.3.14).

Figure 3.13: Schematic representation of the simulation-based approach proposed
in [17]

Figure 3.14: Simulink model to perform simulations described in [17]

111



Simulation-based FMEDA

3.7.6 Simulation results
The hardware failure metrics (see section 2.7.3) obtained from both the auto-

matic tool and the experts’ analysis are reported in table 3.4 while the classification
for each of the failure modes are written in the table 3.6. For the handmade ones,
the experts reported their motivations.

Metric Sim-based Handmade
Random hardware fault metric [FIT] 9.9 10.1
Single point fault rate 22% 19%
Latent fault rate 78% 76%

Table 3.4: FMEDA assessment result comparison between the handmade and the
automatically performed one.

By comparing the FMs classifications (see section 2.15) table, it is possible to
observe that 11 of 18 FMs (the 5 ones related to the two ICs are assessed by
hand) obtained the same classification in both handmade and simulation-based
FME(D)A.
To better analyze the disagreements, a comparison is shown in the form of the
contingency table 3.5. It reports in horizontal the count of classifications obtained
from the simulation-based analysis, while in vertical the experts’ ones.
There are 2 cases where the sim-based approach has classified the failure mode as
an SU, while the experts as DU, and 5 cases for the vice-versa. On the diagonal,
as in every contingency table, the cases in which the classification obtained in both
the classifications are the same.

Summarizing the results, the simulation-based approach:

• agreed with the experts 61% of times;

• considers as dangerous conditions classified as safe by the experts in 28% of
the cases (the tool is more conservative w.r.t experts);

• considers as safe conditions classified as dangerous by the experts in 11%
of the cases (these are more problematic since these classifications are less
conservative).

By better analyzing the less conservative classification17, it is possible to observe
that:

• in 1 (6%) case the classification rules cannot detect that the monitoring system
cannot properly work when affected by the considered FM.

17Less conservative classifications are those involving FMs classified as DU by the experts and
as SU by the simulation-based methodology.

112



3.7 – Third proposal - Handmade vs. simulation-based approaches

• in another case (6%), the simulation cannot reach those conditions in which
the monitoring circuits generate a current readout lower than the real one.

It is possible to say that there is room to improve the failure modes classification
since rules based only on comparisons with the fault-free simulation disagree in
39% with the experts’ ones18.

Sim-based
Handmade SD SU DD DU

SD 0 0 0 0
SU 0 2 (equal) [11 %] 0 5 (worst) [28 %]
DD 0 0 0 0
DU 0 2 (better) [11 %] 0 9 (equal) [50 %]

Table 3.5: Comparison between the failure classifications obtained by the automatic
tool and from the experts.

18In this paper the results obtained by the experts are considered as the ground truth so, in
this analysis, it is not possible to question the results obtained by the experts.
Moreover, to avoid biasing the results, the authors of [17], only know about the item: its schematic,
the HARA results, and the textual description of its function as reported in this section.

113



Simulation-based FMEDA
C

om
po

ne
nt

Fa
ilu

re
ra

te
[F

IT
]

Fa
ilu

re
m

od
e

Fa
ilu

re
m

od
e

ra
te

of
oc

cu
r-

re
nc

e

Si
m

-b
as

ed
cl

as
si

fic
a-

ti
on

H
an

dm
ad

e
cl

as
si

fic
a-

ti
on

E
xp

er
ts

’
m

ot
iv

at
io

n

R
1

2.
23

op
en

50
.0

0%
D

U
D

U
C

ur
re

nt
va

lu
e

no
ta

va
il-

ab
le

in
cr

ea
se

25
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed
de

cr
ea

se
25

.0
0%

D
U

SU
H

ig
he

r
va

lu
e

de
te

ct
ed

R
2

2.
23

op
en

50
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed
in

cr
ea

se
25

.0
0%

D
U

SU
H

ig
he

r
va

lu
e

de
te

ct
ed

de
cr

ea
se

25
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed

R
3

2.
23

op
en

50
.0

0%
SU

D
U

C
ur

re
nt

va
lu

e
no

ta
va

il-
ab

le
in

cr
ea

se
25

.0
0%

SU
D

U
Lo

we
r

va
lu

e
de

te
ct

ed
de

cr
ea

se
25

.0
0%

SU
SU

H
ig

he
r

va
lu

e
de

te
ct

ed

R
4

2.
23

op
en

50
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed
in

cr
ea

se
25

.0
0%

D
U

SU
H

ig
he

r
va

lu
e

de
te

ct
ed

de
cr

ea
se

25
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed

R
5

2.
23

op
en

50
.0

0%
D

U
D

U
C

ur
re

nt
va

lu
e

no
ta

va
il-

ab
le

in
cr

ea
se

25
.0

0%
SU

SU
H

ig
he

r
va

lu
e

de
te

ct
ed

de
cr

ea
se

25
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed

C
1

2.
23

in
te

rr
up

tio
n

40
.0

0%
D

U
SU

C
ur

re
nt

fil
te

r
no

t
av

ai
l-

ab
le

sh
or

t
ci

rc
ui

t
19

10
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed
de

cr
ea

se
50

.0
0%

D
U

SU
Sy

st
em

no
ta

va
ila

bl
e

114



3.7 – Third proposal - Handmade vs. simulation-based approaches

C
om

po
ne

nt
Fa

ilu
re

ra
te

[F
IT

]
Fa

ilu
re

m
od

e
Fa

ilu
re

m
od

e
ra

te
of

oc
cu

r-
re

nc
e

Si
m

-b
as

ed
cl

as
si

fic
a-

ti
on

H
an

dm
ad

e
cl

as
si

fic
a-

ti
on

E
xp

er
ts

’
m

ot
iv

at
io

n

U
1

7.
51

In
te

rr
up

tio
n

of
an

y
pi

n
50

.0
0%

D
U

D
U

C
ur

re
nt

va
lu

e
no

ta
va

il-
ab

le
Sh

or
t

of
ad

ja
ce

nt
pi

ns
50

.0
0%

D
U

D
U

Lo
we

r
va

lu
e

de
te

ct
ed

U
2

5.
94

In
te

rn
al

ca
lc

ul
a-

tio
n

er
ro

r
50

.0
0%

D
D

D
D

Lo
we

r
va

lu
e

de
te

ct
ed

In
te

rr
up

tio
n

of
an

y
pi

n
25

.0
0%

D
U

D
U

Lo
we

r
va

lu
e

de
te

ct
ed

Sh
or

t
of

ad
ja

ce
nt

pi
ns

25
.0

0%
D

U
D

U
Lo

we
r

va
lu

e
de

te
ct

ed

Ta
bl

e
3.

6:
C

om
pa

ris
on

be
tw

ee
n

th
e

ha
nd

m
ad

e
an

d
th

e
au

to
m

at
ic

as
se

ss
m

en
ts

.
T

he
di

ffe
re

nc
es

be
tw

ee
n

th
e

tw
o

cl
as

si-
fic

at
io

ns
ar

e
hi

gh
lig

ht
ed

.

115



Simulation-based FMEDA

3.8 Fourth proposal - From an item-level FMs
classifications to a vehicle-level one

The main contributions of this paper [19], based on the papers [15], presented
in the first proposal, described in the section 3.5, [16], and [18], presented in the
second proposal described in the section 3.6, are:

• to propagate the FMs effects to the entire vehicle, assessing their impact on
its drivability;

• to allow the assessment of the embedded software mitigation capabilities, at
the vehicle level.

The methodology proceeds as follows.
It starts with the bill of material (BOM) and a fault catalog. FITs are computed
by hands following the FIDES methodology as described in section 2.8.
Combining these two documents makes it possible to obtain the failure modes list
to be used by the saboteur to inject the faults during the simulations.
The structural-level simulator takes the SPICE-level model of the item, that can
be instrumented with simulation-only components as described in section 3.6.1.
At this point, the vehicle-level simulator loads the scenario required for the simu-
lation and starts its simulation. During this phase, the structural-level simulator
interacts with the vehicle-level simulator, taking the input signals from the latter
and generating the outputs for the actuators, closing the control loops the item is
in charge of.
At the beginning of each simulation (or during a defined simulation time), the
saboteur injects the FM into the affected component. The silicon-level faults
that could affect the microcontroller are not considered in this proposal since
modern automotive-grade MCUs integrate failure detection and mitigation mecha-
nisms [47] [48], hence are considered as SEooC (see section 2.2.3).
At the end of each simulation, its results are stored and then classified according
to classification rules.

To apply the proposal, designers need:

• the embedded software of the item;

• the structural20 models of the item;

• physical models of the car and the surrounding environment, provided by a
commercial vehicle-level simulator;

20In [19] it is called physical model. In this dissertation, I prefer the name structural to be
coherent with the names reported in the article published in 2020 a few months after this [39]
and analyzed as the fifth proposal in section 3.9.

116



3.8 – Fourth proposal - From an item-level FMs classifications to a vehicle-level one

• scenarios in which test the failure effects;

• vehicle behavior classification rules.

The benchmark application is a transaxle for an electric vehicle. The considered
vehicle is a rear-traction sedan car, with an independent motor for each of the two
rear wheels. There is no mechanical differential gear between the two motors; hence
the control software has to emulate its behavior to allow the vehicle to drive on
curves and properly manage all the possible FMs that can prevent the motors from
generating the right amount of torque since a torque disparity can make the vehicle
turning against the driver’s will, causing safety issues.
The block diagram of the considered item is shown in fig. 3.16.

The whole methodology is represented in fig.3.15.

117



Simulation-based FMEDA

Fa
ult

 lis
t 

gen
era

tor
 

mo
du

le
Sa

bo
teu

r
BO

M

Fa
ult

 
cat

alo
gu

e

Fa
ult

s li
st

Str
uct

ura
l

sim
ula

torComponents 
parameters

DU
T 

Sim
uli

nk
 m

od
el

Ve
hic

le 
sim

ula
tor

Ph
ysi

cal
 Si

mu
lat

or

Sim
ula

ted
tra

cks

Cla
ssif

ier
Hu

ma
n-r

ead
ab

le
ass

ess
me

nt
rep

ort

Ve
hic

le-l
eve

l 
cla

ssi
fica

tio
n 

rul
es

Fa
ult

-fr
ee

res
ult

s D
B

Fa
ult

-
aff

ect
ed

res
ult

s D
B

Sim
ula

tio
n 

res
ult

s d
ata

 
str

uct
ure

Fi
gu

re
3.

15
:

T
he

bl
oc

k
di

ag
ra

m
of

th
e

pr
op

os
al

.
Fi

gu
re

ad
ap

te
d

fro
m

[1
9]

.

118



3.8 – Fourth proposal - From an item-level FMs classifications to a vehicle-level one

Po
we

rtr
ain

 El
ect

ron
ic

Co
ntr

ol 
Un

it

Inv
ert

er 
R

Inv
ert

er 
L

Vi
rtu

al
Di

ffe
ren

tia
l

Ge
ar

Speed 
feedback

Speed feedback

𝑅 !

𝑅 "

Th
rot

tle
ped

al
po

siti
on

x 3

Fi
gu

re
3.

16
:

T
he

bl
oc

k
di

ag
ra

m
of

th
e

be
nc

hm
ar

k
ap

pl
ic

at
io

n.

119



Simulation-based FMEDA

3.8.1 Fault models
The fault models are described in section 3.6.1.
For the sake of this proposal, have been considered only the faults that could

affect the analog components installed on the PCBs of the Powertrain Electronic
Control Unit and of the two inverters (see fig.3.16). The faults affecting both the
wirings between the boards and the conductive tracks of the PCBs themselves have
not to be considered.

3.8.2 Fault injection
The fault injection is performed as described in section 3.6.2.
A limitation of this proposal is the lack of fault injection, possible only at the

vehicle-level, on sensors and electromechanical actuators. Even if these components
are considered outside the item, they can prevent it from providing the required
functionalities. How to inject and assess these failures is described in the sixth
proposal (see section 3.10).

3.8.3 Failure modes effects assessment strategies
There are 68 failure modes for the considered item. Of these, 30 regards the

throttle pedal position acquisition chain circuitry (the assessments of the FMs af-
fecting each one of the three identical models, without redundancies, are described
in section 3.6.6), 2 the power supply, and the remaining 36 are about the two twin
motor driver chains. Hence, for each of the motors, we have 18 possible failure
modes. 6 of them regard the triple redundancy encoders installed to monitor the
speed of the wheels, while the remaining 12 the power electronics.
Each inverter is composed of 6 IGBTs with two stuck-at FMs: open (no current
between its collector and emitter) or closed (short circuit between its collector and
emitter). Since in the case of a stuck-at closed failure (leading to a short circuit of
the affected inverter leg), no software mitigations are possible (the protection fuse
melts down, permanently disconnecting the involved phase from the battery) only
the open failure mode has been injected on an IGBT of the left motor. This single
injection is sufficient to cover all the 12 possible cases due to the symmetries of the
considered system.
The IGBTs failure detection algorithm, applied at the single inverter level, is the
same described in section 3.6.3 and its semi-formal Simulink model is shown in
fig.3.12. It has to trigger the mitigation algorithm described in the following.

No assessments on the throttle pedal - microcontroller chains have been analyzed
in this proposal since yet assessed in the second proposal as described in the section
3.6.

120



3.8 – Fourth proposal - From an item-level FMs classifications to a vehicle-level one

As already said, the key point of the proposed approach regards how to improve
the evaluation of the FMs’ effects on vehicle drivability.
Since, in the analyzed system, a disparity in the torque due to an FM affecting
only one of the motors could cause a sudden car turn. The embedded software has
to be able to vector (similarly, the pilot can trim an aircraft rudder on dual-engine
aircraft) automatically the torque to avoid this effect.
The risk level associated with a vehicle function is determined, keeping into account
the capability of an average driver (controllability) to mitigate the failure effect. For
this reason, the driver has been represented, inside the vehicle-level simulation, like
a PID controller with a delay to keep into account the human reaction time. Its
target behavior is represented by a predetermined trajectory to be followed on the
track.

In each of the considered driving situations, two parameters have been analyzed:
the lateral distance from the ideal centerline (called in the following lateral error)
and the difference in the yaw angle between the fault-free and fault-affected ride.

3.8.4 Assessment of the SW mitigation capabilities on HW
failures

The fail-operational vehicle-level mitigation strategy is based on the following
assumption: the motor driven by the inverter with a failed IGBT cannot provide
the full torque it is expected to produce. Hence, since only one of the two motors is
affected by this FM21, and the asymmetrical torque causes dangerous situations, it is
necessary to intervene on the fault-free motor. The idea adopted in this benchmark
application is to threshold its speed setpoint up to the fault-affected speed to limit
the torque disparity on the wheels.
A semi-formal representation of the mitigation algorithm is shown in fig.3.17

UpperLimit and LowerLimit signals are equal to the speed of the fault-affected
motor, Detection comes from the detection algorithm, and NormalReference is
the speed request from the driver. Once a failure is detected, the Detection in-
put signal is put to true and the driver’s speed request is saturated up to the
UpperLimit in case of forward direction, or LowerLimit in case of a revers (back-
word) direction.
Once triggered, the mitigation algorithms remains in the degraded state even if the
detection algorithm stops to perceive a failure.

3.8.5 Experimental setup
The benchmark application is composed of:

21The FMs are injected one at a time.

121



Simulation-based FMEDA

Figure 3.17: Mitigation algorithm. Figure from [19].

• the embedded software of the dual inverter system

• the structural model of the inverters, with their fault models to be injected;

• the model of the electric motor;

• the model of the driver, in the form of a PID controller;

• physical models of the car and surrounding environments (tracks) provided
by the vehicle-level simulator;

• scenarios in which test the failure effects;

• vehicle behavior classification rules.

The elements indicated in fig.3.15 are implemented by:

• fault list generator module ⇒ MathWorks™ MATLAB™ script;

• sabouter ⇒ MathWorks™ MATLAB™ script;

• structural-level simulator ⇒ MathWorks™ Simulink™ with SimScape™ tool-
box to perform SPICE-level simulation of the design;

• vehicle-level simulator ⇒ CarSim™ [49];

• fault list classifier ⇒ MathWorks™ MATLAB™ script;

122



3.8 – Fourth proposal - From an item-level FMs classifications to a vehicle-level one

3.8.6 Simulation results
Five different situations have been taken into account to assess the vehicle-level

mitigation algorithm:

a) driving straigth at 130 km/h;

b) acceleration from 0 to 130 km/h;

c) triple curving at 100 km/h;

d) regenerative braking on a straight road from 130 km/h to 0 km/h;

e) regenerative braking on triple curving from 100 km/h to 0 km/h;

The curving track is shown in fig.3.18 Among these cases, the three most interesting
are the b), c) and e).

50

100

150

200

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Track position [m]

Tr
ack

 po
sit

ion
 [m

]

Figure 3.18: The triple curving simulated track. The arrows indicates the direction
of the ride.

Cases a and d

In the cases a) and d), the results obtained with the mitigation algorithm en-
abled or disabled are too close to each other to comment the results: in table 3.7
are reported the values of the maximum errors in terms of yaw angle and lateral
displacement errors for the cases a) and d).

123



Simulation-based FMEDA

Case Conditions Lateral displacement [m] Yaw angle error [deg]
a) FA [−0.117, 0.100] [−0.720, 0.385]

M [−0.096, 0.080] [−0.289, 0.248]
d) FA [−0.026, 0.032] [−1.477, 0.813]

M [−0.026, 0.031] [−1.453, 0.796]

Table 3.7: Simulation results. Conditions: FA indicates fault affected without mit-
igation algorithm, while M indicates fault conditions with the mitigation algorithm
enabled
.

Case b: acceleration from 0 to 130 km/h

This situation represents a full-throttle acceleration from 0 to 130 km/h. The
car took 16 s in fault-free condition to reach the target speed.
As shown in fig.3.19, the mitigation algorithm is quite useful to limit the failure
effects in terms of lateral error. When the failure is injected and hence detected (at
about 2 s from the start of the simulation), the benchmark mitigation algorithm
starts to limit the lateral error, especially at high speed (when it is more difficult
for a human driver to intervene).
Analyzing the error in terms of yaw angle (see fig.3.20), it is possible to see that
the mitigation algorithm can reduce the error from the range −0.5 to 0.6 deg to
−0.2 to 0.2 deg.
In this situation, the mitigation algorithm, even if it is straightforward, has demon-
strated itself capable of reducing both the lateral and the yaw angle errors of the car.

Case c: triple curving

In the straight acceleration, we obtained quite good results from the chosen
algorithm. So, to keep into account a different and more challenging condition, the
experiments have been repeated on a curving track, shown in fig.3.18.
As shown in fig.3.21 and fig.3.22, the adopted mitigation strategy improves the
lateral error and worsens the yaw angle performances.This is an expected result
since it bounds the speed of the fault-free wheel to the fault-affected one: the
chosen control strategy is set with a small proportional gain in the speed loop,
limiting the effects of the transient.

Case e: regenerative braking on triple curving

In this case, where regenerative braking from 100 km/h to 0 km/h is simulated
on the track of fig.3.18, the mitigation algorithm does not improve the lateral error
and worsen the yaw angle, as shown in fig.3.23.

124



3.8 – Fourth proposal - From an item-level FMs classifications to a vehicle-level one

Figure 3.19: Case b lateral errors with respect to the ideal trajectory. Adapted
from [19].

These errors are inside the acceptable range, so in a tradeoff, it remains convenient
mitigation algorithm adoption.

In any case, this worsening effect warns about the side-effects the mitigation
algorithms can add at the vehicle-level: these, in some cases, can become ineffective
or even worsen the situation. It highlights the need for extensive testing in different
conditions.

125



Simulation-based FMEDA

Figure 3.20: Case b yaw angles measured with respect to the tangent of the ideal
trajectory. Adapted from [19].

126



3.8 – Fourth proposal - From an item-level FMs classifications to a vehicle-level one

Figure 3.21: Case c lateral displacement with respect to the ideal trajectory.
Adapted from [19].

127



Simulation-based FMEDA

Figure 3.22: Case c yaw angles measured with respect to the tangent of the ideal
trajectory. Adapted from [19].

Figure 3.23: Case e yaw angles measured with respect to the tangent of the ideal
trajectory. Adapted from [19].

128



3.9 – Fifth proposal - From safety to mission criticality: finding a tradeoff between needs and model precision

3.9 Fifth proposal - From safety to mission crit-
icality: finding a tradeoff between needs and
model precision

The system considered in this proposal is a complex cyber-physical system: it is
composed of several interconnected subsystems, designed independently from each
other to perform a specific part of the system functionality.

The main contributions of this proposal, with respect to the other methodolo-
gies described in this dissertation ( [15] presented in the section 3.5, and [16] [18]
presented in the section 3.6) are the following:

• makes use of electronic design automation (EDA) tools, already available on
the market and usually licensed by hardware design companies, to perform
analysis of complex cyber-physical systems composed of analog, power, digi-
tal, and electromechanical subsystems.

• allows to evaluate, in detail, the effects on the whole system of FMs affecting a
target subsystem: for this purpose, the affected subsystem is simulated thanks
to a structural model, while the stimuli to be applied to the subsystem and the
effects of the faults at the system level are computed resorting to behavioral
(high-level of abstraction) models; recent EDA tools allow to easily combine
structural and behavioral models and to perform their combined simulation
effectively;

• automates and speeds-up the FMECA process, supporting a critical step in
today’s design flow of many systems;

The experimental results, gathered on the case study, show that, thanks to the
proposed approach, the safety engineer not only can more easily identify the critical
faults affecting the system, but their number is significantly reduced, mainly due to
the spontaneous compensation effects emerging from the effects of the closed-loop
control systems22.

This structure is particularly interesting since designers can use it alongside
the general structure of items (sensors-computing unit-actuators) to put the failure
modes effects assessment in a general perspective.

While [15], [16], and [18] the main focus was the Functional Safety of the de-
signed item, i.e., to avoid unreasonable risk due to misbehaviors on its critical

22Even in case a compensation spontaneously emerges from the closed-loop controllers, these can
lead to overstresses on other components, founding themselves outside their nominal specifications.
In those cases, designers can adopt this simulation-based approach to aid the development of
detection mechanism to avoid that these effects trigger other FMs on the overstressed components
leading to critical failures at the system level.

129



Simulation-based FMEDA

functionalities, while in this paper, the purpose is to increase the complex system
availability by considering it as a mission-critical one.
In [15], [16], and [18] the FMECA is performed for a single analog subsystem by
injecting the FMs at the low level (see section 3.5.1) and their effects are not prop-
agated to the other subsystems23.
The FM assessment is based on two classes: critical and non-critical. Critical FMs
are those that make it impossible for the complex system to provide its functional-
ity, while the non-critical ones are those not affecting the functionality, or masked.
In [42], [50], [51], [52], [41], and [53], the faults effects are propagated to other sub-
systems, but the failure modes are simulated by injecting behavioral models, hence
by input-output relationship of the affected subsystem. In this proposal, instead,
the FMs are instead injected at the structural level, as discussed in the fault models
sections.

It is possible to summarize this proposal, by saying that the low-level fault
injection system is the one proposed in the first two ones (see sections 3.5 and 3.6),
the system-level classifier is similar to the one proposed in the fourth (see section
3.8), where the assessment of the failure effects is performed at the system level (in
the specific case applied to the entire vehicle dynamics).
The assessment of the embedded software effects mitigation capabilities was present
in all these older proposals and kept in this one.

The purpose of this proposal is to assess the effects of the FMs affecting one of
the subsystems (SSUT) composing the complex system. The FMs list is generated
accordingly to the Structural (low-level) fault models.

The proposed approach for a generic SSUT of a complex system is performed
in eight steps, as described below, and indicated in gray circles in fig.3.24.

1. Block diagram generation. The block diagram of the overall complex system
is obtained.

2. Preparation of the behavioral models for the subsystems.. Behavioral models
of each subsystem present in the complex are prepared. They can be obtained
from the design phase of the complex system or by theoretical or identified
transfer functions between the inputs and outputs of the subsystems.

3. Behavioral system simulation24. When all the behavioral models are con-
nected to each other accordingly to the complex system topology, it is possi-
ble to perform a simulation of the complex system in fault-free conditions.
To assess the quality of the obtained model, stimuli compliant with its design
specifications are applied to the complex system inputs. The responses must

23Items in the ISO26262 vocabulary.
24In the paper [39] this phase is called High-level system simulation.

130



3.9 – Fifth proposal - From safety to mission criticality: finding a tradeoff between needs and model precision

comply with the complex system design specifications. Generally, in a cyber-
physical system, the system’s stimuli are electrical, while the response to the
stimulus is obtained on the mechanical actuator.

4. SSUT structural model25. The subsystem in which the faults are injected is
now chosen. Its behavioral model is replaced with a structural one, where the
FMs will be injected.

5. Model check. It is performed a new simulation in fault-free conditions to verify
that the structural model of the SSUT works properly.
In the case the obtained responses are compatible with the one obtained with
the behavioral model. It is stored as the golden response.

6. FMs list generation26. The list of the FMs to be injected is generated.

7. FM effects simulation27. For each one of the injected FMs, a simulation is
performed by applying an opportune set of stimuli to test various working
conditions of the complex system. The simulation results are stored.

8. FM effects classification28. The classifier [16] [19] compares the responses
obtained from the fault-affects complex system with the golden one obtained
during the model check phase and against the rules defined in the section
3.9.3.

25In the paper [39] this phase is called Subsystem under test
26In the paper [39] this phase is called Fault level simulation.
27In the paper [39] this phase is called Fault effect simulation.
28In the paper [39] this phase is called Fault effect evaluation.

131



Simulation-based FMEDA

Blo
ck

dia
gra

m
SS

UT
 

str
uct

ura
l

mo
del

Mu
lti-

lev
el

mo
del

 of
 th

e 
sys

tem

Cla
ssif

ier

SS
UT

sim
ula

tio
n

Fa
ult

 
inj

ect
ion

Fa
ilu

re
mo

des

Fa
ult

 
mo

del

Of
f-li

ne 
sim

ula
tor

Su
bsy

ste
m 

 
sch

em
ati

c
Su

bsy
ste

m 
 

sch
em

ati
c

Su
bsy

ste
ms

 
beh

avi
ora

l
mo

del
s  

 

Co
mp

lex
sys

tem
sim

ula
tio

n
res

ult
s

Sy
ste

m 
inp

ut 
sig

na
ls Sa

bo
teu

r

1
2

64

3

7

8
5

Fi
gu

re
3.

24
:

R
ep

re
se

nt
at

io
n

of
th

e
pr

op
os

ed
ap

pr
oa

ch
.

A
da

pt
ed

fro
m

[3
9]

.

132



3.9 – Fifth proposal - From safety to mission criticality: finding a tradeoff between needs and model precision

The considered case study is a three-phase motor control system used for in-
dustrial applications, such as compressors and forced ventilation systems.
It does not provide safety-critical functionalities but can lead to a stop of produc-
tion and a loss of money (mission-criticality).
Sometimes the availability of these systems can be considered as safety-critical, but
in this paper, no assumptions of this kind are considered. In any case, being able to
accurately and automatically estimate the FMs effects is of paramount importance.

The control system is composed as shown in fig.3.25. The SSUT is the Power
Supply Unit (PSU), in charge of supplying the high voltage needed for the electrical
motor. In particular, it has to provide a DC voltage of 400 V with a maximum
ripple of ±7 V with a maximum current of 12 A. It accepts as input a single-phase
AC voltage from 110 to 250 V (RMS), with a 50 or 60 Hz frequency.
This voltage is used to drive the motor and a PSU-low power that generates the
low voltages needed by the conditioning and elaboration units.
A structural model of the PSU is required to perform fault injection. Its circuit
diagram is shown in fig.3.26.

The PSU is composed of:

• a diode (Graetz) bridge (Dw1, Dw2, Dw3, Dw4);

• three boost cells;

• an analog FAN9673 controller (implemented as an IC).

The schematic of the PSU is shown in fig.3.26.

133



Simulation-based FMEDA

PS
U 

–h
igh

 po
we

r
(FA

N9
673

)
Th

ree
-Ph

ase
 In

ver
ter

(ST
GI

PS
30C

60T
-H

)
Mo

tor

Mi
cro

con
tro

ller
( ST

M3
2F

446
RE

)

UA
RT

CA
N

PS
U 

-lo
w 

po
we

r

SP
I

U 
V 

W
400

V
12A

220
V

50H
z

HU
   

LU
 

HV
   LV

 
HW

  
LW

En
cod

er
A 

B 
Z

IU
 

IV
 

IW

AD
C

15V
 

5V 3.3
V

DC
AC

DC

Cu
rre

nt 
sen

sor
s

Fi
gu

re
3.

25
:

Bl
oc

k
di

ag
ra

m
re

pr
es

en
ta

tio
n

of
th

e
m

ot
or

co
nt

ro
ls

ys
te

m
ca

se
st

ud
y.

A
da

pt
ed

fro
m

[3
9]

.

134



3.9 – Fifth proposal - From safety to mission criticality: finding a tradeoff between needs and model precision

3.9.1 Fault models
Peculiarity of this proposal is the presence of two different levels of models:

• behavioral high-level;

• structural low-level.

The behavioral models are adopted only for the fault-free subsystems; hence, in this
proposal, no behavioral-level fault models are considered.
The FMs are represented only on the structural models domain.

The saboteur injects FMs (defined as catastrophic failures in [54]) into the struc-
tural model of the SSUT. These are modeled, differently from the previous propos-
als, (compare them with simulation-only components in the section 3.6.1) by adding
electrical switches (see section 3.9.2) in the circuit diagram. This choice has been
made due to the possibility of automating this phase. In this case, a human as-
sessment to exclude the impossible FMs added in this way is required, but, in any
case, it is reasonable to expect that it requires less time with respect to adding by
hands the simulation-only components.

For the sake of this proposal, are assessed only the FMs capable of affecting the
power devices assembled on its PCB. The FMs list is generated in accordance with
the PCOLA/SOQ [55] standard.

Boost Cell Faults

Following the rules, nine different FMs are considered in a single boost cell of
the PSU. The three boost cells present in the PSU, shown in fig.3.26 are identical
and placed in parallel; therefore, it is possible to study the effect of the faults in
one of the three boost cells indistinctly. The boost cell considered is composed of
three elements: an inductor L1, a diode D1 and an IGBT T1. As simulation-only
components, nine electrical switches (leading to 9 failure modes for each one of the
boost cells) are placed between these three components, obtaining the schematics
shown on the right side of fig.3.27.

IGBT Faults

The IGBTs have their fault model.
How to derive an equivalent model is discussed in [54].

Fig.3.28 shows the equivalent electrical model of the IGB with 23 switches cor-
responding to 23 catastrophic defect under the IEEE P2427 classification.
The interested reader can find a discussion about physical meaning of these faults
in [54] and [56].

135



Simulation-based FMEDA

Figure 3.26: Schematic of the PSU. Figure from [39].

Figure 3.27: A boost cell of the PSU instrumented with simulation only switches.
Figure from [39].

3.9.2 Fault injection
The fault injection is performed by properly changing states of:

136



3.9 – Fifth proposal - From safety to mission criticality: finding a tradeoff between needs and model precision

Figure 3.28: Schematic of the PSU. Figure from [39].

• switches inserted in series to each device present in the circuit diagram;

• switches inserted in parallel to each device present in the circuit diagram;

• switches inserted between different nodes of the circuit diagram, in particular
between nodes that are normally unconnected in the SSUT circuit diagram.

generated as described in the fault model section 3.9.1.

3.9.3 Failure modes effects assessment strategies
The proposed approach is designed to identify the critical FMs, i.e., those ones

that modify the behavior of the complex system, leading to a violation of its speci-
fication, hence to an impossibility to provide its functionality (in this case, to drive
the electrical motor).
In the proposed approach, the effects of the FMs can be observed only in some
specific accessible points of the system. In particular, the electric signals present
on the output ports of the complex system (voltages or currents), or the physical
quantities handled by the mechanical actuators.

The injected FMs are considered as critical one29 if the response from the com-
plex system is not compliant with the design specification or coherently with the

29Differently from [15], [16], [18], and [19] the considered case study is not a safety-critical item
for a vehicle, so the purpose is not to determine if the considered FM is dangerous or safe by
assessing if there is or not a violation of safety goals, but an evaluation of their capability to affect
the complex system availability.

137



Simulation-based FMEDA

definitions found in manuals [5] and [57] if it produces a difference w.r.t. the com-
plex system requirements.
Since a numerical criterion is defined, maximum tolerance values are established
for each of the physical (mechanical and electrical) quantities present during the
design phase.
The FM is classified as critical if the value obtained in the simulation exceeds the
maximum accepted tolerance, reported in table 3.8.

Nominal value Tolerance * Tolerance range
U, V, W voltage 400 V 1% 396 V – 404 V
U, V, W current 6 A 2% 5.88 A – 6.12 A
Angular speed 3000 RPM 5% 2850 RPM – 3150

RPM
Vout high-voltage
PSU

400 V 1% 396 V – 404 V

Table 3.8: The classification criteria, with their tolerances, as defined in the system
design phase (as defined by the complex system designer).

3.9.4 Assessment of the SW mitigation capabilities on HW
failures

In the considered complex system, the embedded software30, is in charge of
managing all the subsystems, including their failures (detected by hardware paths),
and generating the appropriate microcontrollers’ peripherals registers configuration
to generate the firing signals for the inverter IGBTs.

Since this system is fail-safe, it does not embed routines to mitigate or react
with a graceful degradation strategy to failures, but if a critical failure happens, it
shuts down the motor and the PSU.

3.9.5 Experimental setup
From the technical point of view, the approach represented in fig.3.26 has been

implemented with the PLECS simulator [58], which is incorporated in, and handled
by, the Mathworks Simulink [59] environment. The whole simulation environment
is managed with numerous MATLAB scripts. Therefore, different steps of the

30The embedded software considered for this complex system has been provided by the PEIC
laboratory of the DENERG Department of Politecnico di Torino. It is a production-level C
language implementation, so it has not been modified to perform these simulations.

138



3.9 – Fifth proposal - From safety to mission criticality: finding a tradeoff between needs and model precision

proposed approach shown in the figure are performed automatically: simulation
management, fault injections, data collection, and classification.

PLECS is specifically designed for simulating power and analog electronic cir-
cuits and mechanical actuators. Moreover, it allows C code execution through a
particular functional block, called C-Scripts. Thanks to this block, it is possible to
run the embedded software within the simulation environment.
In the real system, a timer, integrated into the microcontroller, is configured for
executing the motor control software as a 16 kHz31 periodic task.
This behavior is also replicated in the simulation: every 62.5 µs PLECS calls the
control routines, modifies the outputs of the simulated microcontroller, and resumes
the simulation.

3.9.6 Simulation results
A total of 32 FMs related to the PSU have been considered. Each simulation is

performed by injecting a single FM at a time.
The results are automatically processed with some MATLAB scripts32 to classify
the FM. The obtained classification are reported in table 3.9.

As far as the real-world simulation duration is concerned, simulating 20 s of the
whole system with all the electrical subsystems represented by structural model
(SPICE-level) requires approximately 170 minutes33.
Conversely, when using the proposed multilevel simulation, only about 30 minutes
of CPU time is needed.
This highlights the effectiveness, in terms of performance speed-up, of the multilevel
simulation approach proposed. In the case study, it is improved about six times.

In table 3.9, it is possible to identify 6 FMs classified as critical and 26 as non-
critical. The impact of the six faults classified as critical on the overall complex
system is particularly significant. Designers must implement mitigation strate-
gies to detect FMs, even the non-critical ones, due to their compensation by the
FAN9673 analog controller, as discussed in [56]. In other words, the PSU control
system acts on the IGBTs to compensate for the effect of the injected fault.
This behavior improves the availability of the item for a certain amount of time,
but it is necessary to detect all the FMs to let the user know that service of the
complex system is required before the masked failure triggers a critical FM on an
overstressed component.

31This frequency has been chosen by the control software developers.
32Implementation of the classifier.
33CPU times measured on a workstation based on an AMD FX-8370 8 core processor at 4 GHz,

equipped with 32 GB of 1333 MHz RAM

139



Simulation-based FMEDA

Fa
ul

ts
U

,
V

,
W

vo
lt

ag
e

[V
]

U
,

V
,

W
cu

rr
en

t
[A

]
A

ng
ul

ar
sp

ee
d

[R
P

M
]

V
ou

t
hi

gh
-v

ol
ta

ge
P

SU
C

ri
ti

ca
l

Fa
ul

t
fre

e
40

2
6.

08
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
-

F1
_

BO
O

ST
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F2

_
BO

O
ST

26
3

4.
26

12
22

26
5

V
w

ith
±

25
V

of
rip

pl
e

Y
ES

F3
_

BO
O

ST
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F4

_
BO

O
ST

40
2

5.
98

29
79

40
0

V
w

ith
±

7
V

of
rip

pl
e

N
O

F5
_

BO
O

ST
37

7
7.

90
17

18
Vo

ut
in

st
ab

le
Y

ES
F6

_
BO

O
ST

39
8

5.
89

28
66

39
7

V
w

ith
±

10
V

of
rip

pl
e

N
O

F7
_

BO
O

ST
39

8
5.

89
28

66
39

7
V

w
ith

±
10

V
of

rip
pl

e
N

O
F8

_
BO

O
ST

0
0

0
0V

Y
ES

F9
_

BO
O

ST
0

0
0

0V
Y

ES
F1

_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F2

_
IG

BT
39

8
5.

89
28

66
39

7
V

w
ith

±
10

V
of

rip
pl

e
N

O
F3

_
IG

BT
39

8
5.

89
28

66
39

7
V

w
ith

±
10

V
of

rip
pl

e
N

O
F4

_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F5

_
IG

BT
39

8
5.

89
28

66
39

7
V

w
ith

±
10

V
of

rip
pl

e
N

O
F6

_
IG

BT
39

8
5.

89
28

66
39

7
V

w
ith

±
10

V
of

rip
pl

e
N

O
F7

_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F8

_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F9

_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F1

0_
IG

BT
39

8
5.

89
28

66
39

7
V

w
ith

±
10

V
of

rip
pl

e
N

O
F1

1_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F1

2_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F1

3_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F1

4_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F1

5_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O
F1

6_
IG

BT
40

2
5.

98
29

79
40

0
V

w
ith

±
7

V
of

rip
pl

e
N

O

140



3.9 – Fifth proposal - From safety to mission criticality: finding a tradeoff between needs and model precision

Fa
ul

ts
U

,
V

,
W

vo
lt

ag
e

[V
]

U
,

V
,

W
cu

rr
en

t
[A

]
A

ng
ul

ar
sp

ee
d

[R
P

M
]

V
ou

t
hi

gh
-v

ol
ta

ge
P

SU
C

ri
ti

ca
l

F1
7_

IG
BT

40
2

5.
98

29
79

40
0

V
w

ith
±

7
V

of
rip

pl
e

N
O

F1
8_

IG
BT

40
2

5.
98

29
79

40
0

V
w

ith
±

7
V

of
rip

pl
e

N
O

F1
9_

IG
BT

39
8

5.
89

28
66

39
7

V
w

ith
±

10
V

of
rip

pl
e

N
O

F2
0_

IG
BT

39
8

5.
87

28
66

39
7

V
w

ith
±

10
V

of
rip

pl
e

N
O

F2
1_

IG
BT

39
8

5.
93

28
66

39
9

V
w

ith
±

8
V

of
rip

pl
e

N
O

F2
2_

IG
BT

31
2

4.
90

15
85

30
0

V
w

ith
±

20
V

of
rip

pl
e

Y
ES

F2
3_

IG
BT

31
2

4.
90

15
85

30
0

V
w

ith
±

20
V

of
rip

pl
e

Y
ES

Ta
bl

e
3.

9:
Fa

ilu
re

m
od

es
cl

as
sifi

ca
tio

n
re

su
lts

.

141



Simulation-based FMEDA

3.10 Sixth proposal - Application to a mobile
robotics case study

Due to intellectual property protection, it is difficult to find a complex case
study to apply the FMEA, HARA, and FME(D)A processes. Hence, a mobile
robot (rover), designed by the students’ team D.I.A.N.A. of Politecnico di Torino
and already analyzed in a Master’s Degree thesis [40], has been considered as the
benchmark application of this proposal.

Due to its mechanical design, this rover needs a microcontroller-based system
capable of harmoniously moving the traction and steering motors to be simple
to use in manual mode, via a stick controller, and through autonomous driving
algorithms.

The main focus of this proposal is the assessment of detection and mitigation
capabilities of the embedded software over the failures34 affecting its sensors and
actuators.
The detection (and mitigation triggering) capabilities are assessed in an automatic
way, while the mitigation ones are assessed by hands thanks to the aid offered by
the simulation results.
Two industrial standards have been followed to perform the analysis: the FMEA
manual from AIAG and VDA [5], the HARA process 2.2.2 of the ISO26262 and the
ECSS-Q-ST-30-02C for what regards the hardware-software interaction analysis.
The main contributions of this proposal are threefold:

• it proposes a methodology to improve the objectivity of the FMEA and HARA
phases by a simulation-based approach;

• it contains a way to continuously verify the fulfillment of the safety require-
ments, from the early development phases, as further subsystems are imple-
mented step by step to the final design;

• it proposes a way to simplify the safety assessment of the HSIA, especially
in those cases where mechanical, electrical/electronic components, and the
embedded software, are involved in determining complex behaviors of the
entire rover.

The approach proceeds as shown in fig.3.29. It loads the failure list for the
considered subsystem.
At this point, thanks to models of the electronics and mechanical components of
the rover, the physical simulator simulates the rover, for each one of the mission

34The models used in this proposal are all described at the behavioral level, hence for this
proposal, I prefer to use the word failure instead of failure mode.

142



3.10 – Sixth proposal - Application to a mobile robotics case study

contained in the mission database in fault-free (golden) conditions, and subsequen-
tially, it injects the failures one by one in both the electronics and mechanics.
After each simulation, the system-level classifier compares, by some set of classifi-
cation rules, the failure detection signals with the ones indicated in the detection
capability requirements database, and indicates if the failure has been detected or
not. The content As the last operation, it computes the metrics and generates a
human-readable assessment report.

143



Simulation-based FMEDA

Hu
ma

n 
rea

da
ble

tes
t r

epo
rt

Ph
ysi

cal
 Si

mu
lat

or
Mi

ssi
on

s
da

tab
ase

Fa
ult

 
inj

ect
ion

Fa
ilu

re 
eff

ect
s

Me
cha

nic
al

Sim
ula

tor
Ele

ctr
on

ic
Sim

ula
tor

Fa
ilu

re 
list

Sy
ste

m-
lev

el
cla

ssi
fie

r

De
tec

tio
n 

cap
ab

ilit
y 

req
uir

em
ent

s

Em
bed

ded
 

So
ftw

are

Sa
bo

ute
r

Ste
p 4

Ste
p 5

S
F M

F C
O

D
A P

RB/TS

SW action 
trigger

SW action

SW effects 
on HW

Identified 
adverse 
effect on 
HW

Ste
p 6

Detection Action

Status
Action Taken

S
O

D
A P

Fi
gu

re
3.

29
:

Sy
st

em
le

ve
ld

ev
el

op
m

en
t

pr
oc

es
s

w
ith

th
e

m
ai

n
in

vo
lv

ed
do

cu
m

en
ts

.

144



3.10 – Sixth proposal - Application to a mobile robotics case study

3.10.1 Description of the rover
To better understand the rest of this proposal, it is useful to describe the rover.

It is a prototype designed in 2020 to participate in international challenges, with
in mind the futuristic purpose of aiding astronauts on Mars’s surface.

Its frame adopts a rocker-bogie suspension system that has six wheels and allows
it to climb over obstacles that are up to twice the diameter of its wheels without
the need for springs [60].
This structure has five joints: two between the rockers and bogies, two between the
rockers and the fixed frame, and one in the middle of the torsion bar.
The fixed frame supports an arm and contains scientific instrumentation and control
computers.
The mobility system of the considered rover is composed of:

• 6 traction BLDC35 motors (TM)

• 6 traction reduction gears (TRG)

• 6 clutches between the traction motors (TC)

• 4 steering stepper motors (SM)

• 4 reduction gears for the steering motors (SGR)

• 6 relative encoders installed on the traction motors (speed of the motor) (E-
TM)

• 6 relative encoders installed on the traction reduction gears (speed of the
wheel) (E-TGR)

• 6 hall effect speed sensors installed on the wheels (H-TGR)

• 3 absolute encoders, 2 installed on both rocker-bogie hinges, the other on the
torsion bar one.

• 4 absolute encoders installed on the steering motors (position of the steering
motor) (E-SM)

• 4 absolute encoders installed on the steering after the reduction gears (position
of the wheel) (E-SGR).

35BrushLess Direct Current.

145



Simulation-based FMEDA

Actuators

It is equipped with six traction wheels provided with independent permanent
magnet motors (TM) and a reduction gear (TRG). Four of these (at the extremities)
can steer thanks to four separate stepper motors (SM) and reduction gears (SRG).
Due to the absence of mechanical differential gears or mechanical steering links, the
embedded software is in charge of properly moving all actuators to allow the rover
to move smoothly.

Sensors

Traction system These sensors are in charge of measuring angles and angular
velocities. There are absolute encoders (E-SM and E-SRG) to measure the angles
the steering wheels have with respect to the frame and relative encoders (H-TM,
E-TM, and E-TRG) to measure the angular velocities of the wheels.
The encoders on the traction motor (regardless they perform an absolute or a rela-
tive measure) have been installed both upstream and downstream of the considered
motor and reduction gear, with the first measuring the speed of the motor and the
latter the speed of the wheel.

Passive joints Three absolute encoders measure the rocker-bogie passive joints
positions: two of them are installed on the joints between rockers and bogies struc-
ture and the remaining one on the torsion bar.

Steering system Since there are no mechanical links between the steering wheels,
the correct configuration of the steering system is guaranteed, thanks to the abso-
lute encoders (E-SM and E-SRG) readouts, only by the mobility subsystem control
software [61]. It is calculated by an Ackermann model adapted for the rover struc-
ture [40].

3.10.2 FMEA of the rover
This proposal aims to analyze how the embedded software can detect and miti-

gate some of the possible hardware failures, considering as the affected components:
the encoders, the motors, and the clutches between the traction motors and the
reduction gears. In this last case, the main goal is to reduce the damage to the
rover caused by the failure, with a good compromise on its availability: since it is
designed to aid astronauts in a hostile environment, fail-operational behaviors are
preferred every time has been found an acceptable trade-off between the possible
damages of the rover itself and simplification of the operations for the astronauts.

Different from the other proposals, this one also involves an FMEA phase (see
section 2.10). The process starts as described by phases 2 to 5 of [5] (see fig.2.13).

146



3.10 – Sixth proposal - Application to a mobile robotics case study

Figure 3.30: A 3D rendering of the Ardito Rover developed by the D.I.A.N.A.
student’s team of Politecnico di Torino.

Phases 2 and 3 are performed by hands.
Starting from phase 4, there are two options:

• perform it by hands as usual, for those failures that have clear effects at the
system level;

• adopts a simulation-based approach for the one with no trivial failure effects.
Thanks to the simulator, it is possible to analyze and score the effects of the
failure modes by injecting them one at a time.

147



Simulation-based FMEDA

Failure mode scoring

The manual requires to score the failures in terms of three parameters.

• Severity: based on the worst possible consequences when the failure occurs.
This parameter is scored, regarding the non-safety critical one (like S0 leading
to QM classification in the ISO 26262 as described in section 2.2.2) from 1,
which indicates that the failure has little consequences on the system, up to 8,
where a primary function is lost. For the safety-critical one, 9 indicates that
the failure mode provokes non-compliance with regulation while 10 indicates
that it can have consequences on people’s health and the environment.
Thanks to simulation results, it is possible to obtain useful data to determine
this parameter.

• Detectability: assess the capacity of the system to detect the considered fail-
ure. On this parameter, we have the key advance, since thanks to the sim-
ulation results, it is possible to observe if the embedded software can detect
the failures and hence to trigger the appropriate mitigation algorithms (SW
action in the [57] terminology), as described in section 3.10.6.

• Occurrency: is determined by hands based on statistical evidence since the
simulation cannot help find out this parameter.

All these three parameters’ scores range from 1 to 10.

Action priorities After the Severity, Detectability, and Occurrence parameters
have been obtained, it is necessary to determine the Action Priority (AP), that
correlates:

• Severity (S) of the failure, keeping into account the implemented mitigation
measures;

• Occurrence (O) of the failure, keeping into account the implemented preven-
tion measures;

• Detectability (D) of the failure, keeping into account the implemented detec-
tion measures.

The AP determination is designed to highlights in a first chance the severity, then
the occurrence and the detectability. The AP can assume only three values: high
(H), medium (M), and low (L).

The list of the APs found for the entire rover are reported in [40].

148



3.10 – Sixth proposal - Application to a mobile robotics case study

3.10.3 Fault models
To allows fault injection into the simulations are needed fault models able to

represent them with a sufficient level of detail. They are described, for each class of
components, in the following. These models are all defined at the behavioral level,
hence the catastrophic/parametric classification of the IEEE P2427 is not applicable
(since it is limited only to the structural models for analog electronic components).

Sensors

Absolute encoders When an absolute encoder fails, it provides a position read-
out equal to its zero position (0 deg in the simulation).

Relative encoders When a relative encoder fails, it provides a speed readout
equal to zero (hence 0 rpm).

Hall effect speed sensors Hall effects speed sensors, like the relative encoders,
when one of them fails, it provides a random speed readout.

Mechanical components

Reduction gears When a reduction gear fails, it remains stuck, preventing the
affected wheel from rotating.

Actuators

Clutches The considered clutches are normally open. They are monostable, so
only when the solenoid is operated they are closed. When one of them fails, the
traction control is no more able to engage it, so the traction motor cannot provide
torque to the affected wheel.

Traction motors When a traction motor fails, it remains stuck. Due to the
presence of the reduction gear, the affected wheel remains stuck until the mitigation
algorithm of the embedded software opens the clutch by removing the power supply
to its solenoid.

Steering motors When a steering motor fails, it remains stuck. Due to the
presence of the reduction gear, it is not possible to move the wheel, which remains
with the relative angle applied by the motor the last time it was able to operate.

149



Simulation-based FMEDA

3.10.4 Fault injection
To test the controller response inside the simulation environment, it is necessary

to implement the ability to inject faults in the mobility system.
The different failure modes have been injected by replacing the signal values inside
the simulation with the ones described by the fault model of the affected component.

3.10.5 Failure modes effects assessment strategies
Steps 1 and 7 of the FMEA manual will not be taken into consideration. Step

5 is briefly described, while the focus for the sake of this proposal is on phase 6,
since the goal is to assess the software capabilities to detect, isolate, and mitigate
the failure modes, classified with a M or H AP (see section 3.10.2) in phase 5.
The Hardware/Software Interaction analysis from [57] plays its role between the
phases risk analysis (5) and optimization (6), where have to be determined the
severity36 and detection capabilities of the embedded software capabilities for the
considered failure.

Phase 5

During phase 5 the software detection and mitigation capabilities are not as-
sessed since the manual requires not to consider advanced detection mechanisms,
like the one based on the embedded software, assessed in this proposal.
To comply with this requirement, benches of simulations are run, one for each
considered failure mode, without mitigations. Moreover, a simulation in fault-free
conditions is performed, to get the expected nominal behavior of the system and
verify that it is able to perform its functionality. This tests the correctness of the
model.

Hardware-software interaction analysis (HSIA) and phase 6

After the development of detection and mitigation algorithms, it is possible to
assess them during the optimization (sixth) phase of the FMEA.
Now, the considered system is simulated as did in phase 5, but including the miti-
gation algorithms effects.
These simulations are repeated over and over again, allowing an iterative design
approach until the expected detection37 and mitigation capabilities have been ob-
tained. In the terminology of the HSIA, as specified in [57], the requirements for

36Not confuse this severity, described in section 3.10.2, with its namesake risk parameter of
the ISO 26262, since it considers also, from 1 to 8 score, also mission-critical aspects (see section
1.0.1).

37To trigger mitigation algorithms (SW actions), detection measures are needed.

150



3.10 – Sixth proposal - Application to a mobile robotics case study

our detection algorithms are the ones described in the SW action trigger columns,
while the mitigation algorithms are described in the SW action columns of the
central table shown in fig.3.29.

A SW action can be:

• an emergency procedure to move the system to a safe state (fail-safe behavior);

• an action to isolate the fault avoiding it propagating to the rest of the system
(fail-operational behaviors);

• an algorithm to mitigate the failure effect obtaining a degraded38 version of
the affected functionality.

3.10.6 Assessment of the SW mitigation capabilities on HW
failures

Thanks to the simulation results, it is possible to assess the effects of the SW
action on the hardware.
Detection and mitigation algorithms have the purpose of improving the reliability,
but unfortunately, sometimes can also introduce adverse side effects that can affect
the hardware unexpectedly, for example, causing an increase in vibrations.
A good assessment process should also determine that the pros/cons balances of
the proposed algorithms are positive.

The rover has 55 components whose failures can affect the mobility subsystem
reliability.
It leads to 255 possible failure combination. Moreover, in the case of unintended
acceleration, the rover can hit the astronauts leading to the need to define functional
safety requirements to continuously monitor that the correct torque is provided on
the traction wheels.

Such complexity is no manageable, so the problem has been simplified by con-
sidering its subdomains.
The detection algorithms have been divided following the hierarchy shown in fig.3.31.
The active part has been divided into six subdomains, each one representing a single
wheel with its steering system. From the conceptual perspective, the central wheels
without steering capabilities have been considered a system where the associated
failures never happen.
It simplifies the software architecture since designers can replicate the detection
algorithm into 6 identical instances.
For each wheel, there are up to 10 components (see 3.10.1): 3 actuators (TM, TC,

38Fail-operational behaviors with degraded operation level are often referred to as graceful
degradation.

151



Simulation-based FMEDA

SM), 2 passive elements (TRG, SRG), and 5 sensors (H-TM, E-TM, E-SM, E-TGR,
E-SGR). The possible 210 (1024) possible failures combinations have been grouped
into 13 failure groups, as defined in table 3.10. For each one of these, are indicated
the involved components and the expected action at the rover level.

Mobility

Active

Wheels

Encoders

Motor

Reduction gear

Steering

Encoders

Motor

Reduction gear

Passive

Hinges

Encoders

Figure 3.31: System level development process with the main involved documents.

In this proposal, the encoders on the rocker-bogie joints are not considered
since, on the one hand, their relative positions depend on the terrain and, on the
other, there are no redundancies of these measurements, so it is challenging to check
onboard the rover if they measure correctly [62]. In any case, these encoders are
installed in a better position with respect to the ones on the wheels and steering
systems; hence their probability of failure is lower.

152



3.10 – Sixth proposal - Application to a mobile robotics case study

G
ro

up
#

T
M

T
R

G
T

C
H

-
T

M
E

-
T

M
E

-
T

R
G

SM
SR

G
E

-
SM

E
-

SR
G

A
ct

io
n

at
th

e
ro

ve
r

le
ve

l

1
x

x
x

x
x

x
x

1
x

x
Fa

il
2

x
x

x
x

x
x

1
x

x
x

Fa
il

3
1

0
x

b
b

b
0

0
a

a
Fa

il
(m

iti
ga

tio
n)

4
x

1
x

x
x

x
x

x
x

x
Fa

il
5

x
0

1
b

b
b

0
0

a
a

Fa
il

(r
ov

er
ca

n
wo

rk
)

6
0

0
0

b
b

b
0

0
1

0
N

o
de

gr
ad

at
io

n
7

0
0

0
b

b
b

0
0

0
1

N
o

de
gr

ad
at

io
n

8
0

0
0

b
b

b
0

0
1

1
Fa

il
9

0
0

0
1

1
1

0
0

a
a

Fa
il

10
0

0
0

b
b

1
0

0
a

a
N

o
de

gr
ad

at
io

n
(b

ut
ch

ec
k

co
nfi

gu
ra

tio
n

of
th

e
ro

ve
r

in
or

de
r

to
fin

d
in

th
e

re
du

ct
io

n
is

ok
or

no
t)

11
0

0
0

1
b

b
0

0
a

a
N

o
de

gr
ad

at
io

n
12

0
0

0
b

1
b

0
0

a
a

N
o

de
gr

ad
at

io
n

13
0

0
0

1
1

0
0

0
a

a
N

o
de

gr
ad

at
io

n
(u

se
as

m
ot

or
fe

ed
ba

ck
th

e
re

du
ct

io
n

fe
ed

-
ba

ck
m

ul
tip

ly
by

50
)

Ta
bl

e
3.

10
:

Fa
ilu

re
s

gr
ou

pi
ng

su
m

m
ar

y.
T

he
ch

ar
ac

te
rs

a,
b

an
d

x
in

th
e

pr
ev

io
us

ta
bl

e
in

di
ca

te
w

ha
t

co
m

po
ne

nt
s

ca
n

fa
il

in
ea

ch
gr

ou
p:

co
m

po
ne

nt
s

m
ar

ke
d

as
x

ca
n

fa
il

sim
ul

ta
ne

ou
sly

in
an

y
nu

m
be

r
be

tw
ee

n
0

an
d

9;
co

m
po

ne
nt

s
m

ar
ke

d
as

a
ca

n
fa

il
sim

ul
ta

ne
ou

sly
in

a
m

ax
im

um
nu

m
be

r
of

2;
co

m
po

ne
nt

s
m

ar
ke

d
as

b
ca

n
fa

il
sim

ul
ta

ne
ou

sly
in

a
m

ax
im

um
nu

m
be

r
of

3
fo

r
gr

ou
ps

nu
m

be
re

d
3,

5,
6,

7,
8

or
in

a
m

ax
im

um
nu

m
be

r
of

2
fo

r
gr

ou
ps

nu
m

be
re

d
10

,1
1,

12
.

153



Simulation-based FMEDA

Detection algorithms (traction subsystem)

To determine what are the affected components, detection algorithms are needed,
while to define the rover state and hence to trigger the appropriate mitigations, it
is needed to choose one of the 13 different groups described in table 3.10.
Only the failures affecting the traction subsystem (for the steering subsystem see
section 3.10.6) have been considered.

First level detection algorithms (traction subsystem)

For this purpose, we developed 6 different first-level detection algorithms, able
to detect non-plausible measurements between couples of the three sensors involved
(E-TM, H-TM, E-TRG) and the considered wheel velocity command. There are
C4,2 = 4!

2!·(4−2)! = 6 possible combinations obtained by considering two sensors at a
time, as shown in a matrix form in table 3.11. A sensor cannot disagree with itself,
and the order does not make any difference, so the matrix is symmetrical. Checks
are defined as comparisons between a difference and a threshold. When a check
fails, the relative flag is set.
These differences and the thresholds can be different, coherently with the considered
sensors couple:

• if both the inputs are equal to 0, it has no sense to perform a comparison;

• if one of the inputs is equal to 0 and the other not, their difference is compared
with a threshold equal to 2 rpm39;

• if both the inputs are different from 0, their difference, normalized by the
first input, is compared with a threshold equal to 0.2 (corresponding to a
20% disparity).

For each one of those algorithms are indicated the flag name and the two sensors
(or commands) involved in the comparison.

TF1 (E-TM/Wheel velocity command) The flag TF1 is raised when the
difference between the wheel velocity command and the velocity measured by the
encoder E-TM installed on the motor shaft is greater than the threshold.

TF2 (H-TM/Wheel velocity command) The flag TF2 is raised when the
difference between the wheel velocity command and the velocity measured by the
hall sensor H-TM installed inside the motor is greater than the threshold.

39The 2 rpm threshold has been chosen to avoid possible divisions by 0

154



3.10 – Sixth proposal - Application to a mobile robotics case study

TF3 (E-TM/H-TM) The flag TF3 is raised when the difference between the
velocity measured by the encoder E-TM installed on the wheel compared with the
one measured by the hall sensor H-TM installed inside the motor is greater than
the threshold.

TF4 (E-TM/E-TRG) The flag TF4 is raised when the difference between the
velocity measured by the encoder E-TM installed on the wheel compared with the
one measured by the encoder E-TRG installed on the reduction gear (divided by
the reduction ratio of the gear itself to obtain a comparable value) is greater than
the threshold.

TF5 (H-TM/E-TRG) The flag TF5 is raised when the difference between the
velocity measured by the hall sensor H-TM installed on the wheel compared with
the one measured by the encoder E-TRG installed on the reduction gear (divided
by the reduction ratio of the gear itself to obtain a comparable value) is greater
than the threshold.

TF6 (E-TRG/Wheel velocity command) The flag TF6 is raised when the
difference between the wheel velocity command, compared with the one measured
by the encoder E-TRG installed on the reduction gear (divided by the reduction
ratio of the gear itself to obtain a comparable value) is greater than the threshold.

Mitigations (SW actions) triggers The table 3.11 recaps how the traction
flags (TFs) are map.

Wheel
velocity
command

E-TM H-TM E-TRG

Wheel
velocity
command

- TF1 TF2 TF6

E-TM TF1 - TF3 TF4
H-TM TF2 TF3 - TF5
E-TRG TF6 TF4 TF5 -

Table 3.11: Flags-failures associations.

These algorithms generate 6 flags, so we have 64 (26) possible combinations.
We can group these, obtaining seven conditions, based on the number of set flags:

155



Simulation-based FMEDA

• All flags cleared: no plausibility problems are detected; hence there are no
failures affecting the sensors; there is 1 combination of this kind.

• 1 flag set: the state is incoherent but tolerated with no actions; there are 6
combinations of this kind.

• 2 flags set: the state is incoherent but tolerated with no actions; there are 15
combinations of this kind.

• 3 flags set: 6 of them represent with certainty the failure of a component,
while 14 are not sufficient to determine the affected sensors hence tolerated
with no actions; there are 20 combinations of this kind.

• 4 flags set: no one of them is sufficient to represent with certainty the failure of
a component but, if one or more subsets of three flags are one of the 6 sufficient
to represent a failure, these failures are kept into account. If not, the wheel
is considered as in the all flag set condition; there are 15 combinations of this
kind.

• 5 flags set: each one of the possible combinations is sufficient to determine the
components affected by faults. Hence, they are managed without considering
the subsets of three flags; there are 6 possible combinations of this kind.

• All flags set: it is impossible to reconstruct the state from the sensors, so the
affected wheel is no more monitored; there is 1 combination of this kind.

A list of the 14 managed combinations, with the indication of the determined
components, can be found in table 3.12.

SW actions (mitigation algorithms)

To improve the reliability of the mobility system of the rover, designers have to
develop algorithms able to choose the better strategy to obtain feedbacks from the
encoders and hall sensors installed on the motor.

There are two kinds of mitigation strategies:

• internal: applied when it is possible to isolate the failure at the wheel level
without involving the whole rover behavior or/and sensors of the other wheels;

• external, applied when it is not possible to manage this failure without involv-
ing behavior changes at the rover level and without using sensors feedbacks
external from the affected wheel.

From these two kinds of strategies, four levels of mitigation have been defined,
as shown in table 3.13.

156



3.10 – Sixth proposal - Application to a mobile robotics case study

Components TF1 TF2 TF3 TF4 TF5 TF6
None 0 0 0 0 0 0
H-TM 0 1 1 0 1 0
E-TM 1 0 1 1 0 0
E-TRG 0 1 1 0 1 0
TM 1 1 0 0 0 1
TRG 1 1 0 0 0 1
TC 0 0 0 1 1 1
E-TM + H-TM 1 1 1 1 1 0
E-TM + E-TRG 1 0 1 1 1 1
E-TRG + H-TM 0 1 1 1 1 1
E-TM + TC 1 0 1 1 1 1
H-TM + TC 1 0 1 1 1 1
TM + TC 1 1 0 1 1 1
All encoders 1 1 1 1 1 1

Table 3.12: Flags-failures associations for all the components.

Legend Type of mitigation algorithm triggered
0 no mitigation
1.1 internal mitigation (use another feedback value)
1.2 internal mitigation (clutch opening)
2.1 external mitigation (use external data, e.g. Slip)
2.2 external mitigation (change behaviour of the rover, e.g. Stop

of the rover)

Table 3.13: Traction subsystem mitigation levels.

When one of the 13 managed groups is found by the detection algorithms, a state
request and a mitigation level requirement are generated to trigger the appropriate
mitigation algorithm.
These states (see table 3.14) are numbered to have the first four corresponding to
single failures and consequentially the double and triple ones (all encoders failures).

157



Simulation-based FMEDA

In some cases, more than one fault-affected components group is associated with
the same state. It happens for those having the same effects or required mitigation
strategies.

Failure State Mitigation required
None 0 0
H-TM 1 1.1
E-TM 1 1.1
E-TGR 2 2.1
TM 3 1.2
TRG 4 2.2
TC 5 0
E-TM + H-TM 6 1.1
E-TM + E-TRG 6 2.1
E-TRG + H-TM 6 2.1
E-TM + TC 7 0
H-TM + TC 7 0
TM + TC 5 0
All encoders 8 2.1 or 2.2

Table 3.14: Failures-states-mitigations associations.

Internal mitigation algorithms (traction subsystem)

The internal mitigation algorithms are those that make use only of feedbacks
coming only from sensors installed on the affected wheel. Three strategies are
adopted to manage failures of H-TM, E-TM, and E-TRG.

H-TM It is propagated the best feedback, in terms of precision, between E-TM,
divided by the gear ratio and E-TRG.

E-TM It is propagated the best feedback, in terms of precision, between H-TM,
divided by the gear ratio and E-TRG.

E-TRG It is propagated the best feedback, in terms of precision, between E-TM
and H-TM, both divided by the gear ratio.

158



3.10 – Sixth proposal - Application to a mobile robotics case study

External mitigation algorithms (traction subsystem)

The external mitigation algorithms are those that make use also of feedbacks
coming from the sensors installed in the other wheels on the rover. Hence, it is
needed to specify both the internal and the external actions.

TRG or TM (Internal) Opens the clutch (TC) to disengage the motor from the
wheel.
(External) The traction control recomputes the torques to the other wheels con-
sidering the impossibility for the affected wheel to generate torque to move the
rover.

TC (Internal) Stops the motor (only to save battery energy) since the TC failure
prevents the motor from applying torque on the wheel.
(External) The traction control recomputes the torques to the other wheels con-
sidering the impossibility for the affected wheel to generate torque to move the
rover.

H-TM + E-TM or E-TRG + H-TM or H-TM + E-MT (only one of the
three) (Internal) It uses the still working speed sensor to feed the rover control
loop and the motor speed control loop.
(External) Applies the "inverse kinematic" model of the rover to estimate the speed
of the affected wheel to choose the encoder still working correctly and formulate
the dual failure diagnosis.

All encoders (Internal) Uses the motor control in sensorless mode.
(External) Applies the "inverse kinematic" model to estimate the speed of the af-
fected wheel to check if the motor is working correctly.

All encoders + TC and/or + TM and/or TRG (Internal) Stops the motor
(External) The traction control recomputes the torques to the other wheels taking
into account the impossibility for the affected wheel to generate torque to move the
rover.

Detection algorithms (steering subsystem)

For the steering subsystem, the detection algorithms are 3. There are only two
encoders, one installed upstream (E-SM) the SRG, the other downstream (E-SRG).

SF1 The flag SF1 is raised when the difference between the angle required to the
motor, the position read from the encoder on the motor (E-SM) and the angular
position of the motor is greater to 2 rad.

159



Simulation-based FMEDA

SF2 The flag SF2 is raised when the difference between the angle measured by
the encoder on the motor (E-SM) divided by 50 and the angle measured by the
encoder on the reduction gear (E-SGR) is greater than 0.04 rad. We highlight
that the value 0.04 rad is equal to 2 rad keeping into account the gear ratio of the
steering system, so 2/50 = 0.04.

SF3 The flag SF3 is raised when the difference between the angle measured by
the encoder on the motor (E-SM) and the encoder on the reduction gear (E-SGR)
is greater than 0.04 rad.

Mitigation (SW effects) triggers Unfortunately, it is possible to trigger a
mitigation algorithm only for the cases of the first two rows of the table 3.15, while
in the others is not possible, since the flags do not allow discrimination between
the cases SM, SGR, E-SM + SM, E-SM + SGR, E-SGR + SM, E-SGR + SGR,
and E-SM + E-SRG.

Component SF1 SF2 SF3
E-SM 1 1 0
E-SGR 0 1 1
SM 1 0 1
SGR 1 0 1
E-SM + SM 1 0 1
E-SM + SGR 1 0 1
E-SGR + SM 1 0 1
E-SGR + SGR 1 0 1
both encoders unreadable, hence
firmware reads 0)

1 0 1

Encoders (disagree between each
other and with the command)

1 1 1

Table 3.15: Flags-failures associations for all the components.

Internal mitigations algorithms (steering subsystem)

E-SM Propagates the feedback given by steering gear reduction encoder E-SGR.

E-SGR Propagates the feedback given by steering motor encoder E-SM.

160



3.10 – Sixth proposal - Application to a mobile robotics case study

External mitigations algorithms (steering subsystem)

The absence of the clutch in the steering system collapses the external mitiga-
tions only into the rover stop action. To avoid false failure detections we decided
to check also the coherence between the steering angles of the wheels. The failures
with external mitigations are:

• SM

• SGR

• E-SM + SM

• E-SM + SGR

• E-SGR + SM

• E-SGR + SGR

• E-SM + E-SGR

3.10.7 Experimental setup
A suitable simulation environment to assess the embedded software detection ca-

pabilities is composed of CoppeliaSim [43] alongside MathWorks MATLAB/Simulink
[59]. The interactions between them are shown in fig.3.32. Both mechanical and
electronic components can be affected by faults, so their signals are modified by
the sabouter.
CoppeliaSim is in charge to simulate the multibody (mechanical) components and
the interaction between the wheels and the terrain [63].
Mathworks Simulink simulates sensors and electronics. The control, detection,
and mitigation software have been developed through Model-Based Software De-
sign (MBSD). It simplifies the integration between the environments: thanks to the
C++ APIs exposed by CoppeliaSim, the algorithms can control the simulation. The
Message Queue Telemetry Transport (MQTT) protocol has been adopted since it
is used in the real rover to communicate with the base station.

3.10.8 Simulation results
Thanks to the simulation results, it is possible to analyze the software effects

on the hardware, as required by [57]40.
The focus of these simulations is to verify that the developed algorithms can detect

40See the central table of the fig.3.32.

161



Simulation-based FMEDA

CoppeliaSim
(mechanics)

Scenarios

Physical Simulator
Simulation logs

Simulink
(electronics)

Fault 
injection

MATLAB/Simulink
(sabouter)

Faults

Simulink
(embedded software)

Figure 3.32: Three stages structure of the a general item.

the failures, while the mitigation effects are assessed manually by the D.I.A.N.A.
team members and not shown in this dissertation.

Of course, it is possible to determine if the detection algorithms are capable
of detecting the failures (and thanks to various scenarios, to determine if in some
cases there are false positive or negative) and if the requirements in terms of Failure
Time Tolerance Interval (FTTI) [7] are met.
The analysis is based on the time intervals defined in the Timing aspects of func-
tional safety 2.3.4 section.

Achieved performances

In this subsection, the discussion is divided between the traction and the steering
subsystems and, for each one of them, between the two detection levels (raise of
flags and mitigation triggers). The detection algorithms that "raise the flags" are
called with the name of the raised flag itself.

In the table 3.16 and table 3.17 are shown the results obtained from the simu-
lations, respectively for the traction and the steering subsystem.

162



3.10 – Sixth proposal - Application to a mobile robotics case study

In
je

ct
ed

Fa
ilu

re
(s

)
In

je
ct

io
n

ti
m

e
t i

[s
]

D
et

ec
ti

on
T

im
e

t d
[s

]
D

ia
gn

os
ti

c
ti

m
e

in
-

te
rv

al
[s

]
T

d
ti

=
t i

−
t d

E
xp

ec
te

d
m

it
ig

a-
ti

on
ti

m
e

(t
i
+

F
T

T
I
)

[s
]

M
it

ig
at

io
n

ti
m

e
t m

[s
]

M
it

ig
at

io
n

de
la

y
t m

d

[s
]

T
es

t
re

su
lt

s

H
-T

M
11

.9
12

0.
1

0
0

0
D

ET
EC

T
ED

E-
T

M
10

.5
10

.7
0.

2
0

0
0

D
ET

EC
T

ED
E-

T
RG

8
8.

1
0.

1
0

0
0

D
ET

EC
T

ED
T

M
14

.6
14

.7
0.

1
15

.2
15

.2
0

D
ET

EC
T

ED
T

RG
13

.2
13

.9
0.

7
14

.4
14

.4
0

D
ET

EC
T

ED
T

C
7.

7
12

.5
4.

8
13

.5
0

∞
FA

IL
H

-T
M

+
T

M
12

.4
s

H
-

T
M

+
17

.4
s

T
M

12
.5

s
H

-
T

M
+

17
.5

s
T

M

0.
1

s
H

-T
M

+
0.

1
s

T
M

0
sH

-T
M

+
18

s
T

M
0

sH
-T

M
+

18
s

T
M

0
sH

-T
M

+
0

s
T

M
D

ET
EC

T
ED

H
-T

M
+

T
RG

18
.6

s
H

-
T

M
+

20
.6

s
T

RG

18
.7

s
H

-
T

M
+

20
.9

s
T

RG

0.
1

s
H

-T
M

+
0.

3
s

T
RG

0
sH

-T
M

+
21

.4
s

T
M

0
sH

-T
M

+
21

.4
s

T
RG

0
sH

-T
M

+
0

s
T

RG
D

ET
EC

T
ED

H
-T

M
+

T
C

5
sH

-T
M

+
13

.6
s

T
C

5.
3

s
H

-T
M

+
15

.2
sT

C
0.

3
s

H
-T

M
+

1.
6

s
T

C
0

sH
-T

M
+

16
.2

s
T

C
0

sH
-T

M
+

0
T

C
0

sH
-T

M
+

∞
T

C
D

ET
EC

T
ED

H
-T

M
+

E-
T

RG
4.

7
s

H
-T

M
+

22
.1

s
E-

T
RG

4.
8

s
H

-T
M

+
22

.2
s

E-
T

RG

0.
1

s
H

-T
M

+
0.

1
s

E-
T

RG

0
sH

-T
M

+
0

s
E-

T
RG

0
s

al
l

+
0

E-
T

RG
0

sH
-T

M
+

0
s

E-
T

RG
FA

IL

163



Simulation-based FMEDA

In
je

ct
ed

Fa
ilu

re
(s

)
In

je
ct

io
n

ti
m

e
t i

[s
]

D
et

ec
ti

on
T

im
e

t d
[s

]
D

ia
gn

os
ti

c
ti

m
e

in
-

te
rv

al
[s

]
T

d
ti

=
t i

−
t d

E
xp

ec
te

d
m

it
ig

a-
ti

on
ti

m
e

(t
i
+

F
T

T
I
)

[s
]

M
it

ig
at

io
n

ti
m

e
t m

[s
]

M
it

ig
at

io
n

de
la

y
t m

d

[s
]

T
es

t
re

su
lt

s

E-
T

M
+

E-
T

RG
13

.8
s

E-
T

M
+

21
.9

s
E-

T
RG

13
.9

s
E-

T
M

+
22

s
E-

T
M

0.
1

s
E-

T
M

+
0.

1
s

E-
T

RG

0
sE

-T
M

+
0

s
E-

T
RG

0
sE

-T
M

+
0

s
E-

T
RG

0
s

E-
T

M
+

0
s

E-
T

RG
D

ET
EC

T
ED

H
-T

M
+

E-
T

M
9

s
H

-T
M

+
15

.2
s

E-
T

M

9.
1

s
H

-T
M

+
15

.3
s

E-
T

M

0.
1

s
H

-T
M

+
0.

1
s

E-
T

M

0
sH

-T
M

+
0

s
E-

T
M

0
sH

-T
M

+
0

s
E-

T
M

0
sH

-T
M

+
0

s
E-

T
M

D
ET

EC
T

ED

E-
T

M
+

T
M

7.
5

s
E-

T
M

+
14

.4
s

T
M

7.
6

s
E-

T
M

+
14

.5
s

T
M

0.
1

s
E-

T
M

+
0.

1
s

T
M

0
sE

-T
M

+
15

s
T

M
0

sE
-T

M
+

15
s

T
M

0
sE

-T
M

+
0

s
T

M
D

ET
EC

T
ED

E-
T

M
+

T
C

10
.7

s
E-

T
M

+
17

.8
sT

C
10

.9
s

E-
T

M
+

0
T

C
0.

2
s

E-
T

M
+

∞
T

C
0

sE
-T

M
+

18
.8

s
T

C
0

sE
-T

M
+

0
s

T
C

0
sE

-T
M

+
∞

T
C

FA
IL

E-
T

M
+

T
RG

6.
8

s
E-

T
M

+
13

.1
s

T
RG

6.
9

s
E-

T
M

+
13

.8
s

T
RG

0.
1

s
E-

T
M

+
0.

7
s

T
RG

0
sE

-T
M

+
14

.3
s

T
RG

0
sE

-T
M

+
14

.3
s

T
RG

0
sE

-T
M

+
0

s
T

RG
D

ET
EC

T
ED

E-
T

RG
+

T
M

4.
5

s
E-

T
RG

+
15

.3
s

T
M

4.
6

s
E-

T
RG

+
15

.4
s

T
M

0.
1

s
E-

T
RG

+
0.

1
s

T
M

0
s

E-
T

RG
+

15
.9

s
T

M

0
s

E-
T

RG
+

15
.9

s
T

M

0
s

E-
T

RG
+

0
T

M
D

ET
EC

T
ED

E-
T

RG
+

T
RG

7.
2

s
E-

T
RG

+
12

.6
s

T
RG

7.
3

s
E-

T
RG

+
12

.7
s

T
RG

0.
1

s
E-

T
RG

+
0.

1
s

T
RG

0
s

E-
T

RG
+

13
.7

s
T

RG

0
s

E-
T

RG
+

13
.8

s
T

RG

0
s

E-
T

RG
+

0.
1

s
T

RG

D
ET

EC
T

ED

164



3.10 – Sixth proposal - Application to a mobile robotics case study

In
je

ct
ed

Fa
ilu

re
(s

)
In

je
ct

io
n

ti
m

e
t i

[s
]

D
et

ec
ti

on
T

im
e

t d
[s

]
D

ia
gn

os
ti

c
ti

m
e

in
-

te
rv

al
[s

]
T

d
ti

=
t i

−
t d

E
xp

ec
te

d
m

it
ig

a-
ti

on
ti

m
e

(t
i
+

F
T

T
I
)

[s
]

M
it

ig
at

io
n

ti
m

e
t m

[s
]

M
it

ig
at

io
n

de
la

y
t m

d

[s
]

T
es

t
re

su
lt

s

E-
T

RG
+

T
C

8.
7

s
E-

T
RG

+
15

s
T

C

8.
8

s
E-

T
RG

+
0

s
T

C

0.
1

s
E-

T
RG

+
∞

T
C

0
E-

T
RG

+
16

s
T

C
0

s
E-

T
RG

+
0

s
T

C
0

s
E-

T
RG

+
∞

T
C

FA
IL

T
M

+
T

C
7.

9
s

T
M

+
13

.1
s

T
C

8
s

T
M

+
13

.2
s

T
C

0.
1

s
T

M
+

0.
1

s
T

C
8.

5
s

T
M

+
14

.2
s

T
C

8.
5

s
T

M
+

0
s

T
C

0
s

T
M

+
∞

T
C

D
ET

EC
T

ED

T
C

+
T

RG
2.

4
s

T
C

+
15

.7
s

T
RG

2.
4

s
T

C
+

15
.9

s
T

RG
0

s
T

C
+

0.
2

s
T

RG
3.

4
s

T
C

+
16

.4
s

T
RG

15
.9

sT
C

+
16

.9
s

T
RG

12
.5

sT
C

+
0.

5
s

T
RG

FA
IL

T
RG

+
T

C
13

.9
s

T
RG

+
15

.2
sT

C
14

.6
s

T
RG

+
16

.8
sT

C
0.

7
s

T
RG

+
1.

6
s

T
C

15
.1

s
T

RG
+

17
.8

sT
C

15
.1

s
T

RG
+

0
s

T
C

0
s

T
RG

+
∞

T
C

(n
ot

ne
ed

ed
)

D
ET

EC
T

ED

A
ll

se
ns

or
s

10
.8

s
H

-
T

M
+

12
.9

s
E-

T
M

+
15

.4
s

E-
T

RG

10
.9

s
H

-
T

M
+

13
s

E-
T

M
+

15
.4

s
E-

T
RG

0.
1

s
H

-T
M

+
0.

1
s

E-
T

M
+

0
s

E-
T

RG

0
H

-T
M

+
0

E-
T

M
+

16
.4

s
E-

T
RG

0
H

-T
M

+
0

E-
T

M
+

17
.6

s
E-

T
RG

0
H

-T
M

+
0

E-
T

M
+

1.
2

s
E-

T
RG

D
ET

EC
T

ED

Ta
bl

e
3.

16
:

Si
m

ul
at

io
n

re
su

lts
fo

r
th

e
tr

ac
tio

n
su

bs
ys

te
m

.

165



Simulation-based FMEDA

In
je

ct
ed

Fa
ilu

re
(s

)
In

je
ct

io
n

ti
m

e
t i

[s
]

D
et

ec
ti

on
T

im
e

t d
[s

]
D

ia
gn

os
ti

c
ti

m
e

in
-

te
rv

al
[s

]
T

d
ti

=
t i

−
t d

E
xp

ec
te

d
m

it
ig

a-
ti

on
ti

m
e

(t
i
+

F
T

T
I
)

[s
]

M
it

ig
at

io
n

ti
m

e
t m

[s
]

M
it

ig
at

io
n

de
la

y
t m

d

[s
]

T
es

t
re

su
lt

s

SM
7.

1
12

.8
(a

n-
gl

e
qu

ite
co

ns
ta

nt
)

5.
7

13
.3

15
.8

2.
5

D
ET

EC
T

ED

E-
SM

11
.6

14
.2

(a
n-

gl
e

qu
ite

co
ns

ta
nt

)

2.
6

0
0

0
D

ET
EC

T
ED

E-
SR

G
7.

5
13

.1
(a

n-
gl

e
qu

ite
co

ns
ta

nt
)

5.
6

0
0

0
D

ET
EC

T
ED

E-
SM

+
E-

SG
R

8.
3

s
E-

SM
+

15
.7

s
E-

SR
G

10
.6

sE
-S

M
+

17
.8

s
E-

SR
G

2.
6

s
E-

SM
+

2.
1

s
E-

SR
G

16
.2

18
.6

2.
4

D
ET

EC
T

ED

E-
SM

+
SM

8.
4

s
E-

SM
+

15
.8

sS
M

11
.1

sE
-S

M
+

17
.2

sS
M

2.
7

s
E-

SM
+

1.
4

s
SM

0
s

E-
SM

+
17

.7
s

SM
0

s
E-

SM
+

20
s

SM
0

s
E-

SM
+

2.
3

s
SM

D
ET

EC
T

ED

E-
SR

G
+

SM
6.

9
sE

-S
RG

+
12

.8
sS

M
9.

1
sE

-S
RG

+
16

s
SM

2.
2

sE
-S

RG
+

3.
2

s
SM

0
s

E-
SR

G
+

16
.5

sS
M

0
s

E-
SR

G
+

17
.6

sS
M

0
sE

-S
RG

+
1.

1
s

SM
D

ET
EC

T
ED

Ta
bl

e
3.

17
:

Si
m

ul
at

io
n

re
su

lts
fo

r
th

e
st

ee
rin

g
su

bs
ys

te
m

.

166



3.11 – Summary

Discussion of the results

For each one of the wheels, we found 9 (6 for the central ones) possible failures
(physical components that can misbehave) and 18 (15 for the central one) combi-
nations of failures.
From the detection point of view, simulations show that 22 of them (75 %) are cor-
rectly detected, while 5 of them (25 %) not. These 5 undetected ones are all from
the traction subsystem and are the ones where the TC is involved. In any case,
thanks to the simulation results, we found out that these failures cannot cause crit-
ical misbehaviors. The traction clutch (TC) failure makes it impossible to engage
it and connect the motor to the reduction gear (TRG), hence to the wheel itself.
The loss of the ability of a motor to deliver torque does not make it impossible to
keep moving the rover since it has an advanced traction control system, 5 other
running wheels, and moves at low speed.

3.11 Summary
The six methodologies proposed in this section evolved from the first three

proposals41 where only the item is simulated, to the fourth [19], fifth [39], and
sixth [21] where the failure effects are propagated to the whole vehicle (or system).

In the first proposal [15], the simulations are performed at the item-level by
manually injecting the failure modes inside the SPICE-level circuit schematic, then
using a classifier script to classify the FMs effects based on the simulation results.

The second proposal, described in [16], introduces a fault list generator module,
an automatic sabouter to perform the injection of FMs, and a report generator.
The results obtained by adopting this methodology have been compared with the
ones obtained by a company following the usual handmade process, as described in
the third proposal based on the paper [17].
To improve the classification quality, a model of the actuator (in this specific case,
a BLDC motor) has been added to the simulation, as described in the paper [18]
contained in the second proposal. This level of integration allows performing the
simulation-based FMEDA also on items in charge of closed-loop control systems.
It allowed assessing the failure detection capabilities of the embedded software, but
the analysis on the effectiveness of the embedded mitigation strategies is limited to
fault isolation ones since the approach cannot predict their vehicle-level effects.

In the fourth proposal, published in the paper [18], the methodology has been
extended to propagate the actuators actions to the entire vehicle, thanks to the

41The proposal [15] is described in section 3.5 while [16] and [18] are described in section 3.6 and
have been tested against an handmade one in [17]. This comparison between the simulation-based
and handmade FMEDA is discussed in the section 3.7

167



Simulation-based FMEDA

introduction of a vehicle(system)-level simulator, allowing modification of the clas-
sification rules, moving them from the item-level up to the vehicle(system)-level.
Thanks to this approach, it is possible to assess, other than the detection (struc-
turally limited within an item), also the mitigation capabilities (at the vehicle-level)
of the embedded software. A limitation of this proposal is that it is not possible to
assess the embedded software capabilities to mitigate failures external to the item
itself since only its components are subjected to fault injection.

In the fifth proposal, the approach proposed in the fourth one [19] has been
adapted to an industrial case [39]. The novelty of this proposal is the adoption
of a mixed-level simulation system, with behavioral and structural models running
alongside to simulate the cyber-physical system as a whole. The classification rules
have been modified to keep into account the criticality of the failures since the
considered system is mission-critical.
This proposal lacks an objective assessment of the software mitigation capabilities
at the system level since the focus of this paper is to investigate the failure masking
effects due to compensations provided by the nominal functionality closed-loop
controllers.

In the last, sixth methodology [21], conceptually obtained by merging the fourth
and fifth proposals, two limitations have been overcome: it is possible to inject
failures in the actuators and mechanical components (limitation of the fourth) and
assess42 the mitigation capabilities of the embedded software at the system level
(limitation of the fifth).

A future improvement can be implementing an automatic FMs classification
system based on rules defined at the system level.

42At the moment this is a manual process aided by the simulation results.

168



Chapter 4

Simulation-based HARA

The Hazard Analysis and Risk Assessment (HARA) is a phase, required during
the concept phase (see section 2.2) of the ISO26262, is known to lack in objectivity
and repeatability [64].
To improve these weak points, a novel approach based on a vehicle-level simulator
has been proposed. It has been published into two papers: [65] and [66]. [66] has
been released in 2020 on the journal Elsevier Microelectronics Reliability and it
is an extended version of [65], presented at the International Symposium on On-
Line Testing and Robust System Design (IOLTS) in 2019 and published in its
proceedings.

HARA is crucial to determine the hazards that the item may face during its
operations and assess their associated risk level. As already discussed in section
2.2.2, for each hazard, three risk parameters have to be determined: severity (S),
exposure (E), and controllability (C)1. Once these have been obtained, an Automo-
tive Safety Integrated Level (ASIL) has to be assigned to each of the safety goals
considering, for each of them, the most severe hazard to which its violations expose
the people inside or surrounding the vehicle.

Like autonomous and semiautonomous vehicles, those equipped with Advanced
Driver Assistance Systems (ADAS) can be considered a subset of autonomous and
intelligent systems (A/IS), so their testing is more challenging with respect to the
usual cars.
On the one hand, it is needed to test if the sensing systems are able to perceive,

1For those vehicles classified at level 4 of the SAE classification (see section 1.2.1), or as auto-
mated in the Edge Case Research classification (see section 1.2.2), the controllability parameter is
not significative since the human driver is not involved in guaranteeing the safety of the driving
function.

169



Simulation-based HARA

with sufficient precision and situational awareness2, the external world.
On the other hand, the algorithms in charge of making safety-relevant decisions are
usually developed following the machine learning (ML) approach. It makes them
not completely deterministic. An example can be neural networks trained for a
computer vision application like obstacle recognition. There is no single, correct
outcome for these algorithms, but a set of slightly different but equally correct
output set. It makes the execution of unit tests (see section 2.11.4) difficult when
not impossible. In this case, a test has to be considered as passed when the chosen
behavior keeps the car into a safe situation, failed otherwise.
The application of the ISO 26262 requirements is not sufficient: it considers only the
functional safety aspects, but it is also necessary to verify the risk level associated
with the nominal fault-free3 behavior. To help safety engineers to deal with non-
deterministic strategies, as presented in sections 1.9 and 1.10, two other standards
have been released: the ISO/PAS 21448 (SOTIF) and the UL 4600.
SOTIF covers how to avoid dangerous behaviors emerging from non-deterministic
outcomes of the system, due to situations not foreseen in drafting or requirements
definition for which the neural network is not trained. Other sources of failures can
be the aging of the sensors, incorrectly designed HMI, or users’ excessive confidence
in these systems. The UL 4600 better describes how to obtain a Safety Case as
completely as possible.

The increasing complexity of the ADAS is making it more challenging to per-
form HARA. These items require high-performance Electronic Control Units (ECU)
with complex software to perform their functionalities.
To operate correctly, they interact with the driver, environment, and other vehicle
functions through high-speed in-vehicle networks, as well as a wide range of sensors
and actuators. As a result, they implement complex behaviors whose outcome, in
the presence of failures, is not trivial to identify and classify as requested by the
functional safety standards.

The methodology proposed in this chapter aims to:

• improve the objectivity of the risk assessment process, thanks to the combined
usage of risk parameters classification table (current state of the art to increase
the HARA reliability) and simulation results;

2I borrowed this term from psychology. It has to be intended as the level of adherence between
the external world surrounding the vehicle and its representation provided by the various data
fusion algorithms the vehicle is provided.

3Biased or incomplete training data, or lack of training in some situations, can be considered
as a systematic error, but their meaning is different with respect to the one described in the ISO
26262, since, from the technical point of view, the specifications are fully satisfied. Hence, how to
deal with these situations is not, strictly speaking, a Functional Safety problem.

170



4.1 – State of the art

• increases the repeatability of the overall HARA process since the vehicle-level
simulator allows to make it less dependent on the safety engineers knowledge;

To demonstrate, benchmark, and better explain the methodology, it has been
applied to a well-known industrial case study by performing simulations with the
same tests that are used for the validation of items of the same kind in road tests4.
As described in the following, the benchmark case study is an Advanced Emergency
Braking System (AEBS).

The rest of the chapter is organized as follows. Section 4.1 describes the state of
the art for the topics no already discussed in section 2.2.2 and the research contri-
butions of this proposal. Section 4.3 discusses about the AEBS benchmark results,
while section 4.4 shows the simulation results.
The conclusions, as already did for the proposals about the simulation-based FMEDA,
are reported in section 6.2 of the concluding chapter of this dissertation.

4.1 State of the art
Before starting with the description of the literature on which this approach is

based, it is useful to provide a generalized ADAS device model. These systems are
composed of:

• sensing systems (sensors);

• a data fusion (DF) algorithm to merge the information, coming from all the
sensors, into a unique and coherent virtual representation of the surrounding
environment;

• the logic algorithm that takes the opportune responses based on the virtual
representation of the external world;

• actuators that physically apply the responses from the logic algorithm on the
physical environment.

This typical structure is shown in fig.4.1:
The main issue about the HARA regards its validity (repeatability) and relia-

bility (objectivity) [64].
As already discussed in the section 2.2.2, HARA is conducted in five phases, as

shown in fig.4.2:

1. Situation analysis and hazard identification (SA/HI);

4It has been decided to apply the novel methodology to a well-known case to make it possible
comparing the results obtained with this proposal with the ones found in the literature.

171



Simulation-based HARA

Sensor 1

Sensor 2

Sensor N

.

.

.

Data fusion
algorithm

Logic
algorithm

ADAS
Sensor 1

Actuator 2

Actuator M

.

.

.

Figure 4.1: The structural block diagram of an ADAS device. Figure from [66].

2. Hazard classification (HC);

3. ASIL determination;

4. Safety objective definition;

5. Review.

1. Situation 
Analysis and 

Hazard 
Identification

•Systematic specification of the 
driving situation

2. Hazard 
Classification

•Derivation of the risk 
parameters in terms of severity, 
exposure, and controllability

3. ASIL 
determination

•Combining the risk parameters using 
the Risk Matrix

4. Safety 
Objectives 
Definition

•Description of the Safety Goals

5. Review
•Check for 
completeness, accuracy 
and consistency of the 
classifications

Simulation-based approach

Figure 4.2: The phases of the HARA, with indication of those ones that can be
performed by a simulation-based approach.

4.1.1 Research contribution
Structured methodologies to improve validity (repeatability) and reliability (ob-

jectivity) of the HARA analysis have been proposed in [67] and [68]. Even if these

172



4.1 – State of the art

works propose different approaches, they share the common goal of making HARA
more repeatable and objective by making it less dependent on the background of
the involved safety engineers.
Vehicle-level simulators are adopted in the automotive industry for software veri-
fication [69]. There are various off-the-shelf tools capable to aid designers during
the concept phase of the development, like IPG CarMaker™ [70], AVL™ Vehi-
cle Simulator (VSM™) [71], FEV™ VirtualDynamics™ [72], and CARLA [73], an
open-source simulator for autonomous driving research that allows to use the Scenic
language [74] to model and generate static scenes.

The novelty of this paper is focused on how it is possible to aid the first three
phases (SA/HI, HC, and ASIL determination) thanks to a simulation-based ap-
proach.
Regarding the SA/HI phase, it had been shown that, since only the actuators can
act on the environment, a good way to obtain a suitable hazard list for an item
is to analyze the actuator-level possible misbehaviors [75], regardless of the inter-
mediate stage that caused it. Relying on this hypothesis, it is possible to perform
simulations even when the item is defined only at its behavioral level. The inter-
ested reader can find a similar way, based on the high-level item description, in the
paper [76].
Considering the HC phase, all the papers cited until now use risk parameters classi-
fication tables. These associate numerical values ranges of the physical dimensions
of interest, obtained from the simulations, with the ISO 26262 risk parameters lev-
els, in terms of severity (see table 2.3) and controllability (see table 2.4), adapted
to classify for the peculiarities of the considered application. The same approach
is adopted in this proposal by comparing the ranges indicated in the classification
tables with the values obtained from the simulations.

This proposal has been helpful to other scholars.
In [77] the methodology has been proposed as a solution to determine architectural
and design requirements methods suitable to assure that the examined system
operates in a safe state by preventing faults propagations, in particular in those
cases where erroneous values affect critical signals.
Moreover, a survey on methods for the Safety Assurance of Machine Learning-
Based Systems [78] indicates this proposal as a solution to perform HARA through
the use of vehicle-level simulators to test initial specification while, in the SAE
technical paper [79], it is included into a safety analysis and verification framework
for autonomous vehicles based on the identification of SOTIF triggering events (see
fig.1.9).

173



Simulation-based HARA

4.2 Proposed methodology
The proposed methodology derives from the ones published in [10] and [18],

already presented in section 3.6, and [19], discussed in section 3.8.
These two proposals aim to aid, by a simulation-based approach, the FMEDA. The
first proposal discuss the fault simulation within the item boundaries, while the
latter describes how to propagate misbehaviors5 from the outputs of the item to
the entire vehicle by a vehicle-level simulator.
The FMEDA is performed at the end of the hardware design phase6 to verify that
the obtained schematics are suitable to reach the required reliability level. This
level depends on the most strict ASIL, between the ones assigned to the considered
safety goal, that the item can violate due to a random hardware failure.

The proposed methodology is represented as a block diagram in fig.4.3. More-
over, it can be helpful to map it with the HARA phases described in the section
2.2.2, and shown in fig.4.2. This mapping is shown, superimposed on the block
diagram, in fig.4.4.

5In the case of the FMEDA it is more precise to call them ailure modes effects.
6Regulated by the part 5 of the ISO26262.

174



4.2 – Proposed methodology

AD
AS

ite
m

mo
del

Sim
ula

tio
n

res
ult

s

Sce
na

rio
s

Ve
hic

le
lev

el
sim

ula
tor

Fa
ult

 
inj

ect
ion Sa

bo
ute

r

Cla
ssi

fie
r

Fa
ult

s

Ve
hic

le-
lev

el
cla

ssi
fic

ati
on

 ru
les

Ha
zar

ds/
SG

s
ass

oci
ati

on
s

AS
IL

AS
IL

det
erm

ina
tio

n
ma

tri
x

Fi
gu

re
4.

3:
Bl

oc
k

di
ag

ra
m

re
pr

es
en

ta
tio

n
of

th
e

pr
op

os
ed

ap
pr

oa
ch

.

175



Simulation-based HARA

4 . 
Sa

fet
y

Ob
jec

tiv
es

De
fin

itio
n

3 . 
AS

IL
De

ter
mi

na
tio

n

2 . 
Ha

zar
d

Cla
ssif

ica
tio

n

1 . 
Sit

ua
tio

n 
An

aly
sis 

an
d 

Ha
zar

d
Ide

nti
fica

tio
n

AD
AS

ite
m

mo
del

Sim
ula

tio
n

res
ult

s

Sce
na

rio
s

Ve
hic

le
lev

el
sim

ula
tor

Fa
ult

 
inj

ect
ion Sa

bo
ute

r

Cla
ssi

fie
r

Fa
ult

s

Ve
hic

le-
lev

el
cla

ssi
fic

ati
on

 ru
les

Ha
zar

ds/
SG

s
ass

oci
ati

on
s

AS
IL

AS
IL

det
erm

ina
tio

n
ma

tri
x

Fi
gu

re
4.

4:
Bl

oc
k

di
ag

ra
m

re
pr

es
en

ta
tio

n
of

th
e

pr
op

os
ed

ap
pr

oa
ch

,w
ith

th
e

H
A

R
A

ph
as

es
,m

ap
pe

d
to

its
bl

oc
ks

.

176



4.2 – Proposed methodology

4.2.1 Situation Analysis and Hazard Identification
The first phase is the SA/HI. The SA sub-phase is performed by preparing

various scenarios in a format suitable to the chosen vehicle-level simulator.
The behaviors of the simulated vehicle, obtained by simulating the item, thanks to
its behavioral model in nominal (non-faulty) conditions, are stored into a simulation
results database. These results can be useful, during the situation analysis, to
aid safety engineers to imagine, and adding, newer possible situations not already
considered but that it is possible to find, in the real world, during the vehicle
lifetime.
Moreover, this information is useful during the HC phase to define classification
rules based on the differences between the fault-free and fault-affected behaviors.
The interested reader can find a better description of behavioral models in section
3.9, where differences-based rules are adopted to accelerate the FMEDA.

4.2.2 Hazard classification
It is important to remark that the HARA phase is completed during the concept

phase before the item is designed. The lack of schematics makes it impossible to
know the exact way (in terms of components’ failure modes) and hence the actual
behavior in the case a random hardware failure happens7.

Thanks to behavioral models of the item and the vehicle-level simulator, it is
possible to assess the worst-case consequences of some of the failures (those for
which it is possible to describe the behavior of the item in the case they happen),
on the vehicle, evaluating their severity. The failures are injected by the Sabouter,
following the instructions contained in the faults descriptions.

Simultaneously, by analyzing the effects of the failures on the vehicle acceleration
and trajectory, it is possible to assess the average human driver’s capability to
mitigate them, aiding the controllability determination.
A similar approach has been proposed in [80], where it is described how to assess the
controllability considering, as the benchmark application, an electric power steering
device.

The hazards are classified by comparing the simulation results with the classi-
fication tables for controllability and severity risk parameters. Considering what is
shown on the figures 4.3 and 4.4, these classification tables are part of the vehicle-
level classification rules.

7To determine the failure modes list, it is necessary the BOM, not yet available

177



Simulation-based HARA

4.2.3 ASIL determination
After the risk parameters classifications have been obtained, ASILs can be pre-

liminarily assigned to the hazards. At this point, by hands, the hazards are asso-
ciated with safety goals violations, and finally assigned to SGs8 considering their
most dangerous associated hazard.

The ASIL classification is obtained by combining the three risk parameters S,
C, and E, through the so-called ASIL determination matrix, shown in fig.2.5.

4.2.4 Safety objective definition
In this phase, performed manually, the safety goals are defined and associated

with the hazards. This association is represented as the Hazards/SGs associations
in the figures 4.3 and 4.4.

The proposed simulation-based approach cannot aid the determination of the
exposure parameter. In any case, section 4.4 discusses how the exposure levels have
been obtained for the considered benchmark application.

4.2.5 Review
The review phase is entirely performed by hand. The ISO 26262 confirmation

measures (see section 2.1.3) require, for this phase, other safety engineers, different
from those who performed the HARA.

4.2.6 Summary
The key points of the proposed approach are the following:

• it bases the hazard analysis on simulation scenarios, thanks to the capabil-
ity of the vehicle-level simulator to represent and simulate different driving
situations and surrounding environments;

• it allows, thanks to the simulation results, the decoupling between the knowl-
edge of the safety engineers and the final assessment, improving the objectivity
of the result;

• thanks to the semi-formal models and the determinism of the simulation re-
sults, it is possible to obtain numerical values that improve the repeatability
of the severity and controllability assessment.

8The ASILs, as stated by the ISO26262, are assigned to Safety Goals. Any other preliminary
association can be done just in function of the assignment to a safety goal.

178



4.3 – Benchmark case study

From the implementation point of view to set-up an environment suitable for
this methodology, this minimum set of components is necessary (see fig.4.3):

• the behavioral model of the item (in this case an ADAS) under assessment;

• a vehicle-level simulator;

• a model of the vehicle under test (VUT);

• a software layer to put in communication the model of the ADAS with the
vehicle-level simulator;

• a set of scenarios, as semi-formal descriptions provided in a format compatible
with the chosen vehicle-level simulator9;

• a semi-formal behavioral description of the possible failures of the item under
assessment;

• vehicle level classification rules, in this case expressed as classification tables
for the severity and controllability assessment.

4.3 Benchmark case study

4.3.1 AEBS and its integration into the vehicle
AEBSs are designed to reduce the risk of a collision. Their functionality is based

on sensors, able to measure the gap between the vehicle and the nearest object in
front of it, usually implemented by RADAR technology.

It can work as a standalone system, usually at urban street speeds (< 60 km/h)
or, alongside the cruise control system, at every speed, helping the driver to keep
the right safety distance.
When it works in standalone mode, it provides the driver visual and sound warning
and, if the driver does not react, it performs an emergency brake.
A regular cruise control, a.k.a. cruise control system (CCS), can maintain a con-
stant speed, chosen by the driver, without requesting intervention on the throttle
pedal. When the driver presses the brake or the clutch pedal, the CCS is suspended,
and the system does no provide torque requests anymore. A more complex version,
commercially called Adaptive Cruise Control System (ACCS), is able to maintain
the safety distance, from the preceding vehicle, by automatically adapting its speed
setpoint. The braking requirements of ACCSs are defined into the ISO 15622 [81].
The ACCS does not guarantee safety: it is considered a comfort function. Its only

9Usually, vehicle-level simulators embed a tool to design the scenarios.

179



Simulation-based HARA

safety requirements is related to its disengagement, which is usually classified as
ASIL C.

In the considered case study, the vehicle-level simulator generates the nearest
object distance measurement and receives the braking force required by the ADAS
model. The driver behavior is part of the scenario file. All the physics simulations
are in charge of the vehicle level simulator.

4.3.2 Fault model
A fault model is needed to perform fault injections. Since the item considered

in this proposal is still in its concept phase, it is impossible to describe detailed
fault models, but only to provide behavioral faults descriptions. In this case, the
misbehavior of the item is described as a condition in which it stops applying
braking force on the vehicle without providing any warning to the driver.

4.3.3 The proposed methodology
Situation Analysis and Hazard Identification

During the first stage of the methodology (corresponding to the SA/HI phase),
a system composed of a vehicle-level simulator and a behavioral semi-formal model
of an ACC with AEBS capabilities (ACC/AEBS) is set up.
These scenarios have been prepared for the considered benchmark application,
starting from standard tests for the AEBS: for this class of item, are available
road tests from European New Car Assessment Programme (EuroNCAP) [82],
NHTSA [83], and European Commission [84]. All of them provide descriptions
of significant driving situations, i.e., operational situations.

Simultaneously, a behavioral model of the item, capable of performing its func-
tionalities inside the simulated environment, is prepared. Moreover, if needed, it
has to be instrumented to allow faults injections. Possible ways to instrument the
item model can be sabotaging blocks, similar to those presented in section 3.6.1. In
the considered case, the only considered faulty behavior is described as a complete
lack of the item functionality, so it is injected by forcing the braking force it re-
quests to 0.
The first bench of simulations, in fault-free conditions, is run by the vehicle-level
simulator alongside the ADAS item model. The obtained simulation results can
be helpful to the HC stage if necessary to compare these golden behaviors with
the ones obtained in faulty conditions. In this benchmark application, this kind of
classification rules is not exploited.

180



4.3 – Benchmark case study

Hazard Classification

During the second phase, hazard classification (HC), thanks to the vehicle be-
havior10 obtained from the simulations, the severity and the controllability risk
parameters are evaluated by comparing the simulation results with the classifica-
tion tables. The preparation of the tables is a manual activity, while the application
of the vehicle-level classification rules is performed automatically by the Classifier,
based on the content of the classification tables 4.1 and 4.2.

Classification tables These classification tables have been adapted from [64] to
the considered case: since it is an ACC/AEBS, are considered only those involving
two vehicles driving in the same direction.
Associations from relative speeds of the vehicles and the severity are summarized
in table 4.1.

Severity Relative speed [km/h]
S0 < 21
S1 ≥ 21 and < 26
S2 ≥ 26 and < 36
S3 ≥ 36

Table 4.1: Severity classification rules. Table from [66].

From the controllability point of view, the time to collision (TTC) is considered
the classification parameter, considering those cases where the driver misuses the
emergency braking functionality: he/she relies on the system without looking at
the preceding vehicle behavior.
These rules are summarized in table 4.2

Severity TTC [s]
C1 ≥ 3 (from [84])
C2 ≥ 3 and < 4
C3 ≥ 4

Table 4.2: Severity classification rules. Table from [66].

10As prescribed by the ISO 26262 part 3 (Concept phase), during the HARA, is forbidden to
consider failure effects mitigation systems.

181



Simulation-based HARA

To the best of my knowledge, the assessment of the exposure risk parameter
cannot be performed by a simulation-based approach, so the values have to be
associated, by hands, with each one of the scenarios.

ASIL determination

Once all the risk parameters have been assessed by comparing the simulation
results with the values contained in the classification tables11, it is possible to
determine an ASIL level, through the so-called ASIL determination matrix, shown
in fig.2.5.
This ASIL level is then associated, by hands, with the involved hazards.

Safety objective definition

The only SG considered in this case study is defined as the ACC/AEBS brakes
when there are obstacles in front of the vehicle. The hazard associated with this SG
is the possibility of hitting the preceding vehicle due to the driver’s overconfidence
in this system.

The other SG, associated with the hazard in which the item leads to an unin-
tended braking action, has not been analyzed.

4.4 Simulation results
The simulation system implemented to obtain the data contained in this chapter

is composed of:

• the vehicle level simulator (IPG Automotive Carmaker [70]);

• a model of a full-size sedan car;

• the ACC/AEBS semi-formal model (provided as a MathWorks Simulink model
[59]), instrumented to force its breaking force request to 0;

• a classifier to extract, from the simulation logs, the relative speed between
the vehicles at the moment of the crash and the time to collision (TTC). It
has also to assign the correct levels, in term of severity (see table 2.3) and
controllability (see table 2.4), by comparing the numerical simulation results
with the levels contained in the classification tables, respectively from tables
4.1 and 4.2.

11As prescribed by the ISO 26262 part 3 (concept phase), during the HARA it is forbidden to
consider failure effects mitigation system

182



4.4 – Simulation results

It is unnecessary to develop a software layer able to put in communication Math-
Works Simulink and IPG Automotive CarMaker since it provides suitable libraries
out of the box.

All the scenarios chosen for the test of the considered AEBS case study can be
represented by fig.4.5. Two cars are driving on a straight road in the same direction.
The considered item is installed on the Vehicle Under Test (VUT), while a Target
Vehicle (TV), preceding the VUT, acts as the obstacle. The differences between
the situations are:

• the distance between the two cars at the start of the simulation;

• the speeds of the two vehicles, vvut and vtv at the start of the simulation;

• the TV braking acceleration function atv(t).

VUT TV
vvut vtv

Distance between the VUT and TV

atv

Figure 4.5: Representation of the situations analized in all the scenarios.

The severity assessment is based on the relative speed of the vehicles at the
moment of the crash, while the controllability is classified by taking into account
the time elapsed from the start of the hazardous condition, as described in the
test, until the crash. This time interval is called in the following Time To Collision
(TTC).
Since the item is represented by a semi-formal behavioral model, the fault-free model
is a runnable model able to complain the requirements defined in [81], while the
fault affected one lacks entirely of the braking capabilities.

The simulated driver does not brake in any condition, so only the AEBS can
avoid the crash. Driver behavior, in terms of speed and trajectory, is defined in the
test cases. In all the defined scenarios, the benchmark fault-free behavioral model
of the item can avoid the crash.

4.4.1 EuroNCAP AEBS test protocol
The EuroNCAP test protocol [82] has been revised in 2017 and specifies two

different test procedures:

• AEB City, considered in the assessment of the adult occupant protection;

• AEB Inter-Urban, considered in the assessment of safety assist.

183



Simulation-based HARA

There are three different scenarios:

• Car-to-Car Rear Stationary (CCRs)
The vehicle under test (VUT) is 120 m away from the target vehicle (TV).
The TV is still. The simulation starts with the VUT in one case at 80 km/h,
and in the other at 50 km/h.

• Car-to-Car Moving (CCRm)
The VUT and the TV are at speeds inside the range 50 - 80 km/h: the test
starts at 50 km/h and, by increasing speed step of 5 km/h, it reaches 80
km/h. In this work, the simulation is performed at only 50 km/h.

• Car-to-Car Braking (CCRb)
The VUT and the TV have the same speed equal to 50 km/h. The test is
performed with all the combinations of 2 and 6 m/s2 decelerations of the TV.
The relative distance plot over the time of the two combinations with the 6
m/s2 deceleration of the TV are plot in fig.4.6 and fig.4.7. The behavior is
similar for all the cases presented in this paper (except, of course, for the
initial distance and the collision time).

This test protocol also explains how to check if the Forward Collision Warning
(FCW) system works appropriately, but this functionality is not considered in this
dissertation.

The obtained results are shown in table 4.3.

Test Relative speed [km/h] TTC [s]
CCRs (50 km/h) 42 (S3) 8.9 (C1)
CCRs (80 km/h) 74 (S3) 5.7 (C1)
CCRb (12 m, 2 m/s2) 22 (S1) 3.8 (C2)
CCRb (12 m, 6 m/s2) 41 (S3) 1.0 (C3)
CCRb (40 m, 2 m/s2) 42 (S3) 7.0 (C1)
CCRb (40 m, 6 m/s2) 44 (S3) 4.3 (C1)
CCRM (50 km/h) 21 (S1) 28.1 (C1)

Table 4.3: Results from the simulations inside the EuroNCAP scenarios. Table
from [66].

Two interesting plots, obtained from the simulation results for the cases CCRb
(12 m, 6 m/s2) and CCRb (40 m, 6 m/s2) are shown in figures 4.6 and 4.7.

184



4.4 – Simulation results

10.80.60.40.2

12
10
8
6

2
4

Time [s]

Re
lat

ive
 di

sta
nce

[m
]

Figure 4.6: Plot of the relative distance between the VUT and the TV over the
time for the case CCRb (12 m, 6 m/s2). The intersection between the time axis
and the relative distance curve represents the TTC. Figure from [66].

2 4

40

20
30

10

1 3
Time [s]

Re
lat

ive
 di

sta
nce

[m
] 45

4.50.5 1.5 2.5 3.5

Figure 4.7: Plot of the relative distance between the VUT and the TV over the
time for the case CCRb (40 m, 6 m/s2). The intersection between the time axis
and the relative distance curve represents the TTC. Figure from [66].

4.4.2 NHTSA tests
These tests [83] have been published in 1999 to test prototype ACC systems.

Their primary purpose is to characterize the entire prototype system, composed of
sensors, data fusion and control algorithms, and a vehicle platform.

These tests describe the following operational situations:

• Test 1 (headway control mode): closing in on a preceding vehicle from a
long-range. VUT speed is 112.7 km/h, while TV speed is 96.5 km/h.

• Test 2 (aborted passing maneuver): responding to a close approach to a
preceding vehicle. In this case, the speed of the VUT is initially 96.7 km/h.
The speed of the TV remains 96.7 km/h for the whole test. When the VUT
and TV gap is 37.5 m, the driver accelerates to 112.7 km/h. At 2/3 of the

185



Simulation-based HARA

original gap, the driver releases the throttle pedal. The test continues until
the steady-state is reestablished.

Test Relative speed [km/h] TTC [s]
US Test 1 25.0 (S1) 33.5 (C1)
US Test 2 3.6 (S0) 10.9 (C1)

Table 4.4: Results from the simulations inside the NHTSA scenarios. Table from
[66].

4.4.3 European Commission Regulation 347/2012 tests
These three tests come from the European Commission Regulation 347/2012

[84]. It describes mandatory homologation tests for the AEBS in the European
Union.

Three tests are interesting for our purposes:

• EU Test 1 The VUT travels against a still target, representing another car,
at 80 ± 2 km/h;

• EU Test 2: As the test 1, but the TV moves at 32 ± 2 km/h;

• EU Test 3: As the test 1, but the TV moves at 12 ± 2 km/h.

All the tests start when the distance between VUT and TV is at least 120 m. In
this work, the initial space is 120 m for all the simulations.

Test Relative speed [km/h] TTC [s]
EU Test 1 80.0 (S3) 5.6 (C1)
EU Test 2 45.0 (S3) 9.3 (C1)
EU Test 3 68.0 (S3) 6.6 (C1)

Table 4.5: Results from the simulations inside the NHTSA scenarios. Table from
[66].

186



4.4 – Simulation results

4.4.4 ASIL Assignment
After the simulation data have been obtained, it is possible to summarize all

the results in table 4.6.
From the ASIL assignment, it is possible to observe that most of the cases

obtained an ASIL B.
The only case with a different classification it EuroNCAP CCRb with 12 m of gab
between the VUT and TV, with the TV braking at 6 m/s2, indicated as CCRb (12
m, 6 m/s2) in the table 4.3.
This case can be considered a predictable misuse of the system, as the driver forces
the vehicle, with a deliberate action on the throttle pedal, not to respect the safety
distance.
A typical AEBS system is designed only to assist the driver, and it is not in charge
of the safety of the driving task (see section 1.2.2), so it cannot override the driver’s
decisions.
To avoid this kind of misuse, it is possible to implement some strategies on the
Human Machine Interface (HMI), like a sound warning, triggered when the driver’s
action prevents the system from respecting the safety distance, from making he/she
to desists from this dangerous behavior.
Due to these premises, it appears reasonable to assign the ASIL B to the safety
goal the ACC/AEBS brakes when there are obstacles in front of the vehicle.

Test S C E ASIL
CCRs (50 km/h) 3 1 4 B
CCRs (80 km/h) 3 1 4 B
CCRb (12 m, 2 m/s2) 1 2 4 A
CCRb (12 m, 6 m/s2) 3 3 4 D
CCRb (40 m, 2 m/s2) 3 1 4 B
CCRb (40 m, 6 m/s2) 3 1 4 B
CCRM (50 km/h) 1 1 4 QM
US Test 1 1 1 4 QM
US Test 2 0 1 4 QM
US Test 1 3 1 4 B
EU Test 2 3 1 4 B
EU Test 3 3 1 4 B

Table 4.6: ASIL classification of the various tests. Table from [66].

As said in the approach description, the assessment of the exposure risk param-
eter is performed manually.

187



Simulation-based HARA

To reduce the exposure level from E4, statistical evidence demonstrating that the
considered situation is uncommon has to be provided. For this benchmark appli-
cation, since all these scenarios have a high probability level, the most reasonable
choice is to assign them an E4 level, so no statistical evidence has to be provided.

188



Chapter 5

Real-time software validation

All the methodologies on the real-time software validation presented in this
chapter are based on the Hardware-In-the-Loop (HIL).
HIL is a software integration verification technique. It is performed by connecting
a real-time simulation system to the controller (target), (running a physical model)
through transceivers, to obtain identical signals, from the electrical point of view
to the one of the real world. HIL is explained in section 2.11.5.
In this way, it is possible to test the embedded software on its target device, keeping
into account the timings and the interaction with the needed device drivers.

The results shown in this chapter have already been published into four papers.
They can be classified based on their topic:

• Tests on Automotive Body Control Modules (BCM) [8]. In this case, in
collaboration with a company, a new software tool has been developed to
simplify the HIL for items characterized by CAN network access and a high
number of low-speed I/Os.

• Tests on real-time mixed-criticality applications with instrumented bug in the
lowest DAL [9] (the safety level of the DO-178B/C) application or with the
bug injected by a debugger [10] (in this case pausing and resuming the real-
time simulation to allow access to the controller without interfering with the
real-time simulation).
This proposal describes a HIL approach to the validation of mixed-criticality
systems (MCS). In this approach, the HIL testing is combined with fault
injection to prove the safety of the nominal application and of the fault de-
tection, isolation, and recovery (FDIR) mechanisms implemented either in
software or hardware.

• Tests on the multi-agent robotic system (MAS). [11] The particularity of these
robots is that their end effectors are moved by independent agents that cannot
communicate with a link reliable from the timing point of view. Hence, they
need to maintain synchronization relying only on their internal clock sources.

189



Real-time software validation

5.0.1 Research contribution
The novelties of these contributions are not contained in the HIL methodology

by itself but on how is applied.
Multi-agent robotic systems (MAS) may seem not related to the classic paradigms

of the automotive industry. However, the challenges on connected vehicle (one of the
three challenges already discussed alongside electrification and autonomous driving)
make it a field of interest. In automotive applications, other agents can be the other
cars or pedestrians carrying a cell phone (vehicle to vehicle, V2V) or the infras-
tructure, like traffic lights (vehicle to infrastructure communication, V2I).
Different levels of cooperation are possible: while the communication with the
pedestrians’ cell phones can be used only to aid the obstacle detection algorithm
of the autonomous driving, improving safety by allowing detection of pedestrians
even outside the long-range radar limitations1, communication with other vehicles
can help optimize transit inside road intersections or, for example, to give the right
to pass to an emergency vehicle.
Due to the difficulties of obtaining access to an industrial application of this kind
and taking into account the research field of my group (functional safety and de-
velopment and validation of real-time systems), it was therefore chosen to test the
HIL application for the software validation of a hard-real time robotic application.
This application could be considered similar from the point of view of functional
requirements to the coordination of vehicles within an intersection, making sure
that they can cross it at low speed without the need to stop and at the same time
guaranteeing a sufficient safety level from the risk of collisions.

5.1 Automotive Body Control Modules
The approach proposed in this paper was presented in 2018 at the IEEE 13th In-

ternational Conference on Design & Technology of Integrated Systems in Nanoscale
Era [8]. It is a technology transfer project, implemented with the company TXT
E-Solution S.p.A.
My contribution to this proposal started from the TXT XHIL Studio [85]. When
the project started, this product has been already released, so it was yet commercial
software. The agreement between Politecnico di Torino and the company allowed
the author to access and modify its source code.
The goals of this project are:

• the inclusion of CAN communication both at the protocol and HMI level;

1A long-range (76 GHz) radar can detect obstacles up to 150 m [86].

190



5.1 – Automotive Body Control Modules

• the porting from the proprietary TXT XHIL hardware to the NI PXI plat-
form.

The latter activity has been done in collaboration with the Masters’ Degree candi-
date Alessandra Mugoni, who described the porting actions in her thesis [87].

Modern vehicles are managed by Electronic Control Units (ECUs), which to-
day execute software composed of millions of statements, responsible for a broad
spectrum of functionalities, ranging from vehicle occupant comfort (e.g., HVAC)
to safety (e.g., ABS, ESP, ADAS). To guarantee an adequate level of quality for
the automotive embedded software is has been proposed the ISO 26262 standard.
It defines a strict development and validation process (see section 2.11) that must
be fulfilled in order to produce software according to state-of-the-art automotive
practices.
Among the different steps, the ISO 26262 Standard foresees, software test is one of
the most well established, requesting several activities aiming to discover potential
deviations from the expected functionalities before the items are shipped to the car
manufacturers.

In terms of input/output requirements and the number of implemented func-
tionalities, one of the most complex ECU is the Body Control Module (BCM).
It serves multiple purposes: interacts with the user by reading some discrete inputs
(e.g., the turn indicators and the ignition key), actuate some discrete outputs (e.g.,
the window defroster, windscreen wipers, etc.), and communicate over several net-
works the vehicle accommodate (e.g., CAN, LIN, and FlexRay). A typical BCM
ECU has about 100 I/Os, two or three CAN networks, and its software provides
more than 100 distinct functions. The usual approach followed by Tier-1 while
testing ECUs such as BCM is outlined in [88]. Following the procurement of a HIL
hardware providing the adequate set of I/O to connect with the ECU hardware,
the test environment is firstly prepared, configuring the companion software of the
chosen hardware platform to interact with the ECU to be adequately tested, called
as Device Under Test (DUT), or just as BCM to highlight the purposes of this
proposal, in the following. After that, the test cases are developed according to the
item under test specifications.
Two different professional roles are involved in these activities [89]:

• the tool engineer, who is expert in the configuration of the HIL hardware and
its companion software;

• the test operator, responsible for implementing the test cases to be performed
on the DUT and analyzing the collected output responses.

Today it is possible to recognize two types of HIL solutions for BCM testing:

191



Real-time software validation

• Low-end HIL solutions, also referred to as static simulators, where the inputs
to the BCM are provided through a set of switches, knobs, and network sim-
ulators that are wired to the BCM via break-out-boxes, while outputs from
the BCM are connected to bulbs and dial indicators. Inputs are manually
operated by the test operator who follows the defined test cases to apply the
required commands (stimuli) to the DUT. Similarly, output responses of the
BCM are collected and evaluated manually by the test operator.
This solution has two significant limitations. On the one hand, it lacks de-
terminism: since it is based on manual operations, it is nearly impossible to
repeat the same test case. On the other hand, the operators cannot automate
the tests. Nevertheless, this approach is today still in use with some Tier-1
companies.

• High-end HIL solutions, where dedicated reprogrammable hardware is used
to automatically interface with the BCM under test, apply test cases, and
automatically collect output responses. This approach benefits from the au-
tomation capabilities that make the test activity deterministic. However, due
to the HIL hardware’s intrinsic complexity, the test requires a tool engineer
and a test operator. Moreover, the ordinarily available tools to configure and
operate HIL systems are mostly intended for real-time validation of control al-
gorithms, rather than testing software based on Finite State Machines (FMS)
like the BCM one. As such, they provide a rich set of features that are not
specifically designed to ease the work of test case developers.

5.1.1 Proposed approach
The main driver for the development of the proposed approach is to devise a

software test instrument, defined in the following as XHIL Studio or the tool, that
is closer to the skill sets and know-how of the software test case developers and
test operators of BCMs, which are quite different from that generally required for
operating the HIL hardware and its companion software.

As far as the HIL is concerned, several suppliers are on the market, like dSpace,
National Instruments, and ETAS. These companies have proprietary reconfigurable
hardware platforms and software environments, mainly intended for rapid control
prototyping and HIL testing, where the main focus is the real-time validation of
newly developed embedded software. As such, the capabilities of the hardware
machines are comparable to those of high-end servers, as they shall enable the real-
time execution of complex plant models (e.g., a detailed model of a vehicle dynamic
or an engine), while the accompanying software environments are mostly intended
for supporting the development of validation test cases, and activity that is often
performed by the same developers of the control software under test.

192



5.1 – Automotive Body Control Modules

In developing the methodology here proposed, it has been adopted a radically
different approach:

• the HIL hardware and its companion software are used as a reconfigurable
interface to connect with the BCM (or a simplified ECU running only a subset
of the software components) hosting the software under test. In this context,
the simulation hardware takes care of the electrical interfaces with the BCM
and the network connectivity; it is not intended for running complex plant
models, although still possible for future extensions. The HIL hardware is
used to run, in real-time, a special model, defined in the following as the
BCM model, that defines an abstraction of the BCM hardware, exposing to
the companion software the BCM I/Os as a set of logical channels;

• the proposed HIL software operating the simulation hardware offers a simpli-
fied interface to establish the correspondence between the logical I/O channels
and a set of test cases developer-friendly objects (e.g., buttons, dials, graphs).
Through these objects, the test case developer can define a test instrument
panel to operate on the BCM I/Os; moreover, he/she can perform a sequence
of operations on the objects (e.g., setting a switch to the desired position) to
build test cases that are recorded, and that can be replicated. In the case
the TXT proprietary hardware platform is used, XHIL Studio operates it (it
acts as both the test and the companion software), while in the cases third
part hardware is used, XHIL Studio works through the APIs exposed by the
companion software.

Thanks to this approach, it is possible to get two main benefits:
• high flexibility, thanks to the adoption of a reconfigurable HIL system, which

makes it easier to interface it with different BCMs;

• significantly improved usability for the test operator, which is not required to
be a high-end HIL expert, since he/she can operate, thanks to the proposed
tool, as accustomed in the already adopted low-end solutions.

The proposed approach is based on an approach involving a test operator and
seven layers:

• Test operator is the person who has to perform the tests.

• Human machine interface (HMI) of the tool. It allows the test operator to
prepare test cases, run tests, and collect output responses with minimum
effort.

• Hardware abstraction layer (HAL), it is placed in between the HMI and the
companion software. It translates the HMI actions into the corresponding ac-
tions to be performed by the HIL hardware and delivers them to the hardware
driver.

193



Real-time software validation

• Companion software is a collection of software running on a host PC connected
to the HIL hardware to handle the communications with the HIL hardware.

• BCM model it is the model that represents the I/O structure of the ECU. It is
composed of two different elements. The first one is a table (implemented as
a Microsoft Excel file) containing the I/O of the HIL hardware, the relative
voltage levels, and the corresponding identification labels. The second one
is a model of the BCM. As shown in fig.5.1, the left side of the model is
composed of inports and outports, which are named using the same labels
reported in the HIL I/O table. Instead, its right side connects the model
inports/outports with the test harness. In the current implementation, the
BCM model is implemented resorting to Mathworks Simulink. This choice
makes it compatible with any HIL software environment; moreover, it makes
it possible to support tests at different development process stages. Indeed,
the test harness can be a HIL hardware or only a software simulation. In this
way, safety engineers can use the tool to implement an X-in-the-loop (XIL)
testing setup [90].

• HIL hardware is responsible for running the vehicle model (in the case of a
BCM regarding the lightning and other supporting feature and not its dy-
namics), to provide test stimuli as instructed by the test operator through
the HMI, and to provide test responses to the operator by the HMI.

• Breakout box is a physical apparatus used to wire the HIL to the BCM hard-
ware.

• Device Under Test (DUT) is the ECU running the software under test.

5.1.2 Benchmark proof-of-concept setup
This section describes a proof-of-concept implementation of the proposed method-

ology.
The test operator interacts with the HMI implemented, resorting to TXT XHIL

Studio, specifically designed to perform test case development for the software
integration test of BCMs. It offers a user-friendly interface specifically devised for
test case preparation and execution.
XHIL Studio offers an editor that allows the tool operator to prepare test cases.
The editor, shown in fig.5.2, is composed of:

• a list of simulation panels, useful to manage a set of test cases, one for each
of them;

• a toolbox panel, which contains the objects, called widgets, which can be used
to build test cases;

194



5.1 – Automotive Body Control Modules

Figure 5.1: ECU Simulink™ model, with description of mapping from the HMI to
logical resources of the reconfigurable hardware. On the top of the three grayed
areas, it is reported the source of the inports/outports labels.

• a simulation panel editor, populated by the tool operator populated with
widgets, including both discrete I/O signals as well as network messages;

• a list of ECU inputs and outputs, their properties, and a list of the network
(e.g., CAN) messages the DUT handles.

After the test case developer prepared the needed simulation panel, it can be
operated through a simulation panel player. An example of the player is shown in
fig.5.3.
Through the player, the tool operator can define which stimuli have to be applied
to the DUT (by acting on the widgets) and its expected correct responses (by
taking snapshots of situations in where all requirements are met). The sequences
of performed operations can be recorded for later playbacks, allowing them to repeat
the tests automatically. The recorded test sequence is deployed to the test harness,
and its responses are collected and compared with the expected ones (obtained
from the snapshots).
Finally, a test report is generated highlighting any deviations between observed and
expected outputs.

195



Real-time software validation

Figure 5.2: The TXT XHIL Studio simulation editor.

Figure 5.3: The TXT XHIL Studio simulation player.

The HMI interacts with the test harness through the HAL that, in this imple-
mentation, manages the communication with the test harness of choice, composed
of National Instruments hardware and its companion software, National Instru-
ments VeriStand. Communication between HMI and VeriStand is made possible

196



5.1 – Automotive Body Control Modules

through the VeriStand Application Program Interface (API) [91], which provides
two services: the Execution API, which controls the operations of the HIL hard-
ware, and the Real-Time Sequence Definition API, which automates the process of
the real-time stimuli generation. The hardware driver is implemented through the
VeriStand Gateway, which manages the communications from the host computer
to the HIL hardware through a LAN connection. The interaction between TXT
XHIL Studio and NI VeriStand API is shown in fig.5.4.

NI VeriStand project:
§ CAN interface configuration
§ Model example needed to describe the BCM
§ Automatic tests configuration and execution

TXT 
XHIL

HAL

VeriStand

Simulink 
model

NI VeriStand™

MATLAB Simulink®
CAN Database

NI VeriStand™ Stimulus Profile Editor

Figure 5.4: Interaction between TXT XHIL Studio and NI VeriStand API.

As the benchmark DUT, it has been considered a commercial BCM provided
by an Italian Tier-1 supplier, which entails 72 analog inputs, 80 analog outputs, 4
digital outputs, and 2 can network adapters with their relative messages databases.
It implements more than 120 functionalities, and it accounts for more 1200 C
functions and about 300000 C lines of code.
Due to intellectual protection issues, for public presentations, a simplified ECU has
been obtained by implementing a simplified turn indicators control software on an
NXP S32K144 reference board, embedding also CAN connectivity. A photograph
of this setup, presented to customers in November 2017 at National Instruments
Days held in Milan, Italy, is shown in fig.5.5.
The chose HIL hardware is a National Instruments PXI machine, which runs the
NI VeriStand Engine for real-time execution of the ECU model. The PXI has been
adopted since it features a powerful Intel Core i7 multicore CPU and allows, thanks
to its modular architecture based on the PXI bus, to be easily configured to match
the I/O connectivity requirements of the ECU under test. The wiring to the BCM
is implemented, resorting to a breakout box for discrete analog and digital signals
and the NI XNET cabling for the CAN network.

197



Real-time software validation

Figure 5.5: A benchmark of the proposed approach, performed on simplified ECU
implementing a turn indicators control software on an NXP S32K144 reference
board, shown in November 2017 at National Instruments Days in Milan, Italy.

5.2 Mixed-criticality systems
This proposal has been published into two papers: the first one has been pre-

sented at the 19th IEEE Latin-American Test Symposium, while the second at the
conference 24th IEEE International Symposium on On-Line Testing and Robust
System Design. Both the conferences were held in 2018, and the papers were re-
leased into their proceedings.

Modern aircraft are managed by Electronic Control Units (ECU), tasked with
the execution of several processes. A particular challenge is involved in the design of
Unmanned Aerial Vehicles (UAVs): due to safety reasons for the people surrounding
the flight zone and the high costs involved in building a UAV, producers have to
guarantee the reliability of their avionics ECUs.

To guarantee that the software running on these ECUs shall fulfill hard real-time
performance requirements, there have been proposed many techniques to compute
the worst-case execution time (WCET) of each process. However, not all software
components in an aircraft have to be considered critical to the safety or success of
the mission in an equal way. This criticality difference is described, in the stan-
dard DO-178B (or C), by defining different Design Assurance Levels (DALs). This
concept is similar to the ASIL of the ISO26262, which determination has been de-
scribed in section 2.2.2.
In the past, certification agencies required that applications running on the same

198



5.2 – Mixed-criticality systems

hardware should all be designed at the highest DAL mandated by their functions.
To avoid the cost of developing applications at the maximum DAL (A), avion-
ics OEMs resorted to distribute these application components over several onboard
types of equipment, in what was called the federated architecture or, more recently,
into the integrated modular avionic (IMA) [92] [93] architecture.

To reduce the size, weight, and power (SWaP) consumption of such architec-
tures, the implementation of mixed-criticality applications is a viable solution. Un-
fortunately, while developing mixed-criticality application, it is necessary to deal
with tasks developed following different DALs requirements that share the same
elaboration unit. Therefore, special provisions should be made to avoid catas-
trophic consequences in the case applications developed at a low DAL interfere
with higher DAL ones.

Several solutions have been proposed in the literature for implementing a mixed-
criticality system (MCS), some focusing on the system architecture [100] [94], other
focusing on the key aspect of the system scheduling [107] [108]. However, indepen-
dently from the chosen implementation method, developers should validate their
solution to prove its safety. This is especially important for MCS: software compo-
nents developed at the lower DAL might carry defects2 which could interfere, when
excited, with the execution of the highest DAL ones.

In the literature, there are several proposals about this issue. To classify such
solutions, it can be useful to subdivide the interference problems into two classes
[94]:

• temporal interference: is the ability of a software component to change the
execution time of another ones, possibly resulting in deadline misses of real-
time safety-critical tasks;

• spatial interference: is the ability of a software component to modify resources
intended as data provided by either the memory or some peripherals, used by
different ones, causing them to misbehaves.

Several approaches have been proposed to avoid interferences [95].
These are called as partitioning methods. Partitioning is defined as appropiate
hardware and software mechanisms to restore strong fault containment in [96]. The
main trend in literature is to apply system scheduling theory and practices to solve
the issue [97] [98] [99].

To make the problem even more complex, a formal validation approach could
be unfeasible due to the impossibility of proving the absence of bugs in a software
component developed not following the prescriptions of higher DALs. Therefore,

2Systematic failures, or bugs.

199



Real-time software validation

functional testing is used. It allows to choose a subset of the most probable scenarios
and to use them to test partitioning on the target platform. Due to the nature
of avionic applications and to the high dependency of the WCET on the target
hardware architecture, reliable results can be obtained only when the software is
running in a real-time manner on its target platform.

The main technique to perform such integration tests is the hardware in the loop
(HIL), already described in section 2.11.5. The proposed approach is implemented
on a benchmark MCS. Experiments are performed to prove that the HIL can either
detect a failure (in the considered case a deadline-miss of a safety-critical task) or
prove fault tolerance3, demonstrating that the chosen partitioning systems prevent
the lower DAL tasks [9] or a transient random hardware failure [10] to interfere
with the critical higher-DAL ones, by analyzing their effects on the generated UAV
control commands.

5.2.1 Proposed approach
The proposed approach requires a benchmark system capable to:

• simulate the physical system in real-time;

• generate stimuli with the same electrical characteristics as those provided by
the physical system to the DUT;

• ensure the test repeatability by logging both the stimuli generated by the
physical system model and corresponding DUT outputs;

• verify that the control software is correctly implemented in the DUT by check-
ing that it satisfies its functional requirements;

• trigger a known unsolvable defect affecting a low-DAL task [9] or perform
fault-injection into the DUT [10];

• suspend the physical system simulation execution during fault injection op-
erations, and resume it safely after such operations are completed (only for
the proposal described in [10]);

• produce a human-readable test report, by processing the data collected during
the test campaign.

To implement all these requirements, the following components are needed:

3Fault tolerance in this context means that even in the presence of a fault the safety-critical
software component performs its task in the expected time frame.

200



5.2 – Mixed-criticality systems

• a controller implemented on the DUT, representing the safety-critical module
in charge to control the physical system;

• one or more non-critical tasks to represent the faulty non-critical software
components, running on the DUT, that could interfere with the controller’s
task;

• a fixed-step4 model of the physical system, controlled by the safety-critical
controller, to be run on the real-time simulator;

• a real-time computer to run the physical model simulation;

• a set of input/output conditioning stages, to produce stimuli to the DUT
(output), and to obtain the responses from the DUT (input), equivalent from
the electrical point of view with the ones of the physical plant;

• a software infrastructure to manage the simulation environment on both the
workstation and the real-time computer to manage the physical system sim-
ulation, log the stimuli and the responses, and produce the test reports;

• an external debugger (eDB) (only for [10]);

• a fault injection system composed of a fault-list generator and a saboteur
(only for [10]);

• a reliable synchronization method between the real-time computer and the
eDB (only for [10]).

The physical model has been implemented on a high-end commercial real-time
computer designed for both HIL and rapid control prototyping, with huge availabil-
ity of modular conditioning stages. The considered physical system is the longitu-
dinal model (pitch angle behavior) of an UAV airplane. To implement an efficient
test environment, the plane model should consider the trade-off between precision
and speed of the simulation.
A proper implementation of the HIL system provides means to perform functional
verification of the DUT, besides the validation of partitioning [9] and Fault De-
tection, Isolation and Recovery FDIR [10] mechanisms and other non-functional
requirements. An issue, in this context, is the verification of the temporal behavior
of the DUT: test engineers should verify the real-time requirements of the whole
DUT by evaluating the time-domain performance characteristics of the system (see
fig.5.7). Therefore, a verification is needed to prove that, in fault-free conditions,

4While in MIL 2.11.4 and SIL (see section 2.11.4) also variable-step models can be adopted,
HIL is possible only with fixed-step ones, since it requires to run the model in real-time manner,
hence at a constant rate and within a certain execution time range.

201



Real-time software validation

both the critical and the non-critical subsystems are achieving their specifications.
The proper way to perform such verification depends on the application. How-
ever, the architecture proposed in fig.5.6 is general enough to be adapted for any
real-time application.

The benchmark architecture, able to grant the properties of temporal and spatial
partitioning and implementing the FDIR mechanisms, has been obtained from the
literature [100] [94].
In [100] and [94] partitioning has been subdivided into two types, each related
to one of the two kynds of interference described above: spatial partitioning, for
issues relate to spatial interferences [100]; temporal partitioning, for issues related
to temporal interferences [94].

System model

Real-time simulator

Responses Generated 
stimuli

TAP

Metrics

DUT

Time-domain 
performance 

analyser

External debugger

Debugger 
state

Pause/Resume 
state machine

Workstation

Human readable
report

Figure 5.6: The block diagram of the approach presented in the [9] and [10] papers.
The blocks regarding the external debugger and the path to perform the fault
injection, present only in the approach presented in [10], are bordered in red. In [9]
there is only a signal to trigger the known non-solvable defect affecting a low-DAL
task, managed by the HIL simulator.

During the tests, time domain performance analyzer, represented in fig.5.6, is
used to characterize the time-domain physical system the step response in different
situations. In the first paper [19], the performances are evaluated with the low-DAL

202



5.2 – Mixed-criticality systems

task not affected or affected by an unsolvable defect, while in the second one [10],
these are compared, by the workstation, with the results of the fault classification,
to obtain a final report which would indicate what faults, if any, caused a significant
difference in the step response of the system.
The time-domain responses are characterized according to the following metrics
(see fig.5.7 for their graphical representation):

• rise time, it is defined as the time between application of the step input and
the reaching of the desired system response;

• overshoot, is the ratio between the desired value of the system output and the
maximum of the measured response;

• settling time, is the time required by the system to reach a stable condition
in which the response stays within a 5% error from the desired value.

Rise time
Settling time

Co
ntr

oll
ed

va
ria

ble

Time

Ov
ers

ho
ot

Figure 5.7: The time domain performances characteristic of interest, for a 2nd order
system, from the control theory literature.

From a practical point of view, test engineers should prepare the HIL test ac-
cording to the following to-do list:

1. Acquire physical system model and a suitable controller. The physical system
(in this case, an airplane UAV) is a model of the longitudinal (pitch) behavior
of a plane. Models can be described either in a model-based language, such

203



Real-time software validation

as Mathworks Simulink or by a programming language, such as C. Model-
based languages should be preferred, as they simplify the implementation of
the following steps. In this case the scope is to test the effectiveness of the
partitioning and FDIR mechanisms, and not the control software, as it is
usually did with the HIL. This model shall adopt a fixed-step solver to allow
it to be run in a real-time manner.

2. Define the interfaces between the real-time simulator and the DUT. Such in-
terfaces depend on the application specifications. It shall be used, for each
signal, the same interface that the DUT uses in the real UAV. It allows con-
sidering the device driver contributions on real-time performances, and their
timing requirements (i.e., signals to be acquired in parallel at the exact same
time). From the practical point of view, this is a crucial aspect since it allows
to choose the needed analog conditioning modules to be installed into the
real-time computer.

3. Prepare and test the physical connections. In this phase, the wiring harness
between the real-time simulator analog conditioning modules, and the DUT
are put in place and properly tested, for example by transmitting known
periodic patterns.

4. Integration test. This phase is the core of the HIL. It is needed to test the
communication between the DUT and the real-time computer and to ensure
that the safety-critical module has been properly implemented on the DUT.
To ensure valid results, the DUT shall run its nominal mixed-criticality work-
load. During this phase are collected the response of the DUT to the applied
stimuli.

5. Time-domain performance analysis. In this phase, that can be performed
online by the HIL simulator or offline by the workstation (for the sake of this
work it has been adopted the online implementation) the real-time behavior
of the DUT, while running its nominal workload, is validated. In the scope
of this paper, the plant is a system of the second order. Therefore the time-
domain profiling is performed by checking its step response.

Once the system has been properly integrated and verified, it is possible to also
integrate, as did in [10], a FI system. In this way, it is possible to assess, other
than the partitioning between critical and non-critical tasks, also the FDIR systems
capabilities to react to transient random hardware failures that could affect both
the memory or elaboration unit.
The FI system presented in [10] has been developed according to the model de-
scribed in [101], with the following mapping:

204



5.2 – Mixed-criticality systems

• the fault injection manager, the fault list generator, and the fault classification
module are implemented on a host workstation, connected through a proper
interface to an external debugger (eDB);

• the saboteur and data collector are implemented by an eDB, with its man-
agement software running on the workstation;

• the workload generator is implemented on the real-time simulator. Also itsve
management software runs on the workstation.

The eDB is connected, through a test access port (TAP), to the DUT. A second
interface is designed to connect the DUT to the HIL platform and provide a syn-
chronization signal between the two subsystems. This synchronization allows the
HIL platform to pause the model simulation during FI, thus freezing the whole
test status during this operation. This synchronization is fundamental to perform
a meaningful FI experiment in the context outlined in this paper: if the phys-
ical model is not freeze during FI operations, the delay so introduced could be
enough to affect the control system real-time performances, making the tests use-
less for system analysis. This synchronization interface has been implemented on
the benchmark system through an active-low signal managed directly by the eDB.
Such signal is forced low at the beginning of the fault injection and is released at
the end of such operations; therefore, the model simulation is stopped for as long as
the DUT processor is stopped during fault injection and granting synchronization.

After implementing and testing all said interfaces, the test environment can
be used to apply any suitable test. The main objective of the two proposed test
environments is to validate FDIR mechanisms against defects of low-DAL tasks [9]
or transient random hardware failures [10] affecting the elaboration unit. To do
so, tests should be devised to excite such mechanisms. The fault list generator
is able to generate a fault list of a given cardinality and needs as input a list of
all possible fault injection locations in terms of address and length for memory-
mapped configuration registers or in terms of register name and length for CPU
internal registers.

The fault injection manager collects faults from the generated fault list and,
one at a time, sends the details to the fault injection module, which performs the
following operations:

1. stops the execution of the embedded software on the DUT;

2. forces to low the synchronization signal to the HIL simulator;

3. injects the fault;

4. releases the synchronization signal;

5. releases the DUT, restoring the embedded software execution.

205



Real-time software validation

RT computer

System Under Test

Plane model

Golden 
Controller

Time 
domain 
profiler

Longitudinal Attitude 
Controller

Non-Critical task 1

Non-Critical task N

…

Workstation

External 
Debugger

Fault

Stimuli

Commands

Commands

Human readable
report

Pause/Resume 
FSM

Fault Effects not exposed by 
the real-time performances 

characterization

Fa
ult

 E
ffec

ts 
exp

ose
d 

by
 th

e r
eal

-tim
e 

per
for

ma
nce

s 
cha

rac
ter

iza
tio

n

Figure 5.8: The block diagram of the proposed HIL system.

The pause/resume finite state machine (FSM), representing the possible states of
the proposed HIL system, is shown in fig.5.9.

Once the execution of the workload has been completed – which in the scope
of this paper corresponds to a fixed flight pattern describing a steep pitch angle
change request from the simulated pilot – the data collector module reads the output
generated by the DUT and forwards them to the fault classification module, along
with a set of flags used to determine if any FDIR mechanism has been activated in
response to the fault.

The fault classification module separates faults in the following classes:

• Silent or no effect (NE): the fault had no effect on the system;

• Silent data corruption or Failure (F): the fault was not detected by any FDIR
mechanism but caused a wrong output being produced by the DUT;

206



5.2 – Mixed-criticality systems

init run

pause

stop

Tick
Test case ends

FI operation
ended

External
debuger starts
FI operations

Figure 5.9: The pause/resume Finite State Machine (FSM described in the ap-
proach presented in [10].

• Timeout (TO): the fault was detected by a watchdog timer (WDT). Such
faults are often non-recoverable and require a switch to a hot standby spare
computer in order to avoid deadline miss;

• Corrected (C): the fault was detected and corrected by an FDIR mechanism
besides WDTs.

Such classification report is then compared to the HIL platform test report
to check if the activation time of an FDIR mechanism, besides watchdog timers,
caused a significant modification in the time domain performance metrics; finally,
a report is generated containing details on the impact of FDIR mechanisms on the
time behavior of the DUT. The data path from the DUT to the debugger is used to
allow the classification of faults not affecting the real-time behavior of the system.

HIL testing is a common practice in several industries; therefore, HIL testing
devices are currently available on the market. In the scope of this paper, a com-
mercial HIL platform has been used for the validation of the proposed approach.
Such HIL platform features the following components:

1. a real-time computer based on a 64-bit Intel® x86 processor;

2. an interconnect system based on a Xilinx® Kintex- 7TM;

3. several I/O modules capable of managing both digital and analog signals.

207



Real-time software validation

The models used in this experimental evaluation have been implemented using
the capabilities of the Simulink software by Mathworks®. This is a common work-
flow in the model-based software design (MBSD) in which a controller that has to
be implemented in software is first implemented as a model and simulated together
with a model of the controlled plant in order to validate the design. Once the design
is thus validated, it can be translated into a low-level language. In the scope of this
paper, the translation has been performed using Matlab’s Embedded Coder. The
controller software module thus obtained has been integrated into a MCS designed
according to a combination of the recommendations contained in [100] and [94].

Thanks to the MBSD approach, the HIL platform is able to run exactly the same
controller as the one implemented in the DUT, which allows for easier validation
of the system as previously described. It is worth noting that, though it may
be convenient, the use of a MBSD approach is not mandatory to implement the
proposed approach; several other methods exist and can be used to perform the
time domain profiling and validation required by the proposed approach.

Model implementation and verification are performed according to the following
steps:

1. low-level code is generated starting from the model of the whole closed-loop
system, i.e., both the plant model and the controller are translated into soft-
ware that should be deployed on the HIL platform;

2. The test task thus obtained is compared to the simulation running in Simulink,
thus complying with the tool validation required by safety standards;

3. The next step is to check that the HIL platform is able to run both the
plant model and the controller model in real-time. This is needed in order to
implement the real-time check for the DUT. If this step fails, the model design
should be revised in order to speed up its execution. In this configuration,
the HIL should be running all the modules that it will use during the proper
test phase, i.e., the communication protocols between the HIL and the DUT,
the pause/resume finite state machine (FSM), a time-domain profiler that
compares DUT outputs with the outputs of the golden controller, a logging
service to store results before forwarding them to the workstation.

At the end of this checklist, the HIL platform is ready for the proper testing
phase. The controller model should now be compiled for the DUT and deployed
on it. The communication protocol between the DUT and the HIL platform allows
the controller running on the DUT to send commands to the plane model running
on the HIL platform and receive sensor data generated by such a model.

The system implemented on the DUT is designed according to a combination
of the solutions proposed in [100] and [94]. In such a system, spatial partitioning is
granted by using a type-1 hypervisor [100]. Temporal partitioning is implemented

208



5.2 – Mixed-criticality systems

through a statistical approach based on a profiling phase, described in detail in [94].
The DUT has been implemented on a Xilinx® Zynq-7020 APSoC, featuring a dual-
core ARM® Cortex-A9 processor. Each core was used to run a task, using core
0 for the controller task and core 1 for a non-critical task, thus implementing a
mixed-criticality workload.

5.2.2 Experimental results with the triggering of an unsolv-
able known defect in a low criticality software com-
ponent - [9]

Thanks to the time-domain performance analyzer, in charge to save the gen-
erated stimuli (see fig.5.6), it is possible to characterize the system’s time-domain
step response characteristics, shown in fig.5.7. Statistics were obtained by pro-
cessing log data recorded during the execution of 500 transitions representing the
system’s step response behavior. In this case, the simulated pilot requires the UAV
to perform steep pitch angle changes.

Table 5.1 shows a comparison between the responses obtained with the simula-
tion run by Simulink to perform model-in-the-loop (MIL), as described in section
2.11.4), or to perform software-in-the-loop (SIL), as described in section 2.11.4. In
this case, SIL tests have been performed by running both the plant and the con-
troller simulation on the real-time computer, but it is possible to run them also
on the workstation. It has been chosen to run them on the real-time computer to
verify that the HIL simulator is capable of running the physical model in real-time
without deadline misses.

MIL SIL
Overshoot [%] 2.31 2.33
Rise time [s] 1.6 1.6
Settling time [s] 1.6 1.6

Table 5.1: Average time-domain performance comparison between the results ob-
tained in MIL and SIL. Table from [9].

Performance comparison between the SIL implementation and the HIL one, with
the DUT running the control software (without any faulty tasks), and the real-time
computer the plant model, is shown in table 5.2. These comparisons are essential
to verify that the controller runs properly in nominal non-faulty cases; this process
is contained in the usual digital control systems implementation workflow using the
MBSD approach. Table 5.3 compares the performance obtained by performing the
HIL simulations with the control software running alongside a faulty task or not.

209



Real-time software validation

The results shown in the latter two tables have been obtained with HIL imple-
mentations, hence the signals are trasmitted on the wiring needed to connect DUT
to the HIL simulator: test engineers should consider the effects of the physical dis-
turbances on these analog signals. Therefore, we report the performance variance
as well as the average collected on 500 repetitions. To simulate the behavior of the
system in the presence of a fault, we use a fault injection system, able to excite a
bug in the non-critical application.

To simulate the behavior of the system in the presence of a fault, a known
defect affecting the non-critical task is excited. Once the defect has been excited,
the non-critical application behaves unexpectedly. Separation mechanisms detect
this misbehavior, and the proper recovery action is performed. To account for the
low probability of the event in which the bug is excited twice in one transaction,
the defect has been excited exactly once per transaction5. The results show that
the controller can run as expected even in the presence of misbehavior in the non-
critical task running in parallel on a different core of the DUT. This conclusion
is supported by the absence of performance degradation in the time-domain per-
formances, demonstrating that the delay introduced by the FDIR mechanism is
sufficiently small to not affect the controlled UAV dynamic.
Indeed, all three performance parameters for the controller have negligible differ-
ences in the fault-free and fault-affected HIL simulations. Moreover, variance is low
in both the cases, and very similar: its slight difference can be entirely attributed
to the effects of white noise on the physical I/O signals.
Therefore, we report the performance variance as well as the average collected on
500 repetitions.
Separation mechanisms detect this misbehavior, and the proper recovery action is
implemented.

To account for the low probability of the event in which the bug is excited twice
in one transaction, the fault is injected exactly once per transaction. The results
show that the controller can run as expected even in the presence of misbehavior
in the non-critical task running in parallel on a different core of the DUT. This
conclusion is supported by the evidence in the data of the absence of performance
degradation. Indeed, all three performance parameters for the controller have negli-
gible differences in the two considered cases. Moreover, variance is low in both cases
and very similar. The little difference in the variance can be entirely attributed to
the effects of white noise and random measurement error.

5A transaction is a steep pitch angle changes required by the simulated pilot.

210



5.2 – Mixed-criticality systems

SIL HIL (fault-free situation)
Overshoot [%] 2.33 2.34
Rise time [s] 1.6 1.6
Settling time [s] 1.6 1.6

Table 5.2: Average time-domain performances comparison between a full software
implementation in the real-time computer and with the loop closed on the DUT in
fault-free conditions. Table from [9].

HIL (defect not triggered) HIL (defect triggered)
Average Variance Average Variance

Overshoot [%] 2.34 0.12 2.37 0.09
Rise time [s] 1.6 1.1 · 10−3 1.6 0.7 · 10−3

Settling time [s] 1.6 1.1 · 10−3 1.6 0.7 · 10−3

Table 5.3: Time-domain performances comparison between the loop closed on the
DUT in fault-free and fault-affected situations. Table from [9].

5.2.3 Experimental results with FI, pause signal, and eDB
- [10]

The authors of both [100] and [94] validated their solutions through fault injec-
tion (FI) simulation experiments.

The key component of these testing systems, with respect to the one proposed
in [9], is the presence of an eDB. The key requirements of this component have
previously been outlined; such requirements can be satisfied by several commercial
systems dedicated to debugging and profiling embedded systems. In the scope of
this proposal, one such system has been selected. The selected design also features
a proprietary protocol for interfacing with a workstation through a universal serial
bus (USB) cable. The workstation should be able to run the companion software
of the hardware debug system in order to implement the fault injection manager.

Synchronization between the HIL platform and the eDB is achieved through
a dedicated interface. In the scope of this experimental evaluation, the interface
between the eDB and the HIL platform has been implemented through an unused
general-purpose input/output (GPIO) interface on the DUT, managed by a register
configuration, performed by the eDB, to not modify the embedded software of
the DUT, and connected to the HIL platform through one of the available I/O
modules. To stop the execution of the model on the HIL platform, the eDB stops
the execution of the DUT and puts its MPSoC in debug mode. Through the
facilities provided by the MPSoC debug mode, the eDB can write the correct value

211



Real-time software validation

on the GPIO pin used as a freeze signal. The HIL platform samples the value of
the freeze pin and stops the model simulation. At the end of the fault injection, the
eDB must reset the GPIO pin to the original value in order to release the physical
model simulation, just before releasing the MPSoC.

Synchronization between the fault injection system and the DUT is performed
by means of breakpoints. Several MPSoCs provide some facilities for system de-
bugging; one such facility are the hardware breakpoints, which allow the eDB to
require that the software execution is stopped before fetching an instruction at a
given address. When a breakpoint is reached, the MPSoC automatically puts itself
in debug mode, allowing the eDB to control and perform necessary actions. There
are two synchronization breakpoints, one at the beginning of an actuation cycle,
the other at the end of an actuation cycle. The first synchronization point is used
as a reference for the fault injection, which is performed at a random time relative
to such reference; the second synchronization point is used as a data collector.

The profiling results, reported in table 5.4, obtained in MIL constitute the time-
domain comparison baseline for the experiments described in the following section.

MIL Variance
Overshoot [%] 2.34 0.12
Rise time [s] 1.6 1.1 · 10−3

Settling time [s] 1.6 1.1 · 10−3

Table 5.4: Time-domain performances characteristics in fault-free conditions. Table
from [10].

Test engineers performed four fault injection campaigns, each injecting a differ-
ent type of fault.
The first campaign was performed to inject faults on the CPU register file (CPU
RF). Its target was the architectural register file inside each core on the DUT. A
second campaign was performed to inject fault inside the configuration registers
of the MPSoC (Cfg. Regs.). Fault classification for these two types of faults has
been performed according to the previously described classes described, and it is
reported in table 5.5.

Target NE C TO F Inj
CPU RF 1755 (87.75%) 119 (5.95%) 126 (6.30%) 0 2,000

Cfg. Regs. 3866 (96.65%) 0 134 (3.35%) 0 4,000

Table 5.5: Hardware fault injection classification. Table from [10].

A third fault injection campaign was performed to inject random software bugs
in the code of the non-critical application. Results are reported in table 5.6.

212



5.2 – Mixed-criticality systems

NE C TO F Inj
8880 (88.80%) 1120 (11.20%) 0 0 10,000

Table 5.6: Software fault injection classification. Table from [10].

The fourth and final campaign was directed at the injection of a single spe-
cific bug in the system, similar to the one described in [94]. This campaign was
directed at estimating the effects of the interference detection mechanism on the
DUT temporal behavior; to collect a statistically significant result, this injection
was repeated 15,000 times. In this case, the fault was classified according to the ac-
tivated interference detection rule associated with one of two recovery mechanisms.
The first is the alarm rule, which is associated with panic recovery. Such recovery
mechanism triggers a switch to a hot standby spare computer; therefore, it can
be considered equivalent to the TO classification used for the previously described
campaigns. The second is the warning rule, which is associated with graceful degra-
dation recovery. Such recovery mechanism reboots the non-critical task, possibly
deleting the fault causing the interference from the system. If this mechanism is
not successful, the watchdog timer is eventually triggered within the observation
window; therefore, part of these faults is classified as TO as well. Therefore, results
were classified similarly to those already presented for the other fault campaigns
and are reported in table 5.7.

NE C TO F Inj.
139

(∼0.93%)
2

(∼0.01%)
14859

(∼99.06%) 0 15000

Table 5.7: Interference detection. Table from [10].

The effects of the faults on the system’s real-time behavior have been evaluated
by observing the step response of the system and comparing it to the original
profiling performed in a fault-free condition.

Each fault was injected once, after waiting that the system was left running
freely for a sufficient time to obtain a stable response to the last applied step tran-
sition. After such time elapsed, the DUT was reset to ensure that the previous fault
did not persist in the system, and the next fault injection was performed. Using this
approach, the testing system allows identifying the deviations from the expected
behavior introduced by either the fault itself or by the FDIR mechanisms. The
HIL platform produced an intermediate report detailing the listed characteristics
for each fault injection. Such information is not human-readable but is intended to
be processed by the workstation, which, by crossing it with the fault list, and the
fault classification criteria, evaluates the impact of each fault on the final behavior

213



Real-time software validation

of the DUT, including the contribution of any activated FDIR mechanism, if any.
The result of this operation is a human-readable report that summarizes the effects
of the injected faults on the DUT and contains the specific impact of each fault. In
the performed experiments, we considered the DUT as part of a hot standby spare
configuration; therefore, effects on its time behavior of a fault classified as TO are
neglected in the scope of this evaluation since they would cause an activation of the
hot standby spare and a negligible system-wide effect. Faults classified as C are
instead of interest. This includes those faults detected by a mechanism that causes
either skipping of one actuation cycle or reset of the non-critical task. Both such
events have a negligible effect on the system’s time-domain behavior and are not
observable by the HIL platform.

5.3 Multi-agent robotic system (MAS) develop-
ment

The proposed methodology, presented in 2018 at the 23rd International Confer-
ence on Emerging Technologies and Factory Automation (ETFA) and published in
its proceedings, relies on Hardware-In-the-Loop (HIL), described in section 2.11.5,
and it is accelerated by Model-Based Software Design (MBSD), described in sec-
tion 2.11.3. In this proposal, the HIL validation techniques, widely adopted in the
automotive and avionic industry, are used as a Computer-Aided Design (CAD) to
develop a multi-agent robotic system (MAS).

Roboticists develop and use physical models during the whole development pro-
cess of a new cyber-physical system. This approach is ideal for industrial and mobile
robotic applications. The hardware is bought from specialized suppliers, which pro-
vides appropriate firmware for the various peripherals installed on the robot and a
suitable central control software that executes the planned end effector movements.
In this case, the customers have only to develop custom software modules suitable
for their application requirements. Usually, these robots are controlled by a unique
computation system.

But some robotics applications are based on the multi-agent approach: the
manipulator is composed of different subsystems, independent from the computa-
tional point of view, and responsible for managing a simple individual task (agent
level [102]). All the individual tasks share the common goal to perform, collabora-
tively, a single task at the entire robot level.
This approach requires a very flexible and modular hardware/software architec-
ture involving a central control system to distribute the agent-level tasks, wireless
communications, battery management, and an accurate synchronization between
the various agents. To benchmark the capability of the proposed methodology and
verify the fulfillment of a set of real-time requirements on the behavior of a robotic
system, it has been assessed on a customized multi-agent system.

214



5.3 – Multi-agent robotic system (MAS) development

5.3.1 Proposed approach
Starting from the models developed during the previous design phases, it is

possible to run them on real hardware components and in a real-time manner.
Fig.5.10 shows a possible, simple architecture for a MAS, where some agents

and an external centralized controller are involved.

Physical model

HIL Simulator
Outputs from 
the Agent 2

Travelled 
trajectory

Forward
Kinematic

Central Control
System

Inverse
Kinematic

Outputs from 
the Agent 1

. . . Agent 2Agent 1 Agent N

Wireless communication

Figure 5.10: The block diagram of a generic MAS. Adapted from [11].

215



Real-time software validation

Testing the software components of such a system is very challenging. Their
architecture is complex and error-prone: they involve a central controller imple-
mented on a workstation (not real-time) that provides the Human-Machine Inter-
face (HMI) and has to control, with non real-time or asynchronous radio-frequency
protocols [103] (like Bluetooth, Wi-Fi, ZigBee) the agents, whose software is im-
plemented on low power embedded systems.

HIL technique, due to its intrinsic modularity, can be used to test the various
components of the complete system. It can also simulate failures and analyze how
the embedded software is capable of reacting to them. MASs are intrinsically prone
to failures due to loss of wireless communication, a discharge of the batteries, or a
caught agent.

From these premises, it is possible to think about an appropriate methodology
to aid MAS developers.

The proposed methodology combines, in the most useful way in terms of data
and models availability, the three levels of test verification (MIL, SIL, and HIL, as
described in section 2.11.3). A flow chart for the proposed methodology is shown in
fig.5.11. In this way, this proposal aims not only to obtain an end-of-line verification
system to test the initial release and successive software updates, but to obtain a
CAD tool able to aid the software development during all the development phases.

For each release of the software, developers can:

1. check, through a MIL simulation, if the developed or upgraded algorithm can
control the system properly;

2. generate the code and integrate it into a test target to run the automatically
generated code alongside the various software components in a SIL situation.
At this stage, in particular, it is possible to check the various application-level
communication protocol without synchronization problems.

3. HIL is performed: the agent-level control software is run on the agents, the
system-level control software on the central controller, while a real-time sim-
ulator runs the physical model of the system.

The adoption of MBSD (see section 2.11.3) accelerates these steps, allowing to
modify the software and run the tests, over and over again, until all the real-time
requirements are met.

To implement such a system, these components are required:

• a model-based software design tool;

• an automatic code generator, to translate the models into source code;

• a real-time computer;

216



5.3 – Multi-agent robotic system (MAS) development

1. MIL 
simulation

2. SIL 
simulation

3. HIL 
simulation

Are RT 
requirement
fullfilled?

End of development

Start of development

yes

no

Figure 5.11: Flowchart of the proposed approach. Figure from [11].

• a software environment to log, in a real-time manner, the physical models
simulation results.

5.3.2 Benchmark application
The physical structure of the benchmark MAS is shown in fig.5.12.
It is a Delta robot [104] manipulator where two independent agents are con-

strained to move along the horizontal rail scaffold. The end effector is linked to
the agents with two rigid arms. Consequently, its pose, w.r.t. the world reference
frame R0 (task space), can be computed from knowing the two agents’ positions on
the rail (joint space).
By denoting as p the dimension of the joint space and m the task space dimension,
it results that p = m. It means that its kinematic is fully determined, and it is
possible to demonstrate that a biunivocal correspondence between the two spaces
exists [105].

217



Real-time software validation

l l

End effector

R0 x
y

q2q1

Agent 1 Agent 2

Figure 5.12: The mechanical structure of the benchmark MAS. Adapted from [11].

The proposed geometry is a simplified version of the robot already described in
paper [103].

Every agent is equipped with two DC motors. Motion is guaranteed by the
direct coupling of their gears with the rail rack system attached directly to the
scaffold. The agents can measure their positions q1 and q2 on the rail (joint space),
by linear magnetic hall effect encoders.

The Forward Position Kinematic (FPK) solution, in this particular case, is very
simple since it is possible to compute the position r̄ = [x y] of the end effector into
task space, starting from the joint-space coordinates q1 and q2 in a closed form, by
using the three spheres intersection principle [106]. It is possible to find the entire
mathematical description on the paper [11].
The x coordinate it is computed as:

x = 1
2 · q2

1 − q2
2

q1 − q2
(5.1)

while the y one can be computed as:

y =
√︂

l2 − (x − q2
1) or y =

√︂
l2 − (x − q2

2) (5.2)

218



5.3 – Multi-agent robotic system (MAS) development

5.3.3 Control software and models
For what concerns the simulation of our manipulator, a complete model has

been developed. Its block diagram is shown in fig.5.13.

Inverse
Kinematic

Path
Planner

Trajectory 
generator

Path 
generator

r
q1Agent 1

Agent 2

v1

v2 q2

Forward
Position

Kinematic
qrefrref

-+r𝜀
First stage Second  stage Third  stage

∼

Figure 5.13: The control software block diagram.

The control system can be split up into three main stages.
The first one receives the open-loop path in the task space, and it is responsible
for both the point-to-point path determination, and the trajectory6 generation, for
the two agents.
The second stage is the agent-level closed-loop control system. It is responsible for
actuating the task of the agent by following the trajectory determined by the first
stage.
The third and last stage takes as input the positions of the agents and produces
the real path performed by the end effector.
This subdivision may not seem to appear relevant, from the simulation point of view
since, in this condition, all the blocks are executed on the same target computer.
But since they will be integrated into different target devices (the two agents and
the real-time simulator), the interfaces between them are critical, and the system
architecture shall be capable of properly managing their possible failures.

The path generator provides the open-loop reference signal the manipulator
has to follow. It is expressed in the task space reference system. It has been
programmed to generate a circular path with a radius of 1 m centered, in the task
space, at coordinates x = 0 m and y = 2 m. This path is then transformed by the
Inverse Kinematic Path Planner (IKPP), which provides the reference set of the

6A trajectory is the combination of the point-to-point path with the indication of the velocity
to keep in each of the points.

219



Real-time software validation

agents generalized (joint space) coordinates q1 and q2. These could be used, from
a theoretical point of view, as the reference positions signals for the agents but, in
general, these are not used as direct input of actuators to avoid issues regarding
two important general requirements aspects:

1. Coordination between the agents. The generalized coordinates, transformed
point by point by the IKPP, lead to trajectories different from each other in
terms of their duration. Therefore, if these are directly used as the reference
signal for all agents, even supposing they are identical from the dynamic
point of view, they will have a non-coordinate movement behavior, producing
vibrations and instability in the end-effector position. This aspect is crucial
when a continuous path needs to be performed, but good coordination remains
preferable even in point-to-point applications, like pick & place tasks. It is
generally done using 2-1-2 velocity profiles generators [105].

2. Time constraints on the path reproduction. It is possible that, for a given
task, a particular path, which is the union of several other small parts, needs
to be executed at a specific speed in order to respect fabrication process
requirements (for example, welding). Apart from the path design, a trajectory
definition is needed, which is, in simplified words, the same path with the
indication of velocities needed to achieve the given temporal constraints.

These issues have been described to justify that q1 and q2 cannot be directly
used as the input reference signals. Hence, after the IKPP block, a trajectory
generator is included to provide reference speed profiles v1 and v2 for the agents.
It takes a generalized coordinate qi and compute vi as a differentiation of the first
order:

vi = qi − qi−1

η

The agent blocks, which represent the second stage of the block diagram, follow with
a closed-loop control system the velocity (and not the position) reference according
to the agents’ dynamic performance. The outputs provided by these blocks are the
positions q1 and q2 of the agents on the rails, needed to compute the task space error
r̄ε and hence close the external position closed-loop control system (not discussed
in this proposal).

These positions become the input of the third stage block that computes the
Forward Position Kinematic (FPK) solution to obtain the real path r̃(t) followed by
the end effector of the manipulator, which can be used to close an external position
closed-loop controller.

220



5.3 – Multi-agent robotic system (MAS) development

5.3.4 Experimental results
The proposed results have been obtained by assessing the benchmark MAS

performances while its end effector runs through a circular path with a radius of 1
m at the constant speed of 1 m/s.

The agents receive the speed profile offline, so they start to run across the
requested path with their expected trajectories already loaded. To avoid the devel-
opment of a trajectory loader, and since the path in the task space is a simple circle,
the path generator, the IKPP, and the trajectory planner have been implemented
into the agents themselves. For the same reason, during the HIL simulations, the
target also runs the agent physical model. Since the application deployed on the
agents is more demanding with respect to the real one, it is possible to say that if
this benchmark is capable of running in a real-time manner on the chosen micro-
controller based on 120 MHz ARM Cortex-M, also the simpler real implementation
will be.

In both the iterations, during HIL simulations, the agents communicate their
position to the real-time simulator by a non-synchronized 7-bit parallel bus. The
position is transmitted on the bus in two consequent time steps. By doing so, it is
possible to extend the position resolution from 7 to 12 bits (the seventh bit is used
to indicate if we are transmitting the higher or the lower part of the word), having
evident benefits on the accuracy of the computed path traveled by the end effector
r̃(t).

To assess the obtained results, these numerical metrics have been computed:

• Root Mean Square (RMS).

• Best Fit (BFIT), which gives an estimation of how much the estimated path
from the generalized coordinates r̄ref and the FPK solutions are close to the
real synthetic path r̃. It is computed as

BFIT = 1 −
√︂

RMS2/(1/NsampleΣ(rε)2)

where, as shown in fig.5.13, r̄ε = r̃ − r̄ref

• average speed of the end effector center point, which has been computed
always starting from the knowledge of the estimated coordinates x and y
coming from the FPK block.

To obtain more realistic results, the MIL simulation models take into account
the quantization errors and the downsampling7 due to the transmission protocol8.

7The precision of the joint space positions (generalized coordinates) q1 and q2 measures is
limited to only 12 bits.

8The transmission rate have been halved to obtain 12-bit precision.

221



Real-time software validation

The obtained simulation results show how the quantization error and the downsam-
pling phenomena produce an evident error in the estimated path. BFIT is reduced
at 70%, from the theoretical 90% obtainable without any protocol, with the joint
space positions represented as 64 bits IEEE 754 floating-point numbers.

The average speed of the end effector center point is almost 25% greater than
what was expected (1 m/s). This is caused by the quantization error on the gen-
eralized coordinates that made the end effector follow a path longer w.r.t. the
theoretical one.
This is evident in fig.5.14, where it is possible to see that the actual path is more
rough w.r.t. the expected circular one. On the plot it has been superimposed a
circular crown to show the error interval on the task space, due to the quantization
error affecting the generalized coordinates. The same model has been integrated
into the simulation target device to perform SIL simulations, and their results are
numerically identical in both MIL and SIL situations, as expected, since the gen-
erated code shall behave in the same way to its source model. It proves that the
code has been generated correctly.

Figure 5.14: MIL/SIL estimated path. Figure from [11].

Now, it is possible to analyze the results obtained in HIL.
Here it is important to remember that three different targets are used: the real-time
HIL simulator and the two agents.
The block diagram of the SW architecture adopted for HIL testing is shown in
fig.5.15.

222



5.3 – Multi-agent robotic system (MAS) development

HIL Simulator

Agent 1

Delta
structure
physical
model

Outputs 
from the 
Agent 2

Travelled 
trajectory

Forward
Position

Kinematic

Outputs 
from the 
Agent 1

Sy
nch

ron
iza

tio
n l

ine
Agent 

closed-loop 
controller

Inverse 
Kinematic 

Path 
Planner

Agent
Physical
Model

Sta
rt 

pa
th 

sig
na

l

Ag
ent

 2 
po

sit
ion

 on
 th

e r
ail

Ag
ent

 1 
po

sit
ion

 on
 th

e r
ail

Trajectory 
generator

Agent 2

Agent 
closed-loop 
controller

Inverse 
Kinematic 

Path 
Planner

Agent
Physical
Model

Trajectory 
generator

Figure 5.15: Block diagram of the SW architecture adopted for HIL testing.

The agents have been implemented, resorting to a 120 MHz 32-bit ARM Cortex-
M unit, making use of two NXP FRDM K64F evaluation boards. All the software,
except for the firmware level managing the System on Chip (SoC) peripherals, have
been developed by MBSD.
The real-time simulation has been implemented on a National Instruments myRIO-
1900 real-time computer, based on a Xilinx Zinq-7010 SoC. A photograph of the
system is show in fig.5.16.

223



Real-time software validation

Figure 5.16: A photograph of the experimental setup described in this proposal.

It is also important to remark that the trajectory generator provides the speed
profile to the agent closed-loop controller with 64 bits floating-point precision since
it is run by the microcontrollers embedded in the agents.

Several (65) runs have been performed to evaluate the performance, from a
statistical point of view, in terms of accuracy and repeatability. As shown in
fig.5.17, for all the attempts, a uniform distribution proves a positive result in terms
of repeatability. In other words, the HIL demonstrates a deterministic behavior of
the chosen architecture. Furthermore, in terms of BFIT and RMS, as shown in
fig.5.18, the results are similar to those obtained in MIL and SIL simulations (with
quantization error and delay): this is not an obvious result, as it can appear at a
first time, according to the fact that during the HIL the software is distributed, as
in the real world, on systems with different clock sources. From this evidence, it is
possible to affirm that the agents are behaving in a real-time manner.

224



5.3 – Multi-agent robotic system (MAS) development

Figure 5.17: HIL worst-case estimated path. Figure from [11].

Figure 5.18: Results obtained from 65 HIL simulations. Figure from [11].

225



226



Chapter 6

Conclusions and Future Work

This dissertation proposed various improvements on methodologies applied to
increase the dependability of microcontroller-based electric and electronic compo-
nents. This is a key point for those systems in charge of performing safety-critical
tasks.
The methodologies can be summarized into three different topics:

• simulation-based FMEDA;

• simulation-based HARA;

• real-time software validation.

Most of the proposed methodologies are designed for automotive applications.
Anyway, considering simulation-based FMEDA and real-time software validation,
also robotics and avionic (unmanned aerial vehicles) applications have been con-
sidered.
It is useful to map the proposed methodologies on the phases of the safety lifecycle
described by the standard ISO26262, as shown in fig.6.1.

6.1 Contributions on Simulation-based FMEDA
The FMEDA technique is described by the ISO26262 part 6 (HW development)

as a technique to verify if a hardware design fulfills the reliability metrics (reported
in tab.2.7), based on the ASILs (see section 2.2) of the functions it is in charge of,
required by the ISO 26262.
The contributions presented on this topic are mainly applied to automotive industry
case studies. Notable exceptions are the two last proposals, described in sections
3.9 and 3.10 which are about, respectively, to an industrial and a mobile robotic
application. Thanks to the collaboration of people from the Power Electronics
Innovation Center (PEIC) of the Politecnico di Torino, the industrial application

227



Conclusions and Future Work

Figure 6.1: The mapping of the three proposed approach on the ISO26262:2018
structure.

benchmark has been chosen to describe how to adapt the methodologies proposed to
perform the ISO26262 FMEDA to aid the FMECA. The mobile robotic application,
instead, has been chosen for two main reasons:

• it extends the analysis, performed by assessing the failure mode effects as-
sessment at the vehicle-level (described in section 3.8), to a design-FMEA of
an entire mobile robotic cyber-physical system;

• it allows to avoid the limitations imposed by the intellectual property protec-
tion needs usually applied to a real automotive item. These make it impossible
to release publications on this topic, considering one of them as the bench-
mark application. In this case, the analyzed system has been designed by a
students’ team of Politecnico di Torino, so there are no such restrictions.

The first iterations, published into the papers [15], [16], [18], described in the
sections 3.5 and 3.6, have their assessment capabilities limited to the item-level. It
prevents the usage of the simulation results in those cases where safety engineers
have to assess the failure effects by considering how they can affect the vehicle

228



6.1 – Contributions on Simulation-based FMEDA

behavior.
This limitation has been overcome in the proposal [19] described in section 3.8,
obtained by propagating, thanks to a vehicle-level simulator, the failure modes
item-level effects up to the entire vehicle. This approach has been obtained by
using structural (SPICE-level) models for both the item and FMs, instead of the
behavioral one, as proposed for the simulation-based HARA, published in [65] and
[66], as described in chapter 4.

6.1.1 Advantages
By aiding the FMEDA thanks to a simulation-based approach, it is possible:

• to improve its objectivity and the repeatability.
The objectivity is augmented thanks to the presence of the models and the
classification rules. These allow decoupling the analysis results from the safety
engineers knowledge.
The repeatability is improved since the failure mode effects classification, be-
tween safe and dangerous, is performed by assessing, through mathematical
rules (that can be expressed in both absolute terms, considering the system
specification, or w.r.t. the fault-free behaviors), the behaviors of the fault-
affected simulated system. If the item model includes the adopted mitigation
strategies, it is possible to assess their effectiveness, allowing to keep into
account the effect of the embedded software. Moreover, the failure detection
capabilities are assessed by simulating the detection systems the item embeds
(regardless they are implemented by hardware or software strategies), allow-
ing to perform the detected/undetected classification.
Even if systematic errors are possible in both the model and classification
rules, the approach allows to repeat the needed simulations, or modify the
classification rules, whenever mistakes are found.

• considering only the proposals where the FMs effects are propagated up to
the vehicle level, the methodologies allow assessing the developed detection
and mitigation algorithms and, consequently, the FMs effects classifications.
This is particularly useful in those cases, like the one described in section
3.8 about a dual-motor axle, or the one described in section 3.10 about the
mobility subsystem of a mobile robot, where it is difficult to evaluate the
failure consequences at the system (vehicle or robot) level due to the presence
of complex interactions between the considered failed item and the whole
system;

• consider the FMEDA as a CAD tool, by using it during the schematic de-
sign to find the critical components or subsystem and focusing the effort on

229



Conclusions and Future Work

improving their design (this is true especially when the simulations are per-
formed thanks to multi-level models as proposed in section 3.9 to perform
FMECA);

• reduction of the time-to-market: the simulations are faster with respect to a
handmade analysis, and the presence of the models and semi-formal classifi-
cation rules allow a speed-up of the confirmation measures required by the
ISO26262 standard.

6.1.2 Limitations
The main limitations of the proposed methodologies are inherited from the

FMEDA process. The most relevant one is the difficulty of considering the effects
of multiple failures happening at the same time. The number of the required
simulations increase exponentially with the number of contemporary failures to be
considered, following the rule s = nn

fm, with s is the number of needed simulations,
nfm is the number of failure modes, and n is the number of simultaneously present
failure modes.
By now, the only way to overcome this limitation is to select, manually, what are
the simultaneous failure modes to be assessed. In any case, the proposals described
in this dissertation do not investigate this possibility. The only exception has been
made for the detection algorithms described in the mobile robotic case detailed in
section 3.10, where FMs are grouped.

Another subtler limitation is the need for deep expertise to choose the required
fault models’ detail level. At the moment, the best tradeoff has been found with
the multi-level models described in section 3.9.3.

6.1.3 Future development
By now, the proposed approaches lack two features that can be useful:

• a way to automate the generation of test sets to find and test double-point
failures1;

• a methodology to automatically generate the classification rules.

.

1See 2.5 for more information on mechanisms for latent faults avoidance.

230



6.2 – Contributions on Simulation-based HARA

6.2 Contributions on Simulation-based HARA
The hazard analysis and risk assessment is a crucial phase of the ISO26262

safety lifecycle. It is performed during the concept phase (described in part 3 of
the Standard). It aims to define the safety goals (see section 2.2) for the item under
development and associate an ASIL to each of them. This level is proportional to
the maximum risk level the people inside or surrounding the vehicle are exposed to
if the safety goal is violated.

The development of this approach started from the methodologies described in
the section 3.6 and proposed in the papers [16] and [18] to perform the simulation-
based FMEDA.
They have been adapted to HARA. This analysis is performed during the concept
phase, so before the item’s schematics have been designed. The lack of schematics
makes it necessary to obtain models based only on the vehicle’s behavior. Moreover,
the failure modes are described only in terms of erroneous behaviors of the affected
item.

Thanks to these models, and a vehicle-level simulator, it is possible to assess
how the effects of the wrong behaviors of the item can affect the entire vehicle
and hence the driving safety. The ISO26262 requires to perform the assessment
considering three different risk parameters: severity, controllability, and exposure.
Their combination, by means of the determination matrix shown in fig.2.5, leads
to an ASIL level associated with the considered hazard. The proposed approach
allows determining, thanks to the simulation results, two of them: severity and
controllability.

6.2.1 Advantages
The proposed approach aids the HARA phase in three different aspects:

• improves its objectivity, thanks to the adoption of risk parameters classifi-
cation tables. It is not a novelty of this approach, but the classification,
performed by comparing the ranges defined in these tables with the simula-
tion results, make the tables themselves be systematically adopted;

• improves its repeatability, thanks to the adoption of semi-formal models of
the item and its failures, alongside the presence of a commercial vehicle-level
simulator. These allow to repeat the simulations in the case there are mistakes
in the models or into the risk parameters classification tables;

• the simulation environment can be kept for the next development phases,
accelerating the simulation-based FMEDA presented in chapter 3 in this dis-
sertation, MIL (see 2.11.4), SIL (see 2.11.4) software unit verifications, and
HIL (see 2.11.5) software integration tests.

231



Conclusions and Future Work

6.2.2 Limitations
The main limitation of the proposed approach are:

• it does not describe how to obtain a complete situation analysis;

• it does not describe how to perform the association between hazards and
safety goals since they are described only in natural language;

• it cannot aid the exposure determination.

6.2.3 Future development
There are basically two aspects that deserve to be further investigated:

• analyze the possibility to determine the exposure risk parameter from the
simulation-based approach, for example, by determining the duration of time
when the hazard is present. It has not been investigated since it requires
the definitions of a great number of scenarios and the determination of their
simulation time over the total simulation time;

• perform a parallel like it has been done for the simulation-based FMEDA
(see section 3.7), where the simulation-based results are compared with the
ones obtained, by hand, by human experts. Of course, the risk parameters
classification tables have to be determined by hands and should be the same
for both approaches to perform the assessment.

• adopt a language like Scenic [74] to describe the scenarios in a probabilistic
way.

6.3 Contributions on Real-time software valida-
tion

Real-time software validation is crucial for safety-critical embedded systems
with hard real-time requirements.

These tests aim to verify that the embedded software, considered as the applica-
tion integrated with the device drivers and other supporting components, can run
inside the allotted time slots without deadline misses and provide correct results.

The core of this approach is the real-time simulator, composed of a software
infrastructure that can manage the communications between a host computer, pro-
viding the HMI, and a real-time computer, that is a special-purpose device in charge
of running the plant model in a real-time manner and providing the plant responses
to the device under test through signal conditioning peripherals.

232



6.3 – Contributions on Real-time software validation

Real-time software validation has been widely applied to closed-loop control
systems in almost all industrial sectors. For this scope, on the market are available
plenty of off-the-shelves tools. In the literature, such tests are called as Hardware-
In-the-Loop (HIL), as described in the section 2.11.5 of this dissertation. It is
evident that, for these kinds of applications, there is no room for improvements.

But, following the current market trends, it is possible to find out that, for at
least three different applications domains, there are no proposals to perform HIL
testing on them:

• automotive body control modules [8], described in section 5.1;

• mixed-criticality avionic systems [9] [10], described in section 5.2;

• multi-agent robotic systems [11], described in section 5.3.

6.3.1 Automotive Body Control Modules
Software is a critical element in modern vehicles, as it is responsible for super-

vising and controlling any function they provide, from comfort to safety, driving,
and connectivity.
The software is often responsible for safety-critical functions, which mandate a
structured development process, where its validation and verification is a crucial
aspect to meet the stringent quality levels required by international standards like
the ISO26262. Tier-1s, producing embedded hardware and software for automotive
applications, are striving to adapt their development and validation flows to comply
with this challenging scenario.
In this proposal, an approach to support efficiently the crucial tests phase known
as integration tests, where safety engineers shall develop test cases to check the cor-
rect functionalities of the software running on the embedded hardware, is described.
The intrinsic complexity of the functionalities the software delivers, the need for
systematic test application and output report evaluation, as well as the complexity
of interfacing with embedded hardware for automotive applications, motivated the
development of a novel approach specifically designed for the validation of the soft-
ware developed for the so-called Body Control Module (BCM) items. The result of
this proposal is a tool capable of significantly improving the established test flows,
very close to the needs and know-how of test case developers for this class of items
and the adoption of third-party reconfigurable hardware platforms.

Advantages

The proposed approach:
• reproduces the low-end manual testing platforms already used by tier-1s, al-

lowing the test operators to move to the new platform with little or no train-
ing;

233



Conclusions and Future Work

• makes it possible for the test operators to save and replay tests, improving
the repeatability of the tests;

• allows the possibility to perform the tests from a remote location, reducing the
needed time and also allowing software developers to have the possibility to
test their newly developed software without having to wait for the availability
of a test operator;

• the customers can use their already owned HIL platforms, without the need
to buy new hardware;

• makes it possible to ask test operators to perform MIL and SIL tests without
any training.

Limitations

The proposed approach has the following limitations:
• the test engineer needs to know how to develop on the third-party HIL plat-

form;

• with National Instruments third-part HIL platforms it is necessary to develop
a MathWorks Simulink model to put in communication, with a mechanism
based on labels, the tool with the companion software;

• the users need to acquire licenses for both the proposed tools and the com-
panion software.

Future development

It should be investigated how to add automatic configuration from the tool to
the companion software and the opportunity to adopt as third-part HIL hardware
from more vendors.

6.3.2 Mixed-criticality avionic systems
This proposal is about a novel approach for the validation of mixed-criticality

systems using a HIL-based technique. It was benchmarked on an application de-
signed for flying an airplane-shaped unmanned aerial vehicle (in particular, it con-
trols the longitudinal behavior of the plane). The purpose is to prove that the HIL
can either detect a failure, i.e., a deadline-miss affecting a safety-critical task, or
prove fault tolerance, i.e., when the safety-critical task continues working as ex-
pected even in the cases the non-critical application sharing the same elaboration
unit, or the elaboration unit by itself, are affected by faults. In the case of elab-
oration unit faults, only transient ones are considered since the permanent faults
prevent any possibility of recovery.

234



6.3 – Contributions on Real-time software validation

Advantages

The proposed approach:

• allows to verify that the partitioning [9] and FDIR [10] mechanisms have an
execution time with negligible effects on the real-time performances of the
system;

• allows (only in the version presented in [10]), thanks to the presence of an
external debugger, to perform fault injections.

Limitations

The proposed approach is not sufficient, by itself, to validate the mixed-criticality
system, but it shall be accompanied by formal validation methods as required by
DO-178B/C or be used only on already validated partitioning or FDIR mechanisms.

Future development

Regarding the combined use of an external debugger and HIL, it can be inves-
tigated the possibility to measure, on a benchmark application, the code coverage
metrics reached with the simulated scenarios, allowing to obtain an objective metric
about the completeness of the performed tests.

6.3.3 Multi-agent robotic systems
This proposal is a CAD methodology to aid the development of the software

intended to equip multi-agent systems (MAS). These systems are challenging since
their behavior is determined by independent agents, which needs to be synchro-
nized without a reliable clock distribution system. The goodness of the proposed
approach was put to the test on a benchmark application. As proved by the ob-
tained experimental results, the methodology has demonstrated itself capable of
aiding designers to reach, with an iterative approach, the best control architecture
and parameters. Thanks to adopting a HIL-based technique, this is done without
the need to act on the real system, but only resorting to a real-time simulated
environment.

Advantages

The proposed approach:

• allows to test multi-agent robots without the need to have a prototype, re-
ducing validation and verification costs, since possible errors do not lead to
damages on the real physical system;

235



Conclusions and Future Work

• it is modular, allowing to simulate and run software components already in-
tegrated on their target, alongside components not already deployed to their
final targets, that can be run by the real-time computer: in this way, the
methodology is not only an end-of-line tool but also a CAD system capa-
ble of easing the reaching of the expected real-time performances during the
embedded software development;

• re-uses the physical model of the plant implemented for the development of
the control software, as required by the workflow typically followed during
closed-loop control systems design, to verify the real-time performances of
the target applications.

Limitations

The proposed approach does not allow to perform fault injection to assess how
the MAS is affected in the case its communication systems or one or more agents
fail.

Future development

Two future development possibilities should be investigated:

• test the approach on a benchmark application featuring wireless communica-
tion between the agents and the centralized controller;

• integration of the proposal with a fault injection system, allowing to evaluate,
in a simulated way, how the possible faults can affect the multi-agent system
at the society level (or, in other words, if a failure can prevent the MAS to
perform the required task). It can be useful to develop mitigation algorithms
capable of recomputing the agent-level task exploiting the system’s dexterity
(if any).

236



Appendix A

Machine learning applications for
the automotive industry

The ideas and the results presented in this appendix have already been published
into the three papers [109], [110], and [111], and the Masters’ Degree thesis of
Antonio Costantino Marceddu [112].

In recent years a rapid evolution of the entire automotive industry happened,
pushed by connectivity, electrification, and autonomous driving challenges.
Regarding autonomous driving, an increasing number of cars, including cheaper
ones, now have various advanced driver assistance systems (ADAS), and the man-
ufacturers are racing to obtain vehicles capable of driving by themselves, at least
in the most common situations (see sections 1.2.1 and 1.2.2).

Researchers are then concentrating their efforts on all the aspects that could
characterize their market success.
Therefore, to analyze autonomous driving, it is needed to involve not only the
technical aspects (mainly related to functional safety and cybersecurity) but also
ethical and social ones. Fig. A.1 shows these challenges alongside the most common
open questions on safety, security, ethical, and social acceptance aspects.
People of the generations Y (millennials)1, Z2, and Alpha3 were born in an era
where rapid, sometimes epochal technological changes occurred: for this reason,
for most of them, the transition to a fully autonomous driving car it is expected
to be easier with respect to the older generations. Therefore, methods will be
needed to improve people’s response to this type of vehicle to improve their social
acceptance.

1People born between 1981 and 1996.
2People born between 1997 and 2010.
3People born since 2010.

237



Machine learning applications for the automotive industry

Social acceptance

Security

Safety Autonomous 
driving

What to do in case of 
unavoidable crash?

Can an unauthorized person
obtain control of the vehicle?

How to use the personal data
collected by vehicles fleets?

Can the safety of the
driving function be put
In charge on an 
Autonomous system?

It this vehicle sufficiently safe
to be used on public roads?

Does this vehicle contain
defects or are dangerous

failures possible?
Ethics

Figure A.1: Common questions on autonomous vechicles development aspects.

The first of these papers [109], have been presented in June 2019. Thanks to
properly trained neural networks, it proposes a system able to recognize people’s
emotions by their facial expressions. The initial idea proposed in this paper was to
use the recognized emotions to modify the driving style of the car with the following
rules4:

• if the passengers experience sadness or fear, the car should adopt a caring
driving style, with lighter accelerations and decelerations during the straights
and following paths that minimises the lateral acceleration during the curves;

• if the passengers are neutral, the car will adopt a balanced driving style;

• if the passengers on the car are happy or surprised, the car should adopt
a sporty driving style, with faster acceleration and decelerations during the
straights and a higher level of lateral accelerations during the curves.

To perform emotion recognition, based on the models developed by the psychol-
ogist Paul Ekman (described in section A.1), it was decided to resort on neural net-
works, since they allow to reach accuracies higher with respect to the ones obtain-
able with other methods, like support-vector machines or decision trees. Moreover
neural networks allow to adopt the machine learning approach, saving development
times.

By continuing the analysis, my coauthors and I realized that such a system is
not the ideal one, so the activities moved to use it to determine between various

4I, and my coauthors, decided for those rules arbitrarily, based on our feelings. Hence, we do
not have any demonstrations that these are the best choice

238



Machine learning applications for the automotive industry

possible calibrations of the autonomous driving algorithms.
The idea is the following: after some suitable neural networks have been chosen
and properly trained, it is possible to assess the effects of different calibrations on
the passengers’ feelings considering different situations within ordinary driving sce-
narios. To perform emotion recognition, we developed a utility software, called
Emotions Detector [113], released as open-source on GitHub. To develop this tool
are used Java, and the OpenCV, DeepLearning4J (DL4J) [135], and Apache Maven
libraries. It can acquire both images from a webcam or frames of a prerecorded
video, crop them to the face only, apply the post-processing algorithms needed by
the neural network, and run the network on them. At the end of the process, the
images themselves and their emotions probability distributions are saved automat-
ically to obtain a test report.

To better understand the rest of the presentation, it is useful to define these
terms:

• Calibration: set of parameters that determine the behavior, in terms of the
trajectory (acceleration ramps, lateral distances from obstacles, and preferred
lateral accelerations) and, in general, all the numerical parameters (not con-
sidered in this paper) needed to develop an AV driving algorithm properly.

• Scenario: The environment (real or virtual) in which the vehicle’s behavior
is shown to a person with different calibrations and traffic conditions.

• Situation: A combination composed of a calibration, a scenario, and a traffic
conditions set, to be shown to testers.

The situations can be represented both in simulators and real vehicles. Of course,
the use of a real car can give better results, but ensuring the repeatability of the
tests requires the use of a closed track and other vehicles for the traffic, making
this solution extremely expensive.

The emotions to determine the best calibrations are determined, by the chosen
neural network trained for this specific purpose, thanks to volunteers’ facial expres-
sions recorded while viewing 3D representations showing the different calibrations.
The obtained results have been published in the second paper [110] released in
March 2020.
The last paper [111], presented in November 2020, describes an attempt to improve
the results in terms of training accuracy already obtained in [110] by increasing
the number of databases (and therefore of images available for training). Unfor-
tunately, the addition of these three more databases was not able to improve the
already obtained results. However, these data are described in this appendix just
in case some researcher wants to try the same path already undertaken in this study.
The software developed to merge (and also perform other operations on) the databases
has been released [114] with an open-source license on GitHub.

239



Machine learning applications for the automotive industry

The activities to implement such a system, in order to also obtain results that
can be useful also to other scholars working with emotion recognition from facial
expressions, has been slipped into these eight steps:

1. finding of a model to describe human emotion, valid for all the cultures;

2. finding of a set of neural networks suitable for emotion recognition;

3. finding of facial expression databases, which images are labeled in order to
describe the depicted emotions;

4. develop a tool to simplify the management of the various databases, allowing
to merge them to obtain more accurate recognition;

5. training the networks on the found database, taken as single one or merged,
to find the best solution;

6. preparing 3D reconstructions of the behaviors generated by the calibrations
to be compared on different scenarios;

7. testing, thank to pictures acquired by a webcam and a software developed to
run the trained neural networks, that they can work in a real scenario;

8. applying the emotion recognition system to choose, between various calibra-
tions, what are the preferred ones.

The rest of the appendix is organized as follows.
Section A.1 describes the state of the emotion recognition by facial expression

analysis, thanks to the studies of Prof. P. Ekman and the various databases avail-
able in the literature.

Section A.2 describes what the neural networks are, how they work, and pro-
vides a vocabulary. Moreover, it describes (subsection A.2.3) the main perfor-
mance assessment metrics analyzed in this dissertation to determine the quality
of the trained networks and some of the most common performance improvement
techniques (subsection A.2.4).

Section A.3 describes the proposed methodology to recognize the emotions, pre-
senting Facial Expressions Databases Classifier (FEDC), a software tool to prepare
the facial expressions databases to be used for neural network training (subsection
A.3.1), and the chosen neural networks (subsection A.3.2).

Section A.4 presents the technical aspects of the training environment and the
training results. Due to the complexity of this section, it contains a description of
its own structure at its beginning.

Section A.5 describes the application of the neural network [115] on the database
ensemble 1 (see subsection A.4.2) to choose the best ones between a set of different
autonomous driving algorithm calibrations (see the introduction of this appendix).

240



A.1 – A formal model for the human emotions

Section A.6 describes some preliminary tests, performed by my coauthors and
myself, to assess the capability on the neural network [115], trained on the FER2013
database [116] with FER+ annotation [117], to recognize emotions.

Finally, section A.7 presents the training results and draws some conclusions on
the benchmark application on autonomous driving algorithm assessment applica-
tion.

A.1 A formal model for the human emotions
As humans, we are instinctively able to determine the emotions that our fellows

are feeling. It is well known that facial expressions are a fundamental part of this
social ability. In the 1970s, the American psychologist Paul Ekman scientifically
studied this phenomenon. In 1972 [118], he published a list containing the six
primal emotions he believed are shared among all human groups, independently
from their culture. Those are: anger, disgus, fear, happiness, sadness, and surprise.
In the following years, he and other researchers added other emotions to this list.
For the purposes of this work, and also keeping into account the labels available
in the facial expressions databases from the literature, they have been considered
only eight basic emotions: the six proposed in 1972 plus contempt and neutrality.
For our automotive application, however, the interest is on recognize only five of
them: fear, happiness, neutrality, sadness, and surprise.

Ekman developed also the Facial Action Coding System (FACS) [119]. He ob-
served that facial expressions are performed thanks to facial muscles; hence, they
are, from the physical point of view, possible configurations of those when they are
moved one by one or in groups. He called these groups of muscular movements as
Action Units (AUs). Thus, it is possible to classify a facial expression resorting to
a weighted evaluation of those AUs. Thanks to these evaluations, it is possible to
make facial expression determination more objective. However, to make things even
more complex, people can show the same emotion with different AUs. Thus there
is huge intraclass variability. In the available facial expressions databases, when the
labeling of the considered facial expression has been performed by analyzing the
AUs, the picture is marked as FACS encoded. Furthermore, facial expressions can
be posed or spontaneous: while the latter ones are more common to see in everyday
life, the formers are a more caricatural, exaggerated version of the same.

A.1.1 Facial expression databases
Various scientists worked on this topic during the years; hence, many pictures

of posed and spontaneous facial expressions, organized in databases, are available
in the literature. The ten databases selected for this work are:

241



Machine learning applications for the automotive industry

• The Extended Cohn–Kanade (CK+) database [120] [121] contains 593 se-
quences from 123 subjects portrayed in all eight emotional states considered
in this document. Each sequence starts from a neutral state and then grad-
ually reaches the peak of the considered emotion. Overall, 327 of the 593
sequences are FACS coded.

• The Facial Expression Recognition 2013 (FER2013) Database [116] is com-
posed of 35,887 pictures of 48 × 48 pixels retrieved from the Internet. Since
the original labeling method has demonstrated itself erroneous in some cases,
a newer set of annotations named FER+ [117] was released in 2016. It con-
tains labels for 35,488 images since the remaining 399 do not represent human
faces, and it also adds contempt emotion.

• The Japanese Female Facial Expression (JAFFE) database [122] contains 213
grayscale photos of posed facial expressions performed by 10 Japanese women.
Each image has been rated on six emotional adjectives by 60 Japanese sub-
jects.

• The Multimedia Understanding Group (MUG) database [123] contains pho-
tos of 86 models posing six emotional states: anger, disgust, fear, happiness,
sadness, and surprise. The images of this database are taken inside a photo-
graphic studio, thus in controlled illumination conditions.

• The Radboud Faces Database (RaFD) [124] is a collection of photos of 67 mod-
els, posing all eight emotional states considered in this paper. The database
authors took each picture from five different angles simultaneously.

• The Static Facial Expression in the Wild (SFEW 2.0) database [125] is com-
posed of frames extracted from different movies depicting people having seven
different emotional states: anger, disgust, fear, happiness, neutrality, sadness,
and surprise. For this activity, only 1694 labeled aligned images have been
used.

• The FACES database [126] is a collection of 2052 images taken from 171 actors.
They acted two times the following six facial expressions: anger, disgust, fear,
happiness, neutrality, and sadness. The actors are further divided into three
different age classes.

• Indian Movie Face Database (IMFDB) [127], only used for Ensemble 3 pub-
lished in [111].

• NimStim Set Of Facial Expression Database [128], only used for Ensemble 3
published in [111].

242



A.2 – Neural networks

• Real-World Affective Faces Database (RAF-DB) [129] [130], only used for
Ensemble 3 published in [111].

As already said in section 1.2.1, SAE and ECR defined various levels of driving
automation. For the sake of this work, are considered only vehicles of at least level
4 of the SAE or Automated of the ECR classifications. Various authors studied
the interactions between these automations and humans, focusing mainly on how
the Advanced Driver Assistance Systems (ADAS) integrated into the car should
interact with the driver [131], with a particular focus on the adaptation of the
digital cockpit to different driving situations, [132]. Other devices, also based on
the analysis of facial expression and yet installed inside cars, are driver fatigue
and drowsiness sensors. They work thanks to a sensor for detecting the steering
wheel angle, electrocardiogram performed on the steering wheel surface [133], and
cameras that, thanks to a computer vision algorithm, can detect the frequency at
which the driver blinks [134].

While these applications are applied during the driving, we are interested in
the algorithm calibration phase before the vehicle is shipped, especially for the
trajectory planning (The reader can find examples of the involved coefficients in
[136]). This can help carmakers to choose algorithms and respective calibrations
that best suit their customers’ expectations. To the best of our knowledge, no
author has yet proposed using emotion recognition through computer vision to
calibrate autonomous driving algorithms.

A.2 Neural networks
An (artificial) neural network is a mathematical system. The name neural

networks comes from the conceptual similarity to the biological neural system.
From the mathematical point of view, a neuron is a mathematical function with
a certain number q of inputs, u1, u2, ..., uq, and one output, y. Those inputs are
linearly combined to determine the activation signal s, by means of the equation
s = Θ0 + Θ1u1 + ... + Θquq. Θ0 is usually called the bias parameter.
After the sum node, a non-linear function is applied to s, obtaining the output
signal y = σ(s). σ(s) is commonly called activation function. Popular activation
functions are historically the sigmoidal function and, nowadays, the ELU, ReLU,
and LeakyReLU functions.

Various layers of this kind compose a neural network. In the literature, it is
possible to find various neural networks designed for multiple purposes.

243



Machine learning applications for the automotive industry

A.2.1 Generalization capability: underfitting and overfit-
ting

The primary objective of a neural network is to create a model that is able
to generalize. This goal implies that a good model can work similarly with both
already seen and new unseen data. This capability is needed to make the system
capable of making classifications and predictions on new data based on what it has
learned from the training data.

There are two different reasons why the system is unable to achieve generaliza-
tion:

• The model has not learned sufficient characteristics from the input data.
Hence it will not be able to generalize towards new data. In this situation,
the system will underfit.

• Conversely, if the model has learned too many features from the training
samples, it limits its ability to generalize towards new data. In this case, the
system will overfit.

Not all the network parameters are chosen during the training. Some of them
have to be set before the training or are determined by the neural network struc-
tures. These parameters are called hyperparameters.

A.2.2 Vocabulary
Before describing the experimental results, it is better to define some terms:

• Learning rate defines the update speed of the parameters during the training.
If it is lower with respect to the ideal one, the learning is slowed down but
becomes smoother; on the contrary, if its value is too high, the network can
diverge or underfit.

• Sample is an element of a database. In our case, it is a picture of a human
face with a facial expression properly labeled with the represented emotion.

• Batch is a set of N samples processed independently and in parallel. During
the training process, a batch corresponds to a single update of the network
parameters.

• Epoch is usually a passage on the entire dataset and corresponds to a single
phase of the training.

244



A.2 – Neural networks

A.2.3 Performance assessment metrics
For each experiment, these metrics have been computed:

• Accuracy is defined as
α = Pr

P
(A.1)

where Pr is the number of correct predictions and P is the number of total
predictions. For this metric, the higher is the better.

• Loss represents how bad the model prediction is with respect to a single
sample. For this metric, the lower is the better. There are many different
methods to compute this parameter in the literature, such as binary cross-
entropy, categorical cross-entropy, mean absolute deviation, mean absolute
error, mean squared error, Poisson, squared hinge, etc. For our purposes, we
chose to compute this metric as a categorical cross-entropy, defined as:

L(y, ŷ) = ΣM
j=0ΣN

i=0(yij · log(ŷij)) (A.2)

This loss function must be used for single label categorization, i.e. when
only one category is applicable for each data point. It is perfectly suited to
our cases, since we formulated the hypothesis that each image (sample) can
represent only one of the considered emotions (category).
In particular, the curve composed by the various losses computed in each
epoch, called the loss curve in the literature, is important to determine if the
model underfits or overfits. If the training dataset loss curve is much greater
than the one obtained on the validation dataset, we are into underfitting
conditions. If the loss curves are near, probably the obtained one is a good
model. Finally, if the loss curve of the training dataset is instead much lower
than that of the validation dataset, it indicates the presence of overfitting
[137].

• Confusion matrix : Considering that the classification system has been trained
to distinguish between eight different emotions, the confusion matrix summa-
rizes the result of the testing of the neural network. It is a particular contin-
gency table in which emotions are listed on both sides. There are the labels
of the pictures (ground truths) in the top row while, in the left column, there
are the predicted categories (emotions).

A.2.4 Performance improvement techniques
Cross Validation

To reduce overfitting, it is possible to adopt the cross-validation technique. It
consists of partitioning the dataset into multiple subsets, some of which are used

245



Machine learning applications for the automotive industry

for training and the remaining for validation/testing purposes. In the literature
are described various kinds of techniques, such as Leave-One-Out Cross-Validation
(LOOCV), k-Fold, Stratified, and Time-Series. Stratified is used when dealing with
binary classification problems, while Time-Series is used when the dataset is com-
posed of observations made at different times; hence, these two are not suitable for
our purposes.
For this work, LOOCV or k-Fold can be chosen. It has been decided to chose the
latter by putting k = 9. In the k-Fold, the dataset is split into k folds (subsets) of
approximately the same size: k − 1 folds are used for training, while the remaining
one is used for validation or test. The database has been divided into two subsets
thanks to the FEDC database subdivision function. The first one, which contains
90% of the images, was used for training and validation, while the other one, com-
posed of the remaining 10% of the images, was used to perform the test.
Before the training, the first subset was split into nine smaller subsets: eight were
used for training, while the remaining one was used for validation. Changing the
validation subset after each training made it possible to perform nine different
neural network training to pick the one that performed better.

Data Augmentation

Data augmentation is adopted when a low number of samples is available. The
idea is to modify the samples in different ways in order to increase their number
artificially. For example, in the case of images, the augmented ones can be obtained
by rotating, reflecting, applying translations, and so on. This technique improves
the generalization capability of the network without modifying the model.

In all the training, these data augmentations have been applied:

• brightness range from 50% to 100%;

• random horizontal flip enabled;

• rotation interval between ±2.5 deg;

• shear range of ±2.5%;

• width and height shift range of 2.5%;

• zoom transformation interval between ±2.5%.

Normalization

To improve the training process, have been applied, alternately, two different
normalizations to the grayscale space of the images: [0,1] and z-score normalization.

246



A.3 – Recognition of emotions from facial expression

The [0,1] normalization is a particular case of the scaling to range normalization,
defined generally by the formula:

x′ = x − xmin

xmax − xmin

(A.3)

in which xmin is set to 0 and xmax is set to 1. The z-score normalization, some-
times called standardization, is used to obtain a distribution with mean µ = 0 and
standard deviation σ = 1. The applied formula is:

xz = x − µ

σ
(A.4)

in which x represent the 8-bit brightness value of the images, xmin and xmax are,
respectively, the minimum and the maximum brightness within the images, µ is
the arithmetic average of the brightness of all the pixels of the images, and σ its
standard deviation.

A.3 Recognition of emotions from facial expres-
sion

As described in section A.1 it is possible to determine people’s emotions by their
facial expressions. Since it is not possible to write "by hand" a software function
to analyze the pictures of the passengers’ faces and determine their emotions with
a good performance, it has been adopted a machine learning approach: thanks to
a properly trained neural network, it will be possible to solve this challenge. From
the operative point of view, it has been decided to divide the development of this
proof-of-concept calibration system into three different phases:

1. Development of a tool, called Facial Expressions Databases Classifier (FEDC)
[114], to perform different operations on the selected facial expressions databases
in order to prepare them for the training of the neural networks. FEDC can
also be used to make the supported databases homogeneous so that they can
be merged to train the neural networks. These derived datasets are referred
to in the rest of this dissertation as database ensembles (DE).

2. Choice of the most suitable neural networks available from the literature, and
trained them with single databases and some database ensembles to compare
them through objective metrics defined in the following.

3. Creation of 3D graphics reconstructed scenarios depicting some driving sit-
uations with different calibrations of the autonomous driving algorithm. By
showing them to testers and analyzing their facial expressions during the
representations, it is possible to determine the calibrations preferred by pas-
sengers.

247



Machine learning applications for the automotive industry

A.3.1 Facial Expressions Databases Classifier
The purpose of FEDC is to simply the merging of facial expression databases

to train the neural network.
More technically, the tool takes the images from the database in the format which
it is provided by the databases’ editors, creates as many folders as the number of
emotions present in the chosen database, and moves the images in the corresponding
folder. After that, the selected post-processing operations can be applied to the
images.

To simplify operations, FEDC provides an easy to use Graphical User Interface
(GUI) that allows the operator to select the database he/she wants to classify, the
output directory, and some post-processing options he/she wants to apply to the
images, displaying the current operation with a progress bar and an informative
label.

Partitioning into datasets

To properly train a neural network, it is a good practice to divide the databases
into three smaller datasets:

• the training one is used to train the network effectively;

• the validation one is used to evaluate the neural network performances during
the training.

• the test one is used to test the capability of the neural network to generalize
by using different samples from the ones involved in the training.

FEDC can create, when its subdivision option is enabled, the train, test, and
optionally the validation folders. Each of these contains subfolders holding in the
related images of every emotion of the selected database. The user can choose the
percentage distribution between the three subdivisions.

Post-processing (performance enhancement) features

The most recent version of FEDC (5.0.0) can also perform the following post-
processing operations on the images:

• change image format;

• conversion in grayscale color space;

• histogram equalization (normal or CLAHE);

• face detection to crop the images to face only;

248



A.4 – Neural Networks Training

• scaling of horizontal and vertical resolutions;

• subdivision in train, validation and test dataset;

• transformation of rectangular images into square ones (can be activated only
if the Face Detection and Crop option is not selected).

A.3.2 Choice of the neural networks
It is crucial to choose the best neural networks explicitly made for facial ex-

pression recognition to obtain effective results. They have been chosen these two
state-of-the-art networks, designed with different approaches.
The one proposed by Ferreira [115] was published in 2018, and it is a deep network
that is relatively complex and has a default image size of 120x120 pixels.
The other one, proposed by Miao [140], was published in 2019, and it is a shallow
neural network that is much simpler and has a default image resolution of 48x48
pixels.

Both the networks, in their default configurations, have about 9 million parame-
ters, but by setting a resolution of images of 48×48 pixels for the network proposed
by Ferreira [115], it is possible to reduce its parameters to about 2 million. This
reduction allows performing emotion recognition on single board computers, open-
ing the door to lowering the cost of these tests. In this way, it is possible to run the
tests in real-time on autonomous vehicle prototypes. This aspect is essential from
the privacy protection point of view since it allows to run the tests without storing
face images; hence this algorithm can be deployed without asking for permissions
from the depicted people, increasing the number of testers.

A.4 Neural Networks Training
An accurate description of the neural networks training activities, which have

been already described in the paper [110] is fundamental since the repeatability of
the training, alongside the evaluation of their accuracies is a crucial point to achieve
objective emotion detections and hence to properly classify the passengers’ feeling,
needed to determine which are the best calibrations.

The rest of this section is composed as follows.
The subsection A.4.1 describes the implemented set-up to train the neural net-

works.
The subsection A.4.2 describes the trainings, including results from the papers

[110] and [111]. The neural networks’ performances are assessed by the performance
metrics described in section A.2.
Some of the performed training are described in detail.
The subsection A.4.2 describes the results obtained training the network [115] on

249



Machine learning applications for the automotive industry

the CK+ database, the results obtained from the networks [115] and [140] trained
on the FER2013 database, and the performances achieved by training both the
networks [115] and [140] on the database ensembles 1 and 2. It also summarizes all
the training results from the paper [110].
Moreover, section A.4.3, thanks to the three databases added to FEDC in its version
5.0.0, released simultaneously to the paper [111], describes the results obtained in
the paper [111] training the network [115] on the database ensemble 3 and on the
IMFDB [127].

For the reader’s convenience, the results presented in both the papers [110]
and [111] are summarized in the subsection A.7.1 of the conclusion section of this
appendix.

A.4.1 Training Environment Set-Up
The environment described in the following has been adopted to train the net-

works which performances are described in [110] and [111].
Keras [141] has been adopted as a high-level abstraction API because it is

simple to use and, for some years now, it has been one of the most widely used
solutions for neural networks training. It can abstract three different frameworks
for machine learning: TensorFlow [142], Microsoft Cognitive Toolkit (CNTK) [143],
and Theano [144]. All three proposed solutions adopt an open source-like license.
For the sake of this work, TensorFlow have been chosen.
Other utility libraries, adopted to speed-up the code writing and to improve the
presentation of the experimental results, are:

• Matplotlib [145], a 2D plotting library for Python;

• NumPy [146], a package for scientific computing for Python;

• Open Source Computer Vision Library (OpenCV) [147], a computer vision
and machine learning software library for C++, Java, MATLAB, and Python;

• Pandas [148], which provides high-performance, easy-to-use data structures
and data analysis tools for Python; and

• Scikit-learn [139], a library for data mining and data analysis.

The networks have been implemented within the Keras environment. The reader
can find the code implemented to train the network at [149].
For the network in [140], there were no problems, while, for the network in [115],
it has been faced an ambiguity in the "e-block" layer because, in the paper, it is
not clearly described how to implement the relative "crop and resize" operation. To
solve this ambiguity, it has been decided to implement it as a single convolutional
layer, in which the kernel size is defined according to the resolution of the input

250



A.4 – Neural Networks Training

images. For 120×120 pixels images, which is the default input size for the network,
the kernel size is 106×106, while, for 48×48 pixels images, which is the size of
the picture of the FER2013 database, the kernel size is 43×43. In both cases, the
number of output filters has been set to 64 in order to make the next multiplication
operation possible.

A.4.2 Training Results from [110]
For the training of the aforementioned neural networks (see Section A.3.2), the

following databases are chosen in order to compare the results obtained with the
yet developed implementation with those obtained by neural networks authors:

• CK+, which was used only for the network in [115] because it was not used
by the authors of [140];

• FER2013.
Moreover, also the following two database ensembles have been prepared recurring
to FEDC:

• Ensemble 1, composed of all the labeled images from all the databases sup-
ported by FEDC; and

• Ensemble 2, composed of all the posed facial expressions images from the
databases CK+, FACES, JAFFE, MUG, and RaFD.

The trainings have been performed in 23 different configurations. Table A.1
indicates the number of pictures for each emotion that can be found in the chosen
databases.

The networks have been trained with these datasets:
• CK+ database [120] [121] (only for the network in [115]);

• FER2013 [116] [117];

• Ensemble 1 ;

• Ensemble 2.
For each training, the "EarlyStopping" callback was used to stop the training if
there was no improvement in the loss curve computed on the validation dataset
after 18 consecutive epochs. In some training, the callback "ReduceLROnPlateau"
has been set to multiply the learning rate by 0.99 or 0.95 in every epoch.

In this dissertation have been reported only the most interesting cases, that
the ones also said in the [110]. The reader can find the other cases in [112]. The
selected cases are indicated, in Table 3, in bold: for each of them are reported: its
accuracy graph, its loss graph, and its confusion matrix.

The chosed hyperparameters are:

251



Machine learning applications for the automotive industry

Emotion Ensemble 1 Ensemble 2 CK+ FER2013

Anger 4328 981 45 4953
3111 a

Contempt 788 572 18 0
216 a

Disgust 1340 1022 59 547
248a

Fear 1887 950 25 5121
819 a

Happiness 10,676 1089 69 8989
9355 a

Neutrality 14,196 1070 123 6198
12,906 a

Sadness 5524 953 28 6077
4371a

Surprise 5254 656 83 4002
4462 a

a FER+ annotations.

Table A.1: Picture available for each emotion in the chosen databases. Table
from [110].

• batch size: 100 (except for the network in [115] trained on the CK+ database,
where it was set to 50);

• maximum number of epochs: 1000;

• learning rate: 0.001.

CK+ Database

The first training of the network in [115] was performed on the CK+ database,
resized to a resolution of 120 × 120 pixels. With the previously said division, the
dataset was split in this way: 364 images were used for training, 46 images were
used for validation, and 40 images were used for testing.

The obtained results are shown in figures A.2, A.3, and A.4. These are in line
with the one presented in [115], thus the implementation used to get the results
described in this dissertation seems to work correctly.

252



A.4 – Neural Networks Training

Figure A.2: Accuracy graph of the network in [115], trained with the CK+ database
using the data augmentation (see section A.2.4) and the z-score normalization.
Figure from [112].

Figure A.3: Loss graph of the network in [115], trained with the CK+ database
using the data augmentation (see section A.2.4) and the z-score normalization.
Figure from [112].

253



Machine learning applications for the automotive industry

Figure A.4: Normalized confusion matrix of the network in [115], trained with the
CK+ database using the data augmentation (see section A.2.4) and the z-score
normalization. Figure from [112].

FER2013 Database

The FER2013 [116] database has a huge number of pictures, but the resolution
of the images is limited to 48 × 48 pixels. Instead of performing an upscaling of
these pictures, we decided to modify the network [115], as described previously, to
work with these low-resolution images.

The settings and hyperparameters are the same adopted from the CK+ database,
except for the batch size that has been increased to 100. In this way have been
obtained 28712 images for training, 3590 for validation, and 3585 for testing.

With this database, they have been obtained accuracies around 60%: a not im-
pressive result, surely improvable but also undermined from the sometimes dubious
labels and to the presence, in the database, of some images that do not represent
human faces. Thus, we decided to use the FER+ [117] annotations, which allowed
us to remove erroneous images hence improving the ground truth.

The best results in terms of test accuracy on this database were obtained from
the network in [115], and are shown in figures A.5, A.6, and A.7.

As shown by the confusion matrix (see Figure A.7), the trained network is quite
good at detecting happiness, neutrality, and surprise, while it is weak at detecting

254



A.4 – Neural Networks Training

Figure A.5: Accuracy graph of the network in [115], trained with the FER2013
database with the FER+ annotations using the data augmentation (see section
A.2.4) and the z-score normalization. Figure from [112].

Figure A.6: Loss graph of the network in [115], trained with the FER2013 database
with the FER+ annotations using the data augmentation (see section A.2.4) and
the z-score normalization. Figure from [112].

255



Machine learning applications for the automotive industry

Figure A.7: Normalized confusion matrix of the network in [115], trained with the
FER2013 database with the FER+ annotations using the data augmentation (see
section A.2.4) and the z-score normalization. Figure from [112].

fear and sadness. We also have poor performance in recognizing contempt and
disgust, but these emotions are not crucial for our purposes. Since FER2013 is
known to be a not well-balanced database, and considering that also the network in
[140], trained with the same settings and on the same databases, presents a similar
confusion matrix (see fig.A.8), a possible explanation is that the FER2013 database
does not provide good examples for contempt, disgust, and, more important for our
application, fear, and sadness classes.

Database Ensembles

After these preliminary results, the neural networks have been trained using two
different database ensembles: one containing the images, posed and spontaneous,
of all the databases supported by FEDC and one containing only the posed ones.
These ensembles were obtained using FEDC, applying a conversion to the grayscale
color space and a face detection algorithm in order to crop the images to show only
the human faces. Both were created by downscaling all the images to 48 × 48
pixels to adapt them to the resolution of the FER2013 database and to be able to
compare the results of the two databases placed under the same conditions. For the

256



A.4 – Neural Networks Training

Figure A.8: Normalized confusion matrix of the network in [140], trained with the
FER2013 database with the FER+ annotations using the data augmentation (see
section A.2.4) and the z-score normalization. Figure from [112].

FER2013 database have been used the FER+ annotations because the improvement
in accuracy due to their use is relevant.

The Ensemble 1 database is composed of all the available images from the
database supported, for now, by FEDC. Using the same subdivision procedure
used in the previous examples, they have been obtained 35212 images for training,
4402 for validation, and 4379 for testing. Results are shown in figures A.9, A.10,
and A.11.

The obtained results are better, in terms of classification errors, than those
obtained using the databases individually, especially for the contempt and disgust
classes, which had accuracies similar to random ones.

The Ensemble 2 database is a subset of Ensemble 1 composed only of posed
images. Thanks to the FEDC subdivision procedure, they have been obtained 5847
images for training, 731 for validation, and 715 for testing.

257



Machine learning applications for the automotive industry

Figure A.9: Accuracy graph of the network in [115], trained with the Ensemble 1
database using the data augmentation (see section A.2.4) and the z-score normal-
ization. Figure from [112].

Figure A.10: Loss graph of the network in [115], trained with the Ensemble 1 using
the data augmentation (see section A.2.4) and the z-score normalization. Figure
from [112].

258



A.4 – Neural Networks Training

Figure A.11: Normalized confusion matrix of the network in [115], trained with
the Ensemble 1 database using the data augmentation (see section A.2.4) and the
z-score normalization. Figure from [112].

259



Machine learning applications for the automotive industry

Summary of the results

For reader convenience, the training results obtained in [110] have been sum-
marized into two tables. Table A.2 contains the numbers of photos for training,
validation, and test datasets, while table A.3 contains the best training accuracies
obtained for each database and neural network couple. The test accuracies of the
cases shown in detail in the paper are in bold. In general, the network described
in [115] requires more time for training but has slightly better performance and,
with the same image size, requires fewer parameters than the one in [140]. Thus, if
my coauthors and I had to choose a network, we would certainly pick the first one.
Before continuing, it is essential to make an observation: even if the test accuracies
of the training done with the Ensemble 2 database are better with respect to the
ones obtained with Ensemble 1, it is reasonable to expect a better result, on the
field, from the networks trained with the latter. This is because the spontaneous
expressions are those that we can observe most commonly in everyday life, while
those posed are more caricatural with respect to the spontaneous and deliberately
exaggerated: this makes the interclass difference more significant, but, at the same
time, a network that is trained with these posed images will inevitably experience
a bias between the photos on which it is trained and those in which a prediction
will actually be requested.

Ensemble 1 Ensemble 2 CK+ FER2013
Train 35212 5847 364 28712

Validation 4402 731 46 3590
Test 4379 715 40 3585

Table A.2: Subdivision of the databases. Table from [110].

260



A.4 – Neural Networks Training

Ensemble 1 Ensemble 2 CK+ FER2013

[115]
74.79 %

78.85 b %
80.38 c %

94.69 %
97.20 b %
97.34 c %

82.50 %
92.50 b %
92.50 c %

56.57 %
61.40 b %
62.46 c %

78.36 a,c %

[140]
71.39 %

76.91 b %
78.47 c %

92.59 %
94.83 b %
96.78 c %

N.A.

54.03 %
61.67b %
62.71c %
76.67a,c %

a FER+ annotations. b [0,1] normalization. c z-score normalization.

Table A.3: Test accuracies summary table (best values). Table from [110].

A.4.3 Training results from [111]
Thanks to the last version of FEDC, in which has been added support for

another three databases, Indian Movie Face Database (IMFDB) [127], NimStim
Set Of Facial Expressions Database [128],and Real-World Affective Faces Database
(RAF-DB) [129] [130] with respect to the version available during the preparation
of the Databases Ensembles used in [110] and presented in section A.4.

So, to obtain the experimental results described in [111], all the databased yet
used in [110] plus these three new ones are merged. The database ensemble obtained
in this way is composed of 90273 photos, doubling their number with respect to the
version presented in [110].

Unfortunately, also in this new database ensemble 3, as reported in table A.4,
the number of images available for each class is very different: this is a common
problem, which often has repercussions on the accuracy that the neural network is
able to achieve with classes that have few sample available.

Training on the databases ensemble composed of all the ten databases

Using the same settings reported above, the neural network proposed by Fer-
reira [115] have been trained on the database ensemble composed of all the ten
databases. The maximum obtained test accuracy is of 70.162%, a disappointing
value, about ten percent lower with respect to the 80.38% obtained on the Database
Ensemble 1 described in [110] and reported in the section A.4.2 and in table A.3 of
this disssertation. The reader can check the obtained results in figures A.12, A.13,
and A.14.

Unfortunately, in the IMFDB database has some problems:

261



Machine learning applications for the automotive industry

Emotion Ensemble 3 IMFDB
Anger 8065 2688

Contempt 837 0
Disgust 6266 3885

Fear 3016 595
Happiness 24803 8001
Neutrality 26940 9318
Sadness 11601 3435
Surprise 8745 1701

Table A.4: Picture available for each emotion in the databases trained in [111].

• the images distribution with respect to the considered emotions is very dif-
ferent (see table A.4);

• some labels are not correct.

• the images have different resolutions.

• some of the depicted faces are too rotated to be labeled with sufficient accu-
racy and to be used for facial expressions recognition.

Figure A.12: Accuracy graph of the network proposed in [115], trained with the
database enseble 3 with the FER+ annotations using the data augmentation (see
section A.2.4) and the z-score normalization. Figure from [111].

262



A.4 – Neural Networks Training

Figure A.13: Loss graph of the network proposed in [115], trained with the database
enseble 3 with the FER+ annotations using the data augmentation (see section
A.2.4) and the z-score normalization. Figure from [111].

From the confusion matrix shown in fig.A.14 it is possible to see that there is
no correlation between the number of images available per class and the relative
prediction performance. This counterintuitive result prompted us to analyze the
content of the added databases better. As also described in [150], we noticed that
the IMFDB has several problems, as described in A.4.3.

Training on the IMFDB database

The neural network proposed by Ferreira [115] have been trained on the IMFDB
[127] database: the best fold obtained a test accuracy of 47.908%. This result
is 3% better with respect to the one obtained in [150] by training on the plain
IMFDB [127] database but surely disappointing, confirming the observation already
did in section A.4.3. The reader can check the obtained results in figures A.15, A.16,
and A.17.
Among the obtained result, as observed by my coauthor A.C. Marceddu, the most
impressive one is related to the case of fear, in which the neural network has achieved
zero precision: therefore, the inadequacy of the images used for the training is
evident, since the neural network has not been able to extract essential features for
their recognition. Curiously, it can also be noted that the network did not mistakenly
exchange the other classes for this one [111].

263



Machine learning applications for the automotive industry

Figure A.14: Normalized confusion matrix of the network proposed in [115], trained
with the database enseble 3 with the FER+ annotations using the data augmenta-
tion (see section A.2.4) and the z-score normalization. Figure from [111].

Figure A.15: Accuracy graph of the network proposed in [115], trained with the
database enseble 3 with the FER+ annotations using the data augmentation (see
section A.2.4) and the z-score normalization. Figure from [111].

264



A.4 – Neural Networks Training

Figure A.16: Loss graph of the network proposed in [115], trained with the database
enseble 3 with the FER+ annotations using the data augmentation (see section
A.2.4) and the z-score normalization. Figure from [111].

Figure A.17: Normalized confusion matrix of the network proposed in [115], trained
with the database enseble 3 with the FER+ annotations using the data augmenta-
tion (see section A.2.4) and the z-score normalization. Figure from [111].

265



Machine learning applications for the automotive industry

A.5 Autonomous driving algorithms assessment
from [110].

A.5.1 Situations Preparation
In the paper [110] they have been proposed five different calibrations of an

autonomous driving algorithm behaving in two different scenarios.
By combining those calibrations and scenarios, 11 benchmark situations have been
prepared.
The first six of them (identified in the following as Cn) involve as scenario a curve
to the right in a suburban environment. The car can face it with three different
calibrations, hence following three different trajectories: strictly keeping the right
side (situations C1 and C4), keeping the center (situations C2 and C5) of the
lane, or widening at the entrance of the curve to decrease the lateral accelerations
(situations C3 and C6). Since the vehicle remains within its lane in all these cases,
all these behaviors are allowed by most road regulations.

The other five, instead (identified in the following as Tn), have as scenario a
right turn inside an urban environment. In the road just taken, there is an obstacle
that obstructs the rightmost lane. The road has two lanes for each direction of
travel. With the first calibration (situations T1, T2, and T3), the car tries to stay
at the right with much decision; therefore, it suddenly discards the obstacle. With
the second calibration (situations T4 and T5), instead, the car decides to widen the
turn in advance and to move to the right lane only after it passes the obstacle.

A.5.2 Criteria for Emotion Analysis
As described in the introduction of this appendix, it have been prepared a 3D

representation for each of the considered situations.
The most relevant emotion, when different from neutrality or sadness, was taken
into consideration. Fear and surprise are considered as negative emotions, while
happiness as a positive one. Sadness and neutrality have been considered as inter-
mediate values since the network appears to little appreciate the differences between
these moods. In any case, if there was no other emotion than neutrality or sadness,
the one with a greater number of sadness outcomes was considered worse with
respect to ones that score more neutrality outcomes. Since the neural networks
can recognize also anger, contempt, and disgust, those outcomes are considered as
experiment failures since not the expected to be obtained in this kind of tests.

266



A.5 – Autonomous driving algorithms assessment from [110].

A.5.3 Experimental Campaign
Eight people, called in the following testers, who are six males and two females,

average ages 25 years, interval 23–31 years, have been asked, in February 2020,
to watch 3D reconstructions of these situations, starting from a black screen and
without describing what they would see to not interfere with their moods. Their
emotions have been detected every 2 s.

In the 3D reconstructions, the situations are shown in the order: T2 -T4 -T3 -
T1 -T5 -C1 -C5 -C2 -C6 -C3 -C4. It has been chosen to not mix the urban (T) and
suburban (C) scenarios to not break the immersion in the environment. In the
urban scenario, those situations that are expected to provoke greater emotional
reactions are placed the in the middle of the representation, while, in the suburban
one, the reconstruction starts from the softer one moving, in the end, to the most
critical one.

For the tests, it has been used a flat projection screen to allow to choose the point
of view, avoiding, in this way, that the tester could not be able to see the critical
moments represented. Using a virtual reality set could improve the environment
immersion, but since the adopted emotion recognition technique requires seeing the
entire face, using a device of this kind is not possible.

A.5.4 Results Discussion
The experimental results, shown in table A.5, demonstrate that situations T2

and C6 are the most stressful from the passengers’ points of view. In the urban
scenario, there are some positive reactions to the situation T3, probably due to the
capability of the vehicle to make the safest decision by keeping in the right lane
and stopping in front of the obstacle. In addition, the situation T4, which is the
one that minimizes the lateral movement of the car, is appreciated. With traffic,
the calibrations shown in the situations T1 and T5 appears to be equivalent.
Regarding the curve scenario, the calibration shown in situations C3 and C6 is pre-
ferred when there is no traffic from the other direction (situation C3). Oppositely,
for the calibration where the car stays at the right side of its lane (C1 and C4), it
is preferred the situation C4 in which there is traffic in the other direction.
The calibration shown in C2 and C5 are not appreciated: in our opinion, this is
due to the unnatural path that follows the centerline of the lane.

The scenarios are the following:

• T1 : The vehicle takes the right-turn curve in a step way, staying as possible
at the right of the street. The car discards the obstacle when it is really close
to keep the right rigorously, then re-enters the rightmost lane immediately
after it. No other traffic.

267



Machine learning applications for the automotive industry

• T2 : Same situation as in T1, but with incoming traffic from the opposite
direction.

• T3 : Same situation as in T1, but traffic from the same direction of the
passenger’s vehicle supersede it, preventing the algorithm to move around the
obstacle. The vehicle stops in front of it, then starts again moving around
the obstacle.

• T4 : The vehicles take the right-turn curve entering in the left lane, super-seed
the obstacle then move to the right lane.

• T5 : Same situation as T4, but with incoming traffic from the opposite direc-
tion.

• C1 : The vehicle runs through the curve keeping strictly along the right edge
of the road. No other vehicle comes from the other direction of travel.

• C2 : The vehicle travels the curve keeping in the center of its lane. No other
vehicle comes from the other direction of travel.

• C3 : The vehicle travels the curve widening to the left at the entrance, then
closes it to the right, to reduce lateral accelerations.

• C4 : Same situation as in C1, but with traffic from the opposite direction.

• C5 : Same situation as in C2, but with traffic from the opposite direction.

• C6 : Same situation as in C3, but with traffic from the opposite direction.

These preliminary results agree with the experiences reported by the testers
when they were interviewed after the tests. In particular, asking about the sit-
uations C3 and C6, it emerged that the C3 one, in which the curve is traveled
keeping the left side of the lane, is more appreciated without traffic in the opposite
direction. Instead, following the same trajectory with traffic, as in the situation
C6, causes inconveniences to the passengers.

268



A.5 – Autonomous driving algorithms assessment from [110].

T
1

T
2

T
3

T
4

T
5

C
1

C
2

C
3

C
4

C
5

C
6

Fe
ar

0
0

0
0

0
0

0
0

0
0

0
Sa

dn
es

s
5

7
2

3
4

1
4

3
4

4
5

Su
rp

ris
e

0
0

1
1

0
0

0
0

0
0

0
H

ap
pi

ne
ss

0
0

2
2

0
3

0
1

3
1

0
N

eu
tr

al
ity

3
1

3
2

4
4

4
4

1
3

3
Ex

pe
rim

en
t

fa
ilu

re
0

0
0

0
0

0
0

0
0

0
0

Ta
bl

e
A

.5
:E

m
ot

io
na

le
ffe

ct
so

ft
he

be
nc

hm
ar

k
te

st
s.

In
th

e
co

lu
m

ns
ar

e
in

di
ca

te
d

th
e

nu
m

be
ro

fp
eo

pl
e

th
at

re
ac

te
d

to
th

e
co

ns
id

er
ed

si
tu

at
io

n
w

ith
th

e
em

ot
io

n
on

th
e

le
ft.

D
at

a
ob

ta
in

ed
by

th
e

ne
tw

or
k

in
[1

15
],

tr
ai

ne
d

w
ith

th
e

En
se

m
bl

e
1

da
ta

ba
se

us
in

g
th

e
da

ta
au

gm
en

ta
tio

n
(s

ee
se

ct
io

n
A

.2
.4

)
an

d
th

e
z-

sc
or

e
no

rm
al

iz
at

io
n.

Ta
bl

e
fro

m
[1

10
].

269



Machine learning applications for the automotive industry

A.6 Road Tests
To check how much the trained network [115] is capable of properly recognizing

emotions in a real scenario, my coauthors and I performed in August 2019 some
tests inside a car in daylight conditions.
To perform these tests, we acted 20 posed facial expressions for each emotion rel-
evant for the purposed of this work (fear, happiness, neutrality, sadness, and sur-
prise). These 100 classifications are for sure not sufficient to obtain statistically
relevant results, but they are yet effective to demonstrate the capability of the
network to operate in realistic scenarios.

To perform these tests have been used a preliminary version of Emotion Detector
[113].

These tests are made with multiple sessions involving different actors and cars.
The actor/actress sat in the back seat of the car, with a laptop or a table on his/her
legs, raised with a pedestal to keep the embedded camere at a right height to frame
the actor/actress’ face.

The first session was made with the network [115] trained on the FER2013
database [116] with FER+ annotation [117]. This is not a well-balanced database
(see table A.1)) and, as it has been seen in section A.4.2 and its confusion matrix
shown in A.7 it has low performances with some emotions, like contempt or disgust,
but has at the same time a good accuracy in the recognition of happiness and
neutrality.

Figures A.18 and A.19 show some results, with myself and Antonio Costantino
Marceddu acting respectively neutrality and happiness.

270



A.6 – Road Tests

Figure A.18: Myself acting a neutral face as recognized by the neural network [115]
trained on FER2013 [116] with FER+ annotations [117]. Figure from [112].

Figure A.19: Antonio Costantino Marceddu acting a neutral face as recognized by
the neural network [115] trained on FER2013 [116] with FER+ annotations [117].
Figure from [112].

271



Machine learning applications for the automotive industry

A.7 Conclusions
This appendix describes the results obtained from [110] to implement a proof-of-

concept to smooth the transition towards autonomous vehicles. This system aims
to improve the passengers’ trustiness in these vehicles. A delicate calibration of the
driving functions should be performed, making the AV decisions closest to the ones
expected by the passengers. To develop such a system, they have been adopted
machine learning techniques to recognize passengers’ emotions, making it possible
to obtain an objective comparison between various driving algorithms calibrations.
Two state-of-the-art neural networks, [115] and [140], have been chosen to achieve
this result, hence implemented, trained, and tested in different conditions.

Moreover, two software tools have been developed and released on GitHub un-
der an open-source licence: Facial Expressions Databases Classifier (FEDC) [114]
and Emotions Detector [113]. The first has been designed to generate large facial
expressions pictures databases by merging and processing various databases. The
second has been developed for internal use to analyze the testers’ emotions during
the situations representations. The proposed methodology demonstrated itself use-
ful to help designers choose between different calibrations of the trajectory planner
when applied considering two different conditions.

A.7.1 Training results
Other than the training results from [110], also the results from [111], obtained

by training the network on a database ensemble (Ensemble 3 ) composed with three
more databases with respect to Ensemble 1 : Indian Movie Face Database (IMFDB)
[127], NimStim Set Of Facial Expression Database [128], and Real-World Affective
Faces Database (RAF-DB) [129] [130]. Unfortunately, the best result is still the one
obtained with seven databases in Ensemble 1. The network trained on Ensemble 2
has greater accuracy with respect to the latter but, since it has been trained only
to recognize posed expression, it is less accurate with respect to the one trained on
the Enseble 1 when used in a real-world application.s
For the reader’s convenience, the reached accuracies have been collected on table
A.6.

272



A.7 – Conclusions
E

ns
em

bl
e

1
E

ns
em

bl
e

2
C

K
+

F
E

R
20

13
E

ns
em

bl
e

3
IM

F
D

B

[1
15

]
74

.7
9

%
78

.8
5b

%
80

.3
8

c
%

94
.6

9
%

97
.2

0b
%

97
.3

4
c

%

82
.5

0
%

92
.5

0b
%

92
.5

0
c

%

56
.5

7
%

61
.4

0b
%

62
.4

6
c

%
78

.3
6a,

c
%

70
.1

62
c %

47
.9

08
c %

[1
40

]
71

.3
9

%
76

.9
1b

%
78

.4
7

c
%

92
.5

9
%

94
.8

3b
%

96
.7

8
c

%
N

.A
.

54
.0

3
%

61
.6

7b
%

62
.7

1c
%

76
.6

7a,
c

%

N
ot

tr
ai

ne
d

N
ot

tr
ai

ne
d

Ta
bl

e
A

.6
:

Te
st

ac
cu

ra
ci

es
su

m
m

ar
y

ta
bl

e
(b

es
t

va
lu

es
)

fo
r

al
l

th
e

tr
ai

ni
ng

s
de

sc
rib

ed
in

th
is

di
ss

er
ta

tio
in

.
D

at
a

re
tr

ie
ve

d
fro

m
[1

10
](

fo
r

th
e

tr
ai

ni
ng

s
on

E
ns

em
bl

e
1,

E
ns

em
bl

e
2,

C
K

+
,a

nd
F

E
R

20
13

)
an

d
fo

rm
[1

11
](

fo
r

th
e

tr
ai

ni
ng

s
on

E
ns

em
bl

e
3

an
d

IM
F

D
B

).

273



Machine learning applications for the automotive industry

A.7.2 Future works
As future work, it can be analyzed the possibility to improve the obtained results

by using an improved car simulator, with motion capabilities and a curved screen,
to increase the immersion in the simulated environment and the number of testers
to obtain analysis with statistically relevant results.

274



Bibliography

[1] Vard Antinyan. 2020. Revealing the complexity of automotive software. In Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
1525–1528. DOI:https://doi.org/10.1145/3368089.3417038

[2] Fürst S, Spokesperson AU. "Autosar the next generation–the adaptive plat-
form." In Proc. Conf. CARS@ EDCC, 2015.

[3] National Transportation Safety Board (NTSB), "Preliminary Report
Highway HWY18MH010", https://www.ntsb.gov/investigations/
AccidentReports/Reports/HWY18MH010-prelim.pdf, last visited 06/03/2021
(all date in this bibliography are in the format mm/dd/yyyy).

[4] A user guide to vehicle automation modes, https://pr-97195.medium.com/
a-users-guide-to-vehicle-automation-modes-4bdd49b30dc0, last visited
06/03/2021.

[5] Automotive Industry Action Group (AIAG) and Verband Automobilindustrie
(VDA), AIAG&VDA FMEA Handbok, ISBN-13: 9781605343679 (June 2019)

[6] Prof. Phil Koopman of Carnegie Mellon University lectures, http://users.
ece.cmu.edu/~koopman/, last visited 06/03/2021.

[7] ISO 26262:2018, Road vehicles — Functional safety
[8] J. Sini, A. Mugoni, M. Violante, A. Quario, C. Argiri and F. Fusetti,

"An automatic approach to integration testing for critical automotive soft-
ware," 2018 13th International Conference on Design & Technology of Inte-
grated Systems In Nanoscale Era (DTIS), Taormina, Italy, 2018, pp. 1-2, doi:
10.1109/DTIS.2018.8368563.

[9] Esposito, S.; Sini, J.; Violante, M., "Real-time validation of mixed-criticality
applications", 2018 IEEE 19th Latin-AmericanTest Symposium (LATS2018)

[10] Esposito, Stefano; Sini, Jacopo; Violante, Massimo, "Real-Time Validation
of Fault-Tolerant Mixed-Criticality Systems", 24th IEEE International Sympo-
sium on On-Line Testing and Robust System Design 2018 (IOLTS2018)

275

https://doi.org/10.1145/3368089.3417038
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://pr-97195.medium.com/a-users-guide-to-vehicle-automation-modes-4bdd49b30dc0
https://pr-97195.medium.com/a-users-guide-to-vehicle-automation-modes-4bdd49b30dc0
http://users.ece.cmu.edu/~koopman/
http://users.ece.cmu.edu/~koopman/


Bibliography

[11] J. Sini, M. Violante and R. Dessì, "Computer-Aided Design of Multi-Agent
Cyber-Physical Systems," 2018 IEEE 23rd International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), Turin, Italy, 2018, pp. 677-
684, doi: 10.1109/ETFA.2018.8502448.

[12] SAFETY ANALYSIS APPROACHES FOR AUTOMOTIVE ELECTRONIC
CONTROL SYSTEMS,https://www.nhtsa.gov/sites/nhtsa.dot.gov/
files/2015sae-hommes-safetyanalysisapproaches.pdf, last visited
06/03/2021.

[13] Christmansson, J., & Chillarege, R. (1996, June). Generation of an error set
that emulates software faults based on field data. In Fault Tolerant Computing,
1996., Proceedings of Annual Symposium on (pp. 304-313). IEEE.

[14] Hsueh, M. C., Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and
tools. Computer, 30(4), 75-82.

[15] Bagalini, E.; Sini, J.; Reorda, M.S.; Violante, M.; Klimesch, H.; Sarson, P. An
automatic approach to perform the verification of hardware designs according to
the ISO26262 functional safety standard. In Proceedings of the 18th IEEE Latin
American Test Symposium (LATS), Bogota, Colombia, 13–15 March 2017.

[16] Sini, J., Violante, M. “An Automatic approach to Perform FMEDA Safety
Assessment on Hardware Designs”, In: IEEE 24th International Sympo-
sium on On-Line Testing And Robust System Design IOLTS) (2018), DOI:
10.1109/IOLTS.2018.8474217

[17] Sini, Jacopo; Sonza Reorda, Matteo; Violante, Massimo; Sarson, Peter, "To-
wards an automatic approach for hardware verication according to ISO 26262
functional safety standard", 24th IEEE International Symposium on On-Line
Testing and Robust System Design (IOLTS2018)

[18] SINI, JACOPO; VIOLANTE, MASSIMO; DESSI, RICCARDO, "ISO26262-
Compliant Development of a High Dependable Automotive Powertrain Item"
In: LECTURE NOTES IN ELECTRICAL ENGINEERING

[19] Sini, J.; D’Auria, M.; Violante, M. Towards Vehicle-Level Simula-
tor Aided Failure Mode, Effect, and Diagnostic Analysis of Automotive
Power Electronics Items. In Proceedings of the 2020 IEEE Latin-American
Test Symposium (LATS), Maceio, Brazil, 30 March–2 April 2020., doi:
10.1109/LATS49555.2020.9093694.

[20] Piumatti, Davide; Sini, Jacopo; Borlo, Stefano; Sonza Reorda, Matteo; Bo-
joi, Radu; Violante, Massimo, "Multilevel Simulation Methodology for FMECA
Study Applied to a Complex Cyber-Physical System", MDPI ELECTRONICS
2020

[21] Jacopo Sini, Andrea Passarino, Stefano Bonicelli, and Massimo Violante "A
Simulation-Based Approach to Aid Development of Software-Based Hardware
Failure Detection and Mitigation Algorithms of a Mobile Robot System", Un-
published.

276

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/2015sae-hommes-safetyanalysisapproaches.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/2015sae-hommes-safetyanalysisapproaches.pdf


Bibliography

[22] D’Auria M.; "Novel Hardware Verification Techniques for Electric Ve-
hicles", Link: https://webthesis.biblio.polito.it/14529/, last visited
06/03/2021.

[23] L. Grunske, K. Winter, N.Yatapanage, S. Zafar, and P. A. Lindsay, “Experi-
ence with fault injection experiments for FMEA”, Softw. Pract. Exp., vol. 41,
no. 11, pp. 1233–1258, Oct. 2011

[24] H. H. Ammar, S. M. Yacoub, and A. Ibrahim, “A fault model for fault injection
analysis of dynamic UML specifications”, in 12th International Symposium on
Software Reliability Engineering, 2001. ISSRE 2001. proceedings, 2001, pp. 74–8

[25] S. M. Yacoub and H. H. Ammar, “A methodology for architecture-level relia-
bility risk analysis”, IEEE Trans. Softw. Eng., vol. 28, no. 6, pp. 529–547, Jun.
2002

[26] D. E. M. Nassar, W. Abdelmoez, M. Shereshevsky, H. H. Ammar, A. Mili, B.
Yu, and S. Bogazzi, “Error propagation analysis of software architecture speci-
fications,” in Proc. of the International Conference on Computer and Commu-
nication Engineering, ICCCE, 2006.

[27] N. Snooke and C. Price, “Model-driven automated software FMEA,” in Reli-
ability and Maintainability Symposium (RAMS), 2011 Proceedings - Annual,
2011, pp. 1–6.

[28] D. Cotroneo and R. Natella, “Fault Injection for Software Certification,” IEEE
Secur. Priv., vol. 11, no. 4, pp. 38–45, Jul. 2013

[29] Rearick J., "IEEE P2427: Proposing the Essential Framework for Measuring
Defect Coverage in Analog Circuits" (2018) http://sagroups.ieee.org/
2427/wp-content/uploads/sites/302/2018/05/2C3_P2427_framework_
vts18_rearick.pdf, last visited 2021/08/26.

[30] IEEE P2427 - Standard for Analog Defect Modeling and Coverage, avail-
able online at https://standards.ieee.org/project/2427.html, last visited
2021/08/25.

[31] M. Slamani and B. Kaminska, "Analog circuit fault diagnosis based on sensitiv-
ity computation and functional testing," in IEEE Design & Test of Computers,
vol. 9, no. 1, 1992

[32] A. Arabi, N. Bourouba, A. Belaout, M. Ayad, "Catastrophic faults detection of
analog circuits," 7th International Conference on Modelling, Identification and
Control (ICMIC), Sousse, 2015

[33] P. Duhamel, J. Rault, "Automatic test generation techniques for analog circuits
and systems: A review," in IEEE Transactions on Circuits and Systems, vol.
26, no. 7, 1979

[34] A. Benso, P. Prinetto, "Fault Injection Techniques and Tools for Embedded
Systems Reliability Evaluation", 2003, Kluwer.

[35] J. Arlat, Y. Crouzet, and J. C. Laprie, “Fault injection for dependability vali-
dation of fault-tolerant computing systems,” in 19th International Symposium
on Fault-Tolerant Computing, 1989, pp. 348–355

277

https://webthesis.biblio.polito.it/14529/
http://sagroups.ieee.org/2427/wp-content/uploads/sites/302/2018/05/2C3_P2427_framework_vts18_rearick.pdf
http://sagroups.ieee.org/2427/wp-content/uploads/sites/302/2018/05/2C3_P2427_framework_vts18_rearick.pdf
http://sagroups.ieee.org/2427/wp-content/uploads/sites/302/2018/05/2C3_P2427_framework_vts18_rearick.pdf
https://standards.ieee.org/project/2427.html


Bibliography

[36] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E. Martins,
and D. Powell, “Fault injection for dependability validation: A methodology and
some applications,” Softw. Eng. IEEE Trans. On, vol. 16, no. 2, pp. 166–182,
1990

[37] M. Vieira, H. Madeira, I. Irrera, and M. Malek, ”Fault injection for failure
prediction methods validation”, in Proc. of Workshop on Hot Topics in System
Dependability at DSN 2009, Estoril, Lisbon, Portugal.

[38] Cukier, M., Powell, D., & Ariat, J. (1999). Coverage estimation methods for
stratified fault-injection. IEEE Transactions on Computers, 48(7), 707-723

[39] Piumatti, D.; Sini, J.; Borlo, S.; Sonza Reorda, M.; Bojoi, R.; Violante, M.
Multilevel Simulation Methodology for FMECA Study Applied to a Complex
Cyber-Physical System. Electronics 2020, 9, 1736.

[40] Passarino, A.; "Dependability in a Mission Critical Scenario: D.I.A.N.A.
Mars Rover System Analysis", Link: https://webthesis.biblio.polito.it/
15959/, last visited 06/03/2021.

[41] Sastry, A.; Kulasekaran, S.; Flicker, J.; Ayyanar, R.; Tamizhmani, G.; Roy,
J.; Srinivasan, D.; Tilford, I. Failure modes and effect analysis of module level
power electronics. In Proceedings of the 42nd Photovoltaic Specialist Conference
(PVSC), New Orleans, LA, USA, 14–19 June 2015

[42] Peyghami, S.; Davari, P.; F-Firuzabad, M.; Blaabjerg, F. Failure Mode, Effects
and Criticality Analysis (FMECA) in Power Electronic based Power Systems.
In Proceedings of the 21st European Conference on Power Electronics and Ap-
plications (EPE ’19 ECCE Europe), Genova, Italy, 3–5 September 2019.

[43] CoppeliaSim - https://www.coppeliarobotics.com/, last visited
06/03/2021.

[44] Example of a training course provided by Texas Instruments about SoC-specific
ISO26262 FMEDA metrics computation tools. %https://training.ti.com/
basics-fmeda-and-how-it-useful-system-level-safety-analysis-part-1,
last visited 2021/08/31.

[45] E. Bagalini, M. Violante, H. Hakobyan, “Evaluation of error effects on a
biomedical system” , IEEE East-West Design & Test Symposium, 2015, pp.
39-42

[46] 12. G. Cassanelli, et al. “Reliability predictions in electronic industrial appli-
cations”, In: Microelectronics Reliability, 2005, 45.9-11: 1321-1326

[47] Hsueh, M. C., Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and
tools. Computer, 30(4), 75-82.

[48] D. Cotroneo & R. Natella (2013). Fault injection for software certification.
IEEE Security & Privacy, 11(4), 38-45.

[49] https://www.carsim.com/, last visited 06/03/2021.
[50] Cickaric, L.S.; Katic, V.A.; Milic, S. Failure Modes and Effects Analysis of

Urban Rooftop PV Systems—Case Study. In Proceedings of the International

278

https://webthesis.biblio.polito.it/15959/
https://webthesis.biblio.polito.it/15959/
https://www.coppeliarobotics.com/
%https://training.ti.com/basics-fmeda-and-how-it-useful-system-level-safety-analysis-part-1
%https://training.ti.com/basics-fmeda-and-how-it-useful-system-level-safety-analysis-part-1
https://www.carsim.com/


Bibliography

Symposium on Industrial Electronics (INDEL), Banja Luka, Bosnia and Herze-
govina, 1–3 November 2018.

[51] Zhang, Z.; Hao, M. Failure Mode and Effects Analysis of UAV Power System
Based on Generalized Dempster-Shafer Structures. In Proceedings of the 2019
IEEE International Conference on Unmanned Systems (ICUS), Beijing, China,
17–19 October 2019.

[52] Banerjee, P.; Pandey, K. Implementation of Failure Modes and Effect Analysis
on the electro-hydraulic servo valve for steam turbine. In Proceedings of the
IEEE 1st International Conference on Power Electronics, Intelligent Control
and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016.

[53] Rastayesh, S.; Bahrebar, S.; Bahman, A.S.; Sørensen, J.D.; Blaabjerg, F.
Lifetime Estimation and Failure Risk Analysis in a Power Stage Used in Wind-
Fuel Cell Hybrid Energy Systems. Electronics 2019, 8, 1412.

[54] D.Piumatti, M. Sonza Reorda, “Assessing Test Procedure Effectiveness for
Power Devices”, In: IEEE 33rd Conference on Design of Circuits and Integrated
Circuits (2018)

[55] Parker, K.P. A New Process for Measuring and Displaying Board Test Cov-
erage. In Proceedings of the Apex 2003, Anaheim, CA, USA, 4 Septem-
ber 2003. Available online: https://www.keysight.com/upload/cmc_upload/
All/Apex_KParker_010903.pdf, last visited 06/03/2021.

[56] Piumatti, D.; Borlo, S.; Mandrile, F.; Reorda, M.S.; Bojoi, R. Assessing the
Effectiveness of the Test of Power Devices at the Board Level. In Proceedings of
the XXXIV Conference on Design of Circuits and Integrated Systems (DCIS),
Bilbao, Spain, 20–22 November 2019.

[57] European Cooperation for Space Standardization ECSS-Q-ST-30-02C – Fail-
ure modes, effects (and criticality) analysis (FMEA/FMECA) – (6 March 2009)

[58] PLECS Tool, Plexim. Available online: https://www.plexim.com/plecs, last
visited 06/03/2021..

[59] MathWorks MATLAB - https://www.mathworks.com/, last visited
06/03/2021.

[60] W. Yongming, Y. Xiaoliu and T. Wencheng, "Analysis of Obstacle-Climbing
Capability of Planetary Exploration Rover with Rocker-Bogie Structure," 2009
International Conference on Information Technology and Computer Science,
Kiev, 2009, pp. 329-332, doi: 10.1109/ITCS.2009.74.

[61] O. Toupet et al., "Traction control design and integration onboard the Mars
science laboratory curiosity rover," 2018 IEEE Aerospace Conference, Big Sky,
MT, 2018, pp. 1-20, doi: 10.1109/AERO.2018.8396761.

[62] T. P. Setterfield and A. Ellery, "Terrain Response Estimation Using an Instru-
mented Rocker-Bogie Mobility System," in IEEE Transactions on Robotics, vol.
29, no. 1, pp. 172-188, Feb. 2013, doi: 10.1109/TRO.2012.2223591.

[63] D. Michel and K. McIsaac, "New rocker-bogie and terramechanics-based
wheel/soil interaction models for planetary rovers," 2012 IEEE International

279

https://www.keysight.com/upload/cmc_upload/All/Apex_KParker_010903.pdf
https://www.keysight.com/upload/cmc_upload/All/Apex_KParker_010903.pdf
https://www.plexim.com/plecs
https://www.mathworks.com/


Bibliography

Conference on Mechatronics and Automation, Chengdu, 2012, pp. 2417-2422,
doi: 10.1109/ICMA.2012.6285724.

[64] K. Siddartha, S. Birrell, G. Dhadyalla, H. Sivencrona, P. Jennings, “Towards
increased reliability by identification of Hazard Analysis and Risk Assessment
(HARA) of automated automotive Systems”, In: Safety Science 99 166–177,
2017, DOI: 10.1016/j.ssci.2017.03.024

[65] J. Sini, M. Violante, V. Dodde, R. Gnaniah and L. Pecorella, "A Novel
Simulation-Based Approach for ISO 26262 Hazard Analysis and Risk Assess-
ment," 2019 IEEE 25th International Symposium on On-Line Testing and
Robust System Design (IOLTS), Rhodes, Greece, 2019, pp. 253-254, doi:
10.1109/IOLTS.2019.8854385.

[66] Jacopo Sini, Massimo Violante, "A simulation-based methodology for aiding
advanced driver assistance systems hazard analysis and risk assessment", Mi-
croelectronics Reliability, Volume 109, 2020, 113661, ISSN 0026-2714, https:
//doi.org/10.1016/j.microrel.2020.113661, last visited 06/03/2021.

[67] Jang. H.A., Kwon H.M., Hong S., Lee, M. K., “A study on Situation Analysis
for ASIL Determination”, In: Journal of Industrial and Intelligent Information
Vol. 3 No. 2, June 2015, DOI: 10.1016/j.ress.2016.09.004

[68] K Beckers, D. Holling, Coté I.M., Hatebur D., “A structured hazard analysis
and risk assessment method for automotive systems – A descriptive study” In:
Reliabilty Engineering and System Safety (2017) pg. 185-195

[69] National Instruments™ ADAS and Autonomous Driving Valida-
tion Test https://www.ni.com/it-it/solutions/transportation/
adas-and-autonomous-driving-validation.html, last visited 2021/09/01.

[70] IPGCarMaker, https://ipg-automotive.com/products-services/
simulation-software/carmaker/, last visited 06/03/2021.

[71] AVL VSM™ Vehicle Simulation https://www.avl.com/-/avl-vsm-4-, last
visited 2021/09/01.

[72] FEV™ VirtualDynamics™, https://virtualdynamics.fev.com/, last vis-
ited 2021/09/01.

[73] CARLA Open-source simulator for autonomous driving research.https://
carla.org/, last visited 2021/09/01.

[74] Scenic, domain-specific probabilistic programming language for modeling the
environments of cyber-physical systems like robots and autonomous cars.
https://scenic-lang.readthedocs.io/en/latest/, last visited 2021/09/01.

[75] Johanennessen, ”Actuator Based Hazard Analysis for Safety Critical Systems”,
In: Computer Safety, Reliability, and Security SAFECOMP 2004 Proceedings

[76] H.A. Jang, H.M Kwon., S.H. Hong, M.K. Lee, “A study on situation analysis
for ASIL determination” In: Journal of Industrial and Intelligent Information
Vol. 3 No. 2, June 2015, DOI: 10.12720/jiii.3.2.152-157

280

https://doi.org/10.1016/j.microrel.2020.113661
https://doi.org/10.1016/j.microrel.2020.113661
https://www.ni.com/it-it/solutions/transportation/adas-and-autonomous-driving-validation.html
https://www.ni.com/it-it/solutions/transportation/adas-and-autonomous-driving-validation.html
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://www.avl.com/-/avl-vsm-4-
https://virtualdynamics.fev.com/
https://carla.org/
https://carla.org/
https://scenic-lang.readthedocs.io/en/latest/


Bibliography

[77] El-Bayoumi, A. (2020). An enhanced algorithm for memory systematic faults
detection in multicore architectures suitable for mixed-critical automotive ap-
plications. International Journal of Safety and Security Engineering, Vol. 10,
No. 4, pp. 467-474. https://doi.org/10.18280/ijsse.100405

[78] Gesina Schwalbe, Martin Schels. A Survey on Methods for the Safety Assur-
ance of Machine Learning Based Systems. 10th European Congress on Embed-
ded Real Time Software and Systems (ERTS2020), Jan 2020, Toulouse, France.
hal-02442819

[79] Huang, A., Xing, X., Zhou, T., and Chen, J., "A Safety Analysis
and Verification Framework for Autonomous Vehicles Based on the Iden-
tification of Triggering Events," SAE Technical Paper 2021-01-5010, 2021,
https://doi.org/10.4271/2021-01-5010.

[80] H. Kwon, R. Itabashi-Campbell and K. McLaughlin, "ISO26262 application
to electric steering development with a focus on Hazard Analysis," 2013 IEEE
International Systems Conference (SysCon), Orlando, FL, 2013, pp. 655-661.
DOI: 10.1109/SysCon.2013.6549952

[81] ISO15622:2018 “Intelligent transport systems–Adaptive cruise control
systems–Performance requirements and test procedures”

[82] European New Car Assessment Programme(EuroNCAP),“Test Protocol–AEB
systems”, November 2017

[83] U.S. Department of Transportation – National Highway Traffic Safety Admin-
istration, “Intellingent Cruise Control Field Operational Test (Final Report),
May 1998

[84] European Commission Regulation 347/2017 Attachment 1
[85] TXT XHIL Studio https://www.txtgroup.com/it/mercati/our-markets/

automotive-transport/, last visited 06/03/2021.
[86] Robert Bosch Gmbh (ed.) "Bosch Automotive Electrics and Automotive Elec-

tronics Systems and Components, Networking and Hybrid Drive" 5th edition
(2014). ISBN: 978-3-658-01783-5

[87] Alessandra Mugoni, "Development of software tools for functional testing of
automotive electronic control units", December 2017, Politecnico di Torino

[88] NI VeriStand Fundamentals Course Manual, National Instruments, 2011
[89] Liu, B., Zhang, H., Zhu, S., (2016). An incremental V-Model Process for Au-

tomotive Development. 23rd Asia-Pacific Software Engineering Conference.
[90] Tibba, G., Malz, C., Stoermer, C., Nagarajan N., Zhang, L., Chakraborty S.

(2016) Testing Automotive Embedded system under X-in-the-Loop Setups, 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

[91] NI VeriStand .NET Reference, http://zone.ni.com/reference/en-XX/
help/372846J-01/veristand/vs_net_reference/, last visited 06/03/2021.

[92] P. J. Prisaznuk, “Integrated modular avionics,” Aerosp. Electron. Conf. 1992.
NAECON 1992., Proc. IEEE 1992 Natl., pp. 39–45 vol.1, 1992.

281

https://www.txtgroup.com/it/mercati/our-markets/automotive-transport/
https://www.txtgroup.com/it/mercati/our-markets/automotive-transport/
http://zone.ni.com/reference/en-XX/help/372846J-01/veristand/vs_net_reference/
http://zone.ni.com/reference/en-XX/help/372846J-01/veristand/vs_net_reference/


Bibliography

[93] C. B. Watkins and R. Walter, “Transitioning from federated avionics architec-
tures to Integrated Modular Avionics,” AIAA/IEEE Digit. Avion. Syst. Conf. -
Proc., pp. 1–10

[94] S. Esposito, M. Violante, M. Sozzi, M. Terrone, and M. Traversone, “A novel
method for online detection of faults affecting execution-time in multicore-based
systems,” ACM Trans. Embed. Comput. Syst., 2017, vol. 16, no. 4, pp. 1–19

[95] A. Burns and R. I. Davis, Mixed Criticality Systems - A Review, 7th edition.
Univerisy of York, 2016.

[96] J. Rushby, “Partitioning in Avionics Architectures: Requirements, Mecha-
nisms, and Assurance,” NASA Langley Research Center, NASA CR-1999-
209347.

[97] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying de-
grees of execution time assurance,” Proc. - Real-Time Syst. Symp., pp. 239–243

[98] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating- system
support for mixed criticality,” in Workshop on Mixed Criticality: Roadmap to
Evolving UAV Certification, 2009.

[99] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of
mixed-criticality applications on resource-sharing multicore systems,” 2013
Proc. Int. Conf. Embed. Software, EMSOFT 2013

[100] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M. Binello,
and M. Terrone, “An Hybrid Architecture for Consolidating Mixed Criticality
Applications on Multicore Systems,” in 2015 IEEE 21st International On-Line
Testing Symposium, 2015, pp. 26–29

[101] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante, Software-
implemented Hardware Fault Tolerance, Springer Science & Business Media,
2006.

[102] G. Caire, M. Cossentino, A. Negri, A. Poggi, P. Turci, “Multi-Agent Systems
Implementation and testing”, In: 4th International Symposium – From Agent
Theory to Agent Implementation (AT2AI-4) 2004

[103] Viegas C., Tavakoli M., Lopes P., Dessì R. et al. “SCALA-A Scalable Rail-
Based Mulitrobot System for Large Space Automation, Design and Develop-
ment”, In: IEE/ASME Transaction of Mechatronics, Vol. 22 N. 5 2208-2216
(October 2017)

[104] Carretero, J. A., et al. "Kinematic analysis and optimization of a new three
degree-of-freedom spatial parallel manipulator." Journal of mechanical design
122.1 (2000): 17-24.

[105] Corke P., “Robotics, Vision and Control – Foundamental Alghorithms in
MATLAB”, Springer Tracts in Advanced Robotics Volume 73 (2011)

[106] Gibson, K. D., and Harold A. Scheraga. "Volume of the intersection of three
spheres of unequal size: a simplified formula." Journal of Physical Chemistry
91.15 (1987): 4121-4122.

282



Bibliography

[107] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and M.
Schmidt, “Multi-core interference-sensitive WCET analysis leveraging runtime
resource capacity enforcement,” Proc. - Euromicro Conf. Real- Time Syst., pp.
109–118

[108] J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht,
“Monitoring and WCET analysis in COTS multi-core-SoC-based mixed- criti-
cality systems,” Des. Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–5

[109] Sini J., Marceddu A.C., Violante M., Dessì R. (2021) Passengers’ Emo-
tions Recognition to Improve Social Acceptance of Autonomous Driving Ve-
hicles. In: Esposito A., Faundez-Zanuy M., Morabito F., Pasero E. (eds) Pro-
gresses in Artificial Intelligence and Neural Systems. Smart Innovation, Systems
and Technologies, vol 184. Springer, Singapore. https://doi.org/10.1007/
978-981-15-5093-5_3, last visited 06/03/2021.

[110] Sini, J.; Marceddu, A.C.; Violante, M. Automatic Emotion Recognition for
the Calibration of Autonomous Driving Functions. Electronics 2020, 9, 518.
https://doi.org/10.3390/electronics9030518, last visited 06/03/2021.

[111] Antonio Costantino Marceddu, Jacopo Sini, Massimo Violante, Bartolomeo
Montrucchio, "A novel approach to improve the social acceptance of autonomous
driving vehicles by recognizing the emotions of passengers," Proc. SPIE 11605,
Thirteenth International Conference on Machine Vision, 116051R (4 January
2021); https://doi.org/10.1117/12.2586417, last visited 06/03/2021.

[112] Antonio Costantino Marceddu, "Automatic Recognition And Classification
Of Passengers’ Emotions In Autonomous Driving Vehicles." Rel. Massimo Vi-
olante, Jacopo Sini. Politecnico di Torino, Corso di laurea magistrale in Ingeg-
neria Informatica (Computer Engineering), 2019 https://webthesis.biblio.
polito.it/12423/, last visited 06/03/2021.

[113] Emotion Detector https://github.com/AntonioMarceddu/Emotion_
Detector, last visited 06/03/2021.

[114] Facial Expression Database Classifier (FEDC) https://github.com/
AntonioMarceddu/Facial_Expressions_Databases_Classifier, last visited
06/03/2021.

[115] Ferreira, P.M.; Marques, F.; Cardoso, J.S.; Rebelo, A. Physiological inspired
deep neural networks for emotion recognition. IEEE Access 2018, 6, 53930–
53943, doi:10.1109/ACCESS.2018.2870063.

[116] "Challenges in Representation Learning: A report on three machine learning
contests." I. Goodfellow, D. Erhan, P.L. Carrier, A. Courville, M. Mirza, B.
Hamner, W. Cukierski, Y. Tang, D.H. Lee, Y. Zhou, C. Ramaiah,F. Feng, R.
Li, X. Wang, D. Athanasakis, J. Shawe-Taylor, M. Milakov, J. Park, R. Ionescu,
M. Popescu, C. Grozea, J. Bergstra, J. Xie, L. Ro-maszko, B. Xu, Z. Chuang,
and Y. Bengio. arXiv 2013

283

https://doi.org/10.1007/978-981-15-5093-5_3
https://doi.org/10.1007/978-981-15-5093-5_3
https://doi.org/10.3390/electronics9030518
https://doi.org/10.1117/12.2586417
https://webthesis.biblio.polito.it/12423/
https://webthesis.biblio.polito.it/12423/
https://github.com/AntonioMarceddu/Emotion_Detector
https://github.com/AntonioMarceddu/Emotion_Detector
https://github.com/AntonioMarceddu/Facial_Expressions_Databases_Classifier
https://github.com/AntonioMarceddu/Facial_Expressions_Databases_Classifier


Bibliography

[117] Barsoum, Emad & Zhang, Cha & Ferrer, Cristian & Zhang, Zhengyou. (2016).
Training Deep Networks for Facial Expression Recognition with Crowd-Sourced
Label Distribution. 279-283. DOI:10.1145/2993148.2993165.

[118] Ekman,P. "Basic emotions." In Handbook of Cognition and Emotion; Univer-
sity of California, San Francisco, CA, USA, 1999; pp. 45–60.

[119] Ekman, P.; Friesen, W. Facial Action Coding System (FACS): A Technique
for the Measurement of Facial Action; Consulting: Palo Alto, CA, USA, 1978.

[120] Kanade, T., Cohn, J. F., & Tian, Y. (2000). Comprehensive database for
facial expression analysis. Proceedings of the Fourth IEEE International Con-
ference on Automatic Face and Gesture Recognition (FG’00), Grenoble, France,
46-53.

[121] Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., & Matthews,
I. (2010). The Extended Cohn-Kanade Dataset (CK+): A complete expression
dataset for action unit and emotion-specified expression. Proceedings of the
Third International Workshop on CVPR for Human Communicative Behavior
Analysis (CVPR4HB 2010), San Francisco, USA, 94-101.

[122] Michael J. Lyons, Shigeru Akamatsu, Miyuki Kamachi, Jiro Gyoba. Cod-
ing Facial Expressions with Gabor Wavelets,3rd IEEE International Confer-
ence on Automatic Face and Gesture Recognition, pp. 200-205 (1998). DOI:
10.1109/AFGR.1998.670949

[123] N. Aifanti, C. Papachristou and A. Delopoulos, “The MUG Facial Expression
Database”, in Proc. 11th Int. Workshop on Image Analysis for Multimedia
Interactive Services (WIAMIS), Desenzano, Italy, April 12-14, 2010

[124] Langner, O.; Dotsch, R.; Bijlstra, G.; Wigboldus,D.; Hawk, S.; Knippenberg,
A. Presentation and validation of the radboud face database. Cogn. Emot. 2010,
24, 1377–1388, doi:10.1080/02699930903485076.

[125] Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Static facial expression analysis
in tough conditions: Data, evaluation protocol and benchmark. In Proceedings
of the 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 2106–2112,
doi:10.1109/ICCVW.2011.6130508.

[126] Ebner, N.; Riediger, M.; Lindenberger, U. Faces a database of facial expres-
sions in young, middle-aged, and older women and men: Development and
validation. Behav. Res. Methods 2010, 42, 351–362, doi:10.3758/BRM.42.1.351.

[127] Shankar Setty, Moula Husain, Parisa Beham, Jyothi Gudavalli, Menaka Kan-
dasamy, Radhesyam Vaddi, Vidyagouri Hemadri, JC Karure, Raja Raju, Rajan,
Vijay Kumar and C V Jawahar. "Indian Movie Face Database: A Benchmark
for Face Recognition Under Wide Variations"

[128] Tottenham, N., Tanaka, J., Leon, A.C., McCarry, T., Nurse, M., Hare, T.A.,
Marcus, D.J., Westerlund, A., Casey, B.J., Nelson, C.A. (2009). The NimStim
set of facial expressions: judgments from untrained research participants. Psy-
chiatry Research, 168(3):242-9

284



Bibliography

[129] S. Li, W. Deng and J. Du, "Reliable Crowdsourcing and Deep Locality-
Preserving Learning for Expression Recognition in the Wild," 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
2017, pp. 2584-2593.

[130] S. Li, W. Deng and J. Du, "Reliable Crowdsourcing and Deep Locality-
Preserving Learning for Expression Recognition in the Wild," 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
2017, pp. 2584-2593.

[131] Hasenjäger, M.; Wersing, H. Personalization in Advanced Driver Assistance
Systems and Autonomous Vehicles: A Review. In Proceedings of the 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC),
Yokohama, Japan, 16–19 October 2017; doi:10.1109/ITSC.2017.8317803.

[132] Choi, J.K.; Kim, K.; Kim, D.; Choi, H.; Jang, B. Driver-Adaptive
Vehicle Interaction System for the Advanced Digital Cockpit. In Proceed-
ings of the International Conference on Advanced Communications Tech-
nology(ICACT), Chuncheon-si Gangwon-do, Korea, 11–14 February 2018;
doi:10.23919/ICACT.2018.8323736.

[133] Jung, S.J.; Shin, H.S.; Chung, W.Y. Driver Fatigue and Drowsiness Monitor-
ing System with Embedded Electrocardiogram Sensor on Steering Wheel. IET
Intell. Transp. Syst. 2014, 8, 43–50, doi:10.1049/iet-its.2012.0032.

[134] Kusuma, B.M.; Sampada, S.; Ramakanth, P.; Nishant, K.; Atulit, S. Detec-
tion of Driver Drowsiness using Eye Blink Sensor. Int. J. Eng. Technol. 2018,
7, 498, doi:10.14419/ijet.v7i3.12.16167.

[135] Eclipse Deeplearning4j Development Team. Deeplearning4j: Open-sOurce
Distributed Deep Learning for the JVM, Apache Software Foundation Li-
cense 2.0. 2019. Available online: http://deeplearning4j.org/, last visited
06/03/2021.

[136] Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel,
S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V.; et al. Towards fully au-
tonomous driving: Systems and algorithms. In Proceedings of the IEEE Intelli-
gent Vehicles Symposium, Baden-Baden, Germany, 5–9 June 2011; pp. 163–168.
10.1109/IVS.2011.5940562.

[137] Classification Loss Metric. Available online: https://
peltarion.com/knowledge-center/documentation/evaluation-view/
classification-loss-metrics, last visited 06/03/2021.

[138] Ebner, N., Riediger, M., & Lindenberger, U. (2010). FACES—A database
of facial expressions in young, middle-aged, and older women and men:
Development and validation. Behavior research Methods, 42, 351-362.
DOI:10.3758/BRM.42.1.351.

[139] Scikit-Learn. Available online: https://scikit-learn.org/stable/, last
visited 06/03/2021.

285

http://deeplearning4j.org/
https://peltarion.com/knowledge-center/documentation/evaluation-view/classification-loss-metrics
https://peltarion.com/knowledge-center/documentation/evaluation-view/classification-loss-metrics
https://peltarion.com/knowledge-center/documentation/evaluation-view/classification-loss-metrics
https://scikit-learn.org/stable/


Bibliography

[140] Miao, S.; Xu, H.; Han, Z.; Zhu, Y. Recognizing facial expressions using
a shallow convolutional neural network. IEEE Access 2019, 7, 78000–78011,
doi:10.1109/ACCESS.2019.2921220.

[141] Keras. Available online: https://keras.io/, last visited 06/03/2021.
[142] TensorFlow. https://www.tensorflow.org/, last visited 06/03/2021.
[143] The Microsoft Cognitive Toolkit. Available online: https://docs.

microsoft.com/en-us/cognitive-toolkit/, last visited 06/03/2021.
[144] Theano. Available online: http://deeplearning.net/software/theano/.

Theano tool is now deprecated in favor of aesara https://github.com/
pymc-devs/aesara, last visited 06/03/2021.

[145] Hunter, J.D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 2007,
9, 90–95.

[146] NumPy. Available online: https://numpy.org/, last visited 06/03/2021.
[147] Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software Tools, 2000.
[148] McKinne, W. Data structures for statistical computing in Python.

In Proceedings of the 9th Python in Science Conference, Austin,
Texas; van der Walt, S., Millman, J., Eds; pp. 51–56. Available
online: https://www.researchgate.net/publication/265001241_
Data_Structures_for_Statistical_Computing_in_Python, last visited
06/03/2021.

[149] Available online: https://github.com/AntonioMarceddu/Facial_
Expressions_Recognition_With_Keras, last visited 06/03/2021.

[150] A. N. Navaz, S. M. Adel and S. S. Mathew, "Facial Image Pre-
Processingand Emotion Classification: A Deep Learning Approach," 2019
IEEE/ACS 16th International Conference on Computer Systems and Appli-
cations (AICCSA), Abu Dhabi, United Arab Emirates, 2019, pp. 1-8, doi:
10.1109/AICCSA47632.2019.9035268.

286

https://keras.io/
https://www.tensorflow.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
http://deeplearning.net/software/theano/
https://github.com/pymc-devs/aesara
https://github.com/pymc-devs/aesara
https://numpy.org/
https://www.researchgate.net/publication/265001241_Data_Structures_ for_Statistical_Computing_in_Python
https://www.researchgate.net/publication/265001241_Data_Structures_ for_Statistical_Computing_in_Python
https://github.com/AntonioMarceddu/Facial_Expressions_Recognition_With_Keras
https://github.com/AntonioMarceddu/Facial_Expressions_Recognition_With_Keras

