1,683 research outputs found

    Multi-modal video analysis for early fire detection

    Get PDF
    In dit proefschrift worden verschillende aspecten van een intelligent videogebaseerd branddetectiesysteem onderzocht. In een eerste luik ligt de nadruk op de multimodale verwerking van visuele, infrarood en time-of-flight videobeelden, die de louter visuele detectie verbetert. Om de verwerkingskost zo minimaal mogelijk te houden, met het oog op real-time detectie, is er voor elk van het type sensoren een set ’low-cost’ brandkarakteristieken geselecteerd die vuur en vlammen uniek beschrijven. Door het samenvoegen van de verschillende typen informatie kunnen het aantal gemiste detecties en valse alarmen worden gereduceerd, wat resulteert in een significante verbetering van videogebaseerde branddetectie. Om de multimodale detectieresultaten te kunnen combineren, dienen de multimodale beelden wel geregistreerd (~gealigneerd) te zijn. Het tweede luik van dit proefschrift focust zich hoofdzakelijk op dit samenvoegen van multimodale data en behandelt een nieuwe silhouet gebaseerde registratiemethode. In het derde en tevens laatste luik van dit proefschrift worden methodes voorgesteld om videogebaseerde brandanalyse, en in een latere fase ook brandmodellering, uit te voeren. Elk van de voorgestelde technieken voor multimodale detectie en multi-view lokalisatie zijn uitvoerig getest in de praktijk. Zo werden onder andere succesvolle testen uitgevoerd voor de vroegtijdige detectie van wagenbranden in ondergrondse parkeergarages

    Método para el registro automático de imágenes basado en transformaciones proyectivas planas dependientes de las distancias y orientado a imágenes sin características comunes

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 18-12-2015Multisensory data fusion oriented to image-based application improves the accuracy, quality and availability of the data, and consequently, the performance of robotic systems, by means of combining the information of a scene acquired from multiple and different sources into a unified representation of the 3D world scene, which is more enlightening and enriching for the subsequent image processing, improving either the reliability by using the redundant information, or the capability by taking advantage of complementary information. Image registration is one of the most relevant steps in image fusion techniques. This procedure aims the geometrical alignment of two or more images. Normally, this process relies on feature-matching techniques, which is a drawback for combining sensors that are not able to deliver common features. For instance, in the combination of ToF and RGB cameras, the robust feature-matching is not reliable. Typically, the fusion of these two sensors has been addressed from the computation of the cameras calibration parameters for coordinate transformation between them. As a result, a low resolution colour depth map is provided. For improving the resolution of these maps and reducing the loss of colour information, extrapolation techniques are adopted. A crucial issue for computing high quality and accurate dense maps is the presence of noise in the depth measurement from the ToF camera, which is normally reduced by means of sensor calibration and filtering techniques. However, the filtering methods, implemented for the data extrapolation and denoising, usually over-smooth the data, reducing consequently the accuracy of the registration procedure...La fusión multisensorial orientada a aplicaciones de procesamiento de imágenes, conocida como fusión de imágenes, es una técnica que permite mejorar la exactitud, la calidad y la disponibilidad de datos de un entorno tridimensional, que a su vez permite mejorar el rendimiento y la operatividad de sistemas robóticos. Dicha fusión, se consigue mediante la combinación de la información adquirida por múltiples y diversas fuentes de captura de datos, la cual se agrupa del tal forma que se obtiene una mejor representación del entorno 3D, que es mucho más ilustrativa y enriquecedora para la implementación de métodos de procesamiento de imágenes. Con ello se consigue una mejora en la fiabilidad y capacidad del sistema, empleando la información redundante que ha sido adquirida por múltiples sensores. El registro de imágenes es uno de los procedimientos más importantes que componen la fusión de imágenes. El objetivo principal del registro de imágenes es la consecución de la alineación geométrica entre dos o más imágenes. Normalmente, este proceso depende de técnicas de búsqueda de patrones comunes entre imágenes, lo cual puede ser un inconveniente cuando se combinan sensores que no proporcionan datos con características similares. Un ejemplo de ello, es la fusión de cámaras de color de alta resolución (RGB) con cámaras de Tiempo de Vuelo de baja resolución (Time-of-Flight (ToF)), con las cuales no es posible conseguir una detección robusta de patrones comunes entre las imágenes capturadas por ambos sensores. Por lo general, la fusión entre estas cámaras se realiza mediante el cálculo de los parámetros de calibración de las mismas, que permiten realizar la trasformación homogénea entre ellas. Y como resultado de este xii Abstract procedimiento, se obtienen mapas de profundad y de color de baja resolución. Con el objetivo de mejorar la resolución de estos mapas y de evitar la pérdida de información de color, se utilizan diversas técnicas de extrapolación de datos. Un factor crucial a tomar en cuenta para la obtención de mapas de alta calidad y alta exactitud, es la presencia de ruido en las medidas de profundidad obtenidas por las cámaras ToF. Este problema, normalmente se reduce mediante la calibración de estos sensores y con técnicas de filtrado de datos. Sin embargo, las técnicas de filtrado utilizadas, tanto para la interpolación de datos, como para la reducción del ruido, suelen producir el sobre-alisamiento de los datos originales, lo cual reduce la exactitud del registro de imágenes...Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu

    Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction

    Get PDF
    Intra-operative imaging techniques for obtaining the shape and morphology of soft-tissue surfaces in vivo are a key enabling technology for advanced surgical systems. Different optical techniques for 3-D surface reconstruction in laparoscopy have been proposed, however, so far no quantitative and comparative validation has been performed. Furthermore, robustness of the methods to clinically important factors like smoke or bleeding has not yet been assessed. To address these issues, we have formed a joint international initiative with the aim of validating different state-of-the-art passive and active reconstruction methods in a comparative manner. In this comprehensive in vitro study, we investigated reconstruction accuracy using different organs with various shape and texture and also tested reconstruction robustness with respect to a number of factors like the pose of the endoscope as well as the amount of blood or smoke present in the scene. The study suggests complementary advantages of the different techniques with respect to accuracy, robustness, point density, hardware complexity and computation time. While reconstruction accuracy under ideal conditions was generally high, robustness is a remaining issue to be addressed. Future work should include sensor fusion and in vivo validation studies in a specific clinical context. To trigger further research in surface reconstruction, stereoscopic data of the study will be made publically available at www.open-CAS.com upon publication of the paper

    Large-Scale Light Field Capture and Reconstruction

    Get PDF
    This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. To overcome these three challenges, we propose: (i) a novel self-calibration method, which takes advantage of the geometric constraints from the scene and the cameras, for estimating the rigid transformations from the camera coordinate frame of one Kinect V2 to the camera coordinate frames of 12-nearest RGB cameras; (ii) a novel coarse-to-fine approach for recovering the rigid transformation from the coordinate system of one Kinect to the coordinate system of the other by means of local color and geometry information; (iii) several novel algorithms that can be categorized into two groups for reconstructing a DSLF from an input SSLF, including novel view synthesis methods, which are inspired by the state-of-the-art video frame interpolation algorithms, and Epipolar-Plane Image (EPI) inpainting methods, which are inspired by the Shearlet Transform (ST)-based DSLF reconstruction approaches

    Real Time Structured Light and Applications

    Get PDF

    External multi-modal imaging sensor calibration for sensor fusion: A review

    Get PDF
    Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to this growing field by examining recent research on multi-modal imaging sensor calibration and proposing future research directions. The literature review comprehensively explains the various characteristics and conditions of different multi-modal external calibration methods, including traditional motion-based calibration and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to guide future research directions. Future research should focus primarily on the capability of online targetless calibration and systematic multi-modal sensor calibration.Ministerio de Ciencia, Innovación y Universidades | Ref. PID2019-108816RB-I0

    Multi-scale metrology for automated non-destructive testing systems

    Get PDF
    This thesis was previously held under moratorium from 5/05/2020 to 5/05/2022The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples.The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples

    A Low-cost Depth Imaging Mobile Platform for Canola Phenotyping

    Get PDF
    To meet the high demand for supporting and accelerating progress in the breeding of novel traits, plant scientists and breeders have to measure a large number of plants and their characteristics accurately. A variety of imaging methodologies are being deployed to acquire data for quantitative studies of complex traits. When applied to a large number of plants such as canola plants, however, a complete three-dimensional (3D) model is time-consuming and expensive for high-throughput phenotyping with an enormous amount of data. In some contexts, a full rebuild of entire plants may not be necessary. In recent years, many 3D plan phenotyping techniques with high cost and large-scale facilities have been introduced to extract plant phenotypic traits, but these applications may be affected by limited research budgets and cross environments. This thesis proposed a low-cost depth and high-throughput phenotyping mobile platform to measure canola plant traits in cross environments. Methods included detecting and counting canola branches and seedpods, monitoring canola growth stages, and fusing color images to improve images resolution and achieve higher accuracy. Canola plant traits were examined in both controlled environment and field scenarios. These methodologies were enhanced by different imaging techniques. Results revealed that this phenotyping mobile platform can be used to investigate canola plant traits in cross environments with high accuracy. The results also show that algorithms for counting canola branches and seedpods enable crop researchers to analyze the relationship between canola genotypes and phenotypes and estimate crop yields. In addition to counting algorithms, fusing techniques can be helpful for plant breeders with more comfortable access plant characteristics by improving the definition and resolution of color images. These findings add value to the automation, low-cost depth and high-throughput phenotyping for canola plants. These findings also contribute a novel multi-focus image fusion that exhibits a competitive performance with outperforms some other state-of-the-art methods based on the visual saliency maps and gradient domain fast guided filter. This proposed platform and counting algorithms can be applied to not only canola plants but also other closely related species. The proposed fusing technique can be extended to other fields, such as remote sensing and medical image fusion

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance
    corecore