1,029 research outputs found

    A priori optimization

    Get PDF
    Includes bibliographical references.Partially supported by the National Science Foundation. ECS-8717970Dimitris J. Bertsimas, Patrick Jaillet and Amedeo R. Odoni

    Hybrid Vehicle-drone Routing Problem For Pick-up And Delivery Services Mathematical Formulation And Solution Methodology

    Get PDF
    The fast growth of online retail and associated increasing demand for same-day delivery have pushed online retail and delivery companies to develop new paradigms to provide faster, cheaper, and greener delivery services. Considering drones’ recent technological advancements over the past decade, they are increasingly ready to replace conventional truck-based delivery services, especially for the last mile of the trip. Drones have significantly improved in terms of their travel ranges, load-carrying capacity, positioning accuracy, durability, and battery charging rates. Substituting delivery vehicles with drones could result in $50M of annual cost savings for major U.S. service providers. The first objective of this research is to develop a mathematical formulation and efficient solution methodology for the hybrid vehicle-drone routing problem (HVDRP) for pick-up and delivery services. The problem is formulated as a mixed-integer program, which minimizes the vehicle and drone routing cost to serve all customers. The formulation captures the vehicle-drone routing interactions during the drone dispatching and collection processes and accounts for drone operation constraints related to flight range and load carrying capacity limitations. A novel solution methodology is developed which extends the classic Clarke and Wright algorithm to solve the HVDRP. The performance of the developed heuristic is benchmarked against two other heuristics, namely, the vehicle-driven routing heuristic and the drone-driven routing heuristic. Anticipating the potential risk of using drones for delivery services, aviation authorities in the U.S. and abroad have mandated necessary regulatory rules to ensure safe operations. The U.S. Federal Aviation Administration (FAA) is examining the feasibility of drone flights in restricted airspace for product delivery, requiring drones to fly at or below 400-feet and to stay within the pilot’s line of sight (LS). Therefore, a second objective of this research is considered to develop a modeling framework for the integrated vehicle-drone routing problem for pick-up and delivery services considering the regulatory rule requiring all drone flights to stay within the pilot’s line of sight (LS). A mixed integer program (MIP) and an efficient solution methodology were developed for the problem. The solution determines the optimal vehicle and drone routes to serve all customers without violating the LS rule such that the total routing cost of the integrated system is minimized. Two different heuristics are developed to solve the problem, which extends the Clarke and Wright Algorithm to cover the multimodality aspects of the problem and to satisfy the LS rule. The first heuristic implements a comprehensive multimodal cost saving search to construct the most efficient integrated vehicle-drone routes. The second heuristic is a light version of the first heuristic as it adopts a vehicle-driven cost saving search. Several experiments are conducted to examine the performance of the developed methodologies using hypothetical grid networks of different sizes. The capability of the developed model in answering a wide variety of questions related to the planning of the vehicle-drone delivery system is illustrated. In addition, a case study is presented in which the developed methodology is applied to provide pick-up and delivery services in the downtown area of the City of Dallas. The results show that mandating the LS rule could double the overall system operation cost especially in dense urban areas with LS obstructions

    Improved formulations of the joint order batching and picker routing problem

    Full text link
    Order picking is the process of retrieving ordered products from storage locations in warehouses. In picker-to-parts order picking systems, two or more customer orders may be grouped and assigned to a single picker. Then routing decision regarding the visiting sequence of items during a picking tour must be made. (J.Won and S.Olafsson 2005) found that solving the integrated problem of batching and routing enables warehouse managers to organize order picking operations more efficiently compared with solving the two problems separately and sequentially. We therefore investigate the mathematical programming formulation of this integrated problem. We present several improved formulations for the problem based on the findings of (Valle, Beasley, and da Cunha 2017), that can significantly improve computational results. More specifically, we reconstruct the connectivity constraints and generate new cutting planes in our branch-and-cut framework. We also discuss some problem properties by studying the structure of the graphical representation, and we present two types of additional constraints. We also consider the no-reversal case of this problem. We present efficient formulations by building different auxiliary graphs. Finally, we present computational results for publicly available test problems for single-block and multiple-block warehouse configurationsComment: 37 pages, 11 figures, 7 table

    Vehicle routing and location routing with intermediate stops:A review

    Get PDF

    The Traveling Salesman Problem: An Analysis and Comparison of Metaheuristics and Algorithms

    Get PDF
    One of the most investigated topics in operations research is the Traveling Salesman Problem (TSP) and the algorithms that can be used to solve it. Despite its relatively simple formulation, its computational difficulty keeps it and potential solution methods at the forefront of current research. This paper defines and analyzes numerous proposed solutions to the TSP in order to facilitate understanding of the problem. Additionally, the efficiencies of different heuristics are studied and compared to the aforementioned algorithms’ accuracy, as a quick algorithm is often formulated at the expense of an exact solution

    Exact Models, Heuristics, and Supervised Learning Approaches for Vehicle Routing Problems

    Get PDF
    This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical workforce scheduling problem, formulated as a specific type of vehicle routing problem. The objective here is to efficiently assign consultants to various clients and plan their trips. This computational challenge is addressed by using a two-stage approach: the first stage employs a mathematical model, while the second stage refines the solution with a heuristic algorithm. In the final chapter, we explore methods that integrate machine learning with traditional approaches to address the Traveling Salesman Problem, a foundational routing challenge. Our goal is to utilize supervised learning to predict information that boosts the efficiency of existing algorithms. Taken together, these three chapters offer a comprehensive overview of methodologies for addressing vehicle routing problems
    • …
    corecore