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ABSTRACT 

This dissertation presents contributions to the field of vehicle routing problems by utilizing 

exact methods, heuristic approaches, and the integration of machine learning with 

traditional algorithms. The research is organized into three main chapters, each dedicated 

to a specific routing problem and a unique methodology. The first chapter addresses the 

Pickup and Delivery Problem with Transshipments and Time Windows, a variant that 

permits product transfers between vehicles to enhance logistics flexibility and reduce costs. 

To solve this problem, we propose an efficient mixed-integer linear programming model 

that has been shown to outperform existing ones. The second chapter discusses a practical 

workforce scheduling problem, formulated as a specific type of vehicle routing problem. 

The objective here is to efficiently assign consultants to various clients and plan their trips. 

This computational challenge is addressed by using a two-stage approach: the first stage 

employs a mathematical model, while the second stage refines the solution with a heuristic 

algorithm. In the final chapter, we explore methods that integrate machine learning with 

traditional approaches to address the Traveling Salesman Problem, a foundational routing 

challenge. Our goal is to utilize supervised learning to predict information that boosts the 

efficiency of existing algorithms. Taken together, these three chapters offer a 

comprehensive overview of methodologies for addressing vehicle routing problems. 
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Chapter 1. Introduction 

Vehicle routing problems (VRPs) stand as fundamental challenges within the domains of 

logistics and transportation. These problems entail the allocation of resources in a manner 

that optimizes objectives, such as minimizing transportation costs, maximizing customer 

satisfaction under diverse constraints, such as maximum capacity, time windows, etc. 

Solving VRPs efficiently is crucial for enhancing operational efficiency, reducing costs, 

and ensuring timely and effective delivery of goods and services. As a result, extensive 

research efforts have been dedicated to developing innovative methods, algorithms, and 

techniques to address VRPs. This dissertation undertakes a comprehensive exploration of 

exact methods, heuristics, and supervised learning approaches to address vehicle routing 

problems and their variants. 

In Chapter 2, we investigate the pickup and delivery problem with transshipments (PDP-

T), where requests can be transferred between vehicles, as well as the pickup and delivery 

problem with time windows and transshipments (PDPTW-T). We conduct an in-depth 

analysis of two state-of-the-art models, identify limitations of the models, and propose 

refined formulations. Additionally, we introduce a new formulation that tackles both PDP-

T and PDPTW-T. We address 340 generated PDP-T instances and 360 open-access 

PDPTW-T instances. Our computational results showcase the superior performance of our 

proposed model in terms of solution quality and computational time. Notably, our model 

significantly reduces the average computational time by 96% for PDP-T and 40% for 

PDPTW-T instances. 

In Chapter 3, we focus on a variant of the routing problem that incorporates workforce 

allocation into considerations. Specifically, we address the simultaneous assignment of 

consultant supplies to client demands while determining optimal traveling routes for 

consultants. Our approach accounts for skill requirements, capacity limitations, fixed 

demand, and a maximum number of travel legs. Furthermore, we introduce priority 

matching, ensuring that clients are assigned to consultants with suitable priority levels. To 

tackle this computational challenge, we propose a decomposition algorithm and a MIP-
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based neighborhood search algorithm. Additionally, we extend an existing Mixed-Integer 

Linear Programming (MILP) formulation to adapt it to the specific requirements of the 

proposed problem and compare our algorithms against it. By evaluating on 100 synthetic 

instances and 12 real-life instances, our computational analysis highlights the superior 

solution quality and reduced computational time offered by our proposed algorithms, 

particularly for large-scale and real-life scenarios. 

In Chapter 4, we shift our focus to the traveling salesman problem (TSP), the most basic 

version of vehicle routing problems. Here, we propose a novel supervised learning 

approach that distinguishes itself from previous methods by leveraging local information 

rather than global information. By introducing the concept of "anchors," nodes that should 

be connected to their nearest neighbors in the optimal solution, our approach demonstrates 

excellent scalability and generalization capacity. Experimental results illustrate the 

effectiveness of our proposed model, successfully identifying 87% of the anchors with a 

precision exceeding 95% for both generated and TSPLIB instances. By integrating the 

predicted anchors into established methods such as the Miller-Tucker-Zemlin (MTZ) 

model and insertion algorithms, we achieve substantial improvements in solution quality, 

reducing the average gap. 

Overall, this dissertation contributes advanced methodologies to tackle vehicle routing 

problems and their variants. Through improvements on exact methods, heuristics, and 

learning-based algorithms, we enhance solution quality, reduce computational time, and 

pave the way for scalable and efficient routing optimizations in real-world scenarios. 
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Chapter 2. An Exact Model for Solving the Pickup 

and Delivery Problems 
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This chapter is based on a paper published by Zefeng Lyu and Andrew Junfang Yu: 

Lyu, Z., & Yu, A. J. (2022). The pickup and delivery problem with transshipments: 

Critical review of two existing models and a new formulation. European Journal 

of Operational Research. 

Zefeng Lyu contributed to methodology, original draft writing, software, validation, 

formal analysis, and visualization, while Dr. Andrew Junfang Yu contributed to 

conceptualization, methodology, and provided input during the writing and editing process, 

as well as providing supervision. 

The pickup and delivery problem with transshipments (PDP-T) is generalized from the 

classical pickup and delivery problem (PDP) by allowing the transfer of requests between 

vehicles. After considering the time window constraints, the PDP-T is further generalized 

to the pickup and delivery problem with time windows and transshipments (PDPTW-T). 

In this paper, we review two state-of-the-art models for the PDP-T and PDPTW-T. We 

point out the possible issues existing in the models and provide our revisions. In addition, 

we develop a new mixed-integer linear programming formulation to solve the PDP-T and 

PDPTW-T. The performance of the proposed model is evaluated by solving 340 generated 

PDP-T instances and 360 open-access PDPTW-T instances. Computational results show 

that the proposed model outperforms the existing models in terms of solution quality and 

computing time. PTP-T instances with up to 25 requests and 2 transfer stations are solved 

to optimality by using the proposed model. As a comparison, the best-known benchmarks 

in literature are instances with 5 requests and 1 transfer station. In addition, the average 

computational time for solving PDP-T is reduced by 96%. For PDPTW-T instances, the 

average computing time is reduced by 40%. 

2.1 Introduction 

The pickup and delivery problem (PDP) aims to find the optimal routes for a fleet of 

capacitated vehicles to satisfy customer requests. Each request is associated with a pickup 

location and a delivery location. The vehicles depart from the origin depots, visit the pickup 
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locations to receive loads, deliver the loads to corresponding delivery locations, and return 

to the destination depots at the end. The PDP has been broadly studied. Relevant survey 

papers can be found at Koç, Laporte, & Tükenmez (2020) and Berbeglia, Cordeau, & 

Laporte (2010). With the development of e-commerce and information technology, people 

are exploring innovative methods to improve the transportation system. Allowing 

transshipment is one of the most promising attempts, which raises the pickup and delivery 

problem with transshipments (PDP-T). 

In PDP-T, requests can be transferred from one vehicle to another. Specifically, requests 

can be dropped off at designated transfer stations and be stored there temporarily. Then, 

other vehicles can come to pick up the requests and complete the delivery. The PDP-T 

improves the efficiency of the transportation system by better utilizing the capacity and 

available time of the vehicles. In practice, the time for receiving and delivering requests is 

always restricted, either in a soft or hard manner, which gives rise to the pickup and 

delivery problem with time windows and transshipments (PDPTW-T). 

Mitrović-Minić & Laporte (2006) show that allowing the transfer of requests is 

beneficial as the drivers can stay in their home areas. However, considering transshipment 

makes the problem much harder to be solved. For the pickup and delivery problem with 

time windows (PDPTW), Ropke, Cordeau, & Laporte (2007) report that the branch-and-

cut algorithm can solve instances with up to 96 requests. However, the solvable scale is 

reduced to 7 requests for PDPTW-T (see Rais, Alvelos, & Carvalho, 2014). The challenges 

of solving the PDPTW-T are the expanded feasible regions and the synchronization 

requirements. 

In this paper, we review two models for the PDP-T and PDPTW-T. We point out the 

possible issues existing in the models. We carefully discuss the causes of the issues and 

suggest our revisions. In addition, we presented a new mixed-integer linear programming 

(MILP) formulation to solve the problems. Computational results show that the proposed 

model is superior to the two existing models. To the best of our knowledge, this paper is 

the first that solves PDP-T instances with 25 requests and 2 transfer stations to optimality. 
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For PDPTW-T, the proposed model increases the solvable scale from 3 requests and 4 

transfer stations to 5 requests and 4 transfer stations. 

Contributions of this paper are three folds. First, we revise the possible issues existing 

in two state-of-the-art models for the PDP-T and PDPTW-T. Second, we present a new 

MILP formulation that is superior to the existing models. Third, we generate 340 new PDP-

T instances and present the corresponding computational results as benchmarks for future 

research. 

2.2 Literature review 

Commonly used methods for solving the PDP-T and PDPTW-T can be divided into two 

categories, i.e., exact methods and metaheuristics. The exact algorithms for vehicle routing 

problems have been widely studied. We refer interested readers to the survey presented by 

Costa, Contardo, & Desaulniers (2019). In contrast, exact algorithms for PDP-T and 

PDPTW-T received limited attention. 

Cortés, Matamala, & Contardo (2010) present an arc-based model for the PDP-T and 

show the benefits of allowing request transfers. They split every transfer state into two 

nodes, one for loading requests and the other for unloading requests. The model is solved 

by a branch-and-cut technique based on Benders decomposition. They show that their 

method can reduce the computing time by 90% compared with the branch-and-bound 

algorithm. As the computational results, they solve instances with 6 requests, 2 vehicles, 

and 1 transfer station to optimality. 

Rais et al. (2014) present a MILP formulation to solve the PDP-T. The model can solve 

the PDPTW-T after adding additional time window constraints. In addition, several 

variants of the PDP-T are captured by adding necessary modifications. The computational 

results show that the MILP model solves PDP-T instances with 5 requests and PDPTW-T 

instances with 7 requests to optimality. In this paper, we review the MILP model and point 

out the possible issues. The causes of the issues are analyzed using an illustrative example. 
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Related revisions are also presented. In addition, we present a new MILP formulation that 

solves PDP-T instances with 25 requests and 2 transfer stations to optimality. 

Sampaio et al. (2020) present a MILP formulation for the PDPTW-T in urban freight 

delivery systems. This formulation is based on the model proposed by Rais et al. (2014). 

The unique feature of their problem is that the drivers are occasional. Unlike regular drivers 

employed by the companies, the occasional drivers provide shorter shifts, e.g., 3 to 5 hours. 

In addition, the capacity constraints are relaxed by assuming that the vehicle capacity is 

sufficient. They present an adaptive large neighborhood search (ALNS) algorithm to solve 

large-scale instances. They show that the benefit of allowing transshipment can be 

significant, especially in settings where pickup and delivery locations are far apart, and the 

driver shifts are short. In this paper, we identify the possible issues existing in the MILP 

model, present our revisions, and propose a new model. The performance of the proposed 

model is compared with that of the existing one using open-access data. 

A dynamic pickup and delivery problem under the urban environment is studied by 

Arslan, Agatz, Kroon, & Zuidwijk (2019). They solve the dynamic version of PDP using 

a rolling horizon framework and an exact method. The pickup and delivery problem with 

split loads and transshipments (PDPSL-T) is also closely related to the problems studied in 

this paper. In PDPSLT, loads can be split and delivered by multiple vehicles. Unlike the 

PDPTW-T, the PDPSL-T does not consider the time window constraints. Wolfinger & 

Salazar-González (2021) present a branch-and-cut algorithm for PDPSL-T. The branch-

and-cut algorithm solves instances with 8 requests to optimality within 24 hours. They state 

that the instances solved are the largest both for the PDP-T and PDPSL-T. In this paper, 

we solve PDP-T instances with 25 requests to optimality within 1 hour. 

Exact methods can find optimal solutions but only work for small-scale instances. 

Metaheuristics are practical methods in solving large-scale instances. Ropke & Pisinger 

(2006) present an ALNS algorithm to solve the PDPTW. Since then, the ALNS algorithm 

is widely applied to solve the PDP-T and PDPTW-T (see for examples Qu & Bard, 2012; 

Masson, Lehuédé, & Péton, 2013; Sampaio, Savelsbergh, Veelenturf, & Van Woensel, 

2020; Wolfinger, 2021; and Voigt & Kuhn, 2021). In addition to the ALNS algorithm, 
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Cortes & Suzuki (2020) present a simulated annealing algorithm. Danloup, Allaoui, & 

Goncalves (2018) compares a large neighborhood search algorithm with a genetic 

algorithm in solving the PDP-T. 

The remainder of the paper is constructed as follows. In Section 3.3, we review the PDP-

T model presented by Rais et al. (2014). We point out the possible issues existing in the 

model, i.e., the subtour elimination requirement and the synchronization requirement are 

not satisfied in specific instances. We discuss the causes of the issues and present our 

revisions. In Section 3.4, we review the PDPTW-T model presented by Sampaio et al. 

(2020). This model is modified from the model of Rais et al. (2014). Similar to the previous 

section, we point out the possible issues for this model and present revisions. In Section 

3.5, we propose a new MILP formulation for solving the PDP-T and PDPTW-T. In Section 

3.6, the performance of the proposed MILP is evaluated by solving 340 generated PDP-T 

instances and 360 open-access PDPTW-T instances. Computational results show that the 

proposed model outperforms the existing models. Finally, conclusions are made in the last 

section. 

2.3 Formulation for PDP-T 

This section discusses the MILP formulation proposed by Rais et al. (2014). The notations 

are defined as follows. Graph 𝐺 = (𝑁, 𝐴) is a directed graph, where 𝑁 is the set of nodes 

and 𝐴 = {(𝑖, 𝑗)|𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} is the set of arcs. There are five types of nodes, i.e., the 

origin depots 𝑂, the destination depots 𝑂′, the pickup locations 𝑃, the delivery locations 𝐷, 

and the transfer stations 𝑇. The vehicles 𝐾 are heterogeneous in terms of the origin depots, 

destination depots, and driving cost per unit distance traveled. 𝑜(𝑘) and 𝑜′(𝑘) denote the 

original depot and destination depot of vehicle 𝑘 , respectively. 𝑅  denotes the set of 

requests. Each request 𝑟 ∈ 𝑅  is associated with a pickup location 𝑝(𝑟)  and a delivery 

location 𝑑(𝑟). 𝑐𝑖𝑗
𝑘  represents the travel cost associated with arc (𝑖, 𝑗) and vehicle 𝑘. In order 

to restrict the maximum load, 𝑢𝑘 denotes the capacity of vehicle 𝑘 while 𝑞𝑟 denotes the 

quantality of request 𝑟. Binary variables 𝑥𝑖𝑗
𝑘 , 𝑦𝑖𝑗

𝑘𝑟 and 𝑧𝑖𝑗
𝑘  are the decision variables. 𝑥𝑖𝑗

𝑘 =1 
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if vehicle 𝑘 travels through arc (𝑖, 𝑗). 𝑥𝑖𝑗
𝑘 = 0 otherwise. We can obtain the vehicle flows 

from the results of 𝑥𝑖𝑗
𝑘 . Similarly, 𝑦𝑖𝑗

𝑟𝑘 = 1 if request 𝑟 is transported by vehicle 𝑘 through 

arc (𝑖, 𝑗) and 𝑦𝑖𝑗
𝑟𝑘 = 0 otherwise. The request flows can be obtained from these variables. 

𝑧𝑖𝑗
𝑘  is used to determine the order in which the nodes are visited. Specifically, 𝑧𝑖𝑗

𝑘 = 1 if 

node 𝑖 precedes node 𝑗 for vehicle 𝑘 and 𝑧𝑖𝑗
𝑘 = 0 otherwise. With the above notations, the 

MILP formulation is listed as follows. 

 

min. ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

 
 

s. t. ∑ 𝑥𝑖𝑗
𝑘 ≤ 1  ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘)

(𝑖,𝑗)∈𝐴

 
(2.3.1) 

 ∑ 𝑥𝑖𝑗
𝑘 = ∑ 𝑥𝑗𝑙

𝑘

(𝑗,𝑙)∈𝐴(𝑖,𝑗)∈𝐴

  ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘), 𝑙 = 𝑜′(𝑘) 
(2.3.2) 

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 0  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁\{𝑜(𝑘), 𝑜′(𝑘)} 
(2.3.3) 

 ∑ ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴𝑘∈𝐾

= 1  ∀𝑟 ∈ 𝑅, 𝑖 = 𝑝(𝑟) 
(2.3.4) 

 ∑ ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴𝑘∈𝐾

= 1  ∀𝑟 ∈ 𝑅, 𝑖 = 𝑑(𝑟) 
(2.3.5) 

 ∑ ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴𝑘∈𝐾

− ∑ ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴𝑘∈𝐾

= 0  ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 
(2.3.6) 

 ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴

− ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴

= 0  ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁\𝑇 
(2.3.7) 

 𝑦𝑖𝑗
𝑘𝑟 ≤ 𝑥𝑖𝑗

𝑘   ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (2.3.8) 

 ∑ 𝑞𝑟𝑦𝑖𝑗
𝑘𝑟 ≤ 𝑢𝑘𝑥𝑖𝑗

𝑘

𝑟∈𝑅

  ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 
(2.3.9) 

 𝑥𝑖𝑗
𝑘 ≤ 𝑧𝑖𝑗

𝑘    ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘), 𝑗 ≠ 𝑜′(𝑘) (2.3.10) 

 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑖

𝑘 = 1 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘), 𝑗 ≠ 𝑜′(𝑘) (2.3.11) 
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 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑙

𝑘 + 𝑧𝑙𝑖
𝑘 ≤ 2  ∀𝑖, 𝑗, 𝑙 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ≠ 𝑜(𝑘), 𝑙 ≠ 𝑜′(𝑘) (2.3.12) 

 𝑥𝑖𝑗
𝑘 ∈ {0, 1}  ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.13) 

 𝑦𝑖𝑗
𝑘𝑟 ∈ {0,1}  ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (2.3.14) 

 𝑧𝑖𝑗
𝑘 ∈ {0,1}  ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.3.15) 

 

Explanations for the MILP formulation can be found in Rais et al. (2014). We briefly 

review these constraints here. Constraints (2.3.1) to (2.3.3) maintain the vehicle flows 

while constraints (2.3.4) to (2.3.7) maintain the request flows. Constraints (2.3.8) link the 

vehicle flows and the request flows. Constraints (2.3.9) ensure that the loading capacities 

are not exceeded. Constraints (2.3.10) to (2.3.12) are used to eliminate subtours. 

Constraints (2.3.13) to (2.3.15) restrict the variables 𝑥𝑖𝑗
𝑘 , 𝑦𝑖𝑗

𝑘𝑟 , 𝑧𝑖𝑗𝑘 to be binary. 

We find it necessary to make some revisions to this model. The first revision is that the 

origin depots and destination depots of the requests should be excluded from constraints 

(2.3.7). Otherwise, the request flow is restricted to returning to the pickup location after 

passing through the delivery location, which makes the problem infeasible. Constraints 

(2.3.7) are revised as constraints (2.3.16) to resolve this issue. 

 

∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴

− ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴

= 0  ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁\{𝑇 ∪ {𝑝(𝑟), 𝑑(𝑟)}} 
(2.3.16) 

 

The second revision is related to subtour elimination. Constraints (2.3.10) to constraints 

(2.3.12) eliminate the subtours by determining the precedence that the nodes are visited. 

The origin depots and destination depots are excluded from the constraints. This exclusion 

is necessary for the traveling salesman problem (TSP) because the origin depot and 

destination depot coincide with each other.  

However, the depots should not be excluded for PDP-T. Otherwise, the model would 

obtain unreasonable solutions as the vehicles can return to the original depots. An 

illustrative example is shown in Figure 2.3.1. 
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Figure 2.3.1: Illustration of the solution obtained by solving “example 1” 
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This figure shows a solution obtained by solving “example 1” using the revised model 

without adding constraints (2.3.17) to (2.3.19). The geographical locations of the nodes 

and the routes are shown in the top. The vehicle flows are shown in the bottom. This 

solution is infeasible because of the subtour. As is shown in the figure, there are subtours 

in the solution because the depots 𝑂 and 𝑂′ are excluded from the subtour elimination 

constraints. To address this issue, we modify the domain of constraints (2.3.10) to (2.3.12). 

The revised constraints are shown in constraints (2.3.17) to (2.3.19). 

 

 𝑥𝑖𝑗
𝑘 ≤ 𝑧𝑖𝑗

𝑘    ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.17) 

 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑖

𝑘 = 1 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.18) 

 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑙

𝑘 + 𝑧𝑙𝑖
𝑘 ≤ 2  ∀𝑖, 𝑗, 𝑙 ∈ 𝑁, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗), (𝑗, 𝑙), (𝑙, 𝑖) ∈ 𝐴 (2.3.19) 

 

The third revision is associated with the synchronization requirement. Synchronization 

means that if a request is transferred between two vehicles, the vehicle that drops off the 

request should arrive at the transfer station before the vehicle that comes to pick up the 

request. This issue is easily overlooked because the model obtains correct solutions for 

most of the PDP-T instances. We will explain in detail how ignoring the synchronizing 

constraints can lead to infeasible solutions. An example is shown in Figure 2.3.2. 

This is an illustration of the solution obtained by solving “example 2” using the revised 

model without adding equations (2.3.20) to (2.3.24). The solid line represents the route of 

vehicle 1 while the dashed line represents the route of vehicle 2. This solution is infeasible 

because the two transshipments conflict with each other. As is shows, request 1 is 

transferred from vehicle 1 to vehicle 2 at transfer station 𝑡2 while request 2 is transferred 

from vehicle 2 to vehicle 1 at transfer station 𝑡1 . However, these two transshipments 

conflict with each other. On the one hand, if requests 1 is transferred, vehicle 1 must arrive 

𝑡1 earlier than vehicle 2. On the other hand, if request 2 is transferred, vehicle 2 must arrive 

𝑡1 earlier than vehicle 1, leading to the conflict. To solve the synchronization issue, we add 

new variables and constraints as shown in equations (2.3.20) to (2.3.24). 𝑒𝑖
𝑘 are positive  
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Figure 2.3.2: Illustration of the solution obtained by solving “example 2” 
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numbers that represent the sequence that node 𝑖 is visited by vehicle 𝑘. Variables 𝑠𝑡𝑟
𝑘1𝑘2 

indicate whether request 𝑟 is transferred from vehicle 𝑘1 to vehicle 𝑘2 at transfer station 𝑡. 

 

  𝑒𝑖
𝑘 + 1 − 𝑒𝑗

𝑘 ≤ 𝑀(1 − 𝑥𝑖𝑗
𝑘 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.20) 

 ∑ 𝑦𝑗𝑡
𝑘1𝑟

(𝑗,𝑡)∈𝐴

+ ∑ 𝑦𝑡𝑗
𝑘2𝑟

(𝑡,𝑗)∈𝐴

≤ 𝑠𝑡𝑟
𝑘1𝑘2 + 1  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.3.21) 

  𝑒𝑡
𝑘1 − 𝑒𝑡

𝑘2 ≤ 𝑀(1 − 𝑠𝑡𝑟
𝑘1𝑘2) ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.3.22) 

  𝑒𝑖
𝑘 ≥ 0  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.3.23) 

 𝑠𝑡𝑟
𝑘1𝑘2 ∈ {0,1}  ∀𝑡 ∈ 𝑇, ∀𝑟 ∈ 𝑅, ∀𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.3.24) 

 

Constraints (2.3.20) determine the sequence of the nodes visited by the vehicles. 𝑀 is a 

sufficiently large number. In the experiments, we set the value to be the number of nodes 

in the Graph 𝐺. Constraints (2.3.21) indicate whether a request is transferred between two 

vehicles in the transfer stations. Constraints (2.3.22) restrict that if a request 𝑟 is transferred 

from 𝑘1 to 𝑘2 at transfer station 𝑡, the vehicle 𝑘1 should visit 𝑡 before 𝑘2. The decision 

variables are defined in equations (2.3.23) and (2.3.24). 

 

 ∑ 𝑥𝑖𝑗
𝑘 = 1  ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘)

(𝑖,𝑗)∈𝐴

 
(2.3.25) 

 

In addition to the three revisions above, we also suggest modifying constraints (2.3.1) 

to constraints (2.3.25). This modification is not mandatory but is related to how the PDP-

T is defined. In the original problem, if a vehicle is not used, its travel distance between 

the origin depot and destination depot will not be counted into the objective function. This 

setting causes an issue that the vehicles with long distances between the origin depots and 

destination depots are not preferred. In other words, the vehicles with long origin-

destination pairs may not be used even if there are requests on the way of their original 

trips. An illustrative example is shown in Figure 2.3.3.  
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Figure 2.3.3: Illustration of the solution obtained by solving “example 3” 
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This figure depicts an illustration of comparing the solutions obtained by solving 

“example 3” using the revised model and that without replacing constraints (2.3.1) by 

constraints (2.3.25). The dashed line represents the route of vehicle 1 while the solid line 

represents the route of vehicle 2. The coordinates are noted above the nodes. There are two 

vehicles and one request in the example. The origin and destination of vehicle 𝑘1 are 𝑜1 

and 𝑜1′ respectively. Similarly, the origin and destination of vehicle 𝑘2 are 𝑜2 and 𝑜2′. The 

solution of using constraints (2.3.1) is shown at the top of the figure. In this solution, the 

request is picked up and delivered by 𝑘2. The objective function value is 6 but there is a 

detour of 4. Vehicle 𝑘1 is not preferred because the distance between 𝑜1 and 𝑜1′ is too far. 

If vehicle 𝑘1 is used, the objective function value will increase to 10, although there is no 

detour for 𝑘1 to pick up and deliver the request. 

If constraints (2.3.25) are used, the request would be picked up and delivered by 𝑘1. As 

shown at the bottom of the figure, there is no detour in the new solution. In other words, 

the revised model is to minimize the detour taken by the vehicles rather than the actual 

driving distance. Note that our objective function value is not exactly the detour. In fact, it 

is equal to the detour plus a constant, which is the total distance between the origins and 

destinations of the vehicles. To retrieve the detour, we need to subtract this constant. The 

revised model for solving PDP-T is shown as follows,  

 

min. ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

 
 

s. t. (2.3.2) to (2.3.6), (2.3.8), (2.3.9), (2.3.13) to (2.3.25).  

 

2.4 Formulation for PDPTW-T 

This section discusses the MILP formulation presented by Sampaio et al. (2020) for solving 

PDPTW-T. The model is generated from the one proposed by Rais et al. (2014), which is 

shown in Section 2.3. Sampaio et al. (2020) focus on PDPTW-T for urban environments 

where crowd-shipping is considered. Specifically, the drivers are not employed by the 
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companies but occasionally provide services. The occasional drivers tend to provide short 

service times, e.g., three to five hours. Sampaio et al. (2020) make some restrictions and 

assumptions for the PDPTW-T. They require that the vehicles start and end their shifts at 

the same depots. They assume that the capacities of the vehicles are sufficient, so the 

capacity constraints can be released. It is also assumed that each vehicle can visit the same 

transfer station at most once.  

The notations used in this section are the same as those in Section 2.3. Additional 

notations are defined to handle the time window constraints. 𝑐𝑖𝑗 represents the travel cost 

associated with arc (𝑖, 𝑗). 𝜏𝑖𝑗 represents the traveling time between node 𝑖 and node 𝑗. 𝐸𝑖 

denotes the earliest time that the requests can be picked up at the location 𝑖. By contrast, 

𝐿𝑖 denotes the latest time that the requests can be delivered to 𝑖. Variables 𝑠𝑡𝑟
𝑘1𝑘2 = 1 if 

request 𝑟  is transferred from vehicle 𝑘1  to vehicle 𝑘2  at transfer station 𝑡 . 𝑠𝑡𝑟
𝑘1𝑘2 = 0 

otherwise. 𝑎𝑖
𝑘 and 𝑏𝑖

𝑘 represent the arrival time and departure time for vehicle 𝑘 at location 

𝑖, respectively. The MILP formulation is listed as follows. 

 

min. ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

 
 

s. t. (2.3.1), (2.3.4) - (2.3.6), (2.3.8), (2.3.13), (2.3.14), (2.3.16)  

 ∑ 𝑥𝑖𝑗
𝑘 = ∑ 𝑥𝑗𝑖

𝑘

(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴

  ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘) 
(2.4.1) 

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 0  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑃 ∪ 𝐷 ∪ 𝑇 
(2.4.2) 

  𝑏𝑖
𝑘 + 𝜏𝑖𝑗 − 𝑎𝑗

𝑘 ≤ 𝑀(1 − 𝑥𝑖𝑗
𝑘 )  ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.4.3) 

  𝑏𝑖+
𝑘 ≥ 𝐸𝑖+ , 𝑎𝑖−

𝑘 ≤ 𝐿𝑖−   ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, 𝑖+ = 𝑝(𝑟), 𝑖− = 𝑑(𝑟) (2.4.4) 

 ∑ 𝑦𝑗𝑡
𝑘1𝑟

(𝑗,𝑡)∈𝐴

+ ∑ 𝑦𝑡𝑗
𝑘2𝑟

(𝑡,𝑗)∈𝐴

≤ 𝑠𝑡𝑟
𝑘1𝑘2 + 1  ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑘1, 𝑘2 ∈ 𝐾  (2.4.5) 

 𝑎𝑡
𝑘1 − 𝑏𝑡

𝑘2 ≤ 𝑀(1 − 𝑠𝑡𝑟
𝑘1𝑘2)  ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑘1, 𝑘2 ∈ 𝐾 (2.4.6) 

 𝑠𝑡𝑟
𝑘1𝑘2 ∈ {0,1}  ∀𝑡 ∈ 𝑇, ∀𝑟 ∈ 𝑅, ∀𝑘1, 𝑘2 ∈ 𝐾 (2.4.7) 
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 𝑎𝑖
𝑘, 𝑏𝑖

𝑘 ≥ 0  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.4.8) 

 

Detailed descriptions of the formulation can be found in Sampaio et al. (2020). Here we 

briefly describe the differences between this model and the model described in Section 2.3. 

Constraints (2.4.1) and (2.4.2) are used to replace constraints (2.3.2) and (2.3.3) because 

Sampaio et al. (2020) assume that the starting and ending points of the vehicles coincide. 

Constraints (2.4.3) and (2.4.4) are added as time window constraints. Constraints (2.4.5) 

are almost the same as constraints (2.3.21). The only difference between them is that 𝑘1 =

𝑘2 is allowed in constraints (2.4.5). Although it does not have a significant effect on the 

solution quality, it is thought better to prohibit it just like in constraints (2.3.21). Constraints 

(2.4.6) achieve the same function as constraints (2.3.22). They make sure that if a transfer 

occurs, the vehicle dropping the request should arrive at the transfer location before the 

vehicle picking up the request. Constraints (2.4.7) and (2.4.8) define the decision variables. 

Next, we discuss the possible issues in the model and propose our revisions. 

The first revision is related to vehicle flow conservation. The home depots are excluded 

from constraints (2.4.2). However, this exclusion is too broad. We should only exclude the 

depot of the corresponding vehicle rather than the whole set of depots. Otherwise, the 

vehicles can depart from a depot that does not belong to it. 

A counterexample is shown in Figure 2.4.1. In this example, the solution is obtained by 

solving “example 4” using the revised model without replacing revising constraints (2.4.1) 

and (2.4.2). This solution is infeasible because the vehicle 𝑘3 does not start and end from 

its own depot. Instead, 𝑘3 utilizes the depots that belong to 𝑘1 and 𝑘2. To solve this issue, 

we suggest replacing the constraints (2.4.1) and (2.4.2) with the following constraints. 

 

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 0  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 
(2.4.9) 

 

The second revision is related to the time window constraints. By analyzing the open-

access datasets in Sampaio, Savelsbergh, Veelenturf, & Van Woensel (2020b), we find that  
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Figure 2.4.1: Illustration of the solution obtained by solving “example 4” 
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the current constraints are not sufficient to restrict the time windows. Constraints (2.4.4) 

only restrict one side for the time windows, i.e., the earliest departure time for the pickup 

locations and the latest arriving time for the delivery nodes. In the dataset, 𝐸𝑖+  is equal to 

zero for all nodes and 𝐿𝑖− is equal to 180, 240, or 300 depending on the vehicle shift length. 

In contrast, 𝐸𝑖− and 𝐿𝑖+  have different variables and thus are more important. However, 

𝐸𝑖− and 𝐿𝑖+ are not used in the model. It is thought necessary to restrict both sides of the 

time windows. Otherwise, the time of arrival and departure may not be restricted as 

expected. In addition, it is thought necessary to add new constraints to maintain time 

conservation. For each vehicle, the time of reaching a node must be earlier than the time of 

leaving that node. Without these constraints, the obtained optimal solution would be 

unreasonable. 

An example is shown in Figure 2.4.2. In this example, the solution is obtained by solving 

“example5” using the revised model without revising the constraints. This solution is 

infeasible because the time window constraints fail to eliminate self-loops. To solve this 

issue, we replace constraints (2.4.4) with constraints (2.4.10), and add constraints (2.4.11). 

 

 𝐸𝑖 ≤ 𝑏𝑖
𝑘 ≤ 𝐿𝑖 , 𝐸𝑖 ≤ 𝑎𝑖

𝑘 ≤ 𝐿𝑖 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 (2.4.10) 

  𝑏𝑖
𝑘 ≥ 𝑎𝑖

𝑘   ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘) (2.4.11) 

 

The last revision is related to the subtour elimination. The subtours of the vehicle flow 

are eliminated by determining the order in which the nodes are visited. This method is 

similar to the subtour elimination constraints proposed by Miller, Zemlin, & Tucker (1960). 

However, the subtours of the request flow are not eliminated as expected. An illustrative 

example is shown in Figure 2.4.3.  

The solution is obtained by solving “example6”. The solid line represents the route of 

vehicle 1 while the dashed line represents the route of vehicle 2. This solution is infeasible 

because there are subtours for request 2. The instance includes four requests, two vehicles, 

and one transfer station. Note that we have made the first two revisions and add the new 

constraints. However, the solution is still infeasible because the coupling requirement is  
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Figure 2.4.2: Illustration of the solution obtained by solving “example 5” 
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Figure 2.4.3: Illustration of the solution obtained by solving “example 6” 
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not respected. Request 2 is not picked up and delivered by the same vehicle. We find that 

there are subtours for request 2. The flow of request 2 is 2 → 1′ → 𝑜1 → 1 → 3′ → 2 and 

2′ → 3 → 𝑜2 → 2′. This request flow satisfies the model but contains subtours. There are 

several ways to solve this issue. For example, we can explicitly add subtour elimination 

constraints for the request flows. Here, we provide an alternative method. By analyzing the 

solutions, we find that all the subtours contain depots in the request flow. Therefore, we 

can eliminate the subtours by simply prohibiting depots in the request flow. The constraints 

to be added are (2.4.12), (2.4.13), and (2.4.14). 

 

 𝑦𝑖𝑗
𝑘𝑟 = 0   ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ∈ 𝑂 (2.4.12) 

 𝑦𝑖𝑗
𝑘𝑟 = 0   ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑗 ∈ 𝑂 (2.4.13) 

 𝑦𝑖𝑗
𝑘𝑟 = 0   ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑗 = 𝑝(𝑟) (2.4.14) 

 

The revised model for solving PDPTW-T is listed as follows, 

 

min. ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

 
 

s. t. (2.3.1), (2.3.4) - (2.3.6), (2.3.8), (2.3.13), (2.3.14), (2.3.16), 

(2.4.3), (2.4.5) - (2.4.14). 

 

2.5 New MILP formulation 

We propose a new MILP formulation to solve the PDP-T and PDPTW-T. We generate the 

model based on the one presented by Rais et al. (2014). The main improvement is that we 

add several redundant constraints for the model. These constraints are redundant in terms 

of searching for the optimal solution but can strengthen the LP relaxation. As a result, the 

efficiency of the model is significantly improved. These redundant constraints can also be 

designed as valid cuts for a branch-and-cut algorithm. In this paper, we directly add these 
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constraints to the model as the number of them is moderate. It may not be worth checking 

the solutions during the optimization process and adding the valid cuts as needed. 

We have also tried some other methods to reduce the computing time of solving the 

model. For instance, one can reduce the problem scale by eliminating unnecessary arcs 

before feeding them into the model (see for example Cordeau, 2006). One can also reduce 

the number of variables by aggregating the time variables (see for example Cordeau, 2006). 

Similarly, the number of variables can be reduced by only keeping the arriving time for the 

nodes except the transfer stations. In addition, the constraints for time conservation can be 

lifted (see for example Ropke et al., 2007). However, based on our experiments, these 

techniques do not reduce the computing time significantly. Based on our preliminary 

experiments, an efficient way to reduce the computing time is to add appropriate redundant 

constraints to the model, as shown in the following MILP formulation. 

 

min. ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

 
 

s. t. (2.3.4) - (2.3.6), (2.3.8), (2.3.9), (2.3.13), (2.3.14), (2.3.16), 

(2.3.21), (2.3.24), (2.3.25), (2.4.2), (2.4.8) 

 

 ∑ 𝑥𝑗𝑖
𝑘 = 0

(𝑗,𝑖)∈𝐴

  ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘) 
(2.5.1) 

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

= 0  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑂 ∪ 𝑂′, 𝑖 ≠ 𝑜(𝑘) 
(2.5.2) 

 ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 1  ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜′(𝑘) 
(2.5.3) 

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

= 0  ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜′(𝑘) 
(2.5.4) 

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

≤ 1  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑇 
(2.5.5) 

 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾(𝑖,𝑗)∈𝐴

= 1 ∀𝑖 ∈ 𝑃 ∪ 𝐷 
(2.5.6) 
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 ∑ ∑ 𝑦𝑖𝑗
𝑘𝑟

𝑘∈𝐾(𝑖,𝑗)∈𝐴

= 0  ∀𝑟 ∈ 𝑅, 𝑗 = 𝑝(𝑟) 
(2.5.7) 

 ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴

= 0  ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑂 ∪ 𝑂′, 𝑖 ≠ 𝑜(𝑘), 𝑖 ≠ 𝑜′(𝑘) 
(2.5.8) 

 𝑎𝑡
𝑘1 − 𝑏𝑡

𝑘2 ≤ 𝑀(1 − 𝑠𝑡𝑟
𝑘1𝑘2)  ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.5.9) 

  𝑏𝑖
𝑘 + 𝜏𝑖𝑗

𝑘 − 𝑎𝑗
𝑘 ≤ 𝑀(1 − 𝑥𝑖𝑗

𝑘 )  ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.5.10) 

 𝑎𝑖
𝑘 ≥ 𝐸𝑖 , 𝑏𝑖

𝑘 ≤ 𝐿𝑖  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.5.11) 

 𝑎𝑖
𝑘 ≤ 𝑏𝑖

𝑘  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.5.12) 

 

The objective function minimizes the traveling costs of the vehicles. Constraints (2.5.1) 

restrict that the vehicles cannot go back to the origin depots. Departure from a position 

other than the origin depots is prohibited by constraints (2.5.2). Constraints (2.5.3) ensure 

that the vehicles end their routes at the destination depots. Constraints (2.5.4) make sure 

that the vehicles do not leave the destination depots. Constraints (2.5.5) restrict that each 

vehicle visits the same transfer station at most once. Constraints (2.5.6) limit that the pickup 

locations and delivery locations are visited only once. Constraints (2.5.7) restrict that the 

request flows should not contain arcs that head to the pickup locations. Constraints (2.5.8) 

make sure that the request flows should not include the origin depots or destination 

depots.Constraints (2.5.9) are used to maintain the synchronization requirements. If a 

request is transferred between two vehicles, the vehicle that drops off the request must 

arrive at the transfer node before the vehicle that comes to receive the request. We set 𝑀 ≥

𝐿𝑡 − 𝐸𝑡 to maintain the validity of constraints. Constraints (2.5.10) to (2.5.12) guarantee 

that the requests are picked up and delivered in the given time windows. The validity of 

constraints (2.5.10) is ensured by setting 𝑀 ≥ max {0, 𝐿𝑖 + 𝜏𝑖𝑗
𝑘 − 𝐸𝑗}. 

2.6 Computational Experiments 

In this section, we evaluate the performance of the proposed formulation by comparing it 

with the two modified formulations shown in Section 2.3 and Section 2.4. The formulations 
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are coded in Python and tested using Gurobi 9.0.1 as the exact solver. The experiments are 

conducted on an Intel (R) Xeon (R) E-2274G CPU (4.00 GHz) machine with 32 GB of 

RAM, under Windows 10. We generate 340 instances to test the proposed model in solving 

PDP-T. To test the model in solving the PDPTW-T, we use the instances provided by 

Sampaio, Savelsbergh, Veelenturf, and Woensel (2020). The raw instances are available in 

https://data.mendeley.com/datasets/pywzcgyzrv/2. Since the scale of these instances is too 

large for the exact methods, we generate smaller instances by keeping only part of the 

requests. The coordinates of the vehicles and the transfer stations remain unchanged. The 

time limitation is set to 3600 seconds for the experiments. All instances tested in this paper 

and the computational results can be found at Mendeley Data by Lyu & Yu (2022) with 

the following link: https://data.mendeley.com/datasets/w925jygjct/4. 

 Instance generation 

Rais et al. (2014) generate instances based on the datasets of Li & Lim (2001). As their 

instances are not open access, we generate new instances to evaluate the performance of 

the proposed model. We generate 24 groups of PDP-T instances with a different setting of 

requests, vehicles, and transfer stations. Each group contains 10 instances. The nodes (i.e., 

pickup nodes, delivery nodes, origin depots, destination depots, and transfer stations) are 

randomly located on a 100 × 100 Euclidean grid. The traveling cost between two nodes is 

the Euclidean distance. Each pair of pickup node and delivery node are associated with a 

positive load 𝑞 and a negative load −𝑞, respectively. The value of 𝑞 is generated using a 

discrete uniform distribution within the interval of [1, 100]. The vehicles have different 

origin depots and destination depots but their capacity is homogenous, which is set to 100. 

To test the proposed formulation in solving the PDPTW-T, we use the instances 

provided by Sampaio et al. (2020). These instances are originally solved by an adaptive 

large neighborhood search algorithm. Since the scale of these instances is too large for 

exact algorithms, we generate smaller instances by picking the first several requests (i.e., 

3, 4, and 5). The depots and transfer stations are kept the same as the original instances. 

Unlike in Sampaio et al. (2020), we cannot set the number of vehicles to infinite because 

https://data.mendeley.com/datasets/pywzcgyzrv/2
https://data.mendeley.com/datasets/w925jygjct/4
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the number of vehicles should be determined for the models. We set the number of vehicles 

to be 4 as we find it enough to serve the requests. In addition, Sampaio et al. (2020) do not 

consider the capacity constraints. We can set the vehicle capacity to be sufficiently large 

to release the capacity constraints. Thus, we set the vehicle capacity to 99 in our 

experiments. Both the transfer geometry MD-4T and MD-5T are used to generate instances 

with 3 requests. Since our focus is not to study the impact of different geometries, we only 

use the MD-4T setting to generate instances with 4 and 5 requests. 

 Results of solving the PDP-T instances 

Table 2.6.1 presents a performance comparison between the proposed model and the pre-

existing RAC model in tackling the generated PDP-T instances. The term RAC Model 

pertains to the model introduced by Rais et al. (2014) with the necessary revisions 

described in Section 2.3. To facilitate comprehension, the definitions of the columns in this 

table are outlined below. 

The first column lists the names of the instance groups. The groups are named in the 

following manner: the value after R denotes the number of requests, the value after K 

denotes the number of vehicles, and the value after T denotes the number of transfer 

stations. Column #opt. reports the number of instances that is solved to optimality. Column 

#lim. reports the number of instances that feasible solutions are found. Column #no. reports 

the number of instances that no feasible solutions are found within the time limit. We omit 

column #no. for the proposed model because all the values under that column are zero. The 

average objective function values, average percentage gaps, and average computing times 

are listed under columns obj., column gap(%), and column t(s), respectively. 

The gaps are directly obtained from Gurobi. The numbers are averaged according to the 

instances in the group. The gaps capture the percentage difference between the best 

solution found and the best lower bound. The time limitation of running the solver is 3600 

seconds. Note that the instances that no solutions are found are excluded from calculating 

the average objective function value and the average gap. That is the reason why the 

average gap of the RAC model for group R12K3T3 is zero. 
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Table 2.6.1: Results of the models in solving the PDP-T instances 

  RAC Model   Proposed Model 

Instance #opt. #lim. #no. obj. gap (%) t(s)   #opt. #lim. obj. gap (%) t(s) 

R5K2T1 10 0 0 442.4 0.0 86.9 
 

10 0 442.4 0.0 0.1 

R5K2T2 10 0 0 415.5 0.0 91.0 
 

10 0 415.5 0.0 0.2 

R5K3T3 10 0 0 421.4 0.0 436.3 
 

10 0 421.4 0.0 0.5 

R7K2T1 6 4 0 529.3 6.1 1779.0 
 

10 0 525.0 0.0 2.9 

R7K2T2 7 3 0 574.2 2.9 1872.5 
 

10 0 572.7 0.0 0.9 

R7K3T3 2 7 1 575.7 10.2 2972.0 
 

10 0 560.4 0.0 2.0 

R10K2T1 0 4 6 673.4 11.1 3600.2 
 

10 0 717.3 0.0 11.3 

R10K2T2 0 4 6 705.4 16.8 3600.1 
 

10 0 703.0 0.0 21.5 

R10K3T3 0 1 9 665.4 5.7 3600.1 
 

10 0 686.7 0.0 8.6 

R12K2T1 0 1 9 703.3 18.1 3600.0 
 

10 0 729.1 0.0 43.7 

R12K2T2 0 0 10 - - 3600.0 
 

10 0 751.6 0.0 72.2 

R12K3T3 1 0 9 778.3 0.0 3445.4 
 

10 0 812.4 0.0 218.1 

R15K2T1 0 0 10 - - 3600.0 
 

10 0 933.0 0.0 362.1 

R15K2T2 0 0 10 - - 3600.0 
 

10 0 923.7 0.0 108.7 

R15K3T3 0 0 10 - - 3600.0 
 

9 1 948.1 0.19 589.5 

sum. 46 24 80 
    

149 1 
   

avg.       589.5 6.4 2632.2       676.2 0.01 96.1 
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As is shown in the table above, the proposed model is superior to the RAC model in terms 

of solution quality and computing time. The RAC model obtains the optimal solutions and 

feasible solutions for 46 and 24 instances, respectively. There are 80 instances that the 

RAC model does not find feasible solutions. The average computing time is 2632 seconds 

and the average gap for the solvable instances (at least find one feasible solution) is 6.4%. 

By contrast, the proposed model solves 149 instances to optimality. Only 1 instance in the 

R15K3T3 group is not solved to optimality. A feasible solution with a gap of 1.9% is found 

for that instance, which makes the average gap of the group 0.19%. The proposed model 

reduces the computing time to 96 seconds, a reduction of 96.35%. 

We will then compare the performance of the two models based on different instance 

scales. We roughly divide the instances into small-, medium-, large-scale, and extra-large-

scale based on the capability that the RAC model can solve the instances. Instances with 5 

requests are small-scale as the RAC model can easily solve them to optimality. The average 

computing time ranges from 101 seconds to 537 seconds. The proposed model reduces the 

average computing time to 0.5 seconds. Instances with 7 to 10 requests are considered 

medium-scale as the RAC model can solve them but may not be able to solve them to 

optimality. The average computing time ranges from 1844 seconds to 3600 seconds. The 

proposed model solves all medium-scale instances to optimality within 22 seconds on 

average. The instances with 12 to 15 requests are considered large-scale as the RAC model 

cannot even find feasible solutions for them. For the 60 large-scale instances, the RAC 

model only finds a feasible solution for one instance. In contrast, the proposed model solves 

59 instances to optimality. One instance is not solved to optimality but a feasible solution 

with a gap of 1.9 % is obtained. The average computing time of solving the large-scale 

instances ranges from 44 seconds to 590 seconds. 

Instances with more than 15 requests are not solvable for the RAC model. In order to 

evaluate the maximum scale of instances that the proposed model can solve, we further test 

the 90 extra-large-scale instances. Table 2.6.2 show that the proposed model can solve 

instances with up to 25 requests and 2 transfer stations. In the literature, the benchmarks of 

PDP-T are instances with 5 requests and 1 transfer station (see Rais et al. 2014).  
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Table 2.6.2: Results of the proposed model in solving extra-large-scale PDP-T 

Instance #opt. #lim. #no. obj. gap (%) t(s) 

R20K2T1 5 4 1 1163.7 2.8 2146.1 

R20K2T2 4 2 4 1155.5 1.0 2815.4 

R20K3T3 3 6 1 1186.0 8.1 2714.1 

R25K2T1 1 1 8 1439.5 4.3 3358.5 

R25K2T2 1 1 8 1395.4 8.5 3564.4 

R25K3T3 0 3 7 1506.5 11.2 3600.0 

R30K2T1 0 1 9 1574.8 10.3 3600.0 

R30K2T2 0 0 10 - - 3600.0 

R30K3T3 0 0 10 - - 3600.0 

sum. 14 18 58 
   

avg.       1345.9 6.6 3222.1 
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The performances of the proposed model and the RAC model are compared when the 

number of vehicles increases from two to twenty. 100 instances are generated and tested 

where the number of requests is 5 and the number of transfer station is 1. The time limit 

for running the two models is set to one hour. The results are shown in Table 2.6.3. The 

columns share the same meaning as previously described. For the RAC model, it solves all 

10 instances to optimality when the number of vehicles is 2. The average computational 

time is 274 seconds. For instances with more vehicles, the RAC model does not guarantee 

the optimality. When the number of vehicles increases to 20, the RAC model fails to obtain 

a feasible solution. In comparison, the proposed model scales well when the number of 

vehicles is increased. Specifically, all 100 instances are solved to optimality. For the first 

40 instances, the computing time increase linearly with the number of vehicles. Although 

the linear relationship between computational time and the number of vehicles does not 

maintain for larger instances, the computing time increases moderately as the number of 

vehicles increases. The average computational time for solving the 100 instances is 2.3 

seconds, which is significantly less than the average computational time for the RAC model 

on solving the instances. 

 Results of solving the PDPTW-T instances 

Table 2.6.4 compares the performance of the proposed model and the existing model in 

solving the PDPTW-T instances with 3 requests and 4 vehicles under the MD-4T setting 

and MD-5T setting, respectively. The SSVW model refers to the model presented by 

Sampaio et al. (2020). It has been modified in Section 4. MD-4T indicates that the number 

of transfer stations is four. Similarly, MD-5T means that the number of transfer stations is 

five in the instances. The first column lists the name of the instances. There are 9 groups 

for each setting. Each group includes 10 different instances. The values in the group name 

represent the vehicle shift length. For example, 180 means that the shift lengths of the 

vehicles are 180 minutes. The letters in the group name indicate the type of the requests. 

Specifically, the group marked as long (L) only contains long-distance requests that the 

distance between a pickup and a delivery location is at least 60 units. The group marked as  
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Table 2.6.3: Performance of the models when the number of vehicles increases 

  RAC Model   Proposed Model 

Instance #opt. #lim. #no. obj. gap (%) t(s)   #opt. obj. t(s) 

R5K2T1 10 0 0 468.1 0.00 274.3 
 

10 468.1 0.2 

R5K4T1 5 5 0 470.0 2.06 1850.2 
 

10 470.0 0.4 

R5K6T1 4 5 1 592.0 5.67 2379.7 
 

10 587.7 0.5 

R5K8T1 3 6 1 669.9 6.86 2647.1 
 

10 665.1 0.8 

R5K10T1 4 4 2 729.4 4.81 2770.4 
 

10 742.1 1.2 

R5K12T1 2 1 7 789.5 8.39 3282.0 
 

10 826.8 2.5 

R5K14T1 1 3 6 863.8 2.55 3394.4 
 

10 896.6 3.4 

R5K16T1 0 3 7 1851.8 39.60 3601.0 
 

10 1049.3 3.7 

R5K18T1 0 1 9 3129.5 70.67 3600.8 
 

10 1115.8 4.4 

R5K20T1 0 0 10 - - 3600.0 
 

10 1180.0 6.1 

sum. 29 28 43 
    

100 
  

avg.       1062.7 15.62 2740.0     800.2 2.3 
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Table 2.6.4: Results of solving the PDPTW-T with MD-4T and MD-5T 

  MD-4T setting   MD-5T setting 

 Instance obj. 𝑡𝑠𝑠𝑣𝑤(s) 𝑡𝑝𝑟𝑜(s) 𝑡𝑟𝑒𝑑𝑢𝑐𝑒(%)   obj. 𝑡𝑠𝑠𝑣𝑤(s) 𝑡𝑝𝑟𝑜(s) 𝑡𝑟𝑒𝑑𝑢𝑐𝑒(%) 

180, L 411.75 39.38 7.89 79.96 
 

400.83 84.53 32.82 61.18 

180, M 330.91 28.82 8.56 70.31 
 

328.53 99.76 25.95 73.99 

180, S 261.32 3.88 3.73 4.02 
 

261.00 8.17 6.02 26.33 

240, L 376.67 9.54 4.84 49.26 
 

372.36 27.28 14.24 47.81 

240, M 299.72 7.74 4.27 44.84 
 

298.66 34.57 9.12 73.62 

240, S 251.64 2.16 2.46 -14.00 
 

251.64 8.37 4.60 44.98 

300, L 376.45 9.30 6.14 33.98 
 

372.20 25.94 13.26 48.91 

300, M 299.72 6.23 4.77 23.47 
 

298.66 30.42 9.90 67.45 

300, S 251.64 2.23 2.55 -14.48   251.64 3.98 4.00 -0.72 

avg. 317.76 12.14 5.02 30.82  315.06 35.89 13.32 49.28 



 

34 

 

short (S) only includes short-distance requests that the distance between a pickup and a 

delivery location is less than 60 units but more than 30 units. The group marked as mix 

(M) is the third scenario, which has both long-distance requests and short-distance requests. 

Column obj. reports the average objective function values. Column 𝑡𝑆𝑆𝑉𝑊  reports the 

average computing time for the SSVW model while column 𝑡𝑝𝑟𝑜  reports the average 

computing time for the proposed model. Column 𝑡𝑟𝑒𝑑𝑢𝑐𝑒 reports the percentage of time 

reduced by using the proposed model. 

All instances in Table 2.6.4 are solved to optimality by using both the SSVW model and 

the proposed model. As is shown, the proposed model is more efficient in terms of 

computing time. In the MD-4T setting, the proposed model reduces the average computing 

time by 30.82%. In the MD-5T setting, the proposed model reduces the average computing 

time by 49.28%. The average time saving is 40.05%. However, there are three groups that 

the proposed model consumes more time than the SSVW model, i.e., groups (240, S) and 

(300, S) under the MD-4T setting, and group (300, S) under the MD-5T setting. 

By comparing the two settings, we find that the instances under the MD-5T setting are 

hard to solve but have smaller average objective function values. This is to be expected as 

the additional one transfer station provides the possibility of transferring the requests more 

efficiently. Since our focus is not to study the impact of a different number of transfer 

stations, we only use the MD-4T setting for PDPTW-T instances with 4 requests and 5 

requests.  

Table 2.6.5 compares the performance of the SSVW model and the proposed model in 

solving the PDPTW-T instances with 4 requests and 4 vehicles under the MD-4T setting. 

The first column of the table shows the name of the groups. The meaning of the other 

columns is the same as that in Table 2.6.1. Note that we do not list column #no for the 

proposed model because all the values are zero. In other words, the solver Gurobi finds 

feasible solutions for all 90 instances by using the proposed model. As is shown in the last 

second row, the proposed model solves more instances to optimality in a shorter time 

compared with the SSVW model. Specifically, the SSVW model solves 84 instances to 

optimality. There are 6 instances that the SSVW model does not find optimal solutions. 
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Table 2.6.5: Results of the models in solving PDPTW-T with 4 requests 

  SSVW Model   Proposed Model 

Instance #opt. #lim. #no. obj. gap(%) t(s)   #opt. #lim. obj. gap(%) t(s) 

180, L 8 1 1 486.77 1.24 1027 
 

10 0 491.32 0.00 168 

180, M 7 2 1 418.85 3.78 1442 
 

9 1 427.00 0.44 683 

180, S 9 1 0 334.53 0.43 673 
 

10 0 334.53 0.00 119 

240, L 10 0 0 445.78 0.00 327 
 

10 0 445.78 0.00 86 

240, M 10 0 0 374.48 0.00 263 
 

10 0 374.48 0.00 64 

240, S 10 0 0 322.41 0.00 46 
 

10 0 322.41 0.00 52 

300, L 10 0 0 444.67 0.00 351 
 

10 0 444.67 0.00 88 

300, M 10 0 0 374.48 0.00 246 
 

10 0 374.48 0.00 68 

300, S 10 0 0 322.41 0.00 51 
 

10 0 322.41 0.00 45 

sum 84 4 2 
    

89 1 
   

avg. 
   

391.60 0.61 492   
  

393.01 0.05 152 
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It fails to find feasible solutions for two of them. In contrast, our model solves 89 instances 

to optimality. There is only 1 instance that the proposed model does not solve to optimality 

but finds a feasible solution.  

We report the average objective function values, average computing times, and average 

gaps in the last row in Table 2.6.4. It shows that the proposed model outperforms the SSVW 

model. The proposed model reduces the average gaps from 0.61% to 0.05% and reduces 

the average computing time from 492 seconds to 152 seconds. Note that it is not fair to 

directly compare columns #obj for the two models because instances that are not solvable 

have been excluded. For example, the average objective function value obtained by the 

SSVW model is 391.6 while the value is 393.01 for the proposed model. However, the 

proposed model finds better or equally good solutions for all instances. The SSVW model 

has a smaller average objective function value because two instances are excluded. 

Computational results for every single instance can be found at Lyu & Yu (2022). 

Table 2.6.6 compares the performance of the SSVW model and the proposed model in 

solving the PDPTW-T instances with 5 requests and 4 vehicles under the MD-4T setting. 

This table is similar to Table 4 but deals with instances with one more request. As expected, 

the instances with five requests are harder to be solved. The SSVW model solves only 46 

instances to optimality, accounting for about half of the instances. It finds feasible solutions 

for 24 instances and fails to solve the remaining 20 instances. The proposed model 

performs better than the SSVW model. It solves 72 instances to optimality. It finds feasible 

solutions for 9 instances and fails to solve the remaining 9 instances. In addition, it reduces 

the average computing time from 2149 seconds to 1334 seconds. 

 Discussion on valid inequalities 

The reason that the proposed model outperforms the RAC model and SSVW model is that 

we add several valid inequalities (cuts). These cuts are redundant in terms of restricting the 

feasible region but can strengthen the LP relaxation of the model. As a result, the 

performance of the proposed model is increase significantly.  
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Table 2.6.6:Results of the models in solving PDPTW-T with 5 requests 

  SSVW Model 
 

Proposed Model 

Instance #opt. #lim. #no. obj. gap(%) t(s)   #opt. #lim. #no. obj. gap(%) t(s) 

180, L 1 1 8 589.7 12.67 3450 
 

2 3 5 573.0 4.76 2958 

180, M 1 1 8 464.5 8.39 3275 
 

5 1 4 467.4 1.85 2550 

180, S 7 2 1 409.5 2.32 1597 
 

10 0 0 404.9 0.00 676 

240, L 4 6 0 550.7 11.84 2880 
 

9 1 0 528.3 1.29 1266 

240, M 6 2 2 442.1 4.66 1762 
 

8 2 0 452.0 1.71 1341 

240, S 9 1 0 389.9 0.53 807 
 

10 0 0 389.9 0.00 284 

300, L 3 6 1 532.7 9.96 2926 
 

9 1 0 527.9 1.62 1353 

300, M 6 4 0 451.5 4.71 1852 
 

9 1 0 449.9 1.02 1252 

300, S 9 1 0 390.6 0.89 796 
 

10 0 0 389.7 0.00 322 

sum 46 24 20 
    

72 9 9 
   

avg. 
   

469.0 6.22 2149   
   

464.8 1.36 1334 
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In this section, we explicitly show how the proposed cuts affect the RAC model by 

adding constraints (2.5.1) to constraints (2.5.8) into the RAC model, respectively. We also 

evaluate the performance of the RAC model when constraints (2.5.1) to constraints (2.5.8) 

are added in the same time. The instances used to perform the experiments are ten small 

PDP-T instances under the category R5K2T1. There are five requests, two vehicles, and 

one transfer station in each of the instance. Since the scale of these instances is small, all 

instances are solved to optimality by using any of the models evaluated. The metric used 

to compare performance is computing time. Table 2.7.1 shows the results of these 

experiments. 

As has been mentioned before, the column RAC represents the model presented by Rais 

et al. (2014) with the necessary revisions. The column Prop. represents the proposed model. 

The columns C40 to C47 represent the RAC model with constraints (2.5.1) to constraints 

(2.5.8), respectively. The column ALL represents the RAC model with all cuts added 

together. From the table, we find that adding some of the cuts can significantly improve 

the RAC model. For instance, adding the first two constraints can reduce the average 

computing time of solving the instances from 86 seconds to less than 10 seconds. By 

contrast, some cuts do not affect the efficiency much, such as constraints (2.5.3) and 

constraint (2.5.5). We keep these constraints because they are not redundant for the 

proposed model. For example, constraints (2.5.3) are essential for the proposed model to 

make sure the vehicles end their routes at the destination depots. After adding all the cuts, 

the performance of the RAC model is very close to the proposed model. We do not perform 

similar experiments on the PDPTW-T instances because the SSVW model assumes that 

the origins and destinations of the vehicles are the same. This assumption prevents us from 

adding most of the constraints into the model without modification. 

2.7 Conclusion 

This paper reviews two existing models for the PDP-T and PDPTW-T. We point out the 

possible issues existing in the models, discuss the causes, and provide our revisions. In  
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Table 2.7.1: Computational time of solving PDP-T with different cuts 

  RAC Prop. C1 C2 C3 C4 C5 C6 C7 C8 ALL 

R5K2T1-0 20.29 0.08 2.64 0.55 22.24 4.53 17.06 1.92 4.84 17.09 0.16 

R5K2T1-1 107.02 0.16 21.54 7.96 88.46 18.44 71.07 8.32 27.75 59.97 0.21 

R5K2T1-2 57.10 0.11 10.78 13.48 30.07 16.08 63.83 1.45 1.54 27.38 0.17 

R5K2T1-3 597.34 0.09 1.70 1.51 742.17 1.44 489.06 62.77 108.81 150.51 0.18 

R5K2T1-4 2.67 0.08 1.06 0.53 2.08 1.14 1.41 0.68 1.74 1.67 0.18 

R5K2T1-5 2.09 0.05 0.44 0.20 3.89 0.32 2.02 0.65 0.18 2.60 0.10 

R5K2T1-6 31.67 0.08 4.10 9.10 31.70 5.14 20.22 3.62 0.73 19.97 0.17 

R5K2T1-7 23.14 0.11 1.87 2.21 36.31 3.24 12.36 3.39 2.10 9.18 0.20 

R5K2T1-8 17.89 0.08 0.29 0.30 25.58 0.33 14.17 38.36 5.22 17.01 0.19 

R5K2T1-9 9.58 0.12 2.71 7.59 15.56 4.68 11.88 5.08 6.81 5.95 0.23 

avg. time 86.88 0.10 4.71 4.34 99.81 5.53 70.31 12.63 15.97 31.13 0.18 
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addition, we present a new MILP model to solve the problems. Compared with the existing 

models, the proposed model has redundant constraints that can strengthen the LP 

relaxation. The performance of the proposed model is evaluated using 340 generated PDP-

T instances and 360 open-access PDPTW-T instances. Based on our experiments, the 

proposed model is superior to the existing models in terms of solution quality and 

computing time. The proposed model solves 149 out of 150 PDP-T instances to optimality 

where the instance scales are less or equal to 15 requests, 3 vehicles and 3 transfer stations. 

The largest instance solved to optimality by the proposed model is the one with 25 requests, 

2 vehicles and 2 transfer stations. The proposed model scales well when the number of 

requests increases. The average computational time increases from 0.2 seconds to 6.1 

seconds as the number of vehicles increases from 2 to 20. The proposed model outperforms 

the existing two models mainly because of the cuts added into the model. These cuts are 

reductant in terms of restricting the feasible region, but they help tighten the relaxation of 

the MILP model, which helps solve the model faster. Based on our experiments, constraints 

(2.5.1), (2.5.2), and (2.5.4) are three efficient cuts. 

To the best of our knowledge, this paper is the first work that solves PDP-T instances 

with 25 requests and 2 transfer stations to optimality within 1 hour. In the literature, Rais 

et al. (2014) report that they solve PDP-T instances with 5 requests to optimality. Wolfinger 

& Salazar-González (2021) state that the instance with 8 requests, at the time, is the largest 

that can be solved to optimality for the PDP-T and PDPSLT. For the PDPTW-T, the 

proposed model solves instances with 5 requests and 4 transfer locations to optimality 

within 1 hour. 

There are several drawbacks for the proposed model that need to be discussed. First, the 

number of vehicles traveled in the network needs to be determined in advance. This limits 

the flexibility of using the model. Second, the order in which two nodes are visited cannot 

be identified properly if the nodes are in the same location. A tiny distance needs to be 

added between the coincident nodes. Third, the value 𝑠𝑡𝑟
𝑘1𝑘2 may be false positive although 

this would not affect the correctness of the vehicle flows and request flows. This issue can 
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be solved by adding 𝑠𝑡𝑟
𝑘1𝑘2 into the objective function, but this makes the meaning of the 

objective function ambiguous. 

The future research may include fixing the drawbacks discussed above. In addition, we 

may extend the proposed model to handle larger problems by designing efficient exact 

algorithms, such as the branch and cut algorithm, branch and price algorithm, etc. Our 

preliminary results show that we may not benefit much from a branch and cut algorithm 

that simply adding the redundant constraints presented in this paper as cuts. The reason 

may be the number of proposed cuts is moderate. To achieve significantly better results, 

more efficient cuts need to be designed. 
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Chapter 3. A Metaheuristic for Solving the 

Consultant Assignment and Routing Problems 
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This chapter is based on a paper published by Zefeng Lyu and Andrew J. Yu: 

Lyu, Z., & Yu, A. J. (2021). Consultant assignment and routing problem with 

priority matching. Computers & Industrial Engineering, 151, 106921. 

In this chapter, we solved a consultant assignment and routing problem that 

simultaneously assign consultant supplies to client demands and determine the best 

traveling routes for consultants. Constraints to be considered include skill requirement, 

capacity limitation, fixed demand, and a maximum number of travel legs. This paper 

further takes into consideration priority matching, which restricts that clients can only be 

assigned to consultants with appropriate priority levels. In order to solve this problem, we 

present a decomposition algorithm named RMIP and a MIP-based neighborhood search 

algorithm. In addition, we extend an existing MILP formulation and compare our 

algorithms with it. The effectiveness and efficiency of the proposed algorithms are 

evaluated on a hundred synthetic instances and twelve real-life instances. Computational 

results show that the modified MILP formulation is only suitable for solving small-scale 

instances and a part of the medium-scale instances. For large-scale and real-life instances, 

the proposed two algorithms are significantly superior to the MILP formulation in solution 

quality and computational time. 

3.1 Introduction 

As the energy costs are dramatically rising, more and more educational institutions are 

looking for ways to decrease their utility bills. Energy Education, Inc (EEI) is one of the 

consulting firms helping customers develop energy efficiency and conservation programs. 

This paper is motivated by an optimization problem faced by EEI. This problem is named 

as consultant assignment and routing problem with priority matching (CARPP), which 

aims to simultaneously assign consultants to clients and determine the traveling routes 

while minimizing the total cost. This work is traditionally performed manually by subject 

matter experts of the firm. However, developing such a working schedule is very complex 

and labor-intensive. It takes experienced experts sixteen hours of dedicated effort each 



 

44 

 

week, but the produced schedule is still often far from optimal. Therefore, it is crucial to 

design an efficient algorithm to support decision making for EEI. 

The features of CARPP problem are listed as follows. The consulting activities must be 

performed face-to-face at the client site. Therefore, consultants travel to almost all client 

assignments to fulfill their jobs. The objective is to minimize the incurred airfares and the 

consultants’ wages. Consultants are proficient in different skills and they can only fill 

demands requiring the relevant skill. The skills cannot be easily replicated or cross-trained. 

In addition, matching priority level is required before a consultant can be assigned to serve 

a client. The practical meaning of priority is basically a measure of importance for clients 

and a measure of seniority or experience for consultants. Clients with higher priority mean 

that they are relatively more important due to their projects’ scope, stage, size, and other 

aspects. For example, some contracts may have a large amount of budget and coverage. 

Some clients may be new, and the company wants to have a successful start. Importance 

may also be related to technical perspective, meaning that the corresponding tasks are more 

challenge than the others. As a result, the company would like to include priority into the 

model to make sure that consultants with proper level of seniority or experience are 

assigned to their clients. EEI stipulates that the maximum number of flying trips each week 

should not exceed four to avoid dissatisfaction from the consultants. The CARPP problem 

does not need to consider time window because the company only specifies the overall 

work packages for their consultants. The specific working time within a day is determined 

after discussing with clients, as it is subject to the flight schedule, which is not under the 

consultants’ control. 

The CARPP problem is extended from the consultant assignment and routing problem 

presented by Yu & Hoff (2013). They developed a MILP formulation to solve their 

problem. However, solving the problem using MILP formulation becomes time-consuming 

after taking priority matching into consideration. Therefore, this paper develops the RMIP 

algorithm and the MIP-based neighborhood search algorithm (MNSA). The RMIP 

algorithm first decomposes the problem into serval subproblems via a reduced formulation. 

Then, these subproblems are solved by exhaustive method. The exhaustive method is 
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efficient to solve the subproblems because the maximum travel legs are limited by four. 

The MNSA algorithm is a metaheuristic that optimizes the RMIP solutions using 

neighborhood search. In addition, this paper modifies the existing MILP formulation and 

compares our algorithms with it. 

The contributions of this paper are threefold. First, we introduce a new variant of the 

consultant assignment and routing problem, which takes priority matching into 

consideration. Second, we propose a decomposition method and a metaheuristic for the 

problem. Third, we generate several synthetic instances based on the real-world data. These 

synthetic instances have been published online together with the computational results, 

which can be used as a benchmark for future comparison. 

The rest of this paper is organized as follows. Section 2.2 reviews the related literatures. 

Section 2.3 defines the CARPP problem and presents the modified MILP formulation. 

Section 2.4 introduces the decomposition algorithm. Section 2.5 presents the MNSA 

algorithm and relevant pseudo-codes. Section 2.6 introduces the real-life instances and the 

generation of synthetic instances. In addition, all computational results are shown in this 

section. Finally, conclusion and future research are discussed in Section 2.7. 

3.2 Literature Review 

The field of this paper has received a great amount of attention in recent years. There 

are many close-related problems such as the home health care problem, home care problem, 

technician scheduling for maintenance, manpower allocation, etc. Survey papers are given 

by Paraskevopoulos, Laporte, Repoussis, & Tarantilis (2017) and Castillo-Salazar, Landa-

Silva, & Qu (2016). However, there is no agreed terminology to inductive these problems. 

For example, Maya, Sörensen, & Goos (2012) and Yalçında˘g, Matta, ¸Sahin, & 

Shanthikumar (2014) considered their problem as an assignment and routing problem. 

Paraskevopoulos et al. (2017) classified this kind of problem as resources constrained 

routing and scheduling problem. Castillo-Salazar et al. (2016) referred these problems as 

workforce scheduling and routing problem. Some researchers also considered the problem 
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as a variant of the vehicle routing problem (VRP), such as in Rasmussen, Justesen, Dohn, 

& Larsen (2012) and Song & Ko (2016). 

This paper does not classify our problem as a VRP because the main considerations of 

these two problems are different. For instance, most of the VRPs only focus on finding the 

optimal routes for vehicles or other objects. However, the CARPP problem treats the 

assignment of consultants and the routing procedure equally. Many constraints are 

designed for the assignment procedure such as skill matching, priority matching, and 

available shifts. If we do not consider the routing part, the remaining problem is still a 

workforce scheduling problem. In addition, the general applications of CARPP and VRP 

are quite different. VRP is usually associated with transportation problems. In contrast, 

assignment and routing problem is more common when workforces are involved.  

The CARPP problem is extended from the consultant assignment and routing problem 

introduced by Yu & Hoff (2013). Features of their problem include skill matching, capacity 

limitation, fixed demand, and maximum traveling legs. Compared with their work, this 

paper takes a new constraint into consideration, i.e. priority matching. In terms of the 

methodology, they presented a two-stage approach, which first clusters the clients by a set-

covering model and then solves the problem by a MILP formulation. Different from their 

approach, this paper proposes a decomposition method and a metaheuristic. In addition, 

we extend their MILP model to compare with our algorithms. Computational results show 

that the modified MILP formulation is only suitable for solving small-scale instances and 

a part of the medium-scale instances. For large-scale and real-life instances, the proposed 

two algorithms are superior to the MILP formulation. 

Maya et al. (2012) introduced a teaching assistant assignment and routing problem 

(TARP), which aims to minimize the total traveling compensation received by teaching 

assistants. Different from the TARP, our problem considers both the traveling cost and 

wage of consultants. Kovacs, Parragh, Doerner, & Hartl (2012) presented a service 

technician routing and scheduling problem (STRSP) where technicians are assigned to 

complete service tasks. Similar problems are also studied by Xie, Potts, & Bektaş (2017) 

and Zamorano & Stolletz (2017). In contrast to the technician scheduling problem, team 



 

47 

 

building up and outsourcing are not allowed in the CARPP problem. However, our problem 

has more restrictions on the assignment procedure, such as priority matching, fixed 

demand, and maximum number of flight legs. Home care and home healthcare problems 

are also closely related and gain increasing interests recently. Review papers are given by 

Fikar & Hirsch (2017) and Cissé et al. (2017). The difference between home care and home 

healthcare is that the former refers to housework such as laundry and cleaning while the 

latter refers to healthcare activities typically performed by qualified nurses. Yuan, Liu, & 

Jiang (2015) presented a home health care problem where caregivers are classified into 

several levels. They restrict that high-level demands can only be assigned to highly 

qualified caregivers, but low-level demands can be assigned to any of the caregivers. 

Unlike their problem, our skill requirement is a one-to-one matching. In addition, our 

problem restricts the number of flight trips rather than the number of clients to serve. 

Eveborn et al. (2009) presented a home care problem that assigns customer requests to 

schedules and then assigns these schedules to staff members. Skill requirement is not 

explicitly considered in their problem. Other relevant applications include waste collection 

(De Bruecker, Beliën, De Boeck, De Jaeger, & Demeulemeester, 2018), airline catering 

(Ho & Leung, 2010), and inventory routing problem such as in Misra, Saxena, Kapadi, 

Gudi, & Srihari (2018), Maheshwari, Misra, Gudi, & Subbiah (2020), and Dong, Pinto, 

Sundaramoorthy, & Maravelias (2014). The inventory routing problem incorporates the 

production problem and vehicle routing problem. However, the considerations for 

controlling inventory are different from assigning consultants to clients as studied in this 

paper.  

It was found that most of the relevant problems involve multi-period horizons because 

of the nature of scheduling. Examples can be seen in De Bruecker et al. (2018), An, Kim, 

Jeong, & Kim (2012), and Zamorano & Stolletz (2017). However, the CARPP problem is 

a single-period problem although the planning horizon is one week. This is because the 

roster only specifies the client to visit and the sequence. The specific consulting date and 

time are decided by consultants and clients. 
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Although close-related problems have been studied extensively, little attention has been 

paid to the consultant assignment and routing problem. To the best of our knowledge, none 

heuristic has been presented to solve the CARPP. Therefore, this paper develops the RMIP 

algorithm and the MNSA algorithm to fill this gap. 

3.3 Problem Definition and MILP Formulation 

The CARPP problem is defined on a connected graph 𝐺 = {𝐾, 𝐶, 𝐴}, where 𝐾 is a set of 

consultants, 𝐶  is a set of clusters, and 𝐴 is a set of arcs representing available visiting 

routes. Consultants and clients live in different geographical locations. The set 𝐴 includes 

not only the routes between consultants and clients but also routes between clients and 

clients so that consultants can travel from one client location to another. Each arc is 

associated with a specific traveling cost. Except for travel expenses, the wage of 

consultants is another part of cost considered for those consultants who are contract-based. 

The objective is to assign the consultant supply to client demand while minimizing the total 

cost. After solving the CARPP problem, we are supposed to provide a detailed working 

schedule for every consultant, as well as the corresponding visiting sequences. Considering 

that flight is the main mode of transportation, it is reasonable to cluster consultants and 

clients into the nearest airports. If there are too many airports involved, partial airports can 

be clustered to reduce computational complexity. However, whether the locations can be 

clustered, the specific way of clustering depends on the operational rules of the company. 

Although clustering can reduce the computational complexity, it may also lead to a loss of 

global optimality. Therefore, clustering is not the scope of this paper. In this paper, the 

nearest airports for the consultants and customers are predefined. We only focus on the 

methodology regarding assignment and routing. 

The constraints in our problem include demand satisfaction, fixed demand, skill 

matching, priority matching, capacity restriction, and trip legs restriction. The explanations 

of these constraints are as follows. Demand satisfaction restricts that all the demands must 

be satisfied. Some of the demands are fixed demand, which must be served by designated 
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consultants. Each demand has one specific skill requirement from its visiting consultant, 

and each consultant has a unique set of skills to serve. The skill matching makes sure that 

a demand can be assigned to a consultant only if the consultant has the corresponding skill. 

Please note that the priority matching in the paper does not mean that demands with high 

priority should be completed earlier than the others. In fact, it refers to a level matching 

between the consultants and demands. For example, a demand with a priority level of four 

can be assigned to a consultant whose priority interval is between three and five. Capacity 

restriction ensures that the sum of shifts assigned to a consultant should not exceed his/her 

total available shifts. The maximum number of flight legs is limited to four per week to 

avoid the consultant's dissatisfaction. The unit “shift” is used to measure the workload. One 

shift means that the corresponding demand can be fulfilled in a half day by one consultant. 

Please note that travel time is not a part of working shifts because consultants have flexible 

schedules. The roster only specifies client demands and the corresponding visiting 

sequences. However, the specific working time is determined by the consultant and client. 

There is no need to worry about the travel time for our problem. In addition, it is worth 

mentioning that travel time is not billable to the clients and consultants are not paid for 

their travel time. 

This paper assumes that the flight prices are symmetric and do not vary by time. 

Otherwise, the CARPP problem would become time-related and much more intractable. 

This paper ignores travel costs other than airfare because airline tickets are one of the EEI's 

biggest budget items. It is also worth mentioning that CARPP is a single-period problem 

although the planning horizon is one week. This is because the roster only specifies the 

clients and the visiting order. The specific working date and time shall be decided by the 

consultant and client. The notations for sets, parameters and variables are shown as follows. 

 

Sets  

𝐾 A set of consultants 

𝐶 A set of clusters 

𝑆 A set of skills 
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𝑃 A set of priorities 

𝛱 A set which combines set 𝑆 and set 𝑃 

𝑁 N = {1, 2, …, 𝑇+1}, where 𝑇 is the maximum trip legs allowed 

Parameters  

𝑐𝑖𝑗 Traveling cost from cluster 𝑖 to cluster 𝑗 

𝑞𝑘𝑗 Traveling cost from consultant 𝑘’s home cluster to cluster 𝑗 

𝑤𝑘 Weekly wage of consultant 𝑘 

𝑎𝑘 Number of available shifts of consultant 𝑘 

ℎ𝑘 The home cluster of consultant 𝑘 

𝑑𝑗𝑠 Number of 𝑠-type demand requested from cluster 𝑗 

𝑓𝑘𝑗𝑠 Number of 𝑠-type demand requested from cluster 𝑗 to be served by 

consultant 𝑘 

𝑢𝑘𝑠 =1 if consultant 𝑘 has 𝑠-type skill; 0 otherwise. 

𝑀 A sufficiently large positive number 

Variables  

𝑥𝑘𝑗𝑠 Number of 𝑠-type demand assigned to consultant 𝑘 in cluster 𝑗 

𝑦𝑘𝑛𝑖𝑗 =1 if consultant 𝑘 travels from cluster 𝑖 to cluster 𝑗 on the 𝑛𝑡ℎ trip; 0 

otherwise. Note that cluster 0 represents the home cluster which varies 

for different consultants. 

𝑧𝑘𝑗 =1 if consultant 𝑘 has demand to serve in cluster 𝑗; 0 otherwise. 

 

Since the priority requirement and skill requirement are similar in structure, this paper 

combines them together and forms a new constraint which restricts consultants to satisfy 

both skill and priority requirement simultaneously. To achieve it, this paper defines an 

aggregated set 𝛱 as follows. 

𝛱 = {𝑠 | 𝑠 = (𝑖, 𝑗), 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑃} 

For example, if the skill set 𝑆 = {𝑠1, 𝑠2, 𝑠3} and the priority set 𝑃 = {𝑝1, 𝑝2}, then the 

aggregated set is combined as  
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𝛱 = {𝑠1𝑝1, 𝑠1𝑝2, 𝑠2𝑝1, 𝑠2𝑝2, 𝑠3𝑝1, 𝑠3𝑝2} 

The MILP formulation for the CARPP problem is listed as follows. 

 

Minimize ∑ ∑(𝑞𝑘𝑗 + 𝑤𝑘)𝑦𝑘10𝑗

𝑗∈𝐶

+ ∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑦𝑘𝑛𝑖𝑗 + ∑ ∑ ∑ 𝑞𝑘𝑗 𝑦𝑘𝑛𝑗0

𝑗∈𝐶𝑛∈𝑁\{1}𝑘∈𝐾𝑗∈𝐶𝑖∈𝐶𝑛∈𝑁\{1}𝑘∈𝐾𝑘∈𝐾

 

(MILP) 

Subject to 

∑ 𝑥𝑘𝑗𝑠 = 𝑑𝑗𝑠

𝑘∈𝐾

 ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.1) 

𝑥𝑘𝑗𝑠 ≥ 𝑓𝑘𝑗𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.2) 

𝑥𝑘𝑗𝑠 ≤ 𝑀𝑢𝑘𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.3) 

∑ ∑ 𝑥𝑘𝑗𝑠

𝑠∈𝑆

≤ 𝑎𝑘

𝑗∈𝐶

 ∀𝑘 ∈ 𝐾 (3.3.4) 

𝑦𝑘10𝑖 ≥ ∑ 𝑦𝑘2𝑖𝑗

𝑗∈𝐶∪{0}

 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶 (3.3.5) 

∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶

≥ ∑ 𝑦𝑘,𝑛+1,𝑗,ℎ

ℎ∈𝐶∪{0}

 ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁\{1, 𝑇 + 1}, ∀𝑗 ∈ 𝐶 (3.3.6) 

∑ 𝑦𝑘10𝑖

𝑖∈𝐶

= ∑ ∑ 𝑦𝑘𝑛𝑗0

𝑗∈𝐶𝑛∈𝑁\{1}

 ∀𝑘 ∈ 𝐾 (3.3.7) 

∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑗∈𝐶∪{0}𝑛∈𝑁

≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶 ∪ {0} (3.3.8) 

∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶∪{0}𝑛∈𝑁

≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 ∪ {0} (3.3.9) 

𝑦𝑘𝑛0𝑖 = 0 ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁\{1}, ∀𝑖 ∈ 𝐶 ∪ {0} (3.3.10) 

𝑦𝑘1𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝐶 ∪ {0} (3.3.11) 

𝑦𝑘𝑛𝑖𝑖 = 0 ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁, ∀𝑖 ∈ 𝐶 ∪ {0} (3.3.12) 

∑ 𝑥𝑘𝑗𝑠 ≤

𝑠∈𝛱

𝑀 ∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶∪{0}𝑛∈𝑁

 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.13) 

∑ 𝑥𝑘𝑗𝑠

𝑠∈𝛱

≥ ∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶∪{0}𝑛∈𝑁

 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.14) 
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∑ 𝑥𝑘𝑗𝑠

𝑠∈𝑆

≤ 𝑀𝑧𝑘𝑗 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.15) 

∑ 𝑧𝑘𝑗

𝑗∈𝐶\{ℎ𝑘}

≤ 𝑇 − 1 ∀𝑘 ∈ 𝐾 (3.3.16) 

𝑥𝑘𝑗𝑠 ∈ ℤ ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.17) 

𝑦𝑘𝑛𝑖𝑗 ∈ {0,1} ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁, ∀𝑖 ∈ 𝐶 ∪ {0}, ∀𝑗

∈ 𝐶 ∪ {0} 

(3.3.18) 

𝑧𝑘𝑗 ∈ {0,1} ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.19) 

 

The MILP formulation is extended from the formulation presented by Yu & Hoff 

(2013). We take priority matching into consideration by combining priority levels and 

skills, as explained in the definition of the aggregated set 𝛱. Constraints (3.3.1) to (3.3.14) 

are borrowed from the existing model. We add variables 𝑧𝑘𝑗 and constraints (3.3.15) and 

(3.3.16) into our model because the original one is too tight under some cases. For example, 

if the first or last leg of a consultant’s scheduled trip happens to be at his/her home depot, 

the consultant does not consume a flight leg for that trip. We allow 𝑛 to be 𝑇 + 1 and add 

the new variables and constrains to ensure that flight legs are appropriately restricted. 

Explanations for the MILP formulation are as follows. 

The objective of the model is to minimize the total cost, which consists of the weekly 

wage of contract consultants and associated traveling expense. The first part of the 

objective function models the wage and the airfare of the consultants traveling from their 

home cluster to their first destinations. The second part represents the airfare between 

clusters. The last part denotes the airfare for the consultants to travel back home. 

Constraints (3.3.1) to (3.3.4) model the demand satisfaction, fixed demand, skill 

matching, and capacity restriction, respectively. Constraint (3.3.1) ensures that all the 

demands are fully satisfied. Constraint (3.3.2) restricts that the fixed demands are served 

by the designated consultants. Constraint (3.3.3) indicates that demands can only be met 

by those consultants with the relevant skill and priority. Note that the 𝑀  here is a 

sufficiently large positive number. It is reasonable to set 𝑀 to 𝑎𝑘, i.e., the available shift of 
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consultant 𝑘 . Constraint (3.3.4) means that the total number of shifts assigned to a 

consultant should not exceed his/her availability. 

Constraints (3.3.5) to (3.3.12) model the traveling routes of consultants. Specifically, 

constraint (3.3.5) indicates that the consultants must start the travel from their home 

clusters. Constraint (3.3.6) restricts the relationship between current visit and the next visit. 

Constraint (3.3.7) ensures every consultant should return home after completing the tasks. 

Constraints (3.3.8) and (3.3.9) specify that a consultant travels to a cluster at most once. 

Constraints (3.3.10) make sure that, except for the first trip, the consultants are not allowed 

to leave their home clusters. In other words, the consultants cannot continue their trips once 

they return. Constraints (3.3.11) ensure that the consultants cannot start from clusters that 

are not their home clusters. The constraints also ensure that return at the first trip is 

prohibited. Constraint (3.3.12) prohibits the self-access. 

Constraints (3.3.13) and (3.3.14) associate the assignment plans and the traveling 

routes. Constraint (3.3.13) means that a consultant can serve a demand only if the 

consultant visits the corresponding cluster. Constraint (3.3.14) ensures that consultants 

never go to clusters where they do not have any tasks assigned. Constraints (3.3.15) and 

(3.3.16) limit the total number of trip legs for each consultant.  Given that the maximum 

number of trip legs in a period is 𝑇, each consultant is allowed to visit at most 𝑇 − 1 

clusters outside the home cluster. Just like in the constraints (3.3.3), the value of 𝑀 in 

constraints (3.3.13) and (3.3.15) can also be reasonably set to 𝑎𝑘. Constraints (3.3.17)to 

(3.3.19) restrict the decision variable 𝑥𝑘𝑗𝑠 to be integers, and 𝑦𝑘𝑛𝑖𝑗 and 𝑧𝑘𝑗  to be binary 

variables. 

3.4 RMIP algorithm 

The CARPP problem requires us to solve both the assignment problem and the routing 

problem simultaneously. It can also be expressed as a problem shown below. 

 arg min
𝑥

𝐹(𝑥),   ∀𝑥 ∈ 𝑋 (𝑃1) 
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Notation 𝑋 is a set of feasible allocation plans and 𝑥  is one specific plan in 𝑋. 

Notation 𝐹 is a function which constructs the optimal routes for an allocation plan and 

calculates the total cost. Solving problem 𝑃1 is time-consuming when the problem 

scale is large. The huge number of feasible allocations is one of the reasons. More 

importantly, the function 𝐹 has to figure out the optimal routes for each consultant, 

which is equivalent to solving 𝑚 traveling salesman problems (𝑚-TSP) where 𝑚 is 

the number of consultants.  

Since problem 𝑃1 is too difficult to solve, we present an alternative problem 𝑃2 as 

follows, 

 arg min
𝑥

𝐹′(𝑥),   ∀𝑥 ∈ 𝑋 (𝑃2) 

The function 𝐹′ has the s imilar function as function 𝐹 but i t  does not need 

to find out  the optimal routes .  It  minimizes the summation of the roundtrip 

airfares for  each cluster  from a visiting consultant’s home cluster. Without the need 

of determining the traveling sequences, the problem 𝑃2 is much easier to be solved 

than the original problem. Figure 2 and Figure 3 demonstrate how the idea works. 

Figure 3.4.1 shows the optimal solution obtained by solving problem 𝑃1 . The 

rectangular A and B denote two consultants, and the circles 1 to 6 represent six clusters. 

As was shown, consultant A visits cluster 1, 2, and 3 in sequence, and consultant B visits 

cluster 5, 6, and 7 in sequence. Figure 3.4.2 shows the optimal routes obtained by solving 

problem 𝑃2. Instead of flying from one cluster to another, consultants A and B return their 

home clusters before going to the next cluster. 

Although the solutions are different, the allocation plans may be the same just as 

shown in the given example.  Cluster 1, 2, 3 are assigned to consultant A, and cluster 4, 

5, 6 are assigned to consultant B in both of the two solutions. It's worth noting that the 

example in Figure 2 and Figure 3 just shows a special case. The best allocation plan for 

problem 𝑃2 is by no means always to be optimal for problem 𝑃1. However, we found that 

the generated allocation plan is generally quite good. The underlying idea is that simply 

assigning consultants to closer clusters, to some extent, can minimize the actual travel 

distance.  
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Figure 3.4.1: Optimal Solution of P1 

 

 

Figure 3.4.2: Optimal Solution of P2 
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Thus, we can just solve problem 𝑃2 and then solve 𝑚 sub-problems to get the same 

solutions where 𝑚  is the number of consultants. Based on the idea, we present a 

reduced mixed-integer linear programming model. 

 

Minimize ∑ ∑ 2𝑞𝑘𝑗𝑦𝑘𝑗

𝑗∈𝐶𝑘∈𝐾

+ ∑ 𝑤𝑘𝑧𝑘

𝑘∈𝐾

 (Reduced-

MILP) 

Subject to 

∑ 𝑥𝑘𝑗𝑠 = 𝑑𝑗𝑠

𝑘∈𝐾

 ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.1) 

𝑥𝑘𝑗𝑠 ≥ 𝑓𝑘𝑗𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.2) 

𝑥𝑘𝑗𝑠 ≤ 𝑀𝑢𝑘𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.3) 

∑ ∑ 𝑥𝑘𝑗𝑠

𝑠∈𝛱𝑗∈𝐶

≤ 𝑎𝑘 ∀𝑘 ∈ 𝐾 (3.4.4) 

∑ 𝑥𝑘𝑗𝑠

𝑠∈𝛱

≤ 𝑀𝑦𝑘𝑗 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.4.5) 

∑ 𝑦𝑘𝑗

𝑗∈𝐶\{0}

≤ 𝑇 − 1 ∀ 𝑘 ∈ 𝐾 (3.4.6) 

∑ 𝑦𝑘𝑗

𝑗∈𝐶

≤ 𝑀𝑧𝑘 ∀𝑘 ∈ 𝐾 (3.4.7) 

𝑥𝑘𝑗𝑠 ∈ ℤ ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.8) 

𝑦𝑘𝑗 ∈ {0,1} ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.4.9) 

𝑧𝑘 ∈ {0,1} ∀𝑘 ∈ 𝐾 (3.4.10) 

 

The formulation RMIP aims to minimize a reduced traveling cost and the wage of 

consultants. The first part models the airfare and the second part models the wage. There 

are three types of variables in the model. Specifically, 𝑥𝑘𝑗𝑠 is an integer variable which 

denotes the number of 𝑠-type demand assigned to consultant 𝑘 from cluster 𝑗. Notation 𝑦𝑘𝑗 

is a binary variable. If consultant 𝑘 has tasks in cluster 𝑗, the value of 𝑦𝑘𝑗 is equal to one. 

Notation 𝑧𝑘  is also a binary variable which records whether consultant 𝑘 has any work 

assigned in the week. 
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Constraints (3.4.1) to (3.4.4) are side constraints regarding the allocation plan. They 

are the same as what in the formulation MILP. These constraints ensure that the feasible 

region 𝑋 of problem 𝑃2 is the same as that of the problem 𝑃1. Constraint (3.4.5) indicates 

that consultant 𝑘 is not allowed to visit cluster 𝑗 if he/she has no task there. Constraint 

(3.4.6) limits the maximum number of trip legs. The consultants visit no more than  𝑇 − 1 

clusters out of their home cluster. Constraint (3.4.7) restricts that if any demand is assigned 

to consultant 𝑘, the corresponding auxiliary decision variables 𝑧𝑘 should be equal to one. 

The variables 𝑧𝑘  are used to calculate the weekly wage. Constraint (3.4.8) to (3.4.10) 

restrict 𝑥𝑘𝑗𝑠 , 𝑦𝑘𝑗 , 𝑧𝑘  to integer variables, binary variables, and binary variables, 

respectively. 

The purpose of solving the reduced formulation is to obtain an allocation plan. Then, 

exhaustive method is applied to obtain best travel routes under that allocation plan. Since 

the maximum number of flight trip has been limited by four, it is efficient to use exhaustive 

method to solve the sub-problems. 

3.5 MNSA algorithm 

We use a neighborhood search algorithm to improve the initial solution obtained by the 

RMIP formulation. The algorithm is based on the basic framework presented by Hansen, 

Mladenović, & Moreno Pérez (2010). The input of the algorithm is the initial solution 𝑥, 

and the output is a near-optimal solution 𝑥𝑏𝑒𝑠𝑡 . 𝑡𝑚𝑎𝑥 , 𝑛𝑚𝑎𝑥 , and 𝜎𝑠ℎ𝑎𝑘𝑒  are three 

parameters used to tune the algorithm. 𝑡𝑚𝑎𝑥 is the maximum computational time. Its value 

is equal to the time limitation, which is set to be one hour in our experiments, minus the 

time consumed at RMIP algorithm. 𝑛𝑚𝑎𝑥 is the maximum number of iterations without 

improvement. The MNSA algorithm terminates when the running time or the number of 

iterations without improvement reaches the limitation. Shaking operator is used to drop out 

from the local optimal. Notation 𝜎𝑠ℎ𝑎𝑘𝑒  indicates the shaking strength, which is used to 

make a trade-off between the searching efficiency and the searching depth. The pseudo-

code of the neighborhood search algorithm is shown in Algorithm 1. 
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Algorithm 1 Neighborhood search algorithm 

Input: 𝑥, 𝑡𝑚𝑎𝑥 , 𝑛𝑚𝑎𝑥 , 𝜎𝑠ℎ𝑎𝑘𝑒  

Output: 𝑥𝑏𝑒𝑠𝑡, 𝑡𝑟𝑢𝑛 

1: 𝑡𝑠𝑡𝑎𝑟𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 

2: 𝑡𝑒𝑛𝑑 ← 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑚𝑎𝑥 

3: 𝑥𝑐𝑢𝑟 ← 𝑥 

4: 𝑥𝑏𝑒𝑠𝑡 ← 𝑥  

5: 𝑛 ← 1 

6: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 < 𝑡𝑒𝑛𝑑 and 𝑛 < 𝑛𝑚𝑎𝑥 do 

7:         𝑥𝑐𝑢𝑟 ← 𝑏𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝑥𝑐𝑢𝑟) 

8:         if 𝐹(𝑥𝑐𝑢𝑟) < 𝐹(𝑥𝑏𝑒𝑠𝑡) then   

9:                 𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑐𝑢𝑟 

10:               𝑛 ← 1 

11:        else 

12:                𝑥𝑐𝑢𝑟 ← 𝑠ℎ𝑎𝑘𝑖𝑛𝑔𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑥𝑏𝑒𝑠𝑡, 𝜎𝑠ℎ𝑎𝑘𝑒) 

13:                𝑛 ← 𝑛 + 1 

14:        end if  

15: end while 

16: 𝑡𝑟𝑢𝑛 ← 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑐𝑢𝑟𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 

17: return 𝑥𝑏𝑒𝑠𝑡 
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Function 𝐹 is called to evaluate the allocation plans. If 𝐹(𝑥𝑐𝑢𝑟) < 𝐹(𝑥𝑏𝑒𝑠𝑡), the current 

solution 𝑥𝑐𝑢𝑟  would be updated as the best solution. Otherwise, we discard the current 

solution and move to next iteration. The nature of the function 𝐹 is to find optimal routes 

for each consultant given the allocation plan. It is equivalent to solve a 𝑚-TSP problem, 

where 𝑚  is the number of consultants. In our CARPP problem, the consultants are 

restricted to visit at most four clusters. Thus, an enumerative search is efficient enough to 

find the optimal routes.  

 Neighborhood Structure 

The neighbors of a solution 𝑥 is defined to be solutions which can be obtained by one 

swapping operation. There are two cases to consider. If the number of shifts to be swapped 

are equal, we swap them completely. If one demand requires more shifts, the demands 

would be swapped partially because the consultant to receive it may not have enough idle 

shifts. In this case, the swapping shifts would be equal to the smaller one. Feasibility needs 

to be checked after each swapping operation or inserting operation. Any move that violates 

the feasibility must be abandoned. In addition, the fixed demand should be excluded from 

the operations in case they are changed. 

 Improving Rules 

There are two common improving rules, the First Improvement (FI) and the Best 

Improvement (BI). Rule FI means that the current iteration stops as soon as it finds a better 

solution. Rule BI enforces the algorithm to iterate all the neighborhoods of the current 

solution and then return the best one. If there is no better neighborhood, the current solution 

would be returned. BI rule can achieve the greatest descent in each iteration, but it may be 

time-consuming. Hansen et al. (2010) suggests that if the initial solution is chosen at 

random, using FI rule should be appropriate. However, if some constructive heuristic is 

used, using BI rule might be better. Our computational results are in consistent with the 

above statements. Therefore, BI rule is used in the MNSA algorithm. The pseudo-code of 

the best improvement rule is shown in Algorithm 2. 
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Algorithm 2 𝑏𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 

Input: 𝑥 

Output: 𝑥′ 

1: 𝑥′ ← 𝑥 

2: while 𝑇𝑟𝑢𝑒 do  

3:         𝑋 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥′) 

4:         𝑥′′ ← best neighbor among 𝑋 

5:         if 𝐹(𝑥′′) < 𝐹(𝑥′) then 

6:                 𝑥′ ←  𝑥′′ 

7:         else 

8:                 return 𝑥′ 

9:       end if 

10: end while 
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 Shaking Operator 

The shaking operator is a perturbation, which helps the MNSA algorithm escape from a 

local optimal. Shaking strength 𝜎𝑠ℎ𝑎𝑘𝑒  is used to control the intensification and 

diversification of the MNSA algorithm (Lourenço, Martin, & Stützle, 2003). If 𝜎𝑠ℎ𝑎𝑘𝑒  is 

set too small, the global searching ability is limited, which makes the MNSA algorithm 

hard to escape from the local optimal. However, if 𝜎𝑠ℎ𝑎𝑘𝑒  is set too large, the feature of a 

good solution would be discarded, which also makes it difficult to obtain good solutions. 

The pseudo-code of the shaking operator is shown in algorithm 3. 

3.6 Numerical Experiments 

The formulation MILP and RMIP are coded in Python 3 and solved by the commercial 

solver Gurobi (version 8.1.0.) running on an x64-based PC. This PC runs Microsoft 

Windows 10 Pro with Intel Core i7-3770 CPU (3.40GHz) and 8 GB of RAM. The MNSA 

algorithm is also coded in Python and run in PyCharm on the same machine. The 

computational results and the synthetic instances are published at Mendeley Data: 

http://dx.doi.org/10.17632/p4h8w2hmwm.1. 

 Generation of Synthetic Instances 

We generated 16 datasets of which 4 are small-sized, 8 are medium-sized, and another 4 

are large-sized. We randomly generated 10 instances for each of the small datasets and 5 

instances for each of the medium and large datasets. 4 × 10 + 12 × 5 = 100 synthetic 

instances are generated in total. The clients and consultants are randomly distributed on a 

100 × 100 Euclidean grid using a continuous uniform distribution. The traveling cost 

between two clusters is set to be the Euclidean Distance. 

Table 3.6.1 shows the parameters and their corresponding values for the synthetic 

instances. The scale of an instance depends on the values of |𝐶|, |𝐾|, |𝑆|, and |𝐷|. After 

extensive experimentations, we found that the number of clusters |𝐶| is the most critical 

parameter related to the complexity of an instance. The computational time increased  

http://dx.doi.org/10.17632/p4h8w2hmwm.1
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Algorithm 3 𝑠ℎ𝑎𝑘𝑖𝑛𝑔𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

Input: 𝑥, 𝜎𝑠ℎ𝑎𝑘𝑒  

Output: 𝑥′ 

1:  𝜎 ← 1 

2:  𝑥′ ← 𝑥 

3:  while 𝜎 ≤ 𝜎𝑠ℎ𝑎𝑘𝑒  do  

4:          𝑥′′ ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥′) 

5:          if 𝑥′′ is feasible then 

6:                  𝑥′ ← 𝑥′′ 

7:                  𝜎 ← 𝜎 + 1  

8:          end if 

9:  end while  

10: return 𝑥′ 

 

 

Table 3.6.1: Parameters and the corresponding values for the synthetic datasets 

Notation Meaning  Value 

|𝐶| Number of clusters {10, 30, 50} 

|𝐾| Number of consultants {20, 40, 60, 100} 

|𝑆| Number of skills {10, 30, 50} 

|𝐷| Number of demands {150, 300, 500, 800} 

𝑅𝑐 Radio of independent contractor  {0.4, 0.6} 

𝑅𝑓 Radio of fixed demand  0.1 

𝑅𝑠 Radio of learned skill of consultant {0.5, 0.8} 

𝑁𝑑 Shifts needed for each demand U(1, 6) 

𝑁𝑐 Available shifts for each consultant 10 

𝑊𝑟 Weekly wage for the regular consultants 0 

𝑊𝑐 Weekly wage for the contract consultant U(900, 1100) 
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significantly while the number of clusters was increased. Thus, we divided the datasets into 

small-, medium-, and large-scales based on |𝐶|. The possible values of 𝐶 are also shown 

in this table. The parameters |𝐾|, |𝑆|, |𝐷|  also affect the complexity of the datasets. 

Different values are assigned to them to keep the diversity of the instances. The symbol U 

represents the uniform distribution. 

In order to be consistent with the real-life instances, we generated two kinds of 

consultants, i.e., the regular consultants and contract consultants.  The ratio of the contract 

consultant (𝑅𝑐) is set to be 0.4 or 0.6. The ratio of fixed demand (𝑅𝑓) is set to be 0.1 for 

all the datasets. 𝑅𝑠 denotes the ratio of learned skills for the consultants. For example, if 

the skill pool consists of ten different skills and 𝑅𝑠 is equal to 0.5, each consultant would 

be randomly assigned 5 kinds of skills.  

It was found that the value of 𝑅𝑠 affects the solution space. If 𝑅𝑠 was set too small, there 

could be no feasible solution because of a lack of specific skills. In our experiment, its 

value was set to be either 0.5 or 0.8. 

Table 3.6.2 shows the specific configuration of parameters for each dataset. Notation S, 

M, L denotes the small-, medium-, and large-scale dataset, respectively. Take the dataset 

S1 as an example. Each instance in S1 contains 10 clusters, 20 consultants, 10 skills, and 

150 shifts of demands. The ratio of contract consultants is 0.4, which means that there are 

eight consultants. Likewise, it can be computed that there are 15 shifts of fixed demand, 

and each consultant is proficient in 5 kinds of skills. 

 Result of Synthetic Instances 

The performances of the MILP algorithm, RMIP algorithm, and MNSA algorithm are 

evaluated using the synthetic instances. MILP and RMIP are solved by the commercial 

solver Gurobi. MNSA algorithm takes the results of the RMIP as its initial solutions. 

Then, these initial solutions are optimized by a neighborhood search algorithm. The 

parameters 𝑛𝑚𝑎𝑥  and 𝜎𝑠ℎ𝑎𝑘𝑒  are set to be 30 and 10, respectively. The maximum 

computational time is limited by 3600 seconds for all the three algorithms. 
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Table 3.6.2: Configuration of parameters for the synthetic datasets 

Dataset |𝐶| |𝐾| |𝑆| |𝐷| 𝑅𝑐 𝑅𝑓 𝑅𝑠 

S1 10 20 10 150 0.4 0.1 0.5 

S2 10 20 10 150 0.4 0.1 0.8 

S3 10 20 10 150 0.6 0.1 0.5 

S4 10 20 10 150 0.6 0.1 0.8 

M1 30 40 30 300 0.4 0.1 0.5 

M2 30 40 30 300 0.4 0.1 0.8 

M3 30 40 30 300 0.6 0.1 0.5 

M4 30 40 30 300 0.6 0.1 0.8 

M5 30 60 30 500 0.4 0.1 0.5 

M6 30 60 30 500 0.4 0.1 0.8 

M7 30 60 30 500 0.6 0.1 0.5 

M8 30 60 30 500 0.6 0.1 0.8 

L1 50 100 50 800 0.4 0.1 0.5 

L2 50 100 50 800 0.4 0.1 0.8 

L3 50 100 50 800 0.6 0.1 0.5 

L4 50 100 50 800 0.6 0.1 0.8 
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Figure 3.6.1 shows the gaps and computational time solved by the three algorithms 

for small-scale (left), medium-scale (middle), and large-scale (right) instances. The x-

axis in the six subfigures represents the index of the instances. The upper three 

subpictures are associated with the computational gaps. For small-scale instances, the 

MILP algorithm performs best. It finds optimal solutions for all 40 instances. For 

medium-scale instances, the solution qualities of the three algorithms are similar. 

However, there is a tendency that MNSA algorithm gradually outperforms MILP. In 

addition, MILP algorithm is significantly slower than the other two algorithms. For 

large-scale instances, the MNSA and RMIP perform better than MILP. The differences 

of solution quality between MNSA and RMIP are very small. The lower three 

subpictures are associated with computational time. As is shown, RMIP has the highest 

efficiency, while MILP is the least efficient algorithm. MILP algorithm reaches the 

time limit of one hour and terminates in advance for both medium- and large-scale 

instances. However, the time is sufficient for RMIP algorithm and MNSA algorithm. 

It is worth mentioning that the gap, except for the small-scale instances, refers to 

the percentage difference between the solution obtained and the best lower bound 

found by the solver. This is because finding the global optimums for medium- and 

large-scale instances are intractable. Figure 3.6.2 provides an example of solving a 

medium instance for twenty-four hours. 

As demonstrated, the gap undergoes significant reduction within the initial few hours. 

Subsequently, the gap gradually approaches zero at a slower pace. However, despite the 

solver being terminated due to overtime, the optimal solution remains elusive. This 

observation suggests that the task of identifying global optima becomes challenging for 

medium-scale instances and even intractable for large-scale instances. Therefore, with the 

exception of small-scale instances, the gap used in this paper refers to a percentage 

difference between the objective function value and the best lower bound found by the 

solver. 

Table 3.6.3 shows the gaps and computational time for the forty small-scale instances. 

As is shown, MILP algorithm is able to find the optimal solutions within an average time  
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Figure 3.6.1: The performance of the algorithms MILP, RMIP, and MNSA. 
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Figure 3.6.2: The gaps of running MILP formulation for twenty-four hours 

 

 

Table 3.6.3: Gaps and computational time for the small-scale instances 

 # of opt. Max. gap (%) Ave. gap (%) Min. Gap (%) Ave. Time (s) 

MILP 40 0.00 0.00 0.00 85.88 

RMIP 3 5.60 1.13 0.00 0.59 

MNSA 13 3.24 0.46 0.00 5.54 
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of a minute and a half. By contrast, RMIP algorithm performs worse on solution quality 

but has a great advantage on computational efficiency. It takes only one second to obtain 

near-optimal solutions. The maximum gap and average gap are 5.60% and 1.13%, 

respectively. MNSA algorithm is a compromise between the MILP and RMIP. Its 

computational time is shorter than that of MILP, and its solution quality is better than that 

of RMIP. As is shown in the last row, the MNSA solved thirteen instances to optimal in 

six seconds. Its maximum gap and average gap are 3.24% and 0.46%, respectively. 

Table 3.6.4 shows more details with regard to the computational results. The smallest 

objective function value, the shortest computational time, and the smallest gap are bolded. 

Note that each of the rows from S1 to S4 represents an average result of ten instances, 

rather than one single instance. For example, the value 4409.0 in the row of S1 represents 

the average objective function value for instances through the first instance of S1 to the last 

instance of S1. The MILP algorithm achieves the best performance on solution quality, and 

the RMIP algorithm consumes the shortest time to obtain near-optimal solutions. MNSA 

algorithm falls between the above two algorithms. 

Table 3.6.5 compares the three algorithms in terms of medium-scale synthetic datasets. 

The MILP algorithm terminates when the time limitation of 3600 seconds is reached, and 

the solver provides us the best known lower bound for comparison. The results show that 

the MILP formulation performs best on solving the first four datasets. However, with the 

increase of the problem scale, the performance of RMIP algorithm and MNSA algorithm  

gradually exceeds that of MILP. For dataset M5 to M8, RMIP algorithm obtained better 

solutions. This is because the MILP formulation terminates with a relatively big gap due 

to the time limitation, while the computational time is sufficient for RMIP algorithm. The 

MNSA algorithm further improves the RMIP solutions within a reasonable time. As is 

shown, the average gap is reduced from 4.09% to 3.66% in three minutes. 

Table 3.6.6 shows the computational results with regard to large-scale synthetic 

instances. The MILP algorithm terminates when the time limitation of 3600 seconds is 

reached. As is shown, the MNSA algorithm dominates MILP algorithms on all the 

instances.  
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Table 3.6.4: Comparison of the three algorithms in terms of small-scale datasets 

 MILP  RMIP  MNSA 

Data Global 

Optimum 

Obj. Time 

 (s) 

Gap† (%)  Obj. Time (s) Gap† (%)  Obj. Time  

(s) 

Gap† (%) 

S1 4409.0 4409.0 83.50 0.00  4444.0 0.49 0.79  4422.5 4.13 0.31 

S2 4125.0 4125.0 98.26 0.00  4207.3 0.82 1.91  4158.2 7.27 0.78 

S3 8220.4 8220.4 64.54 0.00  8305.4 0.49 1.01  8245.6 4.10 0.31 

S4 7584.7 7584.7 97.21 0.00  7646.3 0.54 0.80  7620.0 6.65 0.46 

Ave. 6084.8 6084.8 85.88 0.00  6150.7 0.59 1.13  6111.6 5.54 0.46 

† Gap to global optimum 
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Table 3.6.5: Comparison of the three algorithms in terms of medium-scale datasets 

 MILP  RMIP  MNSA 

Data Lower Bound Obj. Gap‡ (%)  Obj. Time (s) Gap‡ (%)  Obj. Time  

(s) 

Gap‡ (%) 

M1 8631.5 8932.6 3.38  9261.9 13 6.80  9170.3 57 5.87 

M2 7645.2 7844.7 2.58  8070.6 15 5.29  8008.7 85 4.56 

M3 16261.0 16494.5 1.41  16872.5 8 3.63  16785.3 66 3.12 

M4 16036.6 16458.7 2.56  16575.5 9 3.25  16526.1 87 2.96 

M5 16510.8 17562.0 5.95  17175.8 24 3.87  17099.2 220 3.44 

M6 16275.7 17421.8 6.55  17003.2 22 4.27  16958.4 285 4.02 

M7 28259.5 29580.3 4.46  29110.9 19 2.92  29069.0 189 2.78 

M8 27890.9 28783.4 3.09  28668.1 12 2.70  28612.5 357 2.52 

Ave. 17188.9 17884.8 3.75  17842.3 15 4.09  17778.7 168 3.66 

‡ Gap to best known lower bound found by solver 
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Table 3.6.6: Comparison of the three algorithms in terms of large-scale datasets 

 MILP  RMIP  MNSA 

Data Lower Bound Obj. Gap‡ (%)  Obj. Time (s) Gap‡ (%)  Obj. Time (s) Gap‡ (%) 

L1 21158.3 34063.8 37.46  24792.6 134 14.64  24731.4 842 14.42 

L2 19762.1 29924.7 33.21  24023.9 112 17.69  23992.9 1184 17.58 

L3 22569.6 34361.0 32.06  28151.1 103 17.97  28104.6 1179 17.84 

L4 37890.1 50502.3 24.19  44006.0 80 13.93  43934.9 1425 13.79 

Ave. 25345.0 37212.9 31.73  30243.4 107 16.06  30191.0 1157 15.91 

‡ Gap to best known lower bound found by solver 
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The average gap is 31.73% for the MILP algorithm while that is only 15.91% for the 

MNSA algorithm. Just like the results in the previous two tables, the RMIP algorithm is of 

slightly worse solution quality than the MNSA algorithm, but it is the fastest algorithm. Its 

average computational time is less than two minutes. 

In summary, the MILP algorithm is only suitable for solving small-scale instances. It is 

able to obtain optimal solutions in a reasonable time. However, with the increase of 

instance scale, the MILP algorithm becomes more and more inefficient. The RMIP 

algorithm and MNSA algorithm gradually outperform MILP algorithm. This is because 

MILP is terminated in a relatively early stage due to the time limitation, but the 

computational time is sufficient for the other two algorithms. Since the MNSA algorithm 

is based on the RMIP algorithm, it consumes more time than the RMIP algorithm, but its 

solution quality is slightly better. 

 Real-life Instances 

The performances of MILP, RMIP, and MNSA algorithms are also verified in twelve real-

life instances. The amount of demand fluctuates from week to week. The consultants 

consist of two types: regular consultants (RC) and contract consultants (CC). The RCs are 

salary-based employees. They get paid whether they are assigned demand or not. Thus, 

there is no need to include the RCs’ wages in the objective function. The CCs only get paid 

when they work in the week. Generally speaking, RC is always the first-tier to be assigned 

and CC is only assigned demand if needed. The maximum number of trip legs allowed is 

four per week, which includes the last trip home.  

As is shown in Table 3.6.7 , there are 63 consultants in total, which consists of 29 RCs 

and 34 CCs. The wages for the RCs are set to zero because they are fixed and thus not 

counted into the objective function. The average wage of CCs is $2,162 dollars per week. 

All the consultants work two shifts a day, five days a week. The skillset includes 18 types 

of skills in total. On average, RC is proficient in 13 different skills, and CC has about 12. 

There are two kinds of demands: the regular demand and fixed demand. The fixed demand 

can only be served by designated consultants. 
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Table 3.6.7: Characteristics of regular consultant and contract consultant 

 Regular Consultant Contract Consultant 

Number of consultants 29 34 

Average wage ($) 0 2162 

Number of available shifts  10 10 

Average number of skills 13 12 
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Table 3.7.1 shows the number of fixed demand and regular demand among the twelve 

scheduling weeks. On average, the total weekly demands are 464, which includes 433 

regular demands, and 32 fixed demands. 

Table 3.7.2 shows the computational results with regard to the twelve real-life instances. 

The MILP algorithm terminates at 3600 seconds. The RMIP algorithm and MNSA 

algorithm are superior to the MILP algorithm in eleven instances. Especially for week 4, 

the solution gap for the MILP algorithm is as large as 35.31% while that is only 3.68% for 

RMIP and 3.63% for MNSA. The only exception is week 6, where the gap of MILP is 

2.47% while that is 3.14% for RMIP and 3.13% for MNSA. On average, the performances 

of the RMIP algorithm and MNSA algorithm are also significantly better than that of the 

MILP algorithm. However, the differences in solution quality between the MNSA 

algorithm and RMIP algorithm is quite small. MNSA algorithm reduced the average gap 

of RMIP solutions from 4.31% to 4.24% in approximately five minutes. 

3.7 Conclusion 

The paper studies a variant of the consultant assignment and routing problem, which 

takes priority matching into consideration. The new constraint does not change the problem 

much, but it increases the computational complexity. The existing MILP formulation was 

found inefficient to solve the problem. Therefore, we present a decomposition algorithm 

named RMIP and a metaheuristic named MNSA in this paper. The RMIP algorithm first 

obtains feasible an allocation plan for the consultants in the first stage. Then, the best 

traveling routes under that allocation plan are determined by the exhaustive method. The 

MNSA algorithm applies a neighborhood search algorithm to further optimize the 

solutions. The performances of the presented algorithms are evaluated by comparing them 

with the modified MILP formulation. 

Computational results show that the MILP formulation performs well in solving small-

scale instances. It finds optimal solutions for all synthetic instances. RMIP and MNSA 

algorithms obtain near-optimal solutions with a gap of 1.1% and 0.5% respectively. With  
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Table 3.7.1: Number of flexible demand and fixed demand 

Week 1 2 3 4 5 6 7 8 9 10 11 12 Ave. 

# of Total demand 453 483 446 470 438 490 477 449 446 473 450 497 464 

# of Regular demand 419 457 414 435 411 459 443 413 414 443 423 463 433 

# of Fixed demand 34 26 32 35 27 31 34 36 32 30 27 34 32 
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Table 3.7.2: Comparison of the three algorithms in terms of real-life instances 

 MILP  RMIP  MNSA 

Data Lower 

Bound 

Obj. Gap‡ 

(%) 

 Obj. Time (s) Gap‡ 

(%) 

 Obj. Time  

(s) 

Gap‡ 

(%) 

wk.1 41127.3 43607.9 5.69  42977.2 166 4.30  42977.2 399 4.30 

wk.2 46406.8 49930.8 7.06  49353.2 331 5.97  49353.2 602 5.97 

wk.3 39205.7 43810.4 10.51  40959.5 91 4.28  40958.2 322 4.28 

wk.4 42289.9 65376.3 35.31  43906.9 512 3.68  43884.9 806 3.63 

wk.5 36654.0 38478.6 4.74  38345.8 287 4.41  38283.0 568 4.26 

wk.6 49125.3 50371.5 2.47  50719.0 102 3.14  50711.7 443 3.13 

wk.7 36771.1 38605.2 4.75  38130.2 133 3.56  38116.9 401 3.53 

wk.8 29453.9 32205.0 8.54  31046.6 561 5.13  30951.4 1182 4.84 

wk.9 31750.5 34330.0 7.51  32880.3 72 3.44  32879.0 281 3.43 

wk.10 34102.9 36879.2 7.53  36390.9 634 6.29  36390.9 942 6.29 

wk.11 30319.8 32281.0 6.08  31622.9 333 4.12  31571.9 601 3.97 

wk.12 50891.4 53716.9 5.26  52695.9 471 3.42  52612.0 742 3.27 

Ave. 39008.2 43299.4 8.79  40752.4 308 4.31  40724.2 607 4.24 

‡ Gap to best known lower bound found by solver  
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the increase of the problem size, solving MILP formulation becomes more and more time-

consuming and the performance of the other two algorithms gradually exceeds that of 

MILP. For large-scale instances, the RMIP algorithm significantly outperforms MILP. 

However, the improvement achieved by the MNSA algorithm is not significant. The testing 

of real-life instances produces similar results. The presented two algorithms outperform 

MILP formulation in eleven of the twelve instances. 

Future research may include but are not limited to the following aspects. First, future 

studies may take more realistic factors into consideration. For example, the price of a flight 

ticket may change during a week. In addition, the price may also be asymmetric for 

departing and back. Considering the price change in the planning horizon would make the 

model more accurate. Furthermore, the improvement of solution quality brought from the 

MNSA algorithm is not significant when the problem scale increased. A more efficient 

heuristic may be designed to improve the solution. 
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Chapter 4. A Supervised Learning Approach for 

Solving the Traveling Salesman Problems 
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This chapter studies the Traveling Salesman Problem (TSP), which is the most basic 

version of vehicle routing problems. Recently, many learning-based approaches are 

proposed to solve TSP. However, the scalability and generalization of these approaches 

remain significant challenges. This paper addresses this gap by introducing a supervised 

learning approach that leverages local information to make predictions. In particular, we 

introduce the concept of "anchors," which represents nodes that should be connected to 

their nearest neighbors in the optimal solution. Our approach differs from the previous 

supervised learning approaches in that, instead of inputting the global distance information, 

it solely relies on the surrounding nodes to make predictions, which enables it to handle 

large-scale instances without sacrificing prediction accuracy. Experimental results 

demonstrate that our model successfully identifies 87% of the anchors with a precision of 

over 95% for both generated and TSPLIB instances. By integrating the predicted anchors 

into established methods such as the Miller-Tucker-Zemlin (MTZ) model and insertion 

algorithms, we achieve significant improvements in solution quality, reducing the average 

gap. This work showcases the scalability and adaptability of our proposed learning 

approach for solving TSPs. 

4.1 Introduction 

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization 

problem that seeks to find the shortest route visiting a set of locations and returning to the 

starting point. Various approaches have been developed to solve TSP, including exact 

methods, heuristics, and metaheuristics, each with their own strengths and limitations. 

Solver based on exact methods, such as the Concorde, can find optimal solutions but are 

computationally intensive, particularly for large-scale instances (Applegate et al., 2002). 

Heuristic algorithms, such as the nearest neighbor algorithm, insertion algorithms, and 2-

opt algorithm are faster but may not guarantee optimality. State-of-the-art heuristics like 

Lin-Kernighan-Helsgaun (LKH) algorithm offer a balance between efficiency and solution 

quality, making them popular choices for TSP (Helsgaun, 2000; Lin & Kernighan, 1973). 
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Recent research has explored learning-based algorithms for combinational optimization 

(Bengio et al., 2021). In many scenarios, it is common to repeatedly solve TSPs with 

different data while maintaining the same problem structure. This repetitive nature presents 

an opportunity to develop machine learning (ML) algorithms that can leverage the 

underlying problem pattern. By learning from a large amount of historical optimal routes, 

ML can effectively exploit the pattern behind the optimal solutions which can be used to 

improve the existing algorithms. However, generalization to larger-scale instances remains 

a challenge. Scaling up training data can be costly, limiting the scalability and adaptivity 

of ML methods. 

In this paper, we propose a novel supervised learning approach that overcomes these 

challenges. Our approach trains on small-scale generated instances and exhibits remarkable 

scalability to large-scale instances as well as adaptivity to heterogeneous instances, all 

while maintaining high prediction accuracy. The proposed approach differs from the 

traditional ML methods by the fact that we utilize local information instead of global 

information for making predictions, which allows our approach to a better generalization 

ability. To simplify the explanation, we introduce a new term called "anchors," which 

represents the nodes that should connect to their nearest neighbors in an optimal solution. 

By using ML, we train a neural network to predict the anchors based on spatial information. 

The contribution of this paper is twofold. Firstly, we propose a supervised learning 

framework that trains on small-scale instances but generalizes well to large-scale instances. 

Empirical results demonstrate that the trained model successfully predicts 87% of the 

anchors with a precision of more than 95% for both generated instances and TSPLIB 

instances. Notably, the trained model achieves comparable performance in predicting 

TSPLIB instances, despite these instances not being included in the training data. Secondly, 

we provide practical ways for incorporating the anchor concept into existing algorithms. 

With the predicted anchors, we can significantly reduce the computational time required 

for solving the Miller-Tucker-Zemlin (MTZ) formulation using Gurobi. The proposed 

approach also achieves a good integration with heuristics. Moreover, the paper presents a 
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comprehensive analysis of the trained model, discusses various evaluation metrics, and 

explores a trade-off between precision and recall scores. 

The remaining sections of the paper are organized as follows: Section 4.2 provides a 

comprehensive review of existing learning-based approaches for the Traveling Salesman 

Problem (TSP), with a particular focus on supervised learning methods. Section 4.3 

introduces the concept of anchors and explores their potential to enhance traditional 

heuristics for TSP. Section 4.4 outlines our proposed approach in detail, including feature 

selection, data preprocessing, hyperparameter tuning, and the integration of anchors with 

second-stage optimization algorithms. Section 4.5 presents a comprehensive performance 

evaluation of the trained model. Section 4.6 demonstrates the effectiveness of utilizing 

anchors with exact methods and heuristics on the generated instances and TSPLIB 

instances. Section 4.7 discusses the findings and practical insights gained from our study. 

Finally, we summarize the paper and suggest directions for future research in Section 4.8. 

4.2 Literature Review 

The TSP has attracted significant research attention as a well-known optimization problem. 

Various methodologies, including constructive heuristics, exact methods, and 

metaheuristics, have been developed to address this problem. State-of-the-art solvers, such 

as the Concorde solver, have demonstrated efficient solutions for the TSP. The Lin-

Kernighan-Helsgaun (LKH) algorithm has also been successful in finding near-optimal 

solutions for large-scale instances. Traditional methodologies on solving TSP can be found 

in the literature review by Laporte (1992). Recent research has explored the use of machine 

learning (ML) and reinforcement learning (RL) approaches for combinatorial optimization. 

Comprehensive reviews are available in Karimi-Mamaghan et al. (2022) and Mazyavkina 

et al. (2021). 

In the early stages of applying ML to solve the TSP, one commonly used approach was 

the pointer network, which is a sequence-to-sequence neural network introduced by 

Vinyals et al. (2015). This technique utilizes attention mechanisms to select elements from 
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the input sequence as outputs. Kool et al. (2018) extended this approach by training the 

model using the REINFORCE algorithm. Through their work, they were able to obtain 

near-optimal solutions for TSP instances with up to 100 nodes. Building upon the pointer 

network framework, Stohy et al. (2021) proposed a hybrid graph pointer network that 

combines a graph embedding layer with the encoder of a transformer model. Expanding 

the application of attention-based pointer networks, Kong et al. (2022) proposed an 

attention-based pointer network to solve drone logistic delivery problems. further 

considered multiple objectives for TSP. Furthermore, Perera et al. (2023) extended the 

problem by considering multiple objectives. 

RL has gained significant popularity in the field due to its ability to generate decision-

making policies for complex optimization problems. Several studies have successfully 

applied RL to address TSP. For instance, Dai et al. (2017) and Kwon et al. (2020) proposed 

to solve TSP using RL. Nazari et al. (2018) introduced an end-to-end framework that 

utilized RL for solving vehicle routing problems. Wu et al. (2022) employed deep RL to 

learn a heuristic that improves initial solutions for TSP. Furthermore, Zhang et al. (2023) 

and (Ling et al., 2023) utilized deep RL to solve TSP. In recent years, there has been a 

growing interest in drone-based TSP (Macrina et al., 2020). Ha et al. (2018) and Tiniç et 

al. (2023) specifically addressed TSP with multiple drones. Salama & Srinivas (2020) 

explored the use of customer location clustering to improve last-mile delivery in the context 

of TSP with drones. The application of RL has shown promising results in solving drone-

aided routing problems, as demonstrated by the work of Bogyrbayeva et al. (2023). Liu et 

al. (2022) addressed the challenge of stochastic travel times in TSP with drones, 

highlighting the potential of RL in this field. 

ML techniques have also been used to enhance existing TSP algorithms. Researchers 

have explored the integration of ML with the LKH algorithm, a state-of-the-art TSP 

heuristic, to improve its performance. Zheng et al. (2021, 2023) introduced the Variable 

Strategy Reinforced LKH (VSR-LKH) algorithm, which combines reinforcement learning 

with the LKH algorithm. Similarly, Xin et al. (2021) proposed the Neuro-LKH algorithm, 

which incorporates deep learning with the LKH algorithm. These approaches leverage ML 
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techniques to enhance the effectiveness and efficiency of the LKH algorithm in solving the 

TSP. 

In this paper, our primary focus is on supervised learning (SL) approaches, as our 

proposed method falls within this category. SL approaches have received less attention 

compared to other learning-based approaches, primarily due to the challenges they face in 

generalizing to larger problem instances. Li et al. (2018) proposed a learning-based 

approach that combines deep learning with tree search. They employed a graph 

convolutional network to estimate the likelihood of each vertex being part of the optimal 

solution. ML can reduce the problem size of TSP by predicting which arcs should be 

included in the optimal solution. This approach acts as a preprocessing technique by fixing 

a subset of decision variables for a solver to solve the mathematical formulation. However, 

solving the simplified model can still be computationally expensive. Sun et al. (2021)  

introduced a problem-reduction technique that utilizes a support vector machine to predict 

optimal edges. Their study found that when the training and test instances belong to the 

same TSP variant, the model exhibits a small error. However, as the model is tested on 

TSP variants that differ significantly from the training data, the generalization error 

naturally increases. Mele et al. (2021) employed ML to predict edges likely to be part of 

the optimal solution in the TSP. They combined this partial solution with a constructive 

heuristic to generate the feasible solutions. The computational complexity for solution 

construction was shown to be 𝑂(𝑛2 log 𝑛2) where 𝑛 is the number of cities. 

One critical limitation of SL-based approaches is the requirement to have a fixed input 

size, which limits their adaptability and scalability. Joshi et al. (2022) specifically 

addressed this issue by noting that while state-of-the-art learning-driven approaches for 

TSP demonstrate strong performance when trained on small instances, they struggle to 

generalize their learned policies to larger instances at practical scales. As a result, they 

emphasized the necessity of reevaluating various aspects to achieve effective 

generalization beyond the training data. To overcome this generalization limitation, Fu et 

al., (2021) proposed a solution by training a small-scale model in a supervised manner. 

This trained model can be repeatedly applied to generate heat maps for TSP instances of 
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various sizes. The approach incorporates techniques such as graph sampling, graph 

converting, and heat map merging to ensure scalability and achieve the desired level of 

generalization. 

As mentioned above, various attempts have been made to improve the scalability and 

adaptivity of ML methods for solving TSP. However, to the best of our knowledge, none 

of the existing supervised learning techniques have demonstrated the ability to generalize 

and maintain accuracy when solving large-scale instances. This paper fills this gap by 

introducing a new supervised learning approach. The novelty of our approach lies primarily 

in our unique training methodology. Unlike previous approaches that focus on predicting 

individual arcs in the optimal solution, we predict "anchors" which represent the nodes that 

connect to their nearest neighbors in the optimal solution. This shift allows the model to 

make predictions based on local information, i.e., the surrounding neighbors of a node, 

greatly enhancing the generalization ability of the neural network. Furthermore, empirical 

experiments illustrate that the trained model can effectively solve TSP instances with 

significantly different distributions, further highlighting its robustness and versatility. 

4.3 Definition of anchors 

To facilitate the subsequent discussion, we introduce the term "anchor" to refer to nodes 

that should be connected to their nearest neighbors in the optimal solution. In this section, 

we present an illustrative example to demonstrate the necessity of employing anchors and 

their role in facilitating the generation of near-optimal solutions. Additionally, we conduct 

experiments to showcase that, in general, a significant proportion, approximately 80% to 

90%, of the nodes in TSP problems can serve as anchors. Although we cannot provide 

mathematical proofs, we believe that the ratio of anchors does not decrease with the 

increase of problem scales. This assumption implies that as the size of TSP problems 

increases, the relative number of nodes acting as anchors remains relatively constant. 

Figure 4.3.1 shows two solutions for a TSP instance comprising six nodes. As presented 

on the left side, one solution is generated by using the nearest neighbor algorithm, resulting  
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Figure 4.3.1: A Demonstration of Solutions 

  



 

86 

 

in a total route distance of 16.06. As displayed on the right side, the optimal solution is 

obtained by Gurobi. In contrast, the optimal total route distance is 14.94. It is widely 

recognized that heuristics, such as the nearest neighbor algorithm, offer the advantage of 

quickly solving TSP problems. However, the solution quality is typically far away from 

optimality. By comparing the two solutions above, it becomes apparent that the starting 

city, denoted as O in the example, should not be connected to its nearest neighbor, denoted 

as node A. This observation demonstrates the limitations of the nearest neighbor algorithm. 

In order to overcome the limitations of traditional constructive heuristics in solving the 

TSP, we propose to develop a predictive model that can determine which nodes should 

connect to their nearest neighbors in advance. These nodes are denoted as anchors in the 

subsequent discussions. By incorporating the predicted anchor nodes, we can enhance 

traditional approaches, preserving their advantages in terms of computational efficiency 

while mitigating their shortcomings in solution quality. While we have used the nearest 

neighbor algorithm as an example, other constructive algorithms such as insertion 

algorithms and 2-opt algorithm can also be implemented alongside anchors to improve 

their performance. 

Figure 4.3.2 demonstrates the utilization of anchors in solving a TSP instance. The 

process entails three steps: anchor identification, connecting anchors to their nearest 

neighbors, and connecting the remaining nodes using a constructive algorithm. In the 

provided example, our proposed supervised learning model predicts four anchor nodes, 

highlighted in red. As depicted in subfigure (b), these anchors are then connected to their 

nearest neighbors. Finally, the remaining nodes are connected to their respective nearest 

neighbors, resulting in the complete solution shown in subfigure (c). It is found that the 

solution generated from these three steps is the same as the optimal solution obtained by 

Gurobi. This highlights the potential of enhancing traditional approaches through the 

prediction of anchors. 

Figure 4.3.3 presents a box chart illustrating the percentage of anchors for various scales 

of the Traveling Salesperson Problem (TSP). The data consists of 500 instances, and each  
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Figure 4.3.2: Framework of an Anchor-based Constructive Heuristic 
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Figure 4.3.3. Average Percentage of Anchors for general instances of TSP 
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box in the chart represents the average percentage of anchors calculated from these 

instances. The TSP instances were solved using the Concorde solver. 

4.4 Methodology 

The methodology section consists of five parts: feature selection, data preprocessing, 

hyperparameter tuning, anchor insertion algorithm, and anchor-MTZ formulation. The first 

three parts introduce the training process of the supervised learning model. The last two 

parts present the pseudo code of the proposed algorithm and the model that integrates the 

predicted anchors with the MTZ model. 

 Feature Selection 

Our study proposes a novel approach for training a supervised learning model to solve TSP. 

We define the feature as an 𝑚 × 𝑚 matrix, where m represents the dimension of neighbors. 

Specifically, we consider 𝑚 neighbors of a node and the 𝑚 neighbors of each of those 

nodes as inputs to construct the feature matrix. We propose to use this feature definition 

based on our observation of a hidden pattern that can be learned to determine whether a 

node should be classified as an anchor or not, using only its local information. 

One intuitive insight is that if a node has similar distances to its neighbors, it is less 

likely to be an anchor. Instead of connecting to the nearest neighbor, the node can connect 

to the second-nearest one or even other nodes without a significant loss. By contrast, if the 

distance to the nearest neighbor and the second-nearest neighbor differs significantly, the 

node is more likely to be an anchor. It is difficult to describe the underlying patterns by 

mathematical formulations. Therefore, we employ a supervised learning model to 

approximate the relationship and predict whether a node should be classified as an anchor. 

To approximate the relationships between features and labels, we propose training a 

multiple layer perceptron (MLP). An essential hyperparameter that needs to be determined 

is the dimension of the feature matrix. Generally, a larger dimension allows for the 

utilization of more information in the prediction process. However, larger networks can be 

more difficult to train and may require a larger dataset for effective training. To determine 
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the optimal dimension, we conducted several preliminary experiments and tested different 

dimensions ranging from 3 to 10. The results are summarized in Table 4.4.1. 

The trend indicates that as the dimension of the feature matrix increases, the average 

accuracy and precision of the model decrease. Consequently, selecting a large value for the 

dimension is not ideal. In order to achieve a balance between the precision and 

specification, we have chosen a dimension of 5 for the feature matrix. 

 Data Preprocessing 

Data preprocessing plays a vital role in enhancing the generalization ability of the model. 

Among the critical preprocessing techniques, normalization is of utmost importance, 

especially when instances exhibit varying scales. To address this, we employ min-max 

normalization, which ensures that each feature is within the same range, specifically 

between zero and one. The formulation for min-max normalization is as follows, 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

 

where 𝑥 represents the feature matrix, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 denote the minimum and maximum 

values within the matrix, and 𝑥𝑛𝑜𝑟𝑚 represents the normalized feature. By applying this 

approach, we have achieved improved performance and more robust predictions. This 

normalization technique ensures that the data is comparable across different instances, 

enabling better generalization ability of the model. 

 Hyperparameter Tuning 

In this study, we utilize a random search policy to fine-tune the hyperparameters. The 

ranges for tuning are presented in Table 4.4.2. It should be noted that the number of epochs 

is not considered as a hyperparameter. Instead, we set a maximum of 200 training epochs 

and implement an early stopping mechanism if the accuracy does not improve for five 

consecutive epochs. This approach enables us to efficiently optimize our model while 

mitigating the risk of overfitting. 
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Table 4.4.1: The relationship between input size and prediction performance 
 

Accuracy Precision Recall Specific F1 Score Time (s) 

3 0.877 0.886 0.975 0.347 0.928 72 

4 0.872 0.881 0.975 0.327 0.925 116 

5 0.860 0.880 0.962 0.377 0.918 107 

6 0.852 0.869 0.968 0.316 0.914 83 

7 0.857 0.869 0.973 0.307 0.916 133 

8 0.855 0.872 0.967 0.331 0.915 127 

9 0.852 0.873 0.962 0.342 0.913 76 

10 0.851 0.860 0.980 0.242 0.914 115 

 

 

 

Table 4.4.2: The range of hyperparameters for random search 

Hyperparameters Range 

Learning rate [0.001, 0.01, 0.1] 

Number of hidden layers [1, 2, 3, 4] 

Number of neurons in each layer [64, 128, 256, 512] 

Activation function [ReLU, Sigmoid] 

Optimizer [Adam, RMSProp] 

Dropout rate [0, 0.1, 0.2] 

Batch size [128, 256, 512, 1024] 
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To address the challenge of excessively long training time, we generated a smaller 

dataset specifically for hyperparameter tuning purposes. The dataset consists of 405,198 

feature and label pairs generated from various TSP instances, including TSP25, TSP50, 

TSP100, as well as instances from TSPLIB and National Traveling Salesman Problems. 

The results are summarized in Table 4.4.3. 

The experiments revealed that a learning rate of 0.001, in combination with the Adam 

optimizer, consistently yielded good performance across most cases. It was found that the 

number of layers and the number of neurons did not have a significant impact on the 

performance. Given that the actual training dataset is much larger than the dataset used for 

parameter tuning, we were able to use a relatively large number of layers and neurons 

without compromising performance. For the activation function, we selected ReLU, which 

has shown to be effective in various tasks. To mitigate the risk of overfitting, we set the 

dropout rate to 0.1. To expedite the training process and enhance efficiency, we set the 

batch size to 1024. The selected hyperparameters, as summarized in Table 4.4.4, allowed 

us to achieve satisfactory performance while reducing the training time, resulting in a more 

efficient process. 

 Anchor Insertion Algorithm 

In this section, we present the proposed anchor insertion algorithm, which is inspired 

by the nearest insertion algorithm. The pseudo code for this algorithm is provided in 

Algorithm 1. 

The anchor insertion algorithm operates based on a straightforward concept. Initially, a 

supervised learning technique is employed to predict a set of anchors, denoted as 𝐴 . 

Subsequently, the algorithm proceeds by randomly selecting a node 𝑎 from the set 𝐴. This 

extracted node 𝑎 is then inserted into the current solution, 𝑥, at a location determined by 

the 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝑑𝑒𝑥  function. The function calculates the index 𝑖  that represents the 

optimal position for inserting node 𝑎 into the incompletely solved solution. Following this 

step, the algorithm checks whether the nearest neighbor of the anchors, denoted as node 𝑏, 

has already been visited. If node 𝑏 has not been visited, it is inserted into the solution at the  
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Table 4.4.3: Top 10 trained model during the hyperparameters tuning 

Learn 

Rate 

# of 

Layer 

# of  

Neuron 

Activate 

 

Opt. Drop 

Rate 

Batch Acc. Epoch Time  

(s) 

0.001 2 256 ReLU     Adam     0.2 1024 0.898 47 157 

0.001 1 128 ReLU     Adam     0.1 512 0.897 71 135 

0.01 4 256 Sigmoid  Adam     0 512 0.896 37 337 

0.01 3 128 Sigmoid  Adam     0.1 128 0.896 38 340 

0.001 1 64 ReLU     Adam     0 256 0.896 48 67 

0.001 4 512 ReLU     Adam     0 128 0.895 21 563 

0.001 2 512 Sigmoid  Adam     0.2 512 0.895 148 1040 

0.001 1 512 ReLU     Adam     0.1 1024 0.895 48 111 

0.01 3 512 Sigmoid  Adam     0 512 0.895 19 183 

0.001 1 64 ReLU     Adam     0.1 512 0.895 56 54 

 

 

 

Table 4.4.4: Hyper-parameters selected after fine tuning 

learning rate layers neurons activation optimizer dropout batch 

0.001 3 256 ReLU Adam 0.1 1024 
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Algorithm 1 𝐴𝑛𝑐ℎ𝑜𝑟 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 

Inputs: distance matrix 𝑑, threshold 𝜎 

Output: route 𝑥 

  1:  get the set of anchors 𝐴 ← 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑑, 𝜎) 

  2:  create a set of unvisited nodes 𝑈 

  3:  create an empty route 𝑥 

  4:  while 𝐴 is not empty do 

  5:          𝑎 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑛𝑐ℎ𝑜𝑟(𝐴) 

  6:          𝑖 ←  𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥(𝑎) 

  7:          Insert node 𝑎 into route 𝑥 at position 𝑖 

  8:          remove node 𝑎 from set 𝐴 and set 𝑈 

  9:          𝑏 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑎) 

10:          if 𝑏 ∉ 𝑈 do 

11:                  𝑗 ←  𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥(𝑏) 

12:                 insert node 𝑏 into route 𝑥 at position 𝑗 

13:                 remove node 𝑏 from set 𝐴 and set 𝑈 

14:  while 𝑈 is not empty do  

15:          𝑐 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑜𝑑𝑒(𝑈) 

16:          𝑘 ← 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥(𝑐) 

17:          insert node 𝑐 into route 𝑥 at position 𝑘 

18:          remove node 𝑐 from 𝑈 

19:  return route 𝑥 
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most suitable location. Again, the optimal location is determined by the 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝑑𝑒𝑥 

function. Finally, the algorithm handles the remaining nodes using similar approaches. It 

examines the remaining nodes, determining their optimal insertion locations, and inserts 

them into the solution accordingly. The output of the algorithm is a fully completed route. 

In summary, the anchor insertion algorithm efficiently constructs a solution by 

employing a prioritized approach to insert nodes into an incomplete solution, utilizing 

supervised learning. The algorithm begins by predicting the anchors, and subsequently 

inserts both the anchors and their nearest neighbors into the solution. The insertion 

locations are determined based on minimizing the increment in route length. Then, the 

algorithm deals with the remaining unvisited nodes by employing similar insertion 

procedures. This approach emphasizes the critical role of anchors in constructing an 

effective solution for TSP. 

 Anchor-MTZ Algorithm 

The predicted anchors can be employed to enhance the existing mathematical models for 

solving TSP. In this paper, we propose an integration of the predicted anchors with the 

MTZ formulation. Although we also tested the Dantzig-Fulkerson-Johnson (DFJ) model, 

preliminary results show that the solvable scale is too small without considering additional 

enhancements. The formulation for anchor-MTZ is as follows. 

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

 
 

 ∑ 𝑥𝑖𝑗

𝑗∈𝑁,𝑗≠𝑖

= 1, ∀𝑖 ∈ 𝑁 
(4.4.1) 

 
∑ 𝑥𝑖𝑗

𝑛

𝑖∈𝑁,𝑖≠𝑗

= 1, ∀𝑗 ∈ 𝑁 
(4.4.2)  

 𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1, ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁0, 𝑖 ≠ 𝑗 (4.4.3)  

 𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1, ∀𝑖, 𝑗 ∈ 𝐺 (4.4.4)  
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 𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (4.4.5)  

 𝑢𝑖 ≥ 0, ∀𝑖 ∈ 𝑁 (4.4.6)  

 

The notations used in this context have the following meanings. The symbol 𝑛 

represents the total number of nodes (cities), and 𝑁 represents the set of these nodes. 𝑁0 is 

a set of nodes that excludes the starting node 0. The notation 𝑐𝑖𝑗 represents the distance 

between two nodes. 𝑥𝑖𝑗 is the decision variable that takes a value of 1 when the two nodes 

are connected. 𝑢𝑖  is an auxiliary variable used to determine the visiting sequence. 𝐺 

represents a graph where several nodes are already connected. These connections are 

predicted by the neural network as previously described. 

The objective is to minimize the total traveling distance. Constraints (4.4.1) ensure that 

each node has an outgoing connection to another node. Constraints (4.4.2) enforce that 

each node has an incoming connection to another node. Constraints (4.4.3) are known as 

subtour elimination constraints. They determine the visiting sequence of each node. 

Constraints (4.4.4) are newly introduced to complement the classical MTZ. These 

constraints serve the purpose of ensuring that the connections between the predicted 

anchors and their nearest neighbors are maintained. These connections are established in 

the graph 𝐺, and constraints (4.4.4) guarantee that these connections are enforced within 

the model. Constraints (4.4.5) and (4.4.6) specify the restrictions on the variables. 

4.5 Training and Evaluations 

This section introduces the training process of the supervised learning model. In Section 

4.5.1, we discuss the impact of under-sampling. Section 4.5.2 explores the trade-off 

between precision and recall by adjusting the prediction thresholds. In Section 4.5.3, we 

evaluate the generalization ability. Section 4.5.4 presents the performance metrics, 

including accuracy, precision, recall, specificity, F1 score, and training time.  

To ensure a diverse training dataset, we generated a substantial number of instances. 

Specifically, we created 1 million TSP25 instances, 0.5 million TSP50 instances, and 0.25 
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million TSP100 instances. This resulted in a total of 75 million features and labels. We did 

not include TSPLIB instances for two reasons. Firstly, while we have the optimal objective 

function values, the optimal routes are unavailable for most TSPLIB instances, making it 

impossible to generate ground truth for these instances. Secondly, it is thought better to 

reserve the TSPLIB instances to evaluate the generalization ability of the model. 

 Under Sampling  

In this section, we present ROC curves to evaluate the necessity of performing under-

sampling as a preprocessing step. We trained two models, one with under-sampling and 

the other without, for 20 epochs using the entire dataset. Then, we plotted ROC curves 

using four validation datasets that had not been seen during the training process. The results 

are presented in Figure 4.5.1. 

The figure depicts the ROC curves of different instances, comparing the performance 

of two models with and without under-sampling. Each subfigure represents a specific 

instance, with dashed lines representing the ROC curves with under-sampling and solid 

lines representing the curves without under-sampling. The diagonal line represents a 

benchmark model that makes random predictions. 

For the generated instances, both models present similar performance, with an area 

under the curve (AUC) of approximately 0.9 across all instances. The high AUC values 

indicate strong prediction performance. When evaluating the TSPLIB instances, the model 

trained without under-sampling slightly outperforms the model with under-sampling by a 

margin of 0.01 in terms of AUC. Based on this performance difference, the decision was 

made to not use under-sampling for subsequent experiments. In summary, the ROC curves 

provide evidence of the efficacy of the supervised learning model in predicting anchors. 

 Trade-off Between Precision and Recall 

Precision and recall are commonly in conflict with each other, meaning that improving one 

metric often results in a decrease in the other metric. In our case, precision holds more 

significance than recall because we aim to minimize the wrong information. Increasing the  
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Figure 4.5.1: Comparisons on ROC with and without under sampling 
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prediction threshold can enhance precision, but it comes at the cost of reduced recall. 

Therefore, it is vital to achieve a good trade-off between the two metrics when determining 

the threshold for our trained model. Figure 4.5.2 illustrates the precision-recall curves 

obtained from experiments on validation datasets, providing valuable insights into the 

prediction performance of the trained model across different thresholds.  

The figure demonstrates that as we decrease the prediction threshold to increase the 

recall score, the precision score generally decreases. However, the precision does not 

diminish to zero even when the recall rate reaches one. This is due to the fact that the 

positive data comprises approximately 80% of the dataset. Consequently, even if the model 

classifies all nodes as anchors, there will still be around 80% correct predictions. To ensure 

a high precision for the model, a lower bound of 0.95 for precision is established. 

Subsequently, the corresponding thresholds for TSP25, TSP50, TSP100, TSP200, and 

TSPLIB are determined. The calculated thresholds are 0.781, 0.764, 0.759, 0.743, and 

0.789, respectively. The strictest threshold of 0.789 is selected to guarantee a precision 

score of at least 95% for all instances. By utilizing this threshold, it is found that the recall 

ranges between 0.869 and 0.908 for all instances. This approach effectively strikes a 

balance between precision and recall while maintaining a high level of precision for the 

model. 

 Generalization Capacity on Solving Large-scale Instances 

We conducted tests to evaluate the generalization ability of the trained model. While the 

model is trained with instances containing fewer than 100 nodes, it is evaluated on diverse 

datasets ranging from 100 nodes to 1,000 nodes. The evaluation metrics employed include 

accuracy, precision, recall, specificity, and F1 score. The results of these evaluations are 

depicted in the figure below. 

As depicted in Figure 4.5.3, the left subfigure illustrates the metrics obtained using the 

default threshold of 0.5, while the right subfigure displays the metrics using the new 

threshold of 0.789. The use of the default threshold resulted in a low specificity, indicating 

that numerous non-anchor nodes were incorrectly classified as anchors, potentially leading  
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Figure 4.5.2: Precision-Recall curve for different instances 
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Figure 4.5.3: The generalization capacity of the model with improved thresholds. 
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to erroneous connections between nodes. By increasing the threshold to 0.789, the 

specificity improved significantly from an average of 0.5 to an average of 0.9, while 

maintaining a recall rate above 0.8. This tradeoff resulted in an enhanced overall 

performance of the model.  

Furthermore, it was observed that the generalization ability of the model remained stable 

as the instance size increased, despite being trained solely on generated TSP instances with 

fewer than 100 nodes. This suggests that the trained model can effectively predict larger 

instances without experiencing a substantial reduction in prediction accuracy. 

 Prediction Performances 

After conducting preliminary experiments, we proceeded to retrain the machine learning 

model using the determined hyperparameters and settings. The model was trained for 100 

epochs, but due to the early stopping policy, the training process terminated after 20 

epochs. The total training time was 4.8 hours. The trained model was then evaluated on 

various datasets, including the training and testing datasets, as well as generated TSP 

instances with 25, 50, 100, and 200 cities, and instances from the TSPLIB. The threshold 

for predicting positive nodes was set to 0.789 as previously mentioned. 

Table 4.5.1 presents the average results obtained from the evaluation. Specifically, there 

are 1,000 instances in each of the generated instances (TSP25, TSP50, TSP100, and 

TSP200). The TSPLIB instances included in the evaluation satisfy the Euclidean distance 

requirement and have known optimal tours available. The evaluation time indicated in the 

table refers to the total prediction time. 

The results demonstrate that the trained model achieved high accuracy, ranging from 

0.855 to 0.880, indicating its effectiveness in distinguishing anchors from non-anchor 

nodes. Furthermore, the model exhibited excellent precision, ranging from 0.950 to 0.958, 

meaning that approximately 95% of the predicted anchors were true anchors. The recall 

rates were consistently high, ranging from 0.875 to 0.878, indicating that over 87% of the 

anchor nodes were successfully identified. Additionally, the model displayed a high level 

of specificity, with values ranging from 0.715 to 0.902. The F1 score, which represents a 
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Table 4.5.1: Validation results of the trained model 

Dataset Accuracy Precision Recall Specification F1 Time (s) 

TSP25 0.855 0.951 0.877 0.715 0.913 0.803 

TSP50 0.858 0.955 0.878 0.724 0.915 1.646 

TSP100 0.856 0.955 0.876 0.729 0.914 3.396 

TSP200 0.858 0.958 0.875 0.748 0.915 5.842 

TSPLIB 0.880 0.949 0.869 0.902 0.907 0.199 
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balanced performance between precision and recall, ranged from 0.913 to 0.915. 

The prediction time increased with the size of the input, ranging from 0.803 seconds for 

predicting 1,000 TSPLIB25 instances to 5.842 seconds for predicting 1,000 TSP200 

instances. These results highlight the efficiency of the trained model in predicting anchors 

across various TSP instances. 

It is worth noting that the trained model was solely exposed to TSP instances with up to 

100 nodes during the training process and was not specifically trained on TSP200 or 

TSPLIB instances. Moreover, the instances in TSPLIB have distinct patterns from the 

generated instances used for training. However, the model demonstrated a robust ability to 

generalize and effectively predict anchors in TSP200 and TSPLIB instances, indicating its 

strong generalization ability. 

4.6 Computational Results 

In this section, we compare the proposed approach with several baseline approaches in 

solving TSP instances. The evaluation involves two different settings: 1) the integration 

with exact methods and 2) the integration with heuristic algorithms. In the first setting, we 

propose the anchor-based Miller-Tucker-Zemlin method (denoted as Anchor-MTZ) and 

compare it with the traditional MTZ method. We solve the Anchor-MTZ and MTZ using 

the commercial solver Gurobi. In the second setting, we propose the anchor insertion 

algorithms and compare it with baseline algorithms such as Concorde, LKH3, five 

constructive heuristics, and a state-of-the-art learning-based approach called GPN. 

The MTZ model is solved using the Gurobi commercial solver (version 8.1.0.) on a 

workstation equipped with an Intel Core i7-3770 CPU (3.40 GHz) and 8 GB of RAM. The 

anchor insertion algorithm, as well as the baseline algorithms, are implemented in Python 

and executed on the same machine. It's important to note that no GPU was utilized during 

the training of the proposed model. However, for training the GPN algorithm used for 

comparison, a different machine equipped with an RTX 3080 Ti GPU was employed due 

to the extensive computational requirements. 
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 Integration with Exact Methods 

The predicted anchors can be leveraged to enhance the efficiency of exact algorithms. 

Specifically, we explore the use of anchors as a means to obtain partial nodes to be 

connected in advance, which can then be inputted into commercial solvers, thereby 

reducing computational time.  

In this section, we evaluate the performance of the classical MTZ model with and 

without anchors. The MTZ model is a mathematical formulation that uses sequences to 

eliminate subtours. Each node in the TSP is associated with a sequence variable that 

represents its position in the tour. By imposing appropriate constraints on these sequence 

variables, the MTZ model ensures that subtours are eliminated.  

Although we also considered the DFJ model, the results are not presented in this section 

due to the limited solvable scale of the model without considering additional enhancements 

such as lazy constraints.  

Table 4.6.1 presents the results of solving the generated instances using the MTZ and 

Anchor-MTZ approaches. The “Opt.” column denotes the optimal solutions obtained by 

Concorde. The "Avg. Obj." column denotes the average objective function value obtained 

from solving the instances. The "Gurobi Time" column represents the total computational 

time required to solve the instances, while the “Predict Time” refers to the time for 

predicting the anchors using the trained model. Lastly, the "Gap" column provides the 

percentage differences between the obtained solutions and the optimal solutions, indicating 

the extent of deviation from optimality. 

The MTZ approach successfully obtains optimal solutions for TSP50 instances. 

However, it encounters computational limitations when tackling larger instances, such as 

those with more than 100 nodes. In contrast, the Anchor-MTZ approach demonstrates 

superior performance in solving large instances. For example, when solving TSP250, the 

Anchor-MTZ approach achieves a significantly lower gap of 16.85% compared to the gap 

of 47.4% observed with the MTZ approach. The total time for predicting the anchors 

remains consistently low, which is less than 2 seconds for each dataset. 
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Table 4.6.1: Performance Comparison: MTZ vs. Anchor-MTZ 

Dataset 

    MTZ   Anchor-MTZ 

Opt. 
 

Avg. 

Obj. 

Gurobi 

T. (s) 

Gap 

(%) 
 

Avg. 

Obj. 

Predict 

T. (s) 

Gurobi 

T. (s) 

Gap 

(%) 

TSP50 5730 
 

5730 332 0.00 
 

5762 1.6 48 0.56 

TSP100 7729 
 

7818 3461 1.15 
 

7792 1.7 2152 0.82 

TSP150 9414 
 

9872 3600 4.87 
 

9507 1.6 3419 0.99 

TSP200 10799 
 

13117 3600 21.46 
 

11510 1.7 3600 6.58 

TSP250 11895   17534 3600 47.40   13900 1.7 3600 16.85 
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 Integration with Heuristics 

The predicted anchors can also be leveraged to enhance heuristics. To illustrate this, we 

introduce the anchor insertion algorithm, as introduced in Section 4.4.4. In this section, we 

compare the performance of the anchor insertion algorithm with several baseline 

approaches, including LKH3, Concorde, and GPN, among others. The detailed results of 

these comparisons are presented in Table 4.6.2. The results are obtained from 10 instances 

within each dataset. The reported objective function value represents the average 

performance across these instances, while the time denotes the total computational time. 

In the field of solving TSP instances, Concorde and LKH3 are widely recognized 

traditional approaches. Concorde stands out for consistently producing high-quality 

solutions but requires longer computational time, especially for larger datasets. In contrast, 

LKH3 achieves similar results to Concorde with shorter solving time, making it a more 

efficient alternative in terms of computational resources. Constructive heuristics provide 

fast solutions but sacrifice solution quality. The choice of method depends on the specific 

requirements, considering factors such as dataset size, available computational resources, 

and the desired balance between solution quality and computation time. 

Our primary objective is to compare our proposed approach with an existing learning-

based method known as GPN. Through this comparison, we have discovered that the 

anchor insertion method shows great promise. In fact, it outperforms the GPN method in 

terms of both solution quality and computational time. This finding is significant as it 

demonstrates the superiority of the anchor insertion approach in addressing the TSP. It is 

worth noting that the proposed anchor-based approaches are still in the process of 

development and refinement. A dedicated algorithm is needed to fully utilize the anchors. 

However, there is a growing belief that integrating anchor methods with heuristics can lead 

to further improvements in performance. By surpassing the performance of existing 

learning-based methods like GPN, the anchor insertion approach opens new possibilities 

for advancing the state-of-the-art in solving the TSP. 
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Table 4.6.2: Performance Comparison: Heuristics 

  TSP 250 TSP 500 TSP 750 TSP 1000 

Method Obj Time (s) Obj Time (s) Obj Time (s) Obj Time (s) 

LKH3 11983 1.3 16508 3.7 20217.0 8.1 23102.7 14.2 

Concorde 11953 29.4 16489 150.6 20187.7 666.1 23077.7 1082.9 

Nearest Neighbor 15119 0.1 20618 0.3 25252.4 0.7 28895.2 1.2 

Shortest First 14182 0.3 19327 1.5 23837.1 2.9 26935.6 5.3 

Nearest Insertion 14747 5.2 20457 40.9 25079.6 138.1 28949.1 327.2 

Farthest Insertion 14173 5.2 20161 40.7 25050.9 138.9 28890.9 332.1 

Cheapest Insertion 14125 18.8 19774 142.7 24333.8 480.3 27739.4 1101.6 

GPN 15253 8.3 23037 12.3 29852.9 19.0 36709.3 25.1 

Anchor Insertion (ours) 13308 2.2 18712 3.1 22991.6 5.8 26377.5 10.2 
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 Generalization ability on TSPLIB instances 

Table 4.7.1 provides a comprehensive comparison between the GPN and Anchor Insertion 

methods on multiple instances from the TSPLIB dataset. The comparison includes 

objective values, computation times in seconds, and gap percentages for both approaches. 

The results indicate that the anchor insertion algorithm consistently outperforms the GPN 

method in terms of objective values and solve times, particularly for larger instances. For 

instance, in the ca4663 instance, the gap percentage for the anchor insertion algorithm is 

29.61%, whereas for the GPN method it is 120.43%. Similarly, in the ja9847 instance, the 

gap percentage for the anchor insertion algorithm is 26.55%, compared to 158.29% for the 

GPN method. These significant improvements demonstrate the effectiveness of the anchor 

insertion algorithm in achieving better solutions with reduced gaps compared to the GPN 

method. 

4.7 Insights and Discussions 

During our training and testing process, we made several interesting observations. Firstly, 

we found that the quantity of data had a more significant impact on performance than the 

dimensions, i.e., the number of features of the data. Surprisingly, even with a dimension as 

small as three, we were able to train models that yielded satisfactory results. This 

contradicted our initial assumption that higher input dimensions would provide more 

accurate predictions by offering more information. There are several possible explanations 

for this phenomenon. Firstly, the task of determining whether a node should be an anchor 

may not require extensive local information, as confirmed by our experiments. Secondly, 

incorporating irrelevant information into the features can introduce noise, particularly 

when training data is limited. Lastly, higher-dimensional inputs can pose challenges in 

effectively training the model. 

Secondly, we discovered that under-sampling and normalization may not always be 

necessary. Initially, we believed that under-sampling was necessary to address the data 

imbalance issue. As shown in Figure 4.3.3, positive samples accounted for 80% - 90% of  
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Table 4.7.1: Performance Comparison: TSPLIB Instances 

Instance Opt. GPN Obj. GPN Time (s) GPN Gap (%) Anchor Obj. Anchor Time (s) Anchor Gap (%) 

a280 2,579 3,606 2.48 39.82 3,202 0.26 24.16 

berlin52 7,542 8,962 0.13 18.83 8,007 0.15 6.17 

ca4663 1,290,319 2,844,220 10.60 120.43 1,672,320 50.20 29.61 

ch130 6,110 6,921 0.28 13.27 6,972 0.15 14.11 

ch150 6,528 7,923 0.35 21.37 7,118 0.15 9.04 

eil101 629 720 0.22 14.47 697 0.14 10.81 

eil51 426 457 0.12 7.28 472 0.13 10.80 

eil76 538 623 0.17 15.80 609 0.14 13.20 

ja9847 491,924 1,270,604 21.84 158.29 622,535 425.84 26.55 

kroA100 21,282 27,911 0.23 31.15 23,670 0.16 11.22 

kroC100 20,749 27,164 0.23 30.92 22,212 0.15 7.05 

kroD100 21,294 26,057 0.23 22.37 23,588 0.16 10.77 

lin105 14,379 20,484 0.25 42.46 16,926 0.16 17.71 

pcb442 50,778 71,144 1.00 40.11 61,747 0.27 21.60 

pr1002 259,045 424,108 2.30 63.72 318,840 0.93 23.08 

pr2392 378,032 727,079 5.63 92.33 478,371 7.94 26.54 

pr76 108,159 122,867 0.17 13.60 125,078 0.14 15.64 

rd100 7,910 8,662 0.23 9.51 9,206 0.14 16.38 

tsp225 3,916 5,177 0.54 32.20 4,638 0.16 18.44 
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the entire dataset. Consequently, we expected that under-sampling would help reduce 

biases caused by sample imbalance. However, our experimental results led us to different 

conclusions. While under-sampling improved precision, it significantly decreased recall. 

After careful comparison, we found that it is better to prioritize achieving a higher recall 

initially and then increase precision by appropriately adjusting the threshold for predicting 

positive samples. Moreover, we observed an interesting phenomenon regarding 

normalization. When the training data reached a certain quantity, the neural network 

automatically developed internal structures that performed a similar function to 

normalization. This is an advantage of our proposed model over the traditional GPN 

approach. Unlike the proposed approach, the GPN performed significantly worse without 

normalization. 

Thirdly, the best way to utilize the predicted anchors remains unclear. In our research, 

we attempted to integrate the predicted anchors with exact methods and heuristic 

algorithms. While the integration with exact methods significantly reduced computational 

time, it also resulted in a loss of otherwise guaranteed optimality. Additionally, we 

explored combining the model with various constructive heuristics. However, most of these 

heuristics demonstrated insensitivity to the initial solution, making the anchors less useful. 

Based on our experimental findings, we believe that designing a dedicated algorithm based 

on the characteristics of anchors may be necessary to fully exploit their potential. 

Furthermore, we are considering the integration of anchor points with the LKH algorithm. 

Fourthly, there are alternative ways to define the anchors. In this paper, we defined 

anchors as nodes that should connect to their nearest neighbors. However, anchors could 

also be defined as nodes that connect to their two nearest neighbors, as each node needs to 

connect to two other nodes. This approach could provide additional post-prediction 

information. Nevertheless, this made the model more challenging to train, and the post-

prediction results were more prone to conflicts. 

Admittedly, there are still limitations to our proposed algorithms. As mentioned before, 

the percentage of anchors in TSP instances is approximately 80%-90%. Even if the model 

could perfectly predict every anchor, it may not completely solve the TSP. Therefore, a 
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second-stage algorithm is required to complete the solution. Considering that some cities 

serve as anchors for each other, the number of optimal arcs that can be determined is around 

60%. Additionally, for certain anchors, there may be more than one nearest point, meaning 

that knowing the anchors alone is not sufficient to connect them to other nodes. 

4.8 Conclusion 

This paper introduces an approach for solving the TSP by integrating machine learning 

with optimization. Through a supervised learning process, we train a model using small-

scale instances and demonstrate its ability to generalize well to larger-scale instances. We 

explore various preprocessing techniques, hyperparameter tuning, and feature selection to 

enhance the performance of model. 

The proposed approach exhibits a strong generalization ability. The trained model can 

accurately identify 87% of the anchors with a precision exceeding 95%. Remarkably, the 

model is trained on instances with less than 100 nodes, but it successfully predicts anchors 

for instances with more than 1,000 nodes without any decline in prediction accuracy. 

Furthermore, we integrate the predicted anchors with exact methods, leading to reduced 

computational time when solving the MTZ formulation. When combined with a heuristic, 

the proposed anchor insertion algorithm outperforms the state-of-the-art learning-based 

approach GPN in terms of both solution quality and computational time. 

Future research can be directed towards designing dedicated algorithms tailored to the 

specific characteristics of anchors. Additionally, it is promising to integrate the predicted 

anchors with the LKH algorithm. Despite some limitations, this paper provides a novel 

new way in leveraging machine learning to address the TSP, opening up new possibilities 

for efficient and effective learning-based algorithms. 
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Chapter 5. Summary and Conclusions 
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This dissertation delves into both the traditional and innovative solutions for Vehicle 

Routing Problems (VRPs) and their variants. VRPs are classic problems in the field of 

combinatorial optimization, and they also hold significant importance in logistics and 

transportation. These problems require the allocation of resources in a way that optimizes 

various objectives, such as minimizing transportation costs, maximizing customer 

satisfaction, and ensuring timely deliveries, all while considering common constraints like 

maximum capacity and time windows. Efficiently solving VRPs is crucial for improving 

operational efficiency, reducing costs, and ensuring the timely and effective delivery of 

goods and services. Consequently, substantial research efforts have been dedicated to 

developing innovative methods, algorithms, and technologies for addressing VRPs and 

their variants. This dissertation provides a comprehensive exploration of exact methods, 

heuristics, and innovative supervised learning methods, aiming to offer a well-rounded 

perspective on addressing the critical challenges in this domain. 

In Chapter 2, we focused on the pickup and delivery problem with transshipments (PDP-

T) and its extension, the pickup and delivery problem with time windows and 

transshipments (PDPTW-T). Through a thorough examination of existing models, we 

identified limitations and proposed refined formulations. Furthermore, we introduced a 

new mixed-integer linear programming (MILP) formulation tailored to tackle PDP-T and 

PDPTW-T. Our computational results showcased the superior performance of this new 

model. 

In Chapter 3, we addressed a variant of the vehicle routing problem aimed at efficiently 

assigning consultants to serve clients with minimized costs and maximized customer 

satisfaction. Our objective was to simultaneously assign consultants to clients while 

optimizing the traveling routes for the consultants. Our approach took into account skill 

requirements, capacity limitations, fixed demand, and a maximum number of travel legs. 

Additionally, we introduced a priority matching mechanism to ensure that consultants were 

assigned to clients with suitable priority levels. To address the computational complexity 

of this problem, we introduced two algorithms: the RMIP decomposition algorithm and a 

MIP-based neighborhood search algorithm. We conducted a comparative analysis against 
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an existing MILP formulation. Our computational evaluation, encompassing a diverse set 

of synthetic and real-life instances, underscored the superior solution quality and reduced 

computational time achieved by our proposed algorithms, particularly in large-scale and 

real-world scenarios. 

In Chapter 4, we delved into the Traveling Salesman Problem (TSP), which serves as 

the foundational version of vehicle routing problems. To address this classic problem, we 

introduced a novel concept named as "anchors," representing nodes that should connect to 

their nearest neighbors to form the optimal routing. Our approach used supervised learning 

to predict these anchors based solely on local information, setting it apart from previous 

models that relied on global data. Experimental results demonstrate that our model 

successfully identifies 87% of the anchors with a precision of over 95%. By integrating 

these predicted anchors into well-established methods such as the Miller-Tucker-Zemlin 

(MTZ) model and insertion algorithms, we achieved an improvement in both solution 

quality and computational efficiency. This work also underscores the scalability and 

adaptability of our learning-based approach. 

In summary, this dissertation has explored the vehicle routing problems and their 

variants from three aspects: modeling, heuristics, and learning-based approaches. This 

research has yielded enhancements in solution quality, reduced computational time, and 

improved scalability for specific problems and methodologies. As a future research 

direction, we look forward to further investigating the application of "anchors," expanding 

their utility, and finding more effective ways to leverage this concept.  
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