13 research outputs found

    A novel five-level optimized carrier multilevel PWM quad-inverter six-phase AC drive

    Get PDF
    A novel single carrier pulse-width modulation (PWM) for a new quad-inverter configuration for multilevel six-phase asymmetrical open-winding ac converter is proposed in this article. Modularity of the circuit consist of four standard two-level voltage source inverters (VSI) with slight modifications, i.e. one additional bi-direction switch (MOSFET/IGBT) in each phase and a link to neutral with two capacitors to generate increased output levels. Furthermore, original optimal single carrier zero-shifted five-level modulation (SCZSFM) algorithm is developed for each VSI to behave as equivalent to ones, a classical five-level multilevel inverter. Moreover, feasibility of the topology allows the VSIs to provide multilevel output voltage regardless of the open-winding electrical machine configuration. Also, the developed single carrier based PWM presents a straightforward solution compared to space vector modulation approaches for real time implementation. The total electric power shared among the four dc buses and quadruples the power capability of VSIs. Complete ac drive modules are developed numerically using simulation in MATLAB/PLECS software. Observed set of results are depicted in this paper under balanced conditions to show the effectiveness of the proposal in good agreement with theoretical background. This proposal suits the need of low-voltage/high-current applications to ac tractions, electrical vehicles and ‘More-Electric Aircraft’ propulsion systems

    Power Sharing Algorithm for Vector Controlled Six-Phase AC Motor with Four Customary Three-Phase Voltage Source Inverter Drive

    Get PDF
    This paper considered a six-phase (asymmetrical) induction motor, kept 30\ub0 phase displacement between two set of three-phase open-end stator windings configuration. The drive system consists of four classical three-phase voltage inverters (VSIs) and all four dc sources are deliberately kept isolated. Therefore, zero-sequence/homopolar current components cannot flow. The original and effective power sharing algorithm is proposed in this paper with three variables (degree of freedom) based on synchronous field oriented control (FOC). A standard three-level space vector pulse width modulation (SVPWM) by nearest three vectors (NTVs) approach is adopted to regulate each couple of VSIs. The proposed power sharing algorithm is verified by complete numerical simulation modeling (Matlab/Simulink-PLECS software) of whole ac drive system by observing the dynamic behaviors in different designed condition. Set of results are provided in this paper, which confirms a good agreement with theoretical development

    A Space Vector PWM With Common-Mode Voltage Elimination for Open-End Winding Five-Phase Drives With a Single DC Supply

    Get PDF
    Open-end winding three-phase drive topologies have been extensively investigated in the last two decades. In the majority of cases supply of the inverters at the two sides of the winding is provided from isolated dc sources. Recently, studies related to multiphase open-end winding drives have also been conducted, using isolated dc sources at the two winding sides. This paper investigates for the first time a five-phase open-end winding configuration, which is obtained by connecting a two-level five-phase inverter at each side of the stator winding, with both inverters supplied from a common dc source. In such a configuration it is essential to eliminate the common-mode voltage (CMV) that is inevitably created by usual PWM techniques. Based on the vector space decomposition (VSD), the switching states that create zero CMV are indentified and plotted. A space vector pattern with large redundancy of switching states is obtained. Suitable space vectors are then selected to realize the required voltage reference at the machine terminals with zero CMV. The large number of redundant states enables some freedom in the choice of switching states to impress these space vectors. Out of numerous possibilities, two particular switching sequences are chosen for further investigation. Both are implemented in an experimental setup, and the results are presented and discussed. © 2013 IEEE

    Asenkron motorlar için ayarlanabilir gerilim uygulamalı V/f tabanlı hız denetiminde farklı PWM tekniklerinin performans analizi

    Get PDF
    This paper presents a comparative study and a method to improve Volt-Hertz (V/f) based speed control of Induction Motors (IMs). For this purpose, Sinusoidal Pulse Width Modulation (SPWM) and space vector pulse width modulation (SVPWM) techniques are investigated and evaluated, especially from the point of their control performance on the V/f-based control for three-phase IMs working at different load and speed conditions. From this aspect, it is a different study from the literature. Steady and transient effects of both techniques on the above mentioned control methods are analyzed for several case studies. Afterwards, adjustable boost voltage application with modified reference commands technique is proposed for both PWM methods in order to improve start-up performance. All investigations for both PWM models are carried out under the same conditions. Although SVPWM technique gives more effective results in many cases, the proposed method provides noticeable improvements on SPWM-based applications from point of performance on the control method. As a novelty of this study, it is shown that, the bad performance of the control method at low frequency in SPWM application, which has lower computational burden for low cost microcontroller, can be improved by applying adjustable boost voltage along with modified references that are proportional to the DC bus current

    Decoupled PWM Control of a Dual-Inverter Four-Level Five-Phase Drive

    Get PDF
    This paper studies pulse-width modulation (PWM) techniques suitable for a four-level five-phase open-end winding (OeW) drive. The drive comprises a five-phase induction machine, supplied using two two-level voltage source inverters (VSIs) with isolated and unequal dc-link voltages, in the ratio 2:1. A decoupled carrier based (CB) PWM modulation strategy, based on unequal voltage reference sharing between the two converters, is introduced in this paper. The stability of dc-link voltages in OeW drives is investigated next, using a novel analysis technique. Several modulation methods are analysed and the results show that application of the coupled pulse width modulation technique, with carriers having in-phase disposition (PD), leads to overcharging of the capacitor in the dc-link of the inverter intended to operate with the lower dc-link voltage. On the other hand, the proposed decoupled CB PWM scheme naturally eliminates the dc-link capacitor overcharging problem. These findings are verified experimentally, using open-loop V/f control. Two different decoupled CB modulation methods are compared and the best performing modulation method is selected and incorporated further into an OeW drive with field-oriented control (FOC). The presented steady state and transient experimental results demonstrate that the decoupled CB PWM technique is suitable for high performance variable speed drive applications

    Methods, Techniques, and Algorithms of Synchronous Multi-Zone Modulation of Signals of Voltage Source Inverters (literature review)

    Get PDF
    This publication provides a brief overview of the results of research work in the field of developing alternative methods, schemes, and algorithms of synchronous multi-zone modulation of signals of inverters of power con-version systems with reduced switching frequency of power switches. In particular, in the mentioned researches, the basic strategies, schemes, and algorithms of synchronous multi-zone modulation have been further devel-oped, modernized, modified, and disseminated in relation to new promising topologies of power conversion sys-tems, including: two-inverter-based electric drives with open windings of electrical motor; drive systems based on electric motor with two stator windings; dual three-phase electric drives of symmetrical and asymmetric type; five-phase power conversion systems, powerful six-phase systems based on four inverters, and two-inverter-based and three-inverter-based photovoltaic installations with multi-winding transformer. It is shown that the developed schemes and algorithms of synchronous space-vector modulation applied for control of inverter-based systems provide continuous synchronization and symmetry of the basic voltage waveforms of systems during the whole control range. It provides minimization of even harmonics and undesirable subharmonics (of the fundamental frequency) in spectra of the basic voltages of systems, leading to reducing of losses in systems and to increasing of its efficiency. Based on a comparative analysis of the integral spectral characteristics of the phase and line voltages of the systems, recommendations are formulated for the rational choice of schemes and algorithms of synchronous modulation for the relevant installations, depending on the modes of their operation

    Improved space vector modulation with reduced switching vectors for multi-phase matrix converter

    Get PDF
    Multi-phase converter inherits numerous advantages, namely superior fault tolerance, lower per-leg power rating and higher degree of freedom in control. With these advantages, this thesis proposes an improved space vector modulation (SVM) technique to enhance the ac-to-ac power conversion capability of the multi-phase matrix converter. The work is set to achieve two objectives. First is to improve the SVM of a three-to-seven phase single end matrix converter by reducing number of space vector combinations. Second is to use the active vector of the SVM to eliminate the common-mode voltage due to the heterogeneous switching combination of a dual three-to-five phase matrix converter. In the first part, the proposed technique utilizes only 129 out of 2,187 possible active space vectors. With the reduction, the SVM switching sequence is greatly simplified and the execution time is shortened. Despite this, no significant degradation in the output and the input waveform quality is observed from the MATLAB/Simulink simulation and the hardware prototype. The results show that the output voltage can reach up to 76.93% of the input voltage, which is the maximum physical limit of a three-to-seven phase matrix converter. In addition, the total harmonics distortion (THD) for the output voltage is measured to be below 5% over the operating frequency range of 0.1 Hz to 300 Hz. For the second part, the common-mode voltage elimination is based on the cancellation of the resultant vectors (that causes the common-mode to be formed), using a specially derived active vectors of the dual matrix converter. The elimination strategy is coupled with the ability to control the input power factor to unity. The proposed concept is verified by the MATLAB/Simulink simulation and is validated using a 5 kW three-to-five phase matrix converter prototype. The SVM switching algorithm itself is implemented on a dSPACE-1006 digital signal processor platform. The results prove that the common-mode voltage is successfully eliminated from the five-phase induction motor winding. Furthermore, the output phase voltage is boosted up to 150% of the input voltage in linear modulation range

    An Open-End Winding Four-Level Five-Phase Drive

    Get PDF
    A four-level five-phase open-end winding (OeW) drive topology is introduced in this paper. The drive comprises a five-phase induction machine with open-end stator windings, supplied using two two-level voltage-source inverters with isolated and unequal dc-link voltages, in the ratio 2 : 1. The topology offers the advantages of a modular structure with fewer semiconductor components and has a greater potential for fault tolerance, as compared with an equivalent single-sided four-level drive. Due to the large number of switching states, development of a suitable space vector pulsewidth-modulation (PWM) method can be challenging. Hence, this paper examines the implementation of two-level-shifted carrier-based PWM methods. The effect of dead time on the drive performance is discussed, and it is shown that simultaneous PWM switching of both inverters can lead to degraded output phase voltage waveforms. Detailed analysis of this phenomenon is presented, a solution is proposed, and the modified modulation techniques are incorporated in an experimental setup, at first in conjunction with V/f control. Once the proof of concept has been provided, full field-oriented control is implemented in this OeW drive topology for the first time; detailed experimental testing is conducted, and results are reported

    Advances in Converter Control and Innovative Exploitation of Additional Degrees of Freedom for Multiphase Machines

    Get PDF
    Multiphase variable-speed drives and generation systems (systems with more than three phases) have become one of the mainstream research areas during the last decade. The main driving forces are the specific applications, predominantly related to the green agenda, such as electric and hybrid electric vehicles, locomotive traction, ship propulsion, ‘more-electric’ aircraft, remote offshore wind farms for electric energy generation, and general high-power industrial applications. As a result, produced body of significant work is substantial, making it impossible to review all the major developments in a single paper. This paper therefore surveys the recent progress in two specific areas associated with multiphase systems, namely power electronic supply control and innovative ways of using the additional degrees of freedom in multiphase machines for various non-traditional purposes

    Space Vector Pwm Techniques for Six_Phase Three-Level Inverter-Fed Drives

    Get PDF
    In recent years, research in the area of multiphase drives has increased significantly. Having higher number of machine phases allows the current to be shared between the phases, thus reducing the current rating of power semiconductors used in the power converter. Additionally, if a multilevel inverter is used to drive the machine, the output voltage waveforms are going to be approximated closer toward sinusoidal waveforms, thus resulting in lower total harmonic distortion. Therefore, the combination of multiphase and multilevel technologies gives considerable benefits compared to conventional two-level three-phase drives. Unlike a carrier-based approach, which can be easily expanded to any number of converter voltage levels and any number of machine phases, the development of space vector algorithms is also reliant on the machine’s configuration. In other words, different drive topologies require their own unique space vector algorithms. In fact, the complexity of developing a space vector algorithm will dramatically increase with the increase of number of levels and/or number of phases. This thesis presents pulse width modulation techniques for two- and three-level asymmetrical and symmetrical six-phase drives with a single or two isolated neutral points configuration. However, since the modulation techniques for the drives with two isolated neutral points are based on the well-established modulation techniques for three-phase drives, more emphasis is given towards the development of modulation techniques for single neutral point case, particularly those that are based on space vector algorithm principles. In order to realise sinusoidal output phase voltage waveforms, several requirements and conditions have to be met. The requirements revolve around ensuring that the low order harmonics, which contribute to the machine losses, will not exist. Meanwhile, the conditions are more towards minimising the switching losses. All modulation techniques are verified through simulation, while those for three-level case are validated experimentally as well. Comparison and discussion of obtained simulation and experimental results, performance and complexity in terms of execution time of the developed modulation techniques, are presented. The equivalence between corresponding modulation techniques, which are based on the space vector algorithm and carrier-based approach are also established
    corecore