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Abstract 

Multisensory data fusion oriented to image-based application improves the 

accuracy, quality and availability of the data, and consequently, the performance 

of robotic systems, by means of combining the information of a scene acquired 

from multiple and different sources into a unified representation of the  

3D world scene, which is more enlightening and enriching for the subsequent 

image processing, improving either the reliability by using the redundant 

information, or the capability by taking advantage of complementary 

information. 

Image registration is one of the most relevant steps in image fusion 

techniques. This procedure aims the geometrical alignment of two or more 

images. Normally, this process relies on feature-matching techniques, which is a 

drawback for combining sensors that are not able to deliver common features. 

For instance, in the combination of ToF and RGB cameras, the robust feature-

matching is not reliable. Typically, the fusion of these two sensors has been 

addressed from the computation of the cameras calibration parameters for 

coordinate transformation between them. As a result, a low resolution colour 

depth map is provided. For improving the resolution of these maps and reducing 

the loss of colour information, extrapolation techniques are adopted. A crucial 

issue for computing high quality and accurate dense maps is the presence of 

noise in the depth measurement from the ToF camera, which is normally 

reduced by means of sensor calibration and filtering techniques. However, the 

filtering methods, implemented for the data extrapolation and denoising, usually 

over-smooth the data, reducing consequently the accuracy of the registration 

procedure.  
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The study presented in this Thesis introduces a solution for dealing with 

the aforementioned problems. More specifically, an approach for sensor 

registration with non-common features is proposed, which is based on Planar 

Projection Transformations and the depth measurements from the ToF 

camera. The depth information is used as a virtual feature for estimating a 

depth-dependent homography lookup table (Hlut). The elements of the Hlut 

were computed by virtually discretizing the 3D-space world into {n-planes}, 

which are positioned in front and parallel to the sensory system. Then, 

suitable homographies from accurate transformation between views were 

selected. These homographies are able to transferring data belonging to 

several consecutive i-planes of the {n-planes}, which are constrained within a 

range of depth. In this way the working distance of each element on the Hlut 

is known. The procedure is capable of computing a low resolution colour 

depth map together with a labelled homography mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 on the RGB 

image coordinates. The values of the 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 correspond to the 

homographies { 𝐻𝑘
𝑙𝑢𝑡} used for transferring the data. Due to the difference in 

the cameras resolution, between each pair of adjacent points in the ToF image 

there are several unmapped points on the RGB image coordinates. Thus, the 

labelled mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 is intended to be used for matching the unmapped 

points on the RGB image frame. This research presents an initial approach 

for this procedure, where a nearest neighbourhood algorithm was applied to 

create an entire mask of { 𝐻𝑘
𝑙𝑢𝑡} on the RGB pixel coordinates. Then, the high 

resolution colour depth map is straightforward computed by mapping points 

from the RGB to the ToF, by using the homographies { 𝐻𝑘
𝑙𝑢𝑡−1}. 

The accuracy evaluation of the proposed method is twofold. In the first part, 

104 image samples were registered and the discrepancy between control points 

and estimated points was calculated. The results indicate that the proposed 

method is capable of mapping points from the ToF to RGB frame with a mean 

error of 0.44 pixels and a standard deviation of 2.9 pixels. In the second part, 

the comparison between the depth-dependent Hlut approach and the standard 

calibration method for depth map registration was addressed. For this 

comparison three scenarios were considered: noise-free (ideal) depth data, raw 

depth data and filtered data. The numerical and the visual results show that the 

depth-dependent Hlut approach outperforms the standard calibration results. 

The final contribution of this study includes the test and validation of the 

proposed method within the framework of two relevant robotic applications. 

First, an indoors application oriented to in-house surveillance is considered, 

where the capability of the proposed method for motion detection tasks was 
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assessed. For that, a new procedure for people’s motion detection was proposed. 

The procedure is based on the depth-dependent Hlut approach, a robust affine 

structure from motion algorithm and a quadric surface approximation. After the 

analysis of a large number of person’s poses, the obtained visual results 

demonstrate the satisfactory performance of the approach. In addition, the 

proposed procedure is capable of dealing with shadows and variations in the 

illumination conditions, while avoiding the false inliers detected as motion. 

The second application is related to Precision Agriculture and is framed 

within the European Project entitled CROPS, which is enclosed in the topic of 

Automation and robotics for sustainable crop and forestry management. The 

experimentation aims to assess the feasibility of detecting and locating fruits 

(apples) and other plant elements in natural environments by utilising a 

multisensory system in combination with the proposed depth-dependent Hlut 

approach. This experimental stage was conducted in laboratory and in field 

conditions and the obtained visual results shown a satisfactory performance 

of the high resolution colour depth map formation. Despite the complexity of 

the scenes, (small, rounded and angled objects), the presence of misalignment 

problems is almost imperceptible, and shape and edges of objects are 

preserved. Additionally, a feature extraction procedure was proposed and 

implemented. The results illustrate the capability of the proposal for detecting 

and locating fruits. 
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Resumen 

La fusión multisensorial orientada a aplicaciones de procesamiento de 

imágenes, conocida como fusión de imágenes, es una técnica que permite 

mejorar la exactitud, la calidad y la disponibilidad de datos de un entorno 

tridimensional, que a su vez permite mejorar el rendimiento y la operatividad 

de sistemas robóticos. Dicha fusión, se consigue mediante la combinación de 

la información adquirida por múltiples y diversas fuentes de captura de datos, 

la cual se agrupa del tal forma que se obtiene una mejor representación del 

entorno 3D, que es mucho más ilustrativa y enriquecedora para la 

implementación de métodos de procesamiento de imágenes. Con ello se 

consigue una mejora en la fiabilidad y capacidad del sistema, empleando la 

información redundante que ha sido adquirida por múltiples sensores.  

El registro de imágenes es uno de los procedimientos más importantes que 

componen la fusión de imágenes. El objetivo principal del registro de 

imágenes es la consecución de la alineación geométrica entre dos o más 

imágenes. Normalmente, este proceso depende de técnicas de búsqueda de 

patrones comunes entre imágenes, lo cual puede ser un inconveniente cuando 

se combinan sensores que no proporcionan datos con características 

similares. Un ejemplo de ello, es la fusión de cámaras de color de alta 

resolución (RGB) con cámaras de Tiempo de Vuelo de baja resolución 

(Time-of-Flight (ToF)), con las cuales no es posible conseguir una detección 

robusta de patrones comunes entre las imágenes capturadas por ambos 

sensores. Por lo general, la fusión entre estas cámaras se realiza mediante el 

cálculo de los parámetros de calibración de las mismas, que permiten realizar 

la trasformación homogénea entre ellas. Y como resultado de este 
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procedimiento, se obtienen mapas de profundad y de color de baja resolución. 

Con el objetivo de mejorar la resolución de estos mapas y de evitar la pérdida 

de información de color, se utilizan diversas técnicas de extrapolación de 

datos. Un factor crucial a tomar en cuenta para la obtención de mapas de alta 

calidad y alta exactitud, es la presencia de ruido en las medidas de 

profundidad obtenidas por las cámaras ToF. Este problema, normalmente se 

reduce mediante la calibración de estos sensores y con técnicas de filtrado de 

datos. Sin embargo, las técnicas de filtrado utilizadas, tanto para la 

interpolación de datos, como para la reducción del ruido, suelen producir el 

sobre-alisamiento de los datos originales, lo cual reduce la exactitud del 

registro de imágenes. 

El estudio de investigación realizado en esta tesis, presenta una solución 

que permite solventar los problemas mencionados anteriormente. Esta 

propuesta presenta una nueva estrategia para el registro de imágenes que no 

cuentan con características similares, la cual está basada en 

Transformaciones Proyectivas Planas y en las medidas de profundidad 

adquiridas por una cámara ToF. La información de las profundidades son 

utilizadas como características virtuales para el cómputo de una tabla de 

búsqueda de homografías planas, las cuales dependen de las medidas de 

profundidad, llamada en inglés depth-dependent homography lookup table 

(Hlut). Los elementos de Hlut, se calculan mediante una discretización virtual 

del espacio tridimensional en {n-planos}, los cuales se encuentran dispuestos 

frente al sistema y paralelos a éste. A continuación, de este proceso se obtienen 

las homografías más robustas mediante las transformaciones entre las vistas de 

las cámaras y los planos. Estas homografías tienen la capacidad de transferir 

puntos que pertenecen a varios i-planos virtuales consecutivos que pertenecen a 

{n-planos}, y que se encuentran delimitados por un rango de distancia 

determinado. De esta forma, las distancias de trabajo de los elementos en Hlut 

son conocidas. Mediante este procedimiento se obtienen mapas de color y de 

profundidad de baja resolución y, además, una máscara de etiquetas de 

homografías 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 en el sistema de coordenadas de las imágenes RGB. 

Los valores de dicha máscara, se corresponden con las homografías { 𝐻𝑘
𝑙𝑢𝑡} 

utilizadas para la transformación de los datos. Debido a la gran diferencia 

entre las resoluciones de las cámaras, entre cada par de puntos adyacentes en 

la imagen ToF, existen varios puntos sin transformar en la imagen de color. 

Por ello, la máscara de etiquetas 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵, ha sido creada con el objetivo de 

ser utilizada como una herramienta en la resolución de este problema. En este 

trabajo de investigación se presenta una primera estrategia para el uso de esta 
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máscara, la cual está basada en el algoritmo de vecinos más próximos 

(nearest neighbour algorithm). Con ella se consigue la clasificación de los 

puntos vacíos de la máscara 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵, dando como resultado una máscara 

completa de etiquetas de homografías en el plano imagen de color. De esta 

manera, se obtiene un mapa de color y de profundidad de alta resolución, 

mediante la transformación inversa de las homografías { 𝐻𝑘
𝑙𝑢𝑡−1}, que 

permiten transferir puntos desde el plano imagen de color al plano imagen 

ToF.  

La evaluación de la exactitud del método propuesto en esta tesis está 

divida en dos partes. Para la primera, se ha procedido al registro de  

104 imágenes, y posteriormente al cálculo del error entre los puntos de 

control y los puntos estimados con el método. Los resultados obtenidos 

durante la evaluación resaltan la capacidad del método propuesto para 

transferir información desde la cámara ToF a la cámara de color, todo ello 

con un error medio de 0.44 píxeles y una desviación estándar de 2.9 píxeles. 

En la segunda parte, se presenta una comparación del método propuesto y el 

método de calibración estándar de las cámaras. Para esta comparación, tres 

escenarios han sido tomados en cuenta: con medidas de profundidad sin ruido 

(ideales), con medidas de profundidad sin procesar y con medidas de 

profundidad filtradas. Los resultados obtenidos, tanto visuales como 

numéricos, indican que el método propuesto Hlut, supera en rendimiento al 

método de calibración estándar de las cámaras. 

La contribución final de este trabajo de investigación se centra en la 

experimentación y validación del método propuesto en un marco de trabajo 

relativo a dos aplicaciones en robótica. La primera, es una aplicación en 

interiores, enfocada a la seguridad y vigilancia en hogares, y en la cual, se ha 

evaluado las capacidades del método propuesto en tareas de detección del 

movimiento. Para ello, se ha propuesto un método basado en un algoritmo 

robusto de análisis afín del movimiento y en una aproximación cuadrática de 

superficies. Los resultados visuales obtenidos, a posteriori de un amplio 

análisis de posturas de personas, indican que el método propuesto 

proporciona resultados muy favorables para las tareas de detección del 

movimiento. Adicionalmente, el método propuesto, tiene la capacidad de 

lidiar satisfactoriamente con los problemas más comunes en entornos de 

interiores, que son las sombras y las variaciones de iluminación del entorno,  

evitando las detecciones de falsos positivos del movimiento. 

La segunda aplicación en robótica se encuentra encamarada dentro de un 

proyecto europeo, denominado por el acrónimo CROPS, el cual se enfoca en 
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la temática relacionada a la automatización y robótica para la gestión 

sostenible de cultivos y de bosques. Dicha experimentación tiene como 

objetivo la validación de la implementación del método propuesto Hlut en 

combinación con un sistema multiespectral, en las tareas de detección y 

localización de frutas y otros elementos de las plantas, todo ello en entornos 

naturales. Esta etapa de experimentación ha sido realizada tanto en 

laboratorio como en entornos naturales de campos de cultivos. Los resultados 

obtenidos muestran la capacidad del sistema para la formación de mapas de 

color y de profundidad de alta resolución. A pesar de la complejidad de las 

escenas (objetos redondeados, pequeños e inclinados), los problemas de 

desalineación entre las imágenes, son casi imperceptibles. Además de esto, 

los bordes y formas de los objetos muestran muy pocas alteraciones. Por otro 

lado, este estudio incluye una propuesta para la extracción de características 

de las frutas (objetos de interés). En este caso, los resultados visuales también 

indican el potencial de método propuesto para detección y localización de 

frutas. 

 



 

Note to the Reader 

This PhD Thesis is organized as follows:  

 

The Part I comprises the main part of the Thesis and it is written in 

English language. This part is structured in six Chapters and it contains: (1) a 

summary of the addressed state of the problem in multisensor fusion, the 

motivations and the objectives; (2) a state-of-the-art of the image sensor 

fusion; (3) the description of the design, implementation and validation of the 

proposed image registration method; (4) the comparative evaluation between 

the proposed method and the standard calibration method; (5) the 

experimentation and validation of the method in two robotic applications; 

and, (6) the conclusions, contributions and future researches. 

 

The Part II contains a summary of Part I, and it is written in Spanish 

language. This part is structured in five Sections, which describes: (1) a 

summary of the state of the problem in multisensor fusion; (2) the 

motivations and the scope; (3) the objectives of this research; (4) the 

organization of Part I; and, (5) the conclusions, contributions and future 

researches.  
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Nota al Lector  

Esta tesis doctoral se estructura de la siguiente manera: 

 

La Parte I contiene la parte principal de la tesis y se encuentra escrita en 

inglés. Esta parte está formada por seis Capítulos que describen lo siguiente: 

(1) un breve resumen del estado del problema abordado en esta tesis, así 

como las motivaciones y objetivos de esta misma; (2) una revisión de la 

fusión sensorial de imágenes; (3) la descripción del diseño, implementación y 

evaluación del método de registro de imágenes propuesto; (4) una evaluación 

comparativa entre el método propuesto y el de calibración estándar de las 

cámaras; (5) la experimentación y validación del método propuesto en dos 

aplicaciones robóticas; y, (6) las conclusiones, aportaciones principales de 

esta tesis y trabajos futuros. 

 

La Parte II presenta un resumen en español de la Parte I y está dividida en 

cinco secciones, las cuales contienen: (1) un breve resumen del estado del 

problema abordado en esta tesis; (2)-(3) las motivaciones, el alcance y los 

objetivos de la tesis; (4) la organización de la Parte I; y, (5) las conclusiones, 

aportaciones principales de esta tesis y trabajos futuros. 
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Chapter 1 

Introduction 

1.1 Multisensor Image Fusion 

Image fusion is one of the most relevant image processing operations that 

aims the combination of several images of a scene acquired from different 

and multiple sensors, and taken at different times, to provide a better 

understanding and representation of 3D world scenes. Image fusion has been 

widely applied in most of the fields where images are ought to be analysed. 

These fields include medical imaging (James and Dasarathy 2014, 

Wyawahare, Patil and Abhyankar 2009), remote sensing (Inglada and Giros 

2004, Fonseca and Manjunath 1996), computer vision (Salvi et al. 2007), 

robotics (Hines et al. 2003, Luo, Chih-Chen and Kuo Lan 2002). Given the 

variety of applications (problems) and the increasing number and diversity of 

sensors for collecting the data, it is unlikely that a single methodology of 

multisensor image fusion will suit satisfactorily for all the aforementioned 

applications. Therefore, the selection for a fusion solution may be dependent 

on the specific application and on what is considered relevant information 

(Goshtasby and Nikolov 2007).  

In a general overview, image fusion techniques can be classified in three 

groups of algorithms: pixel, feature and symbolic levels. Pixel-level 

algorithms have been extensively investigated in comparison with related 

works on feature-level and symbolic-level algorithms. For instance, an 
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extensive critical review of these algorithms is presented in (Sahu and Parsai 

2012). Pixel-level methods rely on the intensity values variations and they 

can work either in the spatial domain as local imaging operations, or in the 

transform domain, becoming then into global fusion operations. 

Typically, the structure for computing image fusion is composed of four 

steps: pre-processing (noise removal), image registration (image alignment), 

image fusion (pixel-level) and post-processing (classification, segmentation 

and features extraction). In Figure 1.1 the main steps of the image fusion 

procedure concept are presented. 

 

 

Figure 1.1 Image fusion procedure structure. 

In most cases, algorithms for image fusion procedure assume the data is 

perfectly aligned. Nevertheless, in practice these situations are difficult to 

achieve. Situations where the intrinsic and extrinsic camera parameters are 

not modified might provide spatially registered images (Hall and Llinas 

1997). Otherwise image registration algorithms need to be previously 

applied. These algorithms spatially align two images by means of area-based 

and feature-based methods, depending on the nature of the sources and 

applications. Normally, area-based or feature-based image registration 

methods, consist of four steps: feature detection, feature matching, transform 
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model estimation and image resampling, and transformation (Zitová and 

Flusser 2003). Whether the registration is achieved by the standard 

calibration parameters (Deshmukh and Bhosle 2011) as if it is obtained from 

the (area or feature)-based approaches, the image registration is a key stage in 

image fusion, because the obtained errors in this process can be dragged into 

any fusion algorithm (pixel-level, feature-level or symbolic-level). This 

intricate relation between image registration and image fusion, could be 

addressed as a solution that considers two main types of differences the data 

when fusing images: spatial differences and non-spatial differences (Zhang 

and Blum 2001). The first is related to images with spatial misalignment 

caused by the geometric transformation between the views (translation, 

rotation, scale, etc.). The second is attributed to the environments parameters 

such as the variation in the illumination conditions, dynamic scenes, the use 

of different sources for data acquisition, and the use of different configuration 

parameters when using similar sensors. While the spatial differences are 

addressed with image registration methods, the non-spatial differences rely 

on image fusion approaches. 

In nature, image registration is a feature-based method that depends on the 

robustness of the common characteristic between the image sources. In cases 

where these features (pixel intensities, regions similarities) are not available 

or difficult to compute, specific solutions should be adopted. This is the case 

for the combination of low resolution Time-of-Flight (ToF) and high 

resolution RGB cameras, where the ToF cameras are not able to detect 

contextual information, as is the case for the RGB cameras. ToF cameras are 

able to deliver low resolution amplitude-response grey-scale images and 

depth estimations of a scene by emitting IR light and measuring the time for 

the light to travel back from objects to the sensor. Typically, depth 

measurements are noisy, mainly because of the device hardware 

configuration and the external conditions. This require filtering and sensor 

calibration for acquiring depth measurements with confidence (Reynolds et 

al. 2011). Nevertheless, this image registration problem could be addressed 

from the standard calibration method perspective, since the internal and 

external cameras parameters can be used for the transformation of the depth 

measurements from the ToF to the RGB camera coordinates. One of the first 

investigation that has introduced this fusion concept was Reulke (2006). This 

3D sensing approach delivers both, high resolution contextual information 

and the 3D structure of a 3D world scene, at rather high frame rate. This is an 

advantage in several robotic applications, especially the ones that need to 
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fulfil real-time conditions. On the other hand, this approach does not rely on 

correspondence features matching, as most of the 3D sensing passive 

techniques (stereo vision, structure from focus, motion or shape), which is an 

advantage in dynamically changing environments. In comparison with other 

active techniques, the combination of ToF and RGB cameras does no 

requires moving parts as laser scanner, or controlled lighting environments as 

in the structured light methods. A comprehensive comparison of 3D sensing 

methods is presented in (Sansoni, Trebeschi and Docchio 2009). 

The purpose of the research presented in this Thesis is to investigate 

techniques that allow the combination of images acquired from ToF and RGB 

cameras by means of an accurate and flexible image fusion solution, and 

which results are also suitable for real-time applications. This solution should 

be able to deal with sensors which are incapable of delivering data with 

robust common features. Thus, this Thesis is focused on the design and 

implementation of image registration and image fusion methods, and its 

testing and validation in indoor service robot applications such as the in-

house surveillance for monitoring people movements, and on the field 

precision agriculture applications, such as the detection and localisation of 

fruits for harvesting tasks. In both cases, robotic applications are constrained 

within near real-time conditions.  

1.2 Motivation and Scope 

In 3D imaging for robotic applications, image fusion is one of the most 

valuable techniques for recovering contextual and structural information of a 

3D world scene. As mentioned above, two steps of the image fusion process 

are key issue to achieve accurate and high quality representation of 3D 

environments. In Figure 1.1 the procedure structure of the image fusion 

methodology is illustrated, as well as the aforesaid operations: the image 

registration and the image fusion (pixel-level) processes, which are enclosed 

with a red marker. The good performance of the data fusion process is 

conditioned by the success or failure in the image registration process 

Therefore, lot of effort is required to achieve accurate image spatial 

alignment in the registration process, which is an important part of the 

research of this Thesis.  

For that purpose, the approach of ToF and RGB cameras combination is 

explored. The compromise between the high resolution colour images 

provided by the RGB camera and the depth measurements delivered by the 

ToF cameras at video frame rate, turn this solution into an approach capable 
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of producing information of well-defined objects (context and structure), 

accurate shape and edges of the objects description, which is suitable for near 

real-time.  

There are several problems associated with the registration of these two 

cameras. First, because of the low resolution of the ToF cameras the 

computation of accurate camera calibration parameters is not always an easy 

task to fulfil. Even if the calibration parameters are obtained accurate enough, 

the noise in the depth measurements introduce errors in the data 

transformation process. In order to reduce the effect of noise, filtering 

techniques are applied, which in this case, due to the low data resolution, 

make the data more susceptible to over-smoothing surfaces and edges. 

On the other hand, because of the large difference between the cameras 

resolution, only hundreds of points (144×176) in the RGB image can be 

initially mapped, the ones corresponded to the ToF image size. In order to 

take full advantage of the size of the RGB images, the study of solutions for 

providing high resolution colour depth maps is a relevant issue in the 

research of this Thesis. 

Obtaining the fused results does not come to the end on the multisensor 

fusion procedure. Another challenge is the assessment of the fused results. 

For that purpose, two representative robotic applications, one indoors and the 

other outdoors, are selected for the image fusion methodology validation. In 

which the capabilities of the proposed solution for achieving specific tasks 

should be tested. 

1.3 Research Objectives 

The first and main objective of this research is to design, to implement and 

to validate an image registration method for combining a ToF and a RGB 

camera. The proposed solution should be capable of dealing with images with 

non-common features, with the noise in the depth measurements and with the 

large difference between the cameras resolution, and to be suitable for near 

real-time applications. As part of the validation stage, visual and numerical 

results should be evaluated. Additionally, since there are other techniques for 

registering ToF and RGB cameras, and in this case the most relevant is the 

standard calibration method. An in-depth comparison of the obtained visual 

and numerical results between the proposed approach and the standard 

calibration method should be conducted. 

The second objective is to develop an experimental assessment for two 

selected robotic applications: in-house robotic surveillance for monitoring 
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and detecting people falling, and the detection and localisation of fruits on the 

field for harvesting robots, utilized in Precision Agriculture. In which, the 

capability of the proposed image registration procedure in combination with 

image fusion (pixel-level) algorithms should be evaluated. The goal of these 

evaluations is to demonstrate that the methodology proposed in this work, is 

able to provide accurate and quality information of the data classification, 

data segmentation and features extraction of the targets in successfully way. 

All of these, oriented to the designated tasks in the robot service application 

and in the Precision Agriculture application.  

1.4 Thesis Outline  

In order to address the objectives presented in this Chapter, this 

dissertation is organized as follows: 

Chapter 2 presents the state-of-the-art of image sensor fusion techniques, 

which are the basis of several 3D sensing methods, and in this case, all of 

them oriented to the robotics filed. Among these methods, in this study a 

comprehensive research focused on techniques for the combination of ToF 

cameras and RGB cameras is addressed.  

Chapter 3 is devoted to the design, implementation and validation of the 

proposed method for registration of ToF and RGB images. The fundamental 

concepts for designing the registration approach are introduced, as well as the 

detailed methodology for computing the depth-dependent Hlut approach. A 

preliminary accuracy evaluation of the method results is also discussed. 

Finally, a proposal for computing high resolution colour depth maps by 

means of the depth-dependent Hlut approach is presented.  

Chapter 4 presents in-depth comparisons of the standard calibration 

method and the depth-dependent Hlut approach for image registration. For 

these comparisons three scenarios are considered: noise-free depth 

measurements (ideal), raw depth measurements and filtered depth 

measurements. The first input data is collected from the cameras calibration 

procedure. The second input data corresponds to the depth estimation 

acquired with the ToF camera. Lastly, for the third scenario, two filtering 

techniques are applied to the raw data, the bilateral filtering and the non-local 

means filter. 

Chapter 5 presents the experimental stage, where two relevant robotic 

applications (indoors and outdoors) are considered. The first group of 

experiments is oriented to in-house surveillance and monitoring of people 

movements applications. In this case, the designed experiments have two 
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objectives: firstly, the validation of the accuracy of the method and the 

evaluation of the method capability for properly registering large and angled 

surfaces; secondly, the validation of the method in objects motions detections 

tasks. The second group of experiments is focused on the detection and 

localisation of fruits (apples) for harvesting robots is addressed. For that 

purpose, several experiments are conducted in laboratory and on the field 

conditions, and additionally, a procedure for features extraction of objects of 

interest is introduced. The process combines the depth-dependent Hlut 

registration approach and pixel-level techniques for image fusion. 

Finally, Chapter 6 summarizes the major obtained results, the main 

contributions of this Thesis and the outline for future researches. 
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Chapter 2 

Image Sensor Fusion – State of the Art 

2.1 Introduction 

As has been previously mentioned, multisensory image fusion is one of 

the most relevant techniques for recovering 3D imaging of a scene, by means 

of combining the information of a scene acquired from multiple and different 

sources into a unified representation of the 3D world scene, which is more 

enlightening and enriching for the subsequent image processing, improving 

either the reliability by using the redundant information, or the capability by 

taking advantage of complementary information. 

The acquisition of information of 3D world scenes is a fundamental stage 

for a worthwhile variety of applications in robotic fields such as: robot 

navigation (Gonzalez de Santos et al. 2007), precision agriculture (Sarig 

1990, Fernández et al. 2013b), forestry (Fernández, Montes and Salinas 

2015), human assistance (Salinas et al. 2011), demining activities (Ponticelli 

et al. 2008, Fernández et al. 2012) and many other. Typically, the acquired 

data is composed of information from the visible spectrum captured by 

CCD/CMOS cameras (Janesick et al. 1987, Litwiller 2001) and the structure 

of the scene, which is normally derived from the stereoscopic cameras or 

some kind of range sensor (Blais 2004). Nevertheless, in last decade several 

advances in technology and affordable prices allowed the emergence of new 

cameras capable of capturing not only the visible spectrum, but also the long-

wave infrared (LWIR), the mid-ware infrared (MWIR), the short-wave 
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infrared (SWIR), and a large variety of multi-band cameras and hyperspectral 

systems (Govender, Chetty and Bulcock 2007, Shaw 2003).  

Regarding the 3D sensing, there are several active and passive techniques 

for recovering the information of the 3D world, composed by colour and 

structure information of the scene (Bernardini and Rushmeier 2002). Some of 

them are based on time-of-flight (ToF) cameras, laser scanning, stereovision 

system and pattern projection (structured light). All of these techniques have 

different uses in robotics applications, as well as their advantages and 

weaknesses, but all of them provide more or less accurate information for 

reconstructing surfaces (Hebert 2000, Besl 1988, Sansoni et al. 2009).  

The research of this Thesis is focused on techniques for sensor registration 

that provide 3D information (structure and colour) for dynamically changing 

environments, which means that either the robot is in motion or objects in the 

scene are in motion. Therefore, fast algorithms that qualify for near real-time 

conditions are desired. In such a scenario, laser-based methods are non-

suitable solutions for real-time applications and dynamic environments 

(Beraldin and Gaiani 2005, Forest Collado 2004), because normally, they 

require moving parts to scan the scene row by row. The same is true for 

structured light methods, where besides the scanning of light projection 

(DePiero and Trivedi 1996), 3D sensing also needs to be carried out under 

very controlled light conditions. In Figure 2.1 some examples of these 

techniques are shown. 

 

 
(a) (b) 

Figure 2.1 Active techniques for 3D image sensing. (a) Laser-scanner 

imaging. (b) Structured light imaging. 
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Passive camera-based methods including depth from motion, shape and 

focus, and stereo triangulation normally require solving the correspondence 

problem, Figure 2.2 illustrates both aforementioned methods. The first group 

of methods involves acquiring multiple images, which produces ambiguities 

and singularities, and also introduces additional computation load and 

temporal cost (Triggs 1996).  

On the other hand, the stereo triangulation technique is the most common 

and well-known technique for acquiring 3D information (Tippetts et al. 

2013). Its working principle is to determine what pair of points on two 

images are the corresponding projections of a same 3D point. Normally, 

finding correspondence features is carried out over segments instead of 

points, because (Ayache and Sander 1991):  

 The number of features to be matched is reduced. 

 The neighbourhood similarity, explicitly takes into account the 

continuity of contours.  

 The geometric attributes of the contour provide stronger matching 

constraints, because discriminant properties can be derived from this 

valuable information. 

 Since segments provide geometric attributes, the measurement of their 

position and orientation are usually more precise in comparison with 

the position of an isolated point. 

A very interesting review of passive camera-based techniques is presented 

by Scharstein and Szeliski (2002). Over the last three decades, significant 

improvements have been made for solving the correspondence problem. 

Nevertheless, the problems of occlusion mismatching and the incapability of 

matching textureless regions remain unsolved.  

On the other hand, besides the use of conventional perspective stereo 

cameras, the 3D imaging could also be achieved with catadioptric stereo and 

panoramic stereo systems. In contrast with the perspective cameras, these 

systems provide the capability of tracking and detecting objects over large  

3D environments. In the particular case of omnidirectional vision systems, 

since the Ress’ first proposal in U.S. Patent No. 3,505,465 in 1970 (Gilvydis 

1985), and later on, in the earliest 90’s when these system started to been 

developed again by (Yagi, Nishizawa and Yachida 1995, Yamazawa, Yagi 

and Yachida 1993, Hong et al. 1992) , several configuration and theories of 

catadioptric panoramic system has been presented in order to obtain images 

of the entire scene (Geyer and Daniilidis 2001, Baker and Nayar 1999, 

Svoboda and Pajdla 2002). 
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(a) 

 
(b) 

Figure 2.2 Passive techniques for 3D image sensing. (a) Structure from 

motion. (b) Stereovision. 

In comparison with conventional cameras, the greatest advantage of the 

panoramic systems relies on their capability for acquiring wide range view 
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images, which allows the robotic systems to have a better perception of the 

environments for tasks such as navigation, tracking of objects and  

ego-motion detection, since the objects disappears later on the images. 

Common configurations for panoramic systems include rotating cameras, 

multiple cameras, or catadioptric systems for obtaining images of 360 º of a 

scene. However the first approach brings in mechanical problems as the 

movement of heavy parts, the manufacture costs and, the rotation 

mechanisms are not suitable for real-time applications, and also to achieve 

accurate positioning extra efforts are required. Multiple cameras present a 

high computing cost to form a single panoramic image.  

On the contrary, catadioptric systems, resulting from the combination of 

refracting (dioptric) and reflecting (catoptrics) surfaces, are considered as 

very interesting solutions. These systems are easily built employing a 

conventional high-resolution camera as the refracting part and a curved 

mirror as the reflecting one. In order to acquire a single image containing the 

information of the whole scene, the camera and the mirror must be arranged 

in a configuration such that the entire system has a single effective viewpoint 

(Baker and Nayar 1999), named as central catadioptric cameras (Svoboda and 

Pajdla 2002). In order to generate omnidirectional images, only perfect 

quadrics surfaces are considered it is considered perfect quadrics surfaces 

only as candidates for mirror shapes. In this way, every incident ray of light 

that strikes a surface toward the mirror focus is reflected to the second focus. 

Since the geometry of the system is known it is possible to compute the ray 

direction for each pixel and its irradiance value. 

In the literature, there are several configurations for achieving 

omnidirectional stereovision systems. The general theory of epipolar 

geometry for central catadioptric stereo cameras was depicted in (Svoboda 

and Pajdla 2002). A rectified systems in was presented in (Gluckman, Nayar 

and Thoresz 1998) where two omnidirectional systems were placed vertically 

aligned, one on top of the other. A special double lobbed mirror was 

introduced in (Cabral, de Souza and Hunold 2004, Nene and Nayar 1998),and 

in (Nene and Nayar 1998), the use of two curved mirror with a single camera 

was proposed. The lack of high-resolution of the last two configurations 

makes them less interesting. Among the possible configurations of stereo 

systems, the rectified configuration is a more desirable solution, because their 

epipolar lines corresponds to the radial axis of the omnidirectional image, 

hence the computation of disparity is simplified. In Figure 2.3 the data 

acquisition structure and the rectified configuration are illustrated. Although, 
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the stereo rectified omnidirectional vision systems are a promising and 

suitable solution for a large number of robotics applications and, the 

occlusion problem might be reduced because of its wide range of view, these 

systems still rely on conventional stereo passive methods for recovering the 

3D information. Thus, omnidirectional stereovision systems are also 

incapable of dealing with textureless regions.  

 

 
(a) (b) 

Figure 2.3 Omnidirectional systems. (a) Catadioptric image formation. (b) 

Rectified catadioptric stereovision configuration. 

Alternatively, ToF cameras are becoming more and more popular, less 

expensive and more powerful. As mentioned before, these cameras estimate 

the depth by emitting a modulated light and observing the reflected light. 

Then, the phase shift between the emitted and reflected light is measured and 

translated to distance (Ringbeck 2007). The emitted light could be a pulse or 

continuous wave (CW). Most of the available cameras use the sinusoidal or 

square CW modulation, and use the demodulation lock-in pixels. For the 

demodulation, the “four-bucket” technique is usually adopted, where each 

pixel samples the amount of light reflected by the scene on every 

measurement, and four samples per measurement are taken, each sample 

phase is stepped by 𝜋 2⁄  (Foix, Alenya and Torras 2011). Typically, the light 
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source is generated by a solid-state laser or a light-emitting diodes (LED) 

operating in the near-infrared spectrum (NIR).  

In Figure 2.4 the ToF cameras working principle is shown and in Figure 

2.5, some of the most frequently used ToF cameras are displayed. Some 

interesting works have evaluated these cameras, and they have shown their 

advantages in certain fields. In conclusion, the most relevant attribute of these 

systems is their capability of delivering simultaneously depth maps and 

intensity images at a video frame rate. However, their spatial resolution is 

very low, not more than thousands of pixels are provided, and they tend to be 

noisy and poorly calibrated.  

 

 

Figure 2.4 ToF camera working principle. 

In (Chiabrando et al. 2009, MESA Imaging 2011) the authors presented a 

methodology to reduce the errors in the depth measurements of the SR4000 

camera (MESA Imaging 2011). They modelled the measurement errors with 

a sinusoidal approximation and calibrated the intrinsic camera parameters. A 

most extensive evaluation of the ToF cameras was presented by (Foix et al. 

2011). This work shows the potential of these systems, but due to their 

limited resolution they conclude that previous technologies are still leading 
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the 3D sensing field. However, the combination of ToF and colour cameras 

has shown great improvements to compensate for this lack of resolution. A 

comparative study between the stereo vision systems and ToF cameras is 

beyond the scope of this research, and interested readers may refer to (Beder, 

Bartczak and Koch 2007). 

 

 

 
(a) (b) 

 

 
(c) (d) 

Figure 2.5 Some of the most frequently used ToF cameras and commercially 

available. (a) MESA SwissRanger SR4000; (b) MESA SwissRanger  

SR 4500; (c) PMD CamCube; (d) PMD CamBoard nano (currently Sold 

Out). 
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 2.2 Combination of RGB and ToF Cameras 

The approaches for combining ToF and colour cameras are commonly 

presented in two configurations: the monocular setting which combines a 

single colour camera and a ToF camera, and the coupling of a stereo vision 

system and a ToF camera. In this work a monocular setup is adopted. In 

general, the fusion of these two systems is addressed by computing the 

extrinsic parameters for the homogenous transformation between them, 

which means that the method efficiency relies on the cameras calibration and 

the accuracy of the depth measurements of the ToF camera. In the stereo 

configuration, the 3D-3D correspondences are used to estimate the 

transformation between the two systems. Some approaches utilize the depth 

from the ToF as a constraint to compute the stereo matching. In 

(Guðmundsson, Aanæs and Larsen 2008, Hahne and Alexa 2008), the 

authors use fast algorithms and inaccurate extrinsic parameters to improve 

the disparity computation, and the results show that sensor fusion is possible. 

However, when upscaling the dense maps to the colour image size, some 

problems at the objects’ edges are reported, and only visual results are 

reported. On the other hand, very interesting results are described in  

(Zhu et al. 2008), where the authors calibrate the system within a range of 400 

mm and use the depth values as an additional observed variable in the global 

approximation function. In this case, the method was tested in real scenes and 

numerical results report mean errors within 2–3 pixels. Nevertheless, this 

approach assumes a global regularization method for stereo matching, which 

normally is not fast enough for real time applications (Scharstein and Szeliski 

2002). Regardless, in this configuration the most important drawbacks of the 

stereo system, which are the occlusions and textureless regions, remain 

unsolved. 

In the monocular case, the depth information is used during the calibration 

process to back-project the 3D points into the 2D points of the RGB image. 

Normally, in related works, orthogonal generation is applied for the cameras 

frames co-alignment (Reulke 2006). However, other researches adopted 

projective texturing. In this case, the RGB camera is projected onto the ToF 

camera projective geometry. Unfortunately, in both cases, only few works 

present numerical results of their methods implementation (Linarth et al. 2007, 

Park et al. 2011). As it was mentioned in (Foix et al. 2011), the challenging issue 

is how to handle the difference between the cameras’ resolutions, because 

between each pair of nearby points of the ToF image there are several points of 
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the colour image. Therefore, the complexity of this work lies in the upsampling 

techniques for computing high-resolution depth maps without losing the colour 

information and achieving near real-time processing conditions. Most of the 

related works upscale depth maps of up to 1.5 Megapixels by means of bilinear 

or bicubic interpolation (Van den Bergh and Van Gool 2011). However, the 

proposal of this Thesis deals with high resolution colour dense maps of  

5 Megapixels. Other approaches are concerned with improving the quality of the 

high resolution depth maps. For instance, in (Lindner, Lambers and Kolb 2008), 

the authors present an interpolation algorithm for edge enhancement that uses the 

gradient and Laplacian to adjust the sampling location, but only visual results 

of a single object scene are presented. Remarkable efforts have been made in 

(Park et al. 2011) to create high-accuracy depth maps, where outlier detection 

was addressed as a minimization function of the Mark Random field. Then 

through a robust optimization function that combines several factors, namely the 

data, the neighbourhood smoothness and the non-local mean regularization, 

depth fusion was achieved. Their results stand out from other algorithms, but the 

complexity of the method makes it unreliable for real-time applications. The 

authors report a computation time for real-world scenes of 19.00 s. A similar 

case is presented in (Huhle et al. 2010), where a Graphic processing unit (GPU) 

implementation for parallel computation is adopted, with the aim of 

implementing a denoising and enhancement filter based on non-local means 

formulation. In this case it takes nearly 2 s to complete the processing.  

As it was mentioned above, the ToF and RGB sensor fusion relies on the 

extrinsic calibration and the depth estimations from the ToF camera. The depth 

information is noisy and because of the ToF camera’s low resolution, the 

extrinsic parameters are inaccurate. In some cases it is possible to achieve good 

results without accurate extrinsic calibration as it is shown in (Hahne and 

Alexa 2008). Other works report some simplification when sensors are 

mounted in particular configurations (Van den Bergh and Van Gool 2011, 

Guðmundsson et al. 2010, Song 2011, Hahne 2009). The typical noise of the 

depth measurements can be modelled as a Poisson distribution around the true 

value. However, the artifacts derived from the object’s albedo are not easy to 

model. Most of the related works addressed the problem by applying filtering 

techniques to the depth measurements. Nevertheless, the filtering can often 

over-smooth the interpolated data, significantly affecting the depth 

discontinuities of the boundaries. As it is shown in (Chan et al. 2008), the noise 

aware filtering for depth map registration improved the quality of the results, 

however the misalignments problems derived from an noise-sensitive 
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registration technique, could introduce error in the results, which are difficult 

and computationally expensive to remove. 

In the search of a method for registering sensors that deliver data with non-

common features, and that additionally be capable of addressing biased depth 

measurements, the proposal in this work undertakes the idea of working with 

uncalibrated methods for automatic data registration, which has not been 

studied yet.  

The distinction of the uncalibrated methods is that they do not need to 

know, at first, the internal and external parameters of the cameras. This may 

normally lead to a system capable of achieving up to projective 

reconstruction. Nevertheless, the theory introduced by Hartley and Zisserman 

(Hartley and Zisserman 2003), regarding multiple view geometry, 

demonstrates the possibility of achieving both affine and Euclidean 

reconstruction with no previous knowledge of the camera calibration matrix. 

Regarding projective geometry, there are two relations between two views 

(cameras) and a scene plane. The first relation is the epipolar geometry, 

which represents the intersection of a pencil with two image planes, where 

the axis of the pencil is a line joining the cameras’ centres, denoted as the 

baseline. The intersection of the baseline with the image planes are the 

epipoles (𝑒, 𝑒′). Given that information, it is possible to back-project an 

image point 𝑥 on image 1 to a ray in the 3-space. The ray passes through the 

camera centre, the point 𝑥 and the 3-space point 𝑋, which is on one plane of 

the pencil. This ray is projected onto image 2 as a line that intersects its 

epipole (𝑒′). Then, the problem of finding a correspondence for 𝑥, which is 

the projection of 𝑋 on image 2, is reduced to a search on a line. The second 

relation is given through the plane projective transformation, which is the 

relation of image points on a plane in a view to the corresponding image 

points in a second view by a planar homography,  𝑥2 = 𝐻𝑥1. 
Consequently, when considering the search for corresponding points in a 

3D-space scene, epipolar geometry is the straightforward solution to reckon 

with. Nonetheless, the problems of feature matching based on images are very 

well known. Most of the problems arise from the occlusions and the changes in 

the illumination conditions, and all of them contribute to non-matched or 

wrongly matched features. Some works have presented solutions for these 

problems, such as the method introduced by Sagüés (Sagüés 2006), where the 

author proposes matching lines between images instead of matching points to 

compute the fundamental matrix F. However, the problem of finding control 
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points between data acquired by different sources with non-common or robust 

enough features is still an unconsidered field. 

In some special cases, a scene is considered as a planar scene. Such a case 

may possibly be produced when the images baseline is null or the depth relief 

of the scene is small compared with the extent of the image. In both cases, 

epipolar geometry is not defined because the epipoles are not accessible and 

the plane projective transformation is the exact solution to transfer points 

from one view to another. However, this solution should not be taken as a 

general rule, because most of the scenes in the man-made environments 

usually comprise several planes. 

On the other hand, it has been demonstrated that the homography induced 

by a plane  𝜋 = (𝑣𝑇, 𝑑)𝑇 is determined uniquely by the plane and vice versa, 

only if the plane does not contain any of the cameras’ centres; otherwise, the 

homography is degenerated. Suppose the system is a sensory rig set-up; then, 

the homography matrix is (Hartley and Zisserman 2003): 

𝐻 = 𝐾′(𝑅 − 𝑡𝑣𝑇/𝑑)𝐾−1 (2.1)  

The homography matrix is defined by the camera internal (K) and external 

parameters ([R, t]) and the plane  𝜋 = (𝑣𝑇, 𝑑)𝑇. Since the camera parameters 

are constant, the result in Equation (1) also shows that a family of 

homographies is parametrized by 𝑣/𝑑, where 𝑑/‖𝑣‖ is the distance of the 

plane from the origin.  

Let us assume that a 3D scene reinterpretation is possible by discretizing 

the scene into n-planes. Then, it is also possible to compute n-homographies, 

and transfer the image points from the first view to image points of the 

second view. Taking advantage of the depth information provided by the ToF 

camera it would also be possible to compute the approximation of the object 

planes of the scene. However, such approximation should not be done lightly, 

because some planes may generate a virtual parallax.  

Now, let us suppose that a scene contains two objects; one is represented 

by a plane angled to the cameras’ views, and the other by a plane in front and 

parallel to the cameras. Then, the homography induced by the second object 

(in the front plane) maps incorrectly the points off this plane, in this case the 

first object. Nevertheless, if the intersection of these two planes is in the 

cameras’ views, the points of the intersected line could be properly mapped. 

Now, instead of using the homography of the first plane (angled object) to 

transfer it, let us suppose that this angled object is virtually intersected by  

m-planes, all positioned at different distances in front and parallel to the 
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cameras view. Then, there are m-lines as a result of these intersections. These 

m-lines describe a discrete shape of the object. Hence, each homography 

induced by these virtual m-planes is able to map its corresponding 

intersection (m-line) on the angled object. This assumption implies that 

objects into a scene could be explained with a family of virtual m-planes, and 

their induced m-homographies are able to map the discrete object’s shape. 

This homography family only depends on the planes parameters and the 

distance of the planes to the cameras, similar to Equation (2.1). However, in 

this case, the planes do not directly represent the planes on the scenes; they 

are virtual planes, positioned in front and parallel to the sensory system. 
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Chapter 3 

Depth-dependent Homography Lookup Table 

for Dense Map Registration 

3.1 Introduction 

Commonly, registration methods aim the geometrical alignment of two (or 

more) images of the same scene by means of a feature-based method. These 

images might be acquired by different sensors, from different views or taken 

at different times. An extensive review is presented by Zitová and Flusser 

(2003).  

The primary goal of the research of this Thesis is the generation of high 

resolution colour depth maps under real time conditions by using the data 

acquired by ToF and RGB cameras. In the sensory rig configuration 

composed of ToF and RGB cameras, finding robust features between depth 

maps and colour information is not feasible, and only artificial landmarks 

might be matched properly. However, since it is desirable that the method 

should works under natural conditions, landmarks are not the proper solution.  

Normally, depth map registration is done by computing the extrinsic 

parameters of the coordinate transformation between the two cameras. The 

3D points from the available depth measurements are back-projected to the 

colour image and a low resolution depth colour map is obtained (Foix et al. 

2011). As it was mentioned in Chapter 2, some works have been dedicated to 

increase the resolution of the dense map by upsampling techniques (Park et 
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al. 2011, Zhu et al. 2008, Huhle et al. 2010). However, most of them are not 

suitable for near real-time applications. Other methods have adopted 

interpolation algorithms for the depth upsampling before transferring the data 

(Lindner et al. 2008), though the maximum dense map size reported is  

1.5 Megapixels. Some works have also reported difficulties on the objects 

edges, being this problem mainly produced by noisy depth measurements or 

by the over-smoothing of depth values, caused by the data interpolation. For 

instance, in (Chan et al. 2008), a noise-aware filter for a colour depth map 

upsampling was proposed, and improved quality maps were obtained. 

However, after the proposed enhancement processing, some blurred regions 

and artifacts remained on the data, mainly because of their erroneous 

alignment procedure.  

The approach proposed in this work relies on uncalibrated techniques for 

transferring points from one view to another. Normally, uncalibrated 

techniques are based on the epipolar geometry, which is a feature-based 

solution for computing correspondences of 3D-space points between two 

views. Nevertheless, in similarity with registration methods, matching robust 

features between depth and colour information is not achievable. On the 

contrary, planar projective transformation does not require the search of 

features once the homography is computed. In some cases, the scenes might 

be considered as planar scenes, but most of natural scenes consist of several 

planes and the objects into the scene are considered non-planar objects. In 

consequence, multiple homographies describe the correspondence between 

views, which is the foundation of the proposed non-common features 

registration method based on planar projection transformation. 

The proposed sensory system for the data acquisition consists of a high 

resolution colour camera and a 3D ToF camera. The ToF camera of the 

system is the SR4 Mesa SwissRanger (MESA Imaging 2011) with a 

resolution of 176x144 pixels and a frame rate up to 30 fps. The ToF camera 

provides three images: the amplitude response, the confidence map and the 

depth map. The depth map could also be converted to XYZ Cartesian 

coordinate data, with the origin of the coordinated system in the centre front 

of the camera, with Z coordinate increasing along the optical axis away from 

the camera, Y coordinate increasing vertically upwards and X coordinate 

increasing horizontally to the left (see Figure 3.1). For the RGB camera, the 

AVT Prosilica GC 2450 (Allied Vision 2011) was used. The camera 

resolution is 2448×2050 pixels and its frame rate is up to 15 fps.  
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The cameras are vertically aligned and placed as close as possible to each 

other. The sensory system is mounted on a four degrees of freedom robotic 

platform. This platform consists of two prismatic joints and a pan-tilt unit. 

The prismatic joints provide the vertical and horizontal movements in the XZ 

Cartesian plane. The rotational joints on the pan-tilt unit provide the pitch and 

yaw movements of the system (Montes et al. 2012). The joints properties of 

the platform are described in Table 3.1. The system configuration is depicted 

in Figure 3.1. 

 

 

Figure 3.1 Sensory system configuration. The sensory rig consists of a ToF 

camera and a RGB camera, and it is mounted on a robotic platform with four 

degrees of freedom. 

Table 3.1 Properties of the robotic platform joints. 

Joints/axis Max. velocity Operating ranges accuracy 

Vertical 500 mm/s ± 700 mm ± 0.1 mm 

Horizontal 500 mm/s ± 700 mm ± 0.1 mm 

Pitch 40 rpm ± 30° ± 0.0012 º 

Yaw 81 rpm ± 360° ± 0.00243 º 
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3.2 Method Description 

The proposal approach is inspired on the uncalibrated techniques for 

transferring data between two views and the search of non- feature-based 

methods for matching correspondence points. For instance, the epipolar 

geometry is the most extended uncalibrated technique, but it is the feature-

based solution. On the contrary, planar projective transformation does not 

require features matching after the homography is computed. The planar 

projective transformation assumes the transformation has been done within 

two views and a plane into the scene. In some cases, the scenes might be 

considered as planar scenes, but most of natural scenes consist of several 

planes and the objects into the scene are considered non-planar objects. 

Let us assume that 𝐻𝜋 is the homography induced by the plane π. Then, 

suppose that when mapping 3D-space points between the two views, some of 

these points are off the plane π. In such a case, the homography generates a 

virtual parallax; a schematic illustration of this assumption is displayed in 

Figure 3.2. The 3D point 𝑋 is off the plane π, thus the ray through 𝑋 

intersects π at some point  𝑋𝜋. These two 3D points are coincident in the first 

view at point 𝑥, but in the second view, the images of 𝑋 and  𝑋𝜋 are not 

coincident. The vector between �̂�′ and 𝑥′ is the parallax relative to 𝐻𝜋. 

 

 

Figure 3.2 Plane induced parallax. 

Assume from the scene above that the two points 𝑋1 = 𝑋𝜋 and 𝑋2 = 𝑋 are 

on plane 𝜋1 and 𝜋2, respectively, and 𝐻𝜋1 and 𝐻𝜋2are homographies induced 
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by the corresponding planes. If the ray through each 3D-space point is not 

coincident neither in the first view nor in the second view, then the images of 

the points are 𝑥′1 = 𝐻𝜋1𝑥1 and 𝑥′2 = 𝐻𝜋2𝑥2 (see Figure 3.3). 

Along this idea, suppose that scenes composed by n-objects could be 

approximated to n-planes and consequently n-homographies could be 

computed. This assumption should be prudently considered, because objects 

with large relief or positioned closed to the sensory system, certainly are 

explained with more than one plane. Under these circumstances, a unique 

homography approximation of an object also generates a virtual parallax. In 

this case, let assume the object is virtually intersected by m-planes, all 

positioned in front and parallel to the cameras. Then, each of these 

intersections generates m-silhouettes of the object shape. Hence, each 

homography induced by these virtual m-planes is able to map its 

corresponding intersection, the m-silhouettes of the object.  

 

 

Figure 3.3 Plane projective transformation induced by two planes 𝛑𝟏 and 𝛑𝟐 
on a scene. 

The approach of this work proposes an alternative 3D world 

parametrization by virtually discretizing it into n-planes and thus, computing 

a depth-dependent homography lookup table. These n-planes are parallel to 

the sensory system and sequentially positioned in front of it. Taking 

advantage of the depth information available from the ToF camera, the 

distance of each n-plane from the camera is known. A 3D-space plane (�̃�𝑖) in 
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the discretizing process is represented as a volumetric unit. This unit is 

composed by 3D points hold within a depth differential section, denoted as 

differential of depth of a plane (∆𝑑𝑜𝑝). The dimension of ∆𝑑𝑜𝑝𝑖 is directly 

proportional to the distance from the plane �̃�𝑖 to the sensory system. For 

instance, the closer the object is to the vision system, the larger the object 

relief is in comparison with the extent of the image, the higher the number of 

n-planes is for explaining the object and the smaller the ∆𝑑𝑜𝑝𝑖 of each i-plane 

is. Henceforth, the matching feature for the image registration method is the 

distance from 3D-space points to the ToF camera (𝑑𝑖). A plane �̃�𝑖 is 

approximated from a cluster of 3D points if and only if, its induced 

homography maps their images points from one view to another within errors 

less than 3 pixels on the RGB frame. The distance between planes (∆𝑑𝑏𝑝) 

should be approximately equal to zero. Figure 3.4 shows an illustration of the 

discretizing process and the depth-dependent homography lookup table 

formation. 

 

 

Figure 3.4 Formation of the depth-dependent homography lookup table.  

In terms of mathematic formulation, in planar projective transformation, 

every possible virtual plane i-plane of the ToF depth measurements {𝑑𝑖} of a 

scene should induce one homography {𝐻𝑖}. Nevertheless, it has been proven 

that under certain configurations of the scene or the sensory rig, a single 
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homography is an exact transformation of the 3D scene (Hartley and 

Zisserman 2003). This is the case of planar scenes or for small (null) baseline 

images pairs. When considering planar scenes, it does not denote a scene 

composed with planar objects; it refers a scene where the objects have small 

relief compared with the extent of the image. On the other hand, as it is 

pointed out by Sagüés (2006), this condition is not strictly necessary when 

considering image pair of nearly null or small baseline, where a 3D-space 

scene might be explained by means of a single homography. These two 

concepts are the constraints for the proposed method of this work when 

computing the entries of the homographies lookup table. Thus, the dimension 

of the range of depth clusters for each homography {𝐻𝑖} on the Hlut is in 

essence, the representation of these two constraints. 

For computing the depth-dependent Hlut, 104 images of a known pattern 

grid were captured. In order to avoid unreliable depth measures because of 

dark objects, the pattern grid is a 3 × 5 white-red chessboard with squares of 

50 mm of side. The effective pattern is the inner 2x3 grid, thus, the 12 control 

points on the board {𝑋𝑖} are 12 image control points on each view 

C{𝑥𝑔𝑗
𝑇𝑜𝐹} ↔  {𝑥𝑔𝑗

𝑅𝐺𝐵}; 𝑗 = 1…𝑀,𝑀 = 12.  Then { 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹} and 

{ 𝑥𝑐𝑝𝑖
𝑅𝐺𝐵}; 𝑖 = 1…𝑁, 𝑁 = 104 are N samples of the 12 grid points, 

where 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹  ∋ {𝑥𝑔𝑗

𝑇𝑜𝐹} 𝑎𝑛𝑑   𝑥𝑐𝑝
𝑖
𝑅𝐺𝐵  ∋ {𝑥𝑔𝑗

𝑅𝐺𝐵}. These points are 

extracted from RGB images and grayscale amplitude images, these last ones 

provided by the ToF camera. From this point forward, when referring to 

ground control points, it is assumed that it is referred to 

 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹 𝑎𝑛𝑑   𝑥𝑐𝑝𝑖

𝑅𝐺𝐵. 

The board was positioned at several distances in front of the sensory 

system and approximately parallel to it. The 104 image samples are different 

poses of the pattern board, where the pattern was sequentially positioned at 

distances from 400 mm to 2300 mm from the board to the sensory system. 

The distance from the pattern to the sensory system is calculated by using the 

depth information enclosed in the inner 2 × 3 grid. This region is extracted 

for computing the mean depth and subsequently, the distances  𝑑𝑖 from the 

board to the system. An example of image pairs from the RGB image and the 

ToF amplitude, and their ground control correspondence points are shown in 

Figure 3.5(a). The 3D view of the region enclosed in the inner grid of the 

board is displayed in Figure 3.5(b). Notice that both images and the depth 

information have been previously undistorted before extracting the ground 

control points. 
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(a) 

 
(b) 

Figure 3.5 Samples of images pair of the pattern grid board. (a) RGB and 

ToF amplitude images. (b) The depth map representation in the Cartesian 

system of the inner 2 × 3 grid. 

The homography computation was carried out by following the 

normalized direct linear transform (DLT) algorithm and the RANSAC 

method for robust model approximation in presence of outliers (Hartley and 

Zisserman 2003, Torr and Zisserman 2000). The initial step was the 

calculation of sets of homographies by gathering combinations of ground 

control points of the N image sample  { 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹} 𝑎𝑛𝑑 { 𝑥𝑐𝑝𝑖

𝑅𝐺𝐵}; 𝑖 =

1…𝑁,𝑁 = 104. Only homographies capable of mapping points within 

absolute geometric error per point less than 2 pixels on any image axis (u, v) 

are selected. However, in order to avoid error misleading because of the 

outliers on the selection of the grid control points, the overall absolute error is 

used. The overall error is computed with the sum of the error points, and since 
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the number of grid points is 12 and the points has two image axis (u, v), the 

maximum overall error is 48. This error is measured when mapping points 

from the ToF to the RGB frame and it is the absolute difference between the 

estimated points and the ground control points. The sets of points mapped are 

denoted as  { 𝑥𝑚𝑎𝑝𝑖
𝑇𝑜𝐹} 𝑎𝑛𝑑 { 𝑥𝑚𝑎𝑝𝑖

𝑅𝐺𝐵} and the grid points 

as { 𝑥𝑔𝑚𝑖
𝑇𝑜𝐹} 𝑎𝑛𝑑 { 𝑥𝑔𝑚𝑖

𝑅𝐺𝐵}, respectively. Thus, the absolute error of the 

estimated sample is: 

𝜖 = |𝑥𝑐𝑝𝑖
𝑅𝐺𝐵 − 𝑥𝑚𝑎𝑝𝑖

𝑅𝐺𝐵| 

(3.1)  
𝑜𝑣𝑒𝑟𝑎𝑙𝑙
⇒    ∑|𝑥𝑔𝑗

𝑅𝐺𝐵 − 𝑥𝑔𝑚𝑗
𝑅𝐺𝐵|

12

𝑗=1

< 48 

The next step is to remove the duplicated homographies, which involves 

the utilization of the transformation matrices computed by the same 

combination of control points  { 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹/𝑅𝐺𝐵}. At this stage, a list of potential 

homographies is achieved. Each of them is related to a list of its properly 

mapped samples  { 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹/𝑅𝐺𝐵

𝐻
→ 𝑥𝑚𝑎𝑝𝑖

𝑇𝑜𝐹/𝑅𝐺𝐵}.  

Since the distance 𝑑𝑖 from the board to the sensory system at any sample 

is known, a list of minimum and maximum working distances related to each 

homography is created such that  (𝑑𝑚𝑖𝑛𝑖 , 𝑑𝑚𝑎𝑥𝑖). The final step of the 

procedure is the selection of the optimal entries for the homography lookup 

table such that  𝐻𝑙𝑢𝑡 ∋  𝐻𝑖
𝑙𝑢𝑡, 𝑑𝑚𝑖𝑛𝑖

𝑙𝑢𝑡, 𝑑𝑚𝑎𝑥𝑖
𝑙𝑢𝑡  𝑖 = 1⋯𝑛𝑢𝑚𝐻. For that 

purpose, some conditions should be satisfied. The Hlut should cover the 

entire depth of field [300–2300 mm] of the parametrized 3D world. The 

distance between homographies (∆𝑑𝑏𝑝 ≅ 0) should be approximately equal 

to zero, and the number of entries on the LUT should be as minimal as 

possible. Algorithm 1 shows the pseudocode for computing the depth-

dependent Hlut by using the ToF and the RGB cameras. 
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Algorithm 1 Automatic estimation of the depth-dependent homography 

lookup table 

Objective: given N samples of sets of 2D to 2D correspondence 

points { 𝑥𝑖} ↔ {𝑥′𝑖}, compute a depth-dependent homography lookup table 

𝐻𝑙𝑢𝑡 = {𝐻𝑘
𝑙𝑢𝑡} such that 𝑥′𝑖 = 𝐻𝑘

𝑙𝑢𝑡𝑥𝑖. These sets are the projected image 

points of the 3D-space points 𝑋𝑖, which are distributed at several distances 
from the system, and parallel to it. 

1: Acquire ToF and RGB images pairs of N different poses of a known 

pattern, where 𝑛𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = {1⋯𝑁}. The pattern is a white-red 
chessboard sequentially positioned in front and approximately parallel to 

the sensory system. 

2: Extract the M grid correspondence points of each image sample from the 

previous step (i) to compose the N sets 𝑥𝑖 ↔ 𝑥′𝑖. 

3: Apply the DLT algorithm to compute homographies by combining sets of 

the 2D to 2D correspondence points such that 𝑥𝑥′𝑗 = 𝐻𝑘𝑥𝑥𝑗, where 

𝑥𝑎 ∪⋯∪ 𝑥𝑛 = {𝑥𝑥𝑗: 𝑥𝑥𝑗  ∈ 𝑥𝑔  𝑤ℎ𝑒𝑟𝑒 𝑎 ≤ 𝑔 ≤ 𝑛 𝑎𝑛𝑑 𝑎, 𝑛 ∈

𝑛𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠}and 𝑥′𝑎 ∪⋯∪ 𝑥′𝑛 = {𝑥𝑥′𝑗: 𝑥𝑥′𝑗  ∈ 𝑥′𝑔 𝑤ℎ𝑒𝑟𝑒 𝑎 ≤ 𝑔 ≤

𝑛 𝑎𝑛𝑑 𝑎, 𝑛 ∈ 𝑛𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠}.  

4: Compute the absolute geometric error between the mapped points  �̂�𝑖 ,  �̂�′𝑖 
and the measured points  𝑥𝑖 , 𝑥′𝑖 such that 𝜖 = |𝑥𝑖 − �̂�|𝑖 and 

  𝜖′ = |𝑥′𝑖 − �̂�′|𝑖.  

5: Create a list of homographies that map points within error less than  

3 pixels on the highest resolution image frame. 

6: Remove duplicated homographies and define a list of potential 

homographies 𝐻𝑘. 

7: For each element of the list in (vi), compute the maximum and minimum 

working distance from the depth information of the set of 2D-2D 

correspondence points of (iii), such that 

𝑑𝑚𝑎𝑥 = max𝑎≤𝑔≤𝑛 𝑑𝑔, 𝑑𝑔 = {𝑑𝑎 ∪⋯∪ 𝑑𝑛}; 𝑎, 𝑛 ∈ 𝑛𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

and 𝑑𝑚𝑖𝑛 = min𝑎≤𝑔≤𝑛 𝑑𝑔 , 𝑑𝑔 = {𝑑𝑎 ∪⋯∪ 𝑑𝑛};  𝑎, 𝑛 ∈ 𝑛𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠.  
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8: Select the optimal transformation matrices to create the depth-dependent 

homography lookup table where 𝐻𝑙𝑢𝑡 ∋  𝐻𝑖
𝑙𝑢𝑡,  𝑑𝑚𝑖𝑛𝑖

𝑙𝑢𝑡 , 𝑑𝑚𝑎𝑥𝑖
𝑙𝑢𝑡   𝑖 =

1⋯𝑛𝑢𝑚𝐻. For that: 

a: Limit the depth of field by 𝑑𝑜𝑓ℎ𝑙𝑢𝑡 = [𝑑𝑚𝑖𝑛1
𝑙𝑢𝑡 , 𝑑𝑚𝑎𝑥𝑛𝑢𝑚𝐻

𝑙𝑢𝑡 ]. 

b: Approximate the distance between homographies to zero 

 ∆𝑑𝑏𝑝𝑖
𝑙𝑢𝑡 ≅ 0, where  ∆𝑑𝑏𝑝𝑖

𝑙𝑢𝑡 = 𝑑𝑚𝑖𝑛𝑖+1
𝑙𝑢𝑡 − 𝑑𝑚𝑎𝑥𝑖

𝑙𝑢𝑡. 

c: Minimize the elements of the lookup table min𝑎≤𝑛𝑢𝑚𝐻≤𝑛 𝑛𝑢𝑚𝐻. 

3.3 Validation of the Depth-dependent Homography Lookup 

Table Approach 

The transformation from the ToF to the RGB frame was considered for the 

method evaluation. Since the method is depth-feature-based, the procedure 

input is the depth information provided by the ToF camera. The uncertainty 

because of the difference between the cameras resolution is a crucial issue for 

evaluating the proposed registration method. For any ToF point there are 

several potential correspondence points on the RGB frame. Consequently, the 

discrepancy between the control points on the RGB image coordinates 

  { 𝑥𝑐𝑝𝑖
𝑅𝐺𝐵} and the estimated points { 𝑥𝑚𝑎𝑝𝑖

𝑅𝐺𝐵} for the 104 image samples 

was analysed. These mapped points are the registered points from the control 

points on the ToF image coordinates { 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹}. The pseudocode for mapping 

points from the ToF to the RGB frame by using the depth-dependent Hlut 

method is presented in Algorithm 2.  

For quantitative assessments of the discrepancy between the control points 

on the RGB image coordinates   { 𝑥𝑐𝑝𝑖
𝑅𝐺𝐵} and the estimated points 

{ 𝑥𝑚𝑎𝑝𝑖
𝑅𝐺𝐵}, the Accuracy of the Undistorted Image Coordinates (Eu) (Salvi, 

Armangué and Batlle 2002), detailed in Equation (3.2), and the geometric 

error distribution were evaluated. Figure 3.6(a) and Figure 3.6(b) show the 

geometric error on (uv)-axis and the distance error of the estimated points, 

while the distribution of the error on the u-axis and v-axis are illustrated in 

Figures 3.6(c) and 3.6(d), respectively. Table 3.2 summarizes the results of 

the error distribution. 
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Algorithm 2 Procedure for mapping points between two views (ToF → 

RGB) based on the depth-dependent Hlut. 

1: Extract the mean depth of ROI of the control points 𝑑𝑖
𝑝𝑡

. 

2: Find the corresponding entry k on the Hlut that suits 𝑑𝑖
𝑝𝑡

 such 

that  𝑑𝑚𝑖𝑛𝑘
𝑙𝑢𝑡 ≤ 𝑑𝑖

𝑝𝑡 ≤ 𝑑𝑚𝑖𝑛𝑘
𝑙𝑢𝑡. 

3: Compute the transformation of the points by applying the 

homography 𝐻𝑘
𝑙𝑢𝑡 such that 𝑥𝑚𝑎𝑝𝑖

𝑅𝐺𝐵 =  𝐻𝑘
𝑙𝑢𝑡 𝑥𝑐𝑝𝑖

𝑇𝑜𝐹. 

 

𝐸𝑢 =
1

𝑛
∑√( 𝑥𝑚𝑎𝑝𝑥𝑖

𝑅𝐺𝐵 −  𝑥𝑐𝑝𝑥𝑖
𝑅𝐺𝐵)

2
+ ( 𝑥𝑚𝑎𝑝𝑦𝑖

𝑅𝐺𝐵 −  𝑥𝑐𝑝𝑦𝑖
𝑅𝐺𝐵)

2
𝑛

𝑖=1

 (3.2)  

The results in Figure 3.6 along with the data in the Table 3.2 indicate that 

the error deviation in the v-axis is higher than the error in u-axis. Since the 

cameras are vertically aligned, such behaviour was expected. Regarding the 

errors distribution, the standard deviation in v-axis is  𝜎𝑣 = 3.19, and at least 

the 66% of the estimated data has an absolute error ≤ 3 𝑝𝑖𝑥𝑒𝑙𝑠 (see Figure 

3.6(d) and Table 3.2). Only the 8.5 % of the data has an absolute error higher 

than 6 pixels. The maximum absolute error is 20 pixels. For the error 

distribution in the u-axis, the maximum error is ±8 pixels and the standard 

deviation is 𝜎𝑢 = 2.78. Most of the absolute error is ≤ 3 𝑝𝑖𝑥𝑒𝑙𝑠, exactly the 

83% of the data, and only the 0.9% of the absolute error is higher than 6 

pixels. In practice, errors which are three or more times the standard 

deviation away from the mean, could be considered as outliers and should be 

removed (Osborne and Overbay 2004). In this case 𝑜𝑢𝑡𝑙𝑖𝑡𝑒𝑟𝑠𝑠𝑎𝑚𝑝𝑙𝑒 =
[2,41,42,43] are the detected samples with outliers. In order to evaluate the 

influence of these outliers, the image samples 𝑜𝑢𝑡𝑙𝑖𝑡𝑒𝑟𝑠𝑠𝑎𝑚𝑝𝑙𝑒 were removed, 

and the errors were calculated once again. These results are also included in 

Table 3.2.  
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(a) (b) 

 

(c) (d) 

Figure 3.6 Geometric error evaluation. (a) Geometric error. (b) Distance 

error. (c) Error distribution in u-axis. (d) Error distribution in v-axis. 

The results of the error distribution for the outliers removal shows an 

improvement in the accuracy of the depth-dependent Hlut approach with 

respect to the previous analysis, with a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 =

[0.33, 0.44] and a standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [2.1, 2.9] on pixel 

coordinates, in contrast with the obtained values when using the entire set of 

104 image samples, with a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [0.33, 1.11] and a 

standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [2.1, 4.6] on pixel coordinates. In addition to 

the geometric error evaluation, the normalized RMSE of the discrepancy 

between the control points on the RGB image coordinates   { 𝑥𝑐𝑝𝑖
𝑅𝐺𝐵} and the 
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estimated points { 𝑥𝑚𝑎𝑝𝑖
𝑅𝐺𝐵} was evaluated as well. In the Figure 3.7, the 

results of the normalized RSME on each pattern board is show and the overall 

error is 𝑁𝑅𝑆𝑀𝐸 = 0.079 and 𝑁𝑅𝑆𝑀𝐸 = 0.1146 for the image samples 

without considering image samples 𝑜𝑢𝑡𝑙𝑖𝑡𝑒𝑟𝑠𝑠𝑎𝑚𝑝𝑙𝑒. In this case the influence 

of outliers is more visible, because the accuracy of the method is improved in 

31.1 %. 

 

 

Figure 3.7 Normalized RMSE on RGB image coordinates vs the angle of the 

board plane w.r.t. the image plane. 

In general, when analysing the error within the RGB frame (2448×2050 

pixels), the relative errors are significantly low. An error of 3 pixels 

represents a relative error of 0.15% over the RGB image, and for the 20 

pixels deviation, a relative error of 0.9% is reached. Though these values are 

evidently small, yet it is something to be concern of. Several conditions 

might introduce error to the method, for instance: 

1. The outliers in the selection process of the correspondence control 

points.  

2. The presence of noise in the depth measurements.  

3. The implicit error of the transformation matrices.  

In order to evaluate the influence of the depth variations on the proposed 

method, the depth measurements of the effective grid pattern were analysed. 

Two groups of data were compared: the raw depth and the filtered depth. For 

smoothing the depth data, the denoising algorithm proposed in (Buades, Coll 
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and Morel 2005) was adopted, and Figure 3.8 shows the results of the 

analysis. In Figure 3.8(a) the mean depth and the depth boundaries of the 

pattern board acquired in the 104 image samples are shown. The raw depth 

has higher data variance, though the mean of the raw and filtered data are 

nearly the same, as it is illustrated in Figure 3.8(b). The impact in the overall 

error because of the object distance and the object depth variations are 

illustrated in Figure 3.8(c) and 3.8(d). According to these results, neither the 

mean distance nor the maximum depth variations have direct correlation to 

the error’s scope. Therefore, it is possible to conclude that the error is not 

reliant on the depth variations within 25 mm, corresponding to the mean 

maximum depth variations of the raw data.  

 

 

(a) (b) 

 

(c) (d) 

Figure 3.8 Depth measurements evaluation (a) Distances from the pattern 

board to the cameras. (b) Differential value of raw and filtered data. (c) 

Samples mean depth vs overall error. (d) Samples maximum variation vs 

overall error. 
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The flawed points selected as correspondence control points could be the 

most frequent problem for introducing error on the estimated data. 

Consequently, instead of a point to point evaluation, entire regions of the 

images with higher errors were analysed. Figures 3.9 and 3.10 show the 

evaluation results of two images of the pattern board; in one image the board is 

positioned at 527 mm and in the other at 891 mm. First, a region of interest 

(ROI) in the ToF image is selected. Then, the depth measures of the ROI are 

sorted in ascending order, and clusters of 12 mm of standard deviation are 

created 𝑐𝑗 = {𝑥𝑖
𝑇𝑜𝐹}. Finally, the mean depth  𝑑𝑚𝑗

𝑐 of each of these clusters 

( 𝑐𝑗) is matched with a suitable distance entry k on the Hlut, such 

that  𝑑𝑚𝑖𝑛𝑘
𝑙𝑢𝑡 ≤ 𝑑𝑚𝑗

𝑐 ≤ 𝑑𝑚𝑎𝑥𝑘
𝑙𝑢𝑡. Thus a homography  𝐻𝑘

𝑙𝑢𝑡is designated to 

each 𝑐𝑗, and the selected ROI is mapped as ∀ 𝑐𝑗: {𝑥𝑚𝑎𝑝𝑖
𝑅𝐺𝐵} = 𝐻𝑘

𝑙𝑢𝑡{𝑥𝑖
𝑇𝑜𝐹}. 

In the images displayed in Figures 3.9(a-b) and 3.10(a-b), the mapped points 

are marked with dots. The colour of the dots indicates the entry k of the 

homographies  𝐻𝑘
𝑙𝑢𝑡 used to transfer the data. The composition of the ROI from 

the estimated points on the RGB image and the ROI of the selected points on 

the ToF are illustrated in Figures 3.9(c-d) and 3.10(c-d). 

Since the RGB and ToF images are acquired from distinct sources and 

there is a large difference between their image resolutions, the properties of 

the sensed objects tend to be different. The most relevant effects are 

perceived in the borders of the textured objects and in the objects dimensions. 

Let us utilise the image capturing of the pattern board by way of illustration 

(see Figures 9 and 10). The RGB high resolution camera acquisition sharpens 

the squares borders, while the capturing by the low resolution ToF camera 

unsharpens the squares borders of the pattern. Thus, the squares on the 

composed ROI from the mapped points on the RGB image are slightly 

blurred.  

Additionally, a great number of elements can affect the response of the 

ToF camera, for instance the rays emitted from the sensor that lie on the 

object’s edge tend to be less accurate because they are affected by the multi-

path interferences. Consequently, the objects dimensions on the ToF image 

are not always alike compared with the ones on the RGB image. In Figure 

3.10, some of these issues are illustrated. As an example, the pattern board is 

smoothly rotated with respect to the optical axis of the cameras. This rotation 

is only perceived by the RGB camera. 
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(a) (b) 

 

(c) (d) 

Figure 3.9 Image sample 49 - pattern board positioned at 527 mm. (a) Top: 

selected ROI on the ToF image. Bottom: zoom of the selected points on the 

ToF image. (b) Top: mapped points on the RGB image. Bottom: zoom of the 

estimated points on the RGB image. (c) Top: ROI of the ToF image. Bottom: 

Composition ROI from the mapped points on the RGB image. (d) Colour 

depth map. 
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(a) (b) 

 

(c) (d) 

Figure 3.10 Image sample 25-pattern board positioned at 891 mm. (a) Top: 

selected ROI on the ToF image. Bottom: zoom of the selected points on the 

ToF image. (b) Top: mapped points on the RGB image. Bottom: zoom of the 

estimated points on the RGB image. (c) Top: ROI of the ToF image. Bottom: 

Composition ROI from the mapped points on the RGB image. (d) Colour 

depth map. 
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Regarding the large difference in the cameras resolution, there are several 

unmatched points (~10–11 pixels) between adjacent estimated points on the 

RGB image. Nonetheless, the results of the proposed method show that the 

region composed of the estimated points on the RGB image and the selected 

region on the ToF image are very close to each other, and proportionally 

registered.  

3.4 High Resolution Colour Depth Map Estimation 

This section is devoted to the evaluation of the capability of the proposed 

image registration method, for computing high resolution colour depth maps. 

For that purpose, an initial procedure was introduced and a visual assessment 

was obtained. . The procedure is based on the results of the image registration 

obtained by means of the depth-dependent Hlut method. This proposal 

combines the homography labelled mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵and a nearest neighbour 

algorithm for the RGB unmapped pixels classification. The pseudocode is 

detailed in Algorithm 3.  

 

Algorithm 3 Procedure for mapping points between two views  

(ToF ↔ RGB) based on the depth-dependent Hlut approach. 

1: Select a ROI in the ToF image for data registration or select the entire 

image. 

2: Sort in ascending order the depth measures of the selected region and 

create Q clusters with 12 mm of standard deviation such that  

 𝑐𝑗 = {𝑥𝑖
𝑇𝑜𝐹}, 𝑗 = 1⋯𝑄 and compute the mean depth of each 

cluster 𝑑𝑚𝑗
𝑐. 

3: Find the corresponding distance entry k on the Hlut that suits the mean 

depth of each cluster, such that 

 ∀ 𝑐𝑗: {𝑥𝑚𝑎𝑝𝑖
𝑅𝐺𝐵} = 𝐻𝑘

𝑙𝑢𝑡{𝑥𝑖
𝑇𝑜𝐹} |  𝑑𝑚𝑖𝑛𝑘

𝑙𝑢𝑡 ≤ 𝑑𝑚𝑗
𝑐 ≤ 𝑑𝑚𝑎𝑥𝑘

𝑙𝑢𝑡, where 

𝑗 = 1⋯𝑄 and1 ≤ 𝑘 ≤ 𝑛𝑢𝑚𝐻. 

4: Compute the points transformation from the ToF to the RGB images by 

using the homography lookup table { 𝐻𝑘
𝑙𝑢𝑡} designated in the previous 

step. 
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5: Create a labelled mask (𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵)corresponding to the RGB frame, 

where the values for the mapped points are the k entries of { 𝐻𝑘
𝑙𝑢𝑡}, 1 ≤

𝑘 ≤ 𝑛𝑢𝑚𝐻, and the values for the unmatched points are zero. 

6: Approximate the unmatched pixels of the labelled mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 by 

applying the nearest neighbour classification algorithm. 

7: Compute points transformation from RGB to ToF images such 

that 𝑥𝑚𝑎𝑝𝑖
𝑇𝑜𝐹 = 𝐻𝑘

𝑙𝑢𝑡−1𝑥𝑖
𝑅𝐺𝐵. 

In Figures 3.11 and 3.12, the results of computing high resolution colour 

dense maps by using the procedure listed in Algorithm 3 are shown. The 

procedure was applied on image samples 25 and 49, which are illustrated in 

Figures 3.9 and 3.10 in section 3.3. 

 

(a) (b) 

Figure 3.11 Image sample 49. (a) Top: mapped points on the ToF image. 

Bottom: points of the ROI on the RGB image. (b) High resolution colour 

depth map. 
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(a) (b) 

Figure 3.12 Image sample 25. (a) Top: mapped points on the ToF image. 

Bottom: points of the ROI on the RGB image. (b) High resolution colour 

depth map. 

3.5 Conclusions 

In this chapter, a new approach for colour depth map registration was 

presented. In contrast with the standard calibration method for transforming 

the ToF 3D-space coordinates to the RGB camera frame, the presented 

approach relies on planar projective transformations and uncalibrated 

techniques. In this way, the 3D world is parametrized and discretized in n-

planes. Hence a discretized region corresponding to an i-plane, where 

𝑖 = 1⋯𝑛, is explained with a unique homography of a lookup table  { 𝐻𝑖
𝑙𝑢𝑡}, 

which is dependent on the depth measured from the i-plane to the ToF 

camera.  

The depth map registration obtained by means of the standard calibration 

method provides a low resolution colour depth map. In order to achieve high 

resolution depth maps, the depth values are usually extrapolated. This 

normally leads to the over smoothing of objects’ edges. Since this method 

depends on the value of depth measurements for the data registration, it is 

more sensitive to noise and depth filtering. In consequence, the data filtering 

could decrease the accuracy. On the contrary, in the depth-dependent Hlut 

method a range of depth values is considered for transferring the clusters of 
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data from the ToF to the RGB image frame. Therefore, small variations on 

depth measurements are not a critical issue for the proposal approach.  

Regarding the high resolution colour depth maps, the proposal method 

provides a labelled mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 on the RGB image coordinate, and the 

values of the mask correspond to the homography  { 𝐻𝑖
𝑙𝑢𝑡} of the mapped 

points {𝑥𝑚𝑎𝑝𝑖
𝑅𝐺𝐵}. Hence, the unmapped points on the RGB image 

coordinates could be estimated by means of the inverse homography and the 

labelled homography mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵, with the implementation of 

sophisticated, smart and guided algorithms to interpolate the depth 

information. For instance, in this chapter a neighbourhood classification 

algorithm was presented to map the entire RGB image and to compute a high 

resolution colour depth map. The proposed approach leads to a non-loss of 

the original colour information (2448×2050 pixels) and to the computation of 

high resolution colour dense maps under near real-time conditions.  

A methodology and the pseudocode for computing the depth-dependent 

Hlut are introduced, as well as the pseudocode for implementing the method. 

On the other hand, the accuracy of the method has been evaluated and the 

method implementation has been validated within a large set of image 

samples. The contributions of this section and the method proposed in this 

Thesis are presented in the journal publication (Salinas et al. 2015). 
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Chapter 4 

Comparison of Methods for Depth Map 

Registration 

4.1 Introduction 

The most extended technique for computing the colour depth map 

registration is the standard calibration method, as it was studied in the state-

of-the-art presented in Chapter 2. This method relies on the computation of 

the external and internal cameras parameters, and the homogenous 

transformation between RGB and ToF cameras. Then, the 3D depth 

measurements from the ToF camera are used to back-project points on the 

ToF pixels coordinates to the RGB pixel coordinates. For the depth-

dependent Hlut image registration approach, the depth measurements are 

used to select an homography in the lookup table { 𝐻𝑖
𝑙𝑢𝑡}, where each entry of 

the lookup table is related to a range of depth values. Evidently, in both cases, 

the accurate acquisition of depth estimations is a key issue for computing a 

satisfactory registration procedure. Several research have shown that the 

noise in the depth measurements acquired by the ToF cameras is a persistent 

problem (Chiabrando et al. 2009, Foix et al. 2011), and a crucial issue when 

evaluating the depth map registration results. Therefore, the methods 

evaluation should be focused on analysing the capability of registration 

methods for properly overcoming the noise, while avoiding the generation of 

misalignment problems. For the ToF cameras depth estimations, a modulated 



 

48 Comparison of Methods for Depth Map Registration 

 

 

 

infrared light is emitted from an internal lighting source. The light is reflected 

by objects in the scene and travels back to the sensor. Then the time of flight 

between the camera and the object is measured for each of the sensor’s pixel, 

by calculating the phase delay between the emitted and the received 

wavelength. Systemic and non-systemic errors are presented in depth 

estimations of these cameras. The quality of the measurements relies on the 

sensor hardware, the sensor configuration, the objects albedo, the objects 

shape and edges, the temperature, and others. Some interesting works have 

investigated the source of the errors and have presented solutions to minimize 

the problem (Chiabrando et al. 2009, Guomundsson, Aanaes and Larsen 

2007). The systematic errors can be reduced by a calibration process and the 

non-systematic errors with a filtering technique, as it is summarized in (Foix 

et al. 2011). Therefore, the methods comparison proposed in this Chapter is 

committed to the evaluation of the standard calibration method and the depth-

dependent Hlut approach from the perspective of their response to the noise 

in the depth estimations.  

The methods comparison is addressed through two case studies. In the first 

case, the problem of depth map registration of noisy depth estimation was 

evaluated. For that matter, a white-black chessboard was chosen as a target 

for reproducing noise in the depth measurements. It is known that dark 

objects produce errors in the depth measurements. This is because dark 

objects absorb the IR radiation. Consequently, the intensity of reflected light 

from the objects is lower than the emitted, what produces that some of them 

never reach back to the sensor, and that others are poorly detected. In the 

second case, a procedure for minimizing the noise in the depth estimations 

was adopted, and the evaluation of the methods was performed on the filtered 

data. While a detailed description of existing techniques is beyond the scope 

of this work, two representative methods for noise minimization and surface 

smoothing were implemented: the Bilateral Filtering (Tomasi and Manduchi 

1998) and the Non-local Means Filter (NL-means) (Buades et al. 2005). The 

bilateral filtering, which is one of the most extended techniques for noise 

removal, is a neighbourhood smoothing filter, characterized as an edge 

preserving method. On the other hand, the NL-means is based on a non-local 

averaging of all pixels of the data. 

This section involves the computation and the accuracy evaluation of the 

standard calibration parameters and the comparison of the depth map 

registration results provided the by the two methods: the standard calibration 



 

Standard Camera Calibration Computation and Evaluation 49 

 

parameters and the depth dependent Hlut. The comparison process is 

addressed by analysing three possible scenarios: 

 Ideal data: noise free depth information of the scenes. 

 Noisy depth information of the scenes. 

 Filtered noisy depth information of the scenes. 

In order to compute a quantitative assessment of the methods results, the 

normalized Root Mean Square Error (NRMSE) was adopted. The use of the 

RMSE over the Mean Absolute Error has been studied in several works (Chai 

and Draxler 2014). Although both methods are sensitive to outliers, the 

RMSE has several advantages. For instance, it satisfies the distance function 

metric requirement of the triangle inequality, and it does not use absolute 

values which is an advantage to calculate the gradient or sensitivity of the 

sample with respect to certain model parameters. It is also appropriated for 

error that follows normal distribution. 

The data fusion by means of the standard calibration technique was carried 

out by implementing the method described in (Park et al. 2011), where the 

depth measurements are used to back-project the 3D world points to the 2D 

points on the RGB image. In the case of the depth dependent Hlut approach, 

the depth map registration was done by following the procedure described in 

Table 3.3 (see section 3.3). 

4.2 Standard Camera Calibration Computation and 

Evaluation 

The standard calibration of the sensory rig described in section 3.3.1, was 

carried out with the help of the Matlab Camera Calibration Toolbox (Bouguet 

2008), which provides the intrinsic and extrinsic camera parameters. A 

thoroughgoing calibration methods evaluation is beyond the scope of this 

section. However, during last decades, several researchers have dedicated 

their efforts on that matter, such is the case of (Salvi et al. 2002), where the 

authors presented an extensive evaluation of several calibration methods. The 

results of this comparison show that of the Tsai’s algorithm (Tsai 1987), 

surpasses the achieved accuracy by other methods. However this method 

requires an accurate 3D measurement, which normally involves a large 

amount of elaborated training data and time consuming setups. In a 

subsequent work (Wei and Cooperstock 2005), the accuracy of the Tsai’s 

method was compare with the planar calibration approach introduced by 

(Zhang 2000). The evaluation of these two methods pointed out the 
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advantages of the Zhang’s method, which does not require complex 

measuring procedures or specialized equipment. In order to avoid the noise in 

pixel coordinate, the authors propose the use of a large number of training 

points, easily achievable. The Matlab Calibration Toolbox is a very well-

known tool in the Computer Vision Community. This toolbox is inspired in 

Zhang’s method, which has been validated in several researches, and has 

been proven to be a flexible and suitable method for calibrating dynamic 

scenes. 

For the cameras calibration procedure, 62 image samples of a black-white 

chessboard were acquired. These image samples are composed by an RGB 

image and a ToF amplitude image. For the image samples acquisition, the 

pattern board was located at different poses and orientations, and at different 

distances from the sensory system. Then, 30 correspondence ground truth 

points were selected from each image pairs. Consequently, 1860 training 

points for each camera were provided, a sufficient number of points for the 

Zhang’s algorithm to achieve satisfactory accuracy (Wei and Cooperstock 

2005). For evaluating the accuracy of the calibration parameters results, two 

of the most commonly used criteria were followed: the Accuracy of the 

Distorted and Undistorted Image Coordinates (Salvi et al. 2002) and the 

Normalized Calibration Error (NCE) (Weng, Cohen and Herniou 1992) 

which evaluates the accuracy in the world coordinates. 

The first criterion, the Accuracy of the Distorted and Undistorted Image 

coordinates, is a 2D measurement technique that computes the discrepancy 

on the image coordinates. For the matter of measuring these deviations two 

methods were considered. The deviations are referred to the difference 

between the ground truth control points on pixel coordinates (xpxi, ypxi) and 

the projection of the 3D control points in to the image plane (x̂pxi, ŷpxi). One 

method to measure the error is the Mean value of the geometric distance error 

(Ed,) described in Equation (4.1) and detailed in (Wei and Cooperstock 2005, 

Salvi et al. 2002).  

 

𝐸𝑑 =
1

𝑛
∑√(�̂�𝑝𝑥𝑖 − 𝑥𝑝𝑥𝑖)

2
+ (�̂�𝑝𝑥𝑖 − 𝑦𝑝𝑥𝑖)

2
𝑛

𝑖=1

 (4.1)  

The second method for measuring the 2D geometric distance error is the 

normalized Root Mean Square Error (RMSEd). The use of the RMSE over the 

Mean error for normal distribution is an appropriated solution, as it is shown 
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in (Chai and Draxler 2014). Regarding the pixel error distribution of the 

standard calibration results, the distribution information is represented in 

Figure 4.1 and in Table 4.1. For computing the RMSE, the residuals of the 

distance error of the projected points (x̂pxi, ŷpxi), and the predicted distance 

error (𝑑𝑖𝑠𝑡𝑝𝑟𝑒𝑑 = 0) are estimated. Then, the RMSEd is computed as: 

 

𝑑𝑖𝑠𝑡_𝑒𝑟𝑟𝑖 = √(�̂�𝑝𝑥𝑖 − 𝑥𝑝𝑥𝑖)
2
+ (�̂�𝑝𝑥𝑖 − 𝑦𝑝𝑥𝑖)

2
 

(4.2)  

𝑅𝑀𝑆𝐸𝑑 = √
1

𝑛
∑[𝑑𝑖𝑠𝑡_𝑒𝑟𝑟𝑖 − 𝑑𝑖𝑠𝑡𝑝𝑟𝑒𝑑]

2
𝑛

𝑖=1

;  𝑑𝑖𝑠𝑡𝑝𝑟𝑒𝑑 = 0 

The second criterion calculates the accuracy with respect to the 3D camera 

coordinates. This technique overcomes the sensitivity to: the image 

resolution, the object-to-camera distance and the field of view of the camera, 

by normalizing the discrepancy between the estimated and the observed 3D 

points with respect to the area that each back-projected pixel covers at a 

given distance from the camera. Let (�̂�𝑖 , �̂�𝑖, �̂�𝑖, ) be the 3D point on the 

camera coordinates which is estimated by the back-projection from the 2D 

pixels of the control points on the image coordinates, and (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) the 

ground truth observations of the 3D world points on the camera coordinates. 

Since the observed 3D points were calculated with respect the ToF camera 

coordinate system, the NCE was computed only on this coordinates system. 

Then the NCE is defined as: 

𝑁𝐶𝐸𝑇𝑜𝐹 =
1

𝑛
∑[

(�̂�𝑖𝑇𝑜𝐹 − 𝑋𝑖)
2
+ (�̂�𝑖𝑇𝑜𝐹 − 𝑌𝑖)

2

�̂�𝑇𝑜𝐹𝑖
2 (𝑓𝑢𝑇𝑜𝐹

−2 + 𝑓𝑣𝑇𝑜𝐹
−2 )

12

]

1
2𝑛

𝑖=1

 (4.3)  

The results of both criteria are detailed in Table 4.2 Figures 4.2 and 4.3 

show the results of the first criterion, while in Figure 4.4, the error computed 

with the second criterion are presented. 
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(a) (b) 

 

(c) (d) 

Figure 4.1 Distribution of the geometric error on the pixels coordinates. (a) 

u-axis error on RGB images. (b) v-axis error on RGB images. (c) u-axis error 

on ToF amplitude images. (d) v-axis error on ToF amplitude images. 

Table 4.1 Distribution of the Absolute Pixel Error. 

Absolute Error 

Distribution [pixels] 

Error Percentage [%] 

RGB camera ToF Camera 

u-axis v-axis u-axis v-axis 

𝒆𝒓𝒓𝒐𝒓 ≤ |𝟎. 𝟑| 85.2 92.1 98.1 99.9 

|𝟎. 𝟑| < 𝒆𝒓𝒓𝒐𝒓 ≤  |𝟎. 𝟔| 13.4 6.5 1.9 0.1 

|𝟎. 𝟔| < 𝒆𝒓𝒓𝒐𝒓 ≤  |𝟏. 𝟎| 0.7 0.6 0 0 

|𝟏. 𝟎| < 𝒆𝒓𝒓𝒐𝒓 ≤  |𝟏. 𝟐| 0.3 0.4 0 0 

𝒆𝒓𝒓𝒐𝒓 >  |𝟏. 𝟐| 0.4 0.4 0 0 
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(a) 

 
(b) 

Figure 4.2 Errors on the pixels coordinates. (a) RGB camera distorted error. 

(b) ToF camera distorted error. 
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(a) 

 
(b) 

Figure 4.3 Errors on the pixels coordinates. (a) RGB camera normalized 

RMSE. (b) ToF camera normalized RMSE. 

Additionally, the influence of the pose of the pattern boards to the 

performance of the calibration parameters was investigated in this section. 

For that purpose, the criterion used in (Zhang 2000) was followed. When the 

angle between objects and image plane increases, it is known that 

foreshortening makes the digitalization of objects less precise, and 

consequently an important issue to reckon with. For that purpose, the angle of 

the plane model of the pattern board with respect to the image plane was 

estimated. In Figure 4.5, the angles computation is exemplified, and in 
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Figures 4.6-4.8, the results of the angles estimation versus the accuracy errors 

are shown. For convenience, the angle is represented such as 𝛽 ∈ [−
𝜋

2
,
𝜋

2
]. 

 

 

Figure 4.4 Normalized Calibration Error on the ToF camera coordinates. 

 

Figure 4.5 Estimation of the angle of the board plane w.r.t. the image plane – 

image sample 44. 
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(a) 

 

(b) 

Figure 4.6 Errors vs the angle of the board plane w.r.t. the image plane. (a) 

RGB camera 𝑬𝒅 error. (b) ToF camera 𝑬𝒅 error. 
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(a) 

 
(b) 

Figure 4.7 Errors vs the angle of the board plane w.r.t. the image plane. (a) 

RGB camera 𝑬𝒅 error. (b) ToF camera 𝑬𝒅 error. 
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Figure 4.8 Normalized Calibration Error on the ToF camera coordinates vs 

the angle of the board plane w.r.t. the image plane. 

The obtained results pointed out the sensitivity of the RMSEd and the Ed to 

outliers. In Figure 4.2(a) and 4.3(a) two peaks denotes the presence of 

outliers in the RGB camera error computation. These large errors could be 

derived from the mismatching on the detection and selection of the control 

points. According to the data on these two Figures, the image samples 44 and 

46 are the pattern boards that produce the outliers. In both cases, the pattern 

board is posed in a way that its digitalization lays on the left bottom corner on 

the image coordinates, and the pattern board is rotated 33º and 21º with 

respect to the image plane, respectively.  

The presences of outliers on ToF images are not as clear as in the RGB 

images, and the geometric error is more likely to a normal distribution. 

However, the evaluation of the NCE reveals two peaks on the error 

measurement, which are on image samples 9 and 18. In Figure 4.9 the pixel 

coordinate error of the 1860 control points is shown. Thus, this graphics 

illustrates the presence of the outliers. The mismatching of these estimated 

points on the image coordinates for the RGB and ToF cameras are shown in 

Figures 4.10 and 4.11 respectively. In some cases, when the outliers are 

several orders larger than the other samples, the outliers’ removal is justified. 

After the outliers were removed, the errors were computed once again. Table 

4.2 presents the results of the calibration parameters accuracy results for the 

two criteria (NRMEd and Ed, and NCEToF) previously described, with the data 

set before and after the outliers removal.  
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(a) 

 

(b) 

Figure 4.9 Geometric error on the pixels coordinates. (a) Error on RGB 

images. (b) Error on ToF amplitude images. 
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Table 4.2 Accuracy of the Standard Calibration Parameters 

Calibration Error 
Camera of/on the Sensory Rig 

RGB ToF 

62 image samples 

NCEToF --- 1.997 

Ed 0.2584 0.1484 

NRMSEd 0.0075 0.0130 

Outliers removed 

NCEToF  --- 1.9022 

Ed  0.2323 0.1486 

NRMSEd  0.0054 0.0130 

 

The evaluation of the accuracy of the obtained calibration parameters 

accuracy for the sensory rig (see Section 3.1.1), analysis demonstrates a 

satisfactory performance of the computed intrinsic and extrinsic calibration 

parameters of this sensory system, with an obtained overall error of the 

discrepancy on the pixel coordinates of 𝑅𝑀𝑆𝐸 = 0.0130 for the ToF image 

coordinates and 𝑅𝑀𝑆𝐸 = 0.0075 for the RGB image coordinates, and a 

𝑁𝐶𝐸𝑇𝑜𝐹 = 1.997 on the ToF camera coordinates system.  

Regarding related investigations on the calibration accuracy issue, in (Wei 

and Cooperstock 2005) the authors tested the Zhang’s algorithm in a casual 

and in an elaborate setup, with an obtained NCE of 2.56 and 1.67, 

respectively for each setup. In comparison with the obtained results in this 

Thesis and in spite of the lack of rigorous elaboration in the calibration setup, 

the accuracy of the results of this work outperforms their obtained accuracy 

with a casual setup results in 78%. Concerning their elaborate setup, the 

obtained results in this section are only 16 % less accurate in comparison 

with their results. Regarding the accuracy on pixel coordinates, the results of 

the calibration procedure carried out in this Thesis outperform both, casual 

and elaborate setup in terms of distorted pixel coordinates error. 

 



 

Standard Camera Calibration Computation and Evaluation 61 

 

 

(a) 

 

(b) 

Figure 4.10 RGB camera potential outliers. (a) Image sample 44. (b) Image 

sample 46. 
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(a) 

 

(b) 

Figure 4.11 ToF camera potential outliers. (a) Image sample 9. (b) Image 

sample 18. 
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On the other hand, the influence of the angle of the plane with respect to 

the image plane is evident, since the larger the angle the higher the deviation 

of the 2D or 3D error estimations. In conclusion, the comparison of the 

results obtained in this research with similar researches of calibration 

parameters accuracy, indicates that the calibration parameters for the ToF and 

the RGB camera are capable of back-projecting 2D data and re-projecting 3D 

points under satisfactory accuracy conditions. Thus, the Homogenous 

Transformation (Barrientos et al. 2007) between the ToF and the RGB 

camera can be achieved with sufficient accuracy as well. 

4.3 Noise-free Data (ideal) Evaluation 

Since depth measurements are commonly affected by noise, let assume 

that the back-projection of the control points on the ToF image plane into the 

3D world coordinate are the ground truth depth measurements 

 (𝑋𝑖
𝐺𝑇, 𝑌𝑖

𝐺𝑇, 𝑍𝑖
𝐺𝑇). Hence, in the standard calibration method validation, these 

true measurements are used for computing the depth map registration under 

ideal conditions. In order to carry out a quantitative comparison between the 

registration methods, the ideal depth measurements  (𝑋𝑖
𝐺𝑇, 𝑌𝑖

𝐺𝑇 , 𝑍𝑖
𝐺𝑇) are also 

applied in the dense map registration by means of the depth-dependent Hlut 

approach. However, since these truth measurements are estimated from the 

calibration parameters, and the depth-dependent Hlut does not consider these 

calibration parameters for constructing its entries. It would be expected that 

this method generates more deviations in comparison with the standard 

calibration.  

The criterion adopted for the depth map registration accuracy evaluation is 

the Accuracy of the Distorted Image coordinates. This criterion was 

introduced in Section 4.2. In this case, the normalized RMSE evaluates the 

geometric distance error between the ground truth control points on the RGB 

image coordinates (xi𝑅𝐺𝐵 , yi𝑅𝐺𝐵) and the transferred points (x̂i𝑅𝐺𝐵, ŷi𝑅𝐺𝐵) , 

which are computed from the ground truth control points on the ToF image 

coordinates (xi𝑇𝑜𝐹 , yi𝑇𝑜𝐹). Similar to the computation of the RMSE in Section 

4.2, the residuals of the distance error of the estimates points (x̂i𝑅𝐺𝐵, ŷi𝑅𝐺𝐵), 

and the predicted distance error (𝑑𝑖𝑠𝑡𝑝𝑟𝑒𝑑 = 0) are evaluated (see Equation 

(4.2)). 

For the image registration obtained by means of the standard calibration 

method, the control points on the ToF amplitude image coordinate 
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 (xiToF , yiToF) are back-projected to the 3D world coordinates 

 (𝑋𝑖
𝐺𝑇, 𝑌𝑖

𝐺𝑇, 𝑍𝑖
𝐺𝑇)  and then, these 3D points re-projected to the RGB image 

coordinates (x̂iRGB , ŷiRGB). In the case of the depth map registration with the 

depth-dependent Hlut, the 3D ground truth measurements  (𝑋𝑖
𝐺𝑇 , 𝑌𝑖

𝐺𝑇 , 𝑍𝑖
𝐺𝑇) of 

the control points on the ToF image coordinates  (xi𝑇𝑜𝐹 , yi𝑇𝑜𝐹) were used as 

the input depth values for implementing the directives listed in Algorithm 3 

(see Section 3.2).  

Furthermore, complementary information was collected for the error 

analysis. . For instance, in Table 4.3 the geometric error distribution of the 

obtained results with the two considered methods is detailed (see page 66). 

On the other hand, in order to investigate the robustness of the calibration 

parameters, the influence of the angle of the pattern board with respect to the 

ToF image plane on the computed RMSE was evaluated. Figure 4.12 shows 

the results of this analysis. In this case, the influence of the pattern board 

orientation is not visible, since the control points selection was a procedure 

manually guided, and therefore, the ambiguities on the corner detection was 

avoided. Nevertheless, this result pointed out the capability of the obtained 

calibration parameters to deal with perspective problems. 

The obtained results for the standard calibration methods, with a 

normalized  RMSE = 0.0229, a mean value in pixel coordinates 

𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [0.45, 0.08], a standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 =

[0.75, 0.65], and a geometric distance error such as the 95.6 % is ≤ 2 𝑝𝑖𝑥𝑒𝑙𝑠, 
show that the estimated standard calibration parameters for Homogenous 

Transformation provide accurate data fusion between ToF and RGB cameras. 

On the other hand, the response of the depth-dependent Hlut is not as 

accurate as the results presented in Section 3.3, with a normalized  RMSE =
0.2935, a mean value in pixel coordinates 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−6.08, 4.33] 

and a standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [6.09, 9.78].  
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(a) 

 

(b) 

Figure 4.12 Normalized RMSE on RGB camera coordinates vs the angle of 

the board plane w.r.t. the image plane. (a) Standard calibration method. (b) 

Depth-dependent Hlut approach. 
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4.4 Raw Depth Measurements Evaluation 

For the image registration accuracy evaluation addressed in this section, 

the acquisitions of the raw depth measurements of the white-black pattern 

board poses were considered. In Figure 4.13, an illustration of the pattern 

board depth measurements is shown. As it was previously mentioned, for the 

depth map registration with the standard calibration parameters, the method 

described by (Park et al. 2011) was implemented, and for of the depth-

dependent Hlut approach, the procedure described in Algorithm 3 (see 

section 3.3) was adopted. 

 

 

(a) (b) 

Figure 4.13 Rendering of the depth measurements and amplitude data 

acquired by the ToF camera. (a) Image sample 1. (b) Image sample 59. 

Consistently with the evaluation of the registration accuracy in Section 

4.3, in this case the accuracy has also been measured following the criterion 

of Accuracy of the Distorted Image coordinates. For that purpose, the 

normalized RMSE was used to estimate the discrepancy between the ground 

control points on the RGB image coordinates (xi𝑅𝐺𝐵, yi𝑅𝐺𝐵)  and the mapped 

points on the RGB image coordinate (x̂i𝑅𝐺𝐵, ŷi𝑅𝐺𝐵). These mapped points are 

projected from the control points on the ToF image coordinates (xi𝑇𝑜𝐹 , yi𝑇𝑜𝐹). 

Regarding the numerical results of the accuracy evaluation of raw depth 

measurements, the method proposed in Thesis, presents an overall RMSE =
0.2440, reducing the error in 41 % in comparison with the standard 

calibration method, which exhibits an overall  RMSE = 0.4150. In Figure 

4.14 the results of the RMSE on each pattern board is shown. The computed 



 

68 Comparison of Methods for Depth Map Registration 

 

 

 

geometric error in pixel coordinates for the proposed approach provides a 

mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−6.4, 1.8] and a standard 

deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [6.3, 7.13], where the 20 % of the geometric distance 

error is  ≤ 6 𝑝𝑖𝑥𝑒𝑙. In contrast, the second method provides a mean value 

𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−14.3, 5.6] and a standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 =

[10.7, 7.4], where only the 10 % of the geometric distance error is  ≤
6 𝑝𝑖𝑥𝑒𝑙. Therefore, the distribution error analysis also indicates that the 

depth-dependent Hlut approach outperforms the standard calibration method. 

In Table 4.4 (see page 66), the geometric error distribution is detailed. 

 

 
(a) 

 
(b) 

Figure 4.14 Normalized RMSE on RGB camera coordinates vs the angle of 

the board plane w.r.t. the image plane. (a) Standard calibration method. (b) 

Depth-dependent Hlut approach. 
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The accuracy evaluation in terms of visual results is presented in Figure 

4.15. For that purpose, the render of the colour depth map achieved with both 

methods are shown.  

 

 

(a) (b) 

 

(c) 

Figure 4.15 Cont. 
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(d) 

Figure 4.15 Depth map registration of sample 14. (a) RGB image. (b) ToF 

depth measurement. (c) Standard calibration result. (d) Depth-dependent Hlut 

result. 

The obtained results show that the proposed method provides fewer 

oscillations when matching the depth and colour information. Consequently, 

a more visually homogenous surface on the pattern board is achieved. This is 

mainly because the proposal of this work considers a range of depth values, 

thus, slight fluctuations on the measurements are avoided. On the contrary, in 

the standard calibration method, the depth measurements are directly used for 

computing data fusion, thus an uneven pattern board surface is produced.  

4.5 Filtered Depth Measurements Evaluation 

The objective of this Section is to evaluate the performance of the 

registration methods when processing filtered raw depth measurements 

acquired by the ToF camera. Thus, for the evaluation of filtered data, the raw 

depth measurements were smoothed by applying the bilateral filtering 
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(Tomasi and Manduchi 1998) and the non-local means filter (Buades et al. 

2005).  

Since the evaluation of the filters is not matter of this research, the 

implementation of these techniques was not fully optimized. In this case, the 

characteristic behaviour of the denoising filtering for over smoothing edges, 

did not affect the inner grid on the pattern board that was used for the 

selection of the control points. However, the global results of the denoising 

filters modify the depth values on the pattern board. Consequently it is 

expected that the direct use of these flawed measurements produces 

misalignment problems. In Figure 4.16 the results of both denoise filtering 

implementation are illustrated, where the area enclosed in the green 

corresponds to the inner grid for the ground truth control point’s extraction. 

The offset on the filtering depth values is more noticeable in the data 

processed with the non-local filter (see Figure 4.16(c)). Consequently the 

problems of data misalignments are expected to be more evident when 

implementing the depth map registration procedures with this data. 

For the bilateral filtering implementation, the results are consistent with 

the ones obtained in Section 4.4. The depth-dependent Hlut outperforms the 

standard calibration method in terms of accuracy measured by normalized 

RMSE and the geometric error distribution, with an overall  RMSE = 0.2376, 

a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−6.2, 2.1] and a standard deviation 

𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [5.9, 7.0]. These results show slight improvements in 

comparison with the raw data processing. On the contrary, the obtained error 

with the standard calibration method increases when processing filtered data, 

with an overall  RMSE = 0.5402, a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 =

[−15.8, 5.6] and a standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [17.1, 10.5]. The 

obtained result with the proposed approach reduces the error in 56% in 

comparison with the standard calibration method. Figure 4.17 shows the 

obtained RSME on each image sample of the pattern board and Table 4.5 

summarizes the geometric error distribution. 
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(a) 

 
(b) 

 
(c) 

Figure 4.16 Denoising filtering of sample 41. (a) Original data. (b) Bilateral 

filtering. (c) Non-local means filter. 
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In this case, of the data filtering data by means of the non-local filter, the 

normalized RMSE of the standard calibration method is increased in 216% 

compared with the error of the depth-dependent Hlut approach, where the 

proposed approach provides an overall  RMSE = 0.2365, a mean value 

𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−6.4, 1.8] and a standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 =

[5.8, 7.0], while the standard calibration provides an overall RMSE =
0.7478, a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−29.9, 15.2] and a standard 

deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [8.9, 9.8]. These results exhibit the low capability of 

the standard calibration method for processing over smoothed data. This issue 

is also reflected in the geometric error distribution provided by the standard 

calibration method. In comparison with the results of the bilateral filtering, 

the results of the standard calibration method are increased in 

[83.5%, 171%] for the mean values in (u-v)-axis respectively, whereas for 

the depth-dependent Hlut approach, the mean errors in (u-v)-axis are 

decreased in [0%, 14.2%].  
On the other hand, the analysis of the influence of the pattern board poses 

is illustrated in Figure 4.18, where the normalized RMSE versus the angle of 

the plane model of the pattern board with respect to the image plane is 

shown. Lastly, in Table 4.6, the geometric error distribution is detailed. 
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(a) 

 
(b) 

Figure 4.17 Normalized RMSE on RGB camera coordinates vs the angle of 

the board plane w.r.t. the image plane. (a) Standard calibration method. (b) 

Depth-dependent Hlut approach. 
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(a) 

 

(b) 

Figure 4.18 Normalized RMSE on RGB camera coordinates vs the angle of 

the board plane w.r.t. the image plane. (a) Standard calibration method. (b) 

Depth-dependent Hlut approach. 
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4.6 Conclusions 

In this Chapter an in-depth evaluation and comparison of the most 

common method for depth map registration and the proposed method in this 

Thesis were conducted. Since the two methods rely on depth measurements 

for implementing the dense map registration, the quality of the depth 

estimations is a crucial issue for achieving more accurate results. On the other 

hand, the state-of-the-art presented in Chapter 2 show that the noise in the 

depth measurements is a persistent problem. Consequently, the investigation 

of this Chapter was focused on the methods evaluation from the perspective 

of their response to the noise in the depth measurements.  

First, the computation and the validation of the cameras calibration 

parameters were achieved. Then, three scenarios were considered for the 

methods comparison: noise-free (ideal) depth information, raw depth 

information and filtered depth information. For the ideal depth 

measurements, the standard calibration method evidently outperforms the 

proposed approach. That is because these true measurements were computed 

from the calibration results, and the entries of the Hlut  { 𝐻𝑘
𝑙𝑢𝑡} were 

computed without considering the calibration parameters. On the contrary, 

when using raw and filtered depth measurements acquired from the ToF 

camera, the depth-dependent Hlut method outperforms the accuracy results of 

the standard calibration method in all scenarios. For instance, when 

processing raw data, the proposed approach in this work reduced the error in 

41 % with respect the error of the standard calibration method. In the case of 

the filtered data, the obtained error with the standard calibration method is 

increased in 127% when using bilateral filtering and in 216% when using 

non-local filter, compared with corresponding errors of the proposed 

approach.  

The results pointed out the high capability of the proposed method 

regarding to the standard calibration technique for dealing with slight 

variation in the depth estimation and for processing non-excessively over-

smoothed filtered data. 
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Chapter 5 

Experimental Results and Proposed Method 

Validation  

5.1 Introduction 

In order to evaluate the proposed method, two different and representative 

scenarios for close range objects detection in robotic applications were 

considered for the experimental stages of this work. The first experiment was 

conducted indoors, in a scenario that can be commonly used for robotic tasks 

such as the mobile robot navigation, the obstacle detection, the fall detection 

of people, the elderly assistance and others. The experiment was focused on 

testing the proposal approach in volumetric known objects, objects with large 

relief with respect to the image extent, objects placed all over the field of 

view of the system, and at different poses and orientations with respect to the 

image plane.  

The second experiment was addressed toward precision agriculture (PA), 

one of the most relevant areas in robotics field. Currently, Universities, 

research groups, and small and large companies, supported by ambitious 

projects funded by the European Community and other international entities, 

are joining efforts to investigate and to put in practice the advances on the 

precision agriculture field. This is the case of the Intelligent Sensing and 

Manipulation for Sustainable Production and Harvesting of High Value 

Crops, Clever Robots for Crops (CROPS) project funded by the European 
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Union through the Seventh Framework Program, Grant Agreement Number 

246252. The second experiment of this chapter is enclosed under the scope of 

the CROPS project, where the implementation of a multisensory system, and 

the depth-dependent Hlut approach for the detection and localization of fruits 

was investigated. 
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5.2 Man-made Indoor Environments 

Intelligent service robots are becoming a major interest area for multiple 

applications in the society. Special attention is been paid to the personal 

security and assistance of people. These robotic applications are mostly 

oriented to deliver assistance to elderly people living on their own, and 

monitoring the children’s safety at their homes. In both cases, systems are 

devoted to identify dangerous situations such as people falling, falling objects 

or long periods of inactivity. For that purpose, the robotic application needs 

to be able to track people’s motion and detect obstacles. Falls are frequent 

among elderly people, and are a still-underestimated medical problem with 

respect to causes and consequences. Falls can have immediate lethal results 

but also produce many disabling fractures and dramatic psychological 

problems which reduce elderly people’s independence. Research has found 

that half of those patients with a “long lie” (i.e., those remaining on the floor 

for more than one hour after a fall) died within six months of the fall, even if 

there was no direct physical injury (Zambanini and Machajdik 2010). Thus, 

immediate alarming and helping is essential to reduce the rate of morbidity 

and mortality (Wild, Nayak and Isaacs 1981). The technical solutions that 

have been proposed for the detection of falls can be classified into three 

groups (Noury et al. 2007): wearable device-based, ambience device-based 

and vision-based methods. Though, in-house vision systems provide several 

advantages over other sensors: they are able to detect several events 

simultaneously, do not disturb or interfere in the daily activities of people, 

provide richer and more accurate data, and report fewer false alarms than 

other devices. 

Most of the related works are based on colour cameras, some of them 

using static cameras at each room (Foroughi, Aski and Pourreza 2008, 

Cucchiara et al. 2005). In other cases, the authors propose the implementation 

of vision system mounted on mobile robots (Di Paola et al. 2008). Stereo 

vision techniques and multi-cameras approaches have been utilized for 

acquiring 3D information of the scenes, avoiding occlusions of people and 

covering large areas (Zambanini and Machajdik 2010). Unfortunately, the 

configuration of these cameras demands rigorous camera calibration 

procedure, and involves heavy computational load which restrains real-time 

operation. On the other hand, simple omnidirectional vision systems offer 

360º view angle of the indoor scene in a single image (Ming-Liang, Chi-

Chang and Huei-Yung 2006), but preclude the attainment of reliable spatial 
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data, thus requiring passive methods for the acquisition of the 3D information 

of the scene, such as the structure from motion or shape. An omnidirectional 

stereo configuration approach was presented in (Salinas et al. 2011). This 

work presented a catadioptric rectified configuration for providing 3D 

information of a scene, by means of a single acquisition of the system in 

combination with passive triangulation techniques. The system was capable 

of acquiring large areas, though the spatial resolution was limited as well. 

Recent works have introduced the use of ToF cameras for analysing 

human poses in falling detection (Diraco, Leone and Siciliano 2010) as well 

as probabilistic methods for motion capturing (Ganapathi et al. 2010). The 

lack of resolution of the ToF cameras and their incapability of providing 

contextual information make them less accurate for people’s motion 

detection. Lately, the use of the Kinect® sensor (Microsoft Research 2009) 

for the skeleton and body motion analysis in fall detection applications has 

been introduced by (Gasparrini et al. 2014, Rougier et al. 2011). Evidently, 

object’s motion detection is a complex task, in particular in real life 

environments, where the occlusions and the dynamic changing nature of the 

scenes take a great deal when processing the data. Therefore, the acquisition 

of richer and quality information of the 3D world scene is a key stage for 

achieving proper objects detection.  

A solution that fuses high-resolution images and depth information is a 

promising approach for close range detection of people motion, since this 

solution provides detailed contextual information, as well as the scene 

structure at every snapshot of the sensory system. This combination eludes in 

certain degree, the lack of resolution of ToF cameras and the features 

mismatching problem of stereo triangulation methods.  

In order to evaluate the image registration method proposed in this Thesis 

in man-made indoor environments, two series of experimental tests were 

conducted. Details of these experiments are described below: 

 

1. The first group of experiments were focused on the method assessment 

for registering continuous surfaces angled with respect to the sensory 

system. For instance, a continuous planar surface which is angled with 

respect to the image plane might be transformed by several 

homographies { 𝐻𝑘
𝑙𝑢𝑡}. This was achieved by modifying the 

perspective view of the white-red pattern board. The experimentation 

setup consisted of the four degrees of freedom robotic platform and the 

sensory system described in section 3.1, and the 3 × 5 white-red 
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chessboard of 50 mm each square considered in Section 3.2. The 

sensory system was mounted on the robotic platform, and the pattern 

board was positioned in front of the cameras, with the inner grid 

aligned with respect to the centre of the ToF camera. Then, 25 image 

samples from different poses of the sensory rig were acquired, and a 

total of 288 control points were evaluated. The results of the 

registration procedure of two image samples are illustrated in Figures 

5.1 and 5.2. The transformation matrices  { 𝐻𝑘
𝑙𝑢𝑡} applied for 

transferring the points on the ToF pixel coordinates { 𝑥𝑐𝑝𝑖
𝑇𝑜𝐹} are 

illustrated with coloured marks (see Figures 5.1(b) and 5.2(b)). Each 

colour represents an entry k of each homography { 𝐻𝑘
𝑙𝑢𝑡}, likewise for 

the mapped points on the RGB pixel coordinates { 𝑥𝑚𝑎𝑝𝑖
𝑅𝐺𝐵} (see 

Figures 5.1(a) and 5.2(a)). 

2. The second group of experiments are focused on the proposed method 

evaluation for registering images of 3D man-made environments and 

its implementation on people/object motion detection. These scenes 

are composed by volumetric objects made of different materials, where 

the relief of these 3D objects is high enough with respect to the extent 

of the image view. Hence 3D-space points of an object do not belong 

to a unique plane and consequently, several homographies  { 𝐻𝑘
𝑙𝑢𝑡} 

should map the object’s points. In order to estimate the error of the 

mapped points, white-red landmarks were attached to some objects 

among 47 image samples, where a total of 767 control points were 

evaluated. In this case, the sensory rig was static and the objects were 

positioned at different distances and poses within the depth of field of 

the system. In addition, sequences of moving objects and descriptive 

people’s falling postures were also analysed. Figures 5.3 and 5.4 show 

the results of the registration process for two image samples. 
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(a) (b) 

 

(c) (d) 

Figure 5.1 Image sample 19. (a) Selected points on the ToF. (b) Estimated 

points on the RGB image. (c) Top: selected ToF ROI. Bottom: estimated 

RGB ROI. (d) Colour depth map of the ROI.  
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(a) (b) 

 

(c) (d) 

Figure 5.2 Image sample 25. (a) Selected points on the ToF. (b) Estimated 

points on the RGB image. (c) Top: selected ToF ROI. Bottom: estimated 

RGB ROI. (d) Colour depth map of the ROI. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 5.3 Cont. 
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(g) 

Figure 5.3 Image sample 19. (a) RGB image. (b) ToF depth measurements. 

(c) Homography labelled 𝒎𝒂𝒔𝒌𝑳𝑹𝑮𝑩 on RGB image coordinates.  

(d) Homography labelled 𝒎𝒂𝒔𝒌𝑳𝑹𝑮𝑩 on ToF image coordinates.  

(e) Registered RGB image. (f) ToF amplitude image. (g) Colour depth map. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 5.4 Cont. 
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(g) 

Figure 5.4 Image sample 8. (a) RGB image. (b) ToF depth measurements. 

(c) Homography labelled 𝒎𝒂𝒔𝒌𝑳𝑹𝑮𝑩 on RGB image coordinates. (d) 

Homography labelled 𝒎𝒂𝒔𝒌𝑳𝑹𝑮𝑩on ToF image coordinates. (e) Registered 

RGB image. (f) ToF amplitude image. (g) Colour depth map. 

5.2.1 Results and evaluation 

Two series of experimental tests were conducted to evaluate the proposed 

image registration method in man-made indoor environment. In order to carry 

out a quantitative assessment of the error, white-red landmarks were attached 

to the objects of interest. Then, correspondence ground control points were 

selected on the RGB and ToF image coordinates, and the Accuracy of the 

Undistorted Image Coordinates criterion (Salvi et al. 2002) was evaluated. 
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For that purpose, the geometric and distance errors (see Equation 3.2) were 

computed. The results of the error distribution are detailed in Table 5.1, while 

in Figures 5.5 and 5.6 the results of the geometric and distance error for each 

group of experimental test are illustrated. The discrepancies for the first 

group of experiments, in terms of normalized RMSE is 0.1383, and the mean 

value and the standard deviation are 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−0.4, 0.6] and 

𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [4.3,4.7], respectively, where the 70 % of the geometric 

distance error is  ≤ 6 𝑝𝑖𝑥𝑒𝑙.  
 

 

(a) (b) 

 

(c) (d) 

Figure 5.5 Error evaluation of the experimental tests corresponding to  

group #1. (a) Geometric error. (b) Distance error. (c) Error distribution in  

u-axis. (d) Error distribution in v-axis. 
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(a) (b) 

 

(c) (d) 

Figure 5.6 Error evaluation of the experimental tests corresponding to  

group #2. (a) Geometric error. (b) Distance error. (c) Error distribution in  

u-axis. (d) Error distribution in v-axis.  

The results for evaluating the estimated data on the RGB image 

coordinates { 𝑥𝑚𝑎𝑝𝑖
𝑅𝐺𝐵}, show that the response of the proposed registration 

method is quite promising, given that a large number of the mapped points 

have geometric errors less than 3 pixels on the RGB frame and the RMSE is 

quite low. Most of the erroneous data are due to the depth measurement 

variations and the flawed data selected as correspondence ground control 

points. Similar to the accuracy analysis presented in Section 3.3, the outliers 

might be removed to calculate the accuracy of the depth-dependent Hlut 

approach. However, in this case, only the correspondence points defined as 

outliers were removed, only 6 points of a set of 288 control points were 

identified as flawed points, and the accuracy of the test was improved in 8 %. 

The errors estimations were carry out once again, and the obtained error 
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distribution was also included in Table 5.1. The results in terms of 

normalized RMSE are 0.1272, the mean value is RMSE are 0.1272 and the 

mean value is 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−0.7,− 0.3] and the standard deviation 

 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [3.5,4.6].  

In the second group of experiments, the presence of flawed 

correspondence data is more visible, mostly because of the object’s shape and 

perspective with respect to the image coordinates. As it shown in the obtained 

results, with a normalized 𝑅𝑀𝑆𝐸 = 0.4005, a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 =

[−0.16, 5.6] and a standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [12.2,13.1], where only 

the 20 % of the geometric distance error is  ≤ 6 𝑝𝑖𝑥𝑒𝑙. In Figure 5.6(a-b), the 

identification of the outliers is quite noticeable. Regarding the outliers 

evaluation, only control points considered as flaws were removed to calculate 

the errors once again. In this case only 11 points of the 767 sample set were 

removed and the accuracy was improved 12 %. The results of the error 

distribution are also detailed in Table 5.1, with a normalized 𝑅𝑀𝑆𝐸 =
0.3511, a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−0.46, 5.5] and a standard 

deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [10.5,11.3]. 

Regarding mismatching correspondence points, three fundamental factors 

should be considered: the large difference between the cameras resolution, the 

foreshortening, which makes less precise the digitalization of some features of 

the objects, and the noise in the depth measurements, which comprises the 

intrinsic noise and the one derived from the object albedo. For instance, flying 

pixels, multi-path interference and features distortion of the depth 

measurements are expected.  

The presence of noise in the depth measurements is a persistent problem 

when using ToF cameras. The solutions are constricted to filtering techniques, 

which usually modify or over smooth the original values. In Chapter 4, it has 

been demonstrated that the depth-dependent method is capable of dealing with 

small variation in the depth measurements and that this method outperforms the 

accuracy results obtained with the standard calibration method. 
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For examining the influences of the orientation of the objects with respect to 

the image plane, the plane model of the pattern grid was estimated from the 

depth measurements of the ToF camera, and for the volumetric objects, a quadric 

cylindrical approximation was adopted. Since depth values are slightly noisy, the 

RANSAC algorithm (Fischler and Bolles 1981) was used to compute the plane 

model and the quadric cylindrical approximation of the objects of interest. In 

Figure 5.7 the objects approximation and the computation of its angle (𝛽) 
with respect to the image plane are exemplified. For convenience, the angle is 

represented such as 𝛽 ∈ [−
𝜋

2
,
𝜋

2
]. In Figures 5.8(a) and 5.8(b) the normalized 

RMSE of each sample and the angle (𝛽)are illustrated, for the first and 

second group of experimental tests, respectively 

 

 
(a) (b) 

 
(c) (d) 

Figure 5.7 Estimation of the angle (𝜷) of the objects approximation w.r.t. the 
image plane. (a) RGB image and control points (sample 31). (b) Plane model 

of the pattern board (sample 31). (c) RGB image and control points   

(sample 12). (d) Quadric model of an object (sample 12). 
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(a) 

 

(b) 

Figure 5.8 Normalized RMSE on RGB pixel coordinates vs the angle (𝜷) of 

the object’s approximation w.r.t. the image plane. (a) First group of 

experiments. (b) Second group of experiments. 
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The goodness of the depth-dependent Hlut approach in comparison with 

the standard calibration method is shown in Figures 5.10-5.13, where the 

visual results of computing depth map registration of image samples 12 and 

31 are illustrated. The results of the depth map registration by means of the 

standard calibration method for the two image samples are shown in Figures 

5.10 and 5.12 respectively. While in Figures 5.11 and 5.13, the depth-

dependent Hlut depth map registration results are presented. Figure 5.7 

illustrates the RGB images of the samples 12 and 32, and their corresponding 

3D depth maps are in Figure 5.9. For the methods implementation, the raw 

depth measurements from the ToF camera were used.  

The presence of noise in the depth values is denoted by slight variation on 

the surfaces and edges of the objects. Despite the obtained errors, the visual 

results of the colour depth map reconstruction show the capability of the 

proposed registering method for preserving the object’s edges and shape. It is 

possible to notice that in those areas where the data is properly matched, the 

presence of artifacts or misalignments problems is in general avoided. This 

contrasts with the standard calibration method, where the object’s surfaces 

are less homogeneous and the object’s edges exhibits several misalignment 

problems. 

 

 

(a) (b) 

Figure 5.9 Depth measurements acquired by the ToF camera (in meters).  

(a) Image sample 12. (b) Image sample 31. 
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(a) (b) 

 

(c) (d) 

Figure 5.10 Depth map registration of sample 12 with depth-dependent Hlut 

approach. (a) Homography labelled mask, where each colour represents a 

homography of the Hlut. (b) Correspondence control points (red) and 

estimated points (green). (c) Low resolution colour depth map – view 1.  

(d) Low resolution colour depth map – view 2. 
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(a) (b) 

 

(c) (d) 

Figure 5.11 Depth map registration of sample 31 with standard calibration 
method. (a) Registered points on RGB pixel coordinates. (b) Correspondence 

control points (red) and estimated points (green). (c) Low resolution colour 

depth map – view 1. (d) Low resolution colour depth map – view 2. 
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(a) (b) 

 

(c) (d) 

Figure 5.12 Depth map registration of sample 31 with depth-dependent Hlut 

approach. (a) Homography labelled mask, where each colour represents a 

homography of the Hlut; (b) Correspondence control points (red) and 

estimated points (green); (c) Low resolution colour depth map – view 1;  

(d) Low resolution colour depth map – view 2. 
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(a) (b) 

 

(c) (d) 

Figure 5.13 Depth map registration of sample 31 with standard calibration 

method. (a) Registered points on RGB pixel coordinates. (b) Correspondence 

control points (red) and estimated points (green). (c) Low resolution colour 

depth map – view 1. (d) Low resolution colour depth map – view 2. 

Evidently noise in depth measurements is a drawback for computing 

image registration. Nonetheless, the proposed method has shown to be robust 

enough to deal with variations within ±12 mm. The object distance is also a 

significant issue, since the sensing of the object’s edges, borders and 

dimensions are altered because of the low ToF camera resolution, and 
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because of the working principle of these cameras. In addition due to the 

large difference in the camera resolution, when mapping points from the ToF 

to the RGB image, there are approximately 10 pixels of unmapped points 

between adjacent mapped points.  

Regarding the ToF data improvement and enlargement, the proposed 

method provides a labelled homography mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 on the RGB pixel 

coordinates, which corresponds to the entries k of the homographies  𝐻𝑘
𝑙𝑢𝑡 

used to transfer the data. For the ToF camera resolution enlargement, it is 

possible to classify the unmapped points on the RGB image coordinates by 

assigning them a  𝐻𝑘
𝑙𝑢𝑡. Hitherto, the proposed method was able to put colour 

on the depth map while dealing with slight variation on the depth 

measurements. Now by using entire classified homography labelled mask 

𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵, the method is also capable of assigning depth to the colour 

information. Thus, a high-resolution colour depth map is computed by 

transferring the RGB data to the ToF frame such that: 

𝑥𝑚𝑎𝑝𝑖
𝑇𝑜𝐹 = 𝐻𝑘

𝑙𝑢𝑡−1𝑥𝑖
𝑅𝐺𝐵 (5.1)  

The obtained rendering results of the high resolution colour depth map of 

5 Megapixels in size are displayed in Figure 5.14. The high resolution colour 

depth maps were computed from the images samples 8, 12, 19 and 31, 

depicted in Figures 5.4, 5.3 and 5.7, respectively. The visual results show a 

satisfactory performance of the proposed method. For instance, a cylinder 

bucket, a chair, or the angled board, which are continuous surfaces, were 

properly mapped, without any presence of discontinuity on their surfaces, as 

well as the person who is sitting on the chair. All of these objects represent 

typical targets in close range detection. The shape and edges of objects 

presented almost no difficulties or artifacts, and so far, no enhancement 

algorithm has been implemented yet.  

Regarding noise filtering and data enhancement, once the registration has 

been done, the depth along with the labelled homography mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 

and the corresponding RGB colour information could be used to extrapolate 

the depth measurements by means of guided or weight-based methods, 

whereas the values on 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 might be used as weights. In this way, 

boundaries could be properly classified and edges enhancement procedure 

could be computed and, finally, high quality maps could be achieved. 
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(a) (b) 

 

(c) (d) 

Figure 5.14 High resolution colour depth map reconstruction. (a) Two 

volumetric objects placed at different distances from the sensory system 

(sample 19). (b) An object with a large relief with respect to the image extent 

(sample 8). (c) A curved object (sample 12). (d) A continuous surface which 

is slanted with respect to the cameras axis (sample 31). 

Additionally, a comparative visual assessment between the image 

registration results achieved with the standard calibration method and with 

the proposal approach is presented in Figure 5.15.  
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(a) (b) 

Figure 5.15 Colour depth map registration results of image samples 11, 12 
and 17. (a) Standard calibration method results. (b) Depth-dependent Hlut 

approach results. 
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In this comparison, two different postures of a person were computed. The 

colour depth maps obtained by means of the standard calibration exhibit 

several artifacts in the objects edges. For instance, the depth information of 

the chair boundaries are not aligned and are inconsistent with of the colour 

information of the chair boundaries, as it is illustrated in Figure 5.15(a) and 

highlighted with the help of the red marks. Several pixels that belong to the 

person (the arm, the leg, the back) and to the chair are mapped as part of the 

background.  

On the contrary, the obtained results with the depth-dependent Hlut 

approach, which are depicted in Figures 5.15(b), show a satisfactory 

alignment between depth and colour information of the objects boundaries. 

Once again, the proposed approach outperforms the standard calibration 

method in terms of accuracy and proper alignment of the mapped data. 

For the method evaluation oriented to in-house video surveillance and 

people motion detection task, sequences of people movements were analysed. 

In the acquired sequences, common occlusions caused by objects in the room 

are represented, along with illustrative people’s falling postures. The 

experimental test aims the evaluation of the capabilities of the depth-

dependent Hlut approach in tracking objects applications. The proposed 

procedure for detecting variance in image regions is based on a robust 

multiple objects motion detection algorithm, introduced by Black and 

Anandan (1996), with the combination of a quadric surface approximation of 

the 3D objects structure of the computed inlier motions. The proposed 

procedure is depicted in Figure 5.16, and in Figures 5.20-5.23, the visual 

results of the image registration procedure and the motion detection task are 

shown.  

The proposed procedure for objects motion detection, computes the 

structure from motion analysis on the amplitude images acquired by the ToF 

camera instead of using the RGB images, in order to avoid false inliers due to 

the illumination conditions and shadows 
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Figure 5.16 Procedure for objects motion detection. 

Figures 5.18 and 5.19 show a comparison of the visual results of structure 

from motion computation on RGB registered images (176×144 pixels) and on 

amplitude images (176×144 pixels), respectively. While the input image pair 

for the motion detection analysis is presented in Figure 5.17.  

 

 

Figure 5.17 Image pair of a person’s falling sequence. (a) Image sample 

𝒔𝒂𝒎𝒑𝒍𝒆𝒕. (b) Image sample 𝒔𝒂𝒎𝒑𝒍𝒆𝒕+𝟏. 
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(a) (b) 

 

(c) (d) 

Figure 5.18 Results of the robust structure from motion algorithm 

implementation on RGB registered images. (a) Inliers of motion detection in 

𝒔𝒂𝒎𝒑𝒍𝒆𝒕. (b) Inliers of motion detection in 𝒔𝒂𝒎𝒑𝒍𝒆𝒕+𝟏. (c) Depth 

measurements of the inlier motion region of 𝒔𝒂𝒎𝒑𝒍𝒆𝒕. (d) Depth 

measurements of the inlier motion region of 𝒔𝒂𝒎𝒑𝒍𝒆𝒕+𝟏. 
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(a) (b) 

 

(c) (d) 

Figure 5.19 Results of the robust structure from motion algorithm 

implementation on ToF amplitude images. (a) Inliers of motion detection in 

𝒔𝒂𝒎𝒑𝒍𝒆𝒕. (b) Inliers of motion detection in 𝒔𝒂𝒎𝒑𝒍𝒆𝒕+𝟏. (c) Depth 

measurements of the inlier motion region of 𝒔𝒂𝒎𝒑𝒍𝒆𝒕. (d) Depth 

measurements of the inlier motion region of 𝒔𝒂𝒎𝒑𝒍𝒆𝒕+𝟏. 
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The results in Figure 5.18, of implementing the robust motion detection 

algorithm in colour information, illustrate the erroneous identification of the 

man’s shadow as inlier. Given that the shadow covers part of the chair and a 

part of the floor, the intensities variation produced due to the combination of 

the textured floor and the man’s shadow are computed as intensity gradients. 

This is a common problem when computing motion detection in indoor 

environments. The results in Figure 5.19 present a solution for reducing this 

problem, in which amplitude images are used for the motion detection 

implementation. Consequently, the uncertainties in the features extraction 

stage are also reduced. For instance, the person’s postures shown in Figures 

5.19(c-d) are free of outliers 

For implementing the proposal procedure described in Figure 5.16, two 

different image pairs of sequences of person’s postures were selected. The 

visual results are illustrated in Figures 5.20-5.23. Figure 5.20 and 5.22 show 

the results of the structure from motion algorithm for the first and the second 

image pair respectively. Figures 5.21 and 5.23, display the results of the 

registration procedure from the inlier motion regions, for the first and the 

second image pair respectively. As for the results of the method 

implementation, 3D structures of the man’s body postures are provided, 

along with high resolution colour information of the obtained 3D structure. 

Consequently, an ellipsoidal approximation of the body structure could be 

achieved as well as the fall detection task. 
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(a) 

 
(b) 

 
(c) 

Figure 5.20 Motion detection results of image pair 
(𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟏, 𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟐). (a) Image pair of a sequence of a person’s 

postures. (b) Inliers of motion detection in amplitude images. (c) Depth 

measurements of the inlier motion region.  
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(a) 

 

(b) 

Figure 5.21 Image registration results of the motion inliers regions of image 

pair (𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟏, 𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟐). (a) High resolution colour depth map.  

(b) High resolution colour information of the inlier motion region. 
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(a) 

 
(b) 

 
(c) 

Figure 5.22 Motion detection results of an image pair 
(𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟕, 𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟖). (a) Image pair of a sequence of a person’s 

postures. (b) Inliers of motion detection in amplitude images. (c) Depth 

measurements of the inlier motion region.  
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(a) 

 

(b) 

Figure 5.23 Image registration results of the motion inliers regions of image 

pair (𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟕, 𝒔𝒂𝒎𝒑𝒍𝒆𝒕=𝟏𝟖). (a) High resolution colour depth map.  

(b) High resolution colour information of the inlier motion region. 

5.2.2 Conclusions 

The visual results show a satisfactory performance of the proposed 

method. In order to evaluate the method, two experimental tests were 

conducted. The scenes of these experiments comprise non-planar objects, 

scenes which are clearly explained with several planes, meaning that the 

image registration procedure by means of the depth-dependent Hlut approach 

should be done with several homographies as well. In order to perform a 
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quantitative assessment, in the first group of experiments, the white-red 

pattern board was used as target, placing it at several positions and 

orientations with respect to the image planes, and at several distances from 

the sensory system. In the second group, white-red landmarks were attached 

to some of the objects into the scene. These objects were also placed at 

several positions, orientation and distances with respect to the sensory rig. 

The obtained results do not show any presence of misalignment problems 

between depth and colour information, likewise the presence of 

discontinuities on the objects surfaces. Discontinuities could appear within 

the homographies transition regions. The proposed method has proven to be 

robust enough for evading this issue. For instance, a cylinder bucket, a chair, 

or the angled board, which are continuous surface, are properly mapped, 

without any presence of discontinuity on their surfaces. The shape and edges 

of objects presented almost no difficulties or artifacts, and so far, no 

enhancement algorithm has been implemented. 

Additionally, the visual results of the depth-dependent Hlut method were 

compared with the results of the standard calibration method. As it was 

demonstrated in Chapter 4, the proposal approach outperforms the standard 

calibration method, in terms of accuracy and data alignment when computing 

raw depth measurements. 

In order to evaluate the capability of the proposed method oriented to in-

house video surveillance and motion detection task, sequences of people 

postures were analysed. For that purpose, a motion detection procedure was 

introduced. The procedure computes a robust structure from motion 

algorithm on the amplitude images acquired by the ToF camera. Then, a 

motion mask is used to provide 3D body structures and its corresponding 

high resolution colour information from the RGB registered data. The 

proposed procedure reduced the problems of false inliers produced by 

shadows and the illumination condition. The output of the process provides 

valuable information for the decision-making stage, since data quadric 

approximation of the 3D body structure delivers the characteristic of an 

ellipsoid, and the colour information could be used for a person feature 

extraction.  

Nevertheless, in future investigation more sophisticated motion detection 

algorithm should be considered. For instance, algorithms that combine depth 

and colour information for computing motion detection. In such a case, the 

low confidence regions of the amplitude image could be detected. Normally, 
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these regions correspond to sensing of dark objects. As it occurs with the 

man’s hair, which is black and consequently is estimated as zero. 

5.3 Precision Agriculture: Detection and Localization of Fruits 

for Automatic Harvesting 

This experimental section is enclosed in the scope of the Project entitled 

Intelligent Sensing and Manipulation for Sustainable Production and Harvesting 

of High Value Crops, Clever Robots for Crops (CROPS), which was funded by 

the European Union through the Seventh Framework Program, Grant Agreement 

Number 246252. The Project is framed within the topic Automation and robotics 

for sustainable crop and forestry management. In summary, CROPS project was 

intended for the development of scientific know-how for a highly configurable, 

modular and clever carrier platform that includes modular parallel manipulators 

and “intelligent tools” (sensors, algorithms, sprayers, grippers) that can be easily 

installed onto the carrier and are capable of adapting to new tasks and conditions. 

Several technological demonstrators were developed for high value crops like 

greenhouse vegetables, fruits in orchards, and grapes for premium wines. The 

CROPS robotic platform should be capable of site-specific spraying (spray 

applied only towards foliage and selected targets) and selective harvesting of 

fruit (detects the fruit, determines its ripeness, moves towards the fruit, grasps it 

and softly detaches it). Another objective of CROPS was to develop techniques 

for reliable detection and classification of obstacles and other objects to enable 

successful autonomous navigation and operation in plantations and forests. The 

agricultural and forestry applications share many research areas, primarily 

regarding sensing and learning capabilities.  

Precision agriculture (PA) is a continuously growing research area, where 

service robots are becoming an important part for improving competitiveness 

and sustainable production (Aracil, Balaguer and Armada 2008). PA oriented to 

the automatic harvesting of fruits requires the investigation of non-destructive 

sensors capable of collecting precise and unambiguous information for an 

efficient detection and localization of fruits. This task of detection and 

localization in natural scenes is quite challenging, since most fruits are partially 

occluded by leaves, branches or overlapped with other fruits(Plebe and Grasso 

2001). These occlusions eliminate the direct correspondence between visible 

areas of fruits and the fruits themselves by introducing ambiguity in the 

interpretation of the shape of the occluded fruit (Kelso 2009). In addition, 

colours of fruits cannot be rigidly defined because the high variability exhibited 
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among the different cultivars within a same species and the different levels of 

ripeness. Moreover, fruits can be found in random positions and orientations on 

trees which can be of various sizes, volumes and limb structures. Environmental 

conditions such as wind, rain, dust, moisture and lighting also increase the 

technical challenge imposed to the sensory system (Sarig 1990). 

Given the strong dependence of the fruit harvesting robots on sensorial 

information, and the numerous problems to be solved in this area due to the 

application requirements, there has been an intensive research effort during the 

last four decades, aiming to provide automatic detection and localisation of 

fruits. Most of the related studies reported in the literature are based on the use of 

computer vision and other image processing techniques. One of the first studies 

was presented by Schertz and Brown (1968), whose identified from their 

measurements that the surface of oranges reflected ten times more light than the 

leaves. In (Parrish and Goksel 1977) the first computer vision system for 

detecting apples and guiding a harvesting robot was implemented. The proposed 

system was based on a monochrome camera and a red optical filter to increase 

the contrast between red apples and green-coloured leaves. 

In (Buemi, Massa and Sandini 1985) a vision system based on a single colour 

camera was proposed for the tomato harvesting Agrobot robotic system. Hue 

and saturation histograms were employed to perform thresholding to segment 

the image whereas the 3D information was obtained by stereo-matching of two 

different images of the same scene. Two approaches based on colour 

information to solve the fruit recognition problem for a citrus picking robot 

were presented in (Slaughter and Harrel 1987, Slaughter and Harrel 1989). A 

system based on a monochrome camera to detect and locate tomatoes in 

natural settings was also developed in (Whittaker et al. 1987). Each acquired 

image was processed in order to find circular arcs that could correspond to 

tomato contours. The automatic detection of apples by using a stereo vision 

system which provided the 3D-dimensional position of each detected fruit 

was addressed in (Kassay 1992). A sensory system based on an infrared laser 

range-finder sensor that provided range and reflectance images, capable of 

detecting spherical fruits in non-structured environments was designed and 

implemented in (Jiménez, Ceres and Pons 2000b). Some comprehensive 

reviews like (Sarig 1990, Jiménez, Ceres and Pons 2000a) cover several 

aspects of these and other not-mentioned-systems.  

More recently, Van Henten et al. (2002) achieved a high detection rate of 

cucumber fruits by combining the images acquired by two cameras, one 

equipped with an 850 nm filter and the other with a filter in the 970 nm band. 
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In (Bulanon et al. 2004) authors used a real time machine vision system 

based on a CCD colour camera to determine the location of the apples centres 

and the abscission layer of the peduncles. In a later approach, Bulanon and 

Kataoka (2010) extended their earlier study by combining the machine vision 

system based on a CCD colour camera with a laser ranging sensor to 

determine the distance to the fruit. Tanigaki et al. (2008) designed and 

manufactured a 3D vision system that has two laser diodes for a cherry-

harvesting robot. One of these laser diodes emits a red beam and the other an 

infrared beam. The 3D shape of the cherries was measured by scanning the 

laser beams, and the red fruits were distinguished from other objects by the 

difference in the spectral-reflection characteristics between the red and 

infrared laser beams. A multispectral analysis was also carried out in 

(Bulanon, Burks and Alchanatis 2010) to enhance citrus fruit detection in the 

field. In (Hayashi et al. 2010, Hayashi et al. 2012) authors proposed a 

machine vision unit that consists of three aligned CCD cameras for guiding a 

strawberry-harvesting robot. In this case, the two side cameras were used to 

provide stereo vision to determine the fruit position in the 3D space, while a 

camera located in the centre was used to detect the peduncle and to calculate 

its inclination. 

All the studies mentioned above are limited to fruit detection. 

Nevertheless, for the harvesting task, it would be advantageous to detect and 

localise other plant elements (e.g., branches, leaves, cables, etc.) that could 

interference in the free motion of the robotic manipulator. In (Fernández et al. 

2013a) Cabernet Sauvignon grapevine elements are discriminated for 

precision viticulture tasks such as harvesting, whereas in (Bac, Hemming and 

Henten 2013) the problem of plant parts detection is addressed for the motion 

planning of a sweet-pepper harvesting robot. Also worthy of mention are the 

researches carried out by (Berestein et al. 2010, Dey and Mummert 2012). 

Although the sensory systems proposed in these studies have not been 

designed for harvesting robots, they addressed the detection and localization 

of plant elements for other precision agriculture tasks as selective spraying 

and yield estimation.  

The objectives of the research of this experimental section are twofold. 

The first objective is to evaluate and validate the capabilities of the image 

registration method proposed in this Thesis, which is the depth-dependent 

Hlut approach for combining RGB high resolution cameras and ToF cameras. 

The second objective is to assess the feasibility of detecting, discriminating 

and locating fruits and other plant elements in natural environments by 
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utilising a unique modular and easily adaptable multisensory system and a set 

of associated pre-processing algorithms. The proposed solution is intended to 

be used in autonomous harvesting robotic systems, without requiring 

previous preparation of the crops or previous knowledge of the environment. 

The proposed multisensory system consists of an AVT Prosilica GC2450C 

high resolution CCD colour camera (Allied Vision 2011), a multispectral 

imaging system and a Mesa SwissRanger SR-400011 ToF 3D camera 

(MESA Imaging 2011) (see Figure 5.24 for a graphical description), similar 

to the sensory rig introduced in Section 3.1. Though, in this case, the high 

resolution colour camera is not only utilised for the acquisition of RGB 

images, but also as part of the multispectral system, in which case it is set in 

the monochrome mode. The multispectral system is completed with a 

custom-made filter wheel and a servomotor that is responsible for the 

accurate positioning of the filter wheel. This positioning can be achieved with 

a maximum angular velocity of 210 rpm and a position error if ±0.01285°. 

The filter wheel allows interchanging up to five optical filters, facilitating the 

adaptation of the system for the detection of different kinds of crops. Since 

correct illumination could be critical in some scenarios, the system also 

includes two different light sources, an array of xenon lamps and two halogen 

spots, located above and at both sides of the sensory system, respectively. 

This lighting system is connected to a control unit that enables the 

independent power on and off of the lamps, and the control of their 

intensities. A visual description of the proposed system is shown in Figure 

5.24  

The RGB camera and the multispectral imaging system will provide the 

input data required for the detection and characterization of areas of interest 

that could belong to fruits, whereas the ToF 3D camera will supply 

simultaneously fast acquisition of accurate distances and intensity images of 

targets, enabling the localization of fruits in the coordinate space.  

In order to confer versatility to the set-up, the whole proposed 

multisensory system is installed on a pan-tilt unit that facilitates the data 

acquisition of different viewpoints. The tilt movement has a limited angular 

displacement of α = ±30° relative to the horizontal axis due to mechanical 

constraints. The yaw movement has no mechanical constraint, so it could 

rotate 360° around the vertical axis. However, for the stated application, the 

automatic yaw movement will be restricted for azimuthal angles within the 

range given by 0° ≤ β ≤ 180°.  
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(a) 

 
(b) 

Figure 5.24 Close-up views of the multisensory system for fruit harvesting. 

(a) Multisensory rig and filter wheel. (b) Complete view of the system. 

The control architecture for the proposed multisensory system consists of 

two main parts, a unit implemented in Robot Operating System (ROS (2007), 

http://www.ros.org/) responsible for managing the sensing devices and the 

high level control of the hardware elements, and a second unit implemented 



Precision Agriculture: Detection and Localization of Fruits for 

Automatic Harvesting 

 

119 

 

in QNX RTOS (http://www.qnx.com) for the low level control of the 

hardware elements, which are the motorised filter wheel, the illumination 

system and the pan-tilt unit (see Figure 5.25). A general description of the 

software implementation based on experiences from software development 

within the CROPS project (Crops-project 2010) is presented in (Barth et al. 

2014),  Thus, the principal functions of the first unit are the initialisation and 

setting of the CCD and ToF cameras according to the working conditions 

(acquisition mode, pixel format, exposure and integration time), and the 

control of the image acquisition procedure. Synchronous acquisition of the 

CDD and ToF camera is achieved when the sensory system controller 

publishes a trigger message that is sent when the filter wheel reaches a 

requested position. Immediately after the frame data acquisition is 

successfully completed, the sensory system controller node sends a command 

to the second unit implemented in QNX in order to initiate the motion of the 

filter wheel to the next target position. This node also sends commands for 

controlling the lights and the pan-tilt unit when required. 

The second unit is in charge of the low level control for the high accurate 

positioning of the filter wheel (with a position error of ±0.01285° and a 

maximum time delay of 50 ms for the positioning of each filter), switching 

on/off and intensity variation of the illumination system, as well as the high 

accurate positioning of the pan-tilt unit, being the PID controller the selected 

option for this purpose. First and second unit communicate between them via 

TCP messages. These messages contain the parameters and commands 

required for controlling and monitoring the motion and the data acquisition 

tasks of the multisensory system. The entire process of acquiring and 

registering a pair of images from the RGB and the ToF camera takes 300 ms 

running in a x64 bits Intel(R) Xenon(R) CPU @ 2.66 GHz and 6 GB RAM.  

Before investigating methodologies and techniques for detecting and 

locating fruits with high accuracy, it is necessary to count with appropriate 

pre-processing algorithms that allow taking full advantage of the data 

acquired with the designed multisensory system. For that purpose, two 

complementary pre-processing algorithms are proposed: a pixel-based 

classification algorithm that labels areas of interest that are candidates for 

belonging to fruits and the depth-dependent Hlut registration algorithm 

proposed in this Thesis, which listed in Algorithm 3 in Section 3.3. This 

algorithm combines the results of the aforementioned classification algorithm 

with the data provided by the ToF camera for the 3D reconstruction of the 

desired regions.  
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Figure 5.25 Multisensory system structure. 



Precision Agriculture: Detection and Localization of Fruits for 

Automatic Harvesting 

 

121 

 

Several studies have demonstrated that different targets with a similar 

appearance when they are captured by an RGB camera can exhibit distinctive 

properties if they are examined with spectral systems capable of acquiring 

several separated wavelengths (Namin and Petersson 2012). For this reason, 

the first algorithm deals with the combination of RGB and filtered images 

acquired with the proposed multisensory system in order to achieve a 

classification system capable of distinguishing the different elements of the 

scene (Fernández et al. 2013a). The algorithm, based on Support Vector 

Machines (SVMs), is capable of labelling each pixel of the image into four 

classes that are: stems and branches, fruits, leaves, and background. SVM is a 

supervised learning method utilized for classifying set of samples into two 

disjoint classes, which are separated by a hyperplane defined on the basis of 

the information contained in a training set (Mucherino, Papajorgji and 

Pardalos 2009). In the case at hand, four SVMs are utilized sequentially, each 

one for detecting a class against the rest. Therefore, after the first SVM is 

applied, pixels identified as belonging to fruit class are labelled and a mask is 

generated in such a way that only the remaining pixels are considered for the 

following SVMs. This step is then repeated for the rest of the classes in the 

following order: leaves, stems and branches, and finally background. The 

SVM classifiers are trained by selecting a random subset of samples from the 

RGB and filtered images and manually labelling the regions of interest from 

these images into the four semantic classes mentioned above. The algorithm 

was implemented in C++ with the aid of the Open Source Computer Vision 

Library (OpenCV) (OpenCV Developers Team 2000, Bradski and Kaehler 

2008).  

Once regions of interest into the scene have been detected and classified, it 

is necessary to locate them spatially. While ToF depth measurements are 

fundamental for localisation purposes, it is still necessary to automatically 

match this information with the classification map obtained from the previous 

step in a common reference frame. Thus, the depth-dependent Hlut approach 

is implemented for accomplishing this task. The procedure structure for the 

pre-processing algorithms is summarized in Figure 5.26. 
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Figure 5.26 Structure of the multisensory system pre-processing procedure. 

5.3.1 Results and validation 

In order to evaluate the feasibility of the multisensory system and the 

associated set of pre-processing algorithms for detecting and locating fruits in 

natural scenarios, an extensive experimental campaign has been conducted in 

both laboratory and on the field conditions. Details of these experiments are 

described below. In Figure 5.27, examples of apple orchards acquired in 

natural condition are illustrated. 
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(a) 

 

(b) 

Figure 5.27 Scenes of apple orchard on the field. (a) RGB image and ToF 

range data. (b) RGB image and ToF range data. 

5.3.1.1 Laboratory conditions 

Due to the complexity of natural scenes illustrated in Figure 5.27, an 

initial experimental set in laboratory conditions was conducted in order to 

evaluate the feasibility of combining an RGB and a ToF camera for detecting 

and locating fruits in apple orchard.  

This experimental stage is twofold. The first part is oriented to the 

validation of the depth-dependent Hlut approach for computing depth map 

registration of apple orchard scenes. The second part is focused on the 

evaluation of the registered data for extracting spatial features from the 

classified regions of fruits. In its important to mention that the research 

related to the attainment of multispectral classification map escapes the scope 

of this Thesis, and further detailed information about the multispectral 
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classification algorithm results can be found in (Fernández et al. 2014). For 

the proposed method validation, three artificial apples were used as targets 

for computing depth map registration with the depth-dependent Hlut 

approach. These apples were custom-made manufactured by means of a 3D 

prototype printing machine and they were attached to a panel board. In order 

to evaluate the capabilities of the proposed registration method, the targets 

were placed at several positions, orientations and distances with respect to the 

multisensory system.  

In Figure 5.28 some views of the image samples acquisitions are shown, 

whereas the results of the implementation of the Algorithm 3 (see Section 

3.3), for the registration of the images samples displayed on Figures 5.28(a) 

and 5.28(b) are illustrated in Figures 5.29 and 5.30, respectively. 

 

 

(a) (b) 

Figure 5.28 Images of artificial apples acquired in laboratory conditions.  

(a) Occlusions free scene (sample 33). (b) Scene with occlusions (sample 

50). 
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(a) (b) 

 

(c) (d) 

Figure 5.29 Results of image registration of image sample 33. (a) Depth 

measurements. (b) Homography labelled mask, each colour represents a 

homography of the Hlut. (c) Low resolution colour depth map. (d) Close-up 

of the high resolution colour depth map. 
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(a) (b) 

 

(c) (d) 

Figure 5.30 Results of image registration of image sample 50. (a) Depth 
measurements. (b) Homography labelled mask, each colour represents a 

homography of the Hlut. (c) Low resolution colour depth map. (d) Close-up 

of the high resolution colour depth map. 

In addition, Figure 5.31 shows the visual results of the image registration 

procedure of a scene by implementing the depth-dependent Hlut approach, 

along with the obtained results by means of the standard calibration method. 

The comparison of the results of the two methods, in terms of data alignment, 

shows the proposal of this work outperforms the standard calibration method. 

More accurate matched edges are provided when applying the proposed 

approach. The red markers in Figure 5.31(a) illustrate this issue. 
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(a) 

 
(b) 

Figure 5.31 Results of image registration of image sample 52. (a) Standard 

calibration method. (b) Depth-dependent Hlut approach.  



 

128 Experimental results and Proposed Method Evaluation 

 

 

 

Since the attainments of the proposed depth map registration approach has 

been demonstrated and the step of fruits classification has been previously 

achieved, the spatial features extraction from classified regions of fruits is 

investigated. Figure 5.32 summarizes the implemented algorithm for the 

features extraction procedure.  

 

 

Figure 5.32 Features extraction procedure. 

The proposal is based on a bilinear interpolation for the grid fitting of the 

depth measurements registered as fruits, 𝑚𝑎𝑠𝑘𝑓𝑟𝑢𝑖𝑡
𝑖 ; 𝑖 = 1⋯𝑁𝑟𝑒𝑔𝑖𝑜𝑛𝑠, where 

𝑚𝑎𝑠𝑘𝑓𝑟𝑢𝑖𝑡
𝑖 = {𝑚𝑎𝑝 ∋ 𝑓𝑟𝑢𝑖𝑡}, combined with a quadric surface 

approximation (𝑞𝑢𝑎𝑑_𝑎𝑝𝑝𝑟𝑜𝑥𝑓𝑟𝑢𝑖𝑡
𝑖 ) of the resulting depth estimations from 

the grid fitting process (𝑔𝑟𝑖𝑑𝑓𝑖𝑡𝑡𝑓𝑟𝑢𝑖𝑡
𝑖 ), where the inputs of the process 

corresponds to the registered classification map and the depth values. Once 

the approximation is successfully accomplished, the extraction of relevant 

descriptors is possible, such as: fruits main axis orientation with respect to 

the ToF image plane, fruits position with respect to the ToF camera 

coordinates, fruits dimensions and others. In Figures 5.33 and 5.34, the visual 

results of the proposed procedure for extracting object descriptors of the three 

fruits on the image samples 33 and 50 are shown, respectively. This first set 

of results was computed from the low resolution colour depth maps, while on 

the second set of results, the proposed procedure was implemented on high 

resolution colour depth maps. In Figure 5.35, the result of this 

implementation on image sample 33 is shown. 
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Figure 5.33 Low resolution results on the feature extraction procedure of 

image sample 33 (see Figures 5.28(a) and 5.29).  
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Figure 5.34 Low resolution results of the feature extraction procedure on 

image sample 50 (see Figures 5.28(b) and 5.30).  
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Figure 5.35 Results of the feature extraction procedure of image sample 33, 

implemented on high resolution colour depth information.  
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The evaluation of the features extraction is addressed by considering the 

perspective view of the fruits with respect to the images plane. Then, the 

fruits dimensions were only computed on image samples on which the fruits 

are completely visible. Regarding the fruits main axis orientation with respect 

to the ToF image plane, a comparison between the orientation of the fruits 

and the orientation of the panel board on each image sample was conducted. 

Since the apples are fixed to the panel board, it is expected that all pieces of 

the set have the same orientation. Consequently, the discrepancy between 

these orientations should be small. The obtained Mean errors are detailed in 

Table 5.2. 

Table 5.2 Results of the Feature Extraction Error in Terms of Mean Error 

Fruit # 

Orientation with 

respect to the panel 

board [degrees] 

Fruit Dimensions [mm] 

Width Height Depth 

1 3.5 9 8 13 

2 5.6 6 9 1.1 

3 4.8 7 8 9 

 

A very relevant issue for satisfactory features retrieval from the apples 

scenes is the avoidance of pre-filtering algorithms. Usually, filtering 

algorithm over-smooth the depth values, in this in this case, could cause loss 

of crucial information of the objects features. In the particular considered 

scenario, only tens of points on the ToF image coordinates are able of sensing 

the apples. Therefore, any loss of this information should be avoided. 

Conventionally, the proposed registration approach does not strictly require a 

pre-filtering algorithm for achieving accurate depth map registration. 

Consequently, complete raw data of the sensed apples is available for post-

processing algorithm. Figure 5.36 illustrates the use of this low resolution 

raw information in combination with the high resolution colour information 

for improving the registered regions with fruits. The procedure is based on a 

local 3D depth values grid fitting algorithm, and a quadric surface 

approximation, which is constrained with the colour information mask that 

corresponds to apples. 
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(a) 

 
(b) 

Figure 5.36 Details of the registration data improvement in the high 

resolution context. (a) Guided local data grid fitting (𝒈𝒓𝒊𝒅𝒇𝒊𝒕𝒕𝒇𝒓𝒖𝒊𝒕
𝒊 ). (b) 

Guided quadric surface approximation (𝒒𝒖𝒂𝒅_𝒂𝒑𝒑𝒓𝒐𝒙𝒇𝒓𝒖𝒊𝒕
𝒊 ).  

5.3.1.2 Field conditions 

The extensive experimentation carried out in field conditions was 

conducted in an apple orchard located in Chillan, Chile, and it involved the 

data acquisition process by means of the proposed multisensory system and a 

ground truth data collection of the acquired scenes. This experimental set is 

composed with two phases. The first phase of the experimental campaign was 

devoted to the acquisition of training data for the design of the pixel-based 

classification algorithm (Fernández et al. 2014). In this case the acquired 
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dataset included RGB and monochrome images with band-pass filters that 

have centre wavelengths of 635 nm and 880 nm (Fernández et al. 2013a). 

Since the aforementioned algorithm deals with the classification of each 

image pixel, each testing set consists of 5,018,400 samples (2448 × 2050 

pixels on the image). In order to train the SVMs of the proposed 

classification algorithm, four acquired datasets were randomly selected. From 

these RGB and filtered images, representative regions of interest of different 

sizes were selected for each desired class. Then, the mean reflectance values 

of these regions were treated as training samples and were manually labelled 

in four semantic classes: fruits (apples), stems, leaves and background. With 

the obtained set of 40 samples per class, the SVMs of the proposed pre-

processing algorithm were trained to classify the pixels of the images. The 

sampling approach for training data could be then considered as a stratified 

random sampling method, since the population is divided into smaller groups 

known as strata, which are formed based on members’ shared features 

(Waske and Benediktsson 2007). Random samples from each stratum are 

taken, and these subsets are then combined to form the random training 

sample.  

For the second phase of the experimental campaign, aimed at evaluating 

the proposed system, the acquired dataset included not only RGB and 

monochrome filtered images, but also range data. Outputs provided by the 

proposed system consist of a pixel-based classification map and the ToF 

depth measurements registered data. While the first phase concerning the 

attainment of the multispectral classification map escapes the range of this 

research, the second phase related to the registration of the classification map 

with the depth information, is part of the scope of the investigations of this 

Thesis. Figures 5.37 and 5.38 show the RGB and the filtered images acquired 

with the multisensory system, as well as the resulting classification map for 

an apple crop scene, while the corresponding raw depth measurements and 

the amplitude image acquired by the ToF camera of the scene is shown in 

Figure 5.39. 
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(a) (b) 

Figure 5.37 Spectral images of the apple orchard. (a) 635 nm image.(b) 880 

nm image.  

 
(a) (b) 

Figure 5.38 Apple orchard images. (a) RGB image. (b) Classification map. 
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(a) (b) 

Figure 5.39 ToF data of the apple orchard. (a) Amplitude image. (b) Depth 

measurements. 

For validation purposes, a total of 12 scenes from the apple crop were 

processed and evaluated. Ground truth data was carefully collected and 

produced for each scene in order to carry out a quantitative assessment of the 

proposed solution. This process involved as first step the manual labelling of 

some fruits of the scenes acquired and processed during the experimental 

campaign, as well as the manual measurement of the distance from the frontal 

plane of the ToF camera to the centre of the visible outer surface of each 

labelled fruit. Horizontal and vertical distances from a defined reference 

frame to the centre of the visible outer surface of each labelled fruit were also 

measured manually. For instance, Figure 5.40 shows an example of the 

labelling of one of the scenes acquired in the apple orchard. Note that these 

images have been acquired with an external camera, different from the RGB 

camera included in the multisensory rig, only for illustration purposes, and 

consequently, as can be observed, the point of view is different if they are 

compared with Figures 5.38(a).  

Table 5.3 summarises the ground truth measurements collected for this 

scene, where X and Y correspond to the horizontal and vertical distances 

measured from the origin of the reference frame defined on the image to the 

centre of the visible outer surface of each labelled fruit, and Z represents the 

orthogonal distance measured from the frontal plane of the ToF camera to the 

centre of the visible outer surface of each labelled fruit. The reference frame 

defined on each image for the ground truth data collection is the centre of the 

fruit labelled as 1. Thus a transformation of these measurements is required in 
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order to compare them to the data provided by the ToF camera. This 

transformation only affects to the X and Y coordinates, since z coordinate is 

always referenced to the ToF camera. 

 

 

Figure 5.40 Ground truth data acquisition of an apple orchard. 

Table 5.3 Ground truth measurements of the scene presented in Figure 5.40 

(scene 5 of Day 1).  

Reference Frame – Centre of the Fruit 1 

Fruit X[mm] Y[mm] Z[mm] 

1 0 0 794,4 

2 -180 95 862 

3 160 60 758 

4 170 30 819 

5 -50 230 754 

 Mean distance 797.48 

 

After evaluating the data registered from the ToF camera with the 

collected ground truth, it was obtained that the position error ranges from 0 to 

4.5 cm in the x-axis, from 0 to 6.1 cm in the y-axis and from 1 to 7.6 cm in 

the z-axis, with a mean error of 0.8 cm in the x-axis, 1.5 cm in the y-axis and 

2.3 cm in the z-axis.  
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The obtained visual results are also promising, since in spite of the 

complexity of the scenes, the depth-dependent Hlut method is capable of 

dealing with noise in depth measurements and the results show a satisfactory 

alignment between colour and depth measurements. In Figures 5.42 and 5.43, 

the depth map registration results of two natural scenes from apple orchard 

are shown, while in Figures 5.44 and 5.45, the results of the features 

extraction process of some of the fruits are illustrated. For the computing the 

features extraction image processing, the procedure described in Figure 5.32 

was implemented. The two input scenes comprises: the scene 5 (Day 1) and 

the scene 12 (Day 3), which are illustrated in Figure 5.41 

 

 

(a) 

 

(b) 

Figure 5.41 Scenes of apple orchard on the field. (a) RGB image and ToF 
range data of scene 5 (Day 1). (b) RGB image and ToF range data of scene 

12 (Day 3). 
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(a) (b) 

 

(c) (d) 

Figure 5.42 Results of image registration of scene5 (Day 1). (a) Depth 

measurements. (b) Homography labelled mask, where each colour represents 

a homography of the Hlut. (c) Low resolution colour depth map. (d) Close-up 

of the high resolution colour depth map. 
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(a) (b) 

 

(c) (b) 

Figure 5.43 Results of image registration of scene12 (Day 2). (a) Depth 

measurements. (b) Homography labelled mask, where each colour represents 

a homography of the Hlut. (c) Low resolution colour depth map. (d) Close-up 

of the high resolution colour depth map. 
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(a) 

 
(b) (c) 

 
(d) (e) 

Figure 5.44 Results of the feature extraction procedure of a fruit in scene 5 
(Day 1). (a) Fruit position in the RGB image coordinates. (b) Guided local 

data grid fitting. (c) Guided quadric surface approximation. (c) Depth and 

colour model of the fruit. (e) Raw depth and colour model of the fruit.  
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(a) 

 
(b) (c) 

 
(d) (d) 

Figure 5.45 Results of the feature extraction procedure of a fruit in scene 12 

(Day 3). (a) Fruit position in the RGB image coordinates. (b) Guided local 

data grid fitting. (c) Guided quadric surface approximation. (c) Depth and 

colour model of the fruit. (e) Raw depth and colour model of the fruit. 
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In natural scenes it is quite easy to find a great number of elements that 

can affect the response of the ToF camera, which is characterised by 

suffering from flying pixels, noise and incorrect depth measurements due to 

the scene geometry and material properties. For instance, the modulated light 

used by the ToF camera is frequently reflected by multiple surfaces inside the 

scene before reaching the camera sensor. Border of fruits and leaves produces 

commonly this kind of multi-path interferences, affecting the range data 

measurements and consequently the fruits properties. Plants elements can 

also be moved by the wind during the acquisition process, producing 

erroneous measurements. It has to be considered also that the registration 

algorithm is dealing with a correspondence between images of 144 × 176 

pixels from the ToF camera and images of 2050 × 2480 pixels from the 

classification maps. Moreover, manual measurement of distances for ground 

truth data is not exempt from errors, which could explain the appearance of 

some isolated maximum errors, far from the mean values. Therefore, the 

mean position errors obtained during the experimental test are quite 

acceptable bearing in mind the high complexity of the studied scenes and the 

large difference in the resolution of the ToF images and the classification 

maps.  

Regarding the problems caused by the occlusions of leaves and branches, 

and the overlapped fruits, the preliminary results of the proposed method, 

which is based on the depth-dependent Hlut registration approach and the 

guided fruits approximation procedure, shown the capabilities of the proposal 

to deal with these issues. Nevertheless, more robust methods for surfaces 

approximation should be evaluated. For instance, in Figures 5.46, the results 

of the feature extraction of an occluded apple are presented, while in Figure 

5.47, the problem of overlapped fruits is illustrated.  
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(a) 

 

(b) (c) 

 

(d) (e) 

Figure 5.46 Results of the feature extraction procedure of a fruit in scene 12 

(Day 3). (a) Fruit position in the RGB image coordinates. (b) Guided local 

data grid fitting. (c) Guided quadric surface approximation. (c) Depth and 

colour model of the fruit. (e) Raw depth and colour model of the fruit. 
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(a) 

 

(b) (c) 

 

(d) (e) 

Figure 5.47 Results of the feature extraction procedure of a fruit in scene 12 
(Day 3). (a) Fruit position in the RGB image coordinates. (b) Guided local 
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data grid fitting. (c) Guided quadric surface approximation. (c) Depth and 

colour model of the fruit. (e) Raw depth and colour model of the fruit. 

5.3.2 Conclusions 

This experimental section proposes a modular and easily adaptable 

multisensory system and a set of associated pre-processing algorithms for the 

detection and localisation of fruits. The solution includes a colour camera and 

a multispectral system for acquiring reflectance measurements in the visible 

and NIR regions that are used for finding areas of interest that belong to the 

fruits, and a ToF camera that provides fast acquisition of distances enabling 

the localisation of the targets in the coordinate space.   

The pre-processing algorithms designed for the proposed multisensory 

system include a classification algorithm based on SVMs that identifies 

pixels that belong to fruits and a registration algorithm that combines the 

results of the aforementioned classification algorithm with the data provided 

by the ToF camera in order to obtain a direct correspondence among their 

pixels, so range data can be associated to pixels labelled as fruit. An 

extensive experimental campaign was carried out in order to assess the 

proposed solution, including the acquisition of not only test data but also 

training and ground truth data. The experimental analysis of image 

registration in laboratory conditions indicates that the proposal is accurate 

enough for computing feature extraction of fruits, taking into account the 

complexity of the scene. For instance, the small dimensions of the objects 

compared with the extant of the image view, as well as the spherical shape of 

the objects are additional difficulties when using ToF cameras.   

On the other hand, in spite of the challenging scenarios found in natural 

environments, the proposed solution exhibited a satisfactory performance. 

Multisensory system provides all the data required for detecting and locating 

fruits, showing a great versatility in dealing with different crops. The pre-

processing algorithm based on SVM classifiers affords an accurate enough 

discrimination of apple tree elements, without any pre-treatment of the 

images, and without any preparation of the crops. Finally, registration 

algorithm allows the spatial localisation of the regions of interest classified as 

fruits with enough accuracy.  

Finally, it is important to remark that the proposed method is characterized 

by not requiring strictly a pre-filtering of the depth data for providing 

accurate enough registered data, in terms of alignment between the depth and 

colour information, which is a significant advantage. Filtering algorithms 
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usually over smooth the data, which could be very problematic due to the 

dimension and the shape of the fruits. However, in the proposed post-

processing procedure the data fitting and filtering is addressed from a local 

perspective. Consequently, the shape of the apple could be recovered from 

the combination of the little depth information and the large colour 

information, while avoiding the previous loss of depth values caused by the 

filtering process. 
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Chapter 6 

Conclusions, Contributions and Future 

Research Directions 

In the research of this Thesis, a non-feature-based methods for automatic 

image registration has been presented, which is relied on depth dependant 

planar projective transformation. For this purpose, a framework for automatic 

image registration of low resolution ToF and high resolution RGB images 

was designed and implemented. The implemented framework is capable of 

registering images with non-common features and dealing with moderate 

noisy depth measurements. The method is based on a depth-dependent 

homography lookup table (Hlut). By this means, the 3D world is parametrized in 

n-planes which correspond to the entries of the Hlut. Hence, points 

transformation between views is reliant on the distance from the objects to the 

sensory system, this being a non-feature-based method. Since the method relies 

on planar projective transformation, the computational load is very low, making 

it suitable for near real-time applications. 

The conclusions for each of the two objectives proposed in this Thesis are 

presented in detail below.  
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6.1 Design, Implementation and Validation of the Proposed 

Image Registration Method 

The results of the depth-dependent Hlut approach validation, which were 

presented in Chapter 3, show that the proposed solution exhibits a 

satisfactory performance in terms of both visual quality and RMSE. The 

method normally maps points with an error of less than 4 pixels, measured on 

the RGB frame, which is a small error considering the RGB camera 

resolution (2448  2050 pixels). These errors represent slight distortions of 

the mapped points at working distances within 400–2300 mm. The procedure 

is capable of computing a low resolution colour depth map together with a 

labelled homography mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 on the RGB image coordinates. The 

values of the 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 correspond to the homographies { 𝐻𝑘
𝑙𝑢𝑡} used for 

transferring the data. Since there is a large difference between the cameras 

resolution, within adjacent estimated points on the RGB pixel coordinates, 

several coloured points remain unmapped. This labelled mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 is 

intended to be used for matching the unmapped points on the RGB image 

frame. This work presents an initial approach for this procedure, where a 

nearest neighbourhood algorithm was applied to create a entire mask of 

{ 𝐻𝑘
𝑙𝑢𝑡} on the RGB pixel coordinates. Then, the high resolution colour depth 

map was straightforward computed by mapping points from the RGB to the 

ToF with the homographies { 𝐻𝑘
𝑙𝑢𝑡−1}.  

The next step in the proposed method evaluation comprises an in-depth 

comparison between the standard calibration method and the depth-

dependent Hlut approach, presented in Chapter 4. The standard calibration 

method is the most commonly implemented method for computing depth 

map registration in the literature, and for this reason it was selected for the 

comparative benchmarking. On the other hand, according to the state-of-the-

art studied in Chapter 2, the depth estimation acquired with the ToF cameras 

are affected by systematic (related to the camera’s internal configuration, 

hardware, etc.) and non-systematic (external factor, such as lighting 

conditions, motion blurring, etc.) errors, being some of them reduced by the 

camera calibration process and others by data filtering. Since the two 

registration methods are reliant on the accuracy of the depth measurements, 

the methods evaluation and comparison was addressed from the perspective 

of their response to the noise in the depth estimations. 
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First, the calibration parameters were computed as much accurate as 

possible. The obtained extrinsic and intrinsic parameters were compared with 

similar researches of the field, and they have proven to surpass the accuracy 

of these researches results. Next, the investigation for the methods evaluation 

was distributed in three situations of data processing: noise-free data input 

(ideal), raw data input and filtered data input. The obtained results indicate 

that the method proposed in this Thesis outperforms the accuracy results of 

the standard calibration method. For instance, when processing raw data, the 

proposed approach reduced the error in 41%, with an obtained RMSE =
0.2440, in comparison with the error of the standard calibration method, with 

an RMSE = 0.4150. Similarly for the filtered data, the obtained error with 

the standard calibration method is increased in 127% when using bilateral 

filtering and in 216% when using non-local filter, compared with 

corresponding errors of the proposed approach. The obtained errors with the 

proposed approach are  RMSE = 0.2376 and  RMSE = 0.2365, respectively 

for each filtering technique, and regarding the results of the standard 

calibration method, the obtained errors are RMSE = 0.5402 and RMSE =
0.7478, respectively. 

In conclusion, these results point out the capability and flexibility of the 

proposed method for dealing with slight variation in the depth estimation and 

for processing non-extremely smoothed filtered data. Since the depth-

dependent Hlut method is reliant on a range of depth measurements instead 

of the exact value of each measure, moderate variations in the depth 

estimation could be avoided for the data registration. 

6.2 Experimental Testing and Validation of the Proposed 

Method in Indoors and Outdoors Robotic Applications 

For the experimentation and the validation of the proposed registration 

approach in combination with image fusion (pixel-based) algorithms, which 

are presented in Chapter 5, two relevant robotic applications were considered 

for this purpose. In following subsections, the specific conclusions of these 

applications are presented. 

6.2.1 Experimental stage in indoors robotic application 

The first experimental test was oriented to indoors applications, such as 

the in-house video surveillance and the people falling monitoring. In which 

the implementation of the proposed approach in people motion detection 
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tasks was investigated. Besides that, this experimental stage was also 

comprises the validation of the proposed method accuracy, and its capability 

for an adequate image registration of large surfaces by means of several 

homographies { 𝐻𝑘
𝑙𝑢𝑡}, whereas the presence of discontinuities within the 

homographies transitions are avoided. For that purpose, this experimental 

stage was composed of two series of experiments, whose main results are 

summarizes below. 

6.2.1.1 First series of experiments (indoors): validation of the accuracy and 

satisfactory image registration of large surfaces  

First, a planar surface was used as target (the pattern board), and several 

images of it were acquired at different positions, orientation and distances 

with respect the sensory system. Then, this process was repeated but using 

various volumetric and non-uniformed objects such as a chair, a cylinder 

bucket and a person. The numerical and the visual results exhibit a 

satisfactory performance of the proposal, with an obtained normalized RMSE 

of 0.1272, a mean value given by 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−0.7, − 0.3] and a 

standard deviation  𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [3.5,4.6], for the planar objects, and a 

𝑅𝑀𝑆𝐸 = 0.3511, a mean value 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−0.46, 5.5] and a 

standard deviation 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [10.5,11.3] for the volumetric and non-

uniform objects. In addition, the visual results demonstrate the capability of 

the proposed registration method for avoiding discontinuities on the mapped 

surfaces, preserving the edges and shape of objects and, providing accurate 

enough alignment of depth and colour information. This contrasts with the 

results obtained with the standard calibration method, where the object’s 

surfaces are less homogeneous and the object’s edges exhibit several 

misalignment problems.  

6.2.1.2 Second series of experiments (indoors): evaluation of the method 

capability for motion detection  

For the purpose of evaluation of the proposed method capability for the 

people motion detection task, a motion detection procedure was introduced. 

The procedure computes a robust structure from motion algorithm on the 

amplitude images acquired by the ToF camera. Then, the resulting motion 

mask in combination with the depth measurements and the registered RGB 

image, are used to provide the 3D structure of the person’s body and its 
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corresponding high resolution colour information. The proposed procedure 

reduced the problems of false inliers produced by shadows and the varying 

illumination conditions. The output of the process provides valuable 

information for the decision-making stage, since data quadric surface 

approximation of the 3D body structure, might delivers the characteristics of 

an ellipsoid, often used in people’s falling detection investigations, and the 

high resolution colour information could be used for a person feature 

extraction. On the other hand, the results demonstrate that the proposed 

method is capable of computing high resolution colour dense map, while the 

loss of colour information is avoided.  

6.2.2 Experimental stage in outdoors robotic application 

The second application considered for testing and validating the proposed 

approach was framed within the European Project entitled Intelligent Sensing 

and Manipulation for Sustainable Production and Harvesting of High Value 

Crops, Clever Robots for Crops (CROPS). The general objective of this 

experimental stage is to assess the feasibility of detecting and locating fruits 

(apples) and other plant elements in natural environments by utilising a 

unique modular and easily adaptable multisensory system in combination 

with the proposed depth-dependent Hlut approach. For that purpose, two 

experiments were conducted. An initial experimental setup in laboratory 

conditions was adopted, where scenes of artificial apples were analysed. The 

obtained visual results show a satisfactory performance of the image 

registration procedure, in spite of the complexity of the scenes, because of the 

small size of the fruits with respect of the images view and the rounded shape 

of the fruits. These issues become more relevant when the targets are angled 

with respect to the image plane. In all cases evaluated, the presence of 

misalignment problems is almost imperceptible and the shape and edges of 

objects are preserved. Additionally, a feature extraction procedure was 

proposed and implemented. The results illustrate the capability of the 

proposal for detecting and locating fruit. 

A second experimental step was carried out in natural conditions, where 

an extensive campaign for collecting data from an apple orchard was 

conducted. The complexity of these scenes is increased due to the varying 

illumination conditions, the random position of the apples on the trees, the 

natural elements of the plants and the dynamic nature of the environment, 

such as the presence of wind. Despite these difficulties, the visual results are 

also promising, since high resolution colour depth information was achieved 
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with enough accuracy, and the proposed feature extraction was also 

successfully implemented. 

An important advantage of the proposed approach presented in this Thesis, 

was illustrated in Chapter 5 within the results of the experiments concerning 

to the apples detection and localisation. The proposed method does not 

strictly require a pre-filtering process, which usually over-smooths the depth 

information in an arbitrary way, and nevertheless, this method is capable of 

providing accurate enough registered data in terms of alignment between the 

depth and colour information. Hence, small objects or features of the objects 

are not removed, and in the post-processing procedure the data fitting and 

filtering might be addressed from a local perspective, by means of the 

combination of the little depth information and the large colour information. 

6.3 Main Contributions 

The main contributions of this Thesis are highlighted as follows: 

 The design, implementation and evaluation of a novel approach for 

the automatic registration of images acquired with a ToF and RGB 

camera has been introduced. The detailed procedure for the automatic 

computation of the depth-dependent Hlut approach has been listed in 

the pseudocode gathered in Algorithm 1. This contribution has 

allowed the dissemination in a journal paper (Salinas et al. 2015). 

 A comprehensive comparative comparison between the proposed 

method and the standard calibration method has been conducted, 

where three relevant input data scenarios were considered. The visual 

and numerical results have been analysed, in which the proposed 

method outperforms the accuracy results of the standard calibration 

method and, it also has demonstrated to be capable of dealing with 

slight variation in the depth measurements. An initial comparison 

process was also included in the journal paper (Salinas et al. 2015). 

 An in-depth accuracy and response validation of the method has been 

carried out. The proposal has shown a satisfactory performance in the 

large surface registration, providing uniform registered colour depth 

regions without the presence of discontinuities. 

 The method has been implemented in motion detection tasks. These 

results exhibit the capability of the proposal for people falling 

detections tasks. The procedure provides 3D information and the 

contextual information of the body structure, which corresponds to the 
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motion inliers. The preliminary study of this algorithm was reported 

in the journal paper (Salinas et al. 2012). 

 The problems of shadows and variation in the illumination conditions, 

which usually produce the false inlier in the motion detection 

algorithm, have been addressed by using the ToF amplitude images 

instead of the RGB images in the motion analysis algorithm. 

 In this Thesis a new approach for the detection and localisation of 

fruits in natural environments for harvesting robots have been 

introduced. This approach presents a unique multisensory system and 

the combination of the image registration and fusion algorithms, based 

on the depth-dependent Hlut method. The conceptual idea of this 

proposal was reported in the journal paper (Fernández et al. 2014, 

Fernández et al. 2013a) and in the international conferences 

proceeding (Barth et al. 2014, Montes et al. 2012). In this Thesis, an 

extensive and complementary research on this field has been 

presented. 

 Finally, the proposed approach has demonstrated its capability for the 

feature extraction of small and rounded objects which have been 

acquired under very complex conditions. 

6.4 Future Research Directions 

Although for some robotic applications the results presented in this Thesis 

are accurate enough, other applications might require high-quality and high-

accuracy colour depth maps. In future researches, more sophisticated 

algorithms for edge and depth measurement enhancement, as well as for the 

detection and removal of the outliers, should be investigated. Since the 

labelled homography mask 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 was created for further 

implementations of these algorithms, smart and guided algorithms should be 

adopted to use the combination of the labelled information, the depth values 

and the texture of the RGB images.  

The proposed method has been conceived as a flexible and adaptable 

approach. Hence, ongoing investigations with the proposed framework 

attempts to apply this methodology in other multisensor configurations, which 

are composed with two or more sensors such as thermal cameras, SWIR 

cameras, multispectral systems, and so on. For that purpose, an extensive and 

detailed description of the procedure for the automatic depth-dependent Hlut 

method computation is presented in this Thesis and listed in Algorithm 1. 
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Resumen 

1. Fusión de imágenes multisensorial 

La fusión de imágenes es una de las operaciones más importantes en el 

procesamiento de imágenes, que tiene como objetivo el mejoramiento del 

conocimiento y de la representación de entornos tridimensionales, mediante 

la adquisición de imágenes de una escena con múltiples y diferentes sensores, 

y capturadas en tiempos diferentes. La fusión sensorial ha sido ampliamente 

utilizada en la mayoría de campos de investigación, donde se requiere el 

análisis de imágenes. Dichos campos incluyen el análisis de imágenes 

médicas (James and Dasarathy 2014, Wyawahare et al. 2009), detección 

remota (Inglada and Giros 2004, Fonseca and Manjunath 1996), visión por 

computador (Salvi et al. 2007), robótica (Hines et al. 2003, Luo et al. 2002). 

Dada la gran diversidad y cantidad de aplicaciones, y el creciente número y 

diversidad de sensores para la captura de datos, es casi imposible, que una 

única metodología de fusión multisensorial tenga la capacidad de satisfacer a 

todos los campos de investigación previamente mencionados. Por lo tanto, la 

decisión de adoptar una determinada solución en temas de fusión sensorial, 

está directamente relacionada con la naturaleza de la aplicación y con la 

información que es considerada relevante.  

Por lo general, la fusión de imágenes puede clasificarse en tres grupos de 

algoritmos, los cuales son, a nivel de píxeles, a nivel de características y a 

nivel simbólico. Los algoritmos a nivel de píxeles, han sido ampliamente 

investigados en comparación con los otros dos grupos de algoritmos. Como 

ejemplo de ello, en (Sahu and Parsai 2012), los autores presentan un estudio y 
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revisión del estado del arte de los algoritmos a nivel de píxeles. Estos 

algoritmos se basan en la variación de la intensidad de los píxeles, y pueden 

trabajar tanto en el domino del espacio, como en el de la frecuencia.  

La estructura del procesamiento de la fusión de imágenes, normalmente se 

compone de cuatro pasos: pre-procesamiento (eliminación del ruido), el 

registro de imágenes (alineación de las imágenes), la fusión de imágenes (a 

nivel de píxeles) y el post-procesamiento (clasificación, segmentación y 

extracción de características). Los principales pasos del concepto general 

para para la fusión de imágenes, se muestran en la Figura 1.1.  

 

 

Figura R.1 Diagrama de flujo para el procedimiento para la fusión de 

imágenes. 

En la mayoría de los casos, para la implementación del algoritmo que 

permite la fusión de imágenes, se asume que los datos de entrada se 

encuentran perfectamente alineados. Sin embargo, en la práctica estas 

situaciones son difíciles de encontrar. Únicamente se encuentran en aquellas 

situaciones, en las que no se modifican los parámetros intrínsecos y 

extrínsecos de las cámaras, se obtienen imágenes que se encuentran 

geométricamente alineadas (Hall and Llinas 1997). Los demás casos 
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requieren la implementación previa de métodos de registro de imágenes. 

Mediante estos métodos se obtienen imágenes geométricamente alineadas, y 

dependiendo de la naturaleza tanto de las fuentes de captura de datos, como 

de las aplicaciones, dichos métodos se categorizan en aquellos que están 

basados en el análisis de características y en los de análisis de segmentos. 

Para ambas aproximaciones, el procedimiento de registro de imágenes se 

compone de cuatro pasos: la detección de características, la búsqueda de 

patrones comunes, la estimación de un modelo de transformación y la 

transformación entre las imágenes (Zitová and Flusser 2003). 

El registro de imágenes es un paso fundamental en el procedimiento de 

fusión de imágenes, ya sea empleando para ello los parámetros de calibración 

de las cámaras o métodos más comunes, como los basados en el análisis de 

características y de segmentos. Este paso es primordial porque los errores 

obtenidos en este proceso, son posteriormente transferidos a cualquier clase 

de algoritmo diseñado para la fusión de imágenes (a nivel de píxeles, 

características o simbólico). Esta relación tan compleja entre el registro y la 

fusión de imágenes, puede enfocarse desde el punto de vista en el que se 

consideran dos diferencias entre las imágenes de entrada: las diferencias en el 

espacio y las diferencias que no tiene relación con el espacio (Zhang and 

Blum 2001). La primera de ellas tiene relación con el des-alineamiento 

espacial entre las imágenes, que puede deberse a las transformaciones 

geométricas entre las mismas (rotación, traslación, escalado, etc.). A la 

segunda se le atribuyen parámetros relacionados con el entorno, tales como 

las cambios en la iluminación, las escenas dinámicas, el uso de fuentes de 

captura de datos diferentes, así como el uso de sensores similares pero con 

configuraciones distintas. Por lo que, en lo referente a las diferencias en el 

espacio, el registro de imágenes es el encargado de solventar dichas 

diferencias, mientras que el resto de diferencias están a cargo de los 

algoritmos de fusión de imágenes. 

El registro de imágenes, tal como ha sido mencionado anteriormente, es 

un método basado en el análisis de características, que por lo tanto, depende 

de la robustez de las características comunes que pueden encontrarse entre las 

imágenes. En casos donde estas características (intensidad de píxeles o 

similitud de regiones) no se encuentran disponibles o no son lo bastante 

robustas, en todas ellos se deben adoptar soluciones específicas. Un ejemplo 

de ello se observa en la combinación de cámaras de Tiempo de Vuelo (Time-

of-Flight (ToF)) con cámaras de color (RGB), en el cual, las cámaras ToF no 

son capaces de detectar la información contextual del entorno, al que las 



 

162 Resumen 

 

 

 

cámaras RGB. Las cámaras ToF proporcionan imágenes en escala de grises 

de baja resolución, que representan la respuesta de la señal de amplitud, y las 

correspondientes medidas de profundidad. Esto se consigue mediante la 

medición del tiempo de vuelo que le toma al haz de luz infrarroja, emitido 

por la ToF, viajar hasta el objeto y volver al sensor de la cámara. Por lo 

general, las medidas de profundidad proporcionadas por las cámaras ToF 

muestran la presencia de ruido, esto se debe a la configuración interna del 

hardware de los dispositivos y a diversas condiciones del entorno. Por ello, 

para la captura de medidas de profundidad fiables se requiere la aplicación de 

técnicas de calibración de los sensores y de filtrado de datos (Reynolds et al. 

2011). Sin embargo, este problema de registro de imágenes, puede 

solventarse mediante la calibración de las cámaras, dado que los parámetros 

internos y externos de estas cámaras pueden utilizarse para la transformación 

homogénea entre las coordenadas de ambos dispositivos. Una de los primeros 

trabajos que estudió la fusión entre cámaras TOF y RGB está en Reulke 

(2006). Esta estrategia de percepción, basada en el uso de cámaras ToF y 

RGB, permite la captura de la información relativa a entornos 

tridimensionales, la cual incluye información de alta resolución del contexto 

de una escena y de la estructura 3D de la misma, todo ello alcanzando 

elevadas frecuencias de captura de datos. Estas características suponen una 

gran ventaja en aplicaciones de sistemas robóticos, en especial aquellas que 

se ejecutan en condiciones de tiempo real. Por otro lado, esta estrategia de 

fusión de datos no depende de las características comunes entre imágenes, tal 

como ocurre en la mayoría de las técnicas pasivas para la adquisición de 

información tridimensional. En comparación con otras técnicas activas para 

la percepción visual 3D, las cámaras ToF no requieren partes móviles para 

realizar medidas de profundidad, como sucede con los escáneres de láser, ni 

tampoco requieren de entornos con sistemas de iluminación altamente 

controlados, como es el caso de los métodos de iluminación estructurada. 

Una revisión exhaustiva de los métodos para la percepción visual 3D, ha sido 

presentada por Sansoni et al. (2009). 

El propósito del estudio presentado en esta tesis, es la investigación de 

técnicas que permitan la fusión entre imágenes adquiridas por cámaras ToF y 

RGB, mediante soluciones de registro de imágenes que tengan alta exactitud 

y sean flexibles, y de igual manera, puedan ser adaptadas a aplicaciones en 

tiempo real. Esta solución debe ser capaz de resolver la problemática de 

fusionar sensores que no proporcionan imágenes con características similares. 

Por consiguiente, esta tesis se enfoca en el diseño y la implementación de 
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métodos de registro y fusión de imágenes, así como en la experimentación y 

validación de estos métodos en aplicaciones robóticas, tanto en entornos 

interiores como exteriores. Las aplicaciones tratadas en esta tesis son la 

seguridad y vigilancia para la monitorización de personas en hogares, y la 

detección y localización de frutas para tareas de cosechado, relativas a la 

agricultura de precisión. En ambos casos, dichas aplicaciones de sistemas 

robóticos, deben satisfacer condiciones de ejecución en tiempo real. 

2. Motivación y alcance 

La fusión de imágenes es una de las técnicas más importantes en la 

percepción visual tridimensional orientada a aplicaciones de sistemas 

robóticos, que permiten la captura de la información del contexto y de la 

estructura de una escena. Tal como se ha mencionado anteriormente, son dos 

los pasos más importantes en la fusión de imágenes, que permiten conseguir 

una representación más exacta y de alta calidad de entornos tridimensionales. 

Dichos pasos comprenden al registro y fusión (a nivel de píxeles) de 

imágenes, y se muestran enmarcados en rojo en la Figura 1.1, la cual ilustra 

el diagrama de flujo operaciones para la fusión de imágenes. El éxito o 

fracaso del proceso de registro de imágenes, condicionará los resultados del 

proceso de fusión de datos. Por consiguiente, se debe prestar especial 

atención al proceso de registro de datos, para poder garantizar la exactitud en 

la alineación espacial de las imágenes, lo cual forma una parte muy 

importante del trabajo de investigación de esta tesis doctoral.  

Por tal razón, se ha investigado la metodología de fusión de datos entre 

cámaras ToF y RGB. La compromiso entre las imágenes de color de alta 

resolución obtenidas por las cámaras RGB y las medidas de profundidad 

adquiridas por las cámaras ToF, convierten a esta estrategia, en método capaz 

de proporcionar información de objetos definidos de forma apropiada, tanto 

en el contexto como en la estructura, con una descripción exacta de los 

bordes y de las formas de los objetos, y que además, es adecuada para 

aplicaciones en tiempo real. 

Existen diversas problemáticas relacionadas con el registro de estos dos 

tipos de cámaras. Por un lado, la baja resolución de las cámaras ToF hacen 

que el cálculo de parámetros exactos de calibración, no sea una tarea sencilla 

de conseguir. Aún, si se obtienen parámetros de calibración con bastante 

exactitud, el ruido presente en las medidas de profundidad, introduce errores 

durante la transformación homogénea entre las cámaras. Con el objetivo de 

reducir el ruido en las medidas de la cámara ToF, normalmente se aplican 
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técnicas de filtrado de datos, que en este caso en particular, debido a la baja 

resolución de estas cámaras, hace que los datos sean aún más susceptibles al 

efecto de sobre-alisado de bordes y superficies. 

Por otro lado, dado que existe una gran diferencia entre las resoluciones de 

ambas cámaras, únicamente se pueden transformar centenas de píxeles en las 

imágenes ToF y RGB, que se corresponden con la resolución de las imágenes 

ToF (144×176 píxeles). Con el objetivo de aprovechar toda la información de 

color proporcionada por las imágenes de alta resolución de las cámaras RGB, 

el estudio de métodos que proporcionan mapas de color y de profundidad de 

alta resolución, es de gran relevancia para este trabajo de investigación. 

Otro reto al que se debe enfrentar este trabajo de investigación, es la 

validación de los resultados obtenidos mediante la fusión sensorial de 

imágenes. Con el objetivo de validar el método de fusión de imágenes 

propuesto, se han seleccionado dos aplicaciones de sistemas robóticos, una de 

ellas enfocada a entornos interiores y la otra a exteriores, en los cuales se 

deben probar las capacidades del método propuesto en esta tesis. 

3. Objetivos de la investigación 

El primer y principal objetivo de este trabajo de investigación es el de 

diseñar, implementar y validar un método para el registro de imágenes 

obtenidas mediante la fusión sensorial de una cámara ToF y una RGB. Esta 

solución debe ser capaz de resolver problemas como la carencia de 

características comunes entre las imágenes capturadas por dichos sensores, la 

presencia de ruido en las medidas de profundidad de la cámara ToF y la gran 

diferencia entre las resoluciones de estas cámaras (ToF y RGB). 

Adicionalmente, el registro de imágenes debe poder ser adaptado para 

aplicaciones en tiempo real. Como parte del proceso de validación del 

método propuesto, se deben evaluar resultados tanto visuales, como 

numéricos. Dado que existen otras metodologías para el registro de las 

imágenes, se debe realizar una evaluación comparación entre el método 

propuesto y el método de mayor relevancia, que en este caso es el método 

basado en la calibración estándar de cámaras. 

El segundo objetivo en esta tesis, es el desarrollo de una validación 

experimental que comprende dos aplicaciones de sistemas robóticos: la 

seguridad y vigilancia para la monitorización de caída de personas en 

hogares, y la detección y localización de frutas en cultivos para aplicaciones 

con robots cosechadores, utilizados en agricultura de precisión. En dichas 

aplicaciones se deben evaluar las capacidades del método propuesto en esta 
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tesis, en combinación con algoritmos de fusión de imágenes. El propósito de 

estas evaluaciones es el de demostrar que la metodología propuesta en este 

trabajo de investigación, tiene la capacidad de proporcionar, de forma 

satisfactoria, información exacta y de calidad con referencia a la clasificación 

y segmentación de los datos y la extracción de las características de los 

objetos de interés. Todo ello, orientado a tareas específicas de aplicaciones de 

sistemas robóticos de servicio y de agricultura de precisión.  

4. Organización de la tesis 

Con el propósito de abordar los objetivos, la memoria de la tesis está 

organizada de la siguiente forma:  

El Capítulo 2 presenta el estado del arte de las técnicas de fusión sensorial 

de imágenes, las cuales son fundamentales para diversos métodos de 

percepción visual tridimensional. De estas técnicas, en este estudio se 

presenta una investigación más exhaustiva enfocada a las técnicas de fusión 

de cámaras ToF y RGB.  

El Capítulo 3 se dedica al diseño, implementación y validación de la 

metodología para el registro de imágenes obtenidas mediante la fusión de una 

cámara ToF y una RGB. Se presentan los conceptos fundamentales para el 

diseño de la propuesta, así como la información detallada para el cómputo del 

nuevo enfoque denominado depth-dependent Hlut. También se presenta el 

análisis preliminar de los resultados de la evaluación de la precisión del 

método. Finalmente, se propone un procedimiento para la obtención de 

mapas de color y profundidad de alta resolución. 

En el Capítulo 4 se presentan los resultados de la comparación entre el 

método propuesto Hlut y el método de calibración estándar de las cámaras. 

Esta comparación aborda tres escenarios con distintas medidas de la 

profundidad: sin ruido (ideales), sin procesar y filtradas. El primer grupo de 

datos, se obtiene de los pasos del procedimiento de calibración de las 

cámaras. El segundo grupo, corresponde a las medidas de profundidad 

adquiridas directamente por la cámara ToF. Por último, para el tercer 

escenario, se aplican dos técnicas de filtrado de datos en las medidas en crudo 

de la cámara ToF, que son el filtrado bilateral y el filtrado no local  de 

medias. 

El Capítulo 5 aborda la sección de experimentación, la cual comprende la 

validación del método en dos aplicaciones de sistemas robóticos relevantes 

(en entornos de interiores y de exteriores). El primer conjunto de 

experimentos enmarcados en la primera aplicación robótica, está enfocado a 
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la seguridad y vigilancia en hogares, para la monitorización del movimiento 

de personas. Para este caso, se han diseñado dos series de experimentos. La 

primera de ellas, se centra en la evaluación de la exactitud del método y de su 

capacidad para el registro correcto de superficies grandes e inclinadas. La 

segunda serie, está enfocada en la validación del método en tareas de 

detección del movimiento. El conjunto de experimentos enmarcados en la 

segunda aplicación, está orientado a la detección y localización de frutas 

(manzanas) en árboles para aplicaciones que utilizan sistemas robóticos 

cosechadores. Con este propósito, se realizan experimentos tanto en 

laboratorio como en campos de cultivos. De forma adicional, se propone un 

procedimiento para la extracción de características de los objetos de interés. 

Dicho proceso combina el método Hlut y técnicas de fusión de imágenes a 

nivel de píxeles. 

Finalmente, en el Capítulo 6, se resumen los resultados más importantes 

obtenidos en este trabajo de investigación, además de las contribuciones más 

relevantes de esta tesis doctoral y finalmente se presentan posibles líneas 

futuras de investigación. 

5. Conclusiones, aportaciones principales y trabajos futuros 

En el trabajo de investigación realizado en esta tesis, se ha presentado un 

método para el registro automático de imágenes, el cual no depende del 

análisis de características similares entre imágenes, el cual se fundamenta en 

transformaciones proyectivas planas dependientes de la distancia. Para ello, 

se ha diseñado e implementado una un sistema que consiste en una cámara 

ToF de baja resolución y por una cámara de color de alta resolución, para 

efectuar el registro y la fusión de imágenes adquiridas por ambos 

dispositivos. Dicho sistema, tiene la capacidad de registrar imágenes que no 

proporcionan características comunes entre sí, y, de solventar la presencia de 

ruido moderado en las medidas de profundidad obtenidas por la cámara ToF.  

El método propuesto en esta tesis está basado en una tabla de búsqueda de 

homografías planas, las cuales dependen de las medidas de profundidad, 

denominada en inglés depth-dependent homography lookup table (Hlut). Los 

elementos de esta tabla se obtienen mediante la discretización virtual del 

espacio tridimensional en {n-planos}, los cuales se encuentran dispuestos frente 

al sistema y paralelos a éste. A partir de éstos, la transformación de puntos entre 

las vistas depende de la distancia entre los objetos y el sistema multisensorial. 

Estas características convierten a esta solución, en una técnica no basada en el 

análisis de las características similares entre imágenes. Dado que este método se 
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fundamenta en transformaciones proyectivas planas, los requerimientos de carga 

computacional son bajos, haciendo posible la implementación del método en 

aplicaciones de tiempo real. 

Las conclusiones para cada uno de los objetivos propuestos en esta tesis, se 

detallan a continuación. 

5.1 Diseño, implementación y validación del método propuesto 

para el registro de imágenes 

La validación de los resultados obtenidos por el método Hlut, los cuales se 

han presentado en el Capítulo 3, muestran que la solución propuesta presenta 

un rendimiento satisfactorio, tanto en términos de calidad de los resultados 

visuales, como en términos numéricos evaluados por medio de la raíz 

cuadrada del error cuadrático medio (RMSE). Por otro lado, mediante este 

método se consigue la transformación de puntos con un error inferior a 4 

píxeles, medidos en el plano imagen de la cámara RGB, lo cual se considera 

un valor pequeño en comparación con la resolución de la imagen RGB que es 

de 2448  2050 píxeles. Dichos errores representan pequeñas distorsiones, 

dadas las distancias de trabajo del sistema, que se encuentran entre los 400 y 

2300 mm. Mediante este procedimiento, se consiguen mapas de color y de 

profundidad de baja resolución, y además de ello, se proporciona una máscara 

de etiquetas de homografías 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵 en el plano imagen de la cámara RGB. 

Los valores de dicha máscara se corresponden con las homografías { 𝐻𝑘
𝑙𝑢𝑡} 

utilizadas para la transformación de los puntos. Dado que existe una gran 

diferencia entre las resoluciones de las cámaras, entre cada par de puntos 

adyacentes estimados en la imagen RGB, existen varios puntos de color sin 

ser mapeados. Por este motivo, la máscara de etiquetas 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵, ha sido 

creada con el objetivo de ser implementada como una herramienta en la 

resolución de dicho problema. En este trabajo de investigación se presenta 

una primera propuesta para el uso de esta máscara, la cual está basada en el 

algoritmo de vecinos más próximos, obteniendo como resultado una máscara 

completa de etiquetas de homografías { 𝐻𝑘
𝑙𝑢𝑡} en el plano imagen de color. De 

esta manera se obtiene un mapa de color y de profundidad de alta resolución, 

mediante la transformación inversa de las homografías { 𝐻𝑘
𝑙𝑢𝑡−1}, que 

permiten transferir puntos desde el plano imagen RGB al plano imagen ToF.  

El siguiente paso en la evaluación del método propuesto, consiste en la 

comparación exhaustiva entre el método Hlut y el método de la calibración 
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estándar de las cámaras, presentada en el Capítulo 4 de la tesis. De acuerdo la 

revisión del estado del arte, el método de calibración estándar es el método 

más utilizado para el cómputo del registro de mapas de profundidad y, por 

esta razón, es el elegido como base para esta evaluación comparativa. Por 

otro lado, de acuerdo al estudio del estado del arte realizado en el Capítulo 2, 

existen errores sistemáticos (relativos a los parámetros internos de 

configuración, el hardware, etc.) y no sistemáticos (factores externos, tales 

como las condiciones de iluminación, desenfoque del movimiento, etc.), 

muchos de los cuales son reducidos mediante la calibración de estos 

dispositivos y el filtrado de los datos. Dado que ambos métodos de registro 

de imágenes dependen de las medidas de profundidad adquiridas por la 

cámara ToF, esta evaluación comparativa se ha llevado a cabo desde un 

punto de vista tal, que se evalúa la respuesta de estos métodos bajo la 

presencia de ruido en dichas medidas. 

Lo primero fue la realización del cómputo, lo más exacto posible, de los 

parámetros de calibración de las cámaras. Con este objetivo se han 

comparado los resultados obtenidos tanto, de los parámetros intrínsecos como 

extrínsecos, con los resultados de exactitud obtenidos en estudios similares de 

este campo. A continuación, se ha realizado la evaluación de los métodos en 

tres situaciones, con datos de entrada: sin ruido (ideales), sin procesar y 

filtrados. Los resultados obtenidos durante la evaluación indican que, el 

método propuesto supera los valores de exactitud obtenidos por el método de 

calibración estándar. Como ejemplo de ello, en el procesamiento de datos sin 

filtrar, el método Hlut reduce el error en un 41%, con un error de RMSE =
0.2440, comparándolo con el error del método de calibración estándar que 

posee un RMSE = 0.4150. De igual forma ocurre con los datos filtrados, en 

los que los errores obtenidos por el método de calibración estándar se 

incrementan en un 127% con el filtrado bilateral y en un 216% con el filtro 

de medias no locales, ambos comparados con los datos obtenidos con el 

método propuesto. Los errores obtenidos con el método Hlut 

correspondientes al filtrado bilateral y al filtro de medias no locales son 

de  RMSE = 0.2376 y  RMSE = 0.2365, respectivamente. De forma similar, 

los errores obtenidos con el método de calibración estándar son de RMSE =
0.5402 y RMSE = 0.7478, respectivamente, para cada técnica de filtrado de 

datos. 

Se puede concluir que estos resultados destacan la capacidad y flexibilidad 

del método propuesto para lidiar con variaciones moderadas en las medidas 

de profundidad y con los datos filtrados que han sido extremadamente 
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alisados. Dado que el método Hlut depende de un rango de medidas de 

profundidad, en lugar de utilizar los valores exactos de cada una de las 

medidas de profundidad, permite eludir las desviaciones en las medidas de 

profundidad. 

5.2. Análisis experimental y validación del método propuesto 

en aplicaciones de sistemas robóticos en entornos de 

interiores y de exteriores 

Para el proceso de experimentación y validación de la solución propuesta 

en esta tesis, se han elegido dos aplicaciones de sistemas robóticos 

presentadas, que son presentador en el Capítulo 5. Dicha solución consigue la 

fusión de los datos mediante el registro de imágenes con el método Hlut y 

algoritmos de fusión de imágenes a nivel de píxeles. En las siguientes 

subsecciones, se detallan las conclusiones para cada una de las aplicaciones. 

5.2.1 Etapa experimental en aplicaciones robóticas en entornos de 

interiores 

La primera prueba experimental está enfocada a las aplicaciones en 

entornos de interiores, tales como la seguridad y vigilancia en hogares y la 

monitorización de caídas de personas. Para estas aplicaciones, se ha 

analizado la implementación de la estructura propuesta en tareas de análisis y 

detección del movimiento. Además de esto, esta etapa de experimentación 

también comprende, la validación de la exactitud del método propuesto y de 

sus capacidades para registrar superficies grandes mediante varias 

homografías { 𝐻𝑘
𝑙𝑢𝑡}, considerando que se evita la presencia de 

discontinuidades entre las transiciones de dichas homografías. Con este 

objetivo se han realizado dos series de ensayos y los resultados de mayor 

relevancia se detallan a continuación. 

5.2.1.1 Primera serie de ensayos (interiores): validación de la exactitud y el 

correcto registro de imágenes de grandes superficies  

En primer lugar, se realizó la adquisición de varias imágenes de una 

superficie plana (tablero de patrones), la cual se colocó en diversas 

posiciones, orientaciones y distancias con respecto al sistema sensorial. A 

continuación, se repitió este proceso, pero esta vez, utilizando varios objetos 

volumétricos y no uniformes, tales como una silla, un cubo cilíndrico y una 
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persona. Los resultados visuales y numéricos, resaltan el buen desempeño de 

la propuesta, obteniendo un error normalizado RSME de 0.1272, un error 

medio de 𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−0.7,− 0.3] y con una desviación estándar 

 𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [3.5,4.6] para los objetos planos y, para los objetos 

volumétricos, un valor de 𝑅𝑀𝑆𝐸 = 0.3511, un error medio de 

𝑀𝑒𝑎𝑛(𝑢,𝑣)−𝑎𝑥𝑖𝑠 = [−0.46, 5.5] y una desviación estándar de  𝜎(𝑢,𝑣)−𝑎𝑥𝑖𝑠 =

[10.5,11.3]. Además de estos datos prometedores, los resultados visuales 

demuestran la capacidad del método de evitar la presencia de 

discontinuidades en el mapeo de datos de superficies, en las cuales se 

preservan los bordes y las formas, proporcionando la alineación lo bastante 

exacta de la información de color y de profundidad. Esto contrasta con los 

resultados obtenidos por medio del método de calibración estándar, donde las 

superficies de los objetos son menos homogéneas y los bordes de los objetos 

exhiben varios problemas de desalineación. 

5.2.1.2 Segunda serie de ensayos (interiores): evaluación de las 

capacidades del método propuesto en tareas de análisis de movimiento  

Con el propósito de evaluar el potencial del método propuesto en tareas de 

análisis del movimiento, se ha presentado un procedimiento para la detección 

del movimiento. Este procedimiento consiste en un algoritmo robusto de 

análisis afín del movimiento, implementado en las imágenes de amplitud 

adquiridas por la cámara ToF. Luego, la máscara de los movimientos 

detectados en el paso anterior, se combina con las medidas de profundidad y 

con la imagen  registrada de color, para ser utilizados en el cómputo de la 

estructura tridimensional de los cuerpos de las personas y su correspondiente 

información de color de alta resolución. Este procedimiento reduce los falsos 

positivos en la detección del movimiento, normalmente producidos por 

sombras y variaciones en el sistema de iluminación. La información 

resultante de este proceso tiene un gran valor para el procedimiento de toma 

de decisiones, dado que los datos de la aproximación cuadrática de la 

superficie de la estructura 3D de un cuerpo, pueden ser utilizadas para la 

extracción de características de una elipsoide, a menudo utilizada en estudios 

de detección de caídas de personas. En este caso, la información de color de 

alta resolución, puede ser empleada para la extracción de características 

referentes de las personas. Por otro lado, los resultados obtenidos, demuestran 

que el método propuesto es capaz de proporcionar mapas de color y de 
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profundidad de alta resolución, evitando así, la perdida de la información de 

color. 

5.2.2 Etapa experimental en aplicaciones robóticas en entornos de 

exteriores 

La segunda aplicación elegida para la evaluación y la experimentación del 

método propuesto se encuentra enmarcada dentro de un proyecto europeo, 

denominado por el acrónimo CROPS y cuyo título en inglés es Intelligent 

Sensing and Manipulation for Sustainable Production and Harvesting of High 

Value Crops, Clever Robots for Crops. El objetivo general de esta etapa es la 

validación de la implementación del método propuesto Hlut en combinación 

con un sistema multiespectral, en las tareas de detección y localización de 

frutas (manzanas) y otros elementos de las plantas, todo ello en entornos 

naturales. Con este objetivo se han realizado dos grupos de experimentos. El 

primero de ellos es un ensayo inicial en condiciones de laboratorio, en el que 

se han analizado escenas compuestas por un conjunto de manzanas 

artificiales. Los resultados obtenidos de dichos análisis muestran una 

respuesta satisfactoria en el proceso de registro de imágenes, tomando en 

cuenta la complejidad de las escenas debido al pequeño tamaño de las frutas, 

en relación al campo de visión de las imágenes y la forma redondeada de las 

frutas. Estas dificultades se hacen más relevantes cuando los objetos están 

inclinados con respecto al plano de las imágenes. En todos los casos que han 

sido evaluados, los problemas de desalineación son casi imperceptibles y se 

preservan tanto los bordes, como la forma de los objetos. 

El segundo grupo ha sido desarrollo en entornos naturales, para lo cuales, 

se ha llevado a cabo una campaña de adquisición de datos en campos de 

cultivos de manzanas. En este caso, la complejidad de las escenas es aún 

mayor, debido a la variación en las condiciones de la iluminación, la posición 

aleatoria de las manzanas, los elementos naturales de las plantas y la 

naturaleza cambiante en estos entornos, tales como la presencia del viento. A 

pesar de estas dificultades, los resultados visuales y numéricos obtenidos son 

muy prometedores, dado que se ha conseguido el cómputo de mapas de color 

y de profundidad de alta resolución con una exactitud aceptable y se ha 

procedido a la implementación exitosa de un procedimiento para la 

extracción de características de las frutas.  

Una ventaja importante del método propuesto en esta tesis, se ilustra en el 

Capítulo 5, con los resultados de la detección y localización de frutas. El 

método propuesto Hlut, no requiere a priori de un proceso de filtrado de 
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datos, que normalmente produce el sobre-alisado de los datos de profundidad. 

Sin embargo, este método es capaz de proporciona mapas de color y de 

profundidad de alta resolución y elevada exactitud, en términos de 

alineamiento de datos. Con esto se consigue que los objetos muy pequeños o 

las características de éstos no sean eliminados y, en la etapa de post-

procesamiento, el filtrado y ajuste de datos podrían abordarse desde una 

perspectiva local, empleando para ello, la combinación de los pocos datos de 

profundidad de los que se dispone y la gran cantidad de información de color. 

5.3 Aportaciones Principales 

Las principales aportaciones de la tesis se indican a continuación: 

 Se ha presentado el diseño, implementación y evaluación de un 

método novedoso para el registro automático de imágenes adquiridas 

con una cámara ToF y una cámara RGB. Los detalles del 

procedimiento para el cómputo automático de método propuesto, 

denominada en inglés como depth-dependent Hlut, están descritos en 

el seudocódigo del Algoritmo 1. Esta contribución de la tesis ha dado 

lugar a una publicación en una revista SCI (Salinas et al. 2015). 

 Se ha realizado una exhaustiva evaluación comparativa entre el 

método propuesto y el método de la calibración estándar, en la que se 

han considerado tres escenarios diferentes y con datos de entrada 

relevantes: datos sin ruido (ideales), datos sin procesar y datos 

filtrados. Se han analizado los resultados visuales y numéricos, en los 

cuales el método propuesto supera a los resultados de exactitud 

obtenidos por el método de calibración estándar. También se ha 

demostrado el método propuesto tiene la capacidad de lidiar con la 

presencia de ruido moderado en las medidas de profundidad.  

 Se ha realizado una validación exhaustiva de la exactitud y del 

rendimiento del método. Esta propuesta ha mostrado un rendimiento 

satisfactorio en el registro de superficies grandes, para las que se 

proporcionan regiones registradas de color y de profundidad que son 

uniformes y que no presentan discontinuidades. 

 Este método ha sido implementado en tareas de detección del 

movimiento. Los resultados obtenidos resaltan la capacidad de la 
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propuesta para ser utilizados en tareas de monitorización de caídas de 

personas. Este procedimiento proporciona información 3D y 

contextual de la estructura de un cuerpo, la cual se corresponde con las 

regiones detectadas como áreas de movimiento. Estudios preliminares 

del algoritmo de detección del movimiento fueron presentados en un 

artículo de revista (Salinas et al. 2012). 

 Los problemas ocasionados por las sombras y los cambios en las 

condiciones de iluminación, los cuales provocan la detección de falsos 

positivos del movimiento, se solucionaron mediante la implementación 

de dicho algoritmo sobre las imágenes de amplitud adquiridas por la 

cámara ToF, en lugar de utilizar las imágenes de color. 

 En esta tesis se ha presentado un nuevo enfoque para la detección y 

localización de frutas para que sean recolectadas por medio de robots 

cosechadores. Este enfoque presenta un sistema multisensorial y la 

combinación de algoritmos de registro y de fusión imágenes, basados 

en el método propuesto depth-dependent Hlut. La idea conceptual de 

este enfoque ha sido presentado en revistas SCI (Fernández et al. 2014, 

Fernández et al. 2013a) y en conferencias internacionales publicadas 

en capítulos de artículos (Barth et al. 2014, Montes et al. 2012). En la 

memoria de tesis se ha presentado un estudio más detallado y 

complementario de este tema. 

 Se ha demostrado la capacidad del método propuesto para la 

extracción de características de objetos pequeños y redondeados, los 

cuales han sido adquiridos en circunstancias de complejidad elevada. 

5.4 Trabajos futuros 

Aunque es cierto que para muchas aplicaciones robóticas, los resultados 

presentados en esta tesis son lo bastante exactos, para otras aplicaciones 

pueden ser requeridos mapas de color y de profundidad de alta resolución y 

también de alta calidad. Por lo tanto, considerando lo anteriormente expuesto, 

en trabajos futuros, se deben investigar algoritmos más sofisticados para la 

mejora de los bordes de los objetos y de sus medidas de profundidad, así 

como métodos para la eliminación de datos atípicos. Dado que la máscara de 

etiquetas de homografías 𝑚𝑎𝑠𝑘𝐿𝑅𝐺𝐵, ha sido creada con el objetivo de la 
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implementación de dichos algoritmos, se deberían adoptar algoritmos 

inteligentes y guiados, mediante el uso de la  información de dichas etiquetas, 

en combinación con las medidas de profundidad y del color. 

Por otro lado, esta propuesta ha sido concebida como una metodología 

flexible y adaptable. Por consiguiente, en investigaciones futuras, se pretende 

aplicar esta metodología en la fusión multisensorial compuesta por otras 

configuraciones de dos o más sensores, de diversos tipos, tales como cámaras 

térmicas LWIR, cámaras SWIR, sistemas multiespectrales. Con este objetivo, 

en esta tesis se ha presentado una descripción detallada del procedimiento 

para el diseño e implementación del método Hlut (seudocódigo del 

Algoritmo 1 y del Algoritmo 2). 
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