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The fast growth of online retail and associated increasing demand for same-day 

delivery have pushed online retail and delivery companies to develop new paradigms to 

provide faster, cheaper, and greener delivery services. Considering drones’ recent 

technological advancements over the past decade, they are increasingly ready to replace 

conventional truck-based delivery services, especially for the last mile of the trip. Drones 

have significantly improved in terms of their travel ranges, load-carrying capacity, 

positioning accuracy, durability, and battery charging rates. Substituting delivery vehicles 

with drones could result in $50M of annual cost savings for major U.S. service providers. 

The first objective of this research is to develop a mathematical formulation and 

efficient solution methodology for the hybrid vehicle-drone routing problem (HVDRP) for 

pick-up and delivery services. The problem is formulated as a mixed-integer program, 

which minimizes the vehicle and drone routing cost to serve all customers. The formulation 

captures the vehicle-drone routing interactions during the drone dispatching and collection 

processes and accounts for drone operation constraints related to flight range and load 

carrying capacity limitations. A novel solution methodology is developed which extends 
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the classic Clarke and Wright algorithm to solve the HVDRP. The performance of the 

developed heuristic is benchmarked against two other heuristics, namely, the vehicle-

driven routing heuristic and the drone-driven routing heuristic.  

Anticipating the potential risk of using drones for delivery services, aviation 

authorities in the U.S. and abroad have mandated necessary regulatory rules to ensure safe 

operations. The U.S. Federal Aviation Administration (FAA) is examining the feasibility 

of drone flights in restricted airspace for product delivery, requiring drones to fly at or 

below 400-feet and to stay within the pilot’s line of sight (LS).  

Therefore, a second objective of this research is considered to develop a modeling 

framework for the integrated vehicle-drone routing problem for pick-up and delivery 

services considering the regulatory rule requiring all drone flights to stay within the pilot’s 

line of sight (LS). A mixed integer program (MIP) and an efficient solution methodology 

were developed for the problem. The solution determines the optimal vehicle and drone 

routes to serve all customers without violating the LS rule such that the total routing cost 

of the integrated system is minimized. Two different heuristics are developed to solve the 

problem, which extends the Clarke and Wright Algorithm to cover the multimodality 

aspects of the problem and to satisfy the LS rule. The first heuristic implements a 

comprehensive multimodal cost saving search to construct the most efficient integrated 

vehicle-drone routes. The second heuristic is a light version of the first heuristic as it adopts 

a vehicle-driven cost saving search.  

Several experiments are conducted to examine the performance of the developed 

methodologies using hypothetical grid networks of different sizes. The capability of the 

https://www.engadget.com/2017/10/22/faa-asks-to-automate-drone-approvals-near-airports/
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developed model in answering a wide variety of questions related to the planning of the 

vehicle-drone delivery system is illustrated. In addition, a case study is presented in which 

the developed methodology is applied to provide pick-up and delivery services in the 

downtown area of the City of Dallas. The results show that mandating the LS rule could 

double the overall system operation cost especially in dense urban areas with LS 

obstructions. 
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Chapter 1  

 

INTRODUCTION 

 

1-1. Background 

The evolution of drone technology during the past decade has opened the door for 

numerous innovative applications in transportation/logistics (Troudi et al., 2017; Kunze, 

2016; Menouar et al., 2017), defense (Paust 2010; Schneiderman, 2012), public safety and 

security (Chowdhury et al., 2017; Clarke and Moses, 2014; Vattapparamban et al., 2016; 

Merwaday and Guvenc, 2015), healthcare (Thiels et al., 2015; Kim et al., 2017; 

Balasingam, 2017), and forestry and agriculture  (Getzin et al., 2012), to name a few. In 

particular, the use of drones for product delivery has received considerable attention 

following Amazon’s recently announced plan to use drones for product delivery (Rose, 

2013). A leading U.S. delivery company estimates an annual cost saving of about $50M if 

drones replaced its trucks for the last mile of the delivery trip (Rash, 2017). 

Drone usage for delivery applications is expected to grow significantly in the next 

few years. Several contributing factors to this growth include: (1) the expanding online 

retail industry; (2) improved capability, reliability, and cost effectiveness of drones; and 

(3) high competition among pick-up and delivery service providers. Therefore, there are 

increasing calls to develop innovative pick-up and delivery systems that integrate drones 
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in order to meet growing demand and reduce service costs pick-up and delivery service 

providers.  

 

 

Figure 1-1: Drones applications (source: collected from the Internet). 

Using drones for delivery services may have potential risk, thus aviation authorities 

in the U.S. and abroad are mandating neccessary regulatory rules to ensure safe operations 

(Jones, 2017). The U.S. Federal Aviation Administration (FAA) is examining the 

feasibility of drone flights in restricted airspace for product delivery, requiring drones to 

fly at or below 400-feet and to stay within the pilot’s line of sight (LS) (Clarke and Moses, 

2014; Locklear, 2017; Dorr, 2018). 

 

1-2. The Mothership System 

Effort is underway to develop a technology that meets the requirements of product 

delivery applications. Drone manufacturers are developing the next-generation drones with 

increased travel ranges, load carrying capacity, positioning accuracy, durability, and 

battery charging rates (Floreano and Wood, 2015). A parallel effort is devoted to studying 

the logistical aspects of adopting drones for delivery services, taking into consideration 

https://www.engadget.com/2017/10/22/faa-asks-to-automate-drone-approvals-near-airports/
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regulatory rules and operational constraints. For example, the flying side-kick system, in 

which one drone is mounted on a vehicle and used to visit selected customers, has been 

developed to address these logistical constraints (Murray and Chu, 2015). However, this 

system does not take full advantage of drone capabilities in terms of visiting multiple 

customers per dispatch nor the possibilities for more efficient vehicle-drone integration.   

In this context, a novel system recently conceptualized for using drones to provide 

product delivery services is the integrated vehicle-drone system (a.k.a. the “mothership” 

system). The system generally consists of vehicles (trucks or vans) that carry unmanned 

vehicles (robots and/or drones), as shown in Figure 1-2, from their depots to neighborhoods 

where the unmanned vehicles are dispatched to perform pick-up and delivery tasks 

(McFarland, 2016). The system adopts a “swarm” dispatching approach which allows 

dozens of pick-ups and deliveries to be performed simultaneously (PYMNTS, 2016; 

Petersen, 2016). Such a system is estimated to double the average number of packages 

delivered in a typical working shift as compared to the conventional system in which a 

vehicle completes one delivery at a time (Lockridge, 2017).  

 

 
.  

Figure 1-2: Mothership vision by MERCEDES-BENZ (Hsu, 2017). 
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This system can be viewed as a version of the pick-up and delivery problem, which 

can be classified into three different problem categories: one-to-one, one-to-many-to-one, 

and many-to-many (Berbeglia et al. 2010). In the one-to-one problem, each commodity is 

transported directly from an origin to a destination. In the one-to-many-to-one problem, 

commodities are transported from a single depot to customers, and commodities picked up 

from the customers are transported to that depot. Finally, the many-to-many problem 

involves transporting commodities from multiple depots to multiple customers, and vice 

versa. The mothership system studied in this paper is a one-to-many-to-one problem, as 

the vehicle and the drones are dispatched from one depot to deliver the commodities to 

customers, and to pick up the commodities from the customers and transport them back to 

the depot. 

Integrating drones with a vehicle in the form of the mothership system presents 

several advantages as compared to previously proposed systems such as the flying side-

kick delivery system. For example, the mothership system considers the dispatching of 

multiple drones simultaneously, and each drone can serve multiple customers per dispatch. 

On the other hand, the side-kick system assumes that only one drone is used, which serves 

one customer per dispatch. Furthermore, the mothership system offers flexibility in terms 

of the drone dispatching and collection locations (i.e., these could be the same or different). 

The side-kick system forces the drone collection location to be different from its 

dispatching location, as the vehicle does not wait at the dispatching location. Also, in the 

side-kick system, drones are used for package delivery only without the option to provide 

package pick-up services along their tours. Thus, the superior and flexible configuration of 
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the mothership system provides the capability to perform pick-up and delivery services 

more efficiently.  

The mothership system is also envisioned to reduce congestion caused by trucking 

in urban areas as it increases dependence on drones and reduces the number of required 

vehicle stops as compared to the side-kick system, where most customers are served by the 

vehicle. In addition, the mothership system is expected to reduce the workload on the driver 

as it limits her/his tasks to driving between specified stops and loading/unloading packages 

from the drones. Thus, the driver is not involved in any door-to-door pick-up or delivery 

tasks, which enhances her/his working conditions and safety. Finally, while the side-kick 

system assumes that drone dispatches and collections occur at a customer location, the 

mothership system allows the vehicle to dispatch and collect the drones at special locations 

that can be sensibly selected to limit any inconvenience (e.g., noise, safety, and aesthetic) 

to the customers. 

Previous research work on studying the integrated vehicle-drone systems has 

completely ignored the effect of regulatory rules (those requiring all drones to stay within 

the pilot’s LS as shown in Figure 1-3) on the operation performance of these systems by 

assuming a clear LS between the drones’ dispatching and target locations. This assumption 

significantly precludes the use of the developed models for real-world applications. 

Therefore this research not only studies the mothership system but also focuses on studying 

the effect of the LS regulatory rule on the performance of the integrated vehicle-drone 

systems for pick-up and delivery services.  
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Figure 1-3: Drones satisfying LS rule (source: collected from the Internet). 

1-3. Challenges of Developing the Mothership System  

Designing a hybrid vehicle-drone system for pick-up and delivery services entails 

determining the optimal setting of several system parameters including: a) vehicle and 

drone resources required for the pick-up and delivery tasks; b) locations (stations) for drone 

dispatching and collection; c) tactics used to dispatch and collect the drones; d) number of 

customers visited per drone dispatch; and e) optimal vehicle and drone routing decisions. 

For example, the number of vehicles, the number of drones mounted on each 

vehicle, and the capabilities of the drones in terms of their flying ranges and load carrying 

capacities should be determined for each operation. The locations for dispatching and 

collecting the drones should be selected to ensure that all customers can be reached by the 

drones. Furthermore, two tactics may be considered for drone dispatching and collection. 

First, a vehicle could dispatch its drone(s) at a location and wait at the same location to 

collect the drone(s). This dispatch-wait-collect tactic is suitable in cases where drones must 

remain within sight for safety considerations. Alternatively, the dispatch-move-collect 

tactic allows the vehicle to move after dispatching the drones. The drones could be 
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collected at another location by the same vehicle or by another available vehicle. Finally, 

the optimal route for each drone should be determined in terms of its dispatching and 

collection stations and the sequence of customers visited. Optimal vehicle routes should be 

determined in terms of the sequence of customers to be served, if any, and the sequence of 

stations used for drone dispatching and collection.  

Several sources of complexity characterize the hybrid vehicle-drone routing 

problem (HVDRP). First, even for small size problems, the HVDRP involves a large 

number of decision variables including vehicle and drone resources/capabilities, locations 

of drone dispatching and collection, and routing decisions for the vehicles and the drones. 

The problem can be generally viewed as an extension of the classic vehicle routing problem 

(VRP) which is known to be an NP-hard problem (Golden et al., 2008). Thus, the execution 

time required to obtain an exact optimal solution grows exponentially as the problem size 

increases. Second, most decision variables involved in this problem are highly 

interdependent and cannot be optimized separately. For example, the locations for drone 

dispatching and collection depend on the drone’s flying range and load carrying 

capabilities, and vice versa.  

Furthermore, optimizing vehicle routes and drone routes independently could result 

in a sub-optimal solution, because the vehicle routes determine the stations for dispatching 

and collecting the drones, which in turn define the origins and destinations of the drones’ 

routes. The locations of the dispatch and collection stations are simultaneously impacted 

by the sequence of customers visited by the drones. Finally, because such a system has not 

yet been deployed in the real-world, developing a model to study the HVDRP requires 
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making several assumptions related to defining the configuration of the system and its 

operational parameters.    

   

1-4. Challenges of Developing the Mothership System Satisfying the line of sight 

(LS) Rule 

Mandating the LS rule for the mothership system is expected to result in significant 

changes to its basic configuration. We refer to this problem as the integrated vehicle-drone 

routing problem with the LS rule (IVDRP-LS). For example, for a basic mothership system 

that is not satisfying the LS rule, all customers are assumed to be visited only by drones 

that are dispatched from the customers’ nearest vehicle stops (stations). This assumption 

might not hold when the LS rule is mandated. Customers who do not fall within the pilot’s 

LS from any of the drones’ possible dispatching locations are visited by the vehicle.  

Allowing customers to be visited by the vehicle converts the mothership system 

into a system similar to the flying sidekick system with multiple customers per drone tour. 

In addition, it is not guaranteed that customers are always served from their nearest stations 

as the LS from these stations might be obstructed. As such, mandating the LS is expected 

to affect locations used for drone dispatching and collection, and routing decisions for the 

vehicle and drones, respectively. 

Furthermore, the mothership system implements two tactics for drone dispatching 

and collection: (1) the dispatch-wait-collect tactic in which the vehicle dispatches its drones 

at a location and waits to collect them; and (2) the dispatch-move-collect tactic which 

allows the vehicle to move to another location after dispatching the drones. Satisfying the 
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LS regulatory rule requires the vehicle to always wait for the drones at the dispatching 

station until the drones return or land at a station that is visible from the dispatching station.    

   

1-5. Research Approach 

Two mathematical formulations in the form of a mixed-integer program (MIP) are 

developed for both problems (basic mothership system and mothership system satisfying 

LS rule). The first formulation, developed for the HVDRP, solves for the optimal drone 

and vehicle routes to serve all customers such that the total cost of the pick-up and the 

delivery operation is minimized. The formulation considers operational constraints for the 

vehicle and drones and captures their interdependence. Due to the NP-hard nature of the 

HVDRP, its optimal solution can only be obtained in a reasonable execution time for small 

problem instances. Thus, there is a need to develop efficient heuristics that can be used to 

obtain a good solution for large problem instances such as those anticipated in real-world 

applications. To achieve this goal, we introduce a novel solution methodology that extends 

the classic Clarke and Wright (CW) algorithm, the hybrid Clarke and Wright heuristic 

(HCWH) (Clarke and Wright, 1964).  

The heuristic considers the cost savings for both the vehicle and the drones while 

solving for the optimal vehicle route, thus generating an efficient multimodal vehicle-drone 

network.  The performance of the HCWH is benchmarked against two other heuristics that 

are developed as part of this research, which are the vehicle-driven heuristic (VDH) and 

the drone-driven heuristic (DDH). In the VDH, the optimal vehicle route is obtained first 

and then the drones are routed, assuming a fixed vehicle route. A reverse approach is 
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considered for the DDH: given the optimal drone routes, the vehicle is routed to enable the 

dispatching and collection of the drones. The performance of these heuristics is compared 

in terms of the solution quality and the required execution time, considering several 

randomly generated networks of different sizes and configurations.      

The second formulation, developed for the IVDRP-LS, determines the optimal 

vehicle and drone routes to serve all customers such that the total travel cost of both modes 

is minimized and the LS regulatory rule is satisfied. The IVDRP-LS considerably extends 

the VRP which is known to be an NP-hard problem (Golden et al., 2008). In order to solve 

large problem instances in reasonable execution times, we introduce a novel solution 

methodology that adopts an updated version of the classic CW algorithm to consider the 

multimodality aspects of the integrated vehicle-drone routing problem and to satisfy the 

LS rule (Clarke and Wright, 1964). The solution methodology implements a Multimodal-

Based Heuristic (MBH) with randomization procedure to construct near optimal vehicle 

and LS-mandated drone routes. The performance of the MBH is benchmarked by 

comparing its performance against that of a Single-Mode-Based Heuristic (SBH). The SBH 

is a lighter version of the MBH as it adopts a vehicle-driven search procedure. 

 

1-6. Research Contributions 

This research contributes to the existing literature in several ways. First, to the 

author’s knowledge, this research is among the first to develop a model that studies the 

mothership system at a high realism and the impact of LS rule on this system. Most existing 

models fall short of representing drones’ capabilities in terms of flight range and load 

carrying capacity, and consequently, misrepresent their impact on routing decisions. 
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Moreover, this model considers advanced features for the HVDRP that are technically 

feasible and could result in significant cost savings, such as allowing the drones to visit 

multiple customers in a single dispatch and allowing them to be dispatched and collected 

at two different locations.  

Second, the research presents two comprehensive mathematical formulations that 

can be used to obtain the optimal solution for small size problems in order to benchmark 

the solution quality of the developed heuristics. The first formulation, considers the main 

operational constraints defined for the problem, including interdependence between the 

vehicle and the drones and the limitations of the drones in terms of flight range and load 

carrying capacity. The second formulation, explicitly captures key operational aspects of 

the integrated vehicle-drone system considering the LS rule. 

Third, this research presents a novel extension of the classic CW algorithm to solve 

the HVDRP and the IVDRP-LS. The cost savings computed at each iteration account for 

both vehicle and drone routing costs. Thus, the solution simultaneously optimizes the 

routing decisions for the multimodal vehicle-drone network. Heuristics solving the 

IVDRP-LS not only suit the multimodality nature of the problem but also the LS 

constraints.   

Fourth, the performances of the developed heuristics in terms of solution quality 

and execution time are examined considering several grid networks of different sizes and 

configurations. A sensitivity analysis to examine the effect of several system parameters 

on the overall performance of the network is also presented. Finally, the research is the first 

to quantify the impact of the LS rule on the overall system performance considering real-
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world urban settings. The results are presented for a case study that illustrates the 

application of the developed methodology in the downtown area of the City of Dallas, 

Texas, considering different customer spatial distributions.   

 

1-7. Research Objectives  

This research is motivated by the need to advance the theory and practice of the 

multimodal mothership system, which are capable of finding the optimal drone and vehicle 

routes to serve all customers such that the total cost of the pick-up and the delivery 

operation is minimized.  Several objectives are considered for this research. 

First, the comprehensive literature review discusses existing work related to the 

subject of this research. It covers several versions of the classic VRP that share features of 

the problem on hand, such as the green vehicle routing problem (GVRP), the two-echelon 

location and routing problem (2E-LRP), and the truck and trailer routing problem (TTRP). 

Literature that covers the previous research that studied the vehicle drone routing problem 

is also considered.  

The second objective is to develop a modeling framework for the HVDRP. The 

problem is formulated in the form of the mixed integer linear program with the goal of 

finding the optimal routes for the two modes to serve all the customers in the network. The 

constraints of the model should consider operational challenges for the vehicle and drones 

and capture their interdependence. 

The third objective is to develop heuristics that can solve large problem instances 

in a reasonable execution time. The heuristics extend the CW algorithm to consider the 
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multimodality of the integrated vehicle-drone routing problem (Clarke and Wright, 1964), 

namely the hybrid Clarke and Wright heuristic (HCWH). The performance of the HCWH 

is benchmarked against a vehicle-driven heuristic (VDH) and a drone-driven heuristic 

(DDH).  

The fourth objective is to develop an MIP for the IVDRP-LS. The formulation will 

determine the optimal vehicle and drone routes to serve all customers such that the total 

travel cost of both modes is minimized. The constraints of the model should not only 

capture the interdependence of the vehicle and drones but also ensure that the LS regulatory 

rule is satisfied.   

The fifth objective is to develop a solution methodology that can solve large 

problem instances of a mothership system satisfying the LS rule. The solution methodology 

implements a Multimodal-Based Heuristic (MBH) with randomization procedure to 

construct near optimal vehicle and LS-mandated drone routes. The performance of the 

MBH is benchmarked by comparing its performance against that of a Single-Mode-Based 

Heuristic (SBH). 

The sixth objective is to conduct several experiments (1) to examine the 

performance of the three heuristics developed, (2) to illustrate the capability of the 

developed model in answering a wide variety of questions related to the planning of the 

basic mothership delivery system, and (3) to allow the service providers decide on the most 

suitable equipment configuration (vehicle-only system vs. integrated vehicle-drone 

system) for the service area under consideration based on the level of LS restrictions.  
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Finally, this research will present a case study that illustrates the application of the 

developed methodology in the downtown area of the City of Dallas, Texas, considering 

different customer spatial distributions. 

 

1-8. Organization of the Dissertation   

The dissertation is organized as follows. Chapter 2 presents a review of previous 

models developed for studying the integrated vehicle-drone routing problem.  It provides 

a review of the different approaches used to develop such systems and other 

complementary problems related to the integrated vehicle-drone routing problem. Chapter 

3 provides a formal definition and formulation of the HVDRP that studies the basic 

mothership system and of the IVDRP-LS that can solve optimally the mothership delivery 

system satisfying the LS rule. Chapter 4 presents the hybrid Clarke and Wright heuristic 

along with the vehicle-driven and drone-driven heuristics to solve large problem instances 

of a basic mothership system. Chapter 5 extends Chapter 4 by presenting a novel solution 

methodology that not only captures the multimodality of the problem, but also considers 

the LS constraints.  Chapter 6 describes the experiments designed (1) to evaluate the 

developed solution methodologies, (2) to answer questions related to the planning of the 

basic mothership delivery system, and (3) to answer questions related to the impact of the 

LS rule on overall system performance. Chapter 7 provides the results of the case study, 

describing the application of the developed methodology in Dallas’s downtown area. 

Finally, Chapter 8 provides concluding remarks and presents possible research extensions. 
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Chapter 2  

 

BACKGROUND REVIEW 

 

2-1. Introduction 

This chapter reviews the literature related to the hybrid vehicle-drone routing 

problem (HVDRP). It starts with Section 2-2, which provides a review of the classical 

vehicle routing problem (VRP) and its common solution methodologies. Section 2-3 

describes main extensions of the VRP, considering aspects shared with the HVDRP 

problem. Section 2-4 reviews the two-echelon location and routing problem (2E-LRP) and 

its suggested solution approaches. Similar to the HVDRP, the 2E-LRP considers two level 

trips. The upper-level trips start from the main depot to distribute goods to a set of satellite 

depots and return to the main depot. The lower-level trips serve the end customers. Another 

problem related to the HVDRP is the truck and trailer routing problem (TTRP), which is 

reviewed in Section 2-5. The problem requires a subset of customers to be visited by a 

truck-trailer pair, while other customers are visited by the truck alone. Section 2-6 reviews 

previous research work focusing on the drone routing problem and its different applications 

(e.g., surveillance applications, area coverage and delivery). Section 2-7 presents different 

models that take into consideration vehicle-drone integration for delivery services. Finally, 
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Section 2-8 concludes this review and highlights main research gaps identified in the 

literature. 

 

2-2. The Classical Vehicle Routing Problem  

The vehicle routing problem (VRP) is a well-studied optimization problem that 

determines the optimal routes of one or more vehicles used to serve a set of customers. The 

problem was introduced in the pioneer work of Dantzig (1959), which is considered as a 

generalization of the traveling salesman problem (TSP) (Dantzig, 1954; Lawler, 1985). 

The solution of the problem entails determing the shortest tour among several customers, 

where the tour starts and ends at a fixed depot. Since then, the problem has been extensively 

studied and hundreds of papers studying different aspects of this problem have been 

published (Balinski and Quandt, 1964; Fisher and Jaikumar, 1978; Altinkemer and Gavish, 

1991). 

Lenstra and Kan (1981) studied the complexity of the VRP and concluded that the 

problem is NP hard as it cannot be solved in polynomial time. Many publications have 

considered this issue and proposed efficient algorithms to solve the problem. These 

algorithms are generally classified into three categories: exact algorithms, classic heuristic 

algorithms and metaheuristic algorithms.  

Exact algorithms are designed to obtain optimal solutions for the problem, which 

are based on branch-and-bound and dynamic programming techniques. However, these 

algorithms can only be applied on small problems because they require high computation 

time. Examples of the exact algorithms include: set partitioning and column generation 
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(Balinski and Quandt, 1964), dynamic programing (Eilon et al., 1971), the k-degree center 

tree (Christofides et al., 1981), and the assignment lower bound and a related branch-and-

bound algorithm (Laporte et al., 1986). Fisher and Jaikumar (1978) proposed a method for 

deterministic VRPs. They assumed that the VRP can be reduced to K TSPs. Since the TSP 

can be viewed as a linear program, the VRP may be solved optimally with Benders’ 

decomposition (Benders, 1962). 

Heuristic methods produce good quality solutions (close to optimal) in a reasonable 

running time. Clarke and Wright (1964) presented a widely-used algorithm for solving the 

VRP that was based on the saving concept. While the saving algorithm does not guarantee 

finding the optimal solution, it often yields a good solution that is close to the optimal 

solution. The saving concept is built on the idea that the cost saving is obtained from 

merging two routes into one route as shown in Figure 2-1 where node 0 is the depot. 

Excessive research has focused on improving the solution quality and the computation time 

of the saving algorithm (Paessens, 1988; Altinkemer and Gavish, 1991; Wark and Holt, 

1994; Reimann et al., 2004).  

 

         
(a) (b) 

  

Figure 2-1: Saving concept illustration. 
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Christofides and Eilon (1969) applied the 2-opt and 3-opt to improve the solution 

where each method starts with a certain tour and improves it by applying small changes to 

the given route. In general, the algorithm of k-opt local search starts with an initial solution 

for a route and try to improve it by choosing k edges and trying to reconnect them in a 

different way. The way the k-opt is implemented is that it goes over all k-edges and over 

all ways of reconnecting them until no better solution can be obtained. Cullen and Jarvis 

(1981) introduced interactive heuristic for solving a broad class of routing problems. The 

heuristic adopts the cluster first route second approach, where a set partitioning formulation 

solved by means of column generation is considered. Since this approach is heuristic-

based, the location-allocation subproblem are only solved approximately and not 

optimally. 

Unlike the local optimization heuristic, the metaheuristics succeeded in leaving the 

local optimum by temperedly accepting the moves that worsen the objective function value. 

The drawback of the metaheuristics is that they do not guarantee finding the optimal 

solution.  The probability of finding the global optimum increase with the increase in the 

computation time. Examples of metaheuristics used to solve the VRP include: tabu search 

(Fred Glover, 1986) simulated annealing (Corana et al., 1987), constraint programming 

(Shaw, 1988), genetic algorithms (Goldberg, 1989), and ant search algorithms 

(Bullnheimer et al., 1997).  

 

http://neo.lcc.uma.es/vrp/solution-methods/metaheuristics/constraint-programming-algorithm/
http://neo.lcc.uma.es/vrp/solution-methods/metaheuristics/genetic-algorithm/
http://neo.lcc.uma.es/vrp/solution-methods/metaheuristics/ant-algorithms/
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2-3. Extensions of the Vehicle Routing Problem  

Many problems have branched from the original VRP. A summary of different 

extensions of the TSP and VRP, their formulations and solution methodologies can be 

found in Golden et al. (2008), Eksioglu et al. (2009), and Braekers et al. (2014). These 

extensions include: vehicle routing problem with time window (VRPTW) where there are 

specific time windows to meet the demands (Solomon, 1987), inventory routing problem 

(IRP) that includes decisions on when to serve customers (Campbell, 1998), the period 

vehicle routing problem (PVRP) where vehicles tend to serve the customers over a 

specified period of time (Francis, 2007), and the consistent vehicle routing problem 

(ConVRP) that ensures that same vehicles serve same customers at the same time every 

day (Groër et al., 2008).  Other versions of the vehicle routing problem that share some 

similarity with the HVDRP include the green vehicle routing problem (GVRP) (Erdogan, 

2012) and the capacitated vehicle routing problem (CVRP) (Toth and Vigo, 2002). 

The GVRP presented by Erdogan (2012), Schneider (2014), and Hiermann (2016) 

entails scheduling efficient routes for electric vehicles that need to stop at charging stations 

distributed in the network to recharge their batteries so they can extend the vehicles’ travel 

distance. Failing to schedule proper stops for battery charging precludes the vehicles from 

completing their scheduled tour and/or returning to their depot. As such, scheduling stops 

for battery charging is considered as a hard constraint for the vehicles in the GVRP. Similar 

constraint should also be considered for the drones in the HVDRP as they need to be 

adequately charged to complete their tours and return back to the vehicle. 

The CVRP is an extension of the VRP with additional vehicle capacity constraint 

(Christofides, 1976). Its similarity with the HVDRP is that the HVDRP involves capacity 

https://pubsonline.informs.org/action/doSearch?text1=Gro%C3%ABr%2C+Chris&field1=Contrib


 

20 

constraints that limit the travel distance and carrying capacity for the drones. The CVRP 

extends the TSP, and hence many exact approaches were inherited from the work done for 

the TSP. Some approaches extended the direct tree search with branch-and-bound 

algorithms to column generation and branch-and-cut algorithm. These exact algorithms can 

only solve small problems with limited number of customers. A review of exact algorithms 

based on the branch-and-bound approach is presented in Toth and Vigo (2002).  

 

2-4. Two-Echelon Location Routing Problem (2E-LRP) 

The 2E-LRP considers two trip levels. The upper-level trips are performed by large 

vehicles that start from the main depot to distribute goods and travel to a set of satellite 

depots before returning to the main depot. The lower-level trips are performed by small 

vehicles serving the end customers. These trips start and end at the satellite depots. The 

2E-LRP was first used in applications of newspapers distribution and city logistics. In these 

applications, large trucks arriving from outside may be required to unload their goods at 

platforms located on the periphery of a city, from which smaller and more environmentally-

friendly vehicles are allowed to continue downtown (Prodhon and Prins, 2014).   

Jacobsen and Madsen, (1980) and Madsen, (1983) were the first to apply the 2E-

LRP to the process of newspapers distribution. Three decisions are considered as part of 

the problem solution: number and location of transfer points, the structure of the first-level 

trips from the printing office to transfer points, and the structure of the second-level trips 

from the transfer points to the retailers.  

https://www.sciencedirect.com/science/article/pii/S0377221714000071#b0290
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Lin and Lie (2009) proposed a model that consists of a set of distribution centers, 

plants, big clients and small clients. The design decisions consider determining the location 

and number of distribution centers, the first level routing between plants, distribution 

centers and big clients, and the second level routing between distribution centers and small 

clients. They proposed a hybrid genetic algorithm embedded with routing heuristics. The 

chromosome of the genetic algorithm specified only the open satellites and big clients that 

are served in the first level trip. The routing heuristic consists of a cluster-based routing 

heuristic, followed by a local search heuristic. The heuristic starts by the second level trip 

to know the quantity shipped by each satellite, which then becomes demand for the first-

level trip. The computational results showed that the difference between the suggested 

heuristic and the optimal solution is slightly less than 0.01%. Also, it was found that 

including some of the big clients in the first level trip might induce important savings. 

Nguyen et al. (2012a) considered the 2E-LRP with a single central depot with 

known location, a set of capacitated satellites, and a set of customers. Unlike Lin and Lie 

(2009), all customers were served in the second level trip. The authors presented four 

constructive heuristics and a hybrid metaheuristic: a greedy randomized adaptive search 

procedure (GRASP) complemented by a learning process (LP) and path relinking (PR). 

The GRASP and the LP executed three randomized constructive heuristics to create trail 

solutions and applied a variable neighborhood descent (VND) to improve them. Then, the 

metaheuristic was implemented with PR, which can be applied to the main loop, as a post 

optimization step, or both. The numerical results showed that the suggested heuristic 

outperforms the previously published heuristics.   
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In Nguyen et al. (2012b), the same authors extended their work by considering the 

multi-start iterated local search (MS-ILS) that is reinforced by a path-relinking procedure 

(PR), used internally for intensification. The initial solutions were generated using three 

greedy randomized heuristics. The first heuristic built the second level routes by 

randomizing the extended Clarke and Wright algorithm (ECWA) described in Prins et al. 

(2006) for the location routing problem with capacitated depot (CLRP). The second 

heuristic was inspired by the nearest neighborhood heuristic for the TSP, where one 

satellite was opened at random and set of routes were constructed for it. The third heuristic 

is an insertion heuristic that constructed second-level routes one by one.  Each ILS ran 

alternates between two search spaces which are the 2E-LRP solutions, and TSP solutions 

covering the main depot and the customers. Giant tours were converted into feasible 

solutions using three-phase splitting procedure by inserting satellites, partitioning the sub-

sequence assigned to each satellite into second-level routes, and adding first-level routes 

to supply the selected satellites. The experiments reused the same two sets of instances 

used in their previous work. It was found that the MS-ILS + PR outperforms the previous 

GRASP by 0.8% on average but with longer running time. 

 The basic, most studied problem among the 2E-LRPs is the capacitated 2E-LRP 

(2E-CLRP) where both the first-level and second-level vehicles are capacitated. The fleet 

of both vehicles was assumed to be unlimited. The first-level trips visited the opened 

satellite, where each open satellite was visited exactly once. The second-level trips started 

from the opened satellite to serve the customers, and each customer was served only once. 

Contardo et al. (2012) introduced two algorithms to solve the 2E-CLRP. The first algorithm 

was a branch-and-cut algorithm that was strengthened using several families of valid 
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inequalities that included first-echelon inequalities, second-echelon inequalities, separation 

algorithm, node selection strategy, branching strategy, and separation strategy. This 

algorithm is based on the decomposition of the 2E-CLRP into two CLRPs.  

The second algorithm was the adaptive large neighborhood (ALNS). The ALNS 

was first proposed by Ropke and Pisinger (2006) to solve pickup and delivery problems 

with time windows. ALNS was proposed to be used with the 2E-CLRP based on the 

decomposition of the 2E-CLRP into two CLRPs. The algorithm starts by a search space 

that allows the exploration of infeasible solutions. Satellites that yield the lowest cost and 

can serve the total customer demand are opened. Then, the “destroy and repair” operators 

that remove, open, or swap the satellites of the initial solution are applied. Finally, a local 

search is applied to improve the CLRP solution. The computational results showed that 

ALNS outperformed the previously published heuristics. The branch-and-cut method 

provides tight lower bounds and is able to solve small- and medium-size instances to 

optimality within reasonable computing times.  

Govindan et al. (2014) introduced a two echelon location-routing problem with 

time window (2E-LRPTW). A multi-objective optimization model that integrated 

sustainability in decision making for distribution in a perishable food supply chain network 

(SCN) was proposed. 2E-LRPTW aims to reduce carbon footprint and greenhouse gas 

emission in addition to determining the number and locations of facilities and optimizing 

the amount of products delivered to lower stages and routes at each level.  The proposed 

heuristic, MHPV, consists of a hybrid of two algorithms named multi-objective particle 

swarm optimization (MOPSO) and adapted multi-objective variable neighborhood search 
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(AMOVNS). The results showed that the hybrid approaches outperform the existing 

models.  

 

2-5. Truck and Trailer Routing Problem (TTRP) 

The truck and trailer routing problem (TTRP) extends the VRP where a fleet of 

trucks and trailers, each with fixed capacity 𝑄𝑘 and 𝑄𝑖, respectively, serve a set of 

customers. A complete vehicle that consists of a truck and a trailer is assumed to have a 

capacity of 𝑄𝑘+ 𝑄𝑖. The number of trucks should be greater than or equal to the number of 

trailers. Customers are assumed to be served from the main depot and are divided into two 

sets: vehicle customers who are reachable by either a complete vehicle or by a truck only, 

and truck customers who are reachable by a truck only. The solution of the TTRP consists 

of three types of routes: pure truck route, pure vehicle route, and complete vehicle route. 

A pure truck route is traveled by the truck alone, while a vehicle route is traveled by a 

complete vehicle only. A complete vehicle route consists of a complete vehicle’s main tour 

with one or more sub tours traveled by truck only.  

The HVDRP is similar to the TTRP in the sense that both require routing two types 

of vehicles. The TTRP integrates the truck and the trailer, while the HVDRP integrates the 

vehicle and the drones. Similarly, the solution for the HVDRP consists of three types of 

routes: vehicle only routes, drone only routes, and vehicle-drone routes. However, while 

the drones and vehicles move independently, a trailer can only be moved by connecting it 

to a truck. Considering these similarities, we review main research work devoted to solving 

the TTRP considering different operational conditions.  
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Gerdessen (1996) discussed a related problem named the vehicle routing problem 

with trailer (VRPT) where there were two assumptions entranced to simplify the problem: 

1) each customer possesses unit demand; and 2) the trailer is parked exactly once. In this 

work, three construction heuristics are proposed followed by an improvement heuristic. 

Two real world applications for the VRPT are considered. The first one is the distribution 

of the dairy products in large cities with a heavy traffic and limited parking space. These 

conditions made delivering with complete vehicle (truck-trailer) very difficult, and 

required parking the trailer in order for the truck to be able to serve certain customers. 

Another real world example is the delivery of compound animal feed to farmers where 

there might be narrow roads or small bridges that cannot be traversed by truck pulling a 

trailer.      

Chao (2002) developed a solution methodology to solve the TTRP. In this work, 

several assumptions were made on the cost and demand to simplify the problem. From the 

cost perspective, the cost is assumed to be proportional to the distance traveled by the fleet. 

The difference in the travel cost between the complete vehicle and the truck alone is 

ignored. Also, the work ignored the cost of trailer parking, the cost of shifting demands 

between the truck and its pulling trailer, and the fixed cost of maintaining the fleet. 

From the demand perspective, the total demand load carried in a pure truck route 

or in a sub tour cannot exceed the truck capacity. However, the sum of all sub tours’ 

demand load in a complete tour is allowed to exceed the truck capacity under the 

assumption that shifting the demand load from the truck to the trailer is acceptable, but the 

sum of the demand load in the main tour and all sub-tours cannot exceed the capacity of a 
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complete vehicle. In addition, a tour length restriction is assumed for each route. The depot 

and every complete vehicle customer location can be considered a trailer-parking location.  

The solution approach suggested in this paper starts by construction steps. These 

steps consisted of rate assignments where customers are allocated to routes by solving 

relaxed generalization assignments, route construction where routes are constructed using 

the cheapest insertion heuristic, and descent improvement where customers are moved 

among routes with the purpose of converting an infeasible solution to a feasible one. 

Finally, the solution is improved by applying a tabu search coupled with the deviation 

concept found in deterministic annealing. After applying this heuristic on 21 test problems, 

it was shown that the suggested heuristic can solve the TTRP effectively and efficiently.  

Scheuerer (2006) adopted Chao’s TTRP model and constructed two new 

construction heuristics, T-Cluster and T-Sweep, accompanied by a tabu search heuristic 

for solving it. The T-Cluster heuristic is a cluster-based sequential insertion procedure 

where routes are constructed by inserting customers one by one until the vehicle is fully 

utilized. The T-Sweep heuristic extends the approach of the classic sweep algorithm 

introduced by Gillett and Miller (1974). The heuristic constructs feasible routes by rotating 

a ray centered at the depot and including customers in the vehicle route gradually until the 

vehicle capacity is reached. Then, a new vehicle is used. The results presented in this work, 

which consisted of 21 benchmark problems, showed that the T-Cluster heuristic 

outperformed the T-Sweep heuristic and the construction heuristic presented in Chao 

(2002) in terms of solution quality.  
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Lin et al. (2009) proposed a simulated annealing (SA) heuristic for solving the 

TTRP. The SA heuristic is based on a local search heuristic that avoids local optimums by 

accepting the worst solution in some iterations. The heuristic consists of a list of customers 

that are classified as either vehicle-serviced customers or truck-serviced customers. 

Dummy zeroes define the first-level routes and sub-tours, and different types of vehicles 

that are represented by a vector of binary variables. The solution ensures that the capacity 

of the vehicle is not violated but the number of used vehicles might exceed the number of 

available vehicles. In such cases, the route combination approach is applied where a penalty 

term is added to the objective function to guide the search towards a feasible region. Three 

neighborhoods are used: two that randomly relocate and exchange customers and one that 

flips the type of vehicle used to serve the randomly selected customer.  

Caramia and Guerriero (2009) developed an approach based on mathematical 

programming and local search. MIP is used to assign customers to a first-level trip with the 

objective of minimizing the fleet size that is used to serve them. A second IP is solved to 

build second-level routes. In case the second IP can produce disconnected sub-tours, a local 

search based on edge insertion is applied to repair the solution. 

Several publications have also focused on problems that branched out from the 

TTRP. Lin et al. (2010) studied a relaxed TTRP (RTTRP) that ignores the constraint 

forcing a certain number of trucks and trailers. Lin et al. (2011) also extended their SA 

heuristic to apply it on TTRP with time window (TTRPTW). Another problem that 

branched from the TTRP is the single truck and trailer routing problem with satellite depot 

(STTRPSD) that assumes a single truck with trailer based at main depot that must serve 

customers accessible only by truck (Villegas et al., 2010).  
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2-6. The Drone Routing Problem  

Research focusing on the drone routing problem has been expedited over the past 

few years. Applications that involve drone routing can generally be classified into 

surveillance applications and product delivery applications. A summary of models 

developed for the drone routing problem is given in Table 2-1.  For example, the work of 

Grochlsky et al. (2006) focused on surveillance applications in which drones equipped with 

sensors cooperate with an unmanned a ground vehicle (UAG) to accurately locate a ground 

target. Shetty et al. (2008) considered a problem in which a fleet of drones is routed to 

serve a set of predetermined locations with different priorities. The drone routes are 

constrained by their flight range and payload capacity. A modeling framework is developed 

which decomposes the problem into a target assignment problem and a vehicle routing 

problem. A solution methodology that adopts a tabu search heuristic is developed to 

coordinate both problems.  

Sundar and Rathinam (2014) studied a single drone routing problem where multiple 

depots are available for refueling it. They assumed that the drone can be refueled from any 

depot. The objective of their problem is to optimize the amount of fuel used by the drone 

by finding the drone’s route where each customer is visited at least once and the fuel 

constraint is not violated. They proposed an approximation algorithm for the problem with 

a fast construction and improvement heuristics.  
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Table 2-1: Summary of drone routing research. 

 Problem  

Authors 

 

Multi-

drones 

multi 

customers 

served 

per drone 

route 

Drone 

application 

Multi-

trip 
Solution Method 

Shetty et al. (2008)   Delivery  
Mixed-integer linear 

programing   

Sundar and Rathinam (2014)   Delivery  
Route construction and 

improvement heuristic  

Avellar et al. (2015)  NA 
Area 

Coverage 
 

Mixed-integer linear 

programing   

Grochlsky et al. (2006)  NA 
surveillance 

applications 
NA 

Search and localization 

algorithms 

Fargeas et al. (2015)  NA 
surveillance 

applications 
NA Mathematical analysis  

Dorling et al. (2016)   Delivery  
Simulated annealing 

heuristic 

San et al. (2016)   Delivery  Genetic algorithm  

Choi and Schonfeld (2017)   Delivery  Mathematical analysis 

 

Avellar et al. (2015) developed an optimization model for a minimum time area 

coverage using a fleet of drones taking into consideration the maximum flight time and the 

setup time. The number of drones used is chosen as a function of the size and the format 

of the area. The framework assumed that each drone can be used only once, ignoring the 

possibility of re-dispatching after battery recharging.  

Fargeas et al. (2015) formulated the path planning problem for a group of drones 

patrolling a network of roads and pursuing intruders using unattended ground sensors 

(UGSs). They also presented a heuristic algorithm since the formulated problem was shown 

to be an NP hard problem. The suggested heuristic predicts intruder’s locations by using 
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detections from the sensors. It also optimizes the vehicles’ path by minimizing a linear 

combination of missed deadlines and the probability of not intercepting intruders.    

Dorling et al. (2016) were among the first to study the drone delivery problem 

(DDP). A model was proposed which constructs drone routes that account for battery and 

payload weight limitations and allows for multiple deliveries per route. However, all 

drones were assumed to be dispatched and collected at a single depot. They introduced two 

multi trip VRPs, one that minimizes the cost subject to a limit and another that minimizes 

the overall delivery time subject to budget constraints. Certain assumptions were made for 

both problems which are: (a) the drones can fly as fast as they can at a constant speed; (b) 

the demand at each location can be served by one drone; and (c) there is enough fully 

charged batteries and hence no need to recharge the used ones.  

Since the problem is an NP hard, a simulated annealing (SA) heuristic is used for 

finding suboptimal solutions to practical scenarios. To balance cost and delivery time of 

the drone delivery process, the SA heuristic is used to show that the minimum cost has an 

inverse exponential relationship with the delivery time limit, and the minimum overall 

delivery time has an inverse exponential relationship with the budget. The drawback of the 

SA algorithm is that it does not take advantage of characteristics inherent to the VRP. For 

example, it does not benefit from the geographical information to avoid infeasible routes 

with two locations at opposite ends of the area of interest. The results showed that it is 

important for a drone delivery operation to consider optimizing battery weight and reusing 

drones. Optimizing battery weights resulted in improvements of over 10% as compared to 

solutions where each drone had an identical battery weight. Also, reusing drones led to 

considerable cost savings.  
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San et al. (2016) presented the implementation steps used to assign a swarm of 

drones to perform deliveries for targeted locations. They considered constraints related to 

the delivery process including flight range, carrying capacity, and volume of packages. It 

assumed that the drone can perform one delivery per dispatch. Their solution is based on 

Genetic Algorithm (GA) of multidimensional genes to solve multi-objective constraints. 

The proposed algorithm was capable of generating acceptable solutions quickly when 

dealing with a large amount of data in a real operation.   

Finally, Choi and Schonfeld (2017) studied an automated drone delivery system 

that assumes that a drone can lift multiple packages within its maximum payload and serve 

recipients in a service area of given radius. Main assumptions considered for this automated 

system include: (a) a set of identical drones travel on a 3-dimensional Euclidean network, 

(b) the demand is uniformly distributed temporally and spatially assuming one package per 

customer, (c) the entire demand is served within a predetermined time period. The delivery 

vehicles traveled a round-trip line haul distance from the distribution center to demand 

points at a specified operating speed. Finally, the researchers conducted sensitivity analysis 

to explore how the system reacts to variations in the inputs.  

 

2-7. The Vehicle-Drone Routing Problem 

Research that takes into consideration vehicle-drone integration for delivery 

services has recently received considerable attention. A pioneer study on vehicle-drone 

integration for delivery services is presented in Murray and Chu (2015). They introduced 
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the flying sidekick traveling salesman problem (FSTSP) and parallel drone scheduling TSP 

(PDSTSP) and both aim at minimizing the total travel time of the truck and the drone. 

  

  

(a) Optimal PDSTSP solution     (b) Optimal FSTSP solution 

Figure 2-2: Comparison between PDSTSP and FSTSP solution (Murray and Chu, 2015). 

The FSTSP considers a set of customers who can be served by either the drone or 

the truck. The deliveries that require a signature or the deliveries that exceed the carrying 

load capacity of the drones are served by the truck only. Certain operation conditions were 

assumed for the FSTSP. The drone can visit only one customer per dispatch but the truck 

can serve multiple customers while the drone is in flight. The drone is assumed to remain 

in constant flight which means that the truck should arrive at the collection location before 

the drone. The drone cannot be dispatched and collected at the same location. The truck 

cannot revisit any customer to collect a drone and cannot collect the stations at intermediate 
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locations; it can only collect the drone at a location of a customer it is serving. The drone 

cannot visit any customer once it returns to the depot.  

The PDSTSP is a combination of two classical problems. First, the TSP sequences 

customers who are assigned to be visited by the truck. Second, the parallel identical 

machine scheduling problem with a minimal makespan objective is used to schedule the 

remaining customers to a fleet of drones. The PDSTSP ignores the truck-drone integration. 

As such, the truck never carries, dispatches or collects the drones. They assume that both 

the truck and drones are dispatched from the depot where the truck serves customers along 

a TSP route, while the drones serve customers directly from the depot.  They proposed an 

MIP formulation for both problems and two simple heuristics were developed and tested 

on small problem instances of up to 10 customers.   

 

2-7-1. Research Work Extending the FSTSP  

Ha et al. (2015) extended the FSTSP presented in Murray and Chu (2015) by 

considering the time span which represents the maximum allowable time that either the 

truck or the drone can wait for each other at the customer node. They introduced two 

methods to solve the problem: route-first-cluster-second and cluster-first-route-second. In 

more recent work, Ha et al. (2018) built on the FSTSP, but instead of minimizing the 

delivery completion time, they minimized the total operational cost in a problem they 

called traveling salesman with drone (TSP-D). The problem is formulated in the form of 

an MIP which was solved using a heuristic that adopts a greedy randomized adaptive search 

procedure (GRASP). GRASP is based on a new split procedure that optimally splits a TSP 
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tour into a TSP-D solution. Then, the TSP-D solution is improved through a local search 

procedure. The results show that GRASP outperformed the methods presented in Murray 

and Chu (2015). Thus, GRASP demonstrates that not only it solves min-cost TSP-D but 

also min-time TSP-D.  

Mathew et al. (2015) considered an integrated truck-drone system that consists of 

a carrier truck and a carried drone. The problem assumes that all the deliveries are 

performed by the drone while the role of the truck is to carry the drone and the delivery 

packages closer to the customers’ location. It also assumes that the drone can perform only 

one delivery per dispatch and that the truck, unlike the FSTSP, can wait for the drone either 

in the same location it was dispatched from or at a different location. The problem was 

formulated as an optimal path-planning problem on a graph. Two algorithms were 

proposed, which are based on enumeration and a reduction to the traveling salesman 

problem.  

The work presnted in Ferrandez et al. (2016) extended the FSTSP to meet two 

goals. First, it compares the time and energy savings between truck-drone delivery system 

and truck only system. Second, an optimization algorithm is developed that determines the 

number of optimal truck stops to dispatch/collect drones given the deliveries requirement 

and the number of drones on board of the truck. In this work, a k-means clustering 

algorithm is used to find the truck stops and a genetic algorithm is used to construct the 

truck TSP. 

Carlson and Song (2017) used theoretical analysis to show that with the FSTSP 

presented in Murray and Chu (2015) the improvement in efficiency is proportional to the 
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square root of the speed ratio of the truck and the drone. Marinelli et al. (2017) extended 

the FSTSP by relaxing the constraints that ensure that the drone must be dispatched and 

collected at a depot or a customer node. The authors maximized the drone usage in parcel 

delivering by allowing the drone to be dispatched and collected not only at a node but also 

along a route arc. A greedy randomized adaptive search procedure was developed to solve 

the problem.    

Pugliese and Guerriero (2017) extended FSTSP to consider the time window 

constraint. The problem is modeled as a vehicle routing problem with time window with 

the objective of serving all the customers within their time window. The results show that 

the use of drones does not reduce the cost of delivery but is environmentally convenient 

and improves the service quality.  Moshref-Javadi and Lee (2017) used the truck-drone 

delivery problem to minimize the waiting time of the customers in order to maximize 

customer satisfaction. They assumed that the truck waits at one stop until all drones 

perform their deliveries and return. Then, the truck can move to another stop. The results 

show that increasing the number of drones onboard of the vehicle and allowing for multiple 

delivery per drone dispatch can effectively reduce the customers’ waiting time.   

Luo et al. (2017) considered a similar problem but the drone can serve multiple 

customers per dispatch and the truck must dispatch and collect the drone at different 

locations. They proposed two heuristics: the first one constructed a complete tour for all 

the customers and split the drone routes, while the second heuristic constructed the truck’s 

tour and assigned the drone routes to it. Although this work enhances the configuration of 

the flying side-kick system by allowing the drones to serve multiple customers per 
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dispatch, it prevents the drone from returning to its dispatching node which could impact 

the overall system efficiency.     

Chang and Lee (2018) extended the FSTSP to consider multiple drones that can be 

dispatched simultaneously from the truck while the truck cannot leave before collecting all 

drones. The drones are assumed to be dispatched and collected at the same location. They 

developed a nonlinear mathematical program combined with a clustering technique to 

determine the optimal stop locations for the vehicle to dispatch the drones. 

Tu et al. (2018) and Murray and Raj (2020) suggested problems that assume 

multiple drones carried by a single truck, where the drone dispatches and collections are 

forced to be at different locations. Tu et al. (2018) developed the TSP with multiple drones 

(TSP-mD) that was solved by an adaptive large neighborhood search heuristic, while 

Murray and Raj (2020) proposed the multiple flying sidekick traveling salesman problem 

(mFSTSP) that was solved by a three-phased heuristic solution approach. Kitjacharoenchai 

et al. (2019) consider an mTSP with multiple drones per truck which is solved by an 

adaptive insertion heuristic. Jeong et al. (2019) extended the FSTSP to consider the energy 

consumption of drones and restricted flying areas. An MIP is presented along with a two-

phase constructive and search heuristic that is used to solve real-world problem instances. 

Agatz et al. (2018) studied a similar problem to the FSTSP, namely the TSP with 

drones, which allows the truck to wait at the collecting location for the drone to arrive. 

They provided an MIP which was solved using the truck-first-drone-second heuristic. The 

heuristic implements dynamic programming (DP) and local search techniques to determine 
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efficient drone routes. Bouman et al. (2018) proposed an exact solution approach for the 

problem presented in Agatz et al. (2018) aiming to solve larger instances. 

Yurek et al. (2018) developed a two-stage approach for the problem suggested by 

Agatz et al. (2018). The first stage generates the TSP tours by DP and determines the 

customers assigned by the drones; the second stage uses MIP to generate the 

complementary drone routes that obey the truck route constructed in the first stage. The 

algorithm starts with the shortest truck route and iteratively improves the assignment and 

routing decisions. The results show that the proposed algorithm is efficient as it was able 

to solve the uniform instances with a problem size of 12 customers in a reasonable amount 

of time, whereas existing studies (Agatz et al. (2018) and Murray and Chu (2015)) 

optimally solved problems with a maximum of 10 customers for the same execution time. 

Poikonen et al. (2019) developed an approximate branch-and-bound algorithm for 

the same problem that was able to optimally solve 29 out of 30 instances of up to 10 nodes 

with a maximum gap of 0.05%. El-Adle et al. (2019) developed an enhanced MIP for the 

same problem with valid inequalities and processing schemes which can solve instances of 

24 nodes optimally. Freitas and Penna (2020) proposed a hybrid heuristic named HGVNS 

to solve TSP with drones. The computational results show that the proposed approach is 

faster than the approach proposed by Agatz et al. (2018) for instances larger than 100 

customers. 

Finally, Poikonen and Golden (2020) introduced a k-multi-visit drone routing 

problem (k-MVDRP) that extends the FSTSP to consider single truck and multiple drones 

where each drone can serve multiple customers per dispatch. The drones are allowed to 
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return to predefined locations other than the customers’ locations.  This work also considers 

the drone energy drain function that takes into account each package weight. They 

conducted several sensitivity analyses that show that drone speed and the number of drones 

carried by the truck have high impact on the objective value.  

 

2-7-2. Research Work Extending the PDSTSP 

Ham (2018) extended the PDSTSP presented in Murray and Chu (2015) by 

assuming the problem can apply not only to deliveries but also to pickups. Here, the drone 

can perform a pickup after delivering to a customer or can return directly to the depot. A 

constraint programing (CP) method is proposed to consider a multi-truck, multi-drone, and 

multi-depot problem constrained with a time window with the objective of minimizing the 

time required to perform all the deliveries.    

Kim and Moon (2019) extended the PDSTSP, considering a single vehicle and 

multiple drones where the drones could be dispatched not only from the depot but also 

from pre-specified drone stations. A drone station can store and utilize a number of drones. 

However, drones stored at the station cannot be dispatched before the vehicle arrives at 

that station. An MIP is developed for the problem which is solved using an efficient 

decomposition approach that divides the problem into traveling salesman and parallel 

identical machine scheduling problems.  
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Table 2-2: Summary of research extending Murray & Chu (2015). 

 Problem  

Authors 

 

Multi- 

trucks 

Multi-

drones 

Multi 

customers 

served per 

drone 

route 

Multi-

trip 

Considers 

LS rule 
Solution Method 

Murray & Chu 

(2015) 
     TSP route and re-assign route 

Ha et al. (2015)      
Route first cluster second and 

cluster first route second 

Ha et al. (2018)      

Heuristic that adopts greedy 

randomized adaptive search 

procedure 

Bouman et al. 

(2017) 
     Dynamic programing 

Marinelli et al. 

(2017) 
     

Heuristic that adopts greedy 

randomized adaptive search 

procedure 

Pugliese & 

Guerriero 

(2017) 
     Mixed Integer Program 

Agatz et al. 

(2018) 
     Route first cluster second 

Ham (2018)      
Constraint programing, and 

variable ordering heuristic 

Mathew et al. 

(2015) 
     

Reduce to TSP and use TSP 

solver 

Luo et al. 

(2017) 
     

TSP route and split; route 

and reassign 

Ferrandez et 

al. (2016) 
     

K-means clustering and 

genetic algorithm 

Moshref-

Javadi & Lee 

(2017) 
     Mixed Integer Program 

Yurek et al. 

(2018) 
     

Decomposition-based 

iterative optimization 

algorithm 

Poikonen et al. 

(2019) 
     Branch-and-bound approach 

El-Adle et al. 

(2019) 
     Enhanced MIP 

Freitas and 

Penna (2020) 
     

Hybrid heuristic named 

HGVNS 

Poikonen and 

Golden (2020) 
     Mixed Integer Program 
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2-7-3. Other Problem Configurations  

Problem configurations other than FSTSP and PDSTSP are also considered. 

Savuran and Karakaya (2016) developed a model that assumes a system consisting of a 

single truck and a single drone with the objective of minimizing the total travel distance of 

the drone by determining optimal vehicle stops. The problem is solved using a 

metaheuristic in the form of a Genetic Algorithm (GA). 

Wang et al. (2017) introduced a more general problem called the vehicle routing 

problem with drone (VRP-D) that considers multiple trucks and drones with the objective 

of minimizing the total duration of the delivery mission. While no optimization framework 

is provided for the problem, the work focused on testing several worst-case scenarios to 

develop bounds on the best possible time savings for truck-drone integration compared to 

the truck-alone case. Each drone is assigned multiple customers per dispatch and the drone 

is set to return to its dispatching truck, which waits for the drone at the dispatching location. 

The work was later extended by Poikonen et al. (2017) to consider the limitation of the 

drones’ battery life and extend the worst-case bounds to a more generic distance/cost 

matrix.  

Carlsson and Song (2017) introduced the horsefly routing problem that assumes a 

single drone and a single vehicle. Unlike previous problems, in the horsefly problem, the 

drones’ dispatching and collecting locations are not restricted at customers’ locations. A 

continuous approximation model is used to replace combinatorial approaches which is 

known to be computationally expensive. Li et al. (2018) also used the continuous 

approximation approach to study the economic impact of using a truck and drone delivery 

system. 
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Boysen et al. (2018) evaluated the benefits of having multiple drones versus a single 

drone. They studied the complexity of a problem that considers a fixed vehicle route and 

determines a set of drone routes each defining a drone's dispatching and collecting locations 

and the customer serviced. Drones can serve multiple customers per dispatch. They 

introduced two MIP that can be integrated in a straight forward metaheuristic framework. 

One of the MIP was able to optimally solve instances of up to 100 customers.  

Schermer et al. (2019) introduced an MIP solved using a metaheuristic for the VRP-

D. The metaheuristic partitions the VRP-D into sub problems, starting with allocation and 

sequencing, and followed by assignment and scheduling. The metaheuristic was able to 

optimally solve 90% of 10 nodes instances. Wang and Sheu (2019) studied a variant of the 

VRP-D where drones may visit multiple customers per dispatch and could be exchanged 

between vehicles at certain hub nodes. They developed an MIP that is solved using branch-

and-price algorithm that was able to find an optimal solution for instances of up to 15 

nodes. 

Finally, Karak and Abdelghany (2019) presented an integrated vehicle-drone 

routing system in the form of the mothership system, which (1) considers the dispatching 

of multiple drones simultaneously with each drone serving multiple customers as long as 

the drones’ flight range and load-carrying capacity are not violated; (2) allows the drones 

to be collected from the dispatching location or any subsequent stop; and (3) minimizes the 

number of stops made by the vehicle by forcing the drone to serve all customers. 
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Table 2-3: Summary of research related to vehicle-drone integration. 

 Problem  

Authors 

 

Multi- 

trucks 

Multi-

drones 

Multi 

customers 

served per 

drone 

route 

Multi-

trip 

Considers 

LS rule 
Solution Method 

Carlson & 

Song (2017) 
     Mathematical analysis 

Wang et al. 

(2017) 
     Worst case analysis 

Poikonen et al. 

(2017) 
     Worst case analysis 

Savuran and 

Karakaya 

(2016) 
     Genetic algorithm (GA). 

Schermer et al. 

(2019) 
     

Metaheuristic partitions the 

VRP-D into sub problems 

Wang and 

Sheu (2019) 
     Branch-and-price algorithm 

Boysen et al. 

(2018) 
     Mixed Integer Program 

Li et al. (2018)      
Continuous approximation 

approach 

Karak and 

Abdelghany 

(2019) 
     

Hybrid heuristic named 

HCWH 

 

2-8. Summary 

This chapter reviewed several topics related to the integrated truck-drone routing 

problem. The problems presented can be viewed as a generalization of the classical vehicle 

routing problem (VRP) in which a vehicle uses the shortest route to visit several customers 

and returns back to its depot. The literature discussed several versions of the classical VRP 

that share features of the HVDRP problem, such as the green vehicle routing problem 

(GVRP) and the capacitated vehicle routing problem (CVRP). The two-echelon location 
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and routing problem (2E-LRP) and the truck and trailer routing problem (TTRP) are other 

studied problems that share similarities with the problems studied in this dissertation. The 

review covers the applications and methodologies developed for solving these problems.  

The literature review reveals that previous research work regarding the usage of 

drones for delivery applications has focused primarily on either the drone routing problem 

or the integrated vehicle drone routing problem, which uses the drones only for the last 

mile of the trip. Models that consider full vehicle-drone routing integration in the form of 

a mothership system have not been developed. Most existing models focus on using the 

drones in the form of a flying side-kick system. In addition, these models are limited in 

terms of representing the main features and operational constraints that characterize the 

integrated vehicle-drone routing problem. For example, they force certain routes for the 

drones (e.g., drones are prohibited for returning to their dispatch locations for collection) 

and they force a certain strategy for drone dispatch and collection (e.g., either the dispatch-

wait-collect or the dispatch-move-collect, but not both). In addition, they fall short of 

representing the operational limitations of the drones in terms of flight range and load 

carrying capacity in the context of the mothership delivery system. They also limit the 

drone usage to package delivery only for a pre-determined set of customers without the 

option to provide package pick-up services along their tours. Finally, existing models 

assume a homogenous drone fleet in terms of operation cost, flight range, and load carrying 

capacity, which might not be the case in real-world applications.    

Moreover, all existing models fall short of considering the LS rule and its impact 

on the performance of these proposed systems. Incorporating regulatory rules, mandated 

by the aviation authorities, in models used for configuring drone-based delivery systems is 



 

44 

vital for enabling their real-world deployment. Although the ultimate goal of using drones 

in performing delivery tasks is to promote a vehicle-free delivery system with reduced 

operation cost, frameworks that can examine the effect of mandating the LS rule on 

achieving this goal do not exist yet. This research extends the existing literature by 

developing a framework to study vehicle-drone integration for pick-up and delivery 

services considering the LS rule. The framework provides a platform for policy makers 

and service providers to design and evaluate the performance of drone-based delivery 

systems that ensure safe operations.    
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Chapter 3  

 

PROBLEMS DEFINITION AND FORMULATION 

 

3-1. Introduction 

This Chapter formally defines the HVDRP that considers a basic mothership 

system and IVDRP-LS that considers a mothership system that obeys LS rule. Section 3-2 

presents the list of variables and other notations used to formulate both problems. Section 

3-3 presents all the assumptions considered by the HVDRP, which specify the operation 

scenarios of the proposed mothership system; presents the mathematical formulation of the 

HVDRP; and discusses the complexity of the HVDRP. Section 3-4 presents the additional 

assumptions considered by the IVDRP-LS that are related to the flying LS rule; presents 

the mathematical formulation of the IVDRP-LS; and discusses the complexity of the 

IVDRP-LS. Finally, Section 3-5 gives a summary of the chapter. 

 

3-2. Problem Definition 

This section presents the notations that describe data sets, model parameters, and 

decision variables used to develop the modeling framework for the HVDRP and the 

IVDRP-L. 

Notations: 
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Sets: 

𝐺  Directed multimodal network 

𝑁 Set of nodes, indexed by 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 and 𝑛 ∈ 𝑁 

𝑁𝐷 Subset of nodes that includes the depot node 

𝑁𝑉 Subset of station nodes 

𝑁𝐶 Subset of customer nodes 

𝐴 Set of links, indexed by node pair (𝑖, 𝑗), where 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 

𝐷 Set of drones, indexed by 𝑑 ∈ 𝐷 

General Parameters: 

𝑞𝑚 Delivery weight of customer located at node 𝑚 ∈ 𝑁𝐶 

𝑝𝑚 Pick-up weight of customer located at node 𝑚 ∈ 𝑁𝐶 

𝑟𝑑 Maximum flight range of drone 𝑑 ∈ 𝐷 

𝑤𝑑 Load-carrying capacity of drone 𝑑 ∈ 𝐷 

𝑙𝑖𝑗 The length of link (𝑖, 𝑗) ∈ 𝐴 

𝑐𝑣𝑖𝑗  Average travel cost from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 for the vehicle 

𝑐𝑑𝑖𝑗
𝑑  Average travel cost from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 for drone 𝑑 ∈ 𝐷 

𝑀1  Very large positive number – the maximum possible distance travelled by 

the vehicle. One possible value for 𝑀1 is the vehicle traveled distance 

obtained using the basic TSP as it provides a good upper bound on the 

vehicle traveled distance. 
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𝑀2   Very large positive number – the maximum possible load-carrying capacity 

by a drone 𝑀2= max (𝑤𝑑  ∀ 𝑑 ∊ 𝐷) 

𝑀3  Very large positive number – the maximum possible flight range by a 

drone 𝑀3= max (𝑟𝑑  ∀ 𝑑 ∊ 𝐷) 

LS Parameters: 

𝑎𝑖𝑗 = 1 if node 𝑗 ∈ 𝑁 is within the LS from station 𝑖 ∈ 𝑁𝑣, and 0 otherwise 

𝑠𝑖 = 1 if customer 𝑖 ∈ 𝑁𝐶 is within LS from at least one station and reachable 

by the drones, and 0 otherwise 

Decision variables: 

𝑥𝑑𝑖𝑗  = 1 if drone 𝑑 ∈ 𝐷 traverses link (𝑖, 𝑗) ∈ 𝐴 on-board of the vehicle, and 0 

otherwise 

𝑦𝑖𝑗  = 1 if the vehicle traverses link (𝑖, 𝑗) ∈ 𝐴, and 0 otherwise 

𝑧𝑗𝑑𝑚𝑙  = 1 if drone 𝑑 ∈ 𝐷 dispatched from station 𝑗 ∈ 𝑁𝑉 travels on link (𝑚, 𝑙) ∈ 𝐴, 

and 0 otherwise 

𝑏𝑖𝑗𝑑 = 1 if drone d∈ 𝐷 dispatched from station 𝑗 ∈ 𝑁𝑉 is collected at station 𝑖 ∈

𝑁𝑉, and 0 otherwise 

𝑓𝑗𝑑 = 1 if drone 𝑑 ∈ 𝐷 is dispatched from station 𝑗 ∈ 𝑁𝑉, and 0 otherwise 

𝑑𝑤𝑖𝑗𝑑 = Delivery load carried by drone 𝑑 ∈ 𝐷 after visiting node 𝑖 ∈ 𝑁 and heading 

to node 𝑗 ∈ 𝑁 

𝑝𝑤𝑖𝑗𝑑 = Pick-up load carried by drone 𝑑 ∈ 𝐷 after visiting node 𝑖 ∈ 𝑁 and heading 

to node 𝑗 ∈ 𝑁 
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𝑑𝑠𝑡𝑖𝑗𝑑  = Remaining flight range of drone 𝑑 ∈ 𝐷 after visiting node 𝑖 ∈ 𝑁 and 

heading to node 𝑗 ∈ 𝑁 

𝑢𝑖  = Specifies the order of node 𝑖 ∈ 𝑁 in the vehicle route 

𝑑𝑖𝑗  = Total distance traveled by the vehicle after traveling on link (𝑖, 𝑗) ∈ 𝐴 

Consider a multimodal vehicle-drone network 𝐺(𝑁, 𝐴), where 𝑁 is the set of nodes 

and 𝐴 is the set of links. A set of drones 𝐷 mounted on a vehicle are assumed to provide 

pick-up and delivery services for customers distributed in this network. The vehicle starts 

and ends its tour at a single depot. The set of nodes 𝑁 = 𝑁𝐷 ∪ 𝑁𝑉 ∪ 𝑁𝐶 includes the depot 

node in 𝑁𝐷 = {0}, the station nodes 𝑁𝑉 = {1,2, … , |𝑁𝑉|} where the vehicle can stop to 

dispatch and collect the drones, and the customer nodes 𝑁𝐶 = {|𝑁𝑉| + 1, … , |𝑁𝑉| + |𝑁𝐶|}. 

The pick-up weight, 𝑝𝑚, and the delivery weight, 𝑞𝑚, are assumed to be given for each 

customer node 𝑚 ∈ 𝑁𝐶 . Each link, (𝑖, 𝑗) ∈ 𝐴, is defined in terms of its length, 𝑙𝑖𝑗, the 

average travel cost by the vehicle, 𝑐𝑣𝑖𝑗, and the average travel cost by each drone, 𝑐𝑑𝑖𝑗
𝑑 .  

These costs are assumed to be a function of the length of the link (𝑖, 𝑗) and the cost per unit 

distance for each mode. The travel cost per unit distance for all drones is assumed to be 

less than that of the vehicle. Each drone, 𝑑 ∈ 𝐷, is defined in terms of its maximum load-

carrying capacity, 𝑤𝑑, and maximum flight range, 𝑟𝑑, which depends on its battery lifespan. 

A drone cannot exceed its maximum flight range or its load-carrying capacity. These sets 

and parameters are used to formulate both the HVDRP and the IVDRP-LS. 

Since the IVDRP-LS extends the HVDRP to consider the LS rule extra parameters 

are used to formulate this problem. A two-dimensional visibility graph is constructed to 

determine visible drone destinations from the different dispatching stations (Frontera et al., 
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2017). Assuming that drones follow the Euclidian trajectory from their origins to 

destinations, if the straight line connecting any origin-destination pair is obstructed by any 

obstacle, then the destination is assumed to be out of sight from the origin. We use the 

parameter 𝑎𝑖𝑗 ∈ {0,1} to define visibility between node pair 𝑖𝑗, which is equal to one if 

node 𝑗 ∈ 𝑁 is within the LS from station 𝑖 ∈ 𝑁𝑣, and zero otherwise. The parameter 𝑠𝑖 ∈

{0,1} is used to represent if a customer location can be seen and reachable by a drone from 

any of the station nodes. Customers that are not within LS of any station (i.e., 𝑠𝑖 = 0) are 

assumed to be served by the vehicle. The vehicle is assumed to have unconstrained load-

carrying capacity. The problem requires determining the optimal route for the vehicle and 

the drones to serve all customers in the network such that the total travel cost for the vehicle 

and the drones is minimized and all drones stay within the LS from their dispatching 

stations until they return to their collection stations. 

Several decision variables are defined for the HVDRP and the IVDRP-LS. To 

represent the vehicle route, we define 𝑦𝑖𝑗 ∈ {0,1}, which is equal to one if the vehicle 

travels on link (𝑖, 𝑗) ∈ 𝐴, and zero otherwise. The variable 𝑥𝑑𝑖𝑗 ∈ {0,1} is equal to one if 

drone 𝑑 ∈ 𝐷 is mounted on the vehicle while traveling on link (𝑖, 𝑗) ∈ 𝐴, and zero 

otherwise. The drone route is defined by the binary variable 𝑧𝑗𝑑𝑙𝑚 ∈ {0,1}, which is equal 

to one if drone 𝑑 ∈ 𝐷 dispatched from station  𝑗 ∈ 𝑁𝑉 travels on link (𝑙, 𝑚) ∈ 𝐴, and zero 

otherwise. The delivery and pick-up load carried by drone 𝑑 ∈ 𝐷 after departing from node 

𝑖 ∈ 𝑁 and heading to node 𝑗 ∈ 𝑁 is given by 𝑑𝑤𝑖𝑗𝑑 ≥ 0 and  𝑝𝑤𝑖𝑗𝑑 ≥ 0, respectively.  The 

variable 𝑑𝑠𝑡𝑖𝑗𝑑 ≥ 0 defines the remaining flight range of drone 𝑑 ∈ 𝐷 after traveling on 

link (𝑖, 𝑗) ∈ 𝐴 and heading to node 𝑗 ∈ 𝑁. This decision variable is used to determine if the 
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drone has the adequate flight range to travel on link (𝑖, 𝑗) ∈ 𝐴. Additional variables are also 

used to define the vehicle-drone interaction. We define the variable 𝑓𝑗𝑑 ∈ {0,1}, which is 

equal to one if drone 𝑑 ∈ 𝐷 is dispatched from the vehicle at node 𝑗 ∈ 𝑁𝑉. Also, the 

variable 𝑏𝑖𝑗𝑑 ∈ {0,1} is equal to one if drone 𝑑 ∈ 𝐷 dispatched at node 𝑗 ∈ 𝑁𝑉 is collected 

by the vehicle at node 𝑖 ∈ 𝑁𝑉. To track the vehicle’s traveled distance, we introduce the 

variable 𝑑𝑖𝑗, which is defined as the total distance traveled by the vehicle after traveling on 

link (𝑖, 𝑗) ∈ 𝐴. Finally, the variable 𝑢𝑖 is used to ensure sub-tour elimination for the vehicle 

such that 1 ≤ 𝑢𝑖 ≤ |𝑁𝑉 ∪ 𝑁𝐶| + 2.  

 

3-3. Hybrid Vehicle Drone Routing Problem (HVDRP)  

This section is organized as follows; subsection 3.3.1 presents all the assumptions 

considered by the HVDRP, subsection 3.3.2 presents the mathematical formulation of the 

HVDRP, and subsection 3.3.3 discuss the complexity of the formulation.  

 

3-3-1. HVDRP Assumptions 

The following assumptions are considered by the HVDRP, which specify the 

operation scenarios of the proposed mothership system: 

1. Multiple drones are mounted on a single vehicle.   

2. Each drone can serve more than one customer per dispatch as long as its flight range 

and load carrying capacity are not violated.  

3. Drones can return to any station along the vehicle route, which could be the same as or 

different from the dispatching one. 
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4. Multiple drones can be dispatched simultaneously from any station, which allows the 

use of a swarm of drones to enhance the overall productivity of the system.    

5. Each station can be visited by the vehicle only once.  

6. Customers are served only by drones.  

7. Vehicles are used only as mobile depots for the drones in order to reduce the required 

number of vehicle stops.  

8. Drones can be dispatched and collected several times from the same station. 

9. The vehicle cannot move from a station before collecting all drones that are planned to 

return to that station.  

10. Drones that arrive to a collection station early are assumed to wait for the vehicle in 

idle conditions before being assigned a new tour. This assumption in conjunction with 

assumption 9, ensures a proper visitation sequence for the vehicle and the drones.   

11. Drone batteries are replaced with fully charged batteries each time they are collected 

by the vehicle.  

12. Packages are loaded and unloaded from the drones once the drones have been collected 

by the vehicle.  

Each drone is defined in terms of its maximum flying range and load carrying 

limitation. The vehicle starts and ends its route at a depot and stops at selected stations to 

dispatch and/or collect the drones. The stations are locations where the vehicle and drones 

may wait for each other for collection. This configuration allows the vehicle to 

accommodate multiple dispatches of the same drone from a certain station to serve a dense 
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customer population around that station. As the system involves multiple drones, these 

drones are expected to arrive at their collection stations at different times. Drones that 

arrive early wait in idle condition until the vehicle arrives. At any of these stations, drones 

could be dispatched such that each drone visits one or more customers to pick-up and/or 

deliver their packages. Each package is defined in terms of its weight.  

The drone route must ensure that its maximum flying range and load carrying 

capacity are not violated. A drone may return to any station along the vehicle’s route for 

collection. After battery replacement and package loading/unloading, the drone can be 

dispatched again to serve a new set of customers. The process is repeated until all customers 

in the service area have been reached. This configuration takes advantage of the expected 

reduced drone operation cost, compared to the vehicle cost, and provides more flexibility 

in routing the drones and the vehicle. Thus, the system is able to provide efficient 

integration between the vehicle and the drones to reduce dependence on the vehicle and 

increase the use of drones in performing the pick-up and delivery services. The resulting 

system is expected to reduce the total system operation cost, alleviate congestion associated 

with urban trucking, and enhance the drivers’ work conditions.  

 

3-3-2. HVDRP Mathematical Formulation  

This section presents the mathematical formulation developed for the HVDRP. 

This formulation presents a first attempt to model the mothership system. While the 

formulation presents a set of variables and constraints that capture the unique aspects of 

the problem, it also takes advantage of the similarities that exist between the HVDRP with 
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the TTRP and CVRP. For example, it extends the TTRP to represent the vehicle 

transportation of the drones along the different links by using variables 𝑦𝑖𝑗 and 𝑥𝑑𝑖𝑗, which 

describe the movement of the vehicle and any mounted drones. It also borrows features 

from existing formulations of the CVRP such as variables 𝑑𝑤𝑖𝑗𝑑, 𝑝𝑤𝑖𝑗𝑑, and 𝑑𝑠𝑡𝑖𝑗𝑑  that 

track the drones’ load carrying capacity and flying range. In addition, a new dimension is 

added to the decision variable used to describe the drone (i.e., capacitated vehicles) routing 

decisions, 𝑧𝑗𝑑𝑙𝑚, in order to match the drones with their dispatching stations and hence 

capture the vehicle-drone interactions aspect of the problem. 

As presented below the problem is modeled in the form of an MIP.  Considering an 

objective function that minimizes the total operation cost for the vehicle and the drones, 

four main sets of constraints are defined as follows: 

- Depot constraints,  

- Vehicle constraints, 

- Drone constraints, and 

- Vehicle-drone interaction constraints. 

The expression in (1) and equations (2)-(43) describe the MIP for the HVDRP. 

Objective Function: 

Minimize   ∑ ∑ 𝑦𝑖𝑗 ∙ 𝑐𝑣𝑖𝑗

𝑗 ∈ 𝑁1𝑖 ∈ 𝑁1

+ ∑ ∑ ∑ ∑ 𝑧𝑗𝑑𝑚𝑙 ∙ 𝑐𝑑𝑚𝑙
𝑑

 

𝑙 ∈ N𝑚 ∈ N𝑑 ∈ D 𝑗 ∈ 𝑁𝑣

                                                    (1) 

Depot Constraints: 

∑ y
𝑘𝑗

𝑗 ∈ 𝑁𝑣

=  1                            ∀ 𝑘 ∊ 𝑁𝐷                                                                               (2) 
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∑ y
𝑗𝑘

𝑗 ∈ 𝑁𝑣

= 1                             ∀ 𝑘 ∊ 𝑁𝐷  (3) 

∑ ∑ ∑ 𝑥𝑑𝑘𝑗

𝑘 ∈ 𝑁𝐷𝑑 ∈ 𝐷 𝑗 ∈ 𝑁𝑣

 = ∑ ∑ ∑ 𝑥𝑑𝑗𝑘

𝑘 ∈ 𝑁𝐷𝑑 ∈ 𝐷 𝑗 ∈ 𝑁𝑣

                                                                                                          (4) 

Vehicle Constraints: 

∑ 𝑦𝑖𝑗

𝑗 ∈ 𝑁1

𝑗 ≠𝑖

=  ∑ 𝑦𝑗𝑖

𝑗 ∈ 𝑁1

𝑗 ≠𝑖

                                        
∀ 𝑖 ∊ 𝑁1  (5) 

𝑑𝑘𝑖 ≤  𝑙𝑘𝑖 +   𝑀1 ×  (1 − 𝑦𝑘𝑖)    ∀ 𝑖 ∊ 𝑁1, ∀ 𝑘 ∊ 𝑁𝐷                       (6) 

𝑑𝑘𝑖 ≥  𝑙𝑘𝑖 −   𝑀1 ×  (1 − 𝑦𝑘𝑖)   ∀   𝑖 ∊ 𝑁1, ∀ 𝑘 ∊ 𝑁𝐷                    (7) 

𝑑𝑖𝑗 ≤  𝑑𝑘𝑖 +  𝑙𝑖𝑗 +   𝑀1 ×  (2 − 𝑦𝑖𝑗 − 𝑦𝑘𝑖)  ∀  𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ {𝑁1: 𝑗 ≠ 𝑖}, ∀ 𝑘 ∊

{𝑁1: 𝑘 ≠ 𝑖}   
(8) 

𝑑𝑖𝑗 ≥  𝑑𝑘𝑖 +  𝑙𝑖𝑗 −   𝑀1 ×  (2 − 𝑦𝑖𝑗 − 𝑦𝑘𝑖)  ∀  𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ {𝑁1: 𝑗 ≠ 𝑖}, ∀ 𝑘 ∊

{𝑁1: 𝑘 ≠ 𝑖}    
(9) 

𝑑𝑖𝑗 ≤    𝑀1 ×  𝑦𝑖𝑗                                             ∀ 𝑖 ∊ 𝑁1, ∀ 𝑗 ∊ 𝑁1  (10) 

Drone Constraints: 

𝑧𝑗𝑑𝑙𝑚  ≤  ∑ 𝑧𝑗𝑑𝑗𝑘

𝑘 ∈ 𝑁𝐶

                          ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁, ∀ 𝑗 ∊ 𝑁𝑉  (11) 

𝑧𝑗𝑑𝑖𝑘 = 0                                    ∀ 𝑑 ∊ 𝐷, ∀ 𝑘 ∊ 𝑁, ∀ 𝑖 ∊ 𝑁1, ∀ 𝑗 ∊ {𝑁1:   𝑗 ≠ 𝑖}  (12) 

∑ ∑ ∑ 𝑧𝑗𝑑𝑙𝑚

𝑙 ∈ 𝑁𝑑 ∈ 𝐷 𝑗 ∈ 𝑁𝑣

    =  1         ∀ 𝑚 ∊ 𝑁𝐶  (13) 

∑ 𝑧𝑗𝑑𝑙𝑚

𝑙 ∈ 𝑁 
𝑙 ≠𝑚

=  ∑ 𝑧𝑗𝑑𝑚𝑛

𝑛 ∈ 𝑁 
𝑛 ≠𝑚

                  ∀ 𝑑 ∊ 𝐷, ∀ 𝑚 ∊ 𝑁𝐶 , ∀ 𝑗 ∊ 𝑁𝑉  (14) 

𝑑𝑤𝑖𝑘𝑑 + 𝑝𝑤
𝑖𝑘𝑑

≤  𝑤𝑑              ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁, ∀ 𝑘 ∊ 𝑁  (15) 

∑ 𝑝𝑤
𝑗𝑘𝑑

𝑘 ∈𝑁

 =  𝑀2 × (1 − 𝑧𝑗𝑑𝑗𝑚)                                          ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ 𝑁𝐶  (16) 

𝑑𝑤𝑚𝑘𝑑 ≥   𝑑𝑤𝑙𝑚𝑑 − 𝑞𝑚 − 𝑀2 × (2 − 𝑧𝑗𝑑𝑙𝑚 −  𝑧𝑗𝑑𝑚𝑘)    ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊

{𝑁𝐶: 𝑚 ≠ 𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠

𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(17) 
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𝑑𝑤𝑚𝑘𝑑 ≤   𝑑𝑤𝑙𝑚𝑑 − 𝑞𝑚 + 𝑀2 × (2 − 𝑧𝑗𝑑𝑙𝑚 −  𝑧𝑗𝑑𝑚𝑘)  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊

{𝑁𝐶: 𝑚 ≠ 𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠

𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(18) 

𝑝𝑤
𝑚𝑘𝑑

≥   𝑝𝑤
𝑙𝑚𝑑

+  𝑝𝑚 − 𝑀2 × (2 −  𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊

{𝑁𝐶: 𝑚 ≠ 𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠

𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(19) 

𝑝𝑤
𝑚𝑘𝑑

≤   𝑝𝑤
𝑙𝑚𝑑

+  𝑝𝑚 + 𝑀2 × (2 −  𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)   ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊

{𝑁𝐶: 𝑚 ≠ 𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠

𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(20) 

𝑑𝑤𝑙𝑚𝑑 ≤ ∑ 𝑀2 × 𝑧𝑗𝑑𝑙𝑚

𝑗 ∈𝑁𝑣

         ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁  (21) 

𝑝𝑤
𝑙𝑚𝑑

≤ ∑ 𝑀2 × 𝑍𝑗𝑑𝑙𝑚

𝑗 ∈𝑁𝑣

        ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁  (22) 

𝑑𝑠𝑡𝑗𝑘𝑑 =   𝑟𝑑 × 𝑧𝑗𝑑𝑗𝑘   ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑘 ∊ 𝑁  (23) 

𝑑𝑠𝑡𝑖𝑘𝑑 ≥   𝑙𝑖𝑘 × 𝑧𝑗𝑑𝑖𝑘  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ (𝑖, 𝑘) ∊ 𝐴  (24) 

𝑑𝑠𝑡𝑚𝑘𝑑 ≥  𝑑𝑠𝑡𝑙𝑚𝑑 −  𝑙𝑙𝑚 − 𝑀3 × (2 −  𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊

{𝑁: 𝑚 ≠ 𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠

𝑚} , ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(25) 

𝑑𝑠𝑡𝑚𝑘𝑑 ≤  𝑑𝑠𝑡𝑙𝑚𝑑 −  𝑙𝑙𝑚 + 𝑀3 × (2 −  𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊

{𝑁: 𝑚 ≠ 𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠

𝑚} , ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(26) 

𝑑𝑠𝑡𝑙𝑚𝑑 ≤ ∑ 𝑀3 × 𝑧𝑗𝑑𝑙𝑚

𝑗 ∈𝑁𝑣

        ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁  (27) 

Vehicle-Drone Integrating Constraints: 

𝑏𝑖𝑗𝑑 ≤ ∑ 𝑧𝑗𝑑𝑙𝑖

𝑙 ∈𝑁𝑐

                               ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (28) 

𝑏𝑖𝑗𝑑 ≥  𝑧𝑗𝑑𝑘𝑖  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑘 ∊ 𝑁𝐶 , ∀ 𝑖 ∊ 𝑁𝑉  (29) 

𝑓
𝑗𝑑

≤ ∑ 𝑧𝑗𝑑𝑗𝑚

𝑚 ∈𝑁𝑐

                            ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉  (30) 

𝑓
𝑗𝑑

≥  𝑧𝑗𝑑𝑗𝑘  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑘 ∊ 𝑁𝐶  (31) 

∑ 𝑥𝑑𝑘𝑖

𝑘 ∈ 𝑁1 

𝑘 ≠𝑖

 + ∑ ∑ 𝑧𝑗𝑑𝑚𝑖

𝑚 ∈𝑁𝑐𝑗 ∈𝑁1

= ∑ 𝑥𝑑𝑖𝑘

𝑘 ∈ 𝑁1 

𝑘 ≠𝑖

 +  ∑ 𝑧𝑖𝑑𝑖𝑚

𝑚 ∈𝑁𝑐

          ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉  
(32) 

𝑥𝑑𝑖𝑗 ≤  𝑦
𝑖𝑗

                                   ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁1, ∀ 𝑗 ∊ {𝑁1:  𝑗 ≠ 𝑖}  (33) 
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∑ 𝑦𝑘𝑖
𝑘 ∈ 𝑁1 

≥  𝑏𝑖𝑗𝑑                               ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁1  (34) 

𝑦𝑗𝑖 ≥ 𝑦𝑖𝑗 + 𝑀1 × ( 𝑏𝑖𝑗𝑑  − 1)                                                       ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (35) 

∑ 𝑑𝑘𝑖
𝑘 ∈ 𝑁1

≥  ∑ 𝑑𝑚𝑗
𝑚 ∈ 𝑁1

−   𝑀1 ×  (1 − 𝑏𝑖𝑗𝑑)                     ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉   (36) 

∑ 𝑥𝑑𝑘𝑖

𝑘 ∈ 𝑁1 

 + ∑ 𝑏𝑖𝑗𝑑

𝑗 ∈ 𝑁1 

𝑗 ≠𝑖

≥ 𝑓
𝑖𝑑

  
∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉  (37) 

𝑏𝑖𝑗𝑑 ≤ 𝑓
𝑗𝑑

  ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (38) 

𝑢𝑖 − 𝑢𝑗 + 𝑁1 ×  𝑦𝑖𝑗 ≤ 𝑁1 − 1  ∀ 𝑖 ∊ 𝑁1, ∀ 𝑗 ∊ {𝑁𝑣:  𝑗 ≠ 𝑖}  (39) 

𝑢0 = 1   (40) 

𝑦
𝑖𝑗

∈ {0,1} ,  𝑥𝑑𝑖𝑗 ∈ {0,1} ,  𝑧𝑗𝑑𝑙𝑚 ∈ {0,1} ,  𝑏𝑖𝑗𝑑 ∈ {0,1} , 𝑓
𝑗𝑑

∈ {0,1} ,  𝑑𝑤𝑙𝑚𝑑 ≥ 0 ,  

 𝑝𝑤
𝑙𝑚𝑑

≥ 0, 𝑑𝑠𝑡𝑙𝑚𝑑 ≥ 0 , 𝑑𝑖𝑗 ≥ 0, 1 ≤  𝑢𝑖 ≤ 𝑁𝑣 (𝑠𝑖𝑧𝑒) + 2  ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁1, ∀ 𝑗 ∊ 𝑁1, ∀ 𝑙 ∊ 𝑁, ∀ 

∊ 𝑁  

(41) 

The objective function given in (1) minimizes the total operation cost for the 

multimodal network. The first term represents the operation cost of the tour constructed for 

the vehicle to dispatch and collect the drones. The second term represents the operation 

cost of the tours constructed for the drones to visit all customers. Constraints (2) and (3) 

ensure that the vehicle starts and ends its tour at the depot. Constraint (4) ensures that all 

drones return back to the depot.  

Constraint (5) guarantees path continuity for the vehicle. Constraints (6) to (9) track 

the distance traveled by the vehicle as it moves out from the depot or any intermediate 

station. These constraints are nonbinding if the vehicle does not travel on link (𝑖, 𝑗). Thus, 

constraint (10) ensures that 𝑑𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴   is equal to zero if the vehicle does not traverse 

link (𝑖, 𝑗).  
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Constraints (11) to (27) ensure the feasibility of the tours constructed for each 

drone. Constraints (11) and (12) state that each drone starts its tour from its dispatching 

station. Constraint (13) ensures that each customer is served by one drone. Constraint (14) 

guarantees the continuity of the tour constructed for each drone. Drones cannot be loaded 

beyond their maximum carrying load capacity as described in constraint (15). Constraint 

(16) ensures that each drone leaves the vehicle carrying the required delivery load to serve 

its designated customers. Constraints (17) to (20) update the delivery and pick-up carrying 

load for each drone at each customer node. Constraints (21) and (22) ensure that 𝑑𝑤𝑙𝑚𝑑 

and 𝑝𝑤𝑙𝑚𝑑 are equal to zero, if drone 𝑑 ∈ 𝐷 does not travel on link (𝑙, 𝑚) ∈ 𝐴 . Constraints 

(23) to (27) ensure that the flight range for each drone is not violated. Constraint (23) 

mandates that each drone starts its tour with a fully charged battery (i.e., full flight range). 

Constraint (24) ensures that the drone’s flight range is sufficient for the drone to reach its 

destination. Constraints (25) and (26) update the remaining flight range based on the 

traveled distance for each drone. Constraint (27) ensures that the available flight range 

(battery lifespan) for a drone is not decremented if a link is not traveled by that drone.  

The remaining constraints capture the interactions between the vehicle and drones 

for dispatch and collection. Constraint (28) states that the decision variable 𝑏𝑖𝑗𝑑, which 

defines the dispatching and collection stations for drone 𝑑 ∈ 𝐷, is equal to one if the drone 

dispatched from station 𝑗 ∈ 𝑁𝑉 is collected at station 𝑖 ∈ 𝑁𝑉. Note that the same station 

could be used for dispatching and collecting the drone, that is 𝑖 = 𝑗.  Constraint (29) 

requires that if a drone returns to a station, the vehicle must pick-up that drone from that 

station. Constraint (30) and (31) ensure that the value of the decision variable 𝑓𝑗𝑑, which is 
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used to specify the dispatching station of the drone, is equal to one if drone 𝑑 ∈ 𝐷 is 

dispatched from station 𝑗 ∈ 𝑁𝑉. Constraint (32) guarantees drone flow conservation at all 

stations. Constraint (33) ensures that the vehicle can carry a drone a long a link only if the 

vehicle is scheduled to travel on that link. Constraint (34) requires that the vehicle visits 

the collection station where the drone is scheduled to return. Constraints (35) and (36) 

ensure that if a drone is dispatched and collected from two different stations, the vehicle 

must visit the dispatching station before the collection station. In constraint (37), the drone 

must be collected by the vehicle to replace/recharge its battery and load it with a new set 

of packages before it is dispatched. Constraint (38) states that a drone cannot be collected 

if it was not dispatched in the first place. Sub-tour elimination is provided by constraints 

(39) and (40). Finally, constraint (41) forces the binary and non-negativity conditions for 

the variables. 

 

3-3-3. HVDRP Formulation Complexity   

To understand the complexity of the HVDRP, one can view its formulation as an 

extension of the conventional formulation of the VPR (1) to construct the vehicle route, (2) 

to construct the drone routes, and (3) to ensure correct integration of the two modes. Thus, 

the complexity for the HVDRP depends on the complexity of these three problem 

components. For the vehicle routing decisions, in addition to determining the set of visited 

stations and their sequence in the tour, the problem also entails deciding on the dispatching 

and collection of drones at different stations and the transportation of drones by the vehicle 

along different links. The vehicle routing component of the HVDRP is an NP-hard problem 
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where the number of solutions grows exponentially with the number of stations in the 

network. 

 For the drone routing decisions, the problem is an extension of the CVRP, where 

each drone is modeled as a vehicle with limited capacity (i.e., flying range and the load 

carrying capacity). It requires determining feasible routes for all drones, where each drone 

route is defined in terms of its dispatching and collecting stations, the set of customers to 

be visited, and the sequence by which these customers are inserted in the drone route. The 

drone routing component is also NP-hard as the number of solutions grows exponentially 

with the number of stations and customers in the network. Thus, to appreciate the level of 

complexity of the HVDRP, one should try to answer the following question: do the vehicle-

drone integration constraints specifically introduced to model the mothership system 

reduce the search space for the vehicle and drone routing decisions? Considering the 

interdependence between the vehicle and the drone routing decisions, their solution spaces 

cannot be reduced a priori. The HVDRP requires examining the combinations of the 

vehicle and the drone routing decisions, while ensuring the feasibility of the integrated 

solution with respect to station visitation sequencing, to determine the optimal integrated 

vehicle-drone routing scheme. This additional check has a combinatorial complexity 

considering the routing combinations for the vehicle and the drones in constructing 

integrated solutions.  

As such, the HVDRP is an NP-hard problem with a higher level of complexity 

compared to the conventional VRP and the CPRP. Thus, obtaining provably optimal 

solutions using this formulation for the HVDRP are limited to small problem instances, 
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and efficient methodologies are needed in order to provide good solutions within a practical 

running time to suit real-world applications of the mothership system. 

 

3-4. Integrated vehicle-drone routing problem with the LS rule (IVDRP-LS) 

This section is organized as follows; subsection 3.3.1 presents all the assumptions 

considered by the IVDRP-LS, subsection 3.3.2 presents the mathematical formulation of 

the IVDRP-LS, and subsection 3.3.3 discusses the complexity of the formulation.  

 

3-4-1. IVDRP-LS Assumptions 

The IVDRP-LS assumes multiple drones mounted on a single vehicle.  Each drone 

is defined in terms of its maximum flying range and load-carrying capacity. The vehicle 

starts and ends its route at a depot and stops at selected stations to dispatch and/or collect 

the drones. At any of these stations, drones could be dispatched such that each drone visits 

one or more customers to pick up and/or deliver their packages. If a customer is not 

reachable by any of the drones, this customer should be visited by the vehicle. The vehicle 

is allowed to visit a station/customer only once. Also, the vehicle cannot dispatch/collect 

drones at any customer location. Each customer package is defined in terms of its weight. 

The maximum flying range and load-carrying capacity of all drones must not be violated. 

Drones that arrive early at a collection station are assumed to wait for the vehicle in idle 

conditions before being assigned a new tour. After each drone collection, the drone’s 

battery is replaced, preparing it for a new dispatch. Drones can be dispatched and collected 
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several times from the same station. The process is repeated until all customers are served. 

The following additional assumptions are related to the flying LS rule: 

1. All customers visited by a drone must be within the LS from the drone’s dispatching 

station.  

2. A drone may return to any station along the vehicle’s route for collection as long as 

the collecting station is within the LS from the dispatching station. 

3. The vehicle cannot depart a station before all drones that are dispatched at this station 

finish their tours.  

4. Customers that are not within any station’s LS nor reachable by drones are served by 

the vehicle.  

5. For drones to stay within the pilot’s LS, it is assumed that they do not land at any 

customer location (e.g., using ropes to drop/pick-up the packages as described in 

Vanian (2016)).  

 

3-4-2. IVDRP-LS Mathematical Formulation  

The problem is modeled in the form of an MIP as presented below. Considering an 

objective function that minimizes the total operation cost of the vehicle and the drones, the 

solution described in terms of the vehicle tour, denoted as VT, and the set of tours 

constructed for the drones, denoted as DT, must satisfy the following constraints:  

A. The vehicle and drones that left the depot must return to the depot.  

B. The drones cannot carry beyond their load-carrying capacity. 

C. The drones cannot violate their maximum flight range. 
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D. The vehicle and drone tours must be compatible. 

E. The vehicle and drone tours must meet the LS regulatory rule. 

The MIP formulation: 

Minimize   ∑ ∑ 𝑦
𝑖𝑗

∙ 𝑐𝑣𝑖𝑗

𝑗 ∈𝑁𝑖 ∈ 𝑁

+  ∑ ∑ ∑ ∑ 𝑧𝑗𝑑𝑚𝑙 ∙ 𝑐𝑑𝑚𝑙
𝑑  

𝑙 ∈ N𝑚 ∈ N𝑑 ∈ D 𝑗 ∈ 𝑁𝑣

                (42) 

∑ y
𝑘𝑗

𝑗 ∈ 𝑁

=  1                       ∀ 𝑘 ∊ 𝑁𝐷           (43) 

∑ y
𝑗𝑘

𝑗 ∈ 𝑁

= 1                        ∀ 𝑘 ∊ 𝑁𝐷  (44) 

∑ ∑ ∑ 𝑥𝑑𝑘𝑗

𝑘 ∈ 𝑁𝐷𝑑 ∈ 𝐷 𝑗 ∈ 𝑁

 = ∑ ∑ ∑ 𝑥𝑑𝑗𝑘

𝑘 ∈ 𝑁𝐷𝑑 ∈ 𝐷 𝑗 ∈𝑁

      (45) 

∑ 𝑦𝑖𝑗

𝑗 ∈ 𝑁
𝑗 ≠𝑖

=  ∑ 𝑦𝑗𝑖

𝑗 ∈ 𝑁
𝑗 ≠𝑖

                                  
∀ 𝑖 ∊ 𝑁  (46) 

𝑑𝑘𝑖 ≤  𝑙𝑘𝑖 +   𝑀1 ×  (1 − 𝑦𝑘𝑖)    ∀ 𝑖 ∊ 𝑁, ∀ 𝑘 ∊ 𝑁𝐷                       (47) 

𝑑𝑘𝑖 ≥  𝑙𝑘𝑖 −   𝑀1 ×  (1 − 𝑦𝑘𝑖)   ∀   𝑖 ∊ 𝑁, ∀ 𝑘 ∊ 𝑁𝐷                    (48) 

𝑑𝑖𝑗 ≤  𝑑𝑘𝑖 +  𝑙𝑖𝑗 +   𝑀1 ×  (2 − 𝑦𝑖𝑗 − 𝑦𝑘𝑖)  ∀  𝑖 ∊ (𝑁𝑉 ∪ 𝑁𝐶), ∀ 𝑗 ∊ {𝑁: 𝑗 ≠

𝑖}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑖}      
(49) 

𝑑𝑖𝑗 ≥  𝑑𝑘𝑖 +  𝑙𝑖𝑗 −   𝑀1 ×  (2 − 𝑦𝑖𝑗 − 𝑦𝑘𝑖)  ∀  𝑖 ∊ (𝑁𝑉 ∪ 𝑁𝐶), , ∀ 𝑗 ∊ {𝑁: 𝑗 ≠

𝑖}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑖}         
(50) 

𝑑𝑖𝑗 ≤    𝑀1 ×  𝑦𝑖𝑗                              ∀ 𝑖 ∊ 𝑁, ∀ 𝑗 ∊ 𝑁  (51) 

𝑢𝑖 − 𝑢𝑗 + (𝑁 + 1) ×  𝑦𝑖𝑗 ≤ 𝑁 ∀ 𝑖 ∊ 𝑁, ∀ 𝑗 ∊ {𝑁𝑣 ∪ 𝑁𝐶:  𝑗 ≠ 𝑖}  (52) 

𝑢0 = 1  (53) 

𝑧𝑗𝑑𝑙𝑚  ≤  ∑ 𝑧𝑗𝑑𝑗𝑘

𝑘 ∈ 𝑁𝐶

                      ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁, ∀ 𝑗 ∊ 𝑁𝑉  (54) 

𝑧𝑗𝑑𝑖𝑘 = 0                               ∀ 𝑑 ∊ 𝐷, ∀ 𝑘 ∊ 𝑁, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ {𝑁𝑉: 𝑗 ≠ 𝑖}  (55) 
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∑ 𝑧𝑗𝑑𝑙𝑚

𝑙 ∈ 𝑁 
𝑙 ≠𝑚

=  ∑ 𝑧𝑗𝑑𝑚𝑛

𝑛 ∈ 𝑁 
𝑛 ≠𝑚

             ∀ 𝑑 ∊ 𝐷, ∀ 𝑚 ∊ 𝑁𝐶 , ∀ 𝑗 ∊ 𝑁𝑉  (56) 

𝑑𝑤𝑖𝑘𝑑 + 𝑝𝑤
𝑖𝑘𝑑

≤  𝑤𝑑          ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁, ∀ 𝑘 ∊ 𝑁  (57) 

∑ 𝑝𝑤
𝑗𝑘𝑑

𝑘 ∈𝑁

 =  𝑀2 × (1 −  𝑧𝑗𝑑𝑗𝑚)                         ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ 𝑁𝐶  (58) 

𝑑𝑤𝑚𝑘𝑑 ≥   𝑑𝑤𝑙𝑚𝑑 − 𝑞𝑚 − 𝑀2 × (2 −

 𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)    

∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ {𝑁𝐶: 𝑚 ≠

𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠ 𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(59) 

𝑑𝑤𝑚𝑘𝑑 ≤   𝑑𝑤𝑙𝑚𝑑 − 𝑞𝑚 − 𝑀2 × (2 −

 𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)    

∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ {𝑁𝐶: 𝑚 ≠

𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠ 𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(60) 

𝑝𝑤
𝑚𝑘𝑑

≥   𝑝𝑤
𝑙𝑚𝑑

+  𝑝𝑚 − 𝑀2 × (2 −

 𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)  

∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ {𝑁𝐶: 𝑚 ≠

𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠ 𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(61) 

𝑝𝑤
𝑚𝑘𝑑

≤   𝑝𝑤
𝑙𝑚𝑑

+  𝑝𝑚 + 𝑀2 × (2 −

 𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)   

∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ {𝑁𝐶: 𝑚 ≠

𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠ 𝑚}, ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(62) 

𝑑𝑤𝑙𝑚𝑑 ≤ ∑ 𝑀2 × 𝑧𝑗𝑑𝑙𝑚

𝑗 ∈𝑁𝑣

          ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁  (63) 

𝑝𝑤
𝑙𝑚𝑑

≤ ∑ 𝑀2 × 𝑧𝑗𝑑𝑙𝑚

𝑗 ∈𝑁𝑣

          ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁  (64) 

𝑑𝑠𝑡𝑗𝑘𝑑 =   𝑟𝑑 × 𝑧𝑗𝑑𝑗𝑘   ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑘 ∊ 𝑁  (65) 

𝑑𝑠𝑡𝑖𝑘𝑑 ≥   𝑙𝑖𝑘 × 𝑧𝑗𝑑𝑖𝑘  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ (𝑖, 𝑘) ∊ 𝐴  (66) 

𝑑𝑠𝑡𝑚𝑘𝑑 ≥  𝑑𝑠𝑡𝑙𝑚𝑑 −  𝑙𝑙𝑚 − 𝑀3 × (2 −

 𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)  

∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ {𝑁: 𝑚 ≠

𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠ 𝑚} , ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(67) 

𝑑𝑠𝑡𝑚𝑘𝑑 ≤  𝑑𝑠𝑡𝑙𝑚𝑑 −  𝑙𝑙𝑚 + 𝑀3 × (2 −

 𝑧𝑗𝑑𝑙𝑚 − 𝑧𝑗𝑑𝑚𝑘)  

∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑚 ∊ {𝑁: 𝑚 ≠

𝑗}, ∀ 𝑙 ∊ {𝑁: 𝑙 ≠ 𝑚} , ∀ 𝑘 ∊ {𝑁: 𝑘 ≠ 𝑚}  

(68) 

𝑑𝑠𝑡𝑙𝑚𝑑 ≤ ∑ 𝑀3 × 𝑧𝑗𝑑𝑙𝑚

𝑗 ∈𝑁𝑣

          ∀ 𝑑 ∊ 𝐷, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁  (69) 
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𝑏𝑖𝑗𝑑 ≤ ∑ 𝑧𝑗𝑑𝑙𝑖

𝑙 ∈𝑁𝑐

                                ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (70) 

𝑏𝑖𝑗𝑑 ≥  𝑧𝑗𝑑𝑘𝑖  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑘 ∊ 𝑁𝐶 , ∀ 𝑖 ∊ 𝑁𝑉  (71) 

𝑓
𝑗𝑑

≤ ∑ 𝑧𝑗𝑑𝑗𝑚

𝑚 ∈𝑁𝑐

                              ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉  (72) 

𝑓
𝑗𝑑

≥  𝑧𝑗𝑑𝑗𝑘  ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑘 ∊ 𝑁𝐶  (73) 

∑ 𝑥𝑑𝑘𝑖

𝑘 ∈ 𝑁
𝑘 ≠𝑖

 + ∑ ∑ 𝑧𝑗𝑑𝑚𝑖

𝑚 ∈𝑁𝑐𝑗 ∈𝑁𝑉

= ∑ 𝑥𝑑𝑖𝑘

𝑘 ∈ 𝑁
𝑘 ≠𝑖

 +  ∑ 𝑧𝑖𝑑𝑖𝑚

𝑚 ∈𝑁𝑐

   ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉  (74) 

∑ ∑ 𝑥𝑑𝑘𝑗

𝑘 ∈ 𝑁𝑑 ∈ 𝐷 

 = ∑ ∑ 𝑥𝑑𝑗𝑘

𝑘 ∈ 𝑁𝑑 ∈ 𝐷 

 ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝐶 (75) 

𝑥𝑑𝑖𝑗 ≤  𝑦
𝑖𝑗

                                  ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁, ∀ 𝑗 ∊ {𝑁:  𝑗 ≠ 𝑖}  (76) 

∑ 𝑦𝑘𝑖
𝑘 ∈ 𝑁 

≥  𝑏𝑖𝑗𝑑                                  ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (77) 

∑ 𝑥𝑑𝑘𝑖

𝑘 ∈ 𝑁

 + ∑ 𝑏𝑖𝑗𝑑

𝑗 ∈ 𝑁𝑉 

𝑗 ≠𝑖

≥ 𝑓
𝑖𝑑

   
∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉  (78) 

𝑦𝑗𝑖 ≥ 𝑦𝑖𝑗 + 𝑀1 × ( 𝑏𝑖𝑗𝑑  − 1)                                                  ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (79) 

∑ 𝑑𝑘𝑖
𝑘 ∈ 𝑁

≥  ∑ 𝑑𝑚𝑗
𝑚 ∈ 𝑁

−   𝑀1 ×  (1 − 𝑏𝑖𝑗𝑑)                       ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (80) 

𝑏𝑖𝑗𝑑 ≤ 𝑓
𝑗𝑑

  ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉, ∀ 𝑗 ∊ 𝑁𝑉  (81) 

∑ ∑ ∑ 𝑧𝑗𝑑𝑙𝑚

𝑙 ∈ 𝑁𝑑 ∈ 𝐷 𝑗 ∈ 𝑁𝑣

    = 𝑠𝑚     ∀ 𝑚 ∊ 𝑁𝐶  (82) 

𝑧𝑗𝑑𝑙𝑚 ≤  𝑎𝑗𝑚 ∀ 𝑑 ∊ 𝐷, ∀ 𝑗 ∊ 𝑁𝑉, ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁 (83) 

∑ 𝑦𝑗𝑚

𝑗 ∈ 𝑁
𝑗 ≠𝑚

= 1 − 𝑠𝑚 
∀ 𝑚 ∊ 𝑁𝐶 (84) 

𝑦𝑙𝑚 ∈ {0,1} ,  𝑥𝑑𝑙𝑚 ∈ {0,1} ,  𝑧𝑗𝑑𝑙𝑚 ∈ {0,1} ,  𝑏𝑖𝑗𝑑 ∈ {0,1} , 𝑓𝑗𝑑 ∈ {0,1} ,  𝑑𝑤𝑙𝑚𝑑 ≥ 0 ,  𝑝𝑤𝑙𝑚𝑑 ≥ 0, 𝑑𝑠𝑡𝑙𝑚𝑑 ≥

0 , 𝑑𝑙𝑚 ≥ 0, 1 ≤  𝑢𝑖 ≤ (𝑁𝑣 ∪ 𝑁𝐶) (𝑠𝑖𝑧𝑒) + 2         ∀ 𝑑 ∊ 𝐷, ∀ 𝑖 ∊ 𝑁𝑉 , ∀ 𝑗 ∊ 𝑁𝑉 , ∀ 𝑙 ∊ 𝑁, ∀ 𝑚 ∊ 𝑁  
(85) 

The objective function given in (42) minimizes the total operation cost for the 

multimodal network. The first term represents the operation cost of the tour constructed for 

the vehicle to dispatch and collect the drones and to visit the subset of customers that are 
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not reachable by any of the drones due to LS restrictions. The second term represents the 

operation cost of the tours constructed for the drones to visit the subset of drone-reachable 

customers.  

 Constraints (43) and (44) ensure that the vehicle starts and ends its tour at the depot. (A) 

 Constraint (45) ensures that all drones return back to the depot. (A) 

 Constraint (46) guarantees path continuity for the vehicle. (Modeling VT) 

  Constraints (47) to (50) track the distance traveled by the vehicle as it moves out of the 

depot or any intermediate station. (Modeling VT) 

 Constraint (51) ensures that 𝑑𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 is equal to zero if the vehicle does not 

traverse link (𝑖, 𝑗). (Modeling VT) 

 Constraints (52) and (53) guarantee sub-tour elimination for the vehicle. (Modeling VT) 

 Constraints (54) and (55) ensure that each drone starts its tour from its dispatching 

station. (Modeling DT) 

 Constraint (56) guarantees the continuity of the tour constructed for each drone. 

(Modeling DT) 

 Constraint (57) ensures that the drones do not carry beyond their load-carrying capacity. 

(B) 

 Constraint (58) guarantees that each dispatched drone carries the required delivery load 

to serve its designated customers. (B) 

 Constraints (59) to (62) update the delivery and pick-up carrying load for each drone at 

each customer node. (B)  
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 Constraints (63) and (64) ensure that 𝑑𝑤𝑙𝑚𝑑 and 𝑝𝑤𝑙𝑚𝑑 are equal to zero, if drone 𝑑 ∈

𝐷 does not travel on link (𝑙, 𝑚) ∈ 𝐴. (B) 

 Constraint (65) guarantees that each drone initiates its tour with a fully charged battery. 

(C)  

 Constraint (66) mandates that the drone has sufficient flight range to reach its 

destination. (C) 

 Constraints (67) and (68) update the remaining flight range for each drone. (C) 

 Constraint (69) ensures that 𝑑𝑠𝑡𝑙𝑚𝑑 is equal to zero, if drone 𝑑 ∈ 𝐷 does not travel on 

link (𝑙, 𝑚) ∈ 𝐴. (C)  

 Constraint (70) and (71) require that if a drone returns to a station, the vehicle must pick 

up that drone from that station. (D) 

 Constraint (72) and (73) ensure that the value of the decision variable 𝑓𝑗𝑑is equal to one 

if drone 𝑑 ∈ 𝐷 is dispatched from station 𝑗 ∈ 𝑁𝑉. (D) 

 Constraint (74) ensures the drone flow conservation at all stations. (D) 

 Constraint (75) ensures that the vehicle does not dispatch or collect drones at any 

customer location. (D) 

 Constraint (76) states that the vehicle can only carry a drone along a link if it is scheduled 

to travel on that link. (D) 

 Constraint (77) and (78) mandate the vehicle to visit the collection station where the 

drone is scheduled to return. (D) 

 Constraints (79) and (80) guarantee that if a drone is dispatched and collected from two 

different stations, the vehicle must visit the dispatching station before the collection 

station. (D) 
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 Constraint (81) states that a drone cannot be collected if it was not dispatched in the first 

place. (D) 

 Constraint (82) ensures that each customer that is reachable by drones from a visible 

station is served by one drone. (E) 

 Constraint (83) ensures that each node visited by a drone must be within the LS of the 

drone’s dispatching station. (E)  

 Constraint (84) ensures that each customer, not visible from any reachable station, is 

served by the vehicle. (E)  

 Finally, constraint (85) forces the binary and non-negativity conditions for the variables. 

 

3-4-3. Formulation Complexity 

Similar to the HVDRP, the IVDRP-LS consists of three main problem components: 

(1) constructing the vehicle route, (2) constructing the drone routes, and (3) ensuring 

correct integration of the two modes while satisfying the LS rule. The first and second 

components were proven in subsection 3.3.3 to be NP hard problems. The third component 

requires examining the combinations of the vehicle and the drone routing decisions, while 

ensuring not only the feasibility of the integrated solution with respect to station visitation 

sequencing but also ensuring that the drone routes obey the LS rule. This additional check 

has a combinatorial complexity considering the routing combinations for the vehicle and 

the drones in constructing integrated solutions.  

The LS rule could affect the complexity of the problem in two opposite directions. 

The complexity of the problem increases in cases where customers are obstructed but still 
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can be served by the drones as more complex routing decisions need to be made for the 

drones to stay in the pilot’s LS. On the other hand, as the problem includes more customers 

that cannot be reached by the drones, these customers are visited by the vehicle, thus 

reducing the computation effort for vehicle-drone routing integration. Nonetheless, in both 

cases, the IVDRP-LS is an NP hard problem, and hence obtaining provably optimal 

solutions using the mathematical formulation presented above is limited to small problem 

instances. Therefore, the next section presents efficient methodologies developed to 

provide good solutions within a practical running time to suit real-world applications. 

 

3-5. Summary 

This chapter presents a model for the hybrid vehicle-drone routing problem 

(HVDRP) for pick-up and delivery services and a model for the integrated vehicle-drone 

routing problem with the LS rule (IVDRP-LS) for pick-up and delivery services. Both 

problems formulated in the form of a mixed integer program which solves for the optimal 

vehicle and drone routes to serve all customers such that the total operational cost of the 

pick-up and delivery services is minimized. The HVDRP formulation captures the vehicle-

drone routing interactions and considers the drones’ operational constraints including flight 

range and load carrying capacity limitations. The IVDRP-LS formulation not only captures 

the vehicle-drone routing interactions and considers the drones’ operational constraints 

including flight range and load carrying capacity limitations but also satisfies the LS 

regulatory rule.



  

69 

 

Chapter 4  

 

SOLUTION METHEDOLEGY FOR THE BASIC MOTHERSHIP SYSTEM 

 

4-1. Introduction 

This chapter presents a novel solution methodology that extends the classic Clarke 

and Wright algorithm to solve the HVDRP (Clarke and Wright, 1964), namely the hybrid 

Clarke and Wright heuristic (HCWH). The heuristic takes into consideration the cost 

savings for both the vehicle and the drones while solving for the optimal vehicle route. 

Thus, it generates an efficient multimodal vehicle-drone network.  The performance of the 

HCWH is benchmarked against two other heuristics that are developed as a part of this 

research, which are the vehicle-driven heuristic (VDH) and the drone-driven heuristic 

(DDH).  This Chapter is organized as follows. Section 4-2 presents an overview of the 

heuristics developed in this chapter. Sections 4-3, 4-4, and 4-5 describe the three heuristics, 

HCWH, VDH, and the DDH, respectively. Section 4-6 gives an example to describe the 

performance of the three heuristics. Finally, Section 4-7 summarizes the chapter. 

 

4-2. Overview  

As mentioned earlier, the HVDRP defined above is an NP-hard problem. As such, 

finding the exact optimal solution in a reasonable execution time is limited only to small-
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size problems. In this section, we present three heuristics-based solution methodologies 

that are developed to find a near-optimal solution for the problem. The heuristics extend 

the Clarke and Wright (CW) algorithm to consider the multimodality of the integrated 

vehicle-drone routing problem (Clarke and Wright, 1964). The CW algorithm uses the 

saving matrix concept to rank the merging process of two sub-routes into one large route. 

For the two nodes 𝑖 and 𝑗 with distance 𝑙𝑖𝑗, the saving 𝜗𝑖𝑗 is calculated as follows: 

𝜗𝑖𝑗 =  𝑙𝑖0  +   𝑙0𝑗 −  𝑙𝑖𝑗  (86) 

 

where  𝑙𝑖0 and 𝑙0𝑗 are the distances from nodes 𝑖 and 𝑗 to the depot node 0, respectively. 

This concept can be applied to the HVDRP to construct the vehicle route and the drone 

routes. For the vehicle, nodes 𝑖 and 𝑗 represent dispatching and collection stations while 

node 0 represents the depot. For a drone route, nodes 𝑖 and 𝑗 represent customers. The 

depot(s) for the drone is the closest station to the first visited customer and the closest 

station to the last visited customer. For each customer 𝑖, the closest station 𝑠𝑖 is determined 

such that: 

 𝑙𝑖𝑠𝑖
= min(𝑙𝑖𝑠𝑘

 ∀ 𝑠𝑘 ∊ 𝑁𝑉)  (87) 

 

Thus, the saving expression for a drone becomes: 

𝜗𝑖𝑗 =  𝑙𝑖𝑠𝑖
 +   𝑙𝑠𝑗𝑗 −  𝑙𝑖𝑗 (88) 
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In Equation (88), 𝑠𝑖 and 𝑠𝑗 could be the same station if it is the closest to both 

customers, or two different stations if the closest station to customer 𝑖 is different from that 

of customer 𝑗. For example, consider the network in Figure 4-1, customers 16 and 17 are 

close to stations 4 and station 5, respectively. Thus, their saving is calculated as follows: 

𝜗16−17 =  𝑙16−4  +   𝑙5−17 −  𝑙16−17 = 2.83 + 2.83 − 1 = 4.66 miles        

On the other hand, customers 20 and 21 are both close to station 8 resulting in the following 

saving: 

 𝜗20−21 =  𝑙20−8  + 𝑙8−21 −  𝑙20−21 = 1.80 + 1.41 − 0.5 = 2.71 miles 

 

The following subsections describe the three heuristics developed for the HVDRP, 

namely the hybrid Clarke and Wright heuristic (HCWH), the vehicle-driven heuristic 

(VDH), and the drone-driven heuristic (DDH). The three heuristics consist of two route 

building procedures implemented in an iterative framework, one for the vehicle and one 

for the drones. For simplicity, we assume an identical set of drones in terms of their flight 

range, 𝑟, and load carrying capacity, 𝑤.  
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Figure 4-1: An example of a multimodal vehicle-drone network. 

The HCWH constructs vehicle route and drone routes such that the total network 

cost is minimized. It adopts a multimodal cost-reduction greedy strategy that combines 

vehicle and drone cost savings to construct efficient intermodal routes that minimize the 

total operation cost for the vehicle and drones. In the VDH, the vehicle route is first 

optimized ignoring the drone routes, resulting in a set of stations that can be used to 

dispatch and collect the drones. Given this set of stations, efficient drone routes are then 

determined. The process is iterated to eliminate stations of high cost from the vehicle route 

while ensuring solution feasibility. The DDH, on the other hand, first optimizes the drone 
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routes to determine the set of dispatching and collection stations. An efficient vehicle route 

is then constructed to visit these stations, taking into consideration that the dispatching 

station is visited before the collection station for each drone.  

As such, both the VDH and DDH implement single-mode cost-reduction greedy 

strategies with respect to the vehicle and the drones, respectively, while the HCWH 

implements a multimodal cost-reduction strategy that simultaneously minimizes the cost 

of both modes. Even though the VDH and the DDH provide platforms to benchmark the 

performance of the HCWH, these two heuristics could be valuable for certain problems. 

For example, in problem instances where the vehicle’s operation cost is much higher than 

that of the drone’s cost, the solution generated by the VDH, which gives high priority to 

the optimization of the vehicle route, is expected to be close to the optimal solution. On the 

other hand, for problem instances in which the drone’s operation cost is relatively high, the 

DDH is likely to generate near-optimal solutions, as it optimizes the routes of multiple 

drones over the route of one vehicle.      

 

4-3. The Hybrid Clarke and Wright Heuristic (HCWH)  

As mentioned above, the HCWH simultaneously optimizes the operation cost of 

both the vehicle and the drones to minimize the operation cost of the entire multimodal 

network. The savings associated with merging a pair of stations in the vehicle route is 

calculated such that it considers a) the saving in the vehicle’s routing cost and b) the saving 

in the drones’ routing cost. Thus, a term is added to the saving described in Equation (86). 

This additional term computes the maximum saving associated with serving two customers 
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through constructing a feasible drone route that starts and ends at these two stations. 

Including these two terms in the cost saving determines the two stations with the highest 

cost reduction for the multimodal network. It reduces the routing cost of the vehicle and 

allows the construction of an efficient drone route that starts and ends at these two stations. 

The drone savings term is not considered, in case no feasible drone route can be constructed 

between the two stations due to limitation of the drone’s flight range and/or its load 

carrying capacity. As illustrated in Figure 4-2, the integrated vehicle and drone savings can 

be calculated as follows:  

𝜗𝑖𝑗 = (𝑙𝑗0  +  𝑙0𝑖 −  𝑙𝑖𝑗) ∙ 𝑐𝑣 +  (𝑙𝑖𝑚 + 𝑙𝑛𝑗 − 𝑙𝑚𝑛) ∙ 𝑐𝑑 (89) 

 

where, nodes 𝑚 and 𝑛 are customer nodes. Stations 𝑖 and 𝑗 are the closest station to nodes 

𝑚 and 𝑛, respectively. Furthermore, 𝑐𝑣 and c𝑑 are the vehicle’s and drones’ operation cost 

per unit distance, respectively.  

 

 

 

 

 

𝐶𝑜𝑠𝑡 = (
𝑐𝑣 × (𝑙𝑖0 +  𝑙0i + 𝑙0𝑗 + 𝑙𝑗0) +  

𝑐𝑑  × (𝑙𝑗𝑛 + 𝑙𝑛𝑗+ 𝑙𝑚𝑖 + 𝑙𝑖𝑚)     
)  𝐶𝑜𝑠𝑡 2 = (

𝑐𝑣 × (𝑙𝑖0 +   𝑙𝑖𝑗 + 𝑙𝑗0) +  

𝑐𝑑  × (𝑙𝑛𝑗 + 𝑙𝑚𝑛 + 𝑙𝑚𝑖)    
) 

  𝑆𝑎𝑣𝑖𝑛𝑔  = 𝐶𝑜𝑠𝑡 1  + 𝐶𝑜𝑠𝑡 2 = (𝑙𝑗0  + 𝑙0𝑖 −  𝑙𝑖𝑗) ∙ 𝑐𝑣 +  (𝑙𝑖𝑚 + 𝑙𝑛𝑗 − 𝑙𝑚𝑛) ∙ 𝑐𝑑  

Figure 4-2: Illustration of cost saving for the hybrid vehicle-drone routing problem. 
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H1: The Hybrid Clarke and Wright Heuristic   

Input: Network topology and customer information  

Result: 𝑆𝑉 and 𝑆𝐷 

repeat 

Set the closest station for each customer considering the stations in 𝑁𝑉 

𝜓𝐷 = Calculate pair saving for customers  

𝜓 𝑉 = Calculate_Multimodel_Saving_For_Stations(𝜓
𝐷

, 𝑤, 𝑟) 

𝑆𝑉 = Call the CW algorithm using 𝑁𝑉 ∪ 𝑁𝐷 and 𝜓𝑉 as input 

𝑆𝐷 = Build_Drone_Routes (𝜓𝐷 , 𝑤, 𝑟)  

Check if reversed vehicle route reduces total cost  

𝑠𝑡𝑛= Determine_Station_with_Highest_Multimodel_Saving(𝑁𝑉 , 𝑁𝐷, 𝑆𝑉 , 𝑆𝐷 , 𝜓𝑉 , 𝑤, 𝑟) 

if (𝑠𝑡𝑛 ≠ Ø) then 

𝑁𝑉 = 𝑁𝑉 − 𝑠𝑡𝑛; 𝑆𝑉 =  Ø; 𝑆𝐷 =  Ø  

else 

Stop 

end if 

until (Stop) 

return 𝑆𝑉 and 𝑆𝐷 

Figure 4-3: Main steps of the hybrid Clarke and Wright heuristic. 

The main steps of the HCWH are described in Figure 4-3. The heuristic (H1) starts 

by determining the closest station for every customer using Equation (87). Then, the 

elements of the drone cost savings list, 𝜓𝐷, are calculated using Equation (88) and the 

resulting list is sorted in a descending order. The multimodal cost savings list, 𝜓𝑉, is 

calculated as described in heuristic (H2) and also sorted in a descending order. Next, 𝜓𝑉 is 

used as an input for the CW algorithm to construct an efficient vehicle route, 𝑆𝑉, 

considering all stations in the network and the depot, 𝑁𝑉 ∪ 𝑁𝐷. Assuming an identical set 

of drones, 𝜓𝐷 is used as an input for the CW algorithm to construct the drone routes given 

their load carrying capacity, 𝑤, and maximum flight range, 𝑟. In this step, the drones could 

be dispatched or collected from any station in the network. Heuristics (H3) and (H4), 

presented in Figure 4-5 and Figure 4-7 respectively, are used to construct the drone routes 
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for a given set of dispatching and collection stations. More details on this step are given 

hereafter.  

The heuristic then checks if reversing the vehicle route improves the total cost. In 

this step, the vehicle route is reversed and the corresponding drone routes are constructed. 

If the total cost decreases, 𝑆𝑉 and 𝑆𝐷 are updated. This step is important, as the order by 

which the stations are visited by the vehicle could affect the feasibility of some drone routes 

with respect to their load carrying capacity limitations. Next, the heuristic iteratively 

searches for expensive stations for possible elimination from the vehicle route. The station 

with the highest multimodal cost saving is determined. This station is eliminated after 

ensuring that all customers can be served using a feasible set of drone routes that do not 

start from or end at the eliminated station. An efficient vehicle route is again constructed 

using the CW algorithm after excluding this station. The corresponding drone routes are 

constructed considering the reduced set of stations. The procedure is repeated until no 

further stations can be eliminated from the vehicle route. A station cannot be eliminated if 

its elimination prevents the drones from reaching any of the customers or it results in an 

increase in the total routing cost. 

The calculation of the multimodal cost savings is presented in Figure 4-4. The 

heuristic starts by computing the vehicle’s cost saving using Equation (86). The savings 

are ranked in the descending ordered list, 𝜓𝑉. Next, the heuristic constructs initial drone 

routes, where each route includes one customer such that the drone is dispatched and 

collected from its nearest station. The heuristic then loops over the elements of the drone 

saving list, 𝜓𝐷. For each saving element in this list, 𝜗𝑚𝑛, customers 𝑚 and 𝑛 are merged 
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into one drone route considering the following two conditions: (a) drone’s maximum flight 

range and its load carrying capacity are not violated, and (b) the absolute difference 

between the number of collected and dispatched drones at the stations does not exceed the 

maximum number of drones allowed on the vehicle, 𝑀𝑎𝑥𝐷. For this drone route, if the 

origin station 𝑖 is different from the destination station 𝑗, then their saving element, 𝜗𝑖𝑗 is 

modified by adding to it the saving of the merged customers, 𝜗𝑚𝑛, as explained in Equation 

(89). The counter of the number of drone routes between station 𝑖 and station 𝑗, 𝑐𝑛𝑡𝑟𝑖𝑗, is 

incremented by one to ensure that condition (b) is satisfied.  

The heuristic also checks the saving for element 𝜗𝑗𝑖 by reversing the drone route 

from customer 𝑛 to costumer 𝑚. If the reverse drone route (i.e. the origin station 𝑖 becomes 

the destination and the destination station 𝑗 becomes the origin) does not violate the two 

conditions described above, then the saving element, 𝜗𝑗𝑖, is modified by adding to it the 

saving of the merged customers, 𝜗𝑛𝑚. The counter of the number of drone routes between 

these stations, 𝑐𝑛𝑡𝑟𝑗𝑖, is incremented. Finally, the elements in 𝜓𝑉 are sorted in a descending 

order to be used as an input for the construction of the vehicle route. 
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H2: Calculate_Multimodal_Saving_For_Stations 

Input: 𝜓
𝐷

, 𝑤, 𝑟 

Result: 𝜓
𝑉
 

𝜓
𝑉

= Calculate pair saving for stations  

𝑆𝐷 = Construct initial drone routes  

𝑐𝑛𝑡𝑟𝑖𝑗 = 0  ∀ 𝑖 ∊ 𝑁𝑉 , ∀ 𝑗 ∊ 𝑁𝑉  

while 𝜓
𝐷
 ≠ Ø do 

Starting from the first element, 𝜗𝑚𝑛, of 𝜓
𝐷

 

Get route1 that contains customer 𝑚, and route2  that contains customer 𝑛 from 𝑆𝐷 

if (route1 ≠ route2  & customers m and n are not intermediate nodes) then 

merged_drone_route = Merge customers m and n in a new route  

if (∑ (𝑝𝑤
𝑘

+ 𝑑𝑤𝑘)𝑘  ≤ 𝑤 & ∑ 𝑙𝑚́𝑛́ ≤ 𝑟𝑚́𝑛́  & 𝑐𝑛𝑡𝑟𝑖𝑗 ≤ 𝑀𝑎𝑥𝐷) then 

Remove route1 and route2 from 𝑆𝐷 and add merged_drone_route to 𝑆𝐷 

if (𝑖 ≠ 𝑗) then 

𝑐𝑛𝑡𝑟𝑖𝑗 =  𝑐𝑛𝑡𝑟𝑖𝑗 + 1; 𝜗𝑖𝑗 = 𝜗𝑖𝑗 ∙ 𝑐𝑣 + 𝜗𝑚𝑛 ∙ 𝑐𝑑; overwrite 𝜗𝑖𝑗 in 𝜓
𝑉
    

reversed_merged_drone_route = Reverse merged_drone_route 

if (∑ (𝑝𝑤
𝑘́

+ 𝑑𝑤𝑘́)𝑘́  ≤ 𝑤 & ∑ 𝑙𝑛́𝑚́ ≤ 𝑟𝑛́𝑚́  & 𝑐𝑛𝑡𝑟𝑗𝑖 ≤ 𝑀𝑎𝑥𝐷) then 

𝑐𝑛𝑡𝑟𝑗𝑖 =  𝑐𝑛𝑡𝑟𝑗𝑖 + 1; 𝜗𝑗𝑖 = 𝜗𝑗𝑖 ∙ 𝑐𝑣 + 𝜗𝑛𝑚 ∙ 𝑐𝑑; overwrite 𝜗𝑗𝑖 in 𝜓
𝑉
    

end if  

end if  

end if 

end if 

Eliminate 𝜗𝑚𝑛 from 𝜓
𝐷
 

End 

Sort 𝜓
𝑉
 in descending order 

return  𝜓
𝑉
 

Figure 4-4: Procedure for calculating multimodal cost savings for stations. 

Building efficient drone routes is slightly more challenging than building the 

vehicle route. Similar to the vehicle routing step, the CW algorithm is used to build the 

drone routes. However, this step requires implementing two additional constraints to ensure 

the feasibility of merging two customers into one drone route. The first constraint ensures 

that the drone’s maximum flight range and load carrying capacity are not violated. The 

second constraint ensures the feasibility of the drone routes with respect to the vehicle 
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route. This constraint involves three operation rules. First, the absolute difference between 

the number of collected and dispatched drones at any station does not exceed the maximum 

number of drones allowed on the vehicle. Second, the drone’s dispatching station must be 

visited by the vehicle before visiting the collection station. Finally, at every station, the 

vehicle must have at least one drone to serve customers around that station.  

 

H3: Build_Drone_Routes 

Input: 𝜓𝐷 , 𝑤, 𝑟 

Result: 𝑆𝐷 

𝑆𝐷 = Construct initial drone routes 

while 𝜓𝐷 ≠ Ø do 

Starting from the first element, 𝜗𝑖𝑗, of 𝜓𝐷 

Get route1 that contains customer 𝑖, and route2  that contains customer 𝑗 from 𝑆𝐷 

if (route1 ≠ route2 & customers 𝑖 and 𝑗 are not intermediate nodes) then  

merged_route = Merge customers 𝑖 and 𝑗 in a new route  

if (∑ (𝑝𝑤𝑘 + 𝑑𝑤𝑘)𝑘  ≤ 𝑤 & ∑ 𝑙𝑚𝑛 ≤ 𝑟𝑚𝑛  &  

merged_route is feasible from the vehicle’s perspective) then 

if (the nearest station of any customer in merged_route is neither 𝑂 nor 𝐷) then 

merged_route = Improve_Drone_Route(merged_route) 

end if 

Remove route1 and route2 from 𝑆𝐷  

Add merged_route to 𝑆𝐷 

end if 

end if 

Eliminate  𝜗𝑖𝑗 from 𝜓𝐷 

End 

return  𝑆𝐷 

Figure 4-5: Procedure for building the drone routes. 

To illustrate these rules, consider the network example in Figure 4-6, which shows 

the vehicle route and the routes of two drones mounted on this vehicle. Figure 4-6(a) 

provides a case in which the first rule is violated. At station 4, the absolute difference 

between the number of collected and dispatched drones is four, which is greater than the 
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number of drones carried by the vehicle. Figure 4-6(b) shows a case that violates the second 

rule. Because the vehicle visits station 2 before station 5, the drone route that starts at 

station 5 and ends at station 2 is infeasible. Figure 4-6(c) gives an example of the violation 

of the third rule, since the vehicle arrives at station 8 with no drones onboard, which makes 

it infeasible to serve customers at nodes 20 and 21.  

 

 
  

(a) Rule 1 Violation (b)  Rule 2 Violation (c) Rule 3 Violation 

Figure 4-6: Example of a multimodal vehicle-drone network with operation violations. 

After completing the step of merging two customers in a drone route, the heuristic 

checks if the drone route could be further improved by re-ordering the customers along the 

route. As shown in Figure 4-7, the heuristic (H4) checks if the nearest station to any of the 

customers in set 𝑁՛𝐶 served in that route, as determined in Equation (87), is neither the 

origin, 𝑂, nor the destination, 𝐷, of the route. If a customer has another station as its nearest 

station, the nearest station of that customer is over-written to be the closest of the origin or 
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the destination of the route. The cost saving matrix, 𝜓𝑁𝑒𝑤, for the customers served in the 

route is recalculated after over-writing their nearest station. Then, the route is rebuilt based 

on the new saving matrix resulting in a more efficient sequence of customer nodes. The 

new route is checked against the drone’s flight range and load carrying capacity limits. If 

the constraint is satisfied, the algorithm returns the modified route. Otherwise, it maintains 

the original route as the most efficient route. 

 

H4: Improve_Drone_Route 

Input: route 

Result: improved_route 

for all (j ∊ 𝑁՛𝑐) do 

if (𝑠𝑗  is neither 𝑂 nor 𝐷) then 

𝑠𝑗 = {
𝑂 𝑖𝑓 (𝑙𝑂𝑗 ≤ 𝑙𝐷𝑗)

𝐷    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
  

end if 

end for 

Recalculate 𝜓𝑁𝑒𝑤  based on the new closest station for customers in 𝑁՛𝐶  

improved_route = Rebuild the route based on the new saving matrix 𝜓𝑁𝑒𝑤  

if (∑ (𝑝𝑤𝑘 + 𝑑𝑤𝑘)𝑘  ≤  𝑤 & ∑ 𝑙𝑚𝑛 ≤ 𝑟𝑚𝑛 ) then 

return improved_route 

end if  

return route 

Figure 4-7: Procedure for improving the drone route. 

As mentioned above, at each iteration, a search procedure is implemented to 

determine the station along the vehicle route with the highest cost saving. Following the 

steps of heuristic (H5) presented in Figure 4-8, the procedure applies a simple linear search 

to determine the station, 𝑠𝑡𝑛, with the highest cost saving, 𝜗𝑠𝑡𝑛. The cost calculation in this 

step requires calculating the vehicle routing cost savings and the drone extra cost associated 
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with removing this station. A feasibility check is implemented to ensure that customers 

close to a potentially eliminated station are reachable by a drone from any of the remaining 

stations, 𝑁՛𝑉, in the vehicle route. For example, consider the network presented in Figure 

4-1, assuming the drone’s maximum flight range is 7.0 miles, removing station 6 is 

infeasible as customer 19 cannot be served from station 7. A round trip of 7.2 miles to 

reach customer 19 from station 7 violates the drone’s maximum flight range. However, 

removing station 1 is feasible as customers 9 can still be served from station 4. The length 

of the round trip to serve customer 9 from station 4 is 6.3 miles. 

 

H5: Determine_Station_with_Highest_Multimodel_Saving 

Input: 𝑁𝑉 , 𝑁𝐷 , 𝑆𝑉 , 𝑆𝐷 , 𝜓𝑉 , 𝑤, 𝑟 

Result: 𝑠𝑡𝑛 

𝑁՛𝑉 = 𝑁𝑉  

for all (j ∊ 𝑁𝑉) do 

Remove Station  j from 𝑁՛𝑉 

if (customers close to station j are reachable by drone from any station in 𝑁՛𝑉) then  

Set the closest station for each customer considering the stations in 𝑁՛𝑉 

𝜓՛𝐷 = Calculate pair saving for customers  

𝑆՛𝑉 = Call the CW algorithm using 𝑁՛𝑉 ∪ 𝑁𝐷 and 𝜓𝑉 as input 

𝑆՛𝐷 = Build_Drone_Routes (𝜓՛𝐷 , 𝑤, 𝑟)  

𝜗𝑗= cost (𝑆𝑉) – cost (𝑆՛𝑉)  + cost (𝑆𝐷) – cost (𝑆՛𝐷) 

if (𝜗𝑗 > 0) then 

Add the saving element 𝜗𝑗 to 𝜓 

end if 

𝑆՛𝑉 = Ø; 𝑆՛𝐷 = Ø; 𝜓՛𝐷  = Ø 

end if 

𝑁՛𝑉 = 𝑁𝑉  

end for 

Sort the element in 𝜓 in a descending order 

𝑠𝑡𝑛 = station corresponding to the first element, 𝜗𝑠𝑡𝑛, in the sorted list 𝜓 

return  𝑠𝑡𝑛 

Figure 4-8: Procedure for determining the station with the highest cost along the vehicle 

route. 
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4-4. The Vehicle-Driven Heuristic (VDH) 

  The steps of the VDH are similar to the ones described in Figure 4-3, with the 

exception of the method used to calculate the cost savings for routing the vehicle. Here, 

the cost savings for the vehicle do not consider the drone cost savings. Thus, the VDH 

gives priority to reducing the routing cost of the vehicle over that of the drones. Similar to 

the HCWH, the heuristic starts by generating an initial vehicle route in which the vehicle 

visits all stations in the network. In this step, the CW algorithm is used to generate an 

efficient route for the vehicle using the vehicle cost saving matrix calculated using 

Equation (86). Drone routes are then constructed assuming that the drones can be 

dispatched and collected from any station in the network. Here, the drone savings are 

calculated using Equation (88). One should note that this heuristic does not include the step 

of checking if reversing the vehicle route will reduce the total cost as it focuses on reducing 

the vehicle routing cost.  

  Next, as the heuristic adopts a greedy strategy with respect to the vehicle routing 

cost, it iteratively searches for stations which are expensive for the vehicle to visit while 

ignoring any extra drone routing cost associated with removing this station. The station 

with the highest vehicle cost saving is eliminated after ensuring that all customers can be 

visited from the remaining stations. The vehicle route and the drone routes are 

reconstructed considering the reduced set of stations. The process is iterated until no other 

stations can be eliminated from the vehicle route. 
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4-5. The Drone-Driven Heuristic (DDH) 

Unlike the VDH, the DDH gives priority to reducing the routing cost of the drones 

over the vehicle. Hence, it constructs the drone routes before the vehicle route. The main 

steps of the DDH are presented in Figure 4-9. The heuristic (H6) incrementally constructs 

drone routes while ensuring that the resulting set of drone dispatching and collection 

stations can be served by one vehicle. The CW algorithm using the drone cost saving matrix 

calculated with Equation (88) is used to construct the drone routes. The newly generated 

drone route is added to the existing set of drone routes resulting in an updated set of drone 

dispatching and collection stations. The CW algorithm is then activated to generate an 

efficient vehicle route. If the vehicle routing problem becomes infeasible, this new drone 

route is ignored and the next most efficient drone route is generated instead. The process 

continues until all customers are served and a feasible vehicle route is constructed to 

dispatch and collect all drones.  

Similar to the HCWH, building a feasible drone route requires satisfying the three 

operation rules described in Figure 4-6. However, in the DDH, only the first rule is 

considered as part of the drone route building procedure. The other two rules are moved to 

the vehicle route building procedure. In other words, the first rule, which ensures that the 

absolute difference between the number of drones dispatched and number of drones 

collected at any station is less than the maximum number of drones mounted on the vehicle, 

is mandated while constructing the drone routes. The second and the third rules are 

enforced while building the vehicle route, which require visiting the dispatching stations 

before the collection stations and ensuring that at any station there is at least one drone to 

serve nearby customers.  
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Figure 4- 9: Main steps of the drone-driven heuristic. 

4-6. Example to Demonstrate the Performance of the HCWH, VDH and DDH 

The problem given in Figure 4-1 is solved using these three heuristics. The obtained 

solutions are presented in Figure 4-10, which illustrates the difference in the solutions as 

they adopt different strategies for routing cost optimization. The HCWH provides the 

solution with the least total routing cost. A total cost of $138.81 is recorded for the HCWH 

solution compared to $140.66 and $157.30 for the VDH solution and the DDH solution, 

respectively. As the VDH adopts a vehicle-based cost reduction strategy, it gives a solution 

in which station 1 is eliminated from the vehicle route. The HCWH solution kept this 

station as part of the vehicle route, as its elimination causes an increase in the multimodal 

cost. Finally, while the DDH significantly reduces the drone routing cost, the 

  

 

H6: The Drone-Driven Heuristic 

Input: Network topology and customers information 

Result: 𝑆𝑉 and 𝑆𝐷 

Set the closest station for each customer considering the stations in 𝑁𝑉  

𝜓𝐷 = Calculate pair saving for customers  

𝜓𝑉 = Calculate pair saving for stations 

𝑆𝐷 = Build_Drone_Routes (𝜓𝐷 , 𝑤, 𝑟)  

𝑆𝑉 = Construct initial vehicle routes  

while 𝜓𝑉 ≠ Ø do 

Starting from the first element, 𝜗𝑖𝑗, of 𝜓𝑉 

Get route1 that contains station  𝑖, and  route2 that contains station 𝑗 from 𝑆𝑉   

if (route1 ≠ route2  & stations 𝑖 and j are not intermediate nodes) then 

merged_vehicle_route = Merge station 𝑖 and station 𝑗 in a new route  

if (merged_vehicle_route is feasible from the drones’ perspective) then 

Remove route1 and route2 from 𝑆𝑉 

Add  merged_vehicle_route to 𝑆𝑉 

end if 

end if 

Eliminate  𝜗𝑖𝑗 from 𝜓𝑉 

End 

return 𝑆𝑉 and 𝑆𝐷 
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corresponding vehicle routing cost is the highest among all three heuristics, causing the 

total cost to be the highest. 

 

HCWH Solution VDH Solution DDH Solution 

 
 

 

Vehicle Cost   = $88.28 

Drone Cost     = $50.53 

Total Cost       = $138.81 
 

Vehicle Cost   = $88.28 

Drone Cost     = $52.38 

Total Cost       = $140.66 
 

Vehicle Cost   = $112.36 

Drone Cost     = $44.94 

Total Cost       = $157.30 
 

Figure 4-10: Example to demonstrate the performance of the HCWH, VDH and DDH. 

4-7. Summary 

This chapter covers the heuristics developed to solve the basic mothership system. 

They can be used to obtain a good solution for large problem instances such as those 

anticipated in real-world applications. A novel solution methodology that extends the 

classic Clarke and Wright algorithm is introduced, named the hybrid Clarke and Wright 

heuristic (HCWH) (Clarke and Wright, 1964). The HCWH considers the cost savings for 

both the vehicle and the drones while solving for the optimal vehicle route, thus generating 

an efficient multimodal vehicle-drone network.  The performance of the HCWH is 

benchmarked against two other heuristics that are developed as part of this research, which 



 

87 

 

are the vehicle-driven heuristic (VDH) and the drone-driven heuristic (DDH). In the VDH, 

the optimal vehicle route is obtained first and then the drones are routed, assuming a fixed 

vehicle route. A reverse approach is considered for the DDH: given the optimal drone 

routes, the vehicle is routed to enable the dispatching and collection of the drones.   
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Chapter 5  

 

SOLUTION METHEDOLEGY FOR THE MOTHERSHIP SYSTEM 

CONSIDERING THE LINE OF SIGHT RULE 

 

5-1. Introduction  

This chapter presents a novel solution methodology that extends the hybrid Clarke 

and Wright heuristic (HCWH) presented in Chapter 4 namely the Multimodal-Based 

Heuristic (MBH) to satisfy the LS constraints. The MBH iterates between two main 

procedures for constructing the drone routes and the vehicle route, respectively, while 

sharing information on routing cost and routing feasibility of both modes. The performance 

of the MBH is benchmarked against another heuristic that is developed as a part of this 

research, named the Single-Mode-Based Heuristic (SBH). The SBH is a light version of 

the MBH as it adopts a vehicle-driven approach which aims to prioritize the vehicle cost 

savings over the drone cost savings. This Chapter is organized as follows. Section 5-2 

presents an overview of the heuristics developed in this chapter. Sections 5-3 and 5-4 

describe the MBH and SBH, respectively. Finally, Section 5-5 summarizes this chapter.  
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5-2. Overview  

This section presents an overview of the heuristic-based solution methodology 

developed to determine a near optimal solution for the IVDRP-LS described in Chapter 3. 

Figure 5-1 illustrates an example of the routes of the vehicle and two drones constructed to 

serve two customers with and without considering the LS constraints. As shown in the 

figure, the vehicle is used to serve one of the customers (𝐶2) as this customer cannot be 

visited by any of the drones. A drone cannot be dispatched from neither station 𝑠1 or 𝑠2 to 

customer 𝐶2 due to flying range limitation and LS obstruction, respectively. In this case, 

the CW distance (cost) saving formula for the vehicle is calculated as given in Equation 

(86), where  𝑙𝑖0 and 𝑙0𝑗 are the distances from nodes 𝑖 and 𝑗 to the depot node 0, 

respectively. Nodes 𝑖 and 𝑗 represent the dispatching and collection stations as well as any 

customer node that cannot be reached by a drone from any station.  

 

 

  
Without LS consideration With LS consideration 

Figure 5-1: Illustration of the solution with and without LS consideration. 
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The calculation of drone savings is more complicated than the vehicle savings. 

Figure 5-2 illustrates three different cases that should be considered while calculating the 

drone savings. In Case A, the customer is within the LS of its closest station. In Cases B 

and C, an obstacle exists between the customer and its closest station. In Case B, the 

customer can be served from another station (𝑠2). Case C assumes that the drone’s battery 

is not sufficient to return to the dispatching station 𝑠2. Instead, it returns to station 𝑠1 under 

the assumption that the collection station 𝑠1 is within the LS of the dispatching station 𝑠2. 

In order to calculate the drone savings, we first determine the closest station 𝑠𝑖 with clear 

LS for each customer 𝑖 such that: 

 𝑙𝑖𝑠𝑖
= min(𝑙𝑖𝑠𝑘

 ∀ 𝑠𝑘 ∊ 𝑁𝑉  | 𝑎𝑖𝑠𝑘
= 1)  (90) 

Then, the saving expression for a drone, if both customers 𝑖 and 𝑗 are served with a tour 

that starts and ends from the same station can be calculated as follows: 

 

 

 

   

Case A Case B Case C 

Figure 5-2: Illustration of the drone’s initial solution. 
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Merge 1 

 

 

Merge 2 

  
Figure 5-3: Illustration of merging two drone routes serving two customers from different 

stations. 

Consider the case in which customer 𝑖 is served by a drone that is dispatched and 

collected at two different stations (i.e., dispatching station 𝑠𝑖 and collection station 𝑠՛𝑖 as 

shown in Figure 5-3), and another customer 𝑗 is served by another drone that is dispatched 

and collected at the same station 𝑠𝑗. Constructing a new tour that merges customers 𝑖 and 𝑗 

could occur through either 𝑠𝑖 or 𝑠՛𝑖. As illustrated in Figure 5-3, Merge 1 constructs a tour 

that starts at dispatching station 𝑠𝑖, while Merge 2 constructs a tour that ends at collection 

station 𝑠՛𝑖. As the structure of the merge is not known a priori, we use the average distance 

of  𝑙𝑖𝑠𝑖
 and 𝑙𝑖𝑠՛𝑖 as an approximation of the saving value associated with merging customers 

𝑖 and 𝑗 in one tour. Hence, an approximated value for the drone saving can be calculated 

as follows.  
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𝜗𝑖𝑗 =  
 𝑙𝑖𝑠𝑖

+  𝑙𝑖𝑠՛𝑖

2
+   𝑙𝑠𝑗𝑗 −  𝑙𝑖𝑗 (91) 

If both customers 𝑖 and 𝑗 are served by tours that start and end at different stations, 

the average saving associated with merging these two customers can be calculated as 

follows.  

𝜗𝑖𝑗 =  
 𝑙𝑖𝑠𝑖

+  𝑙𝑖𝑠՛𝑖

2
+

 𝑙𝑗𝑠𝑗
+  𝑙𝑗𝑠՛𝑗

2
−  𝑙𝑖𝑗 (92) 

Two heuristics are developed to solve the IVDRP-LS. The heuristics use the saving 

formulas described above to calculate the vehicle and drone savings. To simplify the 

presentation of these heuristics, we assume a fleet of identical drones in terms of flight 

range, 𝑟, and load-carrying capacity, 𝑤. The first heuristic, named the Multimodal-Based 

Heuristic (MBH), implements a multimodal cost-reduction greedy strategy that combines 

vehicle and drone cost savings. It iteratively eliminates stations of high cost to visit while 

ensuring solution feasibility. The heuristic implements a solution improvement procedure 

by repetitively randomizing the savings lists of both the vehicle and the drones until no 

better solution can be obtained after a pre-defined number of iterations. The second 

heuristic, named the Single-Mode-Based Heuristic (SBH), is a light version of the MBH 

as it adopts a vehicle-driven approach which aims to prioritize the vehicle cost savings over 

the drone cost savings. The following sections describe these two heuristics in more details. 
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5-3. Multimodal-Based Heuristic (MBH) 

Figure 5-4 describes the main steps of the MBH. The MBH is a construction 

heuristic that iterates between two main procedures for constructing the drone routes and 

the vehicle route, respectively, while sharing information on routing cost and routing 

feasibility of both modes. The heuristic starts by determining the set of customers,  𝑁̀𝑉, that 

cannot be served by a drone due to LS obstruction and/or due to limitation of the drones’ 

flight ranges. The heuristic also determines the set of customers,  𝑁̀𝐶, that can only be 

served by a drone that is dispatched and collected at two different stations due to the drones’ 

flight range limitation, as illustrated in Figure 5-2 (Case C). Next, the heuristic iteratively 

executes a block of seven steps to generate an efficient vehicle route, ℛ𝑉 and its associated 

drone routes, ℛ𝐷. First, the closest station for each customer is determined such that the 

LS is not obstructed, as explained in Equation (90). Second, the cost savings list for routing 

the vehicle, 𝜓𝑉, is calculated as given in Equation (86). Third, the heuristic checks if any 

of the customers need to be served by a drone tour that stars and ends at two different 

stations due to LS obstruction and/or limitation of drones’ flight ranges.  

If 𝑁̀𝐶 is not empty, the initial set of feasible drone routes, ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙, are constructed 

for all customers in 𝑁̀𝐶. Each initial drone route consists of three nodes representing a 

dispatching station, the customer and a collection station that is different from the 

dispatching station. More details of this step are given in Heuristic (H1). Given ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 

the heuristic constructs a vehicle route, ℛ𝑉, that enables at least one drone route (i.e., the 

vehicle stops to dispatch and collect the drone serving that route) for every customer in 𝑁̀𝐶. 

Heuristics (H2) and (H3) provide the details of constructing the vehicle route in this step. 
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If ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 contains multiple drone routes serving any customer in 𝑁̀𝐶, the least expensive 

route is determined and ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is updated to eliminate all expensive ones. If 𝑁̀𝐶 is empty, 

the conventional CW algorithm is used to construct an efficient vehicle route, ℛ𝑉.  

 

Heuristic H: The MBH  

Input: Network topology and customer information  

Result: ℛ𝑉 and ℛ𝐷 

𝑁̀𝑉 ← Determine the set of customers that cannot be served by drones due to LS obstruction and/or due 

to the drones’ flight range limitation 

𝑁̀𝐶 ← Determine the set of customers that have to be served by drones from two different stations due to 

the drones’ flight range limitation 

repeat 

Determine the closest visible station for each customer considering the stations in 𝑁𝑉 

𝜓𝑉 ← Calculate pair vehicle savings for 𝑁𝑉 ∪ 𝑁̀𝑉 

if (𝑁̀𝐶 ≠ Ø) then 

ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← Determine_Initial_Feasible_Drone_Routes(𝑁𝑉 , 𝑁̀𝐶 , 𝑟) 

ℛ𝑉 ← Construct_Feasible_Vehicle_Route(𝜓𝑉 , 𝑁𝑉 ∪ 𝑁̀𝑉 ∪ 𝑁𝐷, 𝑁̀𝐶 , ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← Update ℛ𝐷

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 by eliminating all expensive initial drone routes for each customer in 𝑁̀𝐶  

else 

ℛ𝑉 ← Call the CW algorithm using 𝑁𝑉 ∪ 𝑁̀𝑉 ∪ 𝑁𝐷 and 𝜓𝑉 as input 

end if 

𝜓𝐷 ← Calculate pair savings for customers using the initial drone route, ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , as an input  

ℛ𝑉 ← 

Improve_Route_Through_Considering_The_Multimodal_Savings_For_Stations(ℛ𝑉 , 𝜓𝑉 , 𝜓𝐷 , 𝑤, 𝑟) 

ℛ𝐷 ← Call the CW algorithm using 𝑁𝐶 , 𝜓𝐷 , 𝑤, and 𝑟 as input to build drone routes that satisfy ℛ𝑉 

𝑠𝑡𝑛 ← Determine station with the highest multimodal savings 

if (𝑠𝑡𝑛 ≠ Ø) then 

𝑁𝑉 ← 𝑁𝑉 − 𝑠𝑡𝑛; ℛ𝑉 ←  Ø; ℛ𝐷 ←  Ø  

else 

Stop 

end if 

until (Stop) 

Improve_Solution_Through_Vehicle_and_Drones_Savings_Lists_Randomization(

ℛ𝑉 , ℛ𝐷 , 𝜓𝑉 , 𝜓𝐷 , 𝑤, 𝑟, 𝑁̀𝐶) 

return ℛ𝑉 and ℛ𝐷 

Figure 5-4: Main steps of the MBH. 
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In the fourth step of this iterative block, the drone cost savings list ordered in a 

descending order, 𝜓𝐷, is calculated using Equations (88), (91), and (92). Fifth, the heuristic 

improves the vehicle route through considering the multimodal savings of the stations. The 

details of this step are given in Heuristic (H4). Sixth, using the drone savings list 𝜓𝐷 , the 

CW algorithm is again activated to construct efficient drone routes, ℛ𝐷, considering the 

vehicle route obtained in the previous step. These drone routes are constructed while 

satisfying the drones’ maximum flight range and load-carrying capacity, respectively. The 

last step in this block determines the station with the highest multimodal cost savings and 

checks if this station can be eliminated from the vehicle route. A station is eliminated from 

𝑁𝑉 only if its elimination does not cause a customer to be unreachable by a drone nor cause 

an increase in the total routing cost. The closest station that does not violate the LS 

constraint is again determined for each customer considering the reduced set of stations. 

The vehicle route and corresponding drone routes are reconstructed. The procedure is 

repeated until no further stations can be eliminated from the vehicle route. Finally, a post-

processing step is implemented to check if any reduction in the total cost can be obtained 

by randomizing the savings list for both the vehicle and the drones. This step is described 

in more details in Heuristic (H5). 

Heuristic (H1) is used to build the feasible set of initial drone routes for every 

customer 𝑖 ∊ 𝑁̀𝐶. All stations in 𝑁𝑉 are scanned to check their eligibility as dispatching 

stations of a drone serving customer 𝑖. A station 𝑗 is marked as a feasible dispatching station 

if the LS to customer 𝑖 is unobstructed (i.e., 𝑎𝑗𝑖=1) and the distance from station 𝑗 to 

customer 𝑖 is less than the drone’s maximum flight range (i.e., 𝑙𝑗𝑖 < 𝑟). All stations in 𝑁𝑉 
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are scanned again to determine eligible collecting stations. If station 𝑘 is within the 

dispatching station’s LS (i.e., 𝑎𝑗𝑘=1) and the length of the route 𝑗 − 𝑖 − 𝑘 is less than the 

drone’s maximum flight range (i.e. (𝑙𝑗𝑖 +𝑙𝑖𝑘) ≤ 𝑟), this route is added to the set of all 

feasible drone routes, ℧𝑖, for customer 𝑖.  The set ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 includes the sets of initial feasible 

drone routes for all customers in 𝑁̀𝐶.  

 

H1: Determine_Initial_Feasible_Drone_Routes 

Input: 𝑁𝑉 , 𝑁̀𝐶 , 𝑟 

Result: ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 

for all (𝑖 ∊ 𝑁̀𝐶) do 

for all (𝑗 ∊ 𝑁𝑉) do 

if (𝑎𝑗𝑖=1 & 𝑙𝑗𝑖 ≤ 𝑟) then 

for all (𝑘 ∊ 𝑁𝑉) do  

if (𝑎𝑗𝑘=1 & (𝑙𝑗𝑖 +𝑙𝑖𝑘) ≤ 𝑟) then 

route ← {𝑗 − 𝑖 − 𝑘} 

Add route to ℧𝑖  

end if 

end for 

end if 

end for 

Add ℧𝑖  to ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 

end for 

return  ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 

Figure 5-5: Construction of initial drone routes that start and end at different stations. 

Obtaining the initial feasible drone routes, ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙, Heuristic (H2) is activated to 

construct a vehicle route that enables at least one feasible drone route for every customer 𝑖 

∊ 𝑁̀𝐶. H2 starts by constructing a set of initial vehicle routes, ℛ𝑉, where each route, starting 

and ending at the depot, includes one node. Next, the heuristic loops over the elements of 

the vehicle savings list, 𝜓𝑉. For each saving element 𝜗𝑘𝑗, nodes 𝑘 and 𝑗 are merged into 
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one vehicle route, route, following CW procedure after checking the feasibility of route 

with respect to the constructed drone routes for customers in 𝑁̀𝐶.  

 

H2: Construct_Feasible_Vehicle_Route 

Input: 𝜓𝑉 , 𝑁𝑉 ∪ 𝑁̀𝑉 ∪ 𝑁𝐷, 𝑁̀𝐶 , ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

Result: ℛ𝑉 

ℛ𝑉 ← Construct initial vehicle routes  

while 𝜓𝑉 ≠ Ø do 

Starting from the first element 𝜗𝑘𝑗 in 𝜓𝑉 

Get route1 that contains node 𝑘, and route2 that contains node 𝑗 from ℛ𝑉   

if (route1 ≠ route2 & nodes 𝑘 and j are not intermediate nodes) then 

route ← Merge nodes 𝑘 and 𝑗 in a new route  

if (Checking_Vehicle_Route_Feasibility_from_Drone_Perspective(route, ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙)=true) then 

Remove route1 and route2 from ℛ𝑉 and add route to ℛ𝑉 

update ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  to remove infeasible drone routes not enabled by ℛ𝑉 

end if 

end if 

Eliminate 𝜗𝑘𝑗 from 𝜓𝑉  

End 

return  ℛ𝑉 

Figure 5-6: Construction of a feasible vehicle route. 

H3: Checking_Route_Feasibility_from_Drone_Perspective  

Input: route, ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

for all (℧𝑖  ∊ ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) do 

drone_route ← get drone_route from ℧𝑖  

if (route violates drone_route) then 

remove drone_route from ℧𝑖  

end if 

if (|℧𝑖| = 0) then  

return false 

end if 

end for 

return 𝑡𝑟𝑢𝑒 

Figure 5-7: Checking vehicle route feasibility with respect to drone routes. 
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The steps used to perform this feasibility check are given in Heuristic (H3). For 

each possible merge in the vehicle route, H3 scans the initial drone routes ℧𝑖 for each 

customer 𝑖 ∊ 𝑁̀𝐶. If for any customer 𝑖 ∊ 𝑁̀𝐶, route does not enable at least one drone route 

in ℧𝑖, route is marked as infeasible, not allowing the merge of route1 and route2. The set 

of drone routes, ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙, is updated to eliminate any drone routes not enabled by route. 

As mentioned earlier, the MBH includes a procedure to improve the vehicle route 

through considering the multimodal cost savings. The procedure uses information on the 

drone routes to improve the vehicle route. The details of this procedure are presented in 

Heuristic (H4). H4 starts by calculating the multimodal savings for the stations. It loops 

over the elements of the drone savings list, 𝜓𝐷. For each saving element 𝜗𝑚𝑛 in 𝜓𝐷, 

customers 𝑚 and 𝑛 are merged into one drone route, drone_route, considering the 

following two conditions: (a) the drone’s maximum flight range and its load-carrying 

capacity are not violated, and (b) the absolute difference between the number of collected 

and dispatched drones at each station does not exceed the maximum number of drones, 𝜃, 

allowed on the vehicle. If the dispatching station 𝑖 of drone_route is different from its 

collection station 𝑗, their saving element, 𝜗𝑖𝑗, is updated to 𝜗𝑖𝑗 ∙ 𝑐𝑣 + 𝜗𝑚𝑛 ∙ 𝑐𝑑. In addition, 

the counter of the number of drone routes, 𝑐𝑛𝑡𝑟𝑖𝑗, between station pair 𝑖𝑗 is incremented. 

The counter 𝑐𝑛𝑡𝑟𝑖𝑗 is tracked to ensure that condition (b) above is not violated.  

The reverse drone route from customer 𝑛 to costumer 𝑚 is also considered. If the 

reversed drone route (i.e. the dispatching station 𝑖 becomes the collection station, and the 

collection station 𝑗 becomes the dispatching station) does not violate the two conditions 

mentioned above, the corresponding saving element and the number of drone routes are 



 

99 

 

updated as follows: 𝜗𝑗𝑖 = 𝜗𝑗𝑖 ∙ 𝑐𝑣 + 𝜗𝑛𝑚 ∙ 𝑐𝑑 and 𝑐𝑛𝑡𝑟𝑗𝑖 = 𝑐𝑛𝑡𝑟𝑗𝑖 + 1. Finally, the elements 

in 𝜓𝑉 are sorted in a descending order and used as an input for constructing a new vehicle 

route, ℛ՛𝑉. If the cost of ℛ՛𝑉 is less than that of ℛ𝑉, ℛ՛𝑉 replaces ℛ𝑉.      

 

H4: Improve_Vehicle_Route_Through_Considering_The_Multimodal_Savings_For_Stations 

Input: ℛ𝑉 , 𝜓𝑉 , 𝜓𝐷 , 𝑤, 𝑟 

Results: ℛ𝑉 

𝑐𝑛𝑡𝑟𝑖𝑗 ← 0  ∀ 𝑖𝑗 ∊ 𝑁𝑉  

ℛ՛𝐷 ← construct initial drone routes  

while 𝜓𝐷 ≠ Ø do 

Starting from the first element 𝜗𝑚𝑛 in 𝜓𝐷 

Get route1 that contains customer 𝑚, and route2 that contains customer 𝑛 from ℛ՛𝐷  

if (route1 ≠ route2 & customers m and n are not intermediate nodes) then 

drone_route ← Merge customers m and n in new route with origin 𝑖 and destination 𝑗  

if (∑ (𝑝𝑤𝑘 + 𝑑𝑤𝑘)𝑘  ≤ 𝑤 & ∑ 𝑙𝑚́𝑛́ ≤ 𝑟𝑚́𝑛́  & 𝑐𝑛𝑡𝑟𝑖𝑗  ≤ 𝜃 & ∑ 𝑎𝑖𝑚́𝑚́ =1) then 

Remove route1 and route2 from ℛ՛𝐷  and add drone_route to ℛ՛𝐷  

if (𝑖 ≠ 𝑗) then 

𝑐𝑛𝑡𝑟𝑖𝑗 ←  𝑐𝑛𝑡𝑟𝑖𝑗 + 1; 𝜗𝑖𝑗 ← 𝜗𝑖𝑗 ∙ 𝑐𝑣 + 𝜗𝑚𝑛 ∙ 𝑐𝑑; update 𝜓𝑉    

reversed_drone_route = Reverse drone_route 

if (∑ (𝑝𝑤𝑘́ + 𝑑𝑤𝑘́)𝑘́  ≤ 𝑤 & ∑ 𝑙𝑛́𝑚́ ≤ 𝑟𝑛́𝑚́  & 𝑐𝑛𝑡𝑟𝑗𝑖 ≤ 𝜃 & ∑ 𝑎𝑗𝑚́𝑚́ =1) then 

𝑐𝑛𝑡𝑟𝑗𝑖 ←  𝑐𝑛𝑡𝑟𝑗𝑖 + 1; 𝜗𝑗𝑖 ← 𝜗𝑗𝑖 ∙ 𝑐𝑣 + 𝜗𝑛𝑚 ∙ 𝑐𝑑 ; update 𝜓𝑉    

end if  

end if  

end if 

end if 

Eliminate 𝜗𝑚𝑛 and 𝜗𝑛𝑚 from 𝜓𝐷 

End 

Sort 𝜓𝑉 in descending order 

ℛ՛𝑉 ← Rebuild the vehicle route based on the new vehicle savings list 𝜓𝑉   

if (cost of (ℛ՛𝑉) < cost of (ℛ𝑉) then 

ℛ𝑉 ←  ℛ՛𝑉  

end if 

return ℛ𝑉 

Figure 5-8: Improve vehicle route through considering the multimodal savings for 

stations. 
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The last step of the MBH is a post-processing step that checks if any solution 

improvement in terms of the multimodal routing cost can be obtained by randomizing the 

savings lists 𝜓𝑉 and 𝜓𝐷, respectively. Figure 5-9 describes the steps of Heuristic (H5) used 

to post-process the solution. The iterative heuristic starts by randomizing the vehicle 

savings list, 𝜓𝑉, associated with the latest solution. The first 𝑛 elements in 𝜓𝑉 are selected 

and randomly rearranged. The process is repeated for the next 𝑛 elements until the entire 

list is randomized.  

The randomized savings list 𝜓՛𝑉 is used to construct a new vehicle route ℛ՛𝑉. The 

drones savings list, 𝜓𝐷, is also randomized and used to construct the corresponding drone 

routes ℛ՛𝐷. If no better drone routes are found for a pre-specified number of iterations, 

𝑀𝑎𝑥𝐷, the drone routes ℛ՛𝐷 are marked as the best drone routes that satisfy the constructed 

vehicle route ℛ՛𝑉. The multimodal cost of the new solution (ℛ՛𝑉 and ℛ՛𝐷) is compared 

against that of the current solution (ℛ𝑉 and ℛ𝐷). If the new solution is found to reduce the 

multimodal routing cost, the solution is updated, that is  ℛ𝑉 = ℛ՛𝑉, 𝜓𝑣 = 𝜓՛𝑉, ℛ𝐷 = ℛ՛𝐷, 

and 𝜓𝐷 = 𝜓՛𝐷. The latest vehicle savings list is again randomized searching for a better 

vehicle route. If no better solution considering the total multimodal routing cost is found 

for a pre-specified number of iterations, 𝑀𝑎𝑥𝑉, the heuristic terminates after reporting the 

best solution recorded in all iterations. 
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H5: Improve_Solution_Through_Vehicle_and_Drones_Savings_Lists_Randomization  

Input: ℛ𝑉 , ℛ𝐷 , 𝜓𝑉 , 𝜓𝐷 , 𝑤, 𝑟, 𝑁̀𝐶  

𝑖𝑡𝑟𝑉 ← 0   

while (𝑖𝑡𝑟𝑉 < 𝑀𝑎𝑥𝑉) do 

𝜓՛𝑉 ← Randomize 𝜓𝑉  

if (𝑁̀𝐶 ≠ Ø) then 

ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← Reset all possible initial drone routes 

ℛ՛𝑉 ← Construct_Feasible_Vehicle_Route(𝜓՛𝑉 , 𝑁𝑉 ∪ 𝑁̀𝑉 ∪ 𝑁𝐷, 𝑁̀𝐶 , 𝑆𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← Update ℛ𝐷

𝑖𝑛𝑖𝑡𝑖𝑎𝑙  by eliminating all expensive initial drone routes for each customer in 𝑁̀𝐶   

else 

ℛ՛𝑉 ← Call the CW algorithm using 𝑁𝑉 ∪ 𝑁̀𝑉 ∪ 𝑁𝐷 and 𝜓՛𝑉 as input 

end if 

𝑖𝑡𝑟𝐷 ← 0   

𝜓՛𝐷 ← Randomize 𝜓𝐷 

ℛ՛𝐷 ← Call the CW algorithm using 𝑁𝐶 , 𝜓՛𝐷 , 𝑤 and 𝑟 as input to build drone routes  

while (𝑖𝑡𝑟𝐷 < 𝑀𝑎𝑥𝐷) do 

𝜓՛՛𝐷 ←Randomize 𝜓՛𝐷  

ℛ՛՛𝐷 ← Call the CW algorithm using 𝑁𝐶 , 𝜓՛՛𝐷 , 𝑤 and 𝑟 as input to build drone routes  

if (cost (ℛ՛՛𝐷) < cost ( ℛ՛𝐷)) then 

𝜓՛𝐷 ← 𝜓՛՛𝐷; ℛ՛𝐷 ← ℛ՛՛𝐷; and 𝑖𝑡𝑟𝐷 ← 0   

else 

𝑖𝑡𝑟𝐷 ← 𝑖𝑡𝑟𝐷 + 1  

end if 

End 

if (cost (ℛ՛𝑉 + ℛ՛𝐷) < cost (ℛ𝑉 + ℛ𝐷)) then 

𝜓𝑉 ← 𝜓՛𝑉; 𝜓𝐷 ← 𝜓՛𝐷; ℛ𝑉 ← ℛ՛𝑉; ℛ𝐷 ← ℛ՛𝐷; and 𝑖𝑡𝑟𝑉 ← 0   

else 

𝑖𝑡𝑟𝑉 ← 𝑖𝑡𝑟𝑉 + 1  

end if 

End 

Figure 5-9: Improving the solution through randomizing the vehicle and drones savings 

lists. 

 

5-4. Single-Mode-Based Heuristic (SBH) 

As mentioned above, the Single-Mode-Based Heuristic (SBH) is a lighter version 

of the MBH as it adopts a vehicle-driven approach rather than a multimodal-driven 

approach. It follows the main steps of the MBH with two differences. First, in the SBH, 
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the calculation of the cost savings used to construct the vehicle route are based entirely on 

the vehicle savings. Second, in the post-processing procedure, the SBH only randomizes 

𝜓𝑉 and fixes 𝜓𝐷. Similar to the MBH presented above, the SBH starts by determining 

customers that cannot be served by the vehicle. In addition, the list of customers, 𝑁̀𝐶 are 

determined. Next, the heuristic calculates the savings list for the vehicle using Equation 

(86). This savings list is then used to construct the vehicle route that does not violate the 

initial drone routes for customer in 𝑁̀𝐶, if any. Equations (88), (91), and (92) are used to 

build the savings list for the drones and the resulting list is sorted in a descending order. 

The drones’ routes are then constructed assuming that the drones can be dispatched and 

collected from any visible station in the network in order to satisfy the LS rule. The 

heuristic removes the station with the highest cost savings for the vehicle after ensuring 

that all customers can be served from the remaining set of stations. The vehicle’s and 

drones’ routes are reconstructed considering the reduced set of stations. This step is 

repeated until there are no more stations can be eliminated from the vehicle route. 

For the post-processing step, the SBH randomizes 𝜓𝑉 only. A new vehicle route, 

ℛ՛𝑉, is obtained based on the randomized cost savings list of the vehicle. The new vehicle 

route must not violate the initial drone routes of customers in 𝑁̀𝐶. If a better solution is 

found, the new savings list, 𝜓՛𝑉, is obtained. Otherwise, the current savings list is again 

randomized and used to determine a new vehicle route. If a pre-defined number of 

iterations, 𝑀𝑎𝑥𝑉, is reached without any solution improvement, the heuristic terminates 

after producing the best vehicle route in all iterations. Finally, the heuristic constructs the 

drone routes based on the resulted ℛ𝑉. Although the SBH is greedy in terms of the vehicle 
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routing cost, the cost of the vehicle is typically much higher than that of the drones. 

Therefore, it is expected that the SBH will obtain a good solution for the IVDRP-LS with 

faster execution time compared to the MBH as it skips two cumbersome steps, as 

mentioned above. A comparison of these two heuristics in terms of solution quality and 

running time is presented in the next section. 

 

H6: Improve_Solution_Through_Vehicle_ Savings_Lists_Randomization 

Input: ℛ𝑉 , ℛ𝐷 , 𝜓𝑉 , 𝜓𝐷 , 𝑤, 𝑟, 𝑁̀𝐶  

𝑖𝑡𝑟𝑉 ← 0   

while 𝑖𝑡𝑟𝑉 < 𝑀𝑎𝑥𝑉 do 

𝜓՛𝑉 ← Randomize 𝜓𝑉 

if (𝑁̀𝐶 ≠ Ø) then 

ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← Reset all possible initial drone routes 

ℛ՛𝑉 ← Construct_Feasible_Vehicle_Route (𝜓՛𝑉 , 𝑁𝑉 ∪ 𝑁̀𝑉 ∪ 𝑁𝐷, 𝑁̀𝐶 , ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

ℛ𝐷
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← Update ℛ𝐷

𝑖𝑛𝑖𝑡𝑖𝑎𝑙  by eliminating all expensive initial drone routes for each customer in 𝑁̀𝐶   

else 

ℛ՛𝑉 ← Call the CW algorithm using 𝑁𝑉 ∪ 𝑁̀𝑉 ∪ 𝑁𝐷 and 𝜓՛𝑉 as input 

end if 

if (cost (ℛ՛𝑉) < cost (ℛ𝑉)) then 

𝜓𝑉 ← 𝜓՛𝑉; ℛ𝑉 ← ℛ՛𝑉; and 𝑖𝑡𝑟𝑉 ← 0   

else 

𝑖𝑡𝑟𝑉 ← 𝑖𝑡𝑟𝑉 + 1  

end if 

End 

ℛ𝐷 ← Call the CW algorithm using 𝑁𝐶 , 𝜓𝐷 , 𝑤, and 𝑟 as input to build drone routes satisfying ℛ𝑉 

Figure 5-10: Improve solution through vehicle savings lists randomization. 

 

5-5. Summary 

  This chapter introduces a novel solution methodology that adopts an updated 

version of the classic CW algorithm to consider the multimodality aspects of the integrated 
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vehicle-drone routing problem and to satisfy the LS rule (Clarke and Wright, 1964). The 

solution methodology implements a Multimodal-Based Heuristic (MBH) with a 

randomization procedure to construct near optimal vehicle and LS-mandated drone routes. 

The performance of the MBH is benchmarked by comparing its performance against that 

of a Single-Mode-Based Heuristic (SBH). The SBH is a lighter version of the MBH as it 

adopts a vehicle-driven search procedure.
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Chapter 6  

 

RESULTS AND ANALYSES 

 

6-1. Introduction 

This chapter presents the results of a set of experiments that are conducted to 

examine the performance of the heuristics described in Chapter 4 and Chapter 5. To avoid 

bias related to the data generation, a common grid network is used with randomly generated 

demand in terms of location and pick-up/delivery loads. Networks with different numbers 

of stations, numbers of customers, and density levels are considered. To avoid solution 

infeasibility, it was assured that a) the distance between any two stations was less than the 

drone’s maximum flight range, and b) the pick-up/delivery load of any customer was less 

than the drone’s load carrying capacity. 

 

6-2. Experiments Setup  

Seven roadway networks of a grid structure covering service areas that range from 

25.0 to 400.0 square miles are considered. Stations for drone dispatching and collection are 

assumed to be located at the intersection nodes in these networks. These intersection nodes 

are spaced at a 5.0 mile distance. Customers are randomly distributed in the area with 
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densities that range from 0.125 customer per square mile to 1.0 customer per square mile. 

The number of customers ranges from six customers in the smallest network to 100 

customers in the largest network. Each customer is associated with a pick-up weight and/or 

a delivery weight that are randomly generated following the uniform distribution 

𝑈(0.0 lbs, 5.0 lbs).  

Table 6-1: Summary of network configurations used to test the performance of the 

heuristics 

Network 
Number of 

Customer 

Number of 

Stations 
Area (mile2) 

Customer Density 

(Customer/ mile2) 

A1 to A5 6 3 25 (5x5) 0.240 

A6 to A10 8 3 25 (5x5) 0.480 

B1 to B10 50 8 100 (10x10) 0.500 

C1 to C10 50 15 225 (15 x15) 0.222 

D1 to D10 50 24 400 (20 x20) 0.125 

E1 to E10 100 8 100 (10x10) 1.000 

F1 to F10 100 15 225 (15 x15) 0.444 

G1 to G10 100 24 400 (20 x20) 0.250 

 

One vehicle equipped with two drones is used to serve these customers, unless 

specified otherwise. The vehicle operation cost is assumed to be twice that of the drones. 

The vehicle depot was assumed to be located at the southwest corner of the grid networks. 

Both drones are assumed to have a maximum flight range of 7.0 miles and a load carrying 

capacity of 10.0 lbs. Such values are in the range of the drone specifications used by UPS 

in their drone delivery field experiment (McFarland , 2017). Table 6-1 summarizes the 

configuration of these seven networks. For each network, 10 random instances are 

generated representing different spatial distributions of the customers. All runs were 

carried out on a Dell workstation with 72 logical processors of 3.1 GHz and 192 GB 

https://money.cnn.com/author/matt-mcfarland/index.html
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memory. All heuristics are implemented in Java and the exact solution is obtained by 

CPLEX 12.6.1 Java callable libraries (IBM, 2009), which is used to solve the MIP 

presented in Chapter 4.  

 

6-3. Results for the Basic Mothership System 

This section’s experiments are designed to evaluate the solution methodologies 

developed in Chapter 4 and presents a sensitivity analysis to examine the effect of several 

system parameters on the overall performance of the network. 

 

6-3-1. Comparison with the Exact Optimal Solution  

The performance of the HCWH, VDH and DDH, which are implemented in Java, 

are compared against the exact solution obtained by CPLEX 12.6.1 Java callable libraries 

(IBM, 2009), which is used to solve the MIP presented in Chapter 4.  The total routing cost 

and the execution time are reported for all tested cases. Considering the large execution 

time required to obtain the exact solution using CPLEX, these results are reported only for 

the small networks A-1 to A-10 as their solutions can be obtained within a reasonable 

timeframe (less than six hours). Table 6-2 gives a summary of the performance comparison 

results. As shown in the table, the three heuristics produce the exact optimal solution for 

most tested networks. While the HCWH generates the exact solutions for all networks, the 

VDH and DDH generate the exact solutions for nine and seven networks out of the ten 

tested networks, respectively. In addition, for cases in which the optimal solution is not 
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obtained, the optimality gaps recorded for the VHD are generally lower than those of the 

DDH.  

Table 6-2: The heuristics’ performance comparison with the optimal solution. 
Instance 

 

Exact Solution     

(CPLEX) 

 
HCWH 

 
VDH 

 
DDH 

Cost 

($) 

Runtime 

(sec) 

 Cost 

($) 

Runtime 

(sec) 

Gap 

(%) 

 Cost 

($) 

Runtime 

(sec) 

Gap 

(%) 

 Cost 

($) 

Runtime 

(sec) 

Gap 

(%) 

A-1 46.8 11.710  46.8 0.019 0.0  46.8 0.016 0.0  46.8 0.016 0.0 

A-2 50.3 99.674  50.3 0.021 0.0  50.3 0.015 0.0  50.3 0.016 0.0 

A-3 50.6 12.095  50.6 0.035 0.0  50.6 0.026 0.0  55.7 0.016 9.0 

A-4 46.2 59.108  46.2 0.038 0.0  46.2 0.026 0.0  60.1 0.037 23.0 

A-5 50.0 62.296  50.0 0.034 0.0  50.0 0.024 0.0  50.8 0.037 1.0 

A-6 60.5 17056.50  60.5 0.031 0.0  60.5 0.016 0.0  60.5 0.031 0.0 

A-7 50.5 1817.953  50.5 0.032 0.0  50.5 0.020 0.0  50.5 0.031 0.0 

A-8 55.2 4903.824  55.2 0.032 0.0  56.1 0.031 2.0  55.2 0.016 0.0 

A-9 53.2 2722.409  53.2 0.062 0.0  53.2 0.031 0.0  53.2 0.031 0.0 

A-10 56.5 2113.717  56.5 0.059 0.0  56.5 0.031 0.0  61.2 0.018 8.0 

 

The three heuristics significantly outperform CPLEX in terms of the execution 

time. For example, for network A-1, the exact optimal solution using CPLEX is obtained 

in about 11.7 seconds. The execution times for the three heuristics are less than 0.02 

seconds for that network. One can also observe the large increase in the execution time 

using CPLEX when the number of customers is increased from six customers (networks 

A-1 to A-5) to eight (networks A-6 to A-10). For example, the execution time jumped to 

17,056.5 seconds for A-6 compared to 11.7 seconds for A-1. Such substantial increase in 

the execution time with the increase in the number of customers is not observed for any of 

the three heuristics. The highest execution time for A-6 to A-10 networks is less than 0.10 

seconds.    
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The results in Table 6-2 show that the HCWH was able to find the optimal solution 

for all studied instances. Additionally, a randomly generated problem instance of 8 

customers and 5 stations is considered. For this problem instance, we used the solution 

obtained from the HCWH as a warm start (initial solution) for CPLEX. While CPLEX’s 

optimal solution was not obtained within an execution time of up to 24 hours, CPLEX was 

able to find four incumbent solutions that are better than the one obtained by the HCWH 

with an improvement in the objective function of 7.35%. The results of this test illustrates 

that there could be cases in which CPLEX produces solutions with better performance than 

those obtained by the HCWH. 

 

6-3-2. Performance Comparison for Large Network Instances 

The performance of the three heuristics is again compared considering large 

problem instances. Six different networks are used in this comparison which includes 50 

customers (networks B, C and D) and 100 customers (networks E, F and G), respectively. 

As given in Table 6-3 and Table 6-4, each network is tested for 10 random instances. For 

each instance, the routing cost is reported for the vehicle (C𝑉), the drones (C𝐷), and the 

entire network (C𝑇𝑜𝑡𝑎𝑙). The number of stops made by the vehicle to dispatch and collect 

the drones, η, and the total number of drone dispatches, ή, to serve the customers also are 

given. Finally, the execution time for each problem instance is recorded. The average of 

the 10 random instances is given for each network.    

As shown in the Table 6-3 and Table 6-4, the solution obtained using the HCWH 

provides the best cost performance for the majority of the tested problem instances. The 
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VDH outperformed the HCWH in a few problem instances, as the CW algorithm does not 

always guarantee optimality, especially when the routed drones are constrained by a limited 

flight range and load carrying capacity. While the total cost obtained by the VDH and the 

DDH for almost all problem instances is higher than that obtained using the HCWH, the 

VDH and DDH provide the lowest vehicle and drone costs, respectively.  

These results are expected, since the VDH adopts a vehicle cost-reduction strategy 

and the DDH adopts a drone cost-reduction strategy. For example, the average total cost 

recorded for the D network using the HCWH is $346.30 with a vehicle cost of $208.80 and 

a drone cost of $137.60. For the VDH, the total cost increased to $347.10, while the vehicle 

cost was reduced to $205.00.  For the DDH, the total cost increased to $394.90, while the 

drone cost was reduced to $131.20. 

The three heuristics generally show comparable results in terms of the number of 

stops made by the vehicle and the number of drone dispatches. However, a closer look at 

some problem instances reveals that the VDH tends to reduce the number of stops made 

by the vehicle, while the DDH tends to reduce the number of drone dispatches. However, 

the number of stops recorded by VDH is associated with an increase in the number of drone 

dispatches. Similarly, the number of drone dispatches recorded by the DDH is associated 

with an increase in the number of stops made by the vehicle. The result is consistent with 

the cost-reduction strategies adopted for the two heuristics. It also resembles the split of 

the vehicle cost and the drone cost recorded for the solutions obtained by the VDH and the 

DDH, respectively. As the VDH aims at reducing the vehicle cost, it eliminates expensive 

stops for the vehicle at the expense of scheduling more drone dispatches. Similarly, the 
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DDH cuts the drone cost by reducing the number of drone dispatches at the expense of 

more vehicle stops. 

 For example, for network G, the VDH solution results in 21 vehicle stops and 48 

drone dispatches. For the DDH solution, the number of drone dispatches decreased to 45 

while the number of vehicle stops increased to 23. The HCWH produced a balanced 

solution in terms of number of stops made by the vehicles and the number of drone 

dispatches, which are recorded to be 22 and 46, respectively.     

Two observations can be made regarding the execution times recorded for the three 

heuristics. First, the execution time generally increases as the problem size increases. For 

example, for network B, which includes 50 customers and 8 stations, average execution 

times of 2.068, 0.857, and 1.386 seconds were recorded for the HCWH, VDH, and DDH, 

respectively. For network G, which includes 100 customers and 24 stations, the average 

execution times jumped to 75.639, 27.247, and 27.211 seconds, respectively. Second, the 

execution times of the VDH and DDH are less than that of the HCWH. Computing the 

multimodal savings at each iteration for the HCWH increases the required execution time 

for that heuristic.  

The execution time generally increases for HCWH and VDH in problem instances 

in which they continue to examine the possibility of eliminating more stations from the 

vehicle route. In problem instances in which customers are concentrated around a fewer 

number of stations and/or can be served by dispatching drones from multiple stations, they 

tend to examine the possibility of eliminating more stations, which increases its execution 

time.  For example, as shown in Table 6-4, problem instances G-4 and G-6 recorded the 
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highest execution times for the HCWH, and had vehicle routes with fewer stations (20 

stations). 
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Table 6-3: Performance of the heuristics for 50 customer instances. 
Instance   HCWH  VDH  DDH   

 C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή T  C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή T  C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή T 

B-1  190.7 80.0 110.7 7 20 4.440  190.7 80.0 110.7 7 20 1.517  222.6 114.1 108.5 8 20 1.666 

B-2  206.5 94.1 112.4 8 21 1.990  206.5 94.1 112.4 8 21 0.823  233.1 120.0 113.1 8 22 1.572 

B-3  225.1 94.1 131.0 8 23 1.936  225.1 94.1 131.0 8 25 0.861  242.7 112.4 130.3 8 24 1.220 

B-4  221.3 94.1 127.3 8 23 1.840  219.8 94.1 125.7 8 22 0.827  249.5 120.0 129.5 8 25 1.847 

B-5  199.8 94.1 105.6 8 22 1.693  201.3 94.1 107.2 8 22 0.736  216.1 108.3 107.8 8 23 1.335 

B-6  194.3 94.1 100.2 8 19 1.687  195.2 94.1 101.1 8 19 0.783  215.6 114.1 101.5 8 20 1.188 

B-7  221.0 94.1 126.9 8 23 1.712  221.0 94.1 126.9 8 23 0.752  235.9 108.3 127.6 8 23 1.145 

B-8  193.9 94.1 99.8 8 20 1.721  196.9 94.1 102.8 8 19 0.739  224.8 126.5 98.3 8 18 1.156 

B-9  207.5 94.1 113.4 8 20 1.834  210.1 94.1 116.0 8 20 0.781  206.9 94.1 112.8 8 20 1.229 

B-10  198.1 94.1 104.0 8 21 1.824  198.1 94.1 104.0 8 21 0.750  228.1 120.6 107.5 8 21 1.498 

B mean  205.8 92.7 113.1 8 21 2.068  206.5 92.7 113.8 8 21 0.857  227.5 113.8 113.7 8 22 1.386 

                      

C-1  254.0 136.6 117.4 11 22 11.806  254.0 136.6 117.4 11 22 3.421  305.0 198.1 106.8 14 21 3.005 

C-2  273.2 148.3 124.9 13 28 6.649  284.9 148.3 136.6 12 27 2.999  289.9 166.5 123.4 14 25 2.261 

C-3  280.7 160.0 120.7 15 26 3.936  280.9 148.3 132.6 13 25 3.072  314.7 194.8 119.9 15 23 1.999 

C-4  264.1 154.1 110.0 14 27 3.611  266.2 142.4 123.8 12 23 3.211  276.5 166.5 110.0 14 20 2.349 

C-5  269.2 140.6 128.6 11 23 16.294  268.2 142.4 125.8 11 23 4.867  340.6 218.9 121.7 15 25 2.867 

C-6  256.6 128.3 128.3 11 24 8.475  261.7 128.3 133.4 11 25 2.718  356.7 234.5 122.2 13 22 2.267 

C-7  278.4 154.1 124.3 14 25 6.620  286.0 150.7 135.3 12 27 3.766  320.3 200.7 119.6 15 23 3.738 

C-8  275.5 154.2 121.4 13 23 8.060  286.9 154.2 132.7 12 25 4.016  329.2 210.5 118.7 15 23 3.348 

C-9  260.5 142.4 118.1 12 22 10.216  255.2 128.3 126.9 11 22 3.769  311.7 197.2 114.5 14 22 2.530 

C-10  262.5 136.6 125.9 11 24 8.400  262.5 136.6 125.9 11 24 2.735  277.8 160.7 117.1 13 23 1.199 

C mean  267.5 145.5 122.0 11 24 8.406  270.7 141.6 129.1 11 24 3.457  312.2 194.8 117.4 14 23 2.556 

                      

D-1  326.4 202.4 124.0 18 25 16.182  335.8 208.3 127.5 17 26 7.649  383.3 263.1 120.2 20 26 3.812 

D-2  355.7 216.5 139.2 18 28 30.226  361.7 216.6 145.1 17 30 11.993  415.3 279.5 135.8 22 29 3.401 

D-3  347.9 202.4 145.5 18 28 33.708  348.8 202.4 146.4 17 29 11.935  414.9 277.2 137.7 22 29 2.799 

D-4  376.1 222.4 153.7 19 30 25.122  356.5 196.5 160.0 17 31 12.840  442.2 293.1 149.1 22 30 5.601 

D-5  336.6 202.4 134.2 17 25 15.615  345.3 202.4 142.9 14 27 9.352  372.0 240.6 131.4 19 27 3.948 

D-6  320.1 193.0 127.1 15 25 22.202  313.6 186.5 127.1 15 25 8.273  369.3 250.7 118.6 19 24 2.266 

D-7  363.0 208.9 154.1 17 29 33.180  363.9 208.9 155.0 15 28 10.824  394.2 254.8 139.4 20 27 3.047 

D-8  356.2 222.4 133.8 20 26 12.937  347.7 206.5 141.2 17 28 9.051  397.9 269.0 128.9 21 27 3.461 

D-9  334.0 194.8 139.2 16 26 15.640  348.7 199.0 149.7 14 28 8.145  386.1 254.0 132.1 18 26 5.284 

D-10  347.4 222.4 125.0 19 25 12.463  348.5 222.4 126.1 19 26 7.248  374.1 254.8 119.3 21 25 3.377 

D mean  346.3 208.8 137.6 18 27 21.728  347.1 205.0 142.1 16 28 9.731  394.9 263.7 131.2 20 27 3.699 

C𝑇𝑜𝑡𝑎𝑙: Total cost     C𝑉: Vehicle cost     C𝐷: Drone cost     η: Number of vehicle stops      ή: Number of drone dispatches     T: Execution time  
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Table 6-4: Performance of the heuristics for 100 customer instances. 
Instance   HCWH  VDH  DDH 

 C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή  T  C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή T  C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή T 

E-1  257.7 94.1 163.6 8 33 12.512  257.7 94.1 163.6 8 33 4.132  288.7 124.7 164.0 8 33 6.762 

E-2  278.5 94.1 184.4 8 35 13.721  278.6 94.1 184.5 8 35 4.848  284.1 100.0 184.1 8 37 9.567 

E-3  266.0 94.1 171.9 8 37 13.470  269.7 94.1 175.6 8 35 4.754  298.9 126.5 172.3 8 36 9.650 

E-4  276.3 100.0 176.3 8 35 12.622  272.9 94.1 178.8 8 35 4.317  285.8 106.5 179.3 8 35 10.768 

E-5  259.4 94.1 165.3 8 37 12.530  260.7 94.1 166.6 8 38 4.348  286.9 120.7 166.2 8 37 7.974 

E-6  254.9 94.1 160.8 8 34 13.294  254.9 94.1 160.8 8 34 4.960  281.9 120.0 161.9 8 34 6.800 

E-7  277.6 94.1 183.5 8 39 15.332  277.6 94.1 183.5 8 39 5.272  307.0 126.5 180.5 8 39 10.259 

E-8  271.3 94.1 177.2 8 34 12.445  272.3 94.1 178.2 8 34 4.770  306.3 128.3 178.0 8 34 6.585 

E-9  288.1 94.1 194.0 8 37 14.381  289.6 94.1 195.5 8 38 5.224  310.6 112.4 198.2 8 38 12.629 

E-10  262.7 94.1 168.6 8 36 12.573  257.2 94.1 163.1 8 35 4.427  299.1 132.4 166.7 8 33 12.478 

E mean  269.2 94.7 174.5 8 36 13.288  269.1 94.1 175.0 8 36 4.705  294.9 119.8 175.1 8 36 9.347 

                      

F-1  384.4 160.0 224.4 15 43 20.967  381.5 154.1 227.4 14 41 10.526  407.7 188.3 219.5 15 41 21.384 

F-2  372.2 160.0 212.2 15 42 13.461  366.0 160.0 205.9 15 40 5.396  407.0 198.9 208.1 15 41 19.333 

F-3  360.0 160.0 200.0 15 39 20.040  358.9 154.1 204.8 14 41 10.197  395.6 197.1 198.5 15 40 14.644 

F-4  373.0 168.3 204.7 15 39 14.181  368.0 160.0 208.0 15 40 5.632  424.7 218.9 205.8 15 40 18.300 

F-5  369.2 162.4 206.8 14 41 31.731  371.2 162.4 208.8 14 41 10.06  417.2 214.1 203.1 15 39 14.889 

F-6  361.8 154.1 207.7 14 38 46.113  368.4 148.3 220.1 13 42 14.403  417.6 212.3 205.3 15 39 15.201 

F-7  386.6 168.3 218.3 15 42 13.736  382.0 160.0 222.0 15 43 5.619  436.0 217.7 218.3 15 43 18.313 

F-8  378.3 154.2 224.1 14 44 33.654  381.3 154.1 227.2 14 43 11.136  453.6 226.7 226.9 15 43 21.351 

F-9  381.5 160.0 221.5 15 44 13.708  383.4 160.0 223.4 15 44 5.756  381.5 160.0 221.5 15 44 20.127 

F-10  369.7 160.0 209.7 15 39 13.424  377.7 154.1 223.6 14 41 10.260  432.0 222.4 209.6 15 38 15.306 

F mean  383.5 169.0 214.6 15 42 22.102  384.0 165.5 218.5 15 42 10.472  417.3 205.6 211.7 15 41 17.885 

                      

G-1  480.1 234.1 246.0 21 46 70.449  492.3 242.4 249.9 21 47 22.865  510.3 273.0 237.3 23 47 23.482 

G-2  501.0 254.1 246.9 24 47 16.390  510.5 254.1 256.4 24 48 9.337  580.2 334.2 246.0 24 46 35.149 

G-3  450.2 232.4 217.8 21 45 102.881  458.3 233.0 225.3 19 45 40.653  503.3 294.8 208.5 24 45 24.259 

G-4  483.9 230.7 253.2 20 49 207.618  490.3 224.9 265.5 19 51 42.464  554.6 314.0 240.6 24 47 32.429 

G-5  508.4 250.7 257.7 22 48 40.781  508.6 250.7 257.9 22 49 16.861  587.9 341.9 246.0 23 46 16.502 

G-6  475.2 222.4 252.8 20 47 113.370  480.6 228.3 252.3 20 47 33.637  523.4 274.3 249.1 23 46 36.320 

G-7  445.1 228.3 216.8 21 43 43.609  455.9 236.6 219.3 21 44 16.189  490.8 276.6 214.2 22 42 32.231 

G-8  508.2 270.7 237.5 24 46 35.030  507.5 258.9 248.6 22 49 25.679  545.1 308.9 236.2 24 45 27.257 

G-9  487.6 248.3 239.3 23 46 69.989  526.8 263.7 263.1 20 53 38.790  544.5 310.7 233.8 24 45 17.224 

G-10  468.4 242.4 226.0 22 43 56.276  479.6 242.4 237.2 21 45 25.997  551.3 326.0 225.3 23 44 27.263 

G mean  480.8 241.4 239.4 22 46 75.639  491.0 243.5 247.5 21 48 27.247  539.1 305.4 233.7 23 45 27.211 

C𝑇𝑜𝑡𝑎𝑙: Total cost     C𝑉: Vehicle cost     C𝐷: Drone cost     η: Number of vehicle stops      ή: Number of drone dispatches     T: Execution time 
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6-3-3. Deterministic HCWH versus Stochastic HCWH 

A stochastic version of the deterministic HCWH is implemented, the SHCWH. The 

SHCWH starts by randomizing the descending-ordered savings list. The first 𝐸 elements 

in the savings list are selected and randomly rearranged. The process is repeated for the 

next 𝑇 elements until the entire list is randomized. The problem is again solved using the 

randomized savings list. If a better solution is found, the new savings list is updated and 

randomly rearranged as described above. Otherwise, the current savings list is again 

randomized and used to determine a new solution. If no better solution is found for a pre-

specified number of iterations, 𝑛, the heuristic terminates, producing the best solution in 

all iterations.  

Table 6-5: Comparison between the HCWH and the SHCWH. 

Instance 
HCWH 

C𝑇𝑜𝑡𝑎𝑙($) 𝑇 (seconds) ∆(%) Time Ratio 

G-1 480.1 81.767 - - 

G-2 501.0 23.867 - - 

G-3 450.2 110.063 - - 

Instance 
SHCWH  𝑛 = 100 

C𝑇𝑜𝑡𝑎𝑙($) 𝑇 (seconds) ∆(%) Time Ratio 

G-1 475.5 1983.698 0.96 24.26 

G-2 501.0 663.630 0.00 27.81 

G-3 445.5 2794.250 1.04 25.38 

Instance 
SHCWH  𝑛 = 300 

C𝑇𝑜𝑡𝑎𝑙($) 𝑇 (seconds) ∆(%) Time Ratio 

G-1 476.1 3390.732 0.83 41.47 

G-2 501.0 2358.453 0.00 98.81 

G-3 445.5 7170.176 1.04 65.15 

Instance 
SHCWH  𝑛 = 500 

C𝑇𝑜𝑡𝑎𝑙($) 𝑇 (seconds) ∆(%) Time Ratio 

G-1 475.5 7913.467 0.96 96.78 

G-2 501.0 3150.885 0.00 132.02 

G-3 445.5 10886.589 1.04 98.91 
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We compared the performance of the HCWH to that of the SHCWH. The two 

heuristics were used to obtain the solution for three different instances of network G. The 

number of iterations, 𝑛, considered for the SHCWH are 100, 300 and 500, and 𝐸 is 

randomly generated such that it ranges from zero to six, respectively. The results gives the 

percentage improvement, ∆, in the total network cost and the magnitude by which the 

execution time increased (as multiples of the HCWH’s execution time), as compared to 

those of the deterministic HCWH.     

 

 

  

(a) Cost ($) (b) Execution Time (sec) 

Figure 6-1: Comparison between the HCWH and the SHCWH.  

As presented in Table 6-5 and Figure 6-1, the SHCWH is able to achieve a slight 

solution improvement of about 1.0% for instances G-1 and G-3. No improvement is 

recorded with the increase in the number of iterations. For example, for the 100 iteration 
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case, the SHCWH’s execution time for G-3 is recorded to be about 25 times that recorded 

for HCWH. No improvement is recorded for instance G-2. The slight improvement in the 

cost is associated with exponential increase in the execution time as shown in Figure 6-1. 

 

6-3-4. Mothership versus Vehicle-Only Operation   

In this set of experiments, we evaluate the potential cost savings associated with 

using the mothership system rather than depending only on the vehicle, as is in the current 

practice. Two scenarios are compared in this set of experiments. In the first scenario, two 

drones were dispatched and collected from one vehicle to serve all customers. The HCWH 

is used to obtain the solution for all test cases that adopt the mothership system. In the 

second scenario, one vehicle with no drones was used to serve all customers. An optimal 

solution (Applegate et al., 2008) and CW algorithm-based solution (Clarke and Wright, 

1964) that includes all customers are obtained and used to benchmark the effectiveness of 

the mothership system.  

 

Table 6-6: Impact of different cost-ratio for 50 customer instances. 
Drone-Vehicle 

Cost Ratio 

Network B  Network C  Network D 

 𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙  𝜌𝐶𝑊   𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙  𝜌𝐶𝑊   𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙  𝜌𝐶𝑊  

1:2 1.66 1.66  1.35 1.31  1.34 1.26 

1:5 1.09 1.09  0.98 0.95  1.02 0.96 

1:10 0.90 0.90  0.83 0.80  0.92 0.86 

1:25 0.79 0.79  0.78 0.75  0.85 0.80 

1:50 0.75 0.75  0.75 0.73  0.83 0.78 

𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙: Optimal traveling salesman solution   𝜌𝑐𝑤: Vehicle routing solution obtained using CW algorithm 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0377221709000514#bib1
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Table 6-7: Impact of different cost-ratio for 100 customer instances. 
Drone-Vehicle 

Cost Ratio 

Network E  Network F  Network G 

 𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙  𝜌𝐶𝑊   𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙  𝜌𝐶𝑊   𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙  𝜌𝐶𝑊  

1:2 1.45 1.41  1.37 1.32  1.40 1.32 

1:5 0.89 0.86  0.89 0.86  0.99 0.94 

1:10 0.70 0.68  0.73 0.70  0.85 0.80 

1:25 0.59 0.57  0.64 0.61  0.77 0.72 

1:50 0.55 0.53  0.61 0.58  0.73 0.69 

𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙: Optimal traveling salesman solution    𝜌𝑐𝑤: Vehicle routing solution obtained using CW algorithm 

 

Comparing the mothership system with the optimal solution provides a real 

evaluation of how beneficial the introduction of drones may be. The comparison with the 

CW solution allows the mothership system and the vehicle-only system to be compared 

when their solutions are obtained using the same technique. When constructing the vehicle-

only route, all customers are assumed to be accessible by the vehicle, and a direct link is 

assumed to be between any two customers. Networks B to G described above are used to 

compare these two scenarios. In addition, drone/vehicle cost ratios that range from 1:2 to 

1:50 are considered. Table 6-6 and Table 6-7 give the results for the network instances with 

50 and 100 customers, respectively. The tables give the operation cost ratios between the 

mothership and the vehicle-only solutions obtained using the optimal TSP solution 

(𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙) and the CW algorithm (𝜌𝐶𝑊). 

As shown in the tables, the mothership system is generally more cost effective than 

the vehicle-only system, especially when the drone’s operation cost is significantly less 

than the vehicle cost. For example, when the drone operation cost is only half the vehicle 

operation cost, the vehicle-only scenario outperforms the mothership system under the 
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assumption that the vehicle has access to all customers through direct links. As the drone 

operation cost decreases compared to the vehicle operation cost, the mothership system is 

shown to significantly outperform the vehicle-only scenario.  

For example, considering a drone-vehicle cost ratio of 1:25 and comparing with the 

CW vehicle routing solution, cost savings of 20% and 28% are recorded for network D 

with 50 customers and network G with 100 customers, respectively. These cost saving 

percentages are recorded at 15% and 23% for the same drone-vehicle cost ratio when the 

optimal vehicle route is obtained for the vehicle-only scenario.  

Another interesting observation is related to the pattern by which the operation cost 

of the mothership system improves as the drone operation cost decreases as compared to 

that of the vehicle. For example, considering network F, 𝜌𝑂𝑝𝑡𝑖𝑚𝑎𝑙 decreases by 9% when 

the drone-vehicle operation cost ratio changes from 1:10 to 1:25. This ratio decreases by 

only 3% when the drone-vehicle operation cost ratio changes from 1:25 to 1:50. Thus, it is 

worth investing to reduce the drone-vehicle cost ratio from 1:10 to 1:25 as it yields 

significant savings in the operation cost of the mothership system.  Additional investment 

to further reduce the drone cost does not yield the same level of overall cost improvement. 

These results are comparable with the savings results reported in Ha et al. (2018), in which 

one drone is used in the form of flying side-kick delivery system. 

The analysis presented above is extended by conducting an experiment in which 

we compare the performance of the mothership system with that of the vehicle-only 

system, which is solved considering three different algorithms: a) branch-and-bound; b) 

Clarke and Wright and c) nearest neighbor. Network instances B, C, and D with drone-to-
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vehicle operation cost ratio of 1:25 are considered in this experiment. The results of this 

experiment are presented Table 6-8, which gives the optimal solution obtained using the 

branch and bound algorithm for the vehicle-only system. The table also gives the 

corresponding solutions obtained using the CW algorithm and the nearest neighbor 

algorithm along with their gaps, respectively. In addition, the performance of the 

mothership system using the HCWH is given along with its ratio, ρ, to the optimal solution 

obtained using the branch and bound algorithm.   

 

Table 6-8: Comparing the performance of the mothership system and the vehicle-only  

system solved using different solution methodologies. 
Instance  Vehicle Only  Mothership 

System 

 Branch and 

Bound 

Clarke and Wright Nearest Neighbor  HCWH 

  Cost ($) Cost ($) Gap (%) Cost ($) Gap (%)  Cost ($) ρ  

B-1  1580.01 1582.76 0.17 1676.93 5.78  1289.12 0.82 

B-2  1727.96 1730.11 0.12 1865.01 7.35  1307.77 0.76 

B-3  1713.91 1714.44 0.03 1960.46 12.58  915.23 0.53 

C-1  2360.46 2452.20 3.74 2701.15 12.61  1824.52 0.77 

C-2  2252.65 2334.21 3.49 2721.88 17.24  1731.89 0.77 

C-3  2518.30 2689.89 6.38 3086.07 18.4  2048.52 0.81 

D-1  3386.45 3727.97 9.16 4111.62 17.64  2846.29 0.84 

D-2  3038.19 3132.92 3.02 3767.28 19.35  2675.78 0.88 

D-3  2976.86 3174.51 6.23 3283.27 9.33  2595.82 0.87 

 

Based on the obtained results, for the vehicle-only system, a maximum gap of less 

than 10% is recorded when Clarke and Wright heuristic is used, compared to the solution 

obtained using the branch-and-bound algorithm. This maximum gap increased to about 

20% when the nearest neighbor is applied. Comparing the performance of the mothership 
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system with the optimal solution obtained by the branch-and-bound algorithm, the 

improvement in the total cost is recorded to range from 47% to 12%, which demonstrates 

the benefits of the mothership system compared to the vehicle-only system.  

 

6-3-5. Effect of Number of Drones Carried by the Vehicle 

In all of the experiments described above, the vehicle is assumed to carry two 

drones onboard. In this set of experiments, we examine the effect of the number of drones 

on overall network performance. Scenarios with a vehicle with one, two, and three drones 

are considered. The vehicle’s operation cost is assumed to be twice the drones’ cost. The 

results of this set of experiments is given in Table 6-9.  

 

Table 6-9: The performance of the heuristics considering different number of drone. 

instance 
One Drone  Two Drones  Three Drones 

HCWH VDH DDH  HCWH VDH DDH  HCWH VDH DDH 

B 209.0 209.0 240.2  207.4 207.4 232.6  206.4 206.4 232.6 

C 271.1 274.4 308.9  269.3 273.3 303.2  269.3 272.3 311.3 

D 343.7 345.2 405.4  343.3 348.8 404.5  343.5 348.8 419.0 

E 272.1 272.1 269.7  267.4 268.7 298.9  266.7 267.6 301.6 

F 372.1 373.3 427.6  372.2 368.8 403.4  369.4 368 399.8 

G 481.7 491.6 525.4  480.4 487.0 531.3  475.3 483.7 556.8 

 

The results indicate that the effect of increasing the number of drones on the total 

network cost is not the same across the three heuristics. Increasing the number of drones 

resulted in a cost reduction when the HCWH and the VDH are used to solve the hybrid 

routing problem. On the contrary, the cost of the DDH solution increases with an increase 
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in the number of drones. For example, for network G, the HCWH resulted in a cost of 

$481.70 when one drone is used. This cost decreased to $475.30 for the three-drone 

scenario. A similar pattern is observed for the VDH. For the DDH, the network cost was 

recorded at $525.40, $531.30, and $556.80 for one, two, and three drones, respectively. 

Using limited number of drones constrains the structure of the drone’s routes in 

order to be able to visit all customers. The drones are forced to make more returns to their 

dispatching stations. However, as more drones are included, more efficient drone routes 

could be constructed which, reduces the total cost as observed in the results of the HCWH 

and VDH. For the DDH, the drone routes are further optimized in a greedy way, which 

causes significant inefficiencies to the vehicle route as more stops are required for the 

drones. The increase in the cost of the vehicle route leads to an increase in the total cost of 

the network as reported above.    

 

6-3-6. Trade-off between Flight Range and Load Carrying Capacity 

Carrying a heavier load requires a drone to have a large battery and strong drone 

frame, which in turn adds weight to the drone and shortens its range. Thus, planning an 

efficient vehicle-drone delivery service requires examining the trade-off between the 

drones’ flight range and load carrying capacity (Flynt, 2017). For that purpose, a set of 

experiments are conducted in which drones with different flight ranges and load carrying 

capacities are considered. The total network operation cost is recorded for several 

networks.  
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As illustrated in Figure 6-1, using drones with a small flight range (the left side of 

the x-axis), irrespective of the load carrying capacity, resulted in networks with high 

operation costs. Similarly, using drones with limited load carrying capacity (the right side 

of the x-axis), irrespective of the flight range, increased the total operation cost. For 

example, an operation cost of $573.00 is recorded for network G for the scenario in which 

drones with a flight range of 5.0 miles and a load carrying capacity of 12.0 lbs. are used. 

Increasing the drone’s flight range to 12.0 miles and reducing their load carrying capacity 

to 5.0 lbs. resulted in an operation cost of $544.00. The results in the figure show that there 

is an optimal combination of the drone’s flight range and load carrying capacity that 

minimizes the total operation cost of the network. With the exception of networks E and 

D, the least operation cost is recorded for drones with a flight range of 8.0 miles and a load 

carrying capacity of 9.0 lbs. For network E, which has the highest customer density (1.0 

customer/mile2), the least operation cost is recorded for drones with a relatively higher load 

carrying capacity. A cost of $267.00 is recorded for drones with flight range of 7.0 miles 

and load carrying capacity of 10 lbs. On the other hand, for network D, which has a low 

customer density of 0.10 customer/mile2, drones with a relatively long flight range (9.0 

miles) are required to efficiently serve the sparsely distributed customers.   

 



 

124 

 

 

Figure 6-2: Flight range versus load capacity. 

6-4. Results for the Mothership System Satisfying LS Rule 

This section presents experiments that are designed to evaluate the solution 

methodologies developed in Chapter 5 and provides a sensitivity analysis to examine the 

effect of the LS rule on the overall performance of the network. In this set of experiments, 

the LS parameter 𝑎𝑖𝑚 is randomly generated for every station node, 𝑖, and node, 𝑚 such 

that 𝑎𝑖𝑚 = 1 if 𝑝(𝑥~𝑈(0,1) ≥ 0.5), and zero otherwise. The vehicle’s operation cost is 

assumed to be 25 times that of a drone’s. For the post-processing step, the parameters 

𝑀𝑎𝑥𝑉 and 𝑀𝑎𝑥𝐷 are set to be equal to 100 and 50, respectively. The parameter 𝑛 is 

randomly generated such that it ranges from zero to 10. 
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6-4-1. Comparison with the Exact Optimal Solution 

The performance of the MBH and the SBH are compared against the exact solution 

obtained by solving the MIP developed for the IVDRP-LS using CPLEX 12.6.1 Java 

callable libraries (IBM, 2009). This comparison is conducted only for networks A-1 to A-

10 as CPLEX failed to generate its solution in a reasonable time (< 6 hours) for the larger 

networks. Table 6-10 summarizes the results of this performance comparison. The table 

gives the total (multimodal) routing cost and the execution time for each tested case. As 

shown in the table, the MBH and SBH are able to generate the optimal solution for seven 

and six of the 10 cases, respectively. For cases in which the heuristics failed to obtain the 

optimal solution, gaps of less than 2% are recorded. The optimality gaps recorded for the 

MBH are generally lower than those of the SBH. 

 

Table 6-10: The heuristics’ performance compared to the optimal solution. 

Instance 

 

Exact Solution 

(CPLEX) 
 MBH  SBH 

Cost 

 ($) 

Runtime 

(Sec.) 

 Cost  

($) 

Runtime 

(Sec.) 

Gap 

(%) 

 Cost 

 ($) 

Runtime 

(Sec.) 

Gap 

(%) 

A-1 525.12 1.031  525.12 0.173 0.0  525.12 0122 0.0 

A-2 498.47 1.032  502.89 0.917 0.9  504.50 0.413 1.2 

A-3 495.59 1.141  495.59 0.193 0.0  495.59 0.127 0.0 

A-4 513.07 1.531  513.07 0.998 0.0  513.07 0.187 0.0 

A-5 535.92 1.828  535.92 0.430 0.0  535.92 0.106 0.0 

A-6 531.23 468.108  531.62 5.768 0.1  531.62 0.360 0.1 

A-7 528.67 4.016  529.93 1.021 0.2  529.93 0.538 0.2 

A-8 526.53 817.088  526.53 2.208 0.0  530.05 0.288 0.7 

A-9 542.63 5.782  542.63 3.028 0.0  542.63 1.124 0.0 

A-10 603.20 83.242  603.20 0.846 0.0  603.20 0.488 0.0 
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The heuristics’ execution times are much less than those recorded by CPLEX. For 

example, for network A-10, CPLEX’s execution time is recorded at 83.242 seconds. The 

corresponding execution times of the heuristics are less than one second. One can also 

notice the CPLEX’s excessive execution time as the number of customers increases. For 

example, CPLEX’s execution time jumps from 1.828 seconds for A-5 to 468.108 seconds 

for A-6. Much lower increases in the corresponding heuristics’ execution times are 

recorded. The corresponding execution time for the MBH increases from 0.430 seconds to 

5.768 seconds, and the corresponding execution time for the SBH increases from 0.106 

seconds to 0.360 seconds. Moreover, it can be noticed that the execution time of CPLEX 

is not consistent across network instances with the same number of customers. For 

example, the execution time of network A-7 is 4.016 seconds, while the execution time of 

network A-8 is 817.008 seconds. The reason for the inconsistency in the execution times 

is due to the random settings of the LS parameter. As more customers are served by the 

vehicle due to LS restriction, the drone-related constraints become non-binding and thus 

CPLEX is able to generate the optimal solution in much less execution time.  

 

6-4-2. Comparing the Performance of the MBH and the SBH 

In this set of experiments, we compare the performances of the MBH and the SBH 

using ten random instances of networks B, C and D, respectively. Table 6-11 summarizes 

the results of this comparison. For each network instance, the table gives (1) the routing 

cost of the vehicle (C𝑉), the drones (C𝐷), and the entire network (C𝑇𝑜𝑡𝑎𝑙); (2) the number 
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of stops made by the vehicle to dispatch and collect the drones, η; (3) the total number of 

drone dispatches, ή, to serve the customers; and (4) the execution time, T.  

For the majority of the tested instances, the MBH outperforms the SBH in terms of 

the total routing cost. For example, for the instances of network B, an average total cost of 

$1475.60 is recorded for the MBH ($1380.80 for the vehicle and $94.80 for the drones). 

The SBH’s corresponding average routing cost is recorded at $1485.30 ($1385.10 for the 

vehicle and $100.20 for the drone). One might expect this result since the MBH implements 

two additional procedures to further optimize the total routing cost compared to the SBH. 

As explained above, the MBH uses a list of multimodal cost savings to construct the vehicle 

route, while the SBH uses a list that computes the savings for the vehicle only. Furthermore, 

in the post-processing step, the MBH randomizes the savings lists of both the vehicle and 

the drones to improve the total cost, while the SBH randomizes the vehicle’s savings list 

only.  

Although these two additional procedures reduce the total routing cost, they 

contribute significantly to its execution time. As shown in the table, the SBH’s execution 

time is always less than that of the MBH. For example, for the instances of network B, 

which includes 50 customers and 8 stations, average execution times of 78.057 and 16.280 

seconds are recorded for the MBH and the SBH, respectively. One can also notice the 

variation in the execution times recorded by both heuristics across different instances of 

the same network. For example, execution times of 41.654 and 212.604 seconds were 

recorded for the MBH to solve instances B-8 and B-9, respectively. This variation is due 

to the implementation of the post-processing step, where the number of iterations with no 
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solution improvement varies in the different runs. Finally, the two heuristics produce 

comparable results in terms of the number of stops made by the vehicle and number of 

drone dispatches. However, the SBH tends to generate solutions with a larger number of 

drone dispatches compared to the MBH. As the SBH aims to prioritize savings in the 

vehicle cost over the drone cost, it generates the vehicle route without considering the 

expense of scheduling more drone dispatches. For example, for the instances of network 

B, the numbers of drone dispatches recorded by the SBH are always equal to or greater 

than those of the MBH.  
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Table 6-11: Performance of the heuristics. 
Instance  MBH  SBH 

  C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή T  C𝑇𝑜𝑡𝑎𝑙 C𝑉 C𝐷 η ή T 

B-1  1341.8 1261.3 80.5 23 13 53.412  1347.6 1261.3 86.3 23 15 18.976 

B-2  1418.6 1329.0 89.6 21 16 136.250  1428.8 1333.8 95.0 21 18 14.522 

B-3  1586.9 1516.8 70.1 34 14 62.739  1588.2 1516.8 71.4 34 15 21.199 

B-4  1505.7 1397.6 108.1 25 20 33.807  1515.6 1397.6 118.0 25 22 17.554 

B-5  1419.3 1306.7 112.6 24 19 37.717  1419.3 1306.7 112.6 24 19 14.013 

B-6  1445.4 1349.8 95.6 24 19 50.067  1449.6 1349.8 99.8 24 19 17.651 

B-7  1527.3 1414.5 112.8 22 19 24.703  1549.5 1432.8 116.7 22 21 13.304 

B-8  1528.5 1439.5 89.0 28 17 41.654  1554.9 1458.8 96.1 28 18 18.119 

B-9  1461.1 1356.4 104.7 23 18 212.604  1471.9 1356.4 115.5 23 19 13.978 

B-10  1521.3 1436.8 84.5 25 16 66.318  1527.3 1436.8 90.5 25 17 13.486 

B mean  1475.6 1380.8 94.8 25 17 78.057  1485.3 1385.1 100.2 25 18 16.280 

C-1  2108.8 2020.7 88.1 34 18 63.445  2124.4 2020.7 103.7 34 20 37.680 

C-2  2318.9 2196.0 122.9 29 22 37.675  2327.2 2196.0 131.2 29 24 36.717 

C-3  2396.8 2272.2 124.6 28 25 48.580  2398.0 2272.2 125.8 28 25 22.162 

C-4  2317.6 2208.4 109.2 32 22 63.358  2317.6 2208.4 109.2 32 22 24.837 

C-5  2191.1 2071.7 119.4 28 21 29.981  2170.9 2045.6 125.3 28 22 24.269 

C-6  2193.9 2075.2 118.7 30 23 49.729  2245.7 2117.7 128.0 30 25 23.302 

C-7  2420.2 2313.6 106.6 33 21 95.645  2420.2 2313.6 106.6 33 21 36.001 

C-8  2377.6 2260.5 117.1 27 24 85.369  2381.2 2260.5 120.7 27 24 21.306 

C-9  2356.1 2236.5 119.6 31 21 53.346  2362.5 2236.5 126.0 31 22 26.967 

C-10  2309.0 2173.7 135.3 30 25 51.747  2255.8 2120.5 135.3 30 25 36.358 

C mean  2299.0 2182.9 116.1 30 22 57.887  2300.3 2179.1 121.2 30 23 28.960 

D-1  3021.9 2921.1 100.8 32 20 67.886  3027.1 2921.1 106.0 32 21 39.137 

D-2  3217.0 3116.1 100.9 37 22 65.036  3219.0 3116.1 102.9 37 23 56.415 

D-3  3276.5 3150.2 126.3 35 25 73.847  3276.9 3149.6 127.3 34 25 38.701 

D-4  3217.8 3094.2 123.6 37 23 46.579  3240.2 3115.3 124.9 37 23 39.776 

D-5  3002.9 2894.2 108.7 31 21 52.384  3018.6 2908.9 109.7 31 22 72.184 

D-6  2875.7 2778.3 97.4 32 21 63.905  2883.2 2778.3 104.9 32 23 38.216 

D-7  3062.7 2935.3 127.4 33 24 53.189  3087.4 2959.2 128.2 33 25 54.248 

D-8  3258.5 3120.5 138.0 32 27 92.200  3248.6 3110.6 138.0 32 27 52.912 

D-9  3170.5 3051.7 118.8 34 22 55.490  3177.9 3051.7 126.2 34 23 35.435 

D-10  3422.2 3300.7 121.5 37 24 105.515  3491.0 3369.2 121.8 37 25 63.115 

D mean  3152.6 3036.2 116.4 34 23 67.603  3167.0 3048.0 119.0 34 24 49.014 

C𝑇𝑜𝑡𝑎𝑙: Total cost   C𝑉: Vehicle cost   C𝐷: Drone cost   η: Number of vehicle stops    ή: Number of drone dispatches     T: Execution time
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6-4-3. Effect of LS Rule on the Performance of the Mothership System    

The results of this set of experiments quantify the additional cost resulting from 

mandating the LS rule for drone flights. The experiments are conducted using networks B, 

C, and D where the percentage of out-of-sight customers from any station is assumed to 

range from zero to 100%. A high percentage of out-of-sight customers represents dense 

urban areas with obstructions (e.g., high rise buildings). The results are presented for the 

two scenarios with and without mandating the LS rule. As explained earlier, mandating the 

LS rule requires customers who are out of sight to be served by the vehicle. Ignoring the 

LS rule, all customers are assumed to be served by drones. The results of these experiments 

are shown in Table 6-12 and Figure 6-4. Table 6-12 gives the percentage increase in the 

cost, ρ, associated with mandating the LS rule, and the corresponding execution time T. 

Figure 6-3 demonstrates the extra cost associated with having more percentage of 

obstructed customers and compares the cost of the mothership system with that of the 

vehicle only system. 

 

Table 6-12: Impact of the LS regulatory rule. 
Percentage 

of out-of-

Sight 

Customers  

Network B  Network C  Network D 

Cost 

($) 
𝜌 

(%) 

T 

(sec) 

 
Cost 

($) 
𝜌 

(%) 

T 

(sec) 

 
Cost 

($) 
𝜌 

(%) 

T 

(sec) 

0% 1106.33 0.00 1806.28  1904.88 0.00 226.69  2754.33 0.00 11.09 

10% 1253.50 13.30 533.16  2023.02 6.20 143.91  2802.03 1.73 157.38 

30% 1409.60 27.41 157.32  2154.07 13.08 63.31  2858.48 3.78 80.60 

50% 1562.05 41.19 61.96  2309.55 21.24 31.83  2962.31 7.55 76.12 

70% 1535.06 38.75 47.83  2511.45 31.84 32.85  3157.57 14.64 39.09 

100% 1450.92 31.15 15.36  2474.62 29.91 23.27  3310.65 20.20 37.52 

𝜌 =  (𝐶𝑜𝑠𝑡 𝑤𝑖𝑡ℎ 𝐿𝑆 − 𝐶𝑜𝑠𝑡 𝑤𝑖ℎ𝑡𝑜𝑢𝑡 𝐿𝑆 )/𝐶𝑜𝑠𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐿𝑆   
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(a) B Network 

 
(b) C Network 

 
(c) D Network 

Figure 6-3: Mothership system versus vehicle-only system. 
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As show in the table, the cost tends to increase with the increase in the percentage 

of out-of-sight customers. For example, for network B, the cost increases from $1253.50 

to $1409.60 when the percentage of out-of-sight customers increases from 10% to 30%. 

The results also demonstrate the effectiveness of the mothership system compared to the 

vehicle-only delivery system as shown in Figure 6-4. For instance, considering network B 

which has a density of 0.5 customers per square mile, it is cheaper to use the vehicle-only 

system rather than the mothership system for cases in which the percentage of out-of-sight 

customers exceeds 30%. For example, a percentage cost increase of 41.19% is recorded 

when 50% of the customers are within sight. This percentage is higher than the one 

recorded when all customers are out of sight (𝜌 = 31.15%) and served only by the vehicle. 

For network D with 0.10 customers per square mile density, the mothership system is more 

cost effective than the vehicle-only system, even if the percentage of out-of-sight customers 

reaches 70%. The results of this experiment allow service providers to decide on the most 

suitable equipment (vehicle-only system vs. integrated vehicle-drone system) for each 

service area based on its LS restrictions.  

The effect of having a higher percentage of customers with obstructed sight 

distance varies across networks. The execution time for networks B and C, characterized 

by dense customer distributions, decreases with the increase in the percentage of out-of-

sight customers as more customers are served by the vehicle. For example, the execution 

time of network B decreases from 1806.28 seconds in the case where all customers have 

clear LS to 15.36 seconds for the case in which all customers are obstructed. A different 

pattern is observed for network D with sparse customers. As the percentage of customers 

with obstructed LS increases to 10%, the execution time jumped from 11.09 seconds to 
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157.38 seconds. As the percentage of obstructed-customers further increases, the execution 

time gradually decreases. When all customers are blocked, requiring them to be served by 

the vehicle, an execution time of 37.52 seconds is recorded.  

 

6-4-4. Effect of Increasing the Drones’ Flying Range 

In this set of experiments, we examine the effect of using drones with enhanced 

capabilities, in terms of increased flight range, on the performance of the system. Networks 

B, C, and D are again considered in this set of experiments. The percentage of customers 

with obstructed LS from their nearest drone dispatching stations is assumed at 10%, 30% 

and 50%, respectively. For each network, the total routing cost and the percentage of 

customers served by drones are recorded, considering different flight ranges for the drones. 

The results of these experiments are given in Figure 6-2.  

As shown in the figure, the total routing cost generally decreases as the drones’ 

flying range increases. Also, an increase is recorded in the number of customers who are 

served by drones as the drones’ flying range increases up to about nine miles at which 

distance all customers are served by drones. A higher cost is recorded as the percentage of 

customers with obstructed LS from their closest stations increases. This pattern is observed 

for all networks. However, the percentage increase with the increase of the flight range 

decreased for network C and D but not for network B. For example, for network C with 

drones’ flying range that is equal to seven miles, the total cost increases from $1824.52 to 

$2114.52 (percentage increase of 15.89%) as the percentage of customers with obstructed 

LS increases from 0% to 50%. However, this percentage increase in the cost is recorded at 
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10.35% when the flight range increased from seven to 12 miles. For network B which has 

the highest customer density, increasing the drones’ flying range has no effect on reducing 

the reported increased in the routing cost associated with having more customers with 

obstructed LS. 

  
Network B (I) Network B (II) 

 

 
 

Network C (I) Network C (II) 

  

  
Network D (I) Network D (II) 

 

Figure 6-4: Effect of increasing the drones’ flight range. 
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6-5. Summary 

In this chapter, a set of experiments were conducted. Based on the obtained results, 

the following can be concluded:  

(a) The developed heuristics produce high quality solutions that are comparable to 

the exact optimal solution for small problem instances.  

(b) The heuristics are able to solve large problem instances in shorter execution 

times. 

 (c) The stochastic version of the HCWH is able to achieve a slight solution 

improvement.  

(d) The mothership system is generally more cost effective than the vehicle-only 

system.  

(e) The effect of increasing the number of drones on the total network cost is not 

the same across the HCWH, VDH, and DDH.  

(f) The network operation cost is minimum when the used drones are balanced in 

terms of their flight range and load carrying capacity. 

(g) The impact of the LS rule is quantified allowing service providers to decide on 

the most suitable equipment configuration (vehicle-only system vs. integrated vehicle-

drone system) for the service area under consideration based on the level of LS restrictions. 
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Chapter 7  

 

CASE STUDY 

 

7-1. Introduction 

This Chapter provides a case study for the sake of quantifying the impact of the LS 

rule on overall system performance considering real-world urban settings. The MBH, 

explained in Chapter 5, is implement in Java to provide pick-up and delivery services in 

the downtown area of the City of Dallas, which spans an area of 1.123 square miles. This 

Chapter is organized as follows. Section 7-2 describes all the parameters considered by this 

case study. Sections 7-3 summarizes main operation statistics resulting from applying the 

MBH to serve customers in the studied area. Section 7-4 presents a sensitivity analysis to 

examine the effect of LS rule on several system parameters. Finally, Section 7-5 gives a 

summary of the chapter. 

 

7-2. Description of the Case Study  

In this case study, the MBH is applied to provide pick-up and delivery services in 

the downtown area of the City of Dallas, which spans an area of 1.123 square miles. As 

shown in Figure 7-1, the downtown area consists of two sections: the north section 

characterized by high-rise buildings (hotels, professional offices and apartments) and the 
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south section characterized by short buildings (light industries and commercial services). 

Sixteen buildings in the study area have a height greater than 400 ft., which is the maximum 

flying altitude approved by FAA. Considering the proprietary nature of the demand data, 

two hypothetical customer distribution scenarios are assumed in which two hundred 

customers are randomly distributed in the service area. The first scenario represents a 

sparse customer distribution in which the two hundred customers are distributed over the 

entire service area with a density of about 180 customers per square mile. The second 

scenario considers a dense customer distribution in which the two hundred customers are 

concentrated in the north section of the service area with a density of 520 customers per 

square mile. Illustrations of the customer distributions for these two scenarios are given in 

Figures 7-1 (a) and 7-1 (b), respectively. Similar to the experiments above, each customer 

is associated with a pick-up weight and/or a delivery weight that are randomly generated 

following the uniform distribution 𝑈(0.0 lbs, 5.0 lbs).  

All parking lots available in the downtown area are considered as candidate stations 

where the vehicle can stop to dispatch and collect the drones. The depot point is assumed 

to be the closest access point to the service area from an adjacent freeway that connects 

Amazon’s distribution center to the downtown area. A mothership system of one vehicle 

and two identical drones is used to serve this demand. As mentioned in Chapter 6, both 

drones are assumed to have a maximum flight range of 7.0 miles and a load-carrying 

capacity of 10.0 lbs. The vehicle operation cost is assumed to be 25 times that of the drones. 

The vehicle is routed along the actual roads in the service area, while the drones are 

assumed to fly along the shortest Euclidian distance from their origins to destinations (i.e., 

dispatching station to a customer, a customer to customer, or a customer to a collection 
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station). Buildings higher than 400 ft. are considered as obstacles that possibly obstruct the 

LS. The LS between every possible origin-destination pair of a drone flight is examined. 

As described above, a two-dimensional visibility graph is constructed. If the straight line 

connecting any origin-destination pair is obstructed by any obstacle, then the destination is 

assumed to be out of sight from the origin.  

 

 
a) Sparse customer distribution. 

 
b) Dense customer distribution. 

 

 
Figure 7-1: Customer distribution scenarios in the downtown area. 
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7-3. Operation statistics  

This section summarizes the primary operation statistics resulting from applying 

the MBH for the two customer distribution scenarios mentioned above. As shown in the 

Table 7-1, the number of stops made by the vehicle increased from 17 in the case of sparse 

customer distribution to 21 for the dense customer distribution. The percentage of 

customers served by the vehicle is recorded at 3.5% for the sparse customer distribution 

scenario, compared to 6% for the dense customer distribution scenario. Although one might 

expect a solution that requires more vehicle stops in the sparse customer distribution case, 

the high-rise buildings cause more customers to be obstructed in the dense customer 

distribution scenario. Hence, the vehicle must be routed to keep the drone within the pilot’s 

LS at all times and also to visit customers who cannot be served by the drones. 

 

Table 7-1: Sparse versus dense customer distribution. 
Performance Measure  Sparse Distribution  Dense Distribution  

Number of stops made by the vehicle  17  21 

Percentage of customers served by vehicle (%)   3.5  6.0 

Number of drone dispatch/collection  62  60 

Average number of customers served per drone route   3.11  3.13 

Average flight distance per drone trip (miles)  0.45  0.46 

Average load per drone trip (lbs.)   7.56  7.08 

 

The table also gives the number of drone dispatches and the average number of 

customers per drone dispatch for both scenarios. A solution with a slightly smaller number 

of drone dispatches and more customers served per dispatch is recorded for the network 
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with dense customer distribution, compared to these recorded for the network with sparse 

distribution scenario. Such results could be contributing to the proximity of the customers 

in the dense customer distribution scenario, which allows the combination of more 

customers in the drone route and hence reduces the number of drone dispatches. The 

average lengths of the drone routes per dispatch are almost equal for the sparse and the 

dense scenarios. Further investigating the solutions of these two scenarios shows that the 

drone routes are constrained mainly by the load-carrying capacity of the drones. As shown 

in the table, the average carried loads per drone tour are close to the maximum load-

carrying capacity (10.00 lbs.). Average carried loads of 7.56 lbs. and 7.08 lbs. are recorded 

for the sparse and the dense customer distribution scenarios, respectively.  

 

7-4. Results and analysis 

This section presents the impact of the LS rule on several system parameters. Figure 

7-2 compares the total routing cost, number of stops made by the vehicle, and number of 

drone dispatch/collection for the two customer distribution scenarios with and without 

mandating the LS rule. As shown in the figure, mandating the LS rule significantly 

increases the total routing cost. If the LS rule is ignored, routing costs of about $59.81 and 

$60.78 are recorded for the sparse and dense customer distribution scenarios, respectively. 

Mandating the LS rule increases these costs to about $111.34 and $116.13 for these two 

scenarios.  
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(a) Routing cost (b) No. of Vehicle stops 
(c) No. of Drone 

dispatch/collection 

Figure 7-2: Impact of mandating the LS rule. 

As for the number of stops made by the vehicle, different patterns are observed for 

the cases with and without mandating the LS rule. Without mandating the LS rule, the 

vehicle made four stops in the sparse customer distribution scenario and only two stops in 

the dense customer distribution scenario, respectively. One might expect such results as 

more stops are needed to cover the sparse demand. On the other hand, mandating the LS 

rule required the vehicle to make more stops in the dense scenario than those made in the 

sparse scenario, as the vehicle needs to position itself to allow serving customers with 

obstructed LS. Finally, the LS rule is shown to have more impact on the number of drone 

dispatch/collection for the dense scenario. While the number of drone dispatch/collection 

increased only from 61 to 62 in the sparse customer distribution scenario, it increased from 

55 to 60 in the dense scenario. More LS obstruction characterizes the dense customer 

distribution scenario, which makes it difficult to construct drone routes that combine more 

customers as in the case in which the LS rule is ignored.   

Figure 7-3 compares the distance travelled by the vehicle and the drones for the two 

customer distribution scenarios with and without mandating the LS rule. In both scenarios, 
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mandating the LS rule increased the distance traveled by the vehicle and decreased the 

distance traveled by the drones. The vehicle travels more distances to serve customers that 

are not reachable by any of the drones, and to better position the pilot at stations with no 

LS obstruction. The traveled distance by the drones significantly decreased as the vehicle 

was expected to drive closer to the customers to ensure that the drones are within the pilot’s 

LS. This result illustrates the effect of the LS rule on the integrated vehicle-drone system, 

which is envisioned to increase dependence on drones and reduce vehicle usage.  

 

 
 

(a) Sparse customer distribution (b) Dense customer distribution 

Figure 7-3: Impact of mandating the LS rule on the vehicle’s and the drones’ travel 

distance. 

Finally, we examine the impact of relaxing the maximum flying altitude restriction 

on the routing cost. Figure 7-4 gives the routing cost for different flying altitudes (≥ 400 

ft.) for both customer distribution scenarios. As shown in the figure, for both customer 
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distribution scenarios, the cost decreases as the allowed maximum flying altitude increases. 

The cost continues to decrease until the flying limit reaches 900 ft. as all buildings in the 

downtown area are below this limit. 

 

 

Figure 7-4: Impact of the flying altitude on the routing cost. 

 

7-5. Summary 

In this case study, the developed methodology is applied to provide pick-up and 

delivery services in the City of Dallas’ downtown area. Mandating the LS rule is shown to 

double the total routing cost of the mothership system used to serve customers in the area. 

These results can be of great importance to the pick-up and delivery service providers to 

decide on the most suitable equipment configuration (vehicle-only system vs. mothership 

system) based on the level of LS restrictions in the service area under consideration. Based 
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on the obtained results, it is generally recommended to use the mothership system in areas 

where the majority of the customers have clear LS (suburban and rural areas), and to adopt 

the traditional vehicle only delivery system in urban areas with high LS restrictions. 

Moreover, aviation authorities can use these results to study the tradeoff between the risk 

associated with using drones as part of the delivery system versus the total system cost 

associated with increasing the maximum flying altitude of the drones.   
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Chapter 8  

 

SUMMARY AND FUTURE WORK 

 

8-1. Summary  

The vehicle-drone “mothership” system was recently conceptualized to provide 

efficient pick-up and delivery services. Drones could be mounted on the vehicles and 

dispatched from pre-specified stations to deliver and pick up products to/from a set of 

customers distributed in a given service area. To solve a basic mothership system, this 

research presents a model and efficient solution methodology for the hybrid vehicle-drone 

routing problem (HVDRP) for pick-up and delivery services. Aviation authorities in the 

US and abroad mandate several regulatory rules to ensure safe operations for drone-based 

delivery systems.  These rules are expected to have a significant impact on the 

configuration and the cost performance of these systems. This paper presents a modeling 

framework for the integrated vehicle-drone routing problem for pick-up and delivery 

services considering the LS rule mandated by the FAA (IVDRP-LS). 

Two mathematical formulations in the form of a mixed integer program are 

developed which solve for the optimal vehicle and drone routes to serve all customers such 

that the total cost of the pick-up and delivery operation is minimized. The first formulation 

captures the vehicle-drone routing interactions and considers the drone’s operational 
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constraints including flight range and load carrying capacity limitations. The second 

formulation includes constraints that represent the vehicle drone interactions, the LS rule, 

and constraints related to the drones maximum flight range and load-carrying capacity 

limitations.  

A novel solution methodology that extends the classic Clarke and Wright algorithm 

is developed to solve the HVDRP, namely the hybrid Clarke and Wright heuristic 

(HCWH). The heuristic takes into consideration the cost savings resulting from connecting 

stops in the vehicle route and connecting customers in the drone routes that are dispatched 

and collected at these stops. The performance of the HCWH is benchmarked against a 

vehicle-driven heuristic (VDH) and a drone-driven heuristic (DDH). In the VDH, an 

efficient vehicle route is first obtained, and the drones are then routed considering the 

dispatching and collection stops specified in the vehicle route. The drone-driven routing 

heuristic determines the drone routes and specifies optimal locations for their dispatching 

and collection. The vehicle is then routed to visit these stops.  

Also, the research presents a novel solution methodology to solve the IVDRP-LS. 

The heuristics adopt an updated version of the classic CW algorithm to consider the 

multimodality aspects of the integrated vehicle-drone routing problem and obey the LS 

rule. The solution methodology implements the MBH with randomization procedure to 

construct near optimal vehicle and LS-mandated drone routes. The performance of the 

MBH is benchmarked by comparing its performance against that of the SBH. The SBH is 

a lighter version of the MBH as it implements a vehicle-driven approach. 
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The developed heuristics are shown to produce high quality solutions that are 

comparable to the exact optimal solution for small problem instances. The heuristics are 

also able to solve large problem instances in shorter execution times. Regarding the 

heuristics developed to solve a basic mothership system, the HCWH is shown to 

outperform the VDH and the DDH in terms of minimizing the cost of the entire multimodal 

network. Concerning the heuristics developed to solve the mothership system that obeys 

the LS rule, the MBH outperforms SBH in terms of the operation cost yet the SBH is able 

to generate satisfactory solutions in less execution times. 

 The results also show the value of adopting the mothership system. Compared to a 

scenario in which the vehicle is used to visit all customers, the amount of cost reduction 

increases as the drone’s operation cost decreases. Also, the network operation cost is shown 

to be minimal when the used drones are balanced in terms of their flight range and load 

carrying capacity. Generally, service areas characterized by high customer density require 

drones with large load carrying capacity. For service areas with sparse customers, drones 

with long flight range are more suitable.  

In addition, a set of experiments are conducted to study the impact of the LS rule 

on the overall system performance. The results of these experiments allow service 

providers to decide on the most suitable equipment configuration (e.g., vehicle-only system 

vs. integrated vehicle-drone system) for the service area under consideration. As a case 

study, the developed methodology is applied to provide pick-up and delivery services in 

the City of Dallas’ downtown area. Mandating the LS rule is shown to almost double the 

total routing cost of the mothership system used to serve all customers in the area. The 
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experiments also show that relaxing this rule by increasing the maximum allowed flying 

altitude of the drones could significantly reduce the total system cost. The analysis could 

also assist the aviation authority to adjust the parameters of the LS rule to achieve the 

optimal balance between safety and operation cost. Based on the results obtained for 

Dallas’ downtown area, slightly increasing the maximum flying altitude of the drones could 

have a significant impact on the overall routing cost. 

 

8-2. Further Research Directions 

While this dissertation provides a foundation to understand the mothership system, 

it is clear that due to the complexity of the problem there are still several research issues 

worthy of further investigation. Examples of research extensions for this work include:  

a) Designing mothership system with different objectives  

In this study we evaluate the efficiency of the mothership system and the impact of 

the LS rule on the mothership system from cost perspective. Both the HVDRP and the 

IVDRP-LS tend to minimize the total operational cost. Therefore, the framework could be 

extended to consider different objective functions. Examples of different objectives 

include: (1) minimizing the total travel time, which entails defining new variables and 

parameters that capture the vehicle’s and drone’s travel time as well as the waiting time of 

the vehicle at every station; (2) minimize the total carbon and different toxic gases caused 

by trucking, this extension can determine the environmental impact of the mothership 

system; and (3) maximizing safety, which requires determining the risks of using the 

traditional vehicle-only delivery system versus risks of integrating the drones. 



 

149 

 

b) Multi-vehicle mothership system 

This study considers one vehicle with several drones on board. While this 

assumption is a good start for understanding the mothership system, the formulation and 

the solution methodology could be extended for a multi-vehicle mothership system in 

which multiple vehicles are used instead of one vehicle. The formulation could be modified 

to consider multiple vehicles and their maximum travel distance capacity. Furthermore, the 

formulation could be extended to allow drones to be shared between vehicles as long as 

the number of drones on board of each vehicle is conserved. Also, an efficient solution 

methodology that can solve the problem of the multi-vehicle mothership system can be 

developed. 

c) Mothership system with time window  

The formulation presented in Chapter 3 could be extended to solve the problem in 

which demand pick-up and delivery requests within a time window are considered. The 

model suggested in this research does not consider vehicle and drone waiting time. The 

focus was to minimize the distance (cost) traveled by both modes. However, extending this 

model to consider the customers’ time windows will require including the waiting time for 

both modes as part of the objective function. An improved solution methodology for the 

above described formulation extension should also be developed. This step would entail 

extending one of the existing methodologies that solves classic vehicle routing problem 

with a time window (e.g. simulated annealing (SA), Tabu search (TS), and genetic 

algorithm (GA)) and modifying the algorithm to solve the mothership system with time 

window. 
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