
ANALYSIS OF THE TRAVELING SALESMAN PROBLEM 1

The Traveling Salesman Problem: An Analysis and Comparison of Metaheuristics and

Algorithms

Mason Helmick

A Senior Thesis submitted in partial fulfillment

of the requirements for graduation

in the Honors Program

Liberty University

Spring 2022

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

2

Acceptance of Senior Honors Thesis

This Senior Honors Thesis is accepted in partial

fulfillment of the requirements for graduation from the

Honors Program of Liberty University.

Timothy Van Voorhis, Ph.D.

Thesis Chair

Robert Rich, M.S.

Committee Member

David Schweitzer, Ph.D.

Assistant Honors Director

Date

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

3

Abstract

One of the most investigated topics in operations research is the Traveling Salesman Problem

(TSP) and the algorithms that can be used to solve it. Despite its relatively simple formulation,

its computational difficulty keeps it and potential solution methods at the forefront of current

research. This paper defines and analyzes numerous proposed solutions to the TSP in order to

facilitate understanding of the problem. Additionally, the efficiencies of different heuristics are

studied and compared to the aforementioned algorithms’ accuracy, as a quick algorithm is often

formulated at the expense of an exact solution.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

4

The Traveling Salesman Problem: An Analysis and Comparison of Metaheuristics and

Algorithms

Introduction

The Traveling Salesman Problem

The traveling salesman problem (TSP) is a combinatorial optimization problem

characterized as NP-hard. NP-hard defines a problem that is nondeterministic polynomial

acceptable, meaning there is no single algorithm that will provide an exact solution in

polynomial time, though the solution may be verifiable in polynomial time (Rego et. al, 2011).

The basic structure of the TSP involves a set of nodes and edges, with the nodes often being

referred to as cities and the edges connecting the nodes referred to as routes. The whole path

taken in the TSP is called the tour, and subtours refer to subsets or chunks of the original tour.

The problem, then, is minimizing the length of the tour that visits each city exactly one time,

then returns to the city in which the tour began, which is stated mathematically as minimizing the

following equation.

𝑧 = ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

, 𝑑𝑖𝑗 = ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 𝑗

where 𝑑𝑖𝑗 is the distance between cities and 𝑥𝑖𝑗 is defined as follows.

𝑥𝑖𝑗 = {
1, if city 𝑗 is reached from city 𝑖

0, otherwise

Lastly, the TSP is subject to the following constraints.

∑ 𝑥𝑖𝑗 = 1, 𝑖 = 1, 2, … , 𝑛

𝑛

𝑗=1

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

5

∑ 𝑥𝑖𝑗 = 1, 𝑗 = 1, 2, … , 𝑛

𝑛

𝑖=1

𝑥𝑖𝑗 ∈ {0,1}

Lastly, it is required that the solution forms a roundtrip n-city tour. Without this final

constraint regarding a roundtrip, the original formulation allows for subtour solutions in which

all the cities are no longer connected but split into multiple subsets.

 In addition, the edge connecting two cities may be directed, functioning as a one-way

path. In applications of the TSP, directed edges can be the results of traffic, tolls, or other

inhibitors that could affect the time or cost of a path. A set of undirected edges naturally has

fewer solutions, as they can be approached from both sides with the same effectiveness (Zia et.

al, 2018). As this is not always the case, the magnitude of the TSP can quickly inflate to the

point that a predetermined algorithm would be far more efficient than simply guessing at a tour

until a sufficient one is found. This hurdle introduces the need for metaheuristics, which attempt

to solve the TSP quickly and precisely.

Metaheuristics

 When an exact solution to a problem cannot be obtained because of time constraints or

the complexity of the problem, a heuristic approach is often used to reach an approximated

answer. Heuristics are algorithms that achieve these ends by reaching a well performing solution

and proposing that to be the best available solution. When the iterations continue only until a

local optimum is reached, the algorithm is called “greedy,” as it immediately stopped at the first

potential solution. Greedy algorithms are typically only chosen when a rapid algorithm is

preferable to one of high accuracy. However, especially in the case of the TSP, the local

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

6

optimum from the starting state of the system is rarely the best solution. Oftentimes, a move to

an inferior state is needed to move from one local optimum to another in search for a global

optimum.

 A metaheuristic is a high-level problem-independent algorithmic framework that

provides a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen

& Glover, 2013). With a local optimum no longer needed to terminate the algorithm, new

criteria are needed to decide when the process should be stopped. According to Taha (2017)

these reasons include: a certain number of iterations has been reached, a certain number of

iterations has been reached since the last optimum was reached, the neighborhood of the current

search point is empty or cannot lead to another viable search point, or the quality of the last

solution reached meets the desired standards. It follows, then, that metaheuristics are

differentiated from each other not only in how they move from feasible solution to feasible

solution, but also in how they decide to cope when a local optimum is reached.

Simpler Algorithms

 Two well-known categories of algorithms that are relatively competitive with each other

are simulated annealing (SA) and tabu search (TS). The former takes a neighboring state of the

system and, in an iteration, “a no-worse neighborhood solution is always accepted as the next

move” (Taha, 2017, p. 452). This particular aspect of the algorithm is very simple, as intuition

suggests if a move to a neighboring state of the system improves the condition, then of course it

should be taken. If that, however, is not the case, then a move is made based on the current tour

length, the potential next tour length, and the temperature of the system. The temperature of the

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

7

system decreases with every iteration, decreasing the likelihood of making another move. For

the purpose of this paper, these will not be laid out formally for a basic solution.

 An algorithm that employs TS is characterized by having memory, in that past moves

from state to state are recorded. In each iteration, a set of edges is deleted and replaced to move

toward a better solution. These moves are then added to a tabu list, constituting a collection of

options that are off-limits. By restricting the next move made by the algorithm to choices that

are unprecedented, loops are avoided and the algorithm is able to effectively terminate.

Consequently, inferior moves that could lead to better overall solutions can be explored by the

algorithm.

Genetic Algorithms

 Genetic algorithms (GA) deviate from SA and TS in the sense that they are inspired by

biology as opposed to another math-centric field. GA are based on evolutionary principles,

investigating candidates and judging whether or not they are fit for survival. While intuition may

point to the contrary, genetic algorithms have also proven to effectively solve the TSP within a

reasonable amount of time. The algorithm first selects two system states from the population,

called the “parents.” Then, these states are simultaneously combined and adjusted to form the

“children,” and the feasible solutions with the least fit are replaced by children that are more

optimized (Thamilselvan & Balasubramanie, 2009). It is clear to see how the repetition of such a

process eventually reaches a state of approximate maximization or minimization, and similarly

how it mimics the biological phenomenon of survival of the fittest.

 In relation to the TSP, genetic algorithms start with two samples of the population, or two

potential tours. Then, these tours generate two more tours for a total of four solutions. Then,

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

8

tour length is used to see which parent tours will be replaced by the children, provided that the

parents are not both superior solutions. Given the broadness of the field of GA and their relative

variance as compared to SA and TS, most of the analysis from this point forward will be focused

on GA. Investigated algorithms will then be related back to how they can be used to solve the

TSP.

More Specific and Recent Search Methods

Ant Colony Optimization

 In the same way that GA were motivated by biological processes, other metaheuristics

have been developed to mimic natural tendencies. Ant colony optimization (ACO), then, was

inspired by the foraging and communication style of ants (Hanif, 2019). ACO falls under the

category of swarm intelligence, which largely refers to artificial intelligence. Swarm intelligence

begins with individual components that have no real knowledge or much intuition on their own,

but as the agents interact with their environment and communicate with each other, the swarm as

a whole begins to function efficiently (Selvi & Umarani, 2010). These patterns have also

inspired algorithms derived from the behavior of bees, termites, and other insects following a

comparable paradigm.

 In the specific case of ants and the ACO, as ants find food outside of the nest, they

naturally walk between the source and the nest, informing other ants of their discovery as they

go. If an obstacle exists on the path to the food, or alternatively if one is placed there, the paths

of the many ants will split. As the ants travel, they deposit pheromones along their trail that

guide other ants toward the food and nest, so for a while multiple trails exist. However, the ants

along the shorter pheromone trails reach the destination and the nest more frequently, so as more

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

9

members of the swarm travel the shorter path, it becomes more densely covered in pheromones.

Hence, the shorter paths become more attractive and the less efficient route fades, leaving the

ants with only the most efficient choices available.

 When applied to the TSP, the nest, food source, and checkpoints along the way represent

nodes, and the paths taken by the ants clearly take the place of edges. The ACO allows agents to

start on paths that appear unfavorable, making it a stochastic process as it allows for deviation

from local optima. For the purpose of the TSP, virtual ants completing tours are always in nodes

as to be accounted for, though the probabilities associated with their choices are still represented

by pheromones on the edges (Brezina & Čičková, 2011). Over time, the pheromones on less

traveled edges evaporate and they become less considered in the search for an optimized tour in

the TSP.

 Mathematically, the updating process associated with pheromone values in relation to the

TSP is

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗

where 𝜏𝑖𝑗 is the pheromone on the edge between node i and node j, and 𝜌 is the evaporation rate

of the pheromone (Dorigo & Stützle, 2004). After this initial decrease in pheromone, the

pheromones from ants that traveled along the edges are added:

𝜏𝑖𝑗 = 𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

The amount of pheromone deposited by ant k is the ∆𝜏𝑖𝑗
𝑘 term, which is broken down even

further as

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

10

∆𝜏𝑖𝑗
𝑘 = {

1

𝐶𝑘
, if the arc (𝑖, 𝑗) belongs to the tour

0, otherwise

where 𝐶𝑘 is the length of the tour taken by the ant. With the value of the pheromone in hand, the

probability that an ant chooses certain paths can be determined as follows.

𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑙]
𝛼[𝜂𝑖𝑙]𝛽

𝑙𝜖𝑁𝑖
𝑘

Here, 𝜂𝑖𝑗 is equivalent to 1/𝑑𝑖𝑗, or the reciprocal of the length of the edge, α is a value

representative of the intensity of the pheromone trail, and β is a value representative of the

visibility of the pheromone trail (Divya, 2019). These foundations comprise the ant system (AS)

algorithm, the first to be modeled after ACO.

 Due to its late development and relative accuracy, the ACO has been developed into

numerous other algorithms. The math for these is relatively simple, with nuances in some that

are beyond the purpose of this paper.

The Monarchy Metaheuristic

 Another algorithm that has surfaced very recently is the monarchy metaheuristic (MN).

Instead of following a natural order such as insect behavior, the MN interestingly finds its roots

in a form of government, with similarities to GA. Instead of parents, two initial solutions are

chosen at random and one is named the king. The second solution chosen will then make a

dynasty list of possible successors to the king solution (Ahmia & Aïder, 2019). The dynasty list

will be a union of a child list, L1, and a relative list, L2.

 The next king is determined using one of three principles that applies to real-world

monarchy succession. The first of these is primogeniture, where the eldest child of the current

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

11

monarch inherits the throne. In the MN, primogeniture means that the next solution chosen as

king will come from L1. The second is seniority, in which the monarchy prefers the oldest

generation available, so any available siblings of the king will rise to power. Thus, in the case of

seniority, the next solution will be chosen from L2. Third is tanistry, which is the odd case in

which a monarch is chosen by election from the dynasty list. Naturally, the correlation to the

MN is that the next solution will be the current best, feasible solution in the union of lists one

and two. In addition to the normal three means of succession, Ahmia and Aïder propose a fourth

method called intrusion. If the next solution is an intruder, that means it was chosen using a

different algorithm, such as SA or TS.

 The creation of L1 is essentially a GA. First, an identical position in both parents is

selected. Then, the cut points in the parent solutions remain in the same position for the children,

with the subtours on either side keeping their original order and only switching places if the point

cut from the parent is in a new position. L2 is synthesized slightly more intuitively, with both a

one-point neighborhood approach and a two-point neighborhood approach. In the former, one

node is selected from the tour and is tested in all other possible positions. In the latter, one node

is selected and switched with another node along the tour. As the length of realistic tours often

render it difficult to make a complete list under these methods, the MN uses list length as a

parameter.

 If the next king solution offers no chance of improvement, the MN has two choices to

move forward. The first consists of keeping the solution and diminishing the sizes of the lists.

This is MN1. The second goes back to the best solution so far and uses its dynasty list to try

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

12

again, known as MN2 (Ahmia & Aïder, 2019). While not heavily researched, the MN offers a

comparatively efficient and accurate solution to the TSP.

Expansion on Genetic Algorithms

 When implementing an algorithm, a starting state needs to be initialized before actual

iterations can begin. The beginning state of the system is often chosen at random. However, GA

and many other techniques can implement the nearest-neighbor (NN) heuristic to begin

somewhere a little more knowledge-based. “The algorithm starts a tour by selecting random city

and adds the nearest unvisited city to the last city in the tour until all cities are visited” (Halim &

Ismail, 2017, p.2). The NN is a clearly greedy approach, as it makes a series of quick decisions

to reach a solution. The results of the NN, however, can vary greatly depending on which city it

starts in, making it useful for not much more than the beginning of a more efficient

metaheuristic.

 Another option for finding a local optimum to start is a reversal heuristic (RH). In RH,

the order of an open subtour is reversed in an attempt to improve the length of the tour as a

whole. An open subtour is defined as a subtour that is missing at least one leg (Taha, 2017). By

limiting the algorithm to open subtours, the entire tour does not get reversed and repeat the old

solution. A chain of cities of any size may be reversed, though it is commonly limited to two or

three at a time. The RH algorithm finishes once all possible reversals of the original tour are

observed, and the best result is determined the local optimum.

 Like in the MN, GA is overall based on a system of crossover and mutation using the

characteristics of parents (Shim et. al, 2011). Before these operators are expounded on, it is

important to note that, “unlike tabu and simulated annealing where a new search move can be

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

13

infeasible, infeasible parent tours may never lead to the creation of feasible child tours” (Taha,

2017, p. 455). The crossover is responsible for child creation and therefore happens as an

interaction of the parents, with one parent being a particularly better solution than the other.

First, the two crossover points are randomly selected. Once the crossover points are selected,

two children are partially formed by swapping the nodes contained in the crossover points to the

offspring. Then, the parent tours are rotated so the nodes maintain the same order but have

shifted starting places. The nodes contained between the crossover points are subtracted from

the shifted tours, and the difference is combined with the partially formed children to finish the

iteration. After the crossover, mutation is allowed to take place to help urge the algorithm

toward a better solution. Mutation does not occur in all children, and the probability of it

occurring is rather low and assigned during the construction of the algorithm. The actual process

of mutation consists of swapping two nodes in the child to create a completely new solution.

Mutation is necessary to help the algorithm explore new states, as well as to keep it from staying

converged on a local optimum (Larrañaga et. al, 1999).

Other Implementations of Genetic Algorithms

 Genetic algorithms are clearly somewhat sufficient on their own, otherwise they would

not still be a topic of discussion in operations research today. Of course, as GA have gathered

merit, ideas for the refinement of the algorithms have arisen. Instead of scrapping the method as

a whole, changes have been made to the original algorithm idea to make it more robust and

accurate. Changes to GA have largely included adjustments to the operators, crossover and

mutation, in order to make tweaks to the original results obtained. On the other hand, other

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

14

methods of solving the TSP have been combined with GA to make hybrid solutions that reap the

benefits of both components.

 Hybrid GA (HGA) typically function by applying the standard operators to already

discovered local optima (Katayama & Narihisa, 2001). For example, GA has been combined

with SA and TS to yield better results than any of them could have produced on their own. The

GA in this instance was also able to take advantage of the many parameters required for SA and

TS. However, the algorithm initially ran into an error when switching from either metaheuristic

to GA. The problem was eventually ameliorated by using the parameters from the other

algorithms. When using SA, for example, the temperature is fixed for every generation and only

changed during iterations of SA.

 In HGA, the metaheuristic and GA essentially work independently. After the GA has

completed crossover and mutation, the other metaheuristic being used performs a search for the

next optimum (Jin et. al, 2012). Katayama and Narihisa (2001) suggest a model of HGA that

uses SA instead of SA with TS. This strategy was able to simultaneously reduce the number of

parameters and the demand of setting up the combined algorithm. The proposed pseudocode for

the individual components of GA and SA are provided in Tables 1 and 2, respectively, with the

resulting combination into HGA(SA) in Table 3.

Table 1

Pseudocode for Genetic Algorithm

1 Begin

2 Set k = 0 to denote the beginning generation

3 Set P(k) to equal the number of desired initial feasible solutions

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

15

4 Evaluate the components in P(k)

5 While the termination conditions have not yet been met

6 Do

7 k = k + 1 to improve the generation number

8 The new population P(k) is set equal to a selection from P(k + 1)

9 Perform crossovers on members of P(k)

10 Perform mutation on members of P(k)

11 Reevaluate the members of P(k)

12 End

13 Return the solution

14 End

 SA uses a system of probability to escape the points of local optima (Taha, 2017). The

probability used to decide whether or not the iterations should continue is largely dependent on a

temperature value, with parameters decided prior to the execution of the algorithm. SA uses a

neighborhood of solutions related to the initial feasible solution, drawing randomly from the

determined neighborhood. When the new solution drawn is better than the previous, the

temperature remains unchanged, and the iterations continue. However, if the drawn solution is

not as optimized as the previous, the temperature is reduced and the probability of moving on is

subsequentially determined (Albright & Kung, 2007). By undergoing this process, SA is able to

move past local optima that greedy algorithms would stop at. In order to adjust the value of the

temperature, a ratio is determined and factored together with the temperature. In an iterative

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

16

process, this process of reduction is made into a temperature schedule. The schedule is

implemented by setting the temperature T = Ti, where Ti is defined as

𝑇𝑖 = 𝑟𝑖𝑇𝑖−1

Here, i is representative of the iteration number and r denotes the ratio that continually decreases

the temperature. Applying this to the condition that defines SA, the chance of accepting the next

solution is

𝑃(accept) = {

1 , if 𝑓(𝑥) < 𝑓(𝑥′)

exp (
𝑓(𝑥′) − 𝑓(𝑥)

𝑇
) , if 𝑓(𝑥) > 𝑓(𝑥′)

where f(x) is the old solution, f(x’) is the potential next solution found by the SA metaheuristic,

and T corresponds to its iteration on the temperature schedule. Clearly, a better solution will

always be accepted. It is then easy to see in the probability function how inferior solutions

become increasingly more likely to cause the process to terminate.

Table 2

Pseudocode for Simulated Annealing

1 Begin

2 Set α and T to sufficiently high values, and set FT to a desired termination value

3 Start with x equal to a feasible solution

4 Repeat

5 While the number of iterations has not reached the limit

6 Do

7 Choose an x’ in the neighborhood

8 If f(x’) < f(x) then

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

17

9 x = x’

10 Else

11 x = x’ with the probability exp(-(f(x’) – f(x))/T)

12 End

13 T = Tα

14 Until T ≤ FT

15 Return x

16 End

In HGA(SA), the temperature associated with the SA aspect of the metaheuristic is

instead decreased with every generation. This means that while the GA runs its course, the

algorithm is operating with fixed temperature to avoid the aforementioned timing problem.

Initializing the parameters for SA, then, will naturally be a part of HGA(SA), as well as setting

certain variables for GA such as the desired number of children.

Table 3

Pseudocode for Hybrid Genetic Algorithm with Simulated Annealing

1 Begin

2 Set α, T, and FT as in SA, set k = 0 as in GA to denote the first generations

3 Set desired number of offspring

4 Generate the population of initial feasible solutions P(k) and evaluate its members

5 Repeat

6 k = k + 1 to improve the generation value

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

18

7 Set P(k) to a selection from P(k)

8 Alter structures in P(k) by crossover (CSEX)

9 While not reaching the desired number of offspring

10 Do

11 Randomly choose an x’ from the neighborhood

12 If f(x’) < f(x) then

13 x = x’

14 Else

15 x = x’ with the probability exp(-(f(x’) – f(x))/T)

16 End

17 End

18 Evaluate the structures in P(k)

19 T = Tα until T ≤ FT

20 Return the best solution

21 End

 In the HGA(SA) pseudocode, CSEX stands for complete subtour exchange crossover. In

CSEX, identical subtours are identified on each of the permutations that become the parents in

the GA. Given that the edges between cities are undirected, a subtour with the same cities as

another subtour in reverse order would still be counted as identical. However, if three or more

cities that neighbor each other in both parents are not displayed in the same order or reverse

order, CSEX will not select them as identical subtours. As a result of this distinction, the

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

19

efficiency of the crossover was reduced from O(n5) to O(n) (Katayama & Narihisa, 2001). The

resulting offspring will rearrange the chosen subtours in as many ways as possible, including

switching their positions from where they were in both parents. Compared to the normal method

of crossover, CSEX does not tend toward extremely different solutions from the current ones

being evaluated. The children, therefore, are not too far removed from the parent tours, allowing

for a focused path in the direction of optimality (Freisleben & Merz, 1996). In doing so, the

local search algorithm is also able to execute effectively.

 To clarify the appeal of GA for both solutions on their own and in conjunction with other

methods, a visual representation of CSEX as a method of crossover is provided in Figure 1.

Figure 1

Complete Subtour Exchange Crossover

The relationship between each child and the parents is apparent, with the rearrangements being

denoted by boxes. In a GA, crossovers direct the heuristic toward an optimal solution before

committing to a new iteration, making it appealing as it more quickly eliminates unlikely moves.

Similarly, applying crossover methods to other heuristics helps narrow the size of the search

space before each new iteration begins investigating new possibilities. The MN offers the same

appeal as it also follows very closely from GA.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

20

 The other nuances in the HGA(SA) that are inherited from its smaller components are

more easily recognized. For example, the if condition reliant on temperature appears the same as

it did for SA. In fact, only two integral additions were really made, one being the specification

of CSEX over a normal crossover operator. The other was setting the parameter for minimum

children yielded by the GA portion of the algorithm.

Drawing Connections to the Traveling Salesman Problem

Simpler Algorithms

 Mathematically, the application of SA algorithms to the TSP does not really venture far

from its basic formulation. First, a starting tour is chosen. This can be done with a nearest-

neighbor algorithm or with a random selection process. After the selection of an initial tour, a

subtour reversal is conducted. In a subtour reversal, typically two legs, or routes between cities,

are removed and replaced by new legs (Wang et. al, 2009). The temperature schedule then

reduces the temperature as it did in HGA(SA). The neighborhood at the iteration then includes

every tour, including infeasible results, that can be formed from subtour reversals on the starting

state of the system. If a shorter, feasible tour becomes available, it becomes the subject of the

next iteration. If no new tours offer an improvement to the current tour, Taha (2017) offers a

simpler condition reminiscent of the basic SA algorithm that can be applied to determine the

probability of continuing the process.

𝑅 < exp (
𝐿cur − 𝐿new

𝑇
)

Here, R is a randomly generated number between zero and one, and the L terms specify the

metaheuristic results as tour lengths. Once the temperature has been reduced to the point that R

is greater than the expression on the right side of the equation, the algorithm terminates.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

21

 TS is another algorithm often combined with more complex solution methods to reach a

streamlined result. To begin a basic TS algorithm, a starting state of the system is determined

using one of the same methods as SA. Then, subtour reversal can again be used to determine the

neighborhood of feasible and infeasible moves from the current solution. When a local solution

has been found that improves the state of the system, the algorithm makes a short hop to the new

solution (Thamilselvan & Balasubramanie, 2009). The deleted legs from the subtour reversal are

then added to the tabu list. A subtour reversal has a set number τ of iterations that it stays on the

tabu list, referred to as the tenure period. A typical termination condition for TS is reaching a set

number of successful iterations.

Monarchy Metaheuristic

 Recall that the MN resembles a variation of GA, with solutions being referred to as titles

of nobility. To decide on a beginning tour, a nearest-neighbor algorithm is employed. Next, a

crossover operator called ordered crossover is used to determine the first part of the dynasty list,

which corresponds to primogeniture. Ordered crossover favors one of the parent solutions, with

the favored parent maintaining its order while both parents contribute a subtour cut from the

same position in each tour. Typically, the preferred parent will be the king as it represents the

current optimal solution. The cut city or subtour is then spliced into the favored parent in the

same location as the cut, with cities outside of the cut switching with added cities to avoid

duplicates when necessary. To create the list that correlates to the seniority approach of the MN,

the same principles are applied as described in the fundamental algorithm, with one and two-

point neighborhoods. Additionally, subtour reversal can be used, which in this case is referred to

as a two-opt neighborhood (Mladenović et. al, 2012). Below is the pseudocode for the MN.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

22

Table 4

Pseudocode for the Monarchy Metaheuristic

1 Construct the first king, K1, and initialize a list to contain all kings, LK

2 Set size for L1 and L2 and generate lists corresponding to first king

3 Set δ = 0 and set a max number of iterations

4 Choose a method for king selection

5 If primogeniture, use L1, else use L2 for seniority, or the union of L1 and L2 for tanistry

6 Else use a different metaheuristic for intrusion

7 If δ < 0

8 Option 1: add the king to LK and diminish the size of L1 and L2 accordingly

9 Option 2: return to the best king so far and use its dynasty list

10 Else if δ ≥ 0

11 Add new king solution to LK and increase the size of L1 and L2 according to δ

12 Terminate when max number of iterations is reached

13 Return the best king solution received

 The pseudocode for the MN demonstrates the two different versions it can undertake as

explained before, MN1 and MN2, with respect to a conditioned variable. When an inferior move

is made, the algorithm has the choice to keep the solution as the most recent on the king’s list. If

the most recent solution is to be kept, then the sizes of the components of the dynasty list, L1 and

L2, need to be decreased accordingly. In the pseudocode, the factor that determines how much

the lists will be reduced by is δ. The variable δ denotes the percentage of improvement of the

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

23

new solution. The other option is to abandon the new solution and return to the best king

solution so far. In either case, if the solution is improved upon and the new king is accepted,

then δ is used to appropriately increase the length of lists L1 and L2. MN terminates after a preset

number of iterations is reached.

Ant Colony Optimization

 Now that the terms associated with ACO have been established in relation to the TSP, it

is important to note how they fit into the flow of the algorithm. There seems to be no generally

accepted principle for beginning the metaheuristic, or at least one supported by intuition.

Instead, ants are typically put in a randomly selected starting city, and then from that node they

move from city to city probabilistically until a tour is completed (Dorigo & Stützle, 2004).

However, since no pheromone has been deposited on the initial tour, each city is equally likely,

so the tours are completely random.

 In order to determine the probability associated with an amount of pheromone, the three

basic parameter variables for ACO are initialized: the evaporation rate ρ, the density of the

pheromone α, and the visibility of the pheromone β. Using the distance of edges as before, dij,

another variation of the equation for the length of a tour in the TSP can be formulated to exhibit

the path toward optimality.

𝑓(𝜋) = ∑ 𝑑𝜋(𝑖)𝜋(𝑖+1) + 𝑑𝜋(𝑛)𝜋(1)

𝑛−1

𝑖=1

A good solution to the TSP minimizes f(π), which would align intuitively with minimizing the

individual routes between cities. In this equation, π is indicative of the permutation of possible

number labels of the cities in the tour (Dorigo & Stützle, 2004). The variable n simply denotes

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

24

the total number of cities. As is the case with many other metaheuristics, the process is

terminated when a maximum number of iterations is reached.

 Although many variations of ant systems (AS), the first and most fundamental

application of ACO, have been proposed and proven effective, few of them offer minor, simple

changes to the original algorithm. One such add-on that can alter the course of the ACO

metaheuristic in use is the max-min ant system (MMAS) (Kang et. al, 2020). In this

specification of ACO, only the optimal route in an iteration is permitted to receive a pheromone

deposit. Naturally, the equations for pheromone updates are adjusted slightly.

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗
best

∆𝜏𝑖𝑗
best = 1/𝑓(𝑠best)

All variables inherit their meaning from before, with “best” clearly identifying association with

the best tour length in an iteration. The denominator in the second equation, 𝑓(𝑠best), is the

explicit optimal solution. With these changes, new conditions are needed to avoid entrapment at

local optima. These conditions consist of new maximums and minimums also being set for the

pheromone deposits on the edges, as to avoid unnecessary evaporation of pheromones or excess

deposit of pheromones.

An Example of ACO

 To facilitate understanding of the probabilistic nature of ACO, an example will be

stepped through by hand using the most basic form of ACO, Ant System. Before executing an

ACO heuristic, some of the parameters need to be set. For the ρ constant, previous research has

shown that a value of 0.5 has proven to be effective (Dorigo & Stützle, 2004). The same

research also suggests that an α value of 1 and a β value between 2 and 5 yields acceptable

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

25

results for the TSP. For the purposes of demonstration, the chosen value for β will be 3. To

initialize the value for a pheromone along an edge, a relatively large, constant value is assigned

to all edges. This method of initialization is typically effective in avoiding such low values of

pheromone that early tours constructed by ants significantly affect the solution.

 Consider ant k that has arrived at an edge between cities i and j with a weight dij of 10.

Assume that the initial value of pheromone τij on the edge is 1. Suppose there are 2 cities that the

ant may choose from, and the weight along the second possible edge is 15. The probability that

ant k chooses the edge at all is

𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙𝜖𝑁𝑖

𝑘

=
1 ∙ 0.13

(1 ∙ 0.13) + (1 ∙ 0.06673)
=

. 001

. 0013
= 0.77

Naturally, the probability for the other edge works out to 0.23, so the ant does not get trapped in

the same city. Once the tour Tk of ant k has been completed, the pheromone values are updated.

First, evaporation of pheromone takes place, and in the first iteration, the evaporation will be

constant across all edges because the initial amount of pheromone was also constant. Using the

evaporation constant, the new amount of pheromone on an edge will be:

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 = 0.5 ∙ 1 = 0.5

After evaporation takes place, pheromones are deposited on edges traveled on by the ant. For

each ant, the increase in pheromone is equal to the inverse of the tour length taken by the ant.

For example, for a tour of length 100, the amount of pheromone added to an edge by one ant

would be 0.01. After the pheromone values are updated, a new iteration begins, and iterations

are repeated until a max number of iterations is reached or until an acceptable tour length is

achieved.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

26

Hybrid Genetic Algorithms

 Application of HGA to the TSP begins with the initialization of any parameters required

by the GA used, followed by any additional parameters that would apply to the other search

method. Furthermore, parameters may need to be conditioned on each other or other variables to

avoid any timing errors as were experienced in early formations of HGA(SA). To begin a search

for an optimal tour, a starting point is then chosen. The starting point is often randomized or

found using another greedy algorithm to begin close to a local optimum.

 The TSP will be handled by a hybrid algorithm by alternating between methods, with the

local search metaheuristic typically being used for the purpose of providing unusually fit tour

lengths for crossover and mutation. The solutions yielded are referred to as unusual as they are

almost always more optimized than the next parent tours that would have been chosen by a GA

acting alone. In some cases, the local search method will have to repeat itself multiple times to

generate the parent tours required by the GA, as one iteration is not always enough to reach the

standards of the individual metaheuristic being used (Deng et. al, 2021). Otherwise, extending

HGA to the TSP is mostly a substitution of vocabulary into the included pseudocode. Once the

index of the generation is initialized, parent tours are chosen. Then, crossover is performed on

the parents to produce children. As HGA deal with parameters beyond the normal scope of

generic crossovers, specialized techniques are employed to carefully handle subtours while

constructing new tours. Mutation is performed subsequently, and until a termination condition

specified by the HGA is reached, the algorithm will switch back to the local search technique

operating in tandem with GA.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

27

A Comparison of Solution Methods to the Traveling Salesman Problem

 The existence of multiple proposed solution algorithms to the TSP is not a testament to

the overall failure of previous heuristics, but it is an evident attempt to refine a search toward

optimality. Considering how robust the TSP is in that it can be applied to a plethora of different

scenarios, it is natural that so much research has been conducted regarding its behavior and

minimization. Older algorithms tend to operate on a basis of intuition, and though some of them

are outdated in efficiency, understanding them is vital to understanding more modern techniques.

It is then interesting to see not only how recent algorithms compare to each other in terms of

accuracy and operation time, but also how much improvement these metaheuristics have offered

to the foundation of operations research and the TSP.

 When running larger TSP tests, Halim and Ismail (2017) found TS and ACO took

particularly longer than other algorithms, taking as long as six times the amount of runtime as the

fastest algorithm in some iterations. While this was to be expected of TS, the fact that ACO was

developed so recently makes it seem that ACO would lend itself to a quicker solution. However,

this result also likely stems from the fact that a basic AS metaheuristic was used in testing. Also,

it is prudent to note that speed does not equate to accuracy. In fact, the greedy algorithm of

nearest-neighbor was run alongside the other metaheuristics and it naturally yielded exemplary

performance time, but often simultaneously poor results as far as tour length. From these results,

it can be gathered that TS performs best at low to moderate numbers of cities, and for ACO to

continue to compete with other higher-level algorithms that use GA or similar evolutionary

elements, it needs to undergo alterations to its procedures. Otherwise, efficiency has not

presented a significant concern among the other algorithms.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

28

 Accuracy showed a little more spread than the efficiency of the algorithms, though there

interestingly was not one single method that consistently outperformed the others. At lower

population numbers, the simpler algorithms competed well with newer algorithms, with SA and

TS sometimes producing the best tour lengths, though never by a large margin. However, as the

size of the tour increased older algorithms became clearly inferior by extravagant proportions.

The MN often performed comparably with HGA as far as the ending result for optimal tour

length. However, MN2 consistently outperformed MN1, leading to the assumption that it was

superior especially at large population sizes (Ahmia, & Aïder, 2019). On that note, algorithms

that followed the ACO procedure typically yielded a tour length that was just slightly greater

than the MN, though it still managed to produce a better solution in some instances. Though

basic GA did not seem to be the best option available, it was proven to typically perform with

less than a 15% margin of error from the true solution (Halim & Ismail, 2017).

Conclusion

 Of the metaheuristics proposed to the basic TSP, no single process offered an ultimately

streamlined path to a solution. In practical applications, more rudimentary algorithms such as TS

and SA yield results that suggest that their usage should be limited to combinations with other

methods as opposed to operating on their own. ACO metaheuristics are still on the rise, though

they certainly show promise in their ability to eventually hone in on a minimized tour in the TSP.

Other algorithms under seemingly completely new pretenses are also being developed, such as

the MN, though it does show strong roots in GA. One other consideration that could reveal the

superiority of an algorithm is its application to more variations of the TSP, such as the multiple

traveling salesman problem (MTSP). Regardless, the constant addition of more metaheuristics

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

29

speaks to the hidden complexity of the TSP. Perhaps one of the most promising routes of

algorithm development is in the direction of hybrids. By combining advanced algorithms with

each other as opposed to with simple ones, the TSP can likely be moved towards greater

minimization in tour length.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

30

References

Ahmia, I., & Aïder, M. (2019). A novel metaheuristic optimization algorithm: The monarchy

metaheuristic. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1),

362–376. https://doi.org/10.3906/elk-1804-56

Albright, B., & Kung, S. (2007). An introduction to simulated annealing. The College

Mathematics Journal, 38(1), 37-42.

http://ezproxy.liberty.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fscholarl

y-journals%2Fintroduction-simulated-annealing%2Fdocview%2F203902358%2Fse-

2%3Faccountid%3D12085

Brezina, I., Jr., & Čičková, Z. (2011). Solving the travelling salesman problem using the ant

colony optimization. Management Information Systems, 6(4), 10-14.

http://www.ef.uns.ac.rs/mis/

Deng, Y., Xiong, J., & Wang, Q. (2021). A hybrid cellular genetic algorithm for the traveling

salesman problem. Mathematical Problems in Engineering, 2021

http://dx.doi.org/10.1155/2021/6697598

Divya, M. (2019). Solving travelling salesman problem using ant systems: a programmer’s

approach. International Journal of Applied and Computational Mathematics, 5(4), 1-12.

http://dx.doi.org/10.1007/s40819-019-0662-7

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

31

Freisleben, B., & Merz, P. (1996). New genetic local search operators for the traveling salesman

problem. Parallel Problem Solving from Nature, 4, 890–899. https://doi.org/10.1007/3-

540-61723-x_1052

Halim, A. H., & Ismail, I. (2017). Combinatorial optimization: Comparison of heuristic

algorithms in travelling salesman problem. Archives of Computational Methods in

Engineering, 1-14. http://dx.doi.org/10.1007/s11831-017-9247-y

Hanif, S. (2019). Travelling salesmen problem solution with ant-colony optimization tabu search

algorithm. I-Manager's Journal on Software Engineering, 14(2), 1-9.

http://dx.doi.org/10.26634/jse.14.2.17019

Jin, F., Shan, R., Zhang, Y., & Wang, H. (2012). Hybrid genetic algorithm based on an effective

local search technique. The Institution of Engineering & Technology.

http://dx.doi.org/10.1049/cp.2012.1181

Kang, Y., Xiaoming, Y., Liu, S., & Pan, H. (2020). A novel ant colony optimization based on

game for traveling salesman problem. Applied Intelligence, 50(12), 4529-4542.

http://dx.doi.org/10.1007/s10489-020-01799-w

Katayama, K., & Narihisa, H. (2001). An efficient hybrid genetic algorithm for the traveling

salesman problem. Electronics & Communications in Japan, Part 3: Fundamental

Electronic Science, 84(2), 76–83. https://doi.org/10.1002/1520-

6440(200102)84:2<76::AID-ECJC9>3.0.CO;2-O

Larrañaga, P., Kuijpers, C.M.H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic

algorithms for the travelling salesman problem: A review of representations and

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

32

operators. The Artificial Intelligence Review, 13(2), 129-170.

http://dx.doi.org/10.1023/A:1006529012972

Mladenović, N., Urošević, D., Hanafi, S., & Ilić, A. (2012). A general variable neighborhood

search for the one-commodity pickup-and-delivery travelling salesman

problem. European Journal of Operational Research, 220(1), 270–285.

https://doi.org/10.1016/j.ejor.2012.01.036

Rego, C., Gamboa, D., Glover, F., & Osterman, C. (2011). Traveling salesman problem

heuristics: Leading methods, implementations and latest advances. European Journal of

Operational Research, 211(3), 427.

http://ezproxy.liberty.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fscholarl

y-journals%2Ftraveling-salesman-problem-heuristics-

leading%2Fdocview%2F856439769%2Fse-2%3Faccountid%3D12085

Selvi, V., & Umarani, D. (2010). Comparative analysis of ant colony and particle swarm

optimization techniques. International Journal of Computer Applications, 5, 1-6.

https://doi.org/10.5120/908-1286

Shim, V., Tan, K., Chia, J., & Chong, J. (2011). Evolutionary algorithms for solving multi-

objective travelling salesman problem. Flexible Services & Manufacturing

Journal, 23(2), 207–241. https://doi.org/10.1007/s10696-011-9099-y

Sörensen, K., & Glover, F. (2013). Metaheuristics. In S.I. Gass and M. Fu (eds) Encyclopedia of

Operations Research and Management Science (pp. 960–970). Springer.

ANALYSIS OF THE TRAVELING SALESMAN PROBLEM

33

Taha, H. A. (2017). Operations Research: An Introduction (10th ed.). Pearson.

Thamilselvan, R., & Balasubramanie, P. (2009). A genetic algorithm with a tabu search (gta) for

traveling salesman problem. International Journal of Recent Trends in Engineering, 1(1),

607-610.

http://ezproxy.liberty.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fscholarl

y-journals%2Fgenetic-algorithm-with-tabu-search-gta-

traveling%2Fdocview%2F613351349%2Fse-2%3Faccountid%3D12085

Wang, Z., Geng, X., & Shao, Z. (2009). An effective simulated annealing algorithm for solving

the traveling salesman problem. Journal of Computational and Theoretical

Nanoscience, 6(7), 1680-1686. http://dx.doi.org/10.1166/jctn.2009.1230

Zia, M., Cakir, Z., & Dursun, Z. S. (2018). Spatial transformation of equality - generalized

travelling salesman problem to travelling salesman problem. ISPRS International Journal

of Geo-Information, 7(3), 115. http://dx.doi.org/10.3390/ijgi7030115

