
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2023

Exact Models, Heuristics, and Supervised Learning Approaches Exact Models, Heuristics, and Supervised Learning Approaches

for Vehicle Routing Problems for Vehicle Routing Problems

Zefeng Lyu
zlyu2@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, Industrial

Engineering Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Lyu, Zefeng, "Exact Models, Heuristics, and Supervised Learning Approaches for Vehicle Routing
Problems. " PhD diss., University of Tennessee, 2023.
https://trace.tennessee.edu/utk_graddiss/9182

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F9182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=trace.tennessee.edu%2Futk_graddiss%2F9182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=trace.tennessee.edu%2Futk_graddiss%2F9182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=trace.tennessee.edu%2Futk_graddiss%2F9182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=trace.tennessee.edu%2Futk_graddiss%2F9182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=trace.tennessee.edu%2Futk_graddiss%2F9182&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Zefeng Lyu entitled "Exact Models, Heuristics,

and Supervised Learning Approaches for Vehicle Routing Problems." I have examined the final

electronic copy of this dissertation for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Industrial Engineering.

Andrew J. Yu, Major Professor

We have read this dissertation and recommend its acceptance:

Mingzhou Jin, James Ostrowski, Shuai Li

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Exact Models, Heuristics, and Supervised Learning

Approaches for Vehicle Routing Problems

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Zefeng Lyu

December 2023

ii

Copyright © 2023 by Zefeng Lyu

All rights reserved.

iii

DEDICATION

To my mom

Lianhua Pan

iv

ACKNOWLEDGEMENTS

I would like to thank my parents for their unwavering support.

I express my deepest gratitude to my supervisor, Dr. Andrew J. Yu. He has always been

kind and patient with me. His consistent encouragement, support, and guidance have

greatly helped me build confidence in my research. I can hardly imagine completing my

PhD program successfully and smoothly without his mentorship.

A special thanks to Dr. Jianbiao Pan; without him, I would not have had the opportunity to

study abroad, let alone become the person I am today.

Many thanks to all my friends at the University of Tennessee. A special mention to Hang

Wang and Gaoqiang Yang for the cherished friendship and the wonderful memories we

have shared together.

Lastly, I would like to express my gratitude to my wife, Yujun Zhang, who has supported

me, encouraged me, and been my companion during my most challenging moments. She

is my motivation for a relentless pursuit of excellence.

v

ABSTRACT

This dissertation presents contributions to the field of vehicle routing problems by utilizing

exact methods, heuristic approaches, and the integration of machine learning with

traditional algorithms. The research is organized into three main chapters, each dedicated

to a specific routing problem and a unique methodology. The first chapter addresses the

Pickup and Delivery Problem with Transshipments and Time Windows, a variant that

permits product transfers between vehicles to enhance logistics flexibility and reduce costs.

To solve this problem, we propose an efficient mixed-integer linear programming model

that has been shown to outperform existing ones. The second chapter discusses a practical

workforce scheduling problem, formulated as a specific type of vehicle routing problem.

The objective here is to efficiently assign consultants to various clients and plan their trips.

This computational challenge is addressed by using a two-stage approach: the first stage

employs a mathematical model, while the second stage refines the solution with a heuristic

algorithm. In the final chapter, we explore methods that integrate machine learning with

traditional approaches to address the Traveling Salesman Problem, a foundational routing

challenge. Our goal is to utilize supervised learning to predict information that boosts the

efficiency of existing algorithms. Taken together, these three chapters offer a

comprehensive overview of methodologies for addressing vehicle routing problems.

vi

TABLE OF CONTENTS

Chapter 1. Introduction ... 1

Chapter 2. An Exact Model for Solving the Pickup and Delivery Problems 3

2.1 Introduction ... 4

2.2 Literature review ... 6

2.3 Formulation for PDP-T ... 8

2.4 Formulation for PDPTW-T ... 16

2.5 New MILP formulation... 23

2.6 Computational Experiments.. 25

 Instance generation ... 26

 Results of solving the PDP-T instances .. 27

 Results of solving the PDPTW-T instances .. 31

 Discussion on valid inequalities.. 36

2.7 Conclusion .. 38

Chapter 3. A Metaheuristic for Solving the Consultant Assignment and Routing

Problems .. 42

3.1 Introduction ... 43

3.2 Literature Review ... 45

3.3 Problem Definition and MILP Formulation ... 48

3.4 RMIP algorithm .. 53

3.5 MNSA algorithm .. 57

 Neighborhood Structure .. 59

 Improving Rules ... 59

 Shaking Operator .. 61

3.6 Numerical Experiments .. 61

 Generation of Synthetic Instances .. 61

 Result of Synthetic Instances .. 63

 Real-life Instances ... 72

vii

3.7 Conclusion .. 74

Chapter 4. A Supervised Learning Approach for Solving the Traveling Salesman

Problems .. 78

4.1 Introduction ... 79

4.2 Literature Review.. 81

4.3 Definition of anchors .. 84

4.4 Methodology ... 89

 Feature Selection ... 89

 Data Preprocessing.. 90

 Hyperparameter Tuning .. 90

 Anchor Insertion Algorithm .. 92

 Anchor-MTZ Algorithm ... 95

4.5 Training and Evaluations .. 96

 Under Sampling .. 97

 Trade-off Between Precision and Recall .. 97

 Generalization Capacity on Solving Large-scale Instances 99

 Prediction Performances ... 102

4.6 Computational Results .. 104

 Integration with Exact Methods .. 105

 Integration with Heuristics .. 107

 Generalization ability on TSPLIB instances 109

4.7 Insights and Discussions ... 109

4.8 Conclusion .. 112

Chapter 5. Summary and Conclusions ... 113

References ... 116

Vita .. 125

viii

LIST OF TABLES

Table 2.6.1: Results of the models in solving the PDP-T instances 28

Table 2.6.2: Results of the proposed model in solving extra-large-scale PDP-T 30

Table 2.6.3: Performance of the models when the number of vehicles increases 32

Table 2.6.4: Results of solving the PDPTW-T with MD-4T and MD-5T 33

Table 2.6.5: Results of the models in solving PDPTW-T with 4 requests 35

Table 2.6.6:Results of the models in solving PDPTW-T with 5 requests 37

Table 2.7.1: Computational time of solving PDP-T with different cuts 39

Table 3.6.1: Parameters and the corresponding values for the synthetic datasets 62

Table 3.6.2: Configuration of parameters for the synthetic datasets 64

Table 3.6.3: Gaps and computational time for the small-scale instances 67

Table 3.6.4: Comparison of the three algorithms in terms of small-scale datasets 69

Table 3.6.5: Comparison of the three algorithms in terms of medium-scale datasets 70

Table 3.6.6: Comparison of the three algorithms in terms of large-scale datasets 71

Table 3.6.7: Characteristics of regular consultant and contract consultant 73

Table 3.7.1: Number of flexible demand and fixed demand .. 75

Table 3.7.2: Comparison of the three algorithms in terms of real-life instances 76

Table 4.4.1: The relationship between input size and prediction performance 91

Table 4.4.2: The range of hyperparameters for random search .. 91

Table 4.4.3: Top 10 trained model during the hyperparameters tuning............................ 93

Table 4.4.4: Hyper-parameters selected after fine tuning ... 93

Table 4.5.1: Validation results of the trained model ... 103

Table 4.6.1: Performance Comparison: MTZ vs. Anchor-MTZ 106

Table 4.6.2: Performance Comparison: Heuristics ... 108

Table 4.7.1: Performance Comparison: TSPLIB Instances .. 110

ix

LIST OF FIGURES

Figure 2.3.1: Illustration of the solution obtained by solving “example 1” 11

Figure 2.3.2: Illustration of the solution obtained by solving “example 2” 13

Figure 2.3.3: Illustration of the solution obtained by solving “example 3” 15

Figure 2.4.1: Illustration of the solution obtained by solving “example 4” 19

Figure 2.4.2: Illustration of the solution obtained by solving “example 5” 21

Figure 2.4.3: Illustration of the solution obtained by solving “example 6” 22

Figure 3.4.1: Optimal Solution of P1 .. 55

Figure 3.4.2: Optimal Solution of P2 .. 55

Figure 3.6.1: The performance of the algorithms MILP, RMIP, and MNSA................... 66

Figure 3.6.2: The gaps of running MILP formulation for twenty-four hours 67

Figure 4.3.1: A Demonstration of Solutions ... 85

Figure 4.3.2: Framework of an Anchor-based Constructive Heuristic 87

Figure 4.3.3. Average Percentage of Anchors for general instances of TSP 88

Figure 4.5.1: Comparisons on ROC with and without under sampling 98

Figure 4.5.2: Precision-Recall curve for different instances ... 100

Figure 4.5.3: The generalization capacity of the model with improved thresholds. 101

1

Chapter 1. Introduction

Vehicle routing problems (VRPs) stand as fundamental challenges within the domains of

logistics and transportation. These problems entail the allocation of resources in a manner

that optimizes objectives, such as minimizing transportation costs, maximizing customer

satisfaction under diverse constraints, such as maximum capacity, time windows, etc.

Solving VRPs efficiently is crucial for enhancing operational efficiency, reducing costs,

and ensuring timely and effective delivery of goods and services. As a result, extensive

research efforts have been dedicated to developing innovative methods, algorithms, and

techniques to address VRPs. This dissertation undertakes a comprehensive exploration of

exact methods, heuristics, and supervised learning approaches to address vehicle routing

problems and their variants.

In Chapter 2, we investigate the pickup and delivery problem with transshipments (PDP-

T), where requests can be transferred between vehicles, as well as the pickup and delivery

problem with time windows and transshipments (PDPTW-T). We conduct an in-depth

analysis of two state-of-the-art models, identify limitations of the models, and propose

refined formulations. Additionally, we introduce a new formulation that tackles both PDP-

T and PDPTW-T. We address 340 generated PDP-T instances and 360 open-access

PDPTW-T instances. Our computational results showcase the superior performance of our

proposed model in terms of solution quality and computational time. Notably, our model

significantly reduces the average computational time by 96% for PDP-T and 40% for

PDPTW-T instances.

In Chapter 3, we focus on a variant of the routing problem that incorporates workforce

allocation into considerations. Specifically, we address the simultaneous assignment of

consultant supplies to client demands while determining optimal traveling routes for

consultants. Our approach accounts for skill requirements, capacity limitations, fixed

demand, and a maximum number of travel legs. Furthermore, we introduce priority

matching, ensuring that clients are assigned to consultants with suitable priority levels. To

tackle this computational challenge, we propose a decomposition algorithm and a MIP-

2

based neighborhood search algorithm. Additionally, we extend an existing Mixed-Integer

Linear Programming (MILP) formulation to adapt it to the specific requirements of the

proposed problem and compare our algorithms against it. By evaluating on 100 synthetic

instances and 12 real-life instances, our computational analysis highlights the superior

solution quality and reduced computational time offered by our proposed algorithms,

particularly for large-scale and real-life scenarios.

In Chapter 4, we shift our focus to the traveling salesman problem (TSP), the most basic

version of vehicle routing problems. Here, we propose a novel supervised learning

approach that distinguishes itself from previous methods by leveraging local information

rather than global information. By introducing the concept of "anchors," nodes that should

be connected to their nearest neighbors in the optimal solution, our approach demonstrates

excellent scalability and generalization capacity. Experimental results illustrate the

effectiveness of our proposed model, successfully identifying 87% of the anchors with a

precision exceeding 95% for both generated and TSPLIB instances. By integrating the

predicted anchors into established methods such as the Miller-Tucker-Zemlin (MTZ)

model and insertion algorithms, we achieve substantial improvements in solution quality,

reducing the average gap.

Overall, this dissertation contributes advanced methodologies to tackle vehicle routing

problems and their variants. Through improvements on exact methods, heuristics, and

learning-based algorithms, we enhance solution quality, reduce computational time, and

pave the way for scalable and efficient routing optimizations in real-world scenarios.

3

Chapter 2. An Exact Model for Solving the Pickup

and Delivery Problems

4

This chapter is based on a paper published by Zefeng Lyu and Andrew Junfang Yu:

Lyu, Z., & Yu, A. J. (2022). The pickup and delivery problem with transshipments:

Critical review of two existing models and a new formulation. European Journal

of Operational Research.

Zefeng Lyu contributed to methodology, original draft writing, software, validation,

formal analysis, and visualization, while Dr. Andrew Junfang Yu contributed to

conceptualization, methodology, and provided input during the writing and editing process,

as well as providing supervision.

The pickup and delivery problem with transshipments (PDP-T) is generalized from the

classical pickup and delivery problem (PDP) by allowing the transfer of requests between

vehicles. After considering the time window constraints, the PDP-T is further generalized

to the pickup and delivery problem with time windows and transshipments (PDPTW-T).

In this paper, we review two state-of-the-art models for the PDP-T and PDPTW-T. We

point out the possible issues existing in the models and provide our revisions. In addition,

we develop a new mixed-integer linear programming formulation to solve the PDP-T and

PDPTW-T. The performance of the proposed model is evaluated by solving 340 generated

PDP-T instances and 360 open-access PDPTW-T instances. Computational results show

that the proposed model outperforms the existing models in terms of solution quality and

computing time. PTP-T instances with up to 25 requests and 2 transfer stations are solved

to optimality by using the proposed model. As a comparison, the best-known benchmarks

in literature are instances with 5 requests and 1 transfer station. In addition, the average

computational time for solving PDP-T is reduced by 96%. For PDPTW-T instances, the

average computing time is reduced by 40%.

2.1 Introduction

The pickup and delivery problem (PDP) aims to find the optimal routes for a fleet of

capacitated vehicles to satisfy customer requests. Each request is associated with a pickup

location and a delivery location. The vehicles depart from the origin depots, visit the pickup

5

locations to receive loads, deliver the loads to corresponding delivery locations, and return

to the destination depots at the end. The PDP has been broadly studied. Relevant survey

papers can be found at Koç, Laporte, & Tükenmez (2020) and Berbeglia, Cordeau, &

Laporte (2010). With the development of e-commerce and information technology, people

are exploring innovative methods to improve the transportation system. Allowing

transshipment is one of the most promising attempts, which raises the pickup and delivery

problem with transshipments (PDP-T).

In PDP-T, requests can be transferred from one vehicle to another. Specifically, requests

can be dropped off at designated transfer stations and be stored there temporarily. Then,

other vehicles can come to pick up the requests and complete the delivery. The PDP-T

improves the efficiency of the transportation system by better utilizing the capacity and

available time of the vehicles. In practice, the time for receiving and delivering requests is

always restricted, either in a soft or hard manner, which gives rise to the pickup and

delivery problem with time windows and transshipments (PDPTW-T).

Mitrović-Minić & Laporte (2006) show that allowing the transfer of requests is

beneficial as the drivers can stay in their home areas. However, considering transshipment

makes the problem much harder to be solved. For the pickup and delivery problem with

time windows (PDPTW), Ropke, Cordeau, & Laporte (2007) report that the branch-and-

cut algorithm can solve instances with up to 96 requests. However, the solvable scale is

reduced to 7 requests for PDPTW-T (see Rais, Alvelos, & Carvalho, 2014). The challenges

of solving the PDPTW-T are the expanded feasible regions and the synchronization

requirements.

In this paper, we review two models for the PDP-T and PDPTW-T. We point out the

possible issues existing in the models. We carefully discuss the causes of the issues and

suggest our revisions. In addition, we presented a new mixed-integer linear programming

(MILP) formulation to solve the problems. Computational results show that the proposed

model is superior to the two existing models. To the best of our knowledge, this paper is

the first that solves PDP-T instances with 25 requests and 2 transfer stations to optimality.

6

For PDPTW-T, the proposed model increases the solvable scale from 3 requests and 4

transfer stations to 5 requests and 4 transfer stations.

Contributions of this paper are three folds. First, we revise the possible issues existing

in two state-of-the-art models for the PDP-T and PDPTW-T. Second, we present a new

MILP formulation that is superior to the existing models. Third, we generate 340 new PDP-

T instances and present the corresponding computational results as benchmarks for future

research.

2.2 Literature review

Commonly used methods for solving the PDP-T and PDPTW-T can be divided into two

categories, i.e., exact methods and metaheuristics. The exact algorithms for vehicle routing

problems have been widely studied. We refer interested readers to the survey presented by

Costa, Contardo, & Desaulniers (2019). In contrast, exact algorithms for PDP-T and

PDPTW-T received limited attention.

Cortés, Matamala, & Contardo (2010) present an arc-based model for the PDP-T and

show the benefits of allowing request transfers. They split every transfer state into two

nodes, one for loading requests and the other for unloading requests. The model is solved

by a branch-and-cut technique based on Benders decomposition. They show that their

method can reduce the computing time by 90% compared with the branch-and-bound

algorithm. As the computational results, they solve instances with 6 requests, 2 vehicles,

and 1 transfer station to optimality.

Rais et al. (2014) present a MILP formulation to solve the PDP-T. The model can solve

the PDPTW-T after adding additional time window constraints. In addition, several

variants of the PDP-T are captured by adding necessary modifications. The computational

results show that the MILP model solves PDP-T instances with 5 requests and PDPTW-T

instances with 7 requests to optimality. In this paper, we review the MILP model and point

out the possible issues. The causes of the issues are analyzed using an illustrative example.

7

Related revisions are also presented. In addition, we present a new MILP formulation that

solves PDP-T instances with 25 requests and 2 transfer stations to optimality.

Sampaio et al. (2020) present a MILP formulation for the PDPTW-T in urban freight

delivery systems. This formulation is based on the model proposed by Rais et al. (2014).

The unique feature of their problem is that the drivers are occasional. Unlike regular drivers

employed by the companies, the occasional drivers provide shorter shifts, e.g., 3 to 5 hours.

In addition, the capacity constraints are relaxed by assuming that the vehicle capacity is

sufficient. They present an adaptive large neighborhood search (ALNS) algorithm to solve

large-scale instances. They show that the benefit of allowing transshipment can be

significant, especially in settings where pickup and delivery locations are far apart, and the

driver shifts are short. In this paper, we identify the possible issues existing in the MILP

model, present our revisions, and propose a new model. The performance of the proposed

model is compared with that of the existing one using open-access data.

A dynamic pickup and delivery problem under the urban environment is studied by

Arslan, Agatz, Kroon, & Zuidwijk (2019). They solve the dynamic version of PDP using

a rolling horizon framework and an exact method. The pickup and delivery problem with

split loads and transshipments (PDPSL-T) is also closely related to the problems studied in

this paper. In PDPSLT, loads can be split and delivered by multiple vehicles. Unlike the

PDPTW-T, the PDPSL-T does not consider the time window constraints. Wolfinger &

Salazar-González (2021) present a branch-and-cut algorithm for PDPSL-T. The branch-

and-cut algorithm solves instances with 8 requests to optimality within 24 hours. They state

that the instances solved are the largest both for the PDP-T and PDPSL-T. In this paper,

we solve PDP-T instances with 25 requests to optimality within 1 hour.

Exact methods can find optimal solutions but only work for small-scale instances.

Metaheuristics are practical methods in solving large-scale instances. Ropke & Pisinger

(2006) present an ALNS algorithm to solve the PDPTW. Since then, the ALNS algorithm

is widely applied to solve the PDP-T and PDPTW-T (see for examples Qu & Bard, 2012;

Masson, Lehuédé, & Péton, 2013; Sampaio, Savelsbergh, Veelenturf, & Van Woensel,

2020; Wolfinger, 2021; and Voigt & Kuhn, 2021). In addition to the ALNS algorithm,

8

Cortes & Suzuki (2020) present a simulated annealing algorithm. Danloup, Allaoui, &

Goncalves (2018) compares a large neighborhood search algorithm with a genetic

algorithm in solving the PDP-T.

The remainder of the paper is constructed as follows. In Section 3.3, we review the PDP-

T model presented by Rais et al. (2014). We point out the possible issues existing in the

model, i.e., the subtour elimination requirement and the synchronization requirement are

not satisfied in specific instances. We discuss the causes of the issues and present our

revisions. In Section 3.4, we review the PDPTW-T model presented by Sampaio et al.

(2020). This model is modified from the model of Rais et al. (2014). Similar to the previous

section, we point out the possible issues for this model and present revisions. In Section

3.5, we propose a new MILP formulation for solving the PDP-T and PDPTW-T. In Section

3.6, the performance of the proposed MILP is evaluated by solving 340 generated PDP-T

instances and 360 open-access PDPTW-T instances. Computational results show that the

proposed model outperforms the existing models. Finally, conclusions are made in the last

section.

2.3 Formulation for PDP-T

This section discusses the MILP formulation proposed by Rais et al. (2014). The notations

are defined as follows. Graph 𝐺 = (𝑁, 𝐴) is a directed graph, where 𝑁 is the set of nodes

and 𝐴 = {(𝑖, 𝑗)|𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} is the set of arcs. There are five types of nodes, i.e., the

origin depots 𝑂, the destination depots 𝑂′, the pickup locations 𝑃, the delivery locations 𝐷,

and the transfer stations 𝑇. The vehicles 𝐾 are heterogeneous in terms of the origin depots,

destination depots, and driving cost per unit distance traveled. 𝑜(𝑘) and 𝑜′(𝑘) denote the

original depot and destination depot of vehicle 𝑘 , respectively. 𝑅 denotes the set of

requests. Each request 𝑟 ∈ 𝑅 is associated with a pickup location 𝑝(𝑟) and a delivery

location 𝑑(𝑟). 𝑐𝑖𝑗
𝑘 represents the travel cost associated with arc (𝑖, 𝑗) and vehicle 𝑘. In order

to restrict the maximum load, 𝑢𝑘 denotes the capacity of vehicle 𝑘 while 𝑞𝑟 denotes the

quantality of request 𝑟. Binary variables 𝑥𝑖𝑗
𝑘 , 𝑦𝑖𝑗

𝑘𝑟 and 𝑧𝑖𝑗
𝑘 are the decision variables. 𝑥𝑖𝑗

𝑘 =1

9

if vehicle 𝑘 travels through arc (𝑖, 𝑗). 𝑥𝑖𝑗
𝑘 = 0 otherwise. We can obtain the vehicle flows

from the results of 𝑥𝑖𝑗
𝑘 . Similarly, 𝑦𝑖𝑗

𝑟𝑘 = 1 if request 𝑟 is transported by vehicle 𝑘 through

arc (𝑖, 𝑗) and 𝑦𝑖𝑗
𝑟𝑘 = 0 otherwise. The request flows can be obtained from these variables.

𝑧𝑖𝑗
𝑘 is used to determine the order in which the nodes are visited. Specifically, 𝑧𝑖𝑗

𝑘 = 1 if

node 𝑖 precedes node 𝑗 for vehicle 𝑘 and 𝑧𝑖𝑗
𝑘 = 0 otherwise. With the above notations, the

MILP formulation is listed as follows.

min. ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

s. t. ∑ 𝑥𝑖𝑗
𝑘 ≤ 1 ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘)

(𝑖,𝑗)∈𝐴

(2.3.1)

 ∑ 𝑥𝑖𝑗
𝑘 = ∑ 𝑥𝑗𝑙

𝑘

(𝑗,𝑙)∈𝐴(𝑖,𝑗)∈𝐴

 ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘), 𝑙 = 𝑜′(𝑘)
(2.3.2)

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁\{𝑜(𝑘), 𝑜′(𝑘)}
(2.3.3)

 ∑ ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴𝑘∈𝐾

= 1 ∀𝑟 ∈ 𝑅, 𝑖 = 𝑝(𝑟)
(2.3.4)

 ∑ ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴𝑘∈𝐾

= 1 ∀𝑟 ∈ 𝑅, 𝑖 = 𝑑(𝑟)
(2.3.5)

 ∑ ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴𝑘∈𝐾

− ∑ ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴𝑘∈𝐾

= 0 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇
(2.3.6)

 ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴

− ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴

= 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁\𝑇
(2.3.7)

 𝑦𝑖𝑗
𝑘𝑟 ≤ 𝑥𝑖𝑗

𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (2.3.8)

 ∑ 𝑞𝑟𝑦𝑖𝑗
𝑘𝑟 ≤ 𝑢𝑘𝑥𝑖𝑗

𝑘

𝑟∈𝑅

 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾
(2.3.9)

 𝑥𝑖𝑗
𝑘 ≤ 𝑧𝑖𝑗

𝑘 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘), 𝑗 ≠ 𝑜′(𝑘) (2.3.10)

 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑖

𝑘 = 1 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘), 𝑗 ≠ 𝑜′(𝑘) (2.3.11)

10

 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑙

𝑘 + 𝑧𝑙𝑖
𝑘 ≤ 2 ∀𝑖, 𝑗, 𝑙 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ≠ 𝑜(𝑘), 𝑙 ≠ 𝑜′(𝑘) (2.3.12)

 𝑥𝑖𝑗
𝑘 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.13)

 𝑦𝑖𝑗
𝑘𝑟 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (2.3.14)

 𝑧𝑖𝑗
𝑘 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.3.15)

Explanations for the MILP formulation can be found in Rais et al. (2014). We briefly

review these constraints here. Constraints (2.3.1) to (2.3.3) maintain the vehicle flows

while constraints (2.3.4) to (2.3.7) maintain the request flows. Constraints (2.3.8) link the

vehicle flows and the request flows. Constraints (2.3.9) ensure that the loading capacities

are not exceeded. Constraints (2.3.10) to (2.3.12) are used to eliminate subtours.

Constraints (2.3.13) to (2.3.15) restrict the variables 𝑥𝑖𝑗
𝑘 , 𝑦𝑖𝑗

𝑘𝑟 , 𝑧𝑖𝑗𝑘 to be binary.

We find it necessary to make some revisions to this model. The first revision is that the

origin depots and destination depots of the requests should be excluded from constraints

(2.3.7). Otherwise, the request flow is restricted to returning to the pickup location after

passing through the delivery location, which makes the problem infeasible. Constraints

(2.3.7) are revised as constraints (2.3.16) to resolve this issue.

∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴

− ∑ 𝑦𝑗𝑖
𝑘𝑟

(𝑗,𝑖)∈𝐴

= 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁\{𝑇 ∪ {𝑝(𝑟), 𝑑(𝑟)}}
(2.3.16)

The second revision is related to subtour elimination. Constraints (2.3.10) to constraints

(2.3.12) eliminate the subtours by determining the precedence that the nodes are visited.

The origin depots and destination depots are excluded from the constraints. This exclusion

is necessary for the traveling salesman problem (TSP) because the origin depot and

destination depot coincide with each other.

However, the depots should not be excluded for PDP-T. Otherwise, the model would

obtain unreasonable solutions as the vehicles can return to the original depots. An

illustrative example is shown in Figure 2.3.1.

11

Figure 2.3.1: Illustration of the solution obtained by solving “example 1”

12

This figure shows a solution obtained by solving “example 1” using the revised model

without adding constraints (2.3.17) to (2.3.19). The geographical locations of the nodes

and the routes are shown in the top. The vehicle flows are shown in the bottom. This

solution is infeasible because of the subtour. As is shown in the figure, there are subtours

in the solution because the depots 𝑂 and 𝑂′ are excluded from the subtour elimination

constraints. To address this issue, we modify the domain of constraints (2.3.10) to (2.3.12).

The revised constraints are shown in constraints (2.3.17) to (2.3.19).

 𝑥𝑖𝑗
𝑘 ≤ 𝑧𝑖𝑗

𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.17)

 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑖

𝑘 = 1 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.18)

 𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑙

𝑘 + 𝑧𝑙𝑖
𝑘 ≤ 2 ∀𝑖, 𝑗, 𝑙 ∈ 𝑁, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗), (𝑗, 𝑙), (𝑙, 𝑖) ∈ 𝐴 (2.3.19)

The third revision is associated with the synchronization requirement. Synchronization

means that if a request is transferred between two vehicles, the vehicle that drops off the

request should arrive at the transfer station before the vehicle that comes to pick up the

request. This issue is easily overlooked because the model obtains correct solutions for

most of the PDP-T instances. We will explain in detail how ignoring the synchronizing

constraints can lead to infeasible solutions. An example is shown in Figure 2.3.2.

This is an illustration of the solution obtained by solving “example 2” using the revised

model without adding equations (2.3.20) to (2.3.24). The solid line represents the route of

vehicle 1 while the dashed line represents the route of vehicle 2. This solution is infeasible

because the two transshipments conflict with each other. As is shows, request 1 is

transferred from vehicle 1 to vehicle 2 at transfer station 𝑡2 while request 2 is transferred

from vehicle 2 to vehicle 1 at transfer station 𝑡1 . However, these two transshipments

conflict with each other. On the one hand, if requests 1 is transferred, vehicle 1 must arrive

𝑡1 earlier than vehicle 2. On the other hand, if request 2 is transferred, vehicle 2 must arrive

𝑡1 earlier than vehicle 1, leading to the conflict. To solve the synchronization issue, we add

new variables and constraints as shown in equations (2.3.20) to (2.3.24). 𝑒𝑖
𝑘 are positive

13

Figure 2.3.2: Illustration of the solution obtained by solving “example 2”

14

numbers that represent the sequence that node 𝑖 is visited by vehicle 𝑘. Variables 𝑠𝑡𝑟
𝑘1𝑘2

indicate whether request 𝑟 is transferred from vehicle 𝑘1 to vehicle 𝑘2 at transfer station 𝑡.

 𝑒𝑖
𝑘 + 1 − 𝑒𝑗

𝑘 ≤ 𝑀(1 − 𝑥𝑖𝑗
𝑘) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.3.20)

 ∑ 𝑦𝑗𝑡
𝑘1𝑟

(𝑗,𝑡)∈𝐴

+ ∑ 𝑦𝑡𝑗
𝑘2𝑟

(𝑡,𝑗)∈𝐴

≤ 𝑠𝑡𝑟
𝑘1𝑘2 + 1 ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.3.21)

 𝑒𝑡
𝑘1 − 𝑒𝑡

𝑘2 ≤ 𝑀(1 − 𝑠𝑡𝑟
𝑘1𝑘2) ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.3.22)

 𝑒𝑖
𝑘 ≥ 0 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.3.23)

 𝑠𝑡𝑟
𝑘1𝑘2 ∈ {0,1} ∀𝑡 ∈ 𝑇, ∀𝑟 ∈ 𝑅, ∀𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.3.24)

Constraints (2.3.20) determine the sequence of the nodes visited by the vehicles. 𝑀 is a

sufficiently large number. In the experiments, we set the value to be the number of nodes

in the Graph 𝐺. Constraints (2.3.21) indicate whether a request is transferred between two

vehicles in the transfer stations. Constraints (2.3.22) restrict that if a request 𝑟 is transferred

from 𝑘1 to 𝑘2 at transfer station 𝑡, the vehicle 𝑘1 should visit 𝑡 before 𝑘2. The decision

variables are defined in equations (2.3.23) and (2.3.24).

 ∑ 𝑥𝑖𝑗
𝑘 = 1 ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘)

(𝑖,𝑗)∈𝐴

(2.3.25)

In addition to the three revisions above, we also suggest modifying constraints (2.3.1)

to constraints (2.3.25). This modification is not mandatory but is related to how the PDP-

T is defined. In the original problem, if a vehicle is not used, its travel distance between

the origin depot and destination depot will not be counted into the objective function. This

setting causes an issue that the vehicles with long distances between the origin depots and

destination depots are not preferred. In other words, the vehicles with long origin-

destination pairs may not be used even if there are requests on the way of their original

trips. An illustrative example is shown in Figure 2.3.3.

15

Figure 2.3.3: Illustration of the solution obtained by solving “example 3”

16

This figure depicts an illustration of comparing the solutions obtained by solving

“example 3” using the revised model and that without replacing constraints (2.3.1) by

constraints (2.3.25). The dashed line represents the route of vehicle 1 while the solid line

represents the route of vehicle 2. The coordinates are noted above the nodes. There are two

vehicles and one request in the example. The origin and destination of vehicle 𝑘1 are 𝑜1

and 𝑜1′ respectively. Similarly, the origin and destination of vehicle 𝑘2 are 𝑜2 and 𝑜2′. The

solution of using constraints (2.3.1) is shown at the top of the figure. In this solution, the

request is picked up and delivered by 𝑘2. The objective function value is 6 but there is a

detour of 4. Vehicle 𝑘1 is not preferred because the distance between 𝑜1 and 𝑜1′ is too far.

If vehicle 𝑘1 is used, the objective function value will increase to 10, although there is no

detour for 𝑘1 to pick up and deliver the request.

If constraints (2.3.25) are used, the request would be picked up and delivered by 𝑘1. As

shown at the bottom of the figure, there is no detour in the new solution. In other words,

the revised model is to minimize the detour taken by the vehicles rather than the actual

driving distance. Note that our objective function value is not exactly the detour. In fact, it

is equal to the detour plus a constant, which is the total distance between the origins and

destinations of the vehicles. To retrieve the detour, we need to subtract this constant. The

revised model for solving PDP-T is shown as follows,

min. ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

s. t. (2.3.2) to (2.3.6), (2.3.8), (2.3.9), (2.3.13) to (2.3.25).

2.4 Formulation for PDPTW-T

This section discusses the MILP formulation presented by Sampaio et al. (2020) for solving

PDPTW-T. The model is generated from the one proposed by Rais et al. (2014), which is

shown in Section 2.3. Sampaio et al. (2020) focus on PDPTW-T for urban environments

where crowd-shipping is considered. Specifically, the drivers are not employed by the

17

companies but occasionally provide services. The occasional drivers tend to provide short

service times, e.g., three to five hours. Sampaio et al. (2020) make some restrictions and

assumptions for the PDPTW-T. They require that the vehicles start and end their shifts at

the same depots. They assume that the capacities of the vehicles are sufficient, so the

capacity constraints can be released. It is also assumed that each vehicle can visit the same

transfer station at most once.

The notations used in this section are the same as those in Section 2.3. Additional

notations are defined to handle the time window constraints. 𝑐𝑖𝑗 represents the travel cost

associated with arc (𝑖, 𝑗). 𝜏𝑖𝑗 represents the traveling time between node 𝑖 and node 𝑗. 𝐸𝑖

denotes the earliest time that the requests can be picked up at the location 𝑖. By contrast,

𝐿𝑖 denotes the latest time that the requests can be delivered to 𝑖. Variables 𝑠𝑡𝑟
𝑘1𝑘2 = 1 if

request 𝑟 is transferred from vehicle 𝑘1 to vehicle 𝑘2 at transfer station 𝑡 . 𝑠𝑡𝑟
𝑘1𝑘2 = 0

otherwise. 𝑎𝑖
𝑘 and 𝑏𝑖

𝑘 represent the arrival time and departure time for vehicle 𝑘 at location

𝑖, respectively. The MILP formulation is listed as follows.

min. ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

s. t. (2.3.1), (2.3.4) - (2.3.6), (2.3.8), (2.3.13), (2.3.14), (2.3.16)

 ∑ 𝑥𝑖𝑗
𝑘 = ∑ 𝑥𝑗𝑖

𝑘

(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴

 ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘)
(2.4.1)

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑃 ∪ 𝐷 ∪ 𝑇
(2.4.2)

 𝑏𝑖
𝑘 + 𝜏𝑖𝑗 − 𝑎𝑗

𝑘 ≤ 𝑀(1 − 𝑥𝑖𝑗
𝑘) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.4.3)

 𝑏𝑖+
𝑘 ≥ 𝐸𝑖+ , 𝑎𝑖−

𝑘 ≤ 𝐿𝑖− ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, 𝑖+ = 𝑝(𝑟), 𝑖− = 𝑑(𝑟) (2.4.4)

 ∑ 𝑦𝑗𝑡
𝑘1𝑟

(𝑗,𝑡)∈𝐴

+ ∑ 𝑦𝑡𝑗
𝑘2𝑟

(𝑡,𝑗)∈𝐴

≤ 𝑠𝑡𝑟
𝑘1𝑘2 + 1 ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑘1, 𝑘2 ∈ 𝐾 (2.4.5)

 𝑎𝑡
𝑘1 − 𝑏𝑡

𝑘2 ≤ 𝑀(1 − 𝑠𝑡𝑟
𝑘1𝑘2) ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑘1, 𝑘2 ∈ 𝐾 (2.4.6)

 𝑠𝑡𝑟
𝑘1𝑘2 ∈ {0,1} ∀𝑡 ∈ 𝑇, ∀𝑟 ∈ 𝑅, ∀𝑘1, 𝑘2 ∈ 𝐾 (2.4.7)

18

 𝑎𝑖
𝑘, 𝑏𝑖

𝑘 ≥ 0 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.4.8)

Detailed descriptions of the formulation can be found in Sampaio et al. (2020). Here we

briefly describe the differences between this model and the model described in Section 2.3.

Constraints (2.4.1) and (2.4.2) are used to replace constraints (2.3.2) and (2.3.3) because

Sampaio et al. (2020) assume that the starting and ending points of the vehicles coincide.

Constraints (2.4.3) and (2.4.4) are added as time window constraints. Constraints (2.4.5)

are almost the same as constraints (2.3.21). The only difference between them is that 𝑘1 =

𝑘2 is allowed in constraints (2.4.5). Although it does not have a significant effect on the

solution quality, it is thought better to prohibit it just like in constraints (2.3.21). Constraints

(2.4.6) achieve the same function as constraints (2.3.22). They make sure that if a transfer

occurs, the vehicle dropping the request should arrive at the transfer location before the

vehicle picking up the request. Constraints (2.4.7) and (2.4.8) define the decision variables.

Next, we discuss the possible issues in the model and propose our revisions.

The first revision is related to vehicle flow conservation. The home depots are excluded

from constraints (2.4.2). However, this exclusion is too broad. We should only exclude the

depot of the corresponding vehicle rather than the whole set of depots. Otherwise, the

vehicles can depart from a depot that does not belong to it.

A counterexample is shown in Figure 2.4.1. In this example, the solution is obtained by

solving “example 4” using the revised model without replacing revising constraints (2.4.1)

and (2.4.2). This solution is infeasible because the vehicle 𝑘3 does not start and end from

its own depot. Instead, 𝑘3 utilizes the depots that belong to 𝑘1 and 𝑘2. To solve this issue,

we suggest replacing the constraints (2.4.1) and (2.4.2) with the following constraints.

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁
(2.4.9)

The second revision is related to the time window constraints. By analyzing the open-

access datasets in Sampaio, Savelsbergh, Veelenturf, & Van Woensel (2020b), we find that

19

Figure 2.4.1: Illustration of the solution obtained by solving “example 4”

20

the current constraints are not sufficient to restrict the time windows. Constraints (2.4.4)

only restrict one side for the time windows, i.e., the earliest departure time for the pickup

locations and the latest arriving time for the delivery nodes. In the dataset, 𝐸𝑖+ is equal to

zero for all nodes and 𝐿𝑖− is equal to 180, 240, or 300 depending on the vehicle shift length.

In contrast, 𝐸𝑖− and 𝐿𝑖+ have different variables and thus are more important. However,

𝐸𝑖− and 𝐿𝑖+ are not used in the model. It is thought necessary to restrict both sides of the

time windows. Otherwise, the time of arrival and departure may not be restricted as

expected. In addition, it is thought necessary to add new constraints to maintain time

conservation. For each vehicle, the time of reaching a node must be earlier than the time of

leaving that node. Without these constraints, the obtained optimal solution would be

unreasonable.

An example is shown in Figure 2.4.2. In this example, the solution is obtained by solving

“example5” using the revised model without revising the constraints. This solution is

infeasible because the time window constraints fail to eliminate self-loops. To solve this

issue, we replace constraints (2.4.4) with constraints (2.4.10), and add constraints (2.4.11).

 𝐸𝑖 ≤ 𝑏𝑖
𝑘 ≤ 𝐿𝑖 , 𝐸𝑖 ≤ 𝑎𝑖

𝑘 ≤ 𝐿𝑖 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 (2.4.10)

 𝑏𝑖
𝑘 ≥ 𝑎𝑖

𝑘 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘) (2.4.11)

The last revision is related to the subtour elimination. The subtours of the vehicle flow

are eliminated by determining the order in which the nodes are visited. This method is

similar to the subtour elimination constraints proposed by Miller, Zemlin, & Tucker (1960).

However, the subtours of the request flow are not eliminated as expected. An illustrative

example is shown in Figure 2.4.3.

The solution is obtained by solving “example6”. The solid line represents the route of

vehicle 1 while the dashed line represents the route of vehicle 2. This solution is infeasible

because there are subtours for request 2. The instance includes four requests, two vehicles,

and one transfer station. Note that we have made the first two revisions and add the new

constraints. However, the solution is still infeasible because the coupling requirement is

21

Figure 2.4.2: Illustration of the solution obtained by solving “example 5”

22

Figure 2.4.3: Illustration of the solution obtained by solving “example 6”

23

not respected. Request 2 is not picked up and delivered by the same vehicle. We find that

there are subtours for request 2. The flow of request 2 is 2 → 1′ → 𝑜1 → 1 → 3′ → 2 and

2′ → 3 → 𝑜2 → 2′. This request flow satisfies the model but contains subtours. There are

several ways to solve this issue. For example, we can explicitly add subtour elimination

constraints for the request flows. Here, we provide an alternative method. By analyzing the

solutions, we find that all the subtours contain depots in the request flow. Therefore, we

can eliminate the subtours by simply prohibiting depots in the request flow. The constraints

to be added are (2.4.12), (2.4.13), and (2.4.14).

 𝑦𝑖𝑗
𝑘𝑟 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ∈ 𝑂 (2.4.12)

 𝑦𝑖𝑗
𝑘𝑟 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑗 ∈ 𝑂 (2.4.13)

 𝑦𝑖𝑗
𝑘𝑟 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑗 = 𝑝(𝑟) (2.4.14)

The revised model for solving PDPTW-T is listed as follows,

min. ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

s. t. (2.3.1), (2.3.4) - (2.3.6), (2.3.8), (2.3.13), (2.3.14), (2.3.16),

(2.4.3), (2.4.5) - (2.4.14).

2.5 New MILP formulation

We propose a new MILP formulation to solve the PDP-T and PDPTW-T. We generate the

model based on the one presented by Rais et al. (2014). The main improvement is that we

add several redundant constraints for the model. These constraints are redundant in terms

of searching for the optimal solution but can strengthen the LP relaxation. As a result, the

efficiency of the model is significantly improved. These redundant constraints can also be

designed as valid cuts for a branch-and-cut algorithm. In this paper, we directly add these

24

constraints to the model as the number of them is moderate. It may not be worth checking

the solutions during the optimization process and adding the valid cuts as needed.

We have also tried some other methods to reduce the computing time of solving the

model. For instance, one can reduce the problem scale by eliminating unnecessary arcs

before feeding them into the model (see for example Cordeau, 2006). One can also reduce

the number of variables by aggregating the time variables (see for example Cordeau, 2006).

Similarly, the number of variables can be reduced by only keeping the arriving time for the

nodes except the transfer stations. In addition, the constraints for time conservation can be

lifted (see for example Ropke et al., 2007). However, based on our experiments, these

techniques do not reduce the computing time significantly. Based on our preliminary

experiments, an efficient way to reduce the computing time is to add appropriate redundant

constraints to the model, as shown in the following MILP formulation.

min. ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

s. t. (2.3.4) - (2.3.6), (2.3.8), (2.3.9), (2.3.13), (2.3.14), (2.3.16),

(2.3.21), (2.3.24), (2.3.25), (2.4.2), (2.4.8)

 ∑ 𝑥𝑗𝑖
𝑘 = 0

(𝑗,𝑖)∈𝐴

 ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜(𝑘)
(2.5.1)

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

= 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑂 ∪ 𝑂′, 𝑖 ≠ 𝑜(𝑘)
(2.5.2)

 ∑ 𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴

= 1 ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜′(𝑘)
(2.5.3)

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

= 0 ∀𝑘 ∈ 𝐾, 𝑖 = 𝑜′(𝑘)
(2.5.4)

 ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑇
(2.5.5)

 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾(𝑖,𝑗)∈𝐴

= 1 ∀𝑖 ∈ 𝑃 ∪ 𝐷
(2.5.6)

25

 ∑ ∑ 𝑦𝑖𝑗
𝑘𝑟

𝑘∈𝐾(𝑖,𝑗)∈𝐴

= 0 ∀𝑟 ∈ 𝑅, 𝑗 = 𝑝(𝑟)
(2.5.7)

 ∑ 𝑦𝑖𝑗
𝑘𝑟

(𝑖,𝑗)∈𝐴

= 0 ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑂 ∪ 𝑂′, 𝑖 ≠ 𝑜(𝑘), 𝑖 ≠ 𝑜′(𝑘)
(2.5.8)

 𝑎𝑡
𝑘1 − 𝑏𝑡

𝑘2 ≤ 𝑀(1 − 𝑠𝑡𝑟
𝑘1𝑘2) ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑘1, 𝑘2 ∈ 𝐾, 𝑘1 ≠ 𝑘2 (2.5.9)

 𝑏𝑖
𝑘 + 𝜏𝑖𝑗

𝑘 − 𝑎𝑗
𝑘 ≤ 𝑀(1 − 𝑥𝑖𝑗

𝑘) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (2.5.10)

 𝑎𝑖
𝑘 ≥ 𝐸𝑖 , 𝑏𝑖

𝑘 ≤ 𝐿𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.5.11)

 𝑎𝑖
𝑘 ≤ 𝑏𝑖

𝑘 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.5.12)

The objective function minimizes the traveling costs of the vehicles. Constraints (2.5.1)

restrict that the vehicles cannot go back to the origin depots. Departure from a position

other than the origin depots is prohibited by constraints (2.5.2). Constraints (2.5.3) ensure

that the vehicles end their routes at the destination depots. Constraints (2.5.4) make sure

that the vehicles do not leave the destination depots. Constraints (2.5.5) restrict that each

vehicle visits the same transfer station at most once. Constraints (2.5.6) limit that the pickup

locations and delivery locations are visited only once. Constraints (2.5.7) restrict that the

request flows should not contain arcs that head to the pickup locations. Constraints (2.5.8)

make sure that the request flows should not include the origin depots or destination

depots.Constraints (2.5.9) are used to maintain the synchronization requirements. If a

request is transferred between two vehicles, the vehicle that drops off the request must

arrive at the transfer node before the vehicle that comes to receive the request. We set 𝑀 ≥

𝐿𝑡 − 𝐸𝑡 to maintain the validity of constraints. Constraints (2.5.10) to (2.5.12) guarantee

that the requests are picked up and delivered in the given time windows. The validity of

constraints (2.5.10) is ensured by setting 𝑀 ≥ max {0, 𝐿𝑖 + 𝜏𝑖𝑗
𝑘 − 𝐸𝑗}.

2.6 Computational Experiments

In this section, we evaluate the performance of the proposed formulation by comparing it

with the two modified formulations shown in Section 2.3 and Section 2.4. The formulations

26

are coded in Python and tested using Gurobi 9.0.1 as the exact solver. The experiments are

conducted on an Intel (R) Xeon (R) E-2274G CPU (4.00 GHz) machine with 32 GB of

RAM, under Windows 10. We generate 340 instances to test the proposed model in solving

PDP-T. To test the model in solving the PDPTW-T, we use the instances provided by

Sampaio, Savelsbergh, Veelenturf, and Woensel (2020). The raw instances are available in

https://data.mendeley.com/datasets/pywzcgyzrv/2. Since the scale of these instances is too

large for the exact methods, we generate smaller instances by keeping only part of the

requests. The coordinates of the vehicles and the transfer stations remain unchanged. The

time limitation is set to 3600 seconds for the experiments. All instances tested in this paper

and the computational results can be found at Mendeley Data by Lyu & Yu (2022) with

the following link: https://data.mendeley.com/datasets/w925jygjct/4.

 Instance generation

Rais et al. (2014) generate instances based on the datasets of Li & Lim (2001). As their

instances are not open access, we generate new instances to evaluate the performance of

the proposed model. We generate 24 groups of PDP-T instances with a different setting of

requests, vehicles, and transfer stations. Each group contains 10 instances. The nodes (i.e.,

pickup nodes, delivery nodes, origin depots, destination depots, and transfer stations) are

randomly located on a 100 × 100 Euclidean grid. The traveling cost between two nodes is

the Euclidean distance. Each pair of pickup node and delivery node are associated with a

positive load 𝑞 and a negative load −𝑞, respectively. The value of 𝑞 is generated using a

discrete uniform distribution within the interval of [1, 100]. The vehicles have different

origin depots and destination depots but their capacity is homogenous, which is set to 100.

To test the proposed formulation in solving the PDPTW-T, we use the instances

provided by Sampaio et al. (2020). These instances are originally solved by an adaptive

large neighborhood search algorithm. Since the scale of these instances is too large for

exact algorithms, we generate smaller instances by picking the first several requests (i.e.,

3, 4, and 5). The depots and transfer stations are kept the same as the original instances.

Unlike in Sampaio et al. (2020), we cannot set the number of vehicles to infinite because

https://data.mendeley.com/datasets/pywzcgyzrv/2
https://data.mendeley.com/datasets/w925jygjct/4

27

the number of vehicles should be determined for the models. We set the number of vehicles

to be 4 as we find it enough to serve the requests. In addition, Sampaio et al. (2020) do not

consider the capacity constraints. We can set the vehicle capacity to be sufficiently large

to release the capacity constraints. Thus, we set the vehicle capacity to 99 in our

experiments. Both the transfer geometry MD-4T and MD-5T are used to generate instances

with 3 requests. Since our focus is not to study the impact of different geometries, we only

use the MD-4T setting to generate instances with 4 and 5 requests.

 Results of solving the PDP-T instances

Table 2.6.1 presents a performance comparison between the proposed model and the pre-

existing RAC model in tackling the generated PDP-T instances. The term RAC Model

pertains to the model introduced by Rais et al. (2014) with the necessary revisions

described in Section 2.3. To facilitate comprehension, the definitions of the columns in this

table are outlined below.

The first column lists the names of the instance groups. The groups are named in the

following manner: the value after R denotes the number of requests, the value after K

denotes the number of vehicles, and the value after T denotes the number of transfer

stations. Column #opt. reports the number of instances that is solved to optimality. Column

#lim. reports the number of instances that feasible solutions are found. Column #no. reports

the number of instances that no feasible solutions are found within the time limit. We omit

column #no. for the proposed model because all the values under that column are zero. The

average objective function values, average percentage gaps, and average computing times

are listed under columns obj., column gap(%), and column t(s), respectively.

The gaps are directly obtained from Gurobi. The numbers are averaged according to the

instances in the group. The gaps capture the percentage difference between the best

solution found and the best lower bound. The time limitation of running the solver is 3600

seconds. Note that the instances that no solutions are found are excluded from calculating

the average objective function value and the average gap. That is the reason why the

average gap of the RAC model for group R12K3T3 is zero.

28

Table 2.6.1: Results of the models in solving the PDP-T instances

 RAC Model Proposed Model

Instance #opt. #lim. #no. obj. gap (%) t(s) #opt. #lim. obj. gap (%) t(s)

R5K2T1 10 0 0 442.4 0.0 86.9

10 0 442.4 0.0 0.1

R5K2T2 10 0 0 415.5 0.0 91.0

10 0 415.5 0.0 0.2

R5K3T3 10 0 0 421.4 0.0 436.3

10 0 421.4 0.0 0.5

R7K2T1 6 4 0 529.3 6.1 1779.0

10 0 525.0 0.0 2.9

R7K2T2 7 3 0 574.2 2.9 1872.5

10 0 572.7 0.0 0.9

R7K3T3 2 7 1 575.7 10.2 2972.0

10 0 560.4 0.0 2.0

R10K2T1 0 4 6 673.4 11.1 3600.2

10 0 717.3 0.0 11.3

R10K2T2 0 4 6 705.4 16.8 3600.1

10 0 703.0 0.0 21.5

R10K3T3 0 1 9 665.4 5.7 3600.1

10 0 686.7 0.0 8.6

R12K2T1 0 1 9 703.3 18.1 3600.0

10 0 729.1 0.0 43.7

R12K2T2 0 0 10 - - 3600.0

10 0 751.6 0.0 72.2

R12K3T3 1 0 9 778.3 0.0 3445.4

10 0 812.4 0.0 218.1

R15K2T1 0 0 10 - - 3600.0

10 0 933.0 0.0 362.1

R15K2T2 0 0 10 - - 3600.0

10 0 923.7 0.0 108.7

R15K3T3 0 0 10 - - 3600.0

9 1 948.1 0.19 589.5

sum. 46 24 80

149 1

avg. 589.5 6.4 2632.2 676.2 0.01 96.1

29

As is shown in the table above, the proposed model is superior to the RAC model in terms

of solution quality and computing time. The RAC model obtains the optimal solutions and

feasible solutions for 46 and 24 instances, respectively. There are 80 instances that the

RAC model does not find feasible solutions. The average computing time is 2632 seconds

and the average gap for the solvable instances (at least find one feasible solution) is 6.4%.

By contrast, the proposed model solves 149 instances to optimality. Only 1 instance in the

R15K3T3 group is not solved to optimality. A feasible solution with a gap of 1.9% is found

for that instance, which makes the average gap of the group 0.19%. The proposed model

reduces the computing time to 96 seconds, a reduction of 96.35%.

We will then compare the performance of the two models based on different instance

scales. We roughly divide the instances into small-, medium-, large-scale, and extra-large-

scale based on the capability that the RAC model can solve the instances. Instances with 5

requests are small-scale as the RAC model can easily solve them to optimality. The average

computing time ranges from 101 seconds to 537 seconds. The proposed model reduces the

average computing time to 0.5 seconds. Instances with 7 to 10 requests are considered

medium-scale as the RAC model can solve them but may not be able to solve them to

optimality. The average computing time ranges from 1844 seconds to 3600 seconds. The

proposed model solves all medium-scale instances to optimality within 22 seconds on

average. The instances with 12 to 15 requests are considered large-scale as the RAC model

cannot even find feasible solutions for them. For the 60 large-scale instances, the RAC

model only finds a feasible solution for one instance. In contrast, the proposed model solves

59 instances to optimality. One instance is not solved to optimality but a feasible solution

with a gap of 1.9 % is obtained. The average computing time of solving the large-scale

instances ranges from 44 seconds to 590 seconds.

Instances with more than 15 requests are not solvable for the RAC model. In order to

evaluate the maximum scale of instances that the proposed model can solve, we further test

the 90 extra-large-scale instances. Table 2.6.2 show that the proposed model can solve

instances with up to 25 requests and 2 transfer stations. In the literature, the benchmarks of

PDP-T are instances with 5 requests and 1 transfer station (see Rais et al. 2014).

30

Table 2.6.2: Results of the proposed model in solving extra-large-scale PDP-T

Instance #opt. #lim. #no. obj. gap (%) t(s)

R20K2T1 5 4 1 1163.7 2.8 2146.1

R20K2T2 4 2 4 1155.5 1.0 2815.4

R20K3T3 3 6 1 1186.0 8.1 2714.1

R25K2T1 1 1 8 1439.5 4.3 3358.5

R25K2T2 1 1 8 1395.4 8.5 3564.4

R25K3T3 0 3 7 1506.5 11.2 3600.0

R30K2T1 0 1 9 1574.8 10.3 3600.0

R30K2T2 0 0 10 - - 3600.0

R30K3T3 0 0 10 - - 3600.0

sum. 14 18 58

avg. 1345.9 6.6 3222.1

31

The performances of the proposed model and the RAC model are compared when the

number of vehicles increases from two to twenty. 100 instances are generated and tested

where the number of requests is 5 and the number of transfer station is 1. The time limit

for running the two models is set to one hour. The results are shown in Table 2.6.3. The

columns share the same meaning as previously described. For the RAC model, it solves all

10 instances to optimality when the number of vehicles is 2. The average computational

time is 274 seconds. For instances with more vehicles, the RAC model does not guarantee

the optimality. When the number of vehicles increases to 20, the RAC model fails to obtain

a feasible solution. In comparison, the proposed model scales well when the number of

vehicles is increased. Specifically, all 100 instances are solved to optimality. For the first

40 instances, the computing time increase linearly with the number of vehicles. Although

the linear relationship between computational time and the number of vehicles does not

maintain for larger instances, the computing time increases moderately as the number of

vehicles increases. The average computational time for solving the 100 instances is 2.3

seconds, which is significantly less than the average computational time for the RAC model

on solving the instances.

 Results of solving the PDPTW-T instances

Table 2.6.4 compares the performance of the proposed model and the existing model in

solving the PDPTW-T instances with 3 requests and 4 vehicles under the MD-4T setting

and MD-5T setting, respectively. The SSVW model refers to the model presented by

Sampaio et al. (2020). It has been modified in Section 4. MD-4T indicates that the number

of transfer stations is four. Similarly, MD-5T means that the number of transfer stations is

five in the instances. The first column lists the name of the instances. There are 9 groups

for each setting. Each group includes 10 different instances. The values in the group name

represent the vehicle shift length. For example, 180 means that the shift lengths of the

vehicles are 180 minutes. The letters in the group name indicate the type of the requests.

Specifically, the group marked as long (L) only contains long-distance requests that the

distance between a pickup and a delivery location is at least 60 units. The group marked as

32

Table 2.6.3: Performance of the models when the number of vehicles increases

 RAC Model Proposed Model

Instance #opt. #lim. #no. obj. gap (%) t(s) #opt. obj. t(s)

R5K2T1 10 0 0 468.1 0.00 274.3

10 468.1 0.2

R5K4T1 5 5 0 470.0 2.06 1850.2

10 470.0 0.4

R5K6T1 4 5 1 592.0 5.67 2379.7

10 587.7 0.5

R5K8T1 3 6 1 669.9 6.86 2647.1

10 665.1 0.8

R5K10T1 4 4 2 729.4 4.81 2770.4

10 742.1 1.2

R5K12T1 2 1 7 789.5 8.39 3282.0

10 826.8 2.5

R5K14T1 1 3 6 863.8 2.55 3394.4

10 896.6 3.4

R5K16T1 0 3 7 1851.8 39.60 3601.0

10 1049.3 3.7

R5K18T1 0 1 9 3129.5 70.67 3600.8

10 1115.8 4.4

R5K20T1 0 0 10 - - 3600.0

10 1180.0 6.1

sum. 29 28 43

100

avg. 1062.7 15.62 2740.0 800.2 2.3

33

Table 2.6.4: Results of solving the PDPTW-T with MD-4T and MD-5T

 MD-4T setting MD-5T setting

 Instance obj. 𝑡𝑠𝑠𝑣𝑤(s) 𝑡𝑝𝑟𝑜(s) 𝑡𝑟𝑒𝑑𝑢𝑐𝑒(%) obj. 𝑡𝑠𝑠𝑣𝑤(s) 𝑡𝑝𝑟𝑜(s) 𝑡𝑟𝑒𝑑𝑢𝑐𝑒(%)

180, L 411.75 39.38 7.89 79.96

400.83 84.53 32.82 61.18

180, M 330.91 28.82 8.56 70.31

328.53 99.76 25.95 73.99

180, S 261.32 3.88 3.73 4.02

261.00 8.17 6.02 26.33

240, L 376.67 9.54 4.84 49.26

372.36 27.28 14.24 47.81

240, M 299.72 7.74 4.27 44.84

298.66 34.57 9.12 73.62

240, S 251.64 2.16 2.46 -14.00

251.64 8.37 4.60 44.98

300, L 376.45 9.30 6.14 33.98

372.20 25.94 13.26 48.91

300, M 299.72 6.23 4.77 23.47

298.66 30.42 9.90 67.45

300, S 251.64 2.23 2.55 -14.48 251.64 3.98 4.00 -0.72

avg. 317.76 12.14 5.02 30.82 315.06 35.89 13.32 49.28

34

short (S) only includes short-distance requests that the distance between a pickup and a

delivery location is less than 60 units but more than 30 units. The group marked as mix

(M) is the third scenario, which has both long-distance requests and short-distance requests.

Column obj. reports the average objective function values. Column 𝑡𝑆𝑆𝑉𝑊 reports the

average computing time for the SSVW model while column 𝑡𝑝𝑟𝑜 reports the average

computing time for the proposed model. Column 𝑡𝑟𝑒𝑑𝑢𝑐𝑒 reports the percentage of time

reduced by using the proposed model.

All instances in Table 2.6.4 are solved to optimality by using both the SSVW model and

the proposed model. As is shown, the proposed model is more efficient in terms of

computing time. In the MD-4T setting, the proposed model reduces the average computing

time by 30.82%. In the MD-5T setting, the proposed model reduces the average computing

time by 49.28%. The average time saving is 40.05%. However, there are three groups that

the proposed model consumes more time than the SSVW model, i.e., groups (240, S) and

(300, S) under the MD-4T setting, and group (300, S) under the MD-5T setting.

By comparing the two settings, we find that the instances under the MD-5T setting are

hard to solve but have smaller average objective function values. This is to be expected as

the additional one transfer station provides the possibility of transferring the requests more

efficiently. Since our focus is not to study the impact of a different number of transfer

stations, we only use the MD-4T setting for PDPTW-T instances with 4 requests and 5

requests.

Table 2.6.5 compares the performance of the SSVW model and the proposed model in

solving the PDPTW-T instances with 4 requests and 4 vehicles under the MD-4T setting.

The first column of the table shows the name of the groups. The meaning of the other

columns is the same as that in Table 2.6.1. Note that we do not list column #no for the

proposed model because all the values are zero. In other words, the solver Gurobi finds

feasible solutions for all 90 instances by using the proposed model. As is shown in the last

second row, the proposed model solves more instances to optimality in a shorter time

compared with the SSVW model. Specifically, the SSVW model solves 84 instances to

optimality. There are 6 instances that the SSVW model does not find optimal solutions.

35

Table 2.6.5: Results of the models in solving PDPTW-T with 4 requests

 SSVW Model Proposed Model

Instance #opt. #lim. #no. obj. gap(%) t(s) #opt. #lim. obj. gap(%) t(s)

180, L 8 1 1 486.77 1.24 1027

10 0 491.32 0.00 168

180, M 7 2 1 418.85 3.78 1442

9 1 427.00 0.44 683

180, S 9 1 0 334.53 0.43 673

10 0 334.53 0.00 119

240, L 10 0 0 445.78 0.00 327

10 0 445.78 0.00 86

240, M 10 0 0 374.48 0.00 263

10 0 374.48 0.00 64

240, S 10 0 0 322.41 0.00 46

10 0 322.41 0.00 52

300, L 10 0 0 444.67 0.00 351

10 0 444.67 0.00 88

300, M 10 0 0 374.48 0.00 246

10 0 374.48 0.00 68

300, S 10 0 0 322.41 0.00 51

10 0 322.41 0.00 45

sum 84 4 2

89 1

avg.

391.60 0.61 492

393.01 0.05 152

36

It fails to find feasible solutions for two of them. In contrast, our model solves 89 instances

to optimality. There is only 1 instance that the proposed model does not solve to optimality

but finds a feasible solution.

We report the average objective function values, average computing times, and average

gaps in the last row in Table 2.6.4. It shows that the proposed model outperforms the SSVW

model. The proposed model reduces the average gaps from 0.61% to 0.05% and reduces

the average computing time from 492 seconds to 152 seconds. Note that it is not fair to

directly compare columns #obj for the two models because instances that are not solvable

have been excluded. For example, the average objective function value obtained by the

SSVW model is 391.6 while the value is 393.01 for the proposed model. However, the

proposed model finds better or equally good solutions for all instances. The SSVW model

has a smaller average objective function value because two instances are excluded.

Computational results for every single instance can be found at Lyu & Yu (2022).

Table 2.6.6 compares the performance of the SSVW model and the proposed model in

solving the PDPTW-T instances with 5 requests and 4 vehicles under the MD-4T setting.

This table is similar to Table 4 but deals with instances with one more request. As expected,

the instances with five requests are harder to be solved. The SSVW model solves only 46

instances to optimality, accounting for about half of the instances. It finds feasible solutions

for 24 instances and fails to solve the remaining 20 instances. The proposed model

performs better than the SSVW model. It solves 72 instances to optimality. It finds feasible

solutions for 9 instances and fails to solve the remaining 9 instances. In addition, it reduces

the average computing time from 2149 seconds to 1334 seconds.

 Discussion on valid inequalities

The reason that the proposed model outperforms the RAC model and SSVW model is that

we add several valid inequalities (cuts). These cuts are redundant in terms of restricting the

feasible region but can strengthen the LP relaxation of the model. As a result, the

performance of the proposed model is increase significantly.

37

Table 2.6.6:Results of the models in solving PDPTW-T with 5 requests

 SSVW Model

Proposed Model

Instance #opt. #lim. #no. obj. gap(%) t(s) #opt. #lim. #no. obj. gap(%) t(s)

180, L 1 1 8 589.7 12.67 3450

2 3 5 573.0 4.76 2958

180, M 1 1 8 464.5 8.39 3275

5 1 4 467.4 1.85 2550

180, S 7 2 1 409.5 2.32 1597

10 0 0 404.9 0.00 676

240, L 4 6 0 550.7 11.84 2880

9 1 0 528.3 1.29 1266

240, M 6 2 2 442.1 4.66 1762

8 2 0 452.0 1.71 1341

240, S 9 1 0 389.9 0.53 807

10 0 0 389.9 0.00 284

300, L 3 6 1 532.7 9.96 2926

9 1 0 527.9 1.62 1353

300, M 6 4 0 451.5 4.71 1852

9 1 0 449.9 1.02 1252

300, S 9 1 0 390.6 0.89 796

10 0 0 389.7 0.00 322

sum 46 24 20

72 9 9

avg.

469.0 6.22 2149

464.8 1.36 1334

38

In this section, we explicitly show how the proposed cuts affect the RAC model by

adding constraints (2.5.1) to constraints (2.5.8) into the RAC model, respectively. We also

evaluate the performance of the RAC model when constraints (2.5.1) to constraints (2.5.8)

are added in the same time. The instances used to perform the experiments are ten small

PDP-T instances under the category R5K2T1. There are five requests, two vehicles, and

one transfer station in each of the instance. Since the scale of these instances is small, all

instances are solved to optimality by using any of the models evaluated. The metric used

to compare performance is computing time. Table 2.7.1 shows the results of these

experiments.

As has been mentioned before, the column RAC represents the model presented by Rais

et al. (2014) with the necessary revisions. The column Prop. represents the proposed model.

The columns C40 to C47 represent the RAC model with constraints (2.5.1) to constraints

(2.5.8), respectively. The column ALL represents the RAC model with all cuts added

together. From the table, we find that adding some of the cuts can significantly improve

the RAC model. For instance, adding the first two constraints can reduce the average

computing time of solving the instances from 86 seconds to less than 10 seconds. By

contrast, some cuts do not affect the efficiency much, such as constraints (2.5.3) and

constraint (2.5.5). We keep these constraints because they are not redundant for the

proposed model. For example, constraints (2.5.3) are essential for the proposed model to

make sure the vehicles end their routes at the destination depots. After adding all the cuts,

the performance of the RAC model is very close to the proposed model. We do not perform

similar experiments on the PDPTW-T instances because the SSVW model assumes that

the origins and destinations of the vehicles are the same. This assumption prevents us from

adding most of the constraints into the model without modification.

2.7 Conclusion

This paper reviews two existing models for the PDP-T and PDPTW-T. We point out the

possible issues existing in the models, discuss the causes, and provide our revisions. In

39

Table 2.7.1: Computational time of solving PDP-T with different cuts

 RAC Prop. C1 C2 C3 C4 C5 C6 C7 C8 ALL

R5K2T1-0 20.29 0.08 2.64 0.55 22.24 4.53 17.06 1.92 4.84 17.09 0.16

R5K2T1-1 107.02 0.16 21.54 7.96 88.46 18.44 71.07 8.32 27.75 59.97 0.21

R5K2T1-2 57.10 0.11 10.78 13.48 30.07 16.08 63.83 1.45 1.54 27.38 0.17

R5K2T1-3 597.34 0.09 1.70 1.51 742.17 1.44 489.06 62.77 108.81 150.51 0.18

R5K2T1-4 2.67 0.08 1.06 0.53 2.08 1.14 1.41 0.68 1.74 1.67 0.18

R5K2T1-5 2.09 0.05 0.44 0.20 3.89 0.32 2.02 0.65 0.18 2.60 0.10

R5K2T1-6 31.67 0.08 4.10 9.10 31.70 5.14 20.22 3.62 0.73 19.97 0.17

R5K2T1-7 23.14 0.11 1.87 2.21 36.31 3.24 12.36 3.39 2.10 9.18 0.20

R5K2T1-8 17.89 0.08 0.29 0.30 25.58 0.33 14.17 38.36 5.22 17.01 0.19

R5K2T1-9 9.58 0.12 2.71 7.59 15.56 4.68 11.88 5.08 6.81 5.95 0.23

avg. time 86.88 0.10 4.71 4.34 99.81 5.53 70.31 12.63 15.97 31.13 0.18

40

addition, we present a new MILP model to solve the problems. Compared with the existing

models, the proposed model has redundant constraints that can strengthen the LP

relaxation. The performance of the proposed model is evaluated using 340 generated PDP-

T instances and 360 open-access PDPTW-T instances. Based on our experiments, the

proposed model is superior to the existing models in terms of solution quality and

computing time. The proposed model solves 149 out of 150 PDP-T instances to optimality

where the instance scales are less or equal to 15 requests, 3 vehicles and 3 transfer stations.

The largest instance solved to optimality by the proposed model is the one with 25 requests,

2 vehicles and 2 transfer stations. The proposed model scales well when the number of

requests increases. The average computational time increases from 0.2 seconds to 6.1

seconds as the number of vehicles increases from 2 to 20. The proposed model outperforms

the existing two models mainly because of the cuts added into the model. These cuts are

reductant in terms of restricting the feasible region, but they help tighten the relaxation of

the MILP model, which helps solve the model faster. Based on our experiments, constraints

(2.5.1), (2.5.2), and (2.5.4) are three efficient cuts.

To the best of our knowledge, this paper is the first work that solves PDP-T instances

with 25 requests and 2 transfer stations to optimality within 1 hour. In the literature, Rais

et al. (2014) report that they solve PDP-T instances with 5 requests to optimality. Wolfinger

& Salazar-González (2021) state that the instance with 8 requests, at the time, is the largest

that can be solved to optimality for the PDP-T and PDPSLT. For the PDPTW-T, the

proposed model solves instances with 5 requests and 4 transfer locations to optimality

within 1 hour.

There are several drawbacks for the proposed model that need to be discussed. First, the

number of vehicles traveled in the network needs to be determined in advance. This limits

the flexibility of using the model. Second, the order in which two nodes are visited cannot

be identified properly if the nodes are in the same location. A tiny distance needs to be

added between the coincident nodes. Third, the value 𝑠𝑡𝑟
𝑘1𝑘2 may be false positive although

this would not affect the correctness of the vehicle flows and request flows. This issue can

41

be solved by adding 𝑠𝑡𝑟
𝑘1𝑘2 into the objective function, but this makes the meaning of the

objective function ambiguous.

The future research may include fixing the drawbacks discussed above. In addition, we

may extend the proposed model to handle larger problems by designing efficient exact

algorithms, such as the branch and cut algorithm, branch and price algorithm, etc. Our

preliminary results show that we may not benefit much from a branch and cut algorithm

that simply adding the redundant constraints presented in this paper as cuts. The reason

may be the number of proposed cuts is moderate. To achieve significantly better results,

more efficient cuts need to be designed.

42

Chapter 3. A Metaheuristic for Solving the

Consultant Assignment and Routing Problems

43

This chapter is based on a paper published by Zefeng Lyu and Andrew J. Yu:

Lyu, Z., & Yu, A. J. (2021). Consultant assignment and routing problem with

priority matching. Computers & Industrial Engineering, 151, 106921.

In this chapter, we solved a consultant assignment and routing problem that

simultaneously assign consultant supplies to client demands and determine the best

traveling routes for consultants. Constraints to be considered include skill requirement,

capacity limitation, fixed demand, and a maximum number of travel legs. This paper

further takes into consideration priority matching, which restricts that clients can only be

assigned to consultants with appropriate priority levels. In order to solve this problem, we

present a decomposition algorithm named RMIP and a MIP-based neighborhood search

algorithm. In addition, we extend an existing MILP formulation and compare our

algorithms with it. The effectiveness and efficiency of the proposed algorithms are

evaluated on a hundred synthetic instances and twelve real-life instances. Computational

results show that the modified MILP formulation is only suitable for solving small-scale

instances and a part of the medium-scale instances. For large-scale and real-life instances,

the proposed two algorithms are significantly superior to the MILP formulation in solution

quality and computational time.

3.1 Introduction

As the energy costs are dramatically rising, more and more educational institutions are

looking for ways to decrease their utility bills. Energy Education, Inc (EEI) is one of the

consulting firms helping customers develop energy efficiency and conservation programs.

This paper is motivated by an optimization problem faced by EEI. This problem is named

as consultant assignment and routing problem with priority matching (CARPP), which

aims to simultaneously assign consultants to clients and determine the traveling routes

while minimizing the total cost. This work is traditionally performed manually by subject

matter experts of the firm. However, developing such a working schedule is very complex

and labor-intensive. It takes experienced experts sixteen hours of dedicated effort each

44

week, but the produced schedule is still often far from optimal. Therefore, it is crucial to

design an efficient algorithm to support decision making for EEI.

The features of CARPP problem are listed as follows. The consulting activities must be

performed face-to-face at the client site. Therefore, consultants travel to almost all client

assignments to fulfill their jobs. The objective is to minimize the incurred airfares and the

consultants’ wages. Consultants are proficient in different skills and they can only fill

demands requiring the relevant skill. The skills cannot be easily replicated or cross-trained.

In addition, matching priority level is required before a consultant can be assigned to serve

a client. The practical meaning of priority is basically a measure of importance for clients

and a measure of seniority or experience for consultants. Clients with higher priority mean

that they are relatively more important due to their projects’ scope, stage, size, and other

aspects. For example, some contracts may have a large amount of budget and coverage.

Some clients may be new, and the company wants to have a successful start. Importance

may also be related to technical perspective, meaning that the corresponding tasks are more

challenge than the others. As a result, the company would like to include priority into the

model to make sure that consultants with proper level of seniority or experience are

assigned to their clients. EEI stipulates that the maximum number of flying trips each week

should not exceed four to avoid dissatisfaction from the consultants. The CARPP problem

does not need to consider time window because the company only specifies the overall

work packages for their consultants. The specific working time within a day is determined

after discussing with clients, as it is subject to the flight schedule, which is not under the

consultants’ control.

The CARPP problem is extended from the consultant assignment and routing problem

presented by Yu & Hoff (2013). They developed a MILP formulation to solve their

problem. However, solving the problem using MILP formulation becomes time-consuming

after taking priority matching into consideration. Therefore, this paper develops the RMIP

algorithm and the MIP-based neighborhood search algorithm (MNSA). The RMIP

algorithm first decomposes the problem into serval subproblems via a reduced formulation.

Then, these subproblems are solved by exhaustive method. The exhaustive method is

45

efficient to solve the subproblems because the maximum travel legs are limited by four.

The MNSA algorithm is a metaheuristic that optimizes the RMIP solutions using

neighborhood search. In addition, this paper modifies the existing MILP formulation and

compares our algorithms with it.

The contributions of this paper are threefold. First, we introduce a new variant of the

consultant assignment and routing problem, which takes priority matching into

consideration. Second, we propose a decomposition method and a metaheuristic for the

problem. Third, we generate several synthetic instances based on the real-world data. These

synthetic instances have been published online together with the computational results,

which can be used as a benchmark for future comparison.

The rest of this paper is organized as follows. Section 2.2 reviews the related literatures.

Section 2.3 defines the CARPP problem and presents the modified MILP formulation.

Section 2.4 introduces the decomposition algorithm. Section 2.5 presents the MNSA

algorithm and relevant pseudo-codes. Section 2.6 introduces the real-life instances and the

generation of synthetic instances. In addition, all computational results are shown in this

section. Finally, conclusion and future research are discussed in Section 2.7.

3.2 Literature Review

The field of this paper has received a great amount of attention in recent years. There

are many close-related problems such as the home health care problem, home care problem,

technician scheduling for maintenance, manpower allocation, etc. Survey papers are given

by Paraskevopoulos, Laporte, Repoussis, & Tarantilis (2017) and Castillo-Salazar, Landa-

Silva, & Qu (2016). However, there is no agreed terminology to inductive these problems.

For example, Maya, Sörensen, & Goos (2012) and Yalçında˘g, Matta, ¸Sahin, &

Shanthikumar (2014) considered their problem as an assignment and routing problem.

Paraskevopoulos et al. (2017) classified this kind of problem as resources constrained

routing and scheduling problem. Castillo-Salazar et al. (2016) referred these problems as

workforce scheduling and routing problem. Some researchers also considered the problem

46

as a variant of the vehicle routing problem (VRP), such as in Rasmussen, Justesen, Dohn,

& Larsen (2012) and Song & Ko (2016).

This paper does not classify our problem as a VRP because the main considerations of

these two problems are different. For instance, most of the VRPs only focus on finding the

optimal routes for vehicles or other objects. However, the CARPP problem treats the

assignment of consultants and the routing procedure equally. Many constraints are

designed for the assignment procedure such as skill matching, priority matching, and

available shifts. If we do not consider the routing part, the remaining problem is still a

workforce scheduling problem. In addition, the general applications of CARPP and VRP

are quite different. VRP is usually associated with transportation problems. In contrast,

assignment and routing problem is more common when workforces are involved.

The CARPP problem is extended from the consultant assignment and routing problem

introduced by Yu & Hoff (2013). Features of their problem include skill matching, capacity

limitation, fixed demand, and maximum traveling legs. Compared with their work, this

paper takes a new constraint into consideration, i.e. priority matching. In terms of the

methodology, they presented a two-stage approach, which first clusters the clients by a set-

covering model and then solves the problem by a MILP formulation. Different from their

approach, this paper proposes a decomposition method and a metaheuristic. In addition,

we extend their MILP model to compare with our algorithms. Computational results show

that the modified MILP formulation is only suitable for solving small-scale instances and

a part of the medium-scale instances. For large-scale and real-life instances, the proposed

two algorithms are superior to the MILP formulation.

Maya et al. (2012) introduced a teaching assistant assignment and routing problem

(TARP), which aims to minimize the total traveling compensation received by teaching

assistants. Different from the TARP, our problem considers both the traveling cost and

wage of consultants. Kovacs, Parragh, Doerner, & Hartl (2012) presented a service

technician routing and scheduling problem (STRSP) where technicians are assigned to

complete service tasks. Similar problems are also studied by Xie, Potts, & Bektaş (2017)

and Zamorano & Stolletz (2017). In contrast to the technician scheduling problem, team

47

building up and outsourcing are not allowed in the CARPP problem. However, our problem

has more restrictions on the assignment procedure, such as priority matching, fixed

demand, and maximum number of flight legs. Home care and home healthcare problems

are also closely related and gain increasing interests recently. Review papers are given by

Fikar & Hirsch (2017) and Cissé et al. (2017). The difference between home care and home

healthcare is that the former refers to housework such as laundry and cleaning while the

latter refers to healthcare activities typically performed by qualified nurses. Yuan, Liu, &

Jiang (2015) presented a home health care problem where caregivers are classified into

several levels. They restrict that high-level demands can only be assigned to highly

qualified caregivers, but low-level demands can be assigned to any of the caregivers.

Unlike their problem, our skill requirement is a one-to-one matching. In addition, our

problem restricts the number of flight trips rather than the number of clients to serve.

Eveborn et al. (2009) presented a home care problem that assigns customer requests to

schedules and then assigns these schedules to staff members. Skill requirement is not

explicitly considered in their problem. Other relevant applications include waste collection

(De Bruecker, Beliën, De Boeck, De Jaeger, & Demeulemeester, 2018), airline catering

(Ho & Leung, 2010), and inventory routing problem such as in Misra, Saxena, Kapadi,

Gudi, & Srihari (2018), Maheshwari, Misra, Gudi, & Subbiah (2020), and Dong, Pinto,

Sundaramoorthy, & Maravelias (2014). The inventory routing problem incorporates the

production problem and vehicle routing problem. However, the considerations for

controlling inventory are different from assigning consultants to clients as studied in this

paper.

It was found that most of the relevant problems involve multi-period horizons because

of the nature of scheduling. Examples can be seen in De Bruecker et al. (2018), An, Kim,

Jeong, & Kim (2012), and Zamorano & Stolletz (2017). However, the CARPP problem is

a single-period problem although the planning horizon is one week. This is because the

roster only specifies the client to visit and the sequence. The specific consulting date and

time are decided by consultants and clients.

48

Although close-related problems have been studied extensively, little attention has been

paid to the consultant assignment and routing problem. To the best of our knowledge, none

heuristic has been presented to solve the CARPP. Therefore, this paper develops the RMIP

algorithm and the MNSA algorithm to fill this gap.

3.3 Problem Definition and MILP Formulation

The CARPP problem is defined on a connected graph 𝐺 = {𝐾, 𝐶, 𝐴}, where 𝐾 is a set of

consultants, 𝐶 is a set of clusters, and 𝐴 is a set of arcs representing available visiting

routes. Consultants and clients live in different geographical locations. The set 𝐴 includes

not only the routes between consultants and clients but also routes between clients and

clients so that consultants can travel from one client location to another. Each arc is

associated with a specific traveling cost. Except for travel expenses, the wage of

consultants is another part of cost considered for those consultants who are contract-based.

The objective is to assign the consultant supply to client demand while minimizing the total

cost. After solving the CARPP problem, we are supposed to provide a detailed working

schedule for every consultant, as well as the corresponding visiting sequences. Considering

that flight is the main mode of transportation, it is reasonable to cluster consultants and

clients into the nearest airports. If there are too many airports involved, partial airports can

be clustered to reduce computational complexity. However, whether the locations can be

clustered, the specific way of clustering depends on the operational rules of the company.

Although clustering can reduce the computational complexity, it may also lead to a loss of

global optimality. Therefore, clustering is not the scope of this paper. In this paper, the

nearest airports for the consultants and customers are predefined. We only focus on the

methodology regarding assignment and routing.

The constraints in our problem include demand satisfaction, fixed demand, skill

matching, priority matching, capacity restriction, and trip legs restriction. The explanations

of these constraints are as follows. Demand satisfaction restricts that all the demands must

be satisfied. Some of the demands are fixed demand, which must be served by designated

49

consultants. Each demand has one specific skill requirement from its visiting consultant,

and each consultant has a unique set of skills to serve. The skill matching makes sure that

a demand can be assigned to a consultant only if the consultant has the corresponding skill.

Please note that the priority matching in the paper does not mean that demands with high

priority should be completed earlier than the others. In fact, it refers to a level matching

between the consultants and demands. For example, a demand with a priority level of four

can be assigned to a consultant whose priority interval is between three and five. Capacity

restriction ensures that the sum of shifts assigned to a consultant should not exceed his/her

total available shifts. The maximum number of flight legs is limited to four per week to

avoid the consultant's dissatisfaction. The unit “shift” is used to measure the workload. One

shift means that the corresponding demand can be fulfilled in a half day by one consultant.

Please note that travel time is not a part of working shifts because consultants have flexible

schedules. The roster only specifies client demands and the corresponding visiting

sequences. However, the specific working time is determined by the consultant and client.

There is no need to worry about the travel time for our problem. In addition, it is worth

mentioning that travel time is not billable to the clients and consultants are not paid for

their travel time.

This paper assumes that the flight prices are symmetric and do not vary by time.

Otherwise, the CARPP problem would become time-related and much more intractable.

This paper ignores travel costs other than airfare because airline tickets are one of the EEI's

biggest budget items. It is also worth mentioning that CARPP is a single-period problem

although the planning horizon is one week. This is because the roster only specifies the

clients and the visiting order. The specific working date and time shall be decided by the

consultant and client. The notations for sets, parameters and variables are shown as follows.

Sets

𝐾 A set of consultants

𝐶 A set of clusters

𝑆 A set of skills

50

𝑃 A set of priorities

𝛱 A set which combines set 𝑆 and set 𝑃

𝑁 N = {1, 2, …, 𝑇+1}, where 𝑇 is the maximum trip legs allowed

Parameters

𝑐𝑖𝑗 Traveling cost from cluster 𝑖 to cluster 𝑗

𝑞𝑘𝑗 Traveling cost from consultant 𝑘’s home cluster to cluster 𝑗

𝑤𝑘 Weekly wage of consultant 𝑘

𝑎𝑘 Number of available shifts of consultant 𝑘

ℎ𝑘 The home cluster of consultant 𝑘

𝑑𝑗𝑠 Number of 𝑠-type demand requested from cluster 𝑗

𝑓𝑘𝑗𝑠 Number of 𝑠-type demand requested from cluster 𝑗 to be served by

consultant 𝑘

𝑢𝑘𝑠 =1 if consultant 𝑘 has 𝑠-type skill; 0 otherwise.

𝑀 A sufficiently large positive number

Variables

𝑥𝑘𝑗𝑠 Number of 𝑠-type demand assigned to consultant 𝑘 in cluster 𝑗

𝑦𝑘𝑛𝑖𝑗 =1 if consultant 𝑘 travels from cluster 𝑖 to cluster 𝑗 on the 𝑛𝑡ℎ trip; 0

otherwise. Note that cluster 0 represents the home cluster which varies

for different consultants.

𝑧𝑘𝑗 =1 if consultant 𝑘 has demand to serve in cluster 𝑗; 0 otherwise.

Since the priority requirement and skill requirement are similar in structure, this paper

combines them together and forms a new constraint which restricts consultants to satisfy

both skill and priority requirement simultaneously. To achieve it, this paper defines an

aggregated set 𝛱 as follows.

𝛱 = {𝑠 | 𝑠 = (𝑖, 𝑗), 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑃}

For example, if the skill set 𝑆 = {𝑠1, 𝑠2, 𝑠3} and the priority set 𝑃 = {𝑝1, 𝑝2}, then the

aggregated set is combined as

51

𝛱 = {𝑠1𝑝1, 𝑠1𝑝2, 𝑠2𝑝1, 𝑠2𝑝2, 𝑠3𝑝1, 𝑠3𝑝2}

The MILP formulation for the CARPP problem is listed as follows.

Minimize ∑ ∑(𝑞𝑘𝑗 + 𝑤𝑘)𝑦𝑘10𝑗

𝑗∈𝐶

+ ∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑦𝑘𝑛𝑖𝑗 + ∑ ∑ ∑ 𝑞𝑘𝑗 𝑦𝑘𝑛𝑗0

𝑗∈𝐶𝑛∈𝑁\{1}𝑘∈𝐾𝑗∈𝐶𝑖∈𝐶𝑛∈𝑁\{1}𝑘∈𝐾𝑘∈𝐾

(MILP)

Subject to

∑ 𝑥𝑘𝑗𝑠 = 𝑑𝑗𝑠

𝑘∈𝐾

 ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.1)

𝑥𝑘𝑗𝑠 ≥ 𝑓𝑘𝑗𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.2)

𝑥𝑘𝑗𝑠 ≤ 𝑀𝑢𝑘𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.3)

∑ ∑ 𝑥𝑘𝑗𝑠

𝑠∈𝑆

≤ 𝑎𝑘

𝑗∈𝐶

 ∀𝑘 ∈ 𝐾 (3.3.4)

𝑦𝑘10𝑖 ≥ ∑ 𝑦𝑘2𝑖𝑗

𝑗∈𝐶∪{0}

 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶 (3.3.5)

∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶

≥ ∑ 𝑦𝑘,𝑛+1,𝑗,ℎ

ℎ∈𝐶∪{0}

 ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁\{1, 𝑇 + 1}, ∀𝑗 ∈ 𝐶 (3.3.6)

∑ 𝑦𝑘10𝑖

𝑖∈𝐶

= ∑ ∑ 𝑦𝑘𝑛𝑗0

𝑗∈𝐶𝑛∈𝑁\{1}

 ∀𝑘 ∈ 𝐾 (3.3.7)

∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑗∈𝐶∪{0}𝑛∈𝑁

≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶 ∪ {0} (3.3.8)

∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶∪{0}𝑛∈𝑁

≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 ∪ {0} (3.3.9)

𝑦𝑘𝑛0𝑖 = 0 ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁\{1}, ∀𝑖 ∈ 𝐶 ∪ {0} (3.3.10)

𝑦𝑘1𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝐶 ∪ {0} (3.3.11)

𝑦𝑘𝑛𝑖𝑖 = 0 ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁, ∀𝑖 ∈ 𝐶 ∪ {0} (3.3.12)

∑ 𝑥𝑘𝑗𝑠 ≤

𝑠∈𝛱

𝑀 ∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶∪{0}𝑛∈𝑁

 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.13)

∑ 𝑥𝑘𝑗𝑠

𝑠∈𝛱

≥ ∑ ∑ 𝑦𝑘𝑛𝑖𝑗

𝑖∈𝐶∪{0}𝑛∈𝑁

 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.14)

52

∑ 𝑥𝑘𝑗𝑠

𝑠∈𝑆

≤ 𝑀𝑧𝑘𝑗 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.15)

∑ 𝑧𝑘𝑗

𝑗∈𝐶\{ℎ𝑘}

≤ 𝑇 − 1 ∀𝑘 ∈ 𝐾 (3.3.16)

𝑥𝑘𝑗𝑠 ∈ ℤ ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.3.17)

𝑦𝑘𝑛𝑖𝑗 ∈ {0,1} ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁, ∀𝑖 ∈ 𝐶 ∪ {0}, ∀𝑗

∈ 𝐶 ∪ {0}

(3.3.18)

𝑧𝑘𝑗 ∈ {0,1} ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.3.19)

The MILP formulation is extended from the formulation presented by Yu & Hoff

(2013). We take priority matching into consideration by combining priority levels and

skills, as explained in the definition of the aggregated set 𝛱. Constraints (3.3.1) to (3.3.14)

are borrowed from the existing model. We add variables 𝑧𝑘𝑗 and constraints (3.3.15) and

(3.3.16) into our model because the original one is too tight under some cases. For example,

if the first or last leg of a consultant’s scheduled trip happens to be at his/her home depot,

the consultant does not consume a flight leg for that trip. We allow 𝑛 to be 𝑇 + 1 and add

the new variables and constrains to ensure that flight legs are appropriately restricted.

Explanations for the MILP formulation are as follows.

The objective of the model is to minimize the total cost, which consists of the weekly

wage of contract consultants and associated traveling expense. The first part of the

objective function models the wage and the airfare of the consultants traveling from their

home cluster to their first destinations. The second part represents the airfare between

clusters. The last part denotes the airfare for the consultants to travel back home.

Constraints (3.3.1) to (3.3.4) model the demand satisfaction, fixed demand, skill

matching, and capacity restriction, respectively. Constraint (3.3.1) ensures that all the

demands are fully satisfied. Constraint (3.3.2) restricts that the fixed demands are served

by the designated consultants. Constraint (3.3.3) indicates that demands can only be met

by those consultants with the relevant skill and priority. Note that the 𝑀 here is a

sufficiently large positive number. It is reasonable to set 𝑀 to 𝑎𝑘, i.e., the available shift of

53

consultant 𝑘 . Constraint (3.3.4) means that the total number of shifts assigned to a

consultant should not exceed his/her availability.

Constraints (3.3.5) to (3.3.12) model the traveling routes of consultants. Specifically,

constraint (3.3.5) indicates that the consultants must start the travel from their home

clusters. Constraint (3.3.6) restricts the relationship between current visit and the next visit.

Constraint (3.3.7) ensures every consultant should return home after completing the tasks.

Constraints (3.3.8) and (3.3.9) specify that a consultant travels to a cluster at most once.

Constraints (3.3.10) make sure that, except for the first trip, the consultants are not allowed

to leave their home clusters. In other words, the consultants cannot continue their trips once

they return. Constraints (3.3.11) ensure that the consultants cannot start from clusters that

are not their home clusters. The constraints also ensure that return at the first trip is

prohibited. Constraint (3.3.12) prohibits the self-access.

Constraints (3.3.13) and (3.3.14) associate the assignment plans and the traveling

routes. Constraint (3.3.13) means that a consultant can serve a demand only if the

consultant visits the corresponding cluster. Constraint (3.3.14) ensures that consultants

never go to clusters where they do not have any tasks assigned. Constraints (3.3.15) and

(3.3.16) limit the total number of trip legs for each consultant. Given that the maximum

number of trip legs in a period is 𝑇, each consultant is allowed to visit at most 𝑇 − 1

clusters outside the home cluster. Just like in the constraints (3.3.3), the value of 𝑀 in

constraints (3.3.13) and (3.3.15) can also be reasonably set to 𝑎𝑘. Constraints (3.3.17)to

(3.3.19) restrict the decision variable 𝑥𝑘𝑗𝑠 to be integers, and 𝑦𝑘𝑛𝑖𝑗 and 𝑧𝑘𝑗 to be binary

variables.

3.4 RMIP algorithm

The CARPP problem requires us to solve both the assignment problem and the routing

problem simultaneously. It can also be expressed as a problem shown below.

 arg min
𝑥

𝐹(𝑥), ∀𝑥 ∈ 𝑋 (𝑃1)

54

Notation 𝑋 is a set of feasible allocation plans and 𝑥 is one specific plan in 𝑋.

Notation 𝐹 is a function which constructs the optimal routes for an allocation plan and

calculates the total cost. Solving problem 𝑃1 is time-consuming when the problem

scale is large. The huge number of feasible allocations is one of the reasons. More

importantly, the function 𝐹 has to figure out the optimal routes for each consultant,

which is equivalent to solving 𝑚 traveling salesman problems (𝑚-TSP) where 𝑚 is

the number of consultants.

Since problem 𝑃1 is too difficult to solve, we present an alternative problem 𝑃2 as

follows,

 arg min
𝑥

𝐹′(𝑥), ∀𝑥 ∈ 𝑋 (𝑃2)

The function 𝐹′ has the s imilar function as function 𝐹 but i t does not need

to find out the optimal routes . It minimizes the summation of the roundtrip

airfares for each cluster from a visiting consultant’s home cluster. Without the need

of determining the traveling sequences, the problem 𝑃2 is much easier to be solved

than the original problem. Figure 2 and Figure 3 demonstrate how the idea works.

Figure 3.4.1 shows the optimal solution obtained by solving problem 𝑃1 . The

rectangular A and B denote two consultants, and the circles 1 to 6 represent six clusters.

As was shown, consultant A visits cluster 1, 2, and 3 in sequence, and consultant B visits

cluster 5, 6, and 7 in sequence. Figure 3.4.2 shows the optimal routes obtained by solving

problem 𝑃2. Instead of flying from one cluster to another, consultants A and B return their

home clusters before going to the next cluster.

Although the solutions are different, the allocation plans may be the same just as

shown in the given example. Cluster 1, 2, 3 are assigned to consultant A, and cluster 4,

5, 6 are assigned to consultant B in both of the two solutions. It's worth noting that the

example in Figure 2 and Figure 3 just shows a special case. The best allocation plan for

problem 𝑃2 is by no means always to be optimal for problem 𝑃1. However, we found that

the generated allocation plan is generally quite good. The underlying idea is that simply

assigning consultants to closer clusters, to some extent, can minimize the actual travel

distance.

55

Figure 3.4.1: Optimal Solution of P1

Figure 3.4.2: Optimal Solution of P2

56

Thus, we can just solve problem 𝑃2 and then solve 𝑚 sub-problems to get the same

solutions where 𝑚 is the number of consultants. Based on the idea, we present a

reduced mixed-integer linear programming model.

Minimize ∑ ∑ 2𝑞𝑘𝑗𝑦𝑘𝑗

𝑗∈𝐶𝑘∈𝐾

+ ∑ 𝑤𝑘𝑧𝑘

𝑘∈𝐾

 (Reduced-

MILP)

Subject to

∑ 𝑥𝑘𝑗𝑠 = 𝑑𝑗𝑠

𝑘∈𝐾

 ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.1)

𝑥𝑘𝑗𝑠 ≥ 𝑓𝑘𝑗𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.2)

𝑥𝑘𝑗𝑠 ≤ 𝑀𝑢𝑘𝑠 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.3)

∑ ∑ 𝑥𝑘𝑗𝑠

𝑠∈𝛱𝑗∈𝐶

≤ 𝑎𝑘 ∀𝑘 ∈ 𝐾 (3.4.4)

∑ 𝑥𝑘𝑗𝑠

𝑠∈𝛱

≤ 𝑀𝑦𝑘𝑗 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.4.5)

∑ 𝑦𝑘𝑗

𝑗∈𝐶\{0}

≤ 𝑇 − 1 ∀ 𝑘 ∈ 𝐾 (3.4.6)

∑ 𝑦𝑘𝑗

𝑗∈𝐶

≤ 𝑀𝑧𝑘 ∀𝑘 ∈ 𝐾 (3.4.7)

𝑥𝑘𝑗𝑠 ∈ ℤ ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝛱 (3.4.8)

𝑦𝑘𝑗 ∈ {0,1} ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐶 (3.4.9)

𝑧𝑘 ∈ {0,1} ∀𝑘 ∈ 𝐾 (3.4.10)

The formulation RMIP aims to minimize a reduced traveling cost and the wage of

consultants. The first part models the airfare and the second part models the wage. There

are three types of variables in the model. Specifically, 𝑥𝑘𝑗𝑠 is an integer variable which

denotes the number of 𝑠-type demand assigned to consultant 𝑘 from cluster 𝑗. Notation 𝑦𝑘𝑗

is a binary variable. If consultant 𝑘 has tasks in cluster 𝑗, the value of 𝑦𝑘𝑗 is equal to one.

Notation 𝑧𝑘 is also a binary variable which records whether consultant 𝑘 has any work

assigned in the week.

57

Constraints (3.4.1) to (3.4.4) are side constraints regarding the allocation plan. They

are the same as what in the formulation MILP. These constraints ensure that the feasible

region 𝑋 of problem 𝑃2 is the same as that of the problem 𝑃1. Constraint (3.4.5) indicates

that consultant 𝑘 is not allowed to visit cluster 𝑗 if he/she has no task there. Constraint

(3.4.6) limits the maximum number of trip legs. The consultants visit no more than 𝑇 − 1

clusters out of their home cluster. Constraint (3.4.7) restricts that if any demand is assigned

to consultant 𝑘, the corresponding auxiliary decision variables 𝑧𝑘 should be equal to one.

The variables 𝑧𝑘 are used to calculate the weekly wage. Constraint (3.4.8) to (3.4.10)

restrict 𝑥𝑘𝑗𝑠 , 𝑦𝑘𝑗 , 𝑧𝑘 to integer variables, binary variables, and binary variables,

respectively.

The purpose of solving the reduced formulation is to obtain an allocation plan. Then,

exhaustive method is applied to obtain best travel routes under that allocation plan. Since

the maximum number of flight trip has been limited by four, it is efficient to use exhaustive

method to solve the sub-problems.

3.5 MNSA algorithm

We use a neighborhood search algorithm to improve the initial solution obtained by the

RMIP formulation. The algorithm is based on the basic framework presented by Hansen,

Mladenović, & Moreno Pérez (2010). The input of the algorithm is the initial solution 𝑥,

and the output is a near-optimal solution 𝑥𝑏𝑒𝑠𝑡 . 𝑡𝑚𝑎𝑥 , 𝑛𝑚𝑎𝑥 , and 𝜎𝑠ℎ𝑎𝑘𝑒 are three

parameters used to tune the algorithm. 𝑡𝑚𝑎𝑥 is the maximum computational time. Its value

is equal to the time limitation, which is set to be one hour in our experiments, minus the

time consumed at RMIP algorithm. 𝑛𝑚𝑎𝑥 is the maximum number of iterations without

improvement. The MNSA algorithm terminates when the running time or the number of

iterations without improvement reaches the limitation. Shaking operator is used to drop out

from the local optimal. Notation 𝜎𝑠ℎ𝑎𝑘𝑒 indicates the shaking strength, which is used to

make a trade-off between the searching efficiency and the searching depth. The pseudo-

code of the neighborhood search algorithm is shown in Algorithm 1.

58

Algorithm 1 Neighborhood search algorithm

Input: 𝑥, 𝑡𝑚𝑎𝑥 , 𝑛𝑚𝑎𝑥 , 𝜎𝑠ℎ𝑎𝑘𝑒

Output: 𝑥𝑏𝑒𝑠𝑡, 𝑡𝑟𝑢𝑛

1: 𝑡𝑠𝑡𝑎𝑟𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒

2: 𝑡𝑒𝑛𝑑 ← 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑚𝑎𝑥

3: 𝑥𝑐𝑢𝑟 ← 𝑥

4: 𝑥𝑏𝑒𝑠𝑡 ← 𝑥

5: 𝑛 ← 1

6: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 < 𝑡𝑒𝑛𝑑 and 𝑛 < 𝑛𝑚𝑎𝑥 do

7: 𝑥𝑐𝑢𝑟 ← 𝑏𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝑥𝑐𝑢𝑟)

8: if 𝐹(𝑥𝑐𝑢𝑟) < 𝐹(𝑥𝑏𝑒𝑠𝑡) then

9: 𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑐𝑢𝑟

10: 𝑛 ← 1

11: else

12: 𝑥𝑐𝑢𝑟 ← 𝑠ℎ𝑎𝑘𝑖𝑛𝑔𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑥𝑏𝑒𝑠𝑡, 𝜎𝑠ℎ𝑎𝑘𝑒)

13: 𝑛 ← 𝑛 + 1

14: end if

15: end while

16: 𝑡𝑟𝑢𝑛 ← 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑐𝑢𝑟𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒

17: return 𝑥𝑏𝑒𝑠𝑡

59

Function 𝐹 is called to evaluate the allocation plans. If 𝐹(𝑥𝑐𝑢𝑟) < 𝐹(𝑥𝑏𝑒𝑠𝑡), the current

solution 𝑥𝑐𝑢𝑟 would be updated as the best solution. Otherwise, we discard the current

solution and move to next iteration. The nature of the function 𝐹 is to find optimal routes

for each consultant given the allocation plan. It is equivalent to solve a 𝑚-TSP problem,

where 𝑚 is the number of consultants. In our CARPP problem, the consultants are

restricted to visit at most four clusters. Thus, an enumerative search is efficient enough to

find the optimal routes.

 Neighborhood Structure

The neighbors of a solution 𝑥 is defined to be solutions which can be obtained by one

swapping operation. There are two cases to consider. If the number of shifts to be swapped

are equal, we swap them completely. If one demand requires more shifts, the demands

would be swapped partially because the consultant to receive it may not have enough idle

shifts. In this case, the swapping shifts would be equal to the smaller one. Feasibility needs

to be checked after each swapping operation or inserting operation. Any move that violates

the feasibility must be abandoned. In addition, the fixed demand should be excluded from

the operations in case they are changed.

 Improving Rules

There are two common improving rules, the First Improvement (FI) and the Best

Improvement (BI). Rule FI means that the current iteration stops as soon as it finds a better

solution. Rule BI enforces the algorithm to iterate all the neighborhoods of the current

solution and then return the best one. If there is no better neighborhood, the current solution

would be returned. BI rule can achieve the greatest descent in each iteration, but it may be

time-consuming. Hansen et al. (2010) suggests that if the initial solution is chosen at

random, using FI rule should be appropriate. However, if some constructive heuristic is

used, using BI rule might be better. Our computational results are in consistent with the

above statements. Therefore, BI rule is used in the MNSA algorithm. The pseudo-code of

the best improvement rule is shown in Algorithm 2.

60

Algorithm 2 𝑏𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

Input: 𝑥

Output: 𝑥′

1: 𝑥′ ← 𝑥

2: while 𝑇𝑟𝑢𝑒 do

3: 𝑋 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥′)

4: 𝑥′′ ← best neighbor among 𝑋

5: if 𝐹(𝑥′′) < 𝐹(𝑥′) then

6: 𝑥′ ← 𝑥′′

7: else

8: return 𝑥′

9: end if

10: end while

61

 Shaking Operator

The shaking operator is a perturbation, which helps the MNSA algorithm escape from a

local optimal. Shaking strength 𝜎𝑠ℎ𝑎𝑘𝑒 is used to control the intensification and

diversification of the MNSA algorithm (Lourenço, Martin, & Stützle, 2003). If 𝜎𝑠ℎ𝑎𝑘𝑒 is

set too small, the global searching ability is limited, which makes the MNSA algorithm

hard to escape from the local optimal. However, if 𝜎𝑠ℎ𝑎𝑘𝑒 is set too large, the feature of a

good solution would be discarded, which also makes it difficult to obtain good solutions.

The pseudo-code of the shaking operator is shown in algorithm 3.

3.6 Numerical Experiments

The formulation MILP and RMIP are coded in Python 3 and solved by the commercial

solver Gurobi (version 8.1.0.) running on an x64-based PC. This PC runs Microsoft

Windows 10 Pro with Intel Core i7-3770 CPU (3.40GHz) and 8 GB of RAM. The MNSA

algorithm is also coded in Python and run in PyCharm on the same machine. The

computational results and the synthetic instances are published at Mendeley Data:

http://dx.doi.org/10.17632/p4h8w2hmwm.1.

 Generation of Synthetic Instances

We generated 16 datasets of which 4 are small-sized, 8 are medium-sized, and another 4

are large-sized. We randomly generated 10 instances for each of the small datasets and 5

instances for each of the medium and large datasets. 4 × 10 + 12 × 5 = 100 synthetic

instances are generated in total. The clients and consultants are randomly distributed on a

100 × 100 Euclidean grid using a continuous uniform distribution. The traveling cost

between two clusters is set to be the Euclidean Distance.

Table 3.6.1 shows the parameters and their corresponding values for the synthetic

instances. The scale of an instance depends on the values of |𝐶|, |𝐾|, |𝑆|, and |𝐷|. After

extensive experimentations, we found that the number of clusters |𝐶| is the most critical

parameter related to the complexity of an instance. The computational time increased

http://dx.doi.org/10.17632/p4h8w2hmwm.1

62

Algorithm 3 𝑠ℎ𝑎𝑘𝑖𝑛𝑔𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Input: 𝑥, 𝜎𝑠ℎ𝑎𝑘𝑒

Output: 𝑥′

1: 𝜎 ← 1

2: 𝑥′ ← 𝑥

3: while 𝜎 ≤ 𝜎𝑠ℎ𝑎𝑘𝑒 do

4: 𝑥′′ ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥′)

5: if 𝑥′′ is feasible then

6: 𝑥′ ← 𝑥′′

7: 𝜎 ← 𝜎 + 1

8: end if

9: end while

10: return 𝑥′

Table 3.6.1: Parameters and the corresponding values for the synthetic datasets

Notation Meaning Value

|𝐶| Number of clusters {10, 30, 50}

|𝐾| Number of consultants {20, 40, 60, 100}

|𝑆| Number of skills {10, 30, 50}

|𝐷| Number of demands {150, 300, 500, 800}

𝑅𝑐 Radio of independent contractor {0.4, 0.6}

𝑅𝑓 Radio of fixed demand 0.1

𝑅𝑠 Radio of learned skill of consultant {0.5, 0.8}

𝑁𝑑 Shifts needed for each demand U(1, 6)

𝑁𝑐 Available shifts for each consultant 10

𝑊𝑟 Weekly wage for the regular consultants 0

𝑊𝑐 Weekly wage for the contract consultant U(900, 1100)

63

significantly while the number of clusters was increased. Thus, we divided the datasets into

small-, medium-, and large-scales based on |𝐶|. The possible values of 𝐶 are also shown

in this table. The parameters |𝐾|, |𝑆|, |𝐷| also affect the complexity of the datasets.

Different values are assigned to them to keep the diversity of the instances. The symbol U

represents the uniform distribution.

In order to be consistent with the real-life instances, we generated two kinds of

consultants, i.e., the regular consultants and contract consultants. The ratio of the contract

consultant (𝑅𝑐) is set to be 0.4 or 0.6. The ratio of fixed demand (𝑅𝑓) is set to be 0.1 for

all the datasets. 𝑅𝑠 denotes the ratio of learned skills for the consultants. For example, if

the skill pool consists of ten different skills and 𝑅𝑠 is equal to 0.5, each consultant would

be randomly assigned 5 kinds of skills.

It was found that the value of 𝑅𝑠 affects the solution space. If 𝑅𝑠 was set too small, there

could be no feasible solution because of a lack of specific skills. In our experiment, its

value was set to be either 0.5 or 0.8.

Table 3.6.2 shows the specific configuration of parameters for each dataset. Notation S,

M, L denotes the small-, medium-, and large-scale dataset, respectively. Take the dataset

S1 as an example. Each instance in S1 contains 10 clusters, 20 consultants, 10 skills, and

150 shifts of demands. The ratio of contract consultants is 0.4, which means that there are

eight consultants. Likewise, it can be computed that there are 15 shifts of fixed demand,

and each consultant is proficient in 5 kinds of skills.

 Result of Synthetic Instances

The performances of the MILP algorithm, RMIP algorithm, and MNSA algorithm are

evaluated using the synthetic instances. MILP and RMIP are solved by the commercial

solver Gurobi. MNSA algorithm takes the results of the RMIP as its initial solutions.

Then, these initial solutions are optimized by a neighborhood search algorithm. The

parameters 𝑛𝑚𝑎𝑥 and 𝜎𝑠ℎ𝑎𝑘𝑒 are set to be 30 and 10, respectively. The maximum

computational time is limited by 3600 seconds for all the three algorithms.

64

Table 3.6.2: Configuration of parameters for the synthetic datasets

Dataset |𝐶| |𝐾| |𝑆| |𝐷| 𝑅𝑐 𝑅𝑓 𝑅𝑠

S1 10 20 10 150 0.4 0.1 0.5

S2 10 20 10 150 0.4 0.1 0.8

S3 10 20 10 150 0.6 0.1 0.5

S4 10 20 10 150 0.6 0.1 0.8

M1 30 40 30 300 0.4 0.1 0.5

M2 30 40 30 300 0.4 0.1 0.8

M3 30 40 30 300 0.6 0.1 0.5

M4 30 40 30 300 0.6 0.1 0.8

M5 30 60 30 500 0.4 0.1 0.5

M6 30 60 30 500 0.4 0.1 0.8

M7 30 60 30 500 0.6 0.1 0.5

M8 30 60 30 500 0.6 0.1 0.8

L1 50 100 50 800 0.4 0.1 0.5

L2 50 100 50 800 0.4 0.1 0.8

L3 50 100 50 800 0.6 0.1 0.5

L4 50 100 50 800 0.6 0.1 0.8

65

Figure 3.6.1 shows the gaps and computational time solved by the three algorithms

for small-scale (left), medium-scale (middle), and large-scale (right) instances. The x-

axis in the six subfigures represents the index of the instances. The upper three

subpictures are associated with the computational gaps. For small-scale instances, the

MILP algorithm performs best. It finds optimal solutions for all 40 instances. For

medium-scale instances, the solution qualities of the three algorithms are similar.

However, there is a tendency that MNSA algorithm gradually outperforms MILP. In

addition, MILP algorithm is significantly slower than the other two algorithms. For

large-scale instances, the MNSA and RMIP perform better than MILP. The differences

of solution quality between MNSA and RMIP are very small. The lower three

subpictures are associated with computational time. As is shown, RMIP has the highest

efficiency, while MILP is the least efficient algorithm. MILP algorithm reaches the

time limit of one hour and terminates in advance for both medium- and large-scale

instances. However, the time is sufficient for RMIP algorithm and MNSA algorithm.

It is worth mentioning that the gap, except for the small-scale instances, refers to

the percentage difference between the solution obtained and the best lower bound

found by the solver. This is because finding the global optimums for medium- and

large-scale instances are intractable. Figure 3.6.2 provides an example of solving a

medium instance for twenty-four hours.

As demonstrated, the gap undergoes significant reduction within the initial few hours.

Subsequently, the gap gradually approaches zero at a slower pace. However, despite the

solver being terminated due to overtime, the optimal solution remains elusive. This

observation suggests that the task of identifying global optima becomes challenging for

medium-scale instances and even intractable for large-scale instances. Therefore, with the

exception of small-scale instances, the gap used in this paper refers to a percentage

difference between the objective function value and the best lower bound found by the

solver.

Table 3.6.3 shows the gaps and computational time for the forty small-scale instances.

As is shown, MILP algorithm is able to find the optimal solutions within an average time

66

Figure 3.6.1: The performance of the algorithms MILP, RMIP, and MNSA.

67

Figure 3.6.2: The gaps of running MILP formulation for twenty-four hours

Table 3.6.3: Gaps and computational time for the small-scale instances

 # of opt. Max. gap (%) Ave. gap (%) Min. Gap (%) Ave. Time (s)

MILP 40 0.00 0.00 0.00 85.88

RMIP 3 5.60 1.13 0.00 0.59

MNSA 13 3.24 0.46 0.00 5.54

68

of a minute and a half. By contrast, RMIP algorithm performs worse on solution quality

but has a great advantage on computational efficiency. It takes only one second to obtain

near-optimal solutions. The maximum gap and average gap are 5.60% and 1.13%,

respectively. MNSA algorithm is a compromise between the MILP and RMIP. Its

computational time is shorter than that of MILP, and its solution quality is better than that

of RMIP. As is shown in the last row, the MNSA solved thirteen instances to optimal in

six seconds. Its maximum gap and average gap are 3.24% and 0.46%, respectively.

Table 3.6.4 shows more details with regard to the computational results. The smallest

objective function value, the shortest computational time, and the smallest gap are bolded.

Note that each of the rows from S1 to S4 represents an average result of ten instances,

rather than one single instance. For example, the value 4409.0 in the row of S1 represents

the average objective function value for instances through the first instance of S1 to the last

instance of S1. The MILP algorithm achieves the best performance on solution quality, and

the RMIP algorithm consumes the shortest time to obtain near-optimal solutions. MNSA

algorithm falls between the above two algorithms.

Table 3.6.5 compares the three algorithms in terms of medium-scale synthetic datasets.

The MILP algorithm terminates when the time limitation of 3600 seconds is reached, and

the solver provides us the best known lower bound for comparison. The results show that

the MILP formulation performs best on solving the first four datasets. However, with the

increase of the problem scale, the performance of RMIP algorithm and MNSA algorithm

gradually exceeds that of MILP. For dataset M5 to M8, RMIP algorithm obtained better

solutions. This is because the MILP formulation terminates with a relatively big gap due

to the time limitation, while the computational time is sufficient for RMIP algorithm. The

MNSA algorithm further improves the RMIP solutions within a reasonable time. As is

shown, the average gap is reduced from 4.09% to 3.66% in three minutes.

Table 3.6.6 shows the computational results with regard to large-scale synthetic

instances. The MILP algorithm terminates when the time limitation of 3600 seconds is

reached. As is shown, the MNSA algorithm dominates MILP algorithms on all the

instances.

69

Table 3.6.4: Comparison of the three algorithms in terms of small-scale datasets

 MILP RMIP MNSA

Data Global

Optimum

Obj. Time

 (s)

Gap† (%) Obj. Time (s) Gap† (%) Obj. Time

(s)

Gap† (%)

S1 4409.0 4409.0 83.50 0.00 4444.0 0.49 0.79 4422.5 4.13 0.31

S2 4125.0 4125.0 98.26 0.00 4207.3 0.82 1.91 4158.2 7.27 0.78

S3 8220.4 8220.4 64.54 0.00 8305.4 0.49 1.01 8245.6 4.10 0.31

S4 7584.7 7584.7 97.21 0.00 7646.3 0.54 0.80 7620.0 6.65 0.46

Ave. 6084.8 6084.8 85.88 0.00 6150.7 0.59 1.13 6111.6 5.54 0.46

† Gap to global optimum

70

Table 3.6.5: Comparison of the three algorithms in terms of medium-scale datasets

 MILP RMIP MNSA

Data Lower Bound Obj. Gap‡ (%) Obj. Time (s) Gap‡ (%) Obj. Time

(s)

Gap‡ (%)

M1 8631.5 8932.6 3.38 9261.9 13 6.80 9170.3 57 5.87

M2 7645.2 7844.7 2.58 8070.6 15 5.29 8008.7 85 4.56

M3 16261.0 16494.5 1.41 16872.5 8 3.63 16785.3 66 3.12

M4 16036.6 16458.7 2.56 16575.5 9 3.25 16526.1 87 2.96

M5 16510.8 17562.0 5.95 17175.8 24 3.87 17099.2 220 3.44

M6 16275.7 17421.8 6.55 17003.2 22 4.27 16958.4 285 4.02

M7 28259.5 29580.3 4.46 29110.9 19 2.92 29069.0 189 2.78

M8 27890.9 28783.4 3.09 28668.1 12 2.70 28612.5 357 2.52

Ave. 17188.9 17884.8 3.75 17842.3 15 4.09 17778.7 168 3.66

‡ Gap to best known lower bound found by solver

71

Table 3.6.6: Comparison of the three algorithms in terms of large-scale datasets

 MILP RMIP MNSA

Data Lower Bound Obj. Gap‡ (%) Obj. Time (s) Gap‡ (%) Obj. Time (s) Gap‡ (%)

L1 21158.3 34063.8 37.46 24792.6 134 14.64 24731.4 842 14.42

L2 19762.1 29924.7 33.21 24023.9 112 17.69 23992.9 1184 17.58

L3 22569.6 34361.0 32.06 28151.1 103 17.97 28104.6 1179 17.84

L4 37890.1 50502.3 24.19 44006.0 80 13.93 43934.9 1425 13.79

Ave. 25345.0 37212.9 31.73 30243.4 107 16.06 30191.0 1157 15.91

‡ Gap to best known lower bound found by solver

72

The average gap is 31.73% for the MILP algorithm while that is only 15.91% for the

MNSA algorithm. Just like the results in the previous two tables, the RMIP algorithm is of

slightly worse solution quality than the MNSA algorithm, but it is the fastest algorithm. Its

average computational time is less than two minutes.

In summary, the MILP algorithm is only suitable for solving small-scale instances. It is

able to obtain optimal solutions in a reasonable time. However, with the increase of

instance scale, the MILP algorithm becomes more and more inefficient. The RMIP

algorithm and MNSA algorithm gradually outperform MILP algorithm. This is because

MILP is terminated in a relatively early stage due to the time limitation, but the

computational time is sufficient for the other two algorithms. Since the MNSA algorithm

is based on the RMIP algorithm, it consumes more time than the RMIP algorithm, but its

solution quality is slightly better.

 Real-life Instances

The performances of MILP, RMIP, and MNSA algorithms are also verified in twelve real-

life instances. The amount of demand fluctuates from week to week. The consultants

consist of two types: regular consultants (RC) and contract consultants (CC). The RCs are

salary-based employees. They get paid whether they are assigned demand or not. Thus,

there is no need to include the RCs’ wages in the objective function. The CCs only get paid

when they work in the week. Generally speaking, RC is always the first-tier to be assigned

and CC is only assigned demand if needed. The maximum number of trip legs allowed is

four per week, which includes the last trip home.

As is shown in Table 3.6.7 , there are 63 consultants in total, which consists of 29 RCs

and 34 CCs. The wages for the RCs are set to zero because they are fixed and thus not

counted into the objective function. The average wage of CCs is $2,162 dollars per week.

All the consultants work two shifts a day, five days a week. The skillset includes 18 types

of skills in total. On average, RC is proficient in 13 different skills, and CC has about 12.

There are two kinds of demands: the regular demand and fixed demand. The fixed demand

can only be served by designated consultants.

73

Table 3.6.7: Characteristics of regular consultant and contract consultant

 Regular Consultant Contract Consultant

Number of consultants 29 34

Average wage ($) 0 2162

Number of available shifts 10 10

Average number of skills 13 12

74

Table 3.7.1 shows the number of fixed demand and regular demand among the twelve

scheduling weeks. On average, the total weekly demands are 464, which includes 433

regular demands, and 32 fixed demands.

Table 3.7.2 shows the computational results with regard to the twelve real-life instances.

The MILP algorithm terminates at 3600 seconds. The RMIP algorithm and MNSA

algorithm are superior to the MILP algorithm in eleven instances. Especially for week 4,

the solution gap for the MILP algorithm is as large as 35.31% while that is only 3.68% for

RMIP and 3.63% for MNSA. The only exception is week 6, where the gap of MILP is

2.47% while that is 3.14% for RMIP and 3.13% for MNSA. On average, the performances

of the RMIP algorithm and MNSA algorithm are also significantly better than that of the

MILP algorithm. However, the differences in solution quality between the MNSA

algorithm and RMIP algorithm is quite small. MNSA algorithm reduced the average gap

of RMIP solutions from 4.31% to 4.24% in approximately five minutes.

3.7 Conclusion

The paper studies a variant of the consultant assignment and routing problem, which

takes priority matching into consideration. The new constraint does not change the problem

much, but it increases the computational complexity. The existing MILP formulation was

found inefficient to solve the problem. Therefore, we present a decomposition algorithm

named RMIP and a metaheuristic named MNSA in this paper. The RMIP algorithm first

obtains feasible an allocation plan for the consultants in the first stage. Then, the best

traveling routes under that allocation plan are determined by the exhaustive method. The

MNSA algorithm applies a neighborhood search algorithm to further optimize the

solutions. The performances of the presented algorithms are evaluated by comparing them

with the modified MILP formulation.

Computational results show that the MILP formulation performs well in solving small-

scale instances. It finds optimal solutions for all synthetic instances. RMIP and MNSA

algorithms obtain near-optimal solutions with a gap of 1.1% and 0.5% respectively. With

75

Table 3.7.1: Number of flexible demand and fixed demand

Week 1 2 3 4 5 6 7 8 9 10 11 12 Ave.

of Total demand 453 483 446 470 438 490 477 449 446 473 450 497 464

of Regular demand 419 457 414 435 411 459 443 413 414 443 423 463 433

of Fixed demand 34 26 32 35 27 31 34 36 32 30 27 34 32

76

Table 3.7.2: Comparison of the three algorithms in terms of real-life instances

 MILP RMIP MNSA

Data Lower

Bound

Obj. Gap‡

(%)

 Obj. Time (s) Gap‡

(%)

 Obj. Time

(s)

Gap‡

(%)

wk.1 41127.3 43607.9 5.69 42977.2 166 4.30 42977.2 399 4.30

wk.2 46406.8 49930.8 7.06 49353.2 331 5.97 49353.2 602 5.97

wk.3 39205.7 43810.4 10.51 40959.5 91 4.28 40958.2 322 4.28

wk.4 42289.9 65376.3 35.31 43906.9 512 3.68 43884.9 806 3.63

wk.5 36654.0 38478.6 4.74 38345.8 287 4.41 38283.0 568 4.26

wk.6 49125.3 50371.5 2.47 50719.0 102 3.14 50711.7 443 3.13

wk.7 36771.1 38605.2 4.75 38130.2 133 3.56 38116.9 401 3.53

wk.8 29453.9 32205.0 8.54 31046.6 561 5.13 30951.4 1182 4.84

wk.9 31750.5 34330.0 7.51 32880.3 72 3.44 32879.0 281 3.43

wk.10 34102.9 36879.2 7.53 36390.9 634 6.29 36390.9 942 6.29

wk.11 30319.8 32281.0 6.08 31622.9 333 4.12 31571.9 601 3.97

wk.12 50891.4 53716.9 5.26 52695.9 471 3.42 52612.0 742 3.27

Ave. 39008.2 43299.4 8.79 40752.4 308 4.31 40724.2 607 4.24

‡ Gap to best known lower bound found by solver

77

the increase of the problem size, solving MILP formulation becomes more and more time-

consuming and the performance of the other two algorithms gradually exceeds that of

MILP. For large-scale instances, the RMIP algorithm significantly outperforms MILP.

However, the improvement achieved by the MNSA algorithm is not significant. The testing

of real-life instances produces similar results. The presented two algorithms outperform

MILP formulation in eleven of the twelve instances.

Future research may include but are not limited to the following aspects. First, future

studies may take more realistic factors into consideration. For example, the price of a flight

ticket may change during a week. In addition, the price may also be asymmetric for

departing and back. Considering the price change in the planning horizon would make the

model more accurate. Furthermore, the improvement of solution quality brought from the

MNSA algorithm is not significant when the problem scale increased. A more efficient

heuristic may be designed to improve the solution.

78

Chapter 4. A Supervised Learning Approach for

Solving the Traveling Salesman Problems

79

This chapter studies the Traveling Salesman Problem (TSP), which is the most basic

version of vehicle routing problems. Recently, many learning-based approaches are

proposed to solve TSP. However, the scalability and generalization of these approaches

remain significant challenges. This paper addresses this gap by introducing a supervised

learning approach that leverages local information to make predictions. In particular, we

introduce the concept of "anchors," which represents nodes that should be connected to

their nearest neighbors in the optimal solution. Our approach differs from the previous

supervised learning approaches in that, instead of inputting the global distance information,

it solely relies on the surrounding nodes to make predictions, which enables it to handle

large-scale instances without sacrificing prediction accuracy. Experimental results

demonstrate that our model successfully identifies 87% of the anchors with a precision of

over 95% for both generated and TSPLIB instances. By integrating the predicted anchors

into established methods such as the Miller-Tucker-Zemlin (MTZ) model and insertion

algorithms, we achieve significant improvements in solution quality, reducing the average

gap. This work showcases the scalability and adaptability of our proposed learning

approach for solving TSPs.

4.1 Introduction

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization

problem that seeks to find the shortest route visiting a set of locations and returning to the

starting point. Various approaches have been developed to solve TSP, including exact

methods, heuristics, and metaheuristics, each with their own strengths and limitations.

Solver based on exact methods, such as the Concorde, can find optimal solutions but are

computationally intensive, particularly for large-scale instances (Applegate et al., 2002).

Heuristic algorithms, such as the nearest neighbor algorithm, insertion algorithms, and 2-

opt algorithm are faster but may not guarantee optimality. State-of-the-art heuristics like

Lin-Kernighan-Helsgaun (LKH) algorithm offer a balance between efficiency and solution

quality, making them popular choices for TSP (Helsgaun, 2000; Lin & Kernighan, 1973).

80

Recent research has explored learning-based algorithms for combinational optimization

(Bengio et al., 2021). In many scenarios, it is common to repeatedly solve TSPs with

different data while maintaining the same problem structure. This repetitive nature presents

an opportunity to develop machine learning (ML) algorithms that can leverage the

underlying problem pattern. By learning from a large amount of historical optimal routes,

ML can effectively exploit the pattern behind the optimal solutions which can be used to

improve the existing algorithms. However, generalization to larger-scale instances remains

a challenge. Scaling up training data can be costly, limiting the scalability and adaptivity

of ML methods.

In this paper, we propose a novel supervised learning approach that overcomes these

challenges. Our approach trains on small-scale generated instances and exhibits remarkable

scalability to large-scale instances as well as adaptivity to heterogeneous instances, all

while maintaining high prediction accuracy. The proposed approach differs from the

traditional ML methods by the fact that we utilize local information instead of global

information for making predictions, which allows our approach to a better generalization

ability. To simplify the explanation, we introduce a new term called "anchors," which

represents the nodes that should connect to their nearest neighbors in an optimal solution.

By using ML, we train a neural network to predict the anchors based on spatial information.

The contribution of this paper is twofold. Firstly, we propose a supervised learning

framework that trains on small-scale instances but generalizes well to large-scale instances.

Empirical results demonstrate that the trained model successfully predicts 87% of the

anchors with a precision of more than 95% for both generated instances and TSPLIB

instances. Notably, the trained model achieves comparable performance in predicting

TSPLIB instances, despite these instances not being included in the training data. Secondly,

we provide practical ways for incorporating the anchor concept into existing algorithms.

With the predicted anchors, we can significantly reduce the computational time required

for solving the Miller-Tucker-Zemlin (MTZ) formulation using Gurobi. The proposed

approach also achieves a good integration with heuristics. Moreover, the paper presents a

81

comprehensive analysis of the trained model, discusses various evaluation metrics, and

explores a trade-off between precision and recall scores.

The remaining sections of the paper are organized as follows: Section 4.2 provides a

comprehensive review of existing learning-based approaches for the Traveling Salesman

Problem (TSP), with a particular focus on supervised learning methods. Section 4.3

introduces the concept of anchors and explores their potential to enhance traditional

heuristics for TSP. Section 4.4 outlines our proposed approach in detail, including feature

selection, data preprocessing, hyperparameter tuning, and the integration of anchors with

second-stage optimization algorithms. Section 4.5 presents a comprehensive performance

evaluation of the trained model. Section 4.6 demonstrates the effectiveness of utilizing

anchors with exact methods and heuristics on the generated instances and TSPLIB

instances. Section 4.7 discusses the findings and practical insights gained from our study.

Finally, we summarize the paper and suggest directions for future research in Section 4.8.

4.2 Literature Review

The TSP has attracted significant research attention as a well-known optimization problem.

Various methodologies, including constructive heuristics, exact methods, and

metaheuristics, have been developed to address this problem. State-of-the-art solvers, such

as the Concorde solver, have demonstrated efficient solutions for the TSP. The Lin-

Kernighan-Helsgaun (LKH) algorithm has also been successful in finding near-optimal

solutions for large-scale instances. Traditional methodologies on solving TSP can be found

in the literature review by Laporte (1992). Recent research has explored the use of machine

learning (ML) and reinforcement learning (RL) approaches for combinatorial optimization.

Comprehensive reviews are available in Karimi-Mamaghan et al. (2022) and Mazyavkina

et al. (2021).

In the early stages of applying ML to solve the TSP, one commonly used approach was

the pointer network, which is a sequence-to-sequence neural network introduced by

Vinyals et al. (2015). This technique utilizes attention mechanisms to select elements from

82

the input sequence as outputs. Kool et al. (2018) extended this approach by training the

model using the REINFORCE algorithm. Through their work, they were able to obtain

near-optimal solutions for TSP instances with up to 100 nodes. Building upon the pointer

network framework, Stohy et al. (2021) proposed a hybrid graph pointer network that

combines a graph embedding layer with the encoder of a transformer model. Expanding

the application of attention-based pointer networks, Kong et al. (2022) proposed an

attention-based pointer network to solve drone logistic delivery problems. further

considered multiple objectives for TSP. Furthermore, Perera et al. (2023) extended the

problem by considering multiple objectives.

RL has gained significant popularity in the field due to its ability to generate decision-

making policies for complex optimization problems. Several studies have successfully

applied RL to address TSP. For instance, Dai et al. (2017) and Kwon et al. (2020) proposed

to solve TSP using RL. Nazari et al. (2018) introduced an end-to-end framework that

utilized RL for solving vehicle routing problems. Wu et al. (2022) employed deep RL to

learn a heuristic that improves initial solutions for TSP. Furthermore, Zhang et al. (2023)

and (Ling et al., 2023) utilized deep RL to solve TSP. In recent years, there has been a

growing interest in drone-based TSP (Macrina et al., 2020). Ha et al. (2018) and Tiniç et

al. (2023) specifically addressed TSP with multiple drones. Salama & Srinivas (2020)

explored the use of customer location clustering to improve last-mile delivery in the context

of TSP with drones. The application of RL has shown promising results in solving drone-

aided routing problems, as demonstrated by the work of Bogyrbayeva et al. (2023). Liu et

al. (2022) addressed the challenge of stochastic travel times in TSP with drones,

highlighting the potential of RL in this field.

ML techniques have also been used to enhance existing TSP algorithms. Researchers

have explored the integration of ML with the LKH algorithm, a state-of-the-art TSP

heuristic, to improve its performance. Zheng et al. (2021, 2023) introduced the Variable

Strategy Reinforced LKH (VSR-LKH) algorithm, which combines reinforcement learning

with the LKH algorithm. Similarly, Xin et al. (2021) proposed the Neuro-LKH algorithm,

which incorporates deep learning with the LKH algorithm. These approaches leverage ML

83

techniques to enhance the effectiveness and efficiency of the LKH algorithm in solving the

TSP.

In this paper, our primary focus is on supervised learning (SL) approaches, as our

proposed method falls within this category. SL approaches have received less attention

compared to other learning-based approaches, primarily due to the challenges they face in

generalizing to larger problem instances. Li et al. (2018) proposed a learning-based

approach that combines deep learning with tree search. They employed a graph

convolutional network to estimate the likelihood of each vertex being part of the optimal

solution. ML can reduce the problem size of TSP by predicting which arcs should be

included in the optimal solution. This approach acts as a preprocessing technique by fixing

a subset of decision variables for a solver to solve the mathematical formulation. However,

solving the simplified model can still be computationally expensive. Sun et al. (2021)

introduced a problem-reduction technique that utilizes a support vector machine to predict

optimal edges. Their study found that when the training and test instances belong to the

same TSP variant, the model exhibits a small error. However, as the model is tested on

TSP variants that differ significantly from the training data, the generalization error

naturally increases. Mele et al. (2021) employed ML to predict edges likely to be part of

the optimal solution in the TSP. They combined this partial solution with a constructive

heuristic to generate the feasible solutions. The computational complexity for solution

construction was shown to be 𝑂(𝑛2 log 𝑛2) where 𝑛 is the number of cities.

One critical limitation of SL-based approaches is the requirement to have a fixed input

size, which limits their adaptability and scalability. Joshi et al. (2022) specifically

addressed this issue by noting that while state-of-the-art learning-driven approaches for

TSP demonstrate strong performance when trained on small instances, they struggle to

generalize their learned policies to larger instances at practical scales. As a result, they

emphasized the necessity of reevaluating various aspects to achieve effective

generalization beyond the training data. To overcome this generalization limitation, Fu et

al., (2021) proposed a solution by training a small-scale model in a supervised manner.

This trained model can be repeatedly applied to generate heat maps for TSP instances of

84

various sizes. The approach incorporates techniques such as graph sampling, graph

converting, and heat map merging to ensure scalability and achieve the desired level of

generalization.

As mentioned above, various attempts have been made to improve the scalability and

adaptivity of ML methods for solving TSP. However, to the best of our knowledge, none

of the existing supervised learning techniques have demonstrated the ability to generalize

and maintain accuracy when solving large-scale instances. This paper fills this gap by

introducing a new supervised learning approach. The novelty of our approach lies primarily

in our unique training methodology. Unlike previous approaches that focus on predicting

individual arcs in the optimal solution, we predict "anchors" which represent the nodes that

connect to their nearest neighbors in the optimal solution. This shift allows the model to

make predictions based on local information, i.e., the surrounding neighbors of a node,

greatly enhancing the generalization ability of the neural network. Furthermore, empirical

experiments illustrate that the trained model can effectively solve TSP instances with

significantly different distributions, further highlighting its robustness and versatility.

4.3 Definition of anchors

To facilitate the subsequent discussion, we introduce the term "anchor" to refer to nodes

that should be connected to their nearest neighbors in the optimal solution. In this section,

we present an illustrative example to demonstrate the necessity of employing anchors and

their role in facilitating the generation of near-optimal solutions. Additionally, we conduct

experiments to showcase that, in general, a significant proportion, approximately 80% to

90%, of the nodes in TSP problems can serve as anchors. Although we cannot provide

mathematical proofs, we believe that the ratio of anchors does not decrease with the

increase of problem scales. This assumption implies that as the size of TSP problems

increases, the relative number of nodes acting as anchors remains relatively constant.

Figure 4.3.1 shows two solutions for a TSP instance comprising six nodes. As presented

on the left side, one solution is generated by using the nearest neighbor algorithm, resulting

85

Figure 4.3.1: A Demonstration of Solutions

86

in a total route distance of 16.06. As displayed on the right side, the optimal solution is

obtained by Gurobi. In contrast, the optimal total route distance is 14.94. It is widely

recognized that heuristics, such as the nearest neighbor algorithm, offer the advantage of

quickly solving TSP problems. However, the solution quality is typically far away from

optimality. By comparing the two solutions above, it becomes apparent that the starting

city, denoted as O in the example, should not be connected to its nearest neighbor, denoted

as node A. This observation demonstrates the limitations of the nearest neighbor algorithm.

In order to overcome the limitations of traditional constructive heuristics in solving the

TSP, we propose to develop a predictive model that can determine which nodes should

connect to their nearest neighbors in advance. These nodes are denoted as anchors in the

subsequent discussions. By incorporating the predicted anchor nodes, we can enhance

traditional approaches, preserving their advantages in terms of computational efficiency

while mitigating their shortcomings in solution quality. While we have used the nearest

neighbor algorithm as an example, other constructive algorithms such as insertion

algorithms and 2-opt algorithm can also be implemented alongside anchors to improve

their performance.

Figure 4.3.2 demonstrates the utilization of anchors in solving a TSP instance. The

process entails three steps: anchor identification, connecting anchors to their nearest

neighbors, and connecting the remaining nodes using a constructive algorithm. In the

provided example, our proposed supervised learning model predicts four anchor nodes,

highlighted in red. As depicted in subfigure (b), these anchors are then connected to their

nearest neighbors. Finally, the remaining nodes are connected to their respective nearest

neighbors, resulting in the complete solution shown in subfigure (c). It is found that the

solution generated from these three steps is the same as the optimal solution obtained by

Gurobi. This highlights the potential of enhancing traditional approaches through the

prediction of anchors.

Figure 4.3.3 presents a box chart illustrating the percentage of anchors for various scales

of the Traveling Salesperson Problem (TSP). The data consists of 500 instances, and each

87

Figure 4.3.2: Framework of an Anchor-based Constructive Heuristic

88

Figure 4.3.3. Average Percentage of Anchors for general instances of TSP

89

box in the chart represents the average percentage of anchors calculated from these

instances. The TSP instances were solved using the Concorde solver.

4.4 Methodology

The methodology section consists of five parts: feature selection, data preprocessing,

hyperparameter tuning, anchor insertion algorithm, and anchor-MTZ formulation. The first

three parts introduce the training process of the supervised learning model. The last two

parts present the pseudo code of the proposed algorithm and the model that integrates the

predicted anchors with the MTZ model.

 Feature Selection

Our study proposes a novel approach for training a supervised learning model to solve TSP.

We define the feature as an 𝑚 × 𝑚 matrix, where m represents the dimension of neighbors.

Specifically, we consider 𝑚 neighbors of a node and the 𝑚 neighbors of each of those

nodes as inputs to construct the feature matrix. We propose to use this feature definition

based on our observation of a hidden pattern that can be learned to determine whether a

node should be classified as an anchor or not, using only its local information.

One intuitive insight is that if a node has similar distances to its neighbors, it is less

likely to be an anchor. Instead of connecting to the nearest neighbor, the node can connect

to the second-nearest one or even other nodes without a significant loss. By contrast, if the

distance to the nearest neighbor and the second-nearest neighbor differs significantly, the

node is more likely to be an anchor. It is difficult to describe the underlying patterns by

mathematical formulations. Therefore, we employ a supervised learning model to

approximate the relationship and predict whether a node should be classified as an anchor.

To approximate the relationships between features and labels, we propose training a

multiple layer perceptron (MLP). An essential hyperparameter that needs to be determined

is the dimension of the feature matrix. Generally, a larger dimension allows for the

utilization of more information in the prediction process. However, larger networks can be

more difficult to train and may require a larger dataset for effective training. To determine

90

the optimal dimension, we conducted several preliminary experiments and tested different

dimensions ranging from 3 to 10. The results are summarized in Table 4.4.1.

The trend indicates that as the dimension of the feature matrix increases, the average

accuracy and precision of the model decrease. Consequently, selecting a large value for the

dimension is not ideal. In order to achieve a balance between the precision and

specification, we have chosen a dimension of 5 for the feature matrix.

 Data Preprocessing

Data preprocessing plays a vital role in enhancing the generalization ability of the model.

Among the critical preprocessing techniques, normalization is of utmost importance,

especially when instances exhibit varying scales. To address this, we employ min-max

normalization, which ensures that each feature is within the same range, specifically

between zero and one. The formulation for min-max normalization is as follows,

𝑥𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

where 𝑥 represents the feature matrix, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 denote the minimum and maximum

values within the matrix, and 𝑥𝑛𝑜𝑟𝑚 represents the normalized feature. By applying this

approach, we have achieved improved performance and more robust predictions. This

normalization technique ensures that the data is comparable across different instances,

enabling better generalization ability of the model.

 Hyperparameter Tuning

In this study, we utilize a random search policy to fine-tune the hyperparameters. The

ranges for tuning are presented in Table 4.4.2. It should be noted that the number of epochs

is not considered as a hyperparameter. Instead, we set a maximum of 200 training epochs

and implement an early stopping mechanism if the accuracy does not improve for five

consecutive epochs. This approach enables us to efficiently optimize our model while

mitigating the risk of overfitting.

91

Table 4.4.1: The relationship between input size and prediction performance

Accuracy Precision Recall Specific F1 Score Time (s)

3 0.877 0.886 0.975 0.347 0.928 72

4 0.872 0.881 0.975 0.327 0.925 116

5 0.860 0.880 0.962 0.377 0.918 107

6 0.852 0.869 0.968 0.316 0.914 83

7 0.857 0.869 0.973 0.307 0.916 133

8 0.855 0.872 0.967 0.331 0.915 127

9 0.852 0.873 0.962 0.342 0.913 76

10 0.851 0.860 0.980 0.242 0.914 115

Table 4.4.2: The range of hyperparameters for random search

Hyperparameters Range

Learning rate [0.001, 0.01, 0.1]

Number of hidden layers [1, 2, 3, 4]

Number of neurons in each layer [64, 128, 256, 512]

Activation function [ReLU, Sigmoid]

Optimizer [Adam, RMSProp]

Dropout rate [0, 0.1, 0.2]

Batch size [128, 256, 512, 1024]

92

To address the challenge of excessively long training time, we generated a smaller

dataset specifically for hyperparameter tuning purposes. The dataset consists of 405,198

feature and label pairs generated from various TSP instances, including TSP25, TSP50,

TSP100, as well as instances from TSPLIB and National Traveling Salesman Problems.

The results are summarized in Table 4.4.3.

The experiments revealed that a learning rate of 0.001, in combination with the Adam

optimizer, consistently yielded good performance across most cases. It was found that the

number of layers and the number of neurons did not have a significant impact on the

performance. Given that the actual training dataset is much larger than the dataset used for

parameter tuning, we were able to use a relatively large number of layers and neurons

without compromising performance. For the activation function, we selected ReLU, which

has shown to be effective in various tasks. To mitigate the risk of overfitting, we set the

dropout rate to 0.1. To expedite the training process and enhance efficiency, we set the

batch size to 1024. The selected hyperparameters, as summarized in Table 4.4.4, allowed

us to achieve satisfactory performance while reducing the training time, resulting in a more

efficient process.

 Anchor Insertion Algorithm

In this section, we present the proposed anchor insertion algorithm, which is inspired

by the nearest insertion algorithm. The pseudo code for this algorithm is provided in

Algorithm 1.

The anchor insertion algorithm operates based on a straightforward concept. Initially, a

supervised learning technique is employed to predict a set of anchors, denoted as 𝐴 .

Subsequently, the algorithm proceeds by randomly selecting a node 𝑎 from the set 𝐴. This

extracted node 𝑎 is then inserted into the current solution, 𝑥, at a location determined by

the 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝑑𝑒𝑥 function. The function calculates the index 𝑖 that represents the

optimal position for inserting node 𝑎 into the incompletely solved solution. Following this

step, the algorithm checks whether the nearest neighbor of the anchors, denoted as node 𝑏,

has already been visited. If node 𝑏 has not been visited, it is inserted into the solution at the

93

Table 4.4.3: Top 10 trained model during the hyperparameters tuning

Learn

Rate

of

Layer

of

Neuron

Activate

Opt. Drop

Rate

Batch Acc. Epoch Time

(s)

0.001 2 256 ReLU Adam 0.2 1024 0.898 47 157

0.001 1 128 ReLU Adam 0.1 512 0.897 71 135

0.01 4 256 Sigmoid Adam 0 512 0.896 37 337

0.01 3 128 Sigmoid Adam 0.1 128 0.896 38 340

0.001 1 64 ReLU Adam 0 256 0.896 48 67

0.001 4 512 ReLU Adam 0 128 0.895 21 563

0.001 2 512 Sigmoid Adam 0.2 512 0.895 148 1040

0.001 1 512 ReLU Adam 0.1 1024 0.895 48 111

0.01 3 512 Sigmoid Adam 0 512 0.895 19 183

0.001 1 64 ReLU Adam 0.1 512 0.895 56 54

Table 4.4.4: Hyper-parameters selected after fine tuning

learning rate layers neurons activation optimizer dropout batch

0.001 3 256 ReLU Adam 0.1 1024

94

Algorithm 1 𝐴𝑛𝑐ℎ𝑜𝑟 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

Inputs: distance matrix 𝑑, threshold 𝜎

Output: route 𝑥

 1: get the set of anchors 𝐴 ← 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑑, 𝜎)

 2: create a set of unvisited nodes 𝑈

 3: create an empty route 𝑥

 4: while 𝐴 is not empty do

 5: 𝑎 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑛𝑐ℎ𝑜𝑟(𝐴)

 6: 𝑖 ← 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥(𝑎)

 7: Insert node 𝑎 into route 𝑥 at position 𝑖

 8: remove node 𝑎 from set 𝐴 and set 𝑈

 9: 𝑏 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑎)

10: if 𝑏 ∉ 𝑈 do

11: 𝑗 ← 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥(𝑏)

12: insert node 𝑏 into route 𝑥 at position 𝑗

13: remove node 𝑏 from set 𝐴 and set 𝑈

14: while 𝑈 is not empty do

15: 𝑐 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑜𝑑𝑒(𝑈)

16: 𝑘 ← 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥(𝑐)

17: insert node 𝑐 into route 𝑥 at position 𝑘

18: remove node 𝑐 from 𝑈

19: return route 𝑥

95

most suitable location. Again, the optimal location is determined by the 𝐵𝑒𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝑑𝑒𝑥

function. Finally, the algorithm handles the remaining nodes using similar approaches. It

examines the remaining nodes, determining their optimal insertion locations, and inserts

them into the solution accordingly. The output of the algorithm is a fully completed route.

In summary, the anchor insertion algorithm efficiently constructs a solution by

employing a prioritized approach to insert nodes into an incomplete solution, utilizing

supervised learning. The algorithm begins by predicting the anchors, and subsequently

inserts both the anchors and their nearest neighbors into the solution. The insertion

locations are determined based on minimizing the increment in route length. Then, the

algorithm deals with the remaining unvisited nodes by employing similar insertion

procedures. This approach emphasizes the critical role of anchors in constructing an

effective solution for TSP.

 Anchor-MTZ Algorithm

The predicted anchors can be employed to enhance the existing mathematical models for

solving TSP. In this paper, we propose an integration of the predicted anchors with the

MTZ formulation. Although we also tested the Dantzig-Fulkerson-Johnson (DFJ) model,

preliminary results show that the solvable scale is too small without considering additional

enhancements. The formulation for anchor-MTZ is as follows.

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

 ∑ 𝑥𝑖𝑗

𝑗∈𝑁,𝑗≠𝑖

= 1, ∀𝑖 ∈ 𝑁
(4.4.1)

∑ 𝑥𝑖𝑗

𝑛

𝑖∈𝑁,𝑖≠𝑗

= 1, ∀𝑗 ∈ 𝑁
(4.4.2)

 𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1, ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁0, 𝑖 ≠ 𝑗 (4.4.3)

 𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1, ∀𝑖, 𝑗 ∈ 𝐺 (4.4.4)

96

 𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (4.4.5)

 𝑢𝑖 ≥ 0, ∀𝑖 ∈ 𝑁 (4.4.6)

The notations used in this context have the following meanings. The symbol 𝑛

represents the total number of nodes (cities), and 𝑁 represents the set of these nodes. 𝑁0 is

a set of nodes that excludes the starting node 0. The notation 𝑐𝑖𝑗 represents the distance

between two nodes. 𝑥𝑖𝑗 is the decision variable that takes a value of 1 when the two nodes

are connected. 𝑢𝑖 is an auxiliary variable used to determine the visiting sequence. 𝐺

represents a graph where several nodes are already connected. These connections are

predicted by the neural network as previously described.

The objective is to minimize the total traveling distance. Constraints (4.4.1) ensure that

each node has an outgoing connection to another node. Constraints (4.4.2) enforce that

each node has an incoming connection to another node. Constraints (4.4.3) are known as

subtour elimination constraints. They determine the visiting sequence of each node.

Constraints (4.4.4) are newly introduced to complement the classical MTZ. These

constraints serve the purpose of ensuring that the connections between the predicted

anchors and their nearest neighbors are maintained. These connections are established in

the graph 𝐺, and constraints (4.4.4) guarantee that these connections are enforced within

the model. Constraints (4.4.5) and (4.4.6) specify the restrictions on the variables.

4.5 Training and Evaluations

This section introduces the training process of the supervised learning model. In Section

4.5.1, we discuss the impact of under-sampling. Section 4.5.2 explores the trade-off

between precision and recall by adjusting the prediction thresholds. In Section 4.5.3, we

evaluate the generalization ability. Section 4.5.4 presents the performance metrics,

including accuracy, precision, recall, specificity, F1 score, and training time.

To ensure a diverse training dataset, we generated a substantial number of instances.

Specifically, we created 1 million TSP25 instances, 0.5 million TSP50 instances, and 0.25

97

million TSP100 instances. This resulted in a total of 75 million features and labels. We did

not include TSPLIB instances for two reasons. Firstly, while we have the optimal objective

function values, the optimal routes are unavailable for most TSPLIB instances, making it

impossible to generate ground truth for these instances. Secondly, it is thought better to

reserve the TSPLIB instances to evaluate the generalization ability of the model.

 Under Sampling

In this section, we present ROC curves to evaluate the necessity of performing under-

sampling as a preprocessing step. We trained two models, one with under-sampling and

the other without, for 20 epochs using the entire dataset. Then, we plotted ROC curves

using four validation datasets that had not been seen during the training process. The results

are presented in Figure 4.5.1.

The figure depicts the ROC curves of different instances, comparing the performance

of two models with and without under-sampling. Each subfigure represents a specific

instance, with dashed lines representing the ROC curves with under-sampling and solid

lines representing the curves without under-sampling. The diagonal line represents a

benchmark model that makes random predictions.

For the generated instances, both models present similar performance, with an area

under the curve (AUC) of approximately 0.9 across all instances. The high AUC values

indicate strong prediction performance. When evaluating the TSPLIB instances, the model

trained without under-sampling slightly outperforms the model with under-sampling by a

margin of 0.01 in terms of AUC. Based on this performance difference, the decision was

made to not use under-sampling for subsequent experiments. In summary, the ROC curves

provide evidence of the efficacy of the supervised learning model in predicting anchors.

 Trade-off Between Precision and Recall

Precision and recall are commonly in conflict with each other, meaning that improving one

metric often results in a decrease in the other metric. In our case, precision holds more

significance than recall because we aim to minimize the wrong information. Increasing the

98

Figure 4.5.1: Comparisons on ROC with and without under sampling

99

prediction threshold can enhance precision, but it comes at the cost of reduced recall.

Therefore, it is vital to achieve a good trade-off between the two metrics when determining

the threshold for our trained model. Figure 4.5.2 illustrates the precision-recall curves

obtained from experiments on validation datasets, providing valuable insights into the

prediction performance of the trained model across different thresholds.

The figure demonstrates that as we decrease the prediction threshold to increase the

recall score, the precision score generally decreases. However, the precision does not

diminish to zero even when the recall rate reaches one. This is due to the fact that the

positive data comprises approximately 80% of the dataset. Consequently, even if the model

classifies all nodes as anchors, there will still be around 80% correct predictions. To ensure

a high precision for the model, a lower bound of 0.95 for precision is established.

Subsequently, the corresponding thresholds for TSP25, TSP50, TSP100, TSP200, and

TSPLIB are determined. The calculated thresholds are 0.781, 0.764, 0.759, 0.743, and

0.789, respectively. The strictest threshold of 0.789 is selected to guarantee a precision

score of at least 95% for all instances. By utilizing this threshold, it is found that the recall

ranges between 0.869 and 0.908 for all instances. This approach effectively strikes a

balance between precision and recall while maintaining a high level of precision for the

model.

 Generalization Capacity on Solving Large-scale Instances

We conducted tests to evaluate the generalization ability of the trained model. While the

model is trained with instances containing fewer than 100 nodes, it is evaluated on diverse

datasets ranging from 100 nodes to 1,000 nodes. The evaluation metrics employed include

accuracy, precision, recall, specificity, and F1 score. The results of these evaluations are

depicted in the figure below.

As depicted in Figure 4.5.3, the left subfigure illustrates the metrics obtained using the

default threshold of 0.5, while the right subfigure displays the metrics using the new

threshold of 0.789. The use of the default threshold resulted in a low specificity, indicating

that numerous non-anchor nodes were incorrectly classified as anchors, potentially leading

100

Figure 4.5.2: Precision-Recall curve for different instances

101

Figure 4.5.3: The generalization capacity of the model with improved thresholds.

102

to erroneous connections between nodes. By increasing the threshold to 0.789, the

specificity improved significantly from an average of 0.5 to an average of 0.9, while

maintaining a recall rate above 0.8. This tradeoff resulted in an enhanced overall

performance of the model.

Furthermore, it was observed that the generalization ability of the model remained stable

as the instance size increased, despite being trained solely on generated TSP instances with

fewer than 100 nodes. This suggests that the trained model can effectively predict larger

instances without experiencing a substantial reduction in prediction accuracy.

 Prediction Performances

After conducting preliminary experiments, we proceeded to retrain the machine learning

model using the determined hyperparameters and settings. The model was trained for 100

epochs, but due to the early stopping policy, the training process terminated after 20

epochs. The total training time was 4.8 hours. The trained model was then evaluated on

various datasets, including the training and testing datasets, as well as generated TSP

instances with 25, 50, 100, and 200 cities, and instances from the TSPLIB. The threshold

for predicting positive nodes was set to 0.789 as previously mentioned.

Table 4.5.1 presents the average results obtained from the evaluation. Specifically, there

are 1,000 instances in each of the generated instances (TSP25, TSP50, TSP100, and

TSP200). The TSPLIB instances included in the evaluation satisfy the Euclidean distance

requirement and have known optimal tours available. The evaluation time indicated in the

table refers to the total prediction time.

The results demonstrate that the trained model achieved high accuracy, ranging from

0.855 to 0.880, indicating its effectiveness in distinguishing anchors from non-anchor

nodes. Furthermore, the model exhibited excellent precision, ranging from 0.950 to 0.958,

meaning that approximately 95% of the predicted anchors were true anchors. The recall

rates were consistently high, ranging from 0.875 to 0.878, indicating that over 87% of the

anchor nodes were successfully identified. Additionally, the model displayed a high level

of specificity, with values ranging from 0.715 to 0.902. The F1 score, which represents a

103

Table 4.5.1: Validation results of the trained model

Dataset Accuracy Precision Recall Specification F1 Time (s)

TSP25 0.855 0.951 0.877 0.715 0.913 0.803

TSP50 0.858 0.955 0.878 0.724 0.915 1.646

TSP100 0.856 0.955 0.876 0.729 0.914 3.396

TSP200 0.858 0.958 0.875 0.748 0.915 5.842

TSPLIB 0.880 0.949 0.869 0.902 0.907 0.199

104

balanced performance between precision and recall, ranged from 0.913 to 0.915.

The prediction time increased with the size of the input, ranging from 0.803 seconds for

predicting 1,000 TSPLIB25 instances to 5.842 seconds for predicting 1,000 TSP200

instances. These results highlight the efficiency of the trained model in predicting anchors

across various TSP instances.

It is worth noting that the trained model was solely exposed to TSP instances with up to

100 nodes during the training process and was not specifically trained on TSP200 or

TSPLIB instances. Moreover, the instances in TSPLIB have distinct patterns from the

generated instances used for training. However, the model demonstrated a robust ability to

generalize and effectively predict anchors in TSP200 and TSPLIB instances, indicating its

strong generalization ability.

4.6 Computational Results

In this section, we compare the proposed approach with several baseline approaches in

solving TSP instances. The evaluation involves two different settings: 1) the integration

with exact methods and 2) the integration with heuristic algorithms. In the first setting, we

propose the anchor-based Miller-Tucker-Zemlin method (denoted as Anchor-MTZ) and

compare it with the traditional MTZ method. We solve the Anchor-MTZ and MTZ using

the commercial solver Gurobi. In the second setting, we propose the anchor insertion

algorithms and compare it with baseline algorithms such as Concorde, LKH3, five

constructive heuristics, and a state-of-the-art learning-based approach called GPN.

The MTZ model is solved using the Gurobi commercial solver (version 8.1.0.) on a

workstation equipped with an Intel Core i7-3770 CPU (3.40 GHz) and 8 GB of RAM. The

anchor insertion algorithm, as well as the baseline algorithms, are implemented in Python

and executed on the same machine. It's important to note that no GPU was utilized during

the training of the proposed model. However, for training the GPN algorithm used for

comparison, a different machine equipped with an RTX 3080 Ti GPU was employed due

to the extensive computational requirements.

105

 Integration with Exact Methods

The predicted anchors can be leveraged to enhance the efficiency of exact algorithms.

Specifically, we explore the use of anchors as a means to obtain partial nodes to be

connected in advance, which can then be inputted into commercial solvers, thereby

reducing computational time.

In this section, we evaluate the performance of the classical MTZ model with and

without anchors. The MTZ model is a mathematical formulation that uses sequences to

eliminate subtours. Each node in the TSP is associated with a sequence variable that

represents its position in the tour. By imposing appropriate constraints on these sequence

variables, the MTZ model ensures that subtours are eliminated.

Although we also considered the DFJ model, the results are not presented in this section

due to the limited solvable scale of the model without considering additional enhancements

such as lazy constraints.

Table 4.6.1 presents the results of solving the generated instances using the MTZ and

Anchor-MTZ approaches. The “Opt.” column denotes the optimal solutions obtained by

Concorde. The "Avg. Obj." column denotes the average objective function value obtained

from solving the instances. The "Gurobi Time" column represents the total computational

time required to solve the instances, while the “Predict Time” refers to the time for

predicting the anchors using the trained model. Lastly, the "Gap" column provides the

percentage differences between the obtained solutions and the optimal solutions, indicating

the extent of deviation from optimality.

The MTZ approach successfully obtains optimal solutions for TSP50 instances.

However, it encounters computational limitations when tackling larger instances, such as

those with more than 100 nodes. In contrast, the Anchor-MTZ approach demonstrates

superior performance in solving large instances. For example, when solving TSP250, the

Anchor-MTZ approach achieves a significantly lower gap of 16.85% compared to the gap

of 47.4% observed with the MTZ approach. The total time for predicting the anchors

remains consistently low, which is less than 2 seconds for each dataset.

106

Table 4.6.1: Performance Comparison: MTZ vs. Anchor-MTZ

Dataset

 MTZ Anchor-MTZ

Opt.

Avg.

Obj.

Gurobi

T. (s)

Gap

(%)

Avg.

Obj.

Predict

T. (s)

Gurobi

T. (s)

Gap

(%)

TSP50 5730

5730 332 0.00

5762 1.6 48 0.56

TSP100 7729

7818 3461 1.15

7792 1.7 2152 0.82

TSP150 9414

9872 3600 4.87

9507 1.6 3419 0.99

TSP200 10799

13117 3600 21.46

11510 1.7 3600 6.58

TSP250 11895 17534 3600 47.40 13900 1.7 3600 16.85

107

 Integration with Heuristics

The predicted anchors can also be leveraged to enhance heuristics. To illustrate this, we

introduce the anchor insertion algorithm, as introduced in Section 4.4.4. In this section, we

compare the performance of the anchor insertion algorithm with several baseline

approaches, including LKH3, Concorde, and GPN, among others. The detailed results of

these comparisons are presented in Table 4.6.2. The results are obtained from 10 instances

within each dataset. The reported objective function value represents the average

performance across these instances, while the time denotes the total computational time.

In the field of solving TSP instances, Concorde and LKH3 are widely recognized

traditional approaches. Concorde stands out for consistently producing high-quality

solutions but requires longer computational time, especially for larger datasets. In contrast,

LKH3 achieves similar results to Concorde with shorter solving time, making it a more

efficient alternative in terms of computational resources. Constructive heuristics provide

fast solutions but sacrifice solution quality. The choice of method depends on the specific

requirements, considering factors such as dataset size, available computational resources,

and the desired balance between solution quality and computation time.

Our primary objective is to compare our proposed approach with an existing learning-

based method known as GPN. Through this comparison, we have discovered that the

anchor insertion method shows great promise. In fact, it outperforms the GPN method in

terms of both solution quality and computational time. This finding is significant as it

demonstrates the superiority of the anchor insertion approach in addressing the TSP. It is

worth noting that the proposed anchor-based approaches are still in the process of

development and refinement. A dedicated algorithm is needed to fully utilize the anchors.

However, there is a growing belief that integrating anchor methods with heuristics can lead

to further improvements in performance. By surpassing the performance of existing

learning-based methods like GPN, the anchor insertion approach opens new possibilities

for advancing the state-of-the-art in solving the TSP.

108

Table 4.6.2: Performance Comparison: Heuristics

 TSP 250 TSP 500 TSP 750 TSP 1000

Method Obj Time (s) Obj Time (s) Obj Time (s) Obj Time (s)

LKH3 11983 1.3 16508 3.7 20217.0 8.1 23102.7 14.2

Concorde 11953 29.4 16489 150.6 20187.7 666.1 23077.7 1082.9

Nearest Neighbor 15119 0.1 20618 0.3 25252.4 0.7 28895.2 1.2

Shortest First 14182 0.3 19327 1.5 23837.1 2.9 26935.6 5.3

Nearest Insertion 14747 5.2 20457 40.9 25079.6 138.1 28949.1 327.2

Farthest Insertion 14173 5.2 20161 40.7 25050.9 138.9 28890.9 332.1

Cheapest Insertion 14125 18.8 19774 142.7 24333.8 480.3 27739.4 1101.6

GPN 15253 8.3 23037 12.3 29852.9 19.0 36709.3 25.1

Anchor Insertion (ours) 13308 2.2 18712 3.1 22991.6 5.8 26377.5 10.2

109

 Generalization ability on TSPLIB instances

Table 4.7.1 provides a comprehensive comparison between the GPN and Anchor Insertion

methods on multiple instances from the TSPLIB dataset. The comparison includes

objective values, computation times in seconds, and gap percentages for both approaches.

The results indicate that the anchor insertion algorithm consistently outperforms the GPN

method in terms of objective values and solve times, particularly for larger instances. For

instance, in the ca4663 instance, the gap percentage for the anchor insertion algorithm is

29.61%, whereas for the GPN method it is 120.43%. Similarly, in the ja9847 instance, the

gap percentage for the anchor insertion algorithm is 26.55%, compared to 158.29% for the

GPN method. These significant improvements demonstrate the effectiveness of the anchor

insertion algorithm in achieving better solutions with reduced gaps compared to the GPN

method.

4.7 Insights and Discussions

During our training and testing process, we made several interesting observations. Firstly,

we found that the quantity of data had a more significant impact on performance than the

dimensions, i.e., the number of features of the data. Surprisingly, even with a dimension as

small as three, we were able to train models that yielded satisfactory results. This

contradicted our initial assumption that higher input dimensions would provide more

accurate predictions by offering more information. There are several possible explanations

for this phenomenon. Firstly, the task of determining whether a node should be an anchor

may not require extensive local information, as confirmed by our experiments. Secondly,

incorporating irrelevant information into the features can introduce noise, particularly

when training data is limited. Lastly, higher-dimensional inputs can pose challenges in

effectively training the model.

Secondly, we discovered that under-sampling and normalization may not always be

necessary. Initially, we believed that under-sampling was necessary to address the data

imbalance issue. As shown in Figure 4.3.3, positive samples accounted for 80% - 90% of

110

Table 4.7.1: Performance Comparison: TSPLIB Instances

Instance Opt. GPN Obj. GPN Time (s) GPN Gap (%) Anchor Obj. Anchor Time (s) Anchor Gap (%)

a280 2,579 3,606 2.48 39.82 3,202 0.26 24.16

berlin52 7,542 8,962 0.13 18.83 8,007 0.15 6.17

ca4663 1,290,319 2,844,220 10.60 120.43 1,672,320 50.20 29.61

ch130 6,110 6,921 0.28 13.27 6,972 0.15 14.11

ch150 6,528 7,923 0.35 21.37 7,118 0.15 9.04

eil101 629 720 0.22 14.47 697 0.14 10.81

eil51 426 457 0.12 7.28 472 0.13 10.80

eil76 538 623 0.17 15.80 609 0.14 13.20

ja9847 491,924 1,270,604 21.84 158.29 622,535 425.84 26.55

kroA100 21,282 27,911 0.23 31.15 23,670 0.16 11.22

kroC100 20,749 27,164 0.23 30.92 22,212 0.15 7.05

kroD100 21,294 26,057 0.23 22.37 23,588 0.16 10.77

lin105 14,379 20,484 0.25 42.46 16,926 0.16 17.71

pcb442 50,778 71,144 1.00 40.11 61,747 0.27 21.60

pr1002 259,045 424,108 2.30 63.72 318,840 0.93 23.08

pr2392 378,032 727,079 5.63 92.33 478,371 7.94 26.54

pr76 108,159 122,867 0.17 13.60 125,078 0.14 15.64

rd100 7,910 8,662 0.23 9.51 9,206 0.14 16.38

tsp225 3,916 5,177 0.54 32.20 4,638 0.16 18.44

111

the entire dataset. Consequently, we expected that under-sampling would help reduce

biases caused by sample imbalance. However, our experimental results led us to different

conclusions. While under-sampling improved precision, it significantly decreased recall.

After careful comparison, we found that it is better to prioritize achieving a higher recall

initially and then increase precision by appropriately adjusting the threshold for predicting

positive samples. Moreover, we observed an interesting phenomenon regarding

normalization. When the training data reached a certain quantity, the neural network

automatically developed internal structures that performed a similar function to

normalization. This is an advantage of our proposed model over the traditional GPN

approach. Unlike the proposed approach, the GPN performed significantly worse without

normalization.

Thirdly, the best way to utilize the predicted anchors remains unclear. In our research,

we attempted to integrate the predicted anchors with exact methods and heuristic

algorithms. While the integration with exact methods significantly reduced computational

time, it also resulted in a loss of otherwise guaranteed optimality. Additionally, we

explored combining the model with various constructive heuristics. However, most of these

heuristics demonstrated insensitivity to the initial solution, making the anchors less useful.

Based on our experimental findings, we believe that designing a dedicated algorithm based

on the characteristics of anchors may be necessary to fully exploit their potential.

Furthermore, we are considering the integration of anchor points with the LKH algorithm.

Fourthly, there are alternative ways to define the anchors. In this paper, we defined

anchors as nodes that should connect to their nearest neighbors. However, anchors could

also be defined as nodes that connect to their two nearest neighbors, as each node needs to

connect to two other nodes. This approach could provide additional post-prediction

information. Nevertheless, this made the model more challenging to train, and the post-

prediction results were more prone to conflicts.

Admittedly, there are still limitations to our proposed algorithms. As mentioned before,

the percentage of anchors in TSP instances is approximately 80%-90%. Even if the model

could perfectly predict every anchor, it may not completely solve the TSP. Therefore, a

112

second-stage algorithm is required to complete the solution. Considering that some cities

serve as anchors for each other, the number of optimal arcs that can be determined is around

60%. Additionally, for certain anchors, there may be more than one nearest point, meaning

that knowing the anchors alone is not sufficient to connect them to other nodes.

4.8 Conclusion

This paper introduces an approach for solving the TSP by integrating machine learning

with optimization. Through a supervised learning process, we train a model using small-

scale instances and demonstrate its ability to generalize well to larger-scale instances. We

explore various preprocessing techniques, hyperparameter tuning, and feature selection to

enhance the performance of model.

The proposed approach exhibits a strong generalization ability. The trained model can

accurately identify 87% of the anchors with a precision exceeding 95%. Remarkably, the

model is trained on instances with less than 100 nodes, but it successfully predicts anchors

for instances with more than 1,000 nodes without any decline in prediction accuracy.

Furthermore, we integrate the predicted anchors with exact methods, leading to reduced

computational time when solving the MTZ formulation. When combined with a heuristic,

the proposed anchor insertion algorithm outperforms the state-of-the-art learning-based

approach GPN in terms of both solution quality and computational time.

Future research can be directed towards designing dedicated algorithms tailored to the

specific characteristics of anchors. Additionally, it is promising to integrate the predicted

anchors with the LKH algorithm. Despite some limitations, this paper provides a novel

new way in leveraging machine learning to address the TSP, opening up new possibilities

for efficient and effective learning-based algorithms.

113

Chapter 5. Summary and Conclusions

114

This dissertation delves into both the traditional and innovative solutions for Vehicle

Routing Problems (VRPs) and their variants. VRPs are classic problems in the field of

combinatorial optimization, and they also hold significant importance in logistics and

transportation. These problems require the allocation of resources in a way that optimizes

various objectives, such as minimizing transportation costs, maximizing customer

satisfaction, and ensuring timely deliveries, all while considering common constraints like

maximum capacity and time windows. Efficiently solving VRPs is crucial for improving

operational efficiency, reducing costs, and ensuring the timely and effective delivery of

goods and services. Consequently, substantial research efforts have been dedicated to

developing innovative methods, algorithms, and technologies for addressing VRPs and

their variants. This dissertation provides a comprehensive exploration of exact methods,

heuristics, and innovative supervised learning methods, aiming to offer a well-rounded

perspective on addressing the critical challenges in this domain.

In Chapter 2, we focused on the pickup and delivery problem with transshipments (PDP-

T) and its extension, the pickup and delivery problem with time windows and

transshipments (PDPTW-T). Through a thorough examination of existing models, we

identified limitations and proposed refined formulations. Furthermore, we introduced a

new mixed-integer linear programming (MILP) formulation tailored to tackle PDP-T and

PDPTW-T. Our computational results showcased the superior performance of this new

model.

In Chapter 3, we addressed a variant of the vehicle routing problem aimed at efficiently

assigning consultants to serve clients with minimized costs and maximized customer

satisfaction. Our objective was to simultaneously assign consultants to clients while

optimizing the traveling routes for the consultants. Our approach took into account skill

requirements, capacity limitations, fixed demand, and a maximum number of travel legs.

Additionally, we introduced a priority matching mechanism to ensure that consultants were

assigned to clients with suitable priority levels. To address the computational complexity

of this problem, we introduced two algorithms: the RMIP decomposition algorithm and a

MIP-based neighborhood search algorithm. We conducted a comparative analysis against

115

an existing MILP formulation. Our computational evaluation, encompassing a diverse set

of synthetic and real-life instances, underscored the superior solution quality and reduced

computational time achieved by our proposed algorithms, particularly in large-scale and

real-world scenarios.

In Chapter 4, we delved into the Traveling Salesman Problem (TSP), which serves as

the foundational version of vehicle routing problems. To address this classic problem, we

introduced a novel concept named as "anchors," representing nodes that should connect to

their nearest neighbors to form the optimal routing. Our approach used supervised learning

to predict these anchors based solely on local information, setting it apart from previous

models that relied on global data. Experimental results demonstrate that our model

successfully identifies 87% of the anchors with a precision of over 95%. By integrating

these predicted anchors into well-established methods such as the Miller-Tucker-Zemlin

(MTZ) model and insertion algorithms, we achieved an improvement in both solution

quality and computational efficiency. This work also underscores the scalability and

adaptability of our learning-based approach.

In summary, this dissertation has explored the vehicle routing problems and their

variants from three aspects: modeling, heuristics, and learning-based approaches. This

research has yielded enhancements in solution quality, reduced computational time, and

improved scalability for specific problems and methodologies. As a future research

direction, we look forward to further investigating the application of "anchors," expanding

their utility, and finding more effective ways to leverage this concept.

116

References

An, Y. J., Kim, Y. D., Jeong, B. J., & Kim, S. D. (2012). Scheduling healthcare services in

a home healthcare system. Journal of the Operational Research Society, 63(11), 1589–

1599. https://doi.org/10.1057/jors.2011.153

Applegate, D., Cook, W., Dash, S., & Rohe, A. (2002). Solution of a Min-Max Vehicle

Routing Problem. INFORMS Journal on Computing, 14(2), 132–143.

https://doi.org/10.1287/ijoc.14.2.132.118

Arslan, A. M., Agatz, N., Kroon, L., & Zuidwijk, R. (2019). Crowdsourced delivery—a

dynamic pickup and delivery problem with ad hoc drivers. Transportation Science,

53(1), 222–235. https://doi.org/10.1287/trsc.2017.0803

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial

optimization: A methodological tour d’horizon. European Journal of Operational

Research, 290(2), 405–421. https://doi.org/10.1016/j.ejor.2020.07.063

Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery

problems. European Journal of Operational Research, 202(1), 8–15.

https://doi.org/10.1016/j.ejor.2009.04.024

Bogyrbayeva, A., Yoon, T., Ko, H., Lim, S., Yun, H., & Kwon, C. (2023). A deep

reinforcement learning approach for solving the Traveling Salesman Problem with

Drone. Transportation Research Part C: Emerging Technologies, 148, 103981.

https://doi.org/10.1016/j.trc.2022.103981

Castillo-Salazar, J. A., Landa-Silva, D., & Qu, R. (2016). Workforce scheduling and

routing problems: literature survey and computational study. Annals of Operations

Research, 239(1), 39–67. https://doi.org/10.1007/s10479-014-1687-2

Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C., & Matta, A. (2017). OR

problems related to Home Health Care: A review of relevant routing and scheduling

problems. Operations Research for Health Care, 13–14, 1–22.

https://doi.org/10.1016/j.orhc.2017.06.001

Cordeau, J. F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations

117

Research, 54(3), 573–586. https://doi.org/10.1287/opre.1060.0283

Cortés, C. E., Matamala, M., & Contardo, C. (2010). The pickup and delivery problem

with transfers: Formulation and a branch-and-cut solution method. European Journal

of Operational Research, 200(3), 711–724. https://doi.org/10.1016/j.ejor.2009.01.022

Cortes, J. D., & Suzuki, Y. (2020). Vehicle Routing with Shipment Consolidation.

International Journal of Production Economics, 227, 107622.

https://doi.org/10.1016/j.ijpe.2020.107622

Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-cut algorithms

for vehicle routing. In Transportation Science (Vol. 53).

https://doi.org/10.1287/trsc.2018.0878

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning Combinatorial

Optimization Algorithms over Graphs. Advances in Neural Information Processing

Systems, 30. http://arxiv.org/abs/1704.01665

Danloup, N., Allaoui, H., & Goncalves, G. (2018). A comparison of two meta-heuristics

for the pickup and delivery problem with transshipment. Computers and Operations

Research, 100, 155–171. https://doi.org/10.1016/j.cor.2018.07.013

De Bruecker, P., Beliën, J., De Boeck, L., De Jaeger, S., & Demeulemeester, E. (2018). A

model enhancement approach for optimizing the integrated shift scheduling and

vehicle routing problem in waste collection. European Journal of Operational

Research, 266(1), 278–290. https://doi.org/10.1016/j.ejor.2017.08.059

Dong, Y., Pinto, J. M., Sundaramoorthy, A., & Maravelias, C. T. (2014). MIP model for

inventory routing in industrial gases supply chain. Industrial and Engineering

Chemistry Research, 53(44), 17214–17225. https://doi.org/10.1021/ie500460c

Eveborn, P., Rönnqvist, M., Einarsdólttir, H., Eklund, M., Lidén, K., & Almroth, M.

(2009). Operations research improves quality and efficiency in home care. Interfaces,

39(1), 18–34. https://doi.org/10.1287/inte.1080.0411

Fikar, C., & Hirsch, P. (2017). Home health care routing and scheduling: A review.

Computers and Operations Research, 77, 86–95.

https://doi.org/10.1016/j.cor.2016.07.019

118

Fu, Z.-H., Qiu, K.-B., & Zha, H. (2021). Generalize a Small Pre-trained Model to

Arbitrarily Large TSP Instances. Proceedings of the AAAI Conference on Artificial

Intelligence, 35(8), 7474–7482. https://doi.org/10.1609/aaai.v35i8.16916

Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2018). On the min-cost Traveling

Salesman Problem with Drone. Transportation Research Part C: Emerging

Technologies, 86, 597–621. https://doi.org/10.1016/j.trc.2017.11.015

Hansen, P., Mladenović, N., & Moreno Pérez, J. A. (2010). Variable neighbourhood

search: Methods and applications. Annals of Operations Research, 175(1), 367–407.

https://doi.org/10.1007/s10479-009-0657-6

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling

salesman heuristic. European Journal of Operational Research, 126(1), 106–130.

https://doi.org/10.1016/S0377-2217(99)00284-2

Ho, S. C., & Leung, J. M. Y. (2010). Solving a manpower scheduling problem for airline

catering using metaheuristics. European Journal of Operational Research, 202(3),

903–921. https://doi.org/10.1016/j.ejor.2009.06.030

Joshi, C. K., Cappart, Q., Rousseau, L. M., & Laurent, T. (2022). Learning the travelling

salesperson problem requires rethinking generalization. Constraints, 27(1–2), 70–98.

https://doi.org/10.1007/s10601-022-09327-y

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A. M., & Talbi,

E.-G. (2022). Machine learning at the service of meta-heuristics for solving

combinatorial optimization problems: A state-of-the-art. European Journal of

Operational Research, 296(2), 393–422. https://doi.org/10.1016/j.ejor.2021.04.032

Koç, Ç., Laporte, G., & Tükenmez, İ. (2020). A review of vehicle routing with

simultaneous pickup and delivery. Computers and Operations Research, 122, 104987.

https://doi.org/10.1016/j.cor.2020.104987

Kong, F., Li, J., Jiang, B., Wang, H., & Song, H. (2022). Trajectory Optimization for Drone

Logistics Delivery via Attention-Based Pointer Network. IEEE Transactions on

Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3168987

Kool, W., van Hoof, H., & Welling, M. (2018). Attention, Learn to Solve Routing

119

Problems! International Conference on Learning Representations.

http://arxiv.org/abs/1803.08475

Kovacs, A. A., Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2012). Adaptive large

neighborhood search for service technician routing and scheduling problems. Journal

of Scheduling, 15(5), 579–600. https://doi.org/10.1007/s10951-011-0246-9

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., & Min, S. (2020). POMO: Policy

Optimization with Multiple Optima for Reinforcement Learning. Advances in Neural

Information Processing Systems, 33, 21188–21198. http://arxiv.org/abs/2010.16011

Laporte, G. (1992). The Traveling Salesman Problem: An overview of exact and

approximate algorithms. European Journal of Operational Research, 59(2), 231–247.

https://doi.org/10.1016/0377-2217(92)90138-Y

Li, H., & Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time

windows. Proceedings of the International Conference on Tools with Artificial

Intelligence, 12(02), 173–186. https://doi.org/10.1142/s0218213003001186

Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial Optimization with Graph

Convolutional Networks and Guided Tree Search. Advances in Neural Information

Processing Systems, 31. http://arxiv.org/abs/1810.10659

Lin, S., & Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the Traveling-

Salesman Problem. Operations Research, 21(2), 498–516.

https://doi.org/10.1287/opre.21.2.498

Ling, Z., Zhang, Y., & Chen, X. (2023). A Deep Reinforcement Learning Based Real-Time

Solution Policy for the Traveling Salesman Problem. IEEE Transactions on Intelligent

Transportation Systems. https://doi.org/10.1109/TITS.2023.3256563

Liu, Z., Li, X., & Khojandi, A. (2022). The flying sidekick traveling salesman problem

with stochastic travel time: A reinforcement learning approach. Transportation

Research Part E: Logistics and Transportation Review, 164(January), 102816.

https://doi.org/10.1016/j.tre.2022.102816

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated Local Search. In Handbook

of metaheuristics (pp. 320–353). Springer, Boston, MA. https://doi.org/10.1007/978-

120

3-319-07124-4_8

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., & Laporte, G. (2020). Drone-aided

routing: A literature review. Transportation Research Part C: Emerging Technologies,

120. https://doi.org/10.1016/j.trc.2020.102762

Maheshwari, A., Misra, S., Gudi, R. D., & Subbiah, S. (2020). A Short-Term Planning

Framework for the Operation of Tanker-Based Water Distribution Systems in Urban

Areas. Industrial and Engineering Chemistry Research, 59(20), 9575–9592.

https://doi.org/10.1021/acs.iecr.0c00303

Masson, R., Lehuédé, F., & Péton, O. (2013). An Adaptive Large Neighborhood Search

for the Pickup and Delivery Problem with Transfers. Transportation Science, 47(3),

344–355. https://doi.org/10.1016/j.cor.2017.06.012

Maya, P., Sörensen, K., & Goos, P. (2012). A metaheuristic for a teaching assistant

assignment-routing problem. Computers and Operations Research, 39(2), 249–258.

https://doi.org/10.1016/j.cor.2011.04.001

Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement learning

for combinatorial optimization: A survey. Computers & Operations Research, 134,

105400. https://doi.org/10.1016/j.cor.2021.105400

Mele, U. J., Gambardella, L. M., & Montemanni, R. (2021). A New Constructive Heuristic

Driven by Machine Learning for the Traveling Salesman Problem. Algorithms, 14(9),

267. https://doi.org/10.3390/a14090267

Miller, C. E., Zemlin, R. A., & Tucker, A. W. (1960). Integer Programming Formulation

of Traveling Salesman Problems. Journal of the ACM (JACM), 7(4), 326–329.

https://doi.org/10.1145/321043.321046

Misra, S., Saxena, D., Kapadi, M., Gudi, R. D., & Srihari, R. (2018). Short-Term Planning

Framework for Enterprise-wide Production and Distribution Network of a Cryogenic

Air Separation Industry. Industrial and Engineering Chemistry Research, 57(49),

16841–16861. https://doi.org/10.1021/acs.iecr.8b05138

Mitrović-Minić, S., & Laporte, G. (2006). The pickup and delivery problem with time

windows and transshipment. INFOR: Information Systems and Operational Research,

121

44(3), 217–227. https://doi.org/10.1080/03155986.2006.11732749

Nazari, M., Oroojlooy, A., Snyder, L. V., & Takáč, M. (2018). Reinforcement Learning

for Solving the Vehicle Routing Problem. Advances in Neural Information Processing

Systems, 31. http://arxiv.org/abs/1802.04240

Paraskevopoulos, D. C., Laporte, G., Repoussis, P. P., & Tarantilis, C. D. (2017). Resource

constrained routing and scheduling: Review and research prospects. European Journal

of Operational Research, 263(3), 737–754. https://doi.org/10.1016/j.ejor.2017.05.035

Perera, J., Liu, S. H., Mernik, M., Črepinšek, M., & Ravber, M. (2023). A Graph Pointer

Network-Based Multi-Objective Deep Reinforcement Learning Algorithm for

Solving the Traveling Salesman Problem. Mathematics, 11(2), 1–21.

https://doi.org/10.3390/math11020437

Qu, Y., & Bard, J. F. (2012). A GRASP with adaptive large neighborhood search for pickup

and delivery problems with transshipment. Computers and Operations Research,

39(10), 2439–2456. https://doi.org/10.1016/j.cor.2011.11.016

Rais, A., Alvelos, F., & Carvalho, M. S. (2014). New mixed integer-programming model

for the pickup-and-delivery problem with transshipment. European Journal of

Operational Research, 235(3), 530–539. https://doi.org/10.1016/j.ejor.2013.10.038

Rasmussen, M. S., Justesen, T., Dohn, A., & Larsen, J. (2012). The Home Care Crew

Scheduling Problem: Preference-based visit clustering and temporal dependencies.

European Journal of Operational Research, 219(3), 598–610.

https://doi.org/10.1016/j.ejor.2011.10.048

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40(4), 455–

472. https://doi.org/10.1287/trsc.1050.0135

Ropke, S., Cordeau, J. F., & Laporte, G. (2007). Models and branch-and-cut algorithms for

pickup and delivery problems with time windows. Networks, 49(4), 258–272.

https://doi.org/10.1002/net.20177

Salama, M., & Srinivas, S. (2020). Joint optimization of customer location clustering and

drone-based routing for last-mile deliveries. Transportation Research Part C:

122

Emerging Technologies, 114, 620–642. https://doi.org/10.1016/j.trc.2020.01.019

Sampaio, A., Savelsbergh, M., Veelenturf, L. P., & Van Woensel, T. (2020a). Delivery

systems with crowd-sourced drivers: A pickup and delivery problem with transfers.

Networks, 76(2), 232–255. https://doi.org/10.1002/net.21963

Song, B. D., & Ko, Y. D. (2016). A vehicle routing problem of both refrigerated- and

general-type vehicles for perishable food products delivery. Journal of Food

Engineering, 169, 61–71. https://doi.org/10.1016/j.jfoodeng.2015.08.027

Stohy, A., Abdelhakam, H.-T., Ali, S., Elhenawy, M., Hassan, A. A., Masoud, M., Glaser,

S., & Rakotonirainy, A. (2021). Hybrid pointer networks for traveling salesman

problems optimization. PLOS ONE, 16(12), e0260995.

https://doi.org/10.1371/journal.pone.0260995

Sun, Y., Ernst, A., Li, X., & Weiner, J. (2021). Generalization of machine learning for

problem reduction: a case study on travelling salesman problems. OR Spectrum,

43(3), 607–633. https://doi.org/10.1007/s00291-020-00604-x

Tiniç, G. O., Karasan, O. E., Kara, B. Y., Campbell, J. F., & Ozel, A. (2023). Exact solution

approaches for the minimum total cost traveling salesman problem with multiple

drones. Transportation Research Part B: Methodological, 168, 81–123.

https://doi.org/10.1016/j.trb.2022.12.007

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. Advances in Neural

Information Processing Systems, 28. http://arxiv.org/abs/1506.03134

Voigt, S., & Kuhn, H. (2021). Crowdsourced logistics: The pickup and delivery problem

with transshipments and occasional drivers. Networks, (April), 1–24.

https://doi.org/10.1002/net.22045

Wolfinger, D. (2021). A Large Neighborhood Search for the Pickup and Delivery Problem

with Time Windows, Split Loads and Transshipments. Computers and Operations

Research, 126, 105110. https://doi.org/10.1016/j.cor.2020.105110

Wolfinger, D., & Salazar-González, J. J. (2021). The Pickup and Delivery Problem with

Split Loads and Transshipments: A Branch-and-Cut Solution Approach. European

Journal of Operational Research, 289(2), 470–484.

123

https://doi.org/10.1016/j.ejor.2020.07.032

Wu, Y., Song, W., Cao, Z., Zhang, J., & Lim, A. (2022). Learning Improvement Heuristics

for Solving Routing Problems. IEEE Transactions on Neural Networks and Learning

Systems, 33(9), 5057–5069. https://doi.org/10.1109/TNNLS.2021.3068828

Xie, F., Potts, C. N., & Bektaş, T. (2017). Iterated local search for workforce scheduling

and routing problems. Journal of Heuristics, 23(6), 471–500.

https://doi.org/10.1007/s10732-017-9347-8

Xin, L., Song, W., Cao, Z., & Zhang, J. (2021). NeuroLKH: Combining Deep Learning

Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman

Problem. Advances in Neural Information Processing Systems, 34, 7472–7483.

http://arxiv.org/abs/2110.07983

Yalçında˘g, S., Matta, A., ¸Sahin, E., & Shanthikumar, J. G. (2014). A two-stage approach

for solving assignment and routing problems in home health care services. In

Proceedings of the international conference on health care systems engineering (pp.

47–59). Springer, Cham. https://doi.org/10.1007/978-3-319-01848-5

Yu, J., & Hoff, R. (2013). Optimal routing and assignment of consultants for Energy

Education, Inc. Interfaces, 43(2), 142–151. https://doi.org/10.1287/inte.1120.0656

Yuan, B., Liu, R., & Jiang, Z. (2015). A branch-and-price algorithm for the home health

care scheduling and routing problem with stochastic service times and skill

requirements. International Journal of Production Research, 53(24), 7450–7464.

https://doi.org/10.1080/00207543.2015.1082041

Zamorano, E., & Stolletz, R. (2017). Branch-and-price approaches for the Multiperiod

Technician Routing and Scheduling Problem. European Journal of Operational

Research, 257(1), 55–68. https://doi.org/10.1016/j.ejor.2016.06.058

Zhang, R., Zhang, C., Cao, Z., Song, W., Tan, P. S., Zhang, J., Wen, B., & Dauwels, J.

(2023). Learning to Solve Multiple-TSP With Time Window and Rejections via Deep

Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems,

24(1), 1325–1336. https://doi.org/10.1109/TITS.2022.3207011

Zheng, J., He, K., Zhou, J., Jin, Y., & Li, C.-M. (2021). Combining Reinforcement

124

Learning with Lin-Kernighan-Helsgaun Algorithm for the Traveling Salesman

Problem. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14),

12445–12452. https://doi.org/10.1609/aaai.v35i14.17476

Zheng, J., He, K., Zhou, J., Jin, Y., & Li, C.-M. (2023). Reinforced Lin–Kernighan–

Helsgaun algorithms for the traveling salesman problems. Knowledge-Based

Systems, 260, 110144. https://doi.org/10.1016/j.knosys.2022.110144

125

Vita

Zefeng Lyu was born on November 21, 1994, in Zhejiang, China. He graduated from

Zhejiang University of Technology with a Bachelor of Science degree in Industrial

Engineering. In 2018, he moved to the United States and began his Ph.D. program at the

University of Tennessee, Knoxville (UTK), majoring in Industrial Engineering with an

Interdisciplinary Graduate Minor in Computational Science. During his studies and work

at UTK, his primary focus was on innovative optimization methods, machine learning, and

reinforcement learning, with applications in logistics, transportation, scheduling and

planning, and infrastructure maintenance. His research findings have been published in

journals such as the European Journal of Operations Research and Computers & Industrial

Engineering.

	Exact Models, Heuristics, and Supervised Learning Approaches for Vehicle Routing Problems
	Recommended Citation

	OLE_LINK5
	OLE_LINK6
	OLE_LINK9
	OLE_LINK10
	Problem_Definition_and_Formulation
	OLE_LINK7
	OLE_LINK8
	Formulation
	MILP-Based_Searching_Algorithm
	Reduced_MILP_formulation
	Neighborhood_Structure
	Shaking_Operator
	Improving_Rules
	Move_evaluation
	Numerical_Experiments
	Synthetic_Instances_Generation
	Result_for_Synthetic_Instances
	Real-life_Instances
	Conclusion

