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Abstract

Iris is the sphincter having flowery pattern around pupil in the eye region. The high

randomness of the pattern makes iris unique for each individual and iris is identified by the

scientists to be a candidate for automated machine recognition of identity of an individual.

The morphogenesis of iris is completed while baby is in mother’s womb; hence the iris

pattern does not change throughout the span of life of a person. It makes iris one of the

most reliable biometric traits.

Localization of iris is the first step in iris biometric recognition system. The

performance of matching is dependent on the accuracy of localization, because

mislocalization would lead the next phases of biometric system to malfunction. The first

part of the thesis investigates choke points of the existing localization approaches and

proposes a method of devising an adaptive threshold of binarization for pupil detection.

The thesis also contributes in modifying conventional integrodifferential operator based iris

detection and proposes a modified version of it that uses canny detected edge map for iris

detection.

The other part of the thesis looks into pros and cons of the conventional global and

local feature matching techniques for iris. The review of related research works on

matching techniques leads to the observation that local features like Scale Invariant Feature

Transform (SIFT) gives satisfactory recognition accuracy for good quality images. But the

performance degrades when the images are occluded or taken non-cooperatively. As SIFT

matches keypoints on the basis of 128-D local descriptors, hence it sometimes falsely pairs

two keypoints which are from different portions of two iris images. Subsequently the need

for filtering or pruning of faulty SIFT pairs is felt. The thesis proposes two methods of

filtering impairments (faulty pairs) based on the knowledge of spatial information of the

keypoints. The two proposed pruning algorithms (Angular Filtering and Scale Filtering)

are applied separately and applied in union to have a complete comparative analysis of the

result of matching.

Keywords: Iris recognition, localization, SIFT, matching, filtering, pruning of SIFT pairs.
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Chapter 1

Introduction

Biometrics is the science of recognizing the identity of an individual based on physiological

and behavioural characteristics of the subject. Biometric authentication has evolved from

the disadvantages of traditional means of authentication. The problem with token based

systems is that the possession could be lost, stolen, forgotten or misplaced. The drawbacks

of knowledge based approaches is that it is tough for a person to remember difficult

passwords/PINs; on the contrary easy passwords can be guessed and cracked by intruders.

Thus, the authentication system merges token-based and knowledge-based authentication

methods, e.g. automated teller machine (ATM) nodes of banks authenticate an individual

by taking ATM cards (token) along with a secret PIN (knowledge) as authentication query.

However, the combination of knowledge and token based system can not satisfy the security

requirements. The primary advantage of biometrics over token based and knowledge based

approaches is that, it cannot be misplaced, forgotten or stolen. Also it is very difficult

to spoof biometric traits as the person to be authenticated needs to be physically present.

A generic biometric system operates by taking an input from the user, preprocessing the

signal to denoise it to find the region of interest, extracting features, and authenticating

an individual based on the result of comparison [1]. A biometric system has three typical

operating modes: enrolment mode, verification mode, identification mode. In enrolment

mode, the feature from a subject is extracted and stored in the database. During verification

mode, a subject is authenticated by comparing live query biometric template with the

database template of the individual whom the subject claims himself to be. The comparison

1



1.1 About Iris Biometrics

in this mode is a one-to-one process. In identification mode, the system takes live query

template from the subject and searches the entire database to find the best-match template

to identify the subject. The comparison in this mode is a one-to-many process.

Various biometric traits like face, iris, fingerprint, gait, voice, face-thermograph,

signature are of key research area for many a researchers due to enormous need of

security in automated systems. Observing underlying nature of the traits, two basic

categories can be identified as: Physiological (or passive) and Behavioral (or active)

biometrics [1]. Physiological biometrics are based on direct measurement or data derived

from measurement of a part of the human body. A person is identified by his/her

face by another person. Fingerprint detection is one of the age-old methods used for

recognising the authenticity of a person. However iris pattern, retina tissue pattern,

palmprint geometry have evolved as leading physiological biometrics with the evolve of

automation of biometric recognition system. Behavioral characteristics, on the other hand,

are based on an action taken by a person. Behavioral biometrics, in turn, are based on

measurements of data derived from an action, and thereby indirectly measure characteristics

of the human body. Voice recognition, keystroke dynamics, and online/offline signature

are leading behavioral biometric traits. Suitability of a trait as a biometric for practical

implementation is characterised by uniqueness, stability, collectability, acceptability, ease

to capture, non-invasiveness and circumvention.

1.1 About Iris Biometrics

Pupil is the darkest circular shaped area in the eye image. Pupil controls the amount of

light entering the eye by dilation and contraction. Iris is the circular shaped sphincter that

separates pupil from the sclera region. Figure 1.1 depicts the anatomy of human eye on

a sample image from CASIAV3 [2] database. As observed, the specular highlights of the

acquisition device are made to fall on the pupil region. It is taken care that the highlights

do not fall on the iris region as most significant features (viz. freckles, coronas, stripes,

furrows, crypts) in the eye image are in the iris. Though the iris region may partially be

occluded by eyelids and eyelashes, leading to unconstrained scenario where only partial

pattern of iris is available for acquisition. The randomness of the flowery pattern in iris is

2



1.2 Motivation

Eyelid

Outer iris boundary

Inner iris boundary
Iris texture

Eyelashes

Pupillary region
Sclera

Figure 1.1: An sample image from CASIA database to depict the anatomy of human eye

unique for every individual and hence can work as a token for authenticating an individual.

An unimplemented conceptual design of an iris biometric system is first proposed by Drs.

Leonard Flom and Aran Safir [3]. The first prototype unit for biometric system was

developed in 1995 by L. Flom, A. Safir and J. Daugman. Further researches established

iris to be a candidate for reliable and non-cooperative biometric authentication. Iris, due to

its permanence and ease of acquiring, plays a significant role among all the biometric traits.

Recent authentication systems need secure, fast and accurate computing for which iris

pattern is found to be suitable. Furthermore iris image can be captured without active

cooperation of the subject. This marks the suitability of iris recognition also for criminal

identification. Iris biometric system involves challenges of automating the system to

identify the region of interest, finding useful feature(s) from the region of interest, matching

two features when a query comes, maintaining feature sets corresponding to every enrolled

subject in the database etc. All these segments are independent research areas and forms an

authentication system when deployed together.

1.2 Motivation

Figure 1.2 depicts the block diagram of a generic biometric system constituting

conventional phases. As observed from the block diagram, localization is the first phase

of iris biometric system. If an iris image is mislocalized, there is no worth of processing

it through subsequent phases. And literature survey reveals the fact that there are several

issues to be handled for segmenting iris. Firstly, a single static threshold fails to binarize

the captured grayscale iris images with varying illuminations. Secondly, iris occlusion by

3



1.3 Problem Definition

eyelids and eyelashes degrades the performance of localization module. Thirdly, during

image acquisition the spot of light creates specular highlights on pupil which further adds

noise to input and hinder the process of localization. Lastly, the gaze of an individual

may not be centered in unconstrained situations. Such images are usually acquired in

non-cooperative environment. These issues reveal the importance of choosing different

binarization thresholds for different images. The minimum value of mean intensity of

a grid in iris image has been taken as threshold for binarizing the pupil in [4], but it

fails due to specular highlights. Hence the need for hole filling the pupil region is of

high importance. Furthermore Daugman’s intergodifferential operator based iris detection

suffers from detecting the outer-iris boundary wrongly. Several algorithms are proposed

to handle these scenarios where classic algorithms fail. The domain of the first part of

the research in this thesis is shown in Figure 1.3. Analytical study of different available

algorithms and the detailed elaboration of the proposed research is explored in Section 2.

The second part of the research deals with improvising the performance of matching

module. The failure of global feature matching techniques [5] to respond to affine

transformation leads to the evolution of local feature matching techniques. Widely used

local feature matching techniques like SIFT matches keypoints of one iris image with other

on the basis of local descriptor values only. But the descriptor of different regions of iris

may be similar. It leads to the fact that matching between two different portions of two

different iris images may be done, which is obviously a wrong match. Therefore a necessity

of filtering the matched pairs is realised. The intuition of doing so is that false pairs will be

pruned, and remaining correct pairs would be able to separate genuine and imposter more

accurately. This motivates the second part of the research. The domain of the second part

of the research mentioned in this thesis is shown in Figure 1.5 and the elaboration of the

concerned research is explored in Section 3.

1.3 Problem Definition

Many a researchers are active in developing robust biometric system as biometric is the

latest way of authenticating any individual. However, the biometric system architecture

comprises several modules. Current research attempts to make each modules more robust.

4
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1.4 Performance Measures Used

Two specific problems are investigated out by the survey of related existing literatures.

These issues are addressed and attempted to be resolved in this thesis.

The first problem has two sub-problems: (a) the grayscale threshold choosing

problem in binarization during pupil detection, (b) faulty detection of iris radius by

integrodifferential operator while outer-iris boundary detection. Both of these sub-problems

belongs to localization issues. The first part of the thesis proposes new methods to overcome

the studied problems.

The second problem is observed by studying local feature matching schemes like SIFT.

A bottleneck of local feature based schemes is that it depends on local feature only for the

matching purpose. As it does not take spatial information of keypoints into account, hence

it is prone to match two keypoints that are located at different positions of the database and

query iris respectively. The second part of the thesis attempts to prune wrong pairs done by

SIFT. As a result the proposed approach performs more accurately than the conventional

SIFT matching approach.

1.4 Performance Measures Used

The match score generated after testing user given template and database template is

deterministic (0:imposter, and 1:genuine) in case of an knowledge based or token based

authentication system. It is a process of matching two alphanumeric strings (e.g. password

submitted by the subject and corresponding password stored in database). But the matching

of biometric templates is more complex due to the reason that n-dimensional biometric

templates have no sorted ordering. The second challenge in this domain is that the templates

of query and database image do not match exactly due to noise. Hence the matching

problem is more of pattern matching. The matching module in the biometric system is

responsible for generating a score when a query template and a database template are given

as input to it. The generated score is a numerical value signifying how far the query template

resembles the database template. Hence the system needs a threshold to decide. Any score

below the decided threshold is concluded as an imposter match. Likewise any value above

the threshold is concluded as a genuine match. If the threshold is chosen very high, the

system would lead some genuine matches to be judged as imposter (False Rejection). On

9
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Imposter
Genuine

False Accept

False Reject
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Figure 1.6: Genuine and imposter matching score distribution of biometric database
showing various performance measures

the contrary, if the threshold is chosen very low, the system would lead some imposter

matches to be judged as genuine (False Acceptance). The choice of threshold value is

therefore bears profound significance.

Similarity scores/genuine scores are generated when the two biometric templates of

the same subject are compared. This type of score is called genuine-score or intra-class

variation. The set of feature chosen should be such that intra-class variation is small.

Likewise when two biometric templates of two different subjects are compared, inter-class

variation score (imposter-score) is generated. The values of imposter-scores should be

high enough to be discriminating from the genuine-scores. However the distribution

of genuine-scores and imposter-scores are not mutually exclusive in practical scenarios.

Rather they overlap in a certain region. While recognition, the scores that exceed a chosen

threshold value (τ), results in false acceptance. The genuine score that falls below τ results

in false rejection. Figure 1.6 shows the representation of few performance measures. The

commonly used measures to evaluate the performance of biometric systems are:

• False Acceptance Rate (FAR): FAR is the frequency of fraudulent access to

imposters claiming identity [6]. This statistic is used to measure biometric

performance when operating in the verification mode. A false accept occurs when the

query template of an individual is incorrectly matched to existing biometric template

of another individual.
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1.4 Performance Measures Used

• False Rejection Rate (FRR): FRR is the frequency of rejections relative to people

who should be correctly verified. This statistics is used to measure biometric

performance when operating in the verification mode. A false reject occurs when

an individual is not matched correctly to his/her own existing biometric template.

• Equal Error Rate (EER): ERR is the point where FAR is equal to FRR. In general,

the lower the equal error rate value, the higher the accuracy of the biometric system.

Note, however, that most operational systems are not set to operate at the equal

error rate, so the measure’s true usefulness is limited to comparing biometric system

performance. EER is sometimes referred to as the Crossover Error Rate.

• Genuine Acceptance Rate (GAR): GAR is the fraction of genuine scores exceeding

the threshold τ. It is defined as:

GAR = 1 − FRR (1.1)

• Receiver Operating Characteristic (ROC) Curve: ROC curve depicts the

dependence of FRR with GAR for change in the value of threshold. The curve

is plotted using linear, logarithmic or semi-logarithmic scales. ROC can also be

represented by plotting FRR against FAR for change in the threshold value.

• Cumulative Match Characteristic (CMC) Curve: The rank-k identification

indicates the number of correct identification that occur in top k matches. Let

Rk denote the number of elements of probe set in top k, then the probability of

identification is given by I = Rk/N. CMC curve represents the probability of

identification (I) at various ranks k [7].

• d-prime Index: The d′ index [1] measures the separation between the arithmetic

means of the genuine and imposter probability distribution in standard deviation units

is defined as

d′ =

√
2 |μgenuine − μimposter |√
σ2

genuine + σ
2
imposter

(1.2)

where μ and σ are mean and standard deviation of genuine and imposter scores.
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1.5 Iris Databases

• Rank-k Identification: The rank-k identification [1] is defined as proportion of times

correct identity occurs in top k matches. Cumulative Match Characteristics (CMC)

curve plots the ranks against the probability of identification.

1.5 Iris Databases

This section discusses in detail about the databases used in all experiments relevant to the

research in this thesis. There exists various available datasets such as UBIRIS version 1 [8],

BATH [9], CASIA version 3 [2] and Indian Institute of Technology Kanpur (IITK) [10].

The proposed system has been tested on two publicly available databases, viz. BATH

and CASIAV3. Database available from BATH University [9] includes images from 50

subjects. For each subject, images from both the eyes (left and right) each containing 20

images are captured. Database from Chinese Academy of Sciences’ Institute of Automation

contains 16,213 iris images from 819 eyes acquired in an indoor environment. CASIA

version 3 (CASIAV3) [2] is a superset of CASIAV1. In version 3, most of the images have

been captured in two sessions with an interval of at least one month. CASIAV3 database

comprises 249 subjects with total of 2,655 images from both the eyes.

BATH Database

Database available from BATH University [9] comprises of images from 50 subjects. For

each subject, both left and right iris images are obtained, each containing 20 images of the

respective eyes.

CASIA version 3 Database

CASIA version 3 (CASIAV3) is acquired in an indoor environment. Most of the images

have been captured in two sessions with an interval of atleast one month. The database

comprises of 249 subjects with total of 2655 images from left and right eyes. CASIAV3 is a

superset of CASIAV1. The pupil regions of all iris images in CASIAV1 were automatically

detected and replaced with a circular region of constant intensity to mask out the specular

reflections [11].

12



1.7 Thesis Organization

1.6 Experimental Setup

All experiments relevant to the thesis are carried out on 2.81GHz AMD Athlon 64 X2

Dual Core processor with 2GB RAM. The experiments are simulated using Matlab®

Version 7.10.0.499 (R2010a).

1.7 Thesis Organization

The entire thesis constitutes three chapters following this chapter. The rest of the thesis is

organized as follows:

Chapter 2: Iris localization Using Adaptive Thresholding

This chapter explains an thresholding techniques, edge detection and Circular Hough

Transform (CHT) for finding pupil and iris boundary. But CHT requires range of radius

as input and is computationally expensive. Proposed localization approach performs faster

than the conventional approach. And it works well for change in rotation and change of

gaze in iris images and other unconstrained scenarios.

Chapter 3: Postmatch Pruning of SIFT Impairments

This chapter discusses an approach to detect false pairs that SIFT generates because of

texture similarity of several keypoints from different regions of iris image. The chapter

proposes two techniques of filtering wrong keypoints, viz. angular filtering and scale

filtering. Experimental results justify that the proposed postmatch filtration of approach to

devise an adaptive threshold of binarization for pupil detection and a canny detected edge

map based iris detection. Many researchers have used variations of impairments improves

accuracy of recognition.

Chapter 4: Conclusions and Future Work

This chapter presents analytical remarks to overall achievements and limitations of all the

proposed works, concluding with scope for further research work in this domain.
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Chapter 2

Iris localization Using Adaptive

Thresholding

Conventional 2-D image acquisition systems also capture immediate surroundings of eye

region while capturing iris [12]. Primarily it is significant to segment the portion of the

image containing exclusively iris. Specifically, it is important to localise the region between

inner pupil and outer iris boundary. If iris is occluded by eyelids (which happens in most of

the cases for unconstrained data) then portion between the upper and lower eyelids should

only be considered for the extraction of local features. Further, there may exist some

specular highlights on pupil region. Preprocessing is an important step which involves the

method of converting a crude acquired input image into only region of interest, from which

feature extraction can be done. The conventional steps involved in iris image preprocessing

are: (i) to remove specular highlights on the pupillary area via hole-filling operation, (ii)

to localise the inner and outer iris boundaries (often modelled by two best fitted concentric

circles or ellipses), (iii) to remove eyelids and eyelashes which hinder feature extraction

process and (iv) to transform the annular iris into a rectangular block using Cartesian to

polar conversion. However, H. Proenca and L.A. Alexandre points out in [13] that the

texture features are distorted or partially lost due to aliasing during polar transformation

[as mentioned in Step (iv) above]. Hence, in the proposed research eyelid removed annular

region is considered directly for the purpose of feature extraction. This chapter discusses

literature survey on iris localization and proposed iris localization schemes in sequence.

14



2.1 Literature Survey

The proposed approaches are compared with existing conventional detection techniques.

2.1 Literature Survey

Significant amount of work has been done for iris segmentation in the last decade. J.

Daugman has used integrodifferential operator for iris localization [14] but the location

of iris varies from image to image; so global search reduces speed. Wildes has used

edge detection and circular Hough transform [12] together for the purpose. In order to

improve localization time, coarse to fine strategy is proposed by Huang et. al [15]. In

the coarse stage, the technique finds outer iris boundary in the re-scaled image, then using

that information iris circles are found using intergrodifferential operator. There are various

approaches developed as an improvement over traditional Hough transform. In [16], the

authors have used Canny edge detector with Hough transform to improve localization

speed. By means of canny edges, normal line algorithm is created for finding center and

inner edge. Homocentric circle algorithm is used to find outer edge. The authors in [17]

have used bisection method to find inner boundary. Further, histogram equalisation and

statistical information is used to find collarette boundary. In addition to this, the authors

in [18] provided an improvement over Hough transform for circle to restrict votes for center

location based on direction of edges. The algorithm proposed in [19] is used to overcome

the drawback of traditional iris localization approaches that are affected by eyelid occlusion

and are time consuming. In the coarse localization of inner boundary, the lower contour of

pupil is used for estimation of parameters. In coarse localization of outer boundary the

average intensity signals on both sides of pupil are used to estimate the parameters. In

fine stage, Hough transform is used to localise boundaries precisely. Table 2.1 (taken from

[5]) evinces some benchmark approaches (placed in chronological ordering) along with

respective performance measures.

Some authors have used thresholding based approaches to find coarse localization of

pupil. The authors in [27] search for pixels below a threshold as pupil and then use Hough

transform and edge detection to find circles in the limited area. Further, an automatic iris

segmentation based on local areas is proposed in [4]. In this approach, iris image is divided

into rectangular grid and mean is obtained for each block. The minimum value of mean
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2.1 Literature Survey

Ta
bl

e
2.

1:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
of

so
m

e
be

nc
hm

ar
k

lo
ca

li
za

ti
on

ap
pr

oa
ch

es

Y
ea

r
A

ut
ho

rs
A

pp
ro

ac
h

Te
st

in
g

D
at

ab
as

e
A

cc
ur

ac
y

R
es

ul
ts

20
02

C
am

us
et

al
.[
20

]
M

ul
ti
-r

es
ol

ut
io

n
co

ar
se

-t
o-

fin
e

st
ra

te
gy

C
on

st
ra

in
ed

ir
is

im
ag

es
(6

40
w

it
ho

ut
gl

as
se

s,
30

w
it
h

gl
as

se
s)

ov
er

al
l

98
%

(9
9.

5%
fo

r
su

bj
ec

ts
w

it
ho

ut
gl

as
se

s
an

d
66

.6
%

fo
r

su
bj

ec
ts

w
ea

ri
ng

gl
as

se
s)

20
04

Su
ng

et
al

.[
17

]
B

is
ec

tio
n

m
et

ho
d,

ca
nn

y
ed

ge
-m

ap
de

te
ct

or
an

d
hi

st
og

ra
m

eq
ua

li
za

ti
on

3,
17

6
im

ag
es

ac
qu

ir
ed

th
ro

ug
h

a
C

C
D

ca
m

er
a

10
0%

in
ne

r
bo

un
da

ry
an

d
94

.5
%

fo
r
co

lla
re

tte
bo

un
da

ry

20
04

B
on

ne
y

et
al

.[
21

]
L
ea

st
si

gn
ifi

ca
nt

bi
t

pl
an

e
an

d
st

an
da

rd
de

vi
at

io
ns

10
8

im
ag

es
fr

om
C

A
SI

A
v1

an
d

10
4

im
ag

es
fr

om
U

N
SA

Pu
pi

l
de

te
ct

io
n

99
.1

%
an

d
li
m

bi
c

de
te

ct
io

n
66

.5
%

20
05

L
iu

et
al

.[
18

]
M

od
ifi

ca
ti
on

to
M

as
ek

’s
se

gm
en

ta
ti
on

al
go

ri
th

m
31

7
ga

lle
ry

&
4,

24
9

pr
ob

e
im

ag
es

ac
qu

ir
ed

us
in

g
Ir

id
ia

n
L
G

22
00

ir
is

im
ag

in
g

sy
st

em

97
.0

8%
R

an
k-

1
re

co
gn

it
io

n

20
06

Pr
oe

nc
a

et
al

.[
22

]
M

om
en

t
fu

nc
tio

ns
de

pe
nd

en
t

on
fu

zz
y

cl
us

te
ri
ng

1,
21

4
go

od
qu

al
it
y

im
ag

es
,

66
3

no
is

y
im

ag
es

ac
qu

ir
ed

fr
om

24
1

su
bj

ec
ts

in
tw

o
di

st
in

ct
se

ss
io

ns

98
.0

2%
on

go
od

da
ta

se
t

an
d

97
.8

8%
on

no
is

y
da

ta
se

t

20
08

Pu
nd

li
k

et
al

.[
23

]
M

ar
ko

v
ra

nd
om

fie
ld

an
d

gr
ap

h
cu

tb
as

ed
en

er
gy

m
in

im
iz

at
io

n
W

V
U

N
on

-i
de

al
da

ta
ba

se
Pi

xe
ll

ab
el

er
ro

r
ra

te
5.

9%

20
09

H
e

et
al

.[
24

]
A

da
bo

os
t-
ca

sc
ad

e
ir
is

de
te

ct
or

fo
r
ir
is

ce
nt

er
pr

ed
ic

tio
n

N
IS

T
Ir

is
C

ha
lle

ng
e

E
va

lu
at

io
n

(I
C

E
)

v
1.

0,
C

A
SI

A
-I

ri
s-

V
3-

la
m

p,
U

B
IR

IS
v1

.0

0.
53

%
E
E
R

fo
r

IC
E
v1

.0
an

d
0.

75
%

E
E
R

fo
r

C
A

SI
A

Ir
is

-V
3-

la
m

p
20

10
Ji

n
et

al
.[
25

]
K

-m
ea

ns
cl

us
te

r
C

A
SI

A
v3

an
d

U
B

IR
IS

v2
.0

1.
9%

Fa
ls

e
Po

si
tiv

e
an

d
21

.3
%

Fa
ls

e
N

eg
et

iv
e

(o
n

a
fr

es
h

da
ta

se
t

no
tu

se
d

to
tu

ne
th

e
sy

st
em

)
20

10
Ta

n
et

al
.[
26

]
G

ra
y

di
st

ri
bu

ti
on

fe
at

ur
es

an
d

gr
ay

pr
oj

ec
tio

n
C

A
SI

A
v1

99
.1

4%
ac

cu
ra

cy
w

it
h

pr
oc

es
si

ng
ti
m

e
of

0.
48

4s
ec

on
d/

im
ag

e

16



2.2 Proposed Adaptive Thresholding

is taken as threshold for binarizing the pupil as shown in Figure 2.1 [4]. Some work has

been proposed in the direction of non-cooperative iris localization. The authors in [22] have

implemented the segmentation methodology proposed by Tuceryan [28] used the moments

in small windows of the image as texture features and then applied a clustering algorithm to

segment the image. Further a robust segmentation approach for non-ideal images has been

developed using graph cuts [23].

Figure 2.1: Grid based binarization using adaptive threshold

There are several issues that have been observed from the literature. Firstly, static

threshold fails to binarize iris image for varying illumination. Secondly, iris is occluded

by eyelids and eyelashes. This further degrades the performance of localization module.

Thirdly, during image acquisition the spot of light is made to fall on the pupil region. This

creates specular highlights which in turn adds noise to the input image. Lastly, the gaze of

an individual may not be centered. Such images are usually acquired in non-cooperative

environment where little or no restriction is imposed upon the subject during acquisition. In

the proposed work, a robust iris segmentation approach has been developed that performs

well for aforementioned non-cooperative data sets. The proposed scheme is based on

adaptive thresholding. The details of the approach is discussed in Section 2.2. The hole

filled binary image is used for finding pupil boundary using spectrum image (Section 2.3).

Section 2.4 outlines the approach to find outer iris boundary. Experimental results for the

proposed approach are given in Section 2.5.

2.2 Proposed Adaptive Thresholding

Pupil is the darkest region in the eye with almost circular shape. Appropriate threshold

helps in finding the region of interest that contains pupil. Static value of threshold may
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2.2 Proposed Adaptive Thresholding

fail for different images taken under varying illumination conditions [4]. Thus, in the

proposed research an effort has been made to adaptively determine the value of threshold.

It has been empirically found that the highest intensity value contributing to pupil neither

exceeds highτ (0.5 of highest grayscale value) nor drops beyond lowτ (0.1 of highest

grayscale value). To find adaptive threshold, binary images are obtained iteratively for

range of thresholds (τ) between lowτ and highτ with an increment of stepτ (0.05 of highest

grayscale value). Choosing a low value of stepτ would force the system to generate more

number of binary images, and hence increasing execution time. Likewise, choosing a

high value of stepτ would generate less number of binary images and hence may miss

out the appropriate binarization threshold. These parameters are optimized based on trade

off between computational complexity and performance accuracy.
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Figure 2.2: Relationship between τ and η

The binary images obtained for varying τ are considered for removing specular

highlights (holes). These highlights add noise and hinder pupil segmentation process. The

holes are required to be detected and filled because pupil localization works more efficiently

for completely filled circle. Morphological region filling approach is used to fill holes in

the image [29]. To begin with hole filling operation, binary image (A) is complemented.

The convention adopted here is that the boundary pixels are labelled as 1. If non-boundary

pixels are labelled as 0 then beginning with a point p inside the boundary, a value of 1 is

18



2.3 Pupil Detection

assigned. The following transformation fills the region with ones.

Xk = (Xk−1 ⊕ S ) ∩ Ac (2.1)

where X0 = p; k = 1, 2, 3, . . .; ⊕ is used for dilation of Xk−1 by S which is defined as

Xk−1 ⊕ S = {z|(Ŝ )z ∩ Xk−1 � φ} (2.2)

The symmetric structuring element S is defined as,

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 1 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This algorithm terminates at kth iteration, if Xk = Xk−1. The image generated from last

iteration Xk is combined with A using bitwise OR that contains the boundary filled image.

Each hole filled image is used for finding the number of connected components (η) [29].

η changes for change in value of threshold as shown in Figure 2.2. The value of threshold

corresponding to minimum non-zero η is chosen as adaptive threshold for binarization.

However, if the minimum non-zero η occurs for more than one thresholds (as shown

in Figure 2.2), then maximum threshold amongst them is chosen as adaptive threshold.

The reason behind finding maximum amongst potential thresholds is that pupil boundary

may contain some intensity values which may not contribute to connected component of

pupil for lower thresholds. Figure 2.3 shows the binary images obtained for change in τ.

Algorithm 2.1 describes the steps involved in finding the non-noisy binary image.

2.3 Pupil Detection

In traditional iris recognition systems, combination of edge detection and Circular Hough

Transformation (CHT) is used for finding pupil and iris boundaries [27]. The major

drawback of Hough transform is that it requires range of radius as input from the user.

Further, Hough works in R3 parameter space (number of parameters needed to describe the
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2.3 Pupil Detection

Algorithm 2.1 Proposed Adaptive Thresholding
Input: I: Intensity Image, S : Structuring element

Output: B: Binary Image

1: lowτ ⇐ 0.10

2: highτ ⇐ 0.50

3: stepτ ⇐ 0.05

4: [r c] := size(I) {Compute width and height of image}
5: for τ := lowτ to highτ step stepτ do

6: A := binary(I, τ) {Image Binarisation using τ}
7: C := Ac {Complement of an image}
8: X0 := zeros(r, c) {Image with all zeros}
9: X0(p) = 1 {p is a point inside hole}

10: k ⇐ 0

11: repeat
12: k ⇐ k + 1

13: Xk ⇐ (Xk−1 ⊕ S ) ∩ C

14: until Xk � Xk−1
15: Hτ ⇐ Xk ∪ A {Hole filled image}
16: ητ := connComp(Hτ) {Find number of connected components (Insignificantly small

sized components are not taken into account)}
17: end for

18: pos := min nonzero(η){Find index of minimum non-zero}
19: B⇐ Hpos

20: return B

shape of a circle) which in turn increases the time complexity of the transform. Hence, an

efficient spectrum based approach is used for pupil detection that performs faster compared

to Hough transformation without any priori estimation of radius.

In this approach, the binarised image is re-complemented to detect center of pupil. The

distance of every pixel in the binary image is obtained with nearest non-zero pixel [30].

By computing the distance between pixels, spectrum showing largest filled circle can be

formed within the set of foreground pixels. Since pupil is the largest filled circle in the

image, the overall intensity of this spectrum is maximum at the center. The spectrum image

is shown in Figure 2.4(a). Thus, the position of maximum value in the spectrum image is

pupil center. To compute the pupil radius, an edge map of the hole filled binary image is

obtained as shown in Figure 2.4(b). In the edge map, the distance from the detected pupil

20



2.3 Pupil Detection

(a) τ : 0.10; η : 0 (b) τ = 0.15; η : 0 (c) τ = 0.20; η : 1

(d) τ = 0.25; η : 1 (e) τ = 0.30; η : 32 (f) τ = 0.35; η : 23

(g) τ = 0.40; η : 18 (h) τ = 0.45; η : 23 (i) τ = 0.50; η : 30

Figure 2.3: Binary images obtained for change in threshold (τ) and number of connected
components (η)

center to the nearest non-zero pixel is the pupil radius (rp). The pupil detected image is

shown in Figure 2.4(c). The algorithm for detecting pupil center and radius is given in

Algorithm 2.2.

(a) (b) (c)

Figure 2.4: Pupil Detection: (a) Spectrum image, (b) Edge detected image with pupil center
and (c) Pupil localised image
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2.4 Iris Detection

Algorithm 2.2 Pupil Detection
Input: B: Binary Image

Output: xc: xcenter of pupil, yc: ycenter of pupil, rp: Radius of pupil

1: C ⇐ Bc {Complement the binary image}
2: [x y] := find(C == 1) {Find location of ones in an image}
3: l := length(x) {To find the number of elements in an array}
4: for i := 1 to r do

5: for j := 1 to c do

6: for k := 1 to l do

7: Dk ⇐
√

(xk − i)2 + (yk − j)2

8: end for

9: S i, j := min(D) {Minimum value of D}
10: end for

11: end for

12: [xc yc]⇐ max(S )

13: E := edge(C) {Edge detection [29]}
14: j⇐ yc {Estimation of pupil radius}
15: rp ⇐ 0

16: while Exc, j � 1 do

17: rp ⇐ rp + 1

18: j⇐ j + 1

19: end while

20: return xc, yc, rp

2.4 Iris Detection

For iris detection, the intensity image is blurred to remove external noise. But too much

blurring may make it difficult to detect the outer iris boundary, separating the eyeball and

sclera. Thus, a special smoothing filter such as the median filter is used on the original

intensity image. This type of filtering eliminates sparse noise while preserving image

boundaries [29]. After filtering, the contrast of image is enhanced to have sharp variation

at image boundaries using histogram equalisation as shown in Figure 2.5 (a).

This contrast enhanced image is used for finding the outer iris boundary by drawing

concentric circles (Figure 2.5 (b) shows an example) of different radii from the pupil center

and the intensities lying over the perimeter of the circle are summed up [31]. Among the

candidate iris circles, the circle having maximum change in intensity with respect to the
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2.4 Iris Detection

(a) (b) (c)

Figure 2.5: Iris Detection: (a) Contrast enhanced image (b) Concentric circles of different
radii (c) Iris localised image

previous drawn circle is the iris outer boundary as shown in Figure 2.5 (c). The algorithm

for detection of iris radius (ri) is given in Algorithm 2.3.

Algorithm 2.3 Conventional Iris Detection
Input: I: Input image, rp: Radius of pupil, xc: xcenter of pupil, yc: ycenter of pupil

Output: ri: Radius of iris

1: F ⇐ medianFilt(I){Median Filtering on input image}
2: H ⇐ Histeq(F) {Histogram equalisation}
3: [r c] ⇐ size(I) {Finding image dimensions}
{Finding the intensity over circumference}

4: for ri = rp × 1.5 to r
2 do

5: sumri ⇐ 0

6: for θ = 0 to 360 do

7: x = xc + ri × cos(θ)

8: y = yc + ri × sin(θ)

9: sumri = sumri + Hx,y

10: end for

11: ri = ri + 2

12: end for

{Change in intensity over circumference}
13: for i = 1 to ri do

14: Di = |sumi − sumi+1|
15: end for

16: [d ri] = max(D) {Maximum change in intensity}
17: return ri

This approach fails sometimes due to high texture pattern in the iris region. This method

deduces iris boundary much prior to actual boundary is reached as shown in Figure 2.6. To
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2.4 Iris Detection

alleviate this problem, we propose a novel iris detection scheme which is discussed below

in details.

(a) Original Image
(C/001/L/08)

(b) Wrongly detected Iris
boundary

Figure 2.6: Classic Intergrodifferential operator applied over median-filtered intensity
image fails to detect iris boundary

2.4.1 Proposed Iris Detection

To overcome the problem in Section 2.4, an alternative approach has been used to suppress

the iris textures before applying the classic operation. Canny edge detector when applied to

an iris image preserves strong edges corresponding to iris boundary but mostly suppresses

edges due to textures within iris. Hence the proposed approach uses circular summation

integrodifferential operator on canny detected edge image to find the iris boundary.

Starting from a radius just more than the pupil boundary, concentric circles are drawn

and number of edge pixels falling upon each circle is counted. The process goes until the

testing circle has a radius thrice of the radius of the pupil. The circle on which maximum

number of edge pixels are found is inferred to be the best fitted circle over iris boundary.

The details of the steps are given in Algorithm 2.4. The steps and output of the stated

algorithm are depicted in Figure 2.7.

To decrease the execution time of this algorithm, rlow and rhigh can be chosen more

intelligently depending on the knowledge of human eye anatomy. In the implementation,

rather than taking rlow to be (rp+δ), it can be taken as (1.5× rp), based on the fact that width

of iris is at least half of the pupil radius. The proposed pupil and iris segmentation method

applied together works well for human iris and efficiently segments region of interest for

further biometric processing.

24



2.4 Iris Detection

(a) Original image
(C/001/L/08)

(b) Canny detected
edgemap

(c) Applying circular
summation on (b)

(d) Circle with highest
number of white pixels

(e) Detected iris boundary

Figure 2.7: Modified intergrodifferential operator applied over canny edge detected image
detects iris boundary

Algorithm 2.4 Proposed Iris Detection
Input: I: Input image, rp: Radius of pupil, xc: xcenter of pupil, yc: ycenter of pupil

Output: ri: Radius of iris

1: BW ⇐ cannyEdge(I){Edge detection using Canny Detector}
2: rlow ⇐ rp + δ{Search of iris radius begins from a value just more than pupil center}
3: rhigh ⇐ 3 × rp {Search of iris radius ends at a value just more than pupil center}
{Finding number of edge (white) pixels over circumference}

4: for ri = rlow to 3 × rhigh do

5: countri ⇐ 0

6: for θ = 0 to 360 do

7: x = xc + ri × cos(θ)

8: y = yc + ri × sin(θ)

9: sumri = sumri + BWx, y {If BWx, y is 1 (white), then the value of sumri is
incremented}

10: end for

11: end for

{Finding maximum number of white pixels}
12: [d ri] = max(sum)

13: return ri
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2.5 Experimental Results

2.5 Experimental Results

The proposed algorithm is run on all images of BATH and CASIAV3 databases. From

experimental analysis it has been observed that the system is capable of handling

unconstrained scenarios as well. To mention a few, it possesses invariance to noisy instances

viz. occlusion, specular highlights, person wearing contact lens, change in illumination and

viewpoint (non-centered gaze). Performance accuracy of the detector is supported with the

help of few illustrations. The nomenclature of the images are defined as Database/Subject

ID/Eye/Image Instance (e.g. C/224/L/05).

Figure 2.8 (a) depicts the robustness against occlusion and specular highlights. It

is evident that the proposed scheme performs well for higher degree of occlusion

(C/010/R/04) where image is occluded by upper eyelid and the region of interest (iris)

is partially outside. Further, an example showing the subject wearing contact lens is shown

in Figure 2.8 (b). The segmentation takes place accurately despite unconstrained nature of

the instances.

Similarly, the system is proficient in performing against illumination variation. The

C/139/R/03 C/010/R/04

(a) Occlusion and specular highlights

C/147/R/04
(b) Subject wearing contact lens

Figure 2.8: Localization performance of the proposed approach for (a) occlusion and
specular highlights and (b) contact lens
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change in illumination leads to dilation and contraction of pupil. Static threshold may fail

to perform as intensity variation occurs due to illumination. Few such samples from BATH

and CASIAV3 databases are shown in Figure 2.9.

Table 2.2: Accuracy (in %) for the proposed approach and Hough transform

Databases→
BATH CASIAV3

Approach ↓
Hough 99.53 95.17
Proposed 99.07 95.76

The localization accuracy of the proposed system is compared against circular Hough

transform [12] as shown in Table 2.2. The proposed system performs with an accuracy

of 99.07% and 95.76% on BATH and CASIAV3 respectively (with an average accuracy

of 97.42%). Hough transform performs equally well (average accuracy of 97.35%) but

localization time for the proposed system is relatively low compared to conventional Hough

transform.

Few test cases where proposed approach outperforms Hough transformation are shown

in Figure 2.10. In order to determine computation efficiency, time taken to perform

B/0017/L/10 B/0018/L/20

(a) BATH

C/063/R/07 C/166/R/04

(b) CASIAV3

Figure 2.9: Localization performance of the proposed system for variation in illumination
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C/124/R/06

C/144/R/03

Figure 2.10: Sample instances where proposed approach (right) performs better than Hough
transform (left)

segmentation is computed.

Time required to perform localization by the proposed approach is significantly low

compared to Hough transform as given in Table 2.3. Average time taken by the proposed

approach is 0.37 seconds/image whereas Hough takes 7.68 seconds/image.

Table 2.3: Time taken (in seconds) for the proposed approach and Hough transform

Databases→
BATH CASIAV3

Approach ↓
Hough 02.2820 13.0676
Proposed 00.3383 00.3960

2.6 Summary

From the results it is evident that the system is capable of performing segmentation

for unconstrained scenarios in significantly less time. The results are compared against

benchmark localization approach (Hough transform). From the experiments it has been

observed that the proposed approach performs with an average accuracy of 97.42% in

comparison to Hough which performs with an average accuracy of 97.35%. Though there
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2.6 Summary

is minor improvement in accuracy, the time required to perform segmentation significantly

reduces to 0.37 seconds/image in comparison to 7.68 seconds/image for Hough transform.

This marks the suitability of the proposed approach over traditional high complexity Hough

transform for time constrained systems.
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Chapter 3

Postmatch Pruning of SIFT

Impairments

There has been significant research done in the area of iris recognition using global

features [5]. However, these approaches fail to possess invariance to change in scaling,

rotation, occlusion, illumination and viewpoint between database and query iris image.

The current research is mainly focussed on iris images taken under unconstrained

environment [32]. Thus, there is stringent requirement to develop iris recognition

system suitable for non-cooperative images. Keypoint descriptors are invariant to affine

transformation as well as partial occlusion. Matching two iris images using local features

is challenging when applied to iris. Each keypoint in gallery iris image is paired to

corresponding keypoint in probe iris image using nearest neighbor approach [33]. Matching

only using feature descriptor may wrongly pair keypoints that are not from same iris

region rather share similar descriptor information. Thus, matching algorithm should be

designed considering both spatial and descriptor properties of a keypoint. The challenge

with conventional SIFT matching when applied to iris recognition is to eliminate noisy

pairs.

In this chapter an effort has been made to combine spatial and descriptor information

of keypoints for finding accurate pairs. The keypoints paired using SIFT are taken

into consideration to perform post filtering operation. Post filtering of keypoints is an

elimination process where wrong pairs are selected and removed hierarchically. In the
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first stage, the gradient information of keypoints is obtained with respect to iris center. The

pairs that fall outside the angular tolerance are selected and removed. From the candidate

pairs obtained after gradient filtering, scale based filtering is performed by finding the ratio

of local keypoint scaling with respect to center to global scaling factor. The pairs that

lie outside the scale range are further eliminated to finally obtain potential pairs. This

pruning approach has been particularly applied to iris and it is experimentally observed that

it improves the performance of unconstrained iris recognition system using local features.

This rest of the section is organized as follows. The existing review for iris recognition is

given in Section 3.1. Section 3.2 explains feature extraction and matching using traditional

SIFT approach. The proposed approach for angular and scale filtering is presented in

Section 3.3. Experimental results for the proposed approach and its comparison with SIFT

is presented in Section 3.4. Finally, conclusions are given at the end of the chapter.

3.1 Related Works

Daugman has developed an operational iris biometric system and is successful in finding

its deployment for entry into United Arab Emirates (UAE) [14, 34]. The authors in [5]

have presented a survey over various iris recognition systems reported in literature. In [35]

Gaussian filter is used for texture representation. The gradient vector field of an iris image is

convolved with a Gaussian filter, yielding a local orientation at each pixel from normalised

iris image. Dyadic wavelet transform of a sequence of 1-D intensity signals around the

inner part of the iris has been used in [31] to create a binary iris code. The system achieves

0.07% of EER. In [36] modified Log-Gabor filters are used because Log-Gabor filters are

strictly band pass filters but Gabor filters are not. Discrete Cosine Transform (DCT) is

used for feature extraction in [37]. DCT is applied to rectangular patches rotated at 45

degrees from radial axis. The dimensionality of feature set is reduced by keeping three

most discriminating binarized DCT coefficients. The authors in [38] have done texture

analysis by computing the analytic image. The analytic image is the sum of the original

image signal and Hilbert transform of the original signal. The approaches mentioned in

the literature performs well when the data is cooperative with centered gaze. Further, it is

important to transform iris into polar plain for performing recognition. The transformation
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of iris from Cartesian to polar coordinates creates aliasing effect [13].

There has been some advancement done for iris recognition using non-cooperative

images. The keypoint descriptors are capable of performing recognition under change

in transformation, occlusion and illumination. These features are detected directly

from annular iris image without any transformation from Cartesian to polar plane.

Scale Invariant Feature Transform (SIFT) is a well known keypoint descriptor for

object recognition [33]. Due to inherent advantages, SIFT is capable of performing

recognition using non-cooperative iris images [39]. Iris features are extracted without polar

transformation and feature point descriptors are transformation, illumination and occlusion

invariant. The authors have performed matching for each major region: left, right, and

bottom independently. Prompted by the performance of SIFT, authors in [40] have applied

Speeded Up Robust Features (SURF) [41] on sectored iris image for recognition. From

experimental results it has been observed that SURF based local descriptor performs better

than its Harris and SIFT similitudes.

However, the major challenge is to find exact pairs between keypoints from gallery and

probe iris images. Lowe [33] has found the pairs by using nearest neighbour search. The

best pair for every keypoint in gallery image is found by identifying the nearest neighbor

from query image. Nearest neighbor is defined as keypoint with minimum Euclidean

distance for affine invariant descriptor vector. There may be features which may not have

good matches and should be discarded. A global threshold in such cases may fail as some

descriptors may be more discriminating than others [33].

A more effective approach adapted is to compare the distance of closest neighbor to

that of second closest neighbor. This yields more reliable matches compared to primitive

distance based approach. Matching approach demands to find distance between each

keypoint of query image to each keypoint of database image. So the nearest neighbor

matching approach bears O(pq) complexity where p and q denotes number of detected

keypoints in query and database images respectively. In order to improvise the speed

of SIFT matching, kd-trees are used [42]. A kd-tree is a binary tree in which every

node is a k-dimensional point that generates a hyperplane that divides spaces into two

subspaces. Points to the left are represented as left sub-tree and points to the right are
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3.2 Iris Feature Extraction using SIFT

represented by right sub-tree. This approach works well for low dimensional data but loses

its effectiveness as the dimensionality increases. To speed up search by finding approximate

nearest neighbor, multiple randomized trees are created as proposed in [43]. The authors

in [44] have improved kd-tree’s search performance by creating multiple trees from same

data and simultaneously searching among the trees. Further, principal component analysis

is used to improve kd-tree’s performance. However, existing matching approaches fail

to perform particularly for iris images. As iris is characterized by repeated occurrence of

pattern, so there is a likelihood of two keypoints from different regions of iris being wrongly

paired. This motivates the further research for improving matching performance of SIFT

when applied to iris.

3.2 Iris Feature Extraction using SIFT

Due to expansion and contraction of pupil as a natural phenomenon, the texture pattern

of iris undergo linear deformation. Thus, enhanced keypoint descriptor is required that

performs for variation in scale along with other transformations. In this chapter, a local

feature descriptor coined Scale Invariant Feature Transform (SIFT) [33] is used that

provides stable set of features while being less sensitive to local image distortions. For

robust feature extraction, the input iris image is localized for inner and outer boundary

using image morphology [45]. The annular region between the iris circles is considered

for feature extraction. The steps involved in feature extraction using SIFT are explained as

follows:

3.2.1 Scale Space Extrema Detection

The keypoints are detected from annular iris image using cascade filtering approach. This

is done to search stable features across all possible scales. To define the scale space, input

iris image (I) is convolved with Gaussian kernel G(x, y, σ) as defined by

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.1)
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3.2 Iris Feature Extraction using SIFT

where ∗ is the convolution operation and σ defines the width of Gaussian filter. The

Difference of Gaussian (DOG) images are computed from two nearby scales differentiated

by constant multiplicative factor k

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (3.2)

The scale space generation for i and i + 1 octave is shown in Figure 3.1.

-

-

-

-

-

-

-

-

Gaussian Difference of Gaussian

Octave i

Octave i+1

Downsample

Figure 3.1: Scale space for i and i+1 octave using annular iris image

3.2.2 Keypoint Localization

DOG images are used to detect interest points with the help of local maxima and minima

across different scales. Each pixel in DOG image is compared to 8 neighbors in the same

scale and 9 neighbors in the scale above and below. The pixel is selected as a candidate

keypoint if it is local maxima or minima in 3×3×3 region.
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3.2 Iris Feature Extraction using SIFT

Figure 3.2: SIFT detected keypoints with change in scale (left) and oriented descriptor
windows (right)

3.2.3 Orientation Assignment

Orientation is assigned to each keypoint location to achieve invariance to image rotations as

descriptor can be represented relative to orientation. To determine keypoint orientation, a

gradient orientation histogram is computed in the neighborhood of the keypoint. The scale

of keypoint is used to select Gaussian smoothed image L. For each Gaussian smoothed

image L(x, y), magnitude (m(x, y)) and orientation (θ(x, y)) are computed as

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2 (3.3)

θ(x, y) = tan−1
[
L(x, y + 1) − L(x, y − 1)
L(x + 1, y) − L(x − 1, y)

]
(3.4)

Orientation histogram is then formed for gradient orientation around each keypoint. The

histogram has 36 bins for 360 degree range of orientations and each sample is weighted by

gradient magnitude and Gaussian weighted circular window with σ of 1.5 times of scale of

keypoint before adding it to histogram. Peaks in the histogram correspond to orientation

and any other local peak within 80% of largest peak is used to create keypoint with the

computed orientation. This is done to increase stability during matching [33]. The detected

keypoints with change in scale and orientation is shown in Figure 3.2(left).
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3.2.4 Keypoint Descriptor Computation

Once orientation has been selected, the feature descriptor is computed as a set of orientation

histograms on 4×4 pixel neighborhoods. The orientation histograms are relative to the

keypoint orientation as shown in Figure 3.2(right). These histograms contain 8 bins each

and each descriptor contains an array of 16 histograms around the keypoint. This generates

SIFT feature descriptor of 4 × 4 × 8 = 128 elements. The descriptor vector is invariant to

rotation, scaling and illumination.

3.3 Proposed Postmatching Pruning Approach

Iris contains many regions that are of similar texture. The major drawback of conventional

SIFT matching is that it wrongly pairs keypoints from two different regions of iris just

checking local features (as depicted in Figure 3.3). Thus, there is a stringent requirement

to verify both spatial property (characterized by co-ordinates) and descriptor property

(characterized by texture information) of a keypoint when it is being paired with another

keypoint. This instigates the development of a new postmatching technique fusing the

geometric and descriptor properties for pairing keypoints from the annular iris image. The

pupil and iris circles are assumed to be concentric, hence all localized images have pixel

size 2r × 2r, where r is the radius of iris. The pupil center as well as iris center are located

at (r, r). Therefore the localized images do not have transformation due to translation.

However, there is a possibility of iris images being transformed due to rotation (tilt of

subject’s head), scaling (change in camera to eye distance) or both [39]. The SIFT matching

algorithm matches keypoints that have similarity between the local descriptors (as discussed

in Section 3.3.1) but fails to conform to spatial relationship. The removal (filtering) of

impairments by the proposed approach retains only those pairs that are more probable to be

potential.

3.3.1 Nearest Neighbor SIFT Keypoint Pairing

The matching algorithm plays a significant role in any biometric system. In local feature

matching, the total number of paired keypoints is used to find the authenticity of an
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3.3 Proposed Postmatching Pruning Approach

Figure 3.3: Sample impairments generated by SIFT matching

individual. Let I be the set of all images available in the iris database. For understanding,

Im be a gallery iris image and In be a probe iris image where Im, Inε I. Let Km be the set

of p keypoints found in Im and Kn be the set of q keypoints found in In by applying SIFT

detector. Let Dm and Dn denote the set containing keypoint descriptors for each keypoint in

Km and Kn respectively. In SIFT matching, for each element in Dm the Euclidean distance is

found with every element in Dn. The nearest neighbor approach pairs the ith element in Dm

with jth element in Dn, iff the descriptor distance between the two (after multiplying with

a threshold) is minimum [33]. The details of the algorithm is explained in Algorithm 3.1.

Let R be the ordered set containing the matches between Dm and Dn by SIFT matching.

Let η be the number of matches found where η ε [0,min(p, q)]. This approach performs

moderately well for unconstrained iris recognition [39]. However, as SIFT determines

image similarity using only local features, it may wrongly pair (impair) some keypoints

for iris. Thus, existing approach is modified which removes impaired matches for better

recognition accuracy.

3.3.2 Proposed Filtering of Keypoints

Information of the spatial locations of keypoints is used for pruning wrong pairs from

SIFT. The proposed pruning algorithm takes the keypoint pairs from SIFT as input, and

removes the impairments, therefore leaving behind a potential subset of SIFT pairs as

output. The proposed approach performs filtering in two different ways. In the first method,

the impairments of SIFT pairs are detected using angular filtering criteria. In the second

method, the impairments of SIFT pair are detected by scale filtering approach. These two
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Algorithm 3.1 SIFT Matching
Input: Dm: Keypoint descriptors for Im, Dn: Keypoint descriptors for In
Output: R: Keypoint pairs from SIFT

1: ω← Threshold for pairing
2: while i ≤ |Dm| and |Dn| � 0 do
3: for j := 1 to |Dn| do

4: E j ←
√

(Dmi − Dnj )2

5: end for
6: [min value index]← minimum(E)
7: Eindex ← min value × ω
8: [min value new index]← minimum(E)
9: if index = new index then

10: Ri ← (i, index)
11: Dm ← Dm − Dmi

12: Dn ← Dn − Dnindex

13: end if
14: end while
15: return R

approaches are also tested to be applied in sequence to remove impairments from SIFT

pairs. As seen experimentally, the combination of angular and scale filtering generates

better result than the filtering processes applied singularly.

Proposed Angular Filtering

In this stage gradient based filtering is performed to remove impairments from R (set

containing SIFT pairs). This is done to include spatial property of keypoints for finding

the accurate matches. To compute gradient for each pair of keypoints (i, j) in R, the angles

are obtained from respective image centers (r, r). Thus, θi is computed from Im and φ j is

computed from In. The angle of rotation for kth pair is calculated as γk = (φ j− θi) mod 360°

(depicted in Figure 3.4(a)). Considering SIFT to be completely flawless (due to robustness

property, no false match is found) and efficient (due to property of repeatability, all possible

matches are found) [33]; the value of γk derived should be same ∀k. But in practice, SIFT

does not give such precise matches. Thus, it is difficult to obtain unique value of γ even

when Im and In belong to the same subject. Rather a distribution of γ is obtained.

A histogram is plotted with horizontal axis comprising bins with a range of values of

γ, and vertical axis comprising number of matches falling in a particular bin as shown in
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3.3 Proposed Postmatching Pruning Approach

(a) γ = (φ j − θi) mod 360°

(b) ψ = d2
d1

Figure 3.4: (a) Gradient(γ) computation in Section 3.3.2, (b) Local scaling factor(ψ)
computation in Section 3.3.2
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Figure 3.5: Distribution of γ for number of matches between two instances of the same
subject (taken from CASIAV3)

Figure 3.5. The number of bins in the histogram (Nbins) is subject to implementation issue.

In the proposed system, Nbins is taken as 10. The distribution of γ gives a single peak in
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case the two iris images (Im and In) are from the same subject. In contrast, no distinct peak

should be found in case the two iris images are from different subjects.

In the above mentioned histogram peak detection process, there may be problem due

to discretization of bins. To avoid that, two adjacent bins of the peak are combined to

improve peak density (number of matches). The idea is to find whether the density of

the peak exceeds the boundary criteria. It is inferred that a peak is strong if the density

exceeds certain higher bound (hp% of total number of matches). Likewise peak is weak if

the density is less than a lower bound (lp% of total number of matches). If a strong peak

is found, an angular range is specified around the peak. Those matches in R for which γ

are not within the angular range are declared to be impaired and pruned from R to generate

Rangular. For example, as observed in histogram in Figure 3.5, the peak is found at 0th bin

which represents gradient value of 0° to 36° with a central value of 18°. Hence only those

pairs having angular range between (18 ± 90) mod 360° are retained as accurate matches.

Rest of the pairs in R are prunned. Thus, it is evident that Rangular ⊆ R after removing

some impairments (as proposed in Algorithm 3.2). Figure 3.6(b) shows paired keypoints in

Rangular with considerable reduction of η from Figure 3.6(a). If no strong peak is found in

the histogram of γ, then all matches in R and inferred to be removed. As a result Rangular

becomes empty in that case.

Proposed Scale Filtering

In this stage further filtering of set of SIFT paris (R) is performed on the basis of global and

local scaling factor between the gallery and probe images. The global scaling factor (s f )

between two images is defined as ratio of probe iris radius (rn) to gallery iris radius (rm). A

scale range with certain tolerance around s f is empirically taken to handle aliasing artifact.

From implementation perspective, the scale range is taken as (s f ± 0.2).

During filtering, for each element in R, two Euclidean distances are calculated as,

(a) d1: distance of ith keypoint of Im from its center and (b) d2: distance of jth keypoint of

In from its center. Local scaling factor (ψ) for each element of R is calculated as ψ = d2/d1

(as shown in Figure 3.4(b)). Matches having ψ within scale range (s f ± 0.2) qualifies

to be potential and stored in Rscale, else are labeled as faulty and pruned as described in
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Algorithm 3.2 Angular Filtering
Input: R: Keypoint pairs from SIFT
Output: Rangular: Keypoints paired after angular filtering

1: Nbins ← Number of bins
2: hp← High percentage threshold
3: lp← Low percentage threshold
4: Grange ← Gradient acceptance range
5: for k := 1 to |R| do
6: θi = Gradient(i, Im) {ith keypoint of iris Im}
7: θ j = Gradient( j, In) { jth keypoint of iris In} {Algorithm 3.3}
8: γk ← (θ j − θi)
9: bin← � γk

(360/Nbins)
�

10: hist[bin]← hist[bin] + 1 {Histogram creation}
11: end for
12: [countmax binmax]← max(hist)
13: peakmerge ← hist[binmax] + hist[(binmax ± 1) mod Nbins]
14: if (peakmerge > |R| × hp) then
15: F ← {R : γ � (binmax ±Grange) mod 360}
16: Rinter ← R − F
17: else
18: if (peakmerge < |R| × lp) then
19: Rangular ≡ φ
20: end if
21: end if
22: return Rangular

Algorithm 3.3 Find Gradient
Input: k: keypoint index, I: iris image
Output: θ: Gradient of kth keypoint

1: [xc yc]← center of I
2: [xk yk]← coordinates of k
3: yd ← (yk − yc)
4: xd ← (xk − xc)
5: θ ← tan−1

(
yd

xd

)
6: return θ

Algorithm 3.4. Figure 3.6(c) shows paired keypoints in Rscale after reduction of η from

Figure 3.6(a).

Combining Angular and Scale Filtering

The above mentioned pruning schemes can be applied in sequence. Angular filtering

approach is first applied to set of SIFt pairs R. Let the resulting set of pairs after pruning
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(a) Applyig SIFT matching: η = 98

(b) Applying Angular filtering: η = 65

(c) Applying Scale filtering: η = 78

(d) Applying Angular and Scale filtering: η = 54

Figure 3.6: Matches (η) obtained by proposed pruning schemes (for two instances of same
individual taken from CASIAV3)
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Algorithm 3.4 Scale Filtering
Input: R: Keypoint pairs from SIFT
Output: Rscale: Keypoints paired after scale filtering

1: rm ← iris radius of Im
2: rn ← iris radius of In
3: S range ← Scale acceptance range
4: s f = rn

rm

5: for k := 1 to |Rinter | do
6: di = Distance(i, Im) {ith keypoint of iris Im}
7: dj = Distance( j, In) { jth keypoint of iris In} {Algorithm 3.5}
8: ψk ← dj/di

9: end for
10: F ← {R : ψ � (s f × (1 ± S range))}
11: Rscale ← R − F
12: return Rscale

Algorithm 3.5 Find Distance
Input: k: keypoint index, I: iris image
Output: d: Distance of kth keypoint from iris center

1: [xc yc]← center of I
2: [xk yk]← coordinates of k
3: d ← √(xk − xc)2 + (yk − yc)2

4: return d

be Rinter. This set is fetched as input to the scale filtering approach. Scale filtering approach

would further prune some pairs from Rinter and finally would generate Rf inal, say. It is

evident that Rf inal ⊆ Rinter ⊆ R. Figure 3.6(d) shows paired keypoints in Rscale after reduction

of η from Figure 3.6(a). The obtained output Rf inal is experimentally claimed to give a better

imposter-genuine score separation than conventional SIFT pair R gives.

3.4 Experimental Results

The experiments regarding SIFT keypoint matching are tested on 100 localised images of

CASIAV3 database that generates
(
100
2

)
= 4,950 test cases. Same experiments are repeated

for 80 localised images from BATH database that generates
(
80
2

)
= 3,160 test cases. The

experiments are carried out in four sequential phases. In the first phase the performance of

iris matching is tested when matching is done using conventional SIFT approach. The

results obtained are described in Section 3.4.1. In the next phase of experiment, the
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SIFT matching is followed by filtering of pairs on the knowledge of angular information

of keypoints as described in Section 3.3.2. The results achieved in this phase of the

experiment is traced in Section 3.4.2. Results shown in the Section 3.4.3 explains the

outcome of the third phase of the experiment, where the accuracy of matching is measured

by applying SIFT matching followed by scale filtering of pairs (as previously explained

in Section 3.3.2). Finally in the last phase of the experiment, the recognition accuracy is

measured by applying SIFT followed by applying both angular and scale filtering of pairs.

The results of this phase are discussed in Section 3.4.4.

3.4.1 Experiment I: Applying conventional SIFT

The gallery and probe iris images are matched using conventional SIFT matching approach

following the notion of matching nearest neighbors. Here the images that have high texture

similarity are likely to be wrongly paired thus increasing error rates of the system. The

iris recognition system performs with an accuracy of 85.81% on CASIAV3 database. The

d′ measure of 1.20 is obtained for CASIAV3 database. Likewise, for BATH database an

accuracy of 97.04% with FAR of 1.57% is obtained. As Table 3.4.4 depicts, SIFT works

well for cooperative iris images of BATH database (with 97.1% rank-1 accuracy); but the

performance degrades for occluded iris images of CASIAV3 database (with 67.5% rank-1

accuracy only).

3.4.2 Experiment II: Applying Angular filtering

To improve the performance of the system, the objective of the proposed research is to

reduce false acceptances. In second level of experiments, the impairments are removed

using angular filtering which significantly reduces FAR to 2.92% and 0.92% for CASIAV3

and BATH respectively. The d′ measure improves to 2.44 for CASIAV3 database. This

improves accuracy but leaves behind the scope for further improvement of FAR.
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3.4.3 Experiment III: Applying Scale filtering

Due to scale filtering, FAR reduces reasonably to 5.45% and 0.59% for CASIAV3 and

BATH respectively. The accuracy improvement is significant with slight increase in

matching time. The accuracy values are plotted against change in number of matches as

shown in Figure 3.7(a) and Figure 3.8(a) for CASIAV3 and BATH databases respectively.

The confidence of rank-1 recognition is 91.00% and 97.10% for CASIAV3 and BATH

databases respectively.

3.4.4 Experiment IV: Applying combined Angular and Scale filtering

The above two types of filtering are applied together for removing the impairments falling

to either of the category. The Receiver Operating Characteristic (ROC) curves [46] for these

four different stages for CASIAV3 and BATH are shown in Figure 3.7(b) and Figure 3.8(b)

respectively. The distribution of genuine and imposter scores for SIFT, angular filtering,

scale filtering and the result of combined angular and scale filtering on CASIAV3 database

are shown in Figure 3.9(a), Figure 3.9(b), Figure 3.9(c) and Figure 3.9(d) respectively.

Similar results are observed for BATH database as shown in Figure 3.10(a), Figure 3.10(b),

Figure 3.10(c) and Figure 3.10(d).The proposed scheme make the system rank-3 bounded

even for occluded iris images of CASIAV3 database as it can be observed from Table 3.4.4,

which marks high improvement with respect to conventional SIFT.

Table 3.1: Performance comparison of SIFT matching and proposed post matching

Databases→ CASIAV3 BATH
Approach ↓ FAR FRR ACC d′ FAR FRR ACC d′

SIFT 17.48 10.91 85.81 1.20 1.57 4.35 97.04 2.73
Angular filtering 02.49 05.45 96.03 2.46 0.97 6.09 96.47 2.81
Scale filtering 06.10 09.10 92.41 1.44 1.01 4.35 97.32 2.88
Angular + Scale filtering 02.39 05.45 96.08 2.20 1.34 4.35 97.15 2.90
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Table 3.2: Rank-k identification rate for SIFT matching approach and proposed postmatch
pruning approaches

CASIAV3 BATH
Rank ↓ SIFT Angular Scale Angular

+ Scale
SIFT Angular Scale Angular

+ Scale
1 0.675 0.833 0.910 0.912 0.912 1.000 0.971 0.971
2 0.737 0.923 0.961 0.941 0.941 1.000 0.971 1.000
3 0.800 0.948 0.961 1.000 1.000 1.000 1.000 1.000
4 0.812 0.948 0.987 1.000 1.000 1.000 1.000 1.000
5 0.837 0.948 1.000 1.000 1.000 1.000 1.000 1.000
10 0.887 0.948 1.000 1.000 1.000 1.000 1.000 1.000
20 0.912 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000
77 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.5 Summary

In this chapter, a novel postmatch impairment pruning technique is proposed that

improvises performance of conventional SIFT for iris recognition by removing wrong pairs.

The above explained four step experimental results justify the claim of the chapter that

the proposed postfiltering of SIFT pairs effectively filters out impairments on the basis

of their spatial information. As a result the pairs left after filtering are more potential

to separate between genuine and imposter matching scores. Lastly, the approach in this

chapter partially prunes faulty matches, there can be some other technique devised in future

to remove those faulty matches that are not being pruned by this approach. So it can be

said that the proposed algorithm is completely flawless, i.e., matches which are removed

are guaranteed to be wrong matches; whereas the algorithm is not completely efficient, i.e.,

all impairments by SIFT are not guaranteed to be filtered. However, the gain in accuracy

is substantial which marks applicability of pruning of SIFT impairments for unconstrained

iris recognition.
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Figure 3.7: Graphical plots for CASIAV3 database at different stages
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Figure 3.8: Graphical plots for BATH database at different stages
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Figure 3.9: Distribution for genuine and imposter scores for CASIAV3 database
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Figure 3.10: Distribution for genuine and imposter scores for BATH database
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Chapter 4

Conclusions and Future Work

The thesis approaches towards developing robust localization scheme for unconstrained iris

recognition. The proposed localization approach is experimented against two publically

available databases. It is working fast for non-cooperative images of CASIAV3 database.

The proposed approach efficiently detects annular region containing iris. But the proposed

approach does not take into consideration the detection and removal of eyelid and eyelashes.

The approach describes lower and upper iris boundaries by two concentric circles. However

in case of non-centred gaze of the subject, the shape of iris is better described by an ellipse.

Also the pupil centre and iris centre are non-overlapping in such cases. The proposed

approach can further be extended by fitting ellipses rather than circles to describe iris

boundaries and by removing the eyelids to obtain a more precise region of interest.

The second proposed approach in this thesis deals with pruning SIFT impairments. The

pairs removed by the algorithm are guaranteed to be wrong pairs. However all wrong

pairs by SIFT are not pruned by the algorithm due to certain impairment tolerance factors

implicitly used in the algorithm. Some tolerable wrong matches may exist even after

running the algorithm. The proposed algorithm increases the separability between imposter

and genuine scores by SIFT with the trade-off of extra computation time of wrong matches.

Another remarkable fact is that the proposed pruning approach can also work with other

local feature techniques like SURF.

The proposed localization approach and impairment pruning approach are thoroughly

tested on iris images available from BATH and CASIAV3 databases. The approaches have

51



Conclusions and Future Work

yet not been tested against small and poor quality images of UBIRIS version 1.

To conclude with this thesis, the proposed approaches have been critically analysed

and few limitations have been observed as discussed above. Exploring and refining these

limitations further research in the proposed area.
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