12 research outputs found

    A high performance biometric system based on image morphological analysis

    Get PDF
    At present, many of the algorithms used and proposed for digital imaging biometric systems are based on mathematical complex models, and this fact is directly related to the performance of any computer implementation of these algorithms. On the other hand, as they are conceived for general purpose digital imaging, these algorithms do not take advantage of any common morphological features from its given domains. In this paper we developed a novel algorithm for the segmentation of the pupil and iris in human eye images, whose improvement’s hope lies in the use of morphological features of the images of the human eye. Based on the basic structure of a standard biometric system we developed and implemented an innovation for each phase of the system, avoiding the use of mathematical complex models and exploiting some common features in any digital image of the human eye from the dataset that we used. Finally, we compared the testing results against other known state of the art works developed over the same dataset.publishedVersionFil: Rocchietti, Marco Augusto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Scerbo, Alejandro Luis Ángel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Ciencias de la Computació

    PELOKALISIRAN CITRA IRIS MENGGUNAKAN WAVELET 2D

    Get PDF
    The performance of an iris recognition system can be undermined by poor quality images and result in high false reject rates (FRR) and failure to enroll (FTE) rates. In this paper, a wavelet-based quality measure for iris images is proposed. The merit of the this approach lies in its ability to deliver good spatial adaptivity and determine local quality measures for different regions of an iris image. Our experiments demonstrate that the proposed quality index can reliably predict the matching performance of an iris recognition system. By incorporating local quality measures in the matching algorithm, we also observe a relative matching performance improvement of about 20% and 10% at the equal error rate (EER), respectively, on the CASIA and WVU iris databases

    The impact of collarette region-based convolutional neural network for iris recognition

    Get PDF
    Iris recognition is a biometric technique that reliably and quickly recognizes a person by their iris based on unique biological characteristics. Iris has an exceptional structure and it provides very rich feature spaces as freckles, stripes, coronas, zigzag collarette area, etc. It has many features where its growing interest in biometric recognition lies. This paper proposes an improved iris recognition method for person identification based on Convolutional Neural Networks (CNN) with an improved recognition rate based on a contribution on zigzag collarette area - the area surrounding the pupil - recognition. Our work is in the field of biometrics especially iris recognition; the iris recognition rate using the full circle of the zigzag collarette was compared with the detection rate using the lower semicircle of the zigzag collarette. The classification of the collarette is based on the Alex-Net model to learn this feature, the use of the couple (collarette/CNN) allows for noiseless and more targeted characterization and also an automatic extraction of the lower semicircle of the collarette region, finally, the SVM training model is used for classification using grayscale eye image data taken from (CASIA-iris-V4) database. The experimental results show that our contribution proves to be the best accurate, because the CNN can effectively extract the image features with higher classification accuracy and because our new method, which uses the lower semicircle of the collarette region, achieved the highest recognition accuracy compared with the old methods that use the full circle of collarette region

    Feature extraction using two dimensional (2D) legendre wavelet filter for partial iris recognition

    Get PDF
    An increasing need for biometrics recognition systems has grown substantially to address the issues of recognition and identification, especially in highly dense areas such as airports, train stations, and financial transactions. Evidence of these can be seen in some airports and also the implementation of these technologies in our mobile phones. Among the most popular biometric technologies include facial, fingerprints, and iris recognition. The iris recognition is considered by many researchers to be the most accurate and reliable form of biometric recognition because iris can neither be surgically operated with a chance of losing slight nor change due to aging. However, presently most iris recognition systems available can only recognize iris image with frontal-looking and high-quality images. Angular image and partially capture image cannot be authenticated with the existing method of iris recognition. This research investigates the possibility of developing a technique for recognition partially captured iris image. The technique is designed to process the iris image at 50%, 25%, 16.5%, and 12.5% and to find a threshold for a minimum amount of iris region required to authenticate the individual. The research also developed and implemented two Dimensional (2D) Legendre wavelet filter for the iris feature extraction. The Legendre wavelet filter is to enhance the feature extraction technique. Selected iris images from CASIA, UBIRIS, and MMU database were used to test the accuracy of the introduced technique. The technique was able to produce recognition accuracy between 70 – 90% CASIA-interval with 92.25% accuracy, CASIA-distance with 86.25%, UBIRIS with 74.95%, and MMU with 94.45%

    Development of Robust Iris Localization and Impairment Pruning Schemes

    Get PDF
    Iris is the sphincter having flowery pattern around pupil in the eye region. The high randomness of the pattern makes iris unique for each individual and iris is identified by the scientists to be a candidate for automated machine recognition of identity of an individual. The morphogenesis of iris is completed while baby is in mother's womb; hence the iris pattern does not change throughout the span of life of a person. It makes iris one of the most reliable biometric traits. Localization of iris is the first step in iris biometric recognition system. The performance of matching is dependent on the accuracy of localization, because mislocalization would lead the next phases of biometric system to malfunction. The first part of the thesis investigates choke points of the existing localization approaches and proposes a method of devising an adaptive threshold of binarization for pupil detection. The thesis also contributes in modifying conventional integrodifferential operator based iris detection and proposes a modified version of it that uses canny detected edge map for iris detection. The other part of the thesis looks into pros and cons of the conventional global and local feature matching techniques for iris. The review of related research works on matching techniques leads to the observation that local features like Scale Invariant Feature Transform(SIFT) gives satisfactory recognition accuracy for good quality images. But the performance degrades when the images are occluded or taken non-cooperatively. As SIFT matches keypoints on the basis of 128-D local descriptors, hence it sometimes falsely pairs two keypoints which are from different portions of two iris images. Subsequently the need for filtering or pruning of faulty SIFT pairs is felt. The thesis proposes two methods of filtering impairments (faulty pairs) based on the knowledge of spatial information of the keypoints. The two proposed pruning algorithms (Angular Filtering and Scale Filtering) are applied separately and applied in union to have a complete comparative analysis of the result of matching

    Methods for iris classification and macro feature detection

    Get PDF
    This work deals with two distinct aspects of iris-based biometric systems: iris classification and macro-feature detection. Iris classification will benefit identification systems where the query image has to be compared against all identities in the database. By preclassifying the query image based on its texture, this comparison is executed only against those irises that are from the same class as the query image. In the proposed classification method, the normalized iris is tessellated into overlapping rectangular blocks and textural features are extracted from each block. A clustering scheme is used to generate multiple classes of irises based on the extracted features. A minimum distance classifier is then used to assign the query iris to a particular class. The use of multiple blocks with decision level fusion in the classification process is observed to enhance the accuracy of the method.;Most iris-based systems use the global and local texture information of the iris to perform matching. In order to exploit the anatomical structures within the iris during the matching stage, two methods to detect the macro-features of the iris in multi-spectral images are proposed. These macro-features typically correspond to anomalies in pigmentation and structure within the iris. The first method uses the edge-flow technique to localize these features. The second technique uses the SIFT (Scale Invariant Feature Transform) operator to detect discontinuities in the image. Preliminary results show that detection of these macro features is a difficult problem owing to the richness and variability in iris color and texture. Thus a large number of spurious features are detected by both the methods suggesting the need for designing more sophisticated algorithms. However the ability of the SIFT operator to match partial iris images is demonstrated thereby indicating the potential of this scheme to be used for macro-feature detection

    Improving Iris Recognition through Quality and Interoperability Metrics

    Get PDF
    The ability to identify individuals based on their iris is known as iris recognition. Over the past decade iris recognition has garnered much attention because of its strong performance in comparison with other mainstream biometrics such as fingerprint and face recognition. Performance of iris recognition systems is driven by application scenario requirements. Standoff distance, subject cooperation, underlying optics, and illumination are a few examples of these requirements which dictate the nature of images an iris recognition system has to process. Traditional iris recognition systems, dubbed stop and stare , operate under highly constrained conditions. This ensures that the captured image is of sufficient quality so that the success of subsequent processing stages, segmentation, encoding, and matching are not compromised. When acquisition constraints are relaxed, such as for surveillance or iris on the move, the fidelity of subsequent processing steps lessens.;In this dissertation we propose a multi-faceted framework for mitigating the difficulties associated with non-ideal iris. We develop and investigate a comprehensive iris image quality metric that is predictive of iris matching performance. The metric is composed of photometric measures such as defocus, motion blur, and illumination, but also contains domain specific measures such as occlusion, and gaze angle. These measures are then combined through a fusion rule based on Dempster-Shafer theory. Related to iris segmentation, which is arguably one of the most important tasks in iris recognition, we develop metrics which are used to evaluate the precision of the pupil and iris boundaries. Furthermore, we illustrate three methods which take advantage of the proposed segmentation metrics for rectifying incorrect segmentation boundaries. Finally, we look at the issue of iris image interoperability and demonstrate that techniques from the field of hardware fingerprinting can be utilized to improve iris matching performance when images captured from distinct sensors are involved

    Unconstrained Iris Recognition

    Get PDF
    This research focuses on iris recognition, the most accurate form of biometric identification. The robustness of iris recognition comes from the unique characteristics of the human, and the permanency of the iris texture as it is stable over human life, and the environmental effects cannot easily alter its shape. In most iris recognition systems, ideal image acquisition conditions are assumed. These conditions include a near infrared (NIR) light source to reveal the clear iris texture as well as look and stare constraints and close distance from the capturing device. However, the recognition accuracy of the-state-of-the-art systems decreases significantly when these constraints are relaxed. Recent advances have proposed different methods to process iris images captured in unconstrained environments. While these methods improve the accuracy of the original iris recognition system, they still have segmentation and feature selection problems, which results in high FRR (False Rejection Rate) and FAR (False Acceptance Rate) or in recognition failure. In the first part of this thesis, a novel segmentation algorithm for detecting the limbus and pupillary boundaries of human iris images with a quality assessment process is proposed. The algorithm first searches over the HSV colour space to detect the local maxima sclera region as it is the most easily distinguishable part of the human eye. The parameters from this stage are then used for eye area detection, upper/lower eyelid isolation and for rotation angle correction. The second step is the iris image quality assessment process, as the iris images captured under unconstrained conditions have heterogeneous characteristics. In addition, the probability of getting a mis-segmented sclera portion around the outer ring of the iris is very high, especially in the presence of reflection caused by a visible wavelength light source. Therefore, quality assessment procedures are applied for the classification of images from the first step into seven different categories based on the average of their RGB colour intensity. An appropriate filter is applied based on the detected quality. In the third step, a binarization process is applied to the detected eye portion from the first step for detecting the iris outer ring based on a threshold value defined on the basis of image quality from the second step. Finally, for the pupil area segmentation, the method searches over the HSV colour space for local minima pixels, as the pupil contains the darkest pixels in the human eye. In the second part, a novel discriminating feature extraction and selection based on the Curvelet transform are introduced. Most of the state-of-the-art iris recognition systems use the textural features extracted from the iris images. While these fine tiny features are very robust when extracted from high resolution clear images captured at very close distances, they show major weaknesses when extracted from degraded images captured over long distances. The use of the Curvelet transform to extract 2D geometrical features (curves and edges) from the degraded iris images addresses the weakness of 1D texture features extracted by the classical methods based on textural analysis wavelet transform. Our experiments show significant improvements in the segmentation and recognition accuracy when compared to the-state-of-the-art results

    De-Duplication of Person's Identity Using Multi-Modal Biometrics

    Get PDF
    The objective of this work is to explore approaches to create unique identities by the de-duplication process using multi-modal biometrics. Various government sectors in the world provide different services and welfare schemes for the beneffit of the people in the society using an identity number. A unique identity (UID) number assigned for every person would obviate the need for a person to produce multiple documentary proofs of his/her identity for availing any government/private services. In the process of creating unique identity of a person, there is a possibility of duplicate identities as the same person might want to get multiple identities in order to get extra beneffits from the Government. These duplicate identities can be eliminated by the de-duplication process using multi-modal biometrics, namely, iris, ngerprint, face and signature. De-duplication is the process of removing instances of multiple enrollments of the same person using the person's biometric data. As the number of people enrolledinto the biometric system runs into billions, the time complexity increases in the de duplication process. In this thesis, three different case studies are presented to address the performance issues of de-duplication process in order to create unique identity of a person
    corecore