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Abstract

Consider a complete graph G = (V,E), in which each node is

present with probability pi. We are interested in solving combinatorial

optimization problems on subsets of nodes present with a certain prob-

ability. We introduce the idea of a priori optimization as a strategy

competitive to the strategy of re-optimization, under which the com-

binatorial optimization problem is solved optimally for every one of its

instances. We consider four problems: the traveling salesman problem

(TSP), the minimum spanning tree problem, the vehicle routing prob-

lem and the traveling salesman facility location problem. We discuss

the applicability of a priori optimization strategies in several areas

and show that if the nodes are randomly distributed in the plane the a

priori and re-optimization strategies are very close in terms of perfor-

mance. We characterize the complexity of a priori optimization and

address the question of approximating the optimal a priori solutions

with polynomial time heuristics with provable worst-case guarantees.

Finally, we use the TSP as an example of finding practical solutions

based on ideas of local optimality.

AMS(MOS) Subject Classification. 05C45, 90C27, 60C05, 05-04
Key words. combinatorial optimization, a priori optimization, probabilistic analysis,

heuristics.
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Introduction

This paper is concerned with a specific family of combinatorial opti-

mization problems whose common characteristic is the explicit inclusion of

probabilistic elements in the problem definitions, as will be explained be-

low. For this reason we shall refer to them as probabilistic combinatorial

optimization problems (PCOPs).

There are several motivations for investigating the effect of including

probabilistic elements in combinatorial optimization problems. Among them

two are of particular importance. The first is the desire to define and analyze

models which are more appropriate for those real-world problems in which

randomness is not only present but a major concern, as well. There is a

plethora of important and interesting applications of PCOPs, especially in

the context of strategic planning for collection and distribution services,

communication and transportation systems, job scheduling, organizational

structures, etc. For such applications, the probabilistic nature of the models

makes them particularly attractive as mathematical abstractions of real-

world systems.

The second motivation is interest in investigating the robustness (with

respect to optimality) of optimal solutions to deterministic problems, when

the instances for which these problems have been solved, are modified. In

our case, we confine the investigation to problems on graphs and the per-

turbation of a problem's instance is simulated by the presence or absence of

subsets of the graph's set of nodes.

We next discuss the central theme of this paper, namely the idea of a

priori optimization. In many applications, one finds that, after solving a
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given instance of a combinatorial optimization problem, it becomes neces-

sary to solve repeatedly many other instances of the same problem. These

other instances are usually just variations of the instance solved originally.

Yet, they may be sufficiently different from that original instance to neces-

sitate every time a re-consideration of the entire problem on the part of the

analyst.

The most obvious approach in dealing with such cases is to attempt to

solve optimally (or near-optimally with a good heuristic) every potential in-

stance of the original problem. Throughout the paper, we call this approach

the "re-optimization strategy" and denote it with the Greek letter E. This

approach, however, suffers from several disadvantages. For example, if the

combinatorial optimization problem considered is NP - hard, one might

have to solve exponentially many instances of a hard problem. Moreover,

in many applications it is necessary to find a solution to each new instance

quickly, but one might not have the required computing or other resources

for doing so.

We propose to investigate here a different strategy. Rather than re-

optimizing every potential instance, we wish to find an a priori solution to

the original problem and then update in a simple way this a priori solution to

answer each particular instance/variation. Clearly, the natural questions to

ask are: What is the measure of "effectiveness" of such an a priori solution?

Once such a measure has been defined, how does one find the best a priori

solution? And, how does one update the a priori solution for each particular

problem instance?

The above discussion is general, in the sense that it applies to any com-

binatorial optimization problem. In order to address these questions con-
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cretely, we restrict our attention to a class of network problems. Consider

then a complete graph G = (V, E) on n nodes on which an optimization

problem is defined (for example the traveling salesman problem). If every

possible subset of the node set V may or may not be present on any given

instance of the optimization problem (for example, on any given day, the

traveling salesman may have to visit only a subset S of the nodes in V), then

there are 2" possible instances of the problem - all the possible subsets of

V. Suppose instance S has probability p(S) of occurring. Given a method U

for updating an a priori solution f to the "full-scale" optimization problem

on the original graph G, U will then produce for problem instance S, a feasi-

ble solution tf(S) with value (cost") L(S). (In the case of the TSP, tf(S)

would be a tour through the subset S of nodes and Lf(S) the length of that

tour.) Then, given that we have already selected the updating method U,

the natural choice for the a priori solution f is to select f so as to minimize

the expected cost

E[L ] = E p(S)Lf(S), (1)
scv

with the summation being over all subsets of V. In other words, we would

like to minimize the "weighted average" over all problem instances of the

values L(S) obtained by applying the updating method U to the a priori

solution f.

This choice of a measure of effectiveness for the a priori solution f that

we seek, namely the expected cost (1), gives a reasonable answer to our first

question. But what properties should the updating method U have? The

most desirable property of U would be for Lf(S) to be "close" to the value

of the optimal solution LOPT(S), for every instance S. A less restrictive and

more global property is to require E[Lf] to be "close" to the expected cost
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E[E], over all problem instances, of the re-optimization strategy:

E[s] = E p(S)LopT(S). (2)
scv

In addition, U must be able to update efficiently the solution from one

problem instance to the next.

In the following definitions of the updating methods U, the choices of U

may initially seem arbitrary. But these choices will turn out to be natural

ones. First, for every choice of U we are proposing, the updating of the

solution to a particular instance S can be done very easily. Moreover, these

updating methods are well suited for applications. And finally, we prove in

Section 2 that our a priori optimization strategies coupled with our partic-

ular choices of U are asymptotically very close (we conjecture equivalent)

in terms of performance to the re-optimization strategies under reasonable

probabilistic assumptions.

After this general discussion of the rationale behind the definitions which

follow, we describe informally the problems we are considering.

The Probabilistic Traveling Salesman Problem

The probabilistic traveling salesman problem (PTSP) is probably the

most fundamental stochastic routing problem that can be defined. It is

essentially a traveling salesman problem (TSP), in which the number of

points to be visited in each problem instance is a random variable.

Consider a problem of routing through a set of n known points. On any

given instance of the problem only a subset S consisting of SI = k out of

n points (0 k < n) must be visited. Suppose that the probability that

instance S occurs is p(S). As mentioned above, ideally we might like to re-

optimize the tour for every instance, but in many cases we may not have the

5



III

5.9

I

90

IO0

S

a-priori tour The resulting tour when the points
4,9, and 10 need not be visited.

Figure 1: The PTSP methodology

resources to do so or, even if we had them, re-optimization might turn out

to be too time consuming. Instead, we wish to find a priori a tour through

all n points. On any given instance of the problem, the k points present will

then be visited in the same order as they appear in the a priori tour (see

Figure 1 for an illustration). The problem of finding such an a priori tour

which is of minimum length in the expected value sense is defined as the

PTSP. The updating method U for the PTSP is therefore to visit the points

on every problem instance in the same order as in the a priori tour, i.e. we

simply skip those points which are not present in that problem instance.

The expectation is computed over all possible instances of the problem,

i.e. over all subsets of the vertex set V = {1, 2,... n}. That is, given an a

priori tour r, if problem instance S(C V) will occur with probability p(S)

and will require covering a total distance L(S) to visit the subset S of

customers, that problem instance will receive a weight of p(S)L,(S) in the
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computation of the expected length. If we denote the length of the tour r

by L, (a random variable), then our problem is to find an a priori tour rp

through all n potential customers, which minimizes the quantity

E[L] = E p(S)Lt(S), (3)

with the summation being over all subsets of V.

The Probabilistic Minimum Spanning Tree Problem

The probabilistic minimum spanning tree (PMST) problem is a natural

extension of the classical minimum spanning tree problem. Given a set of n

nodes on a network, a subset S of the n nodes is present on any particular

instance of the problem with probability p(S). We wish to find a priori a

spanning tree through the n nodes which is used as follows: On any given

instance of the problem, the a priori tree is retraced deleting only the nodes

that are not present, provided the deletion of those nodes does not disconnect

the tree. In this way there would be nodes which will not be present but

still are included in the tree. Thus the updating method U is to include all-

nodes in the instance S and also those nodes in V - S which are necessary

to prevent the resulting tree from becoming disconnected. An example of

the PMST can be found in Figure 2. Note that the problem has some

Steinerish properties. This can be illustrated in Figure 2, where node 2 is

kept on the tree in order to preserve connectness. The problem of finding an

a priori spanning tree of minimum expected length over all possible problem

instances is the PMST problem.

The Probabilistic Vehicle Routing Problem

Consider a standard VRP but with demands which are probabilistic in

nature rather than deterministic. The problem is then to determine a fixed
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A priori tree The resulting tree when the
nodes 2,7,9 need not be
visited.

Figure 2: The PMST methodology

set of routes of minimal expected total length, which corresponds to the

expected total length of the fixed set of routes plus the expected value of

extra travel distance that might be required. The extra distance will be

due to the possibility that demand on one or more routes may occasionally

exceed the capacity of a vehicle and force it to go back to the depot before

continuing on its route.

The following two solution-updating methods can be defined. Under

method a the vehicle visits all the points in the same fixed order as under

the a priori tour, but serves only customers requiring service during that

particular problem instance. The total expected distance traveled corre-

sponds to the fixed length of the a priori tour plus the expected value of

the additional distance that must be covered whenever the demand on the

route exceeds vehicle capacity. Method b is defined similarly to a with the

sole difference that customers with no demand on a particular instance of
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(i) An apriori route through 6customers (each with
a demand of zero or one unit) by a vehicle of
capacity 2

Class A Class 8

(ii) The two strategies when only the second, third '
and fifth customers have a non-zero demand. 

Figure 3: The PVRP methodology

the vehicle tour are simply skipped. An example of the PVRP under both

methods can be seen in Figure 3.

The Traveling Salesman Facility Location Problem

We are given a set of n nodes (customer locations) on a network. Each

day a subset S of customers make a request for service with probability

p(S). By a specific time of each day, a service unit receives the list of

calls for that day and starts a traveling salesman tour using the underlying

network that visits all the customer locations in the list. The objective is to

find an optimal location i for the service unit, so that the expected distance
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traveled

E[YTSFLP(i)] = E p(S)LopT(S U i)
sev

is minimized. This problem is called the traveling salesman facility location

problem (TSFLP).

The difficulty of having to compute the optimal tour for every instance

can be overcome by using an a priori tour p and then follow the PTSP

approach described before, i.e. skip customer locations with no demand.

The problem is then to find a node ip and an a priori tour rp to minimize

the expected distance traveled using the PTSP approach, i.e. to minimize

h(i, r)- p(S)Lr(S U i). (4)
SCV

The problem of finding simultaneously an optimal location ip and an opti-

mum a priori tour rp is called the probabilistic traveling salesman facility

location problem (PTSFLP).

Throughout the paper the emphasis is on concepts and results rather

than detailed derivations. To keep the length of the presentation within rea-

sonable limits, all but the more important theorem proofs are only sketchily

outlined, with appropriate references given for interested readers. In Section

1 we review briefly the related research and we also outline potential areas

of application for the idea of a priori optimization. In Section 2 we prove

that the a priori strategies we are proposing are asymptotically very close

to the re-optimization strategies for all the problems we have defined. This

gives an indication of the importance of the a priori optimization idea. In

Section 3 we address the complexity of finding the best a priori solutions

for all PCOPs we have defined. In Section 4 we examine the question of

finding good approximations from a theoretical point of view and in Section
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5 we use the PTSP as an example to illustrate how to find good practical

approximations. The final section contains some concluding remarks.

1 Literature Review and Applications

During the last decade combinatorial optimization has undoubtedly been

one of the fastest growing and most exciting areas in mathematical program-

ming. Needless to say, the related scientific literature has been expanding

at a very rapid pace. Examples of particular relevance to this paper are the

three excellent review volumes on the traveling salesman problem [Lawler et

al. (1985)], on routing and scheduling [Bodin et al. (1983)], and on vehicle

routing [Golden and Assad (1988)], each of which offers several hundreds of

references.

Research at the interface between probability theory and combinatorial

optimization spans a period of over 30 years and in recent years has been

at the center of much activity. The dominant trends of this interplay which

are relevant to this paper can be summarized as follows:

Probabilistic analysis of combinatorial optimization problems in

the Euclidean plane.

Research in this area was initiated by the pioneering paper of Beardwood,

Halton and Hammersley (1959). After a period of more than 15 years and

motivated by the significant advances in theoretical computer science, Karp

(1977) used their main result to propose a partitioning heuristic, which con-

stitutes an -approximation algorithm for the TSP in the Euclidean plane.

In the last decade, the asymptotic properties of many combinatorial op-

timization problems in the Euclidean plane have been investigated. The
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most general analysis in this direction is due to Steele (1981), who devel-

oped the theory of subadditive Euclidean functionals to obtain very sharp

limit theorems for a broad class of combinatorial optimization problems.

Probabilistic analysis on problems with random lengths.

In the last decade there have been numerous papers dealing with the be-

havior of combinatorial optimization problems when the costs involved are

taken from a probability distribution. Interest in this area intensified after

the pioneering paper of Karp (1979) on the TSP and the attempts to explain

probabilistically the success of the simplex method for linear programming.

Of particular relevance to this paper are the papers on the minimum span-

ning tree problem by Frieze (1985) and by Steele (1987).

Probabilistic combinatorial optimization problems.

In contrast to their deterministic counterparts, the professional literature on

PCOPs to date is very sparse. Jaillet (1985), (1988) introduced the PTSP,

examined some of its combinatorial properties and proved asymptotic theo-

rems in the plane. A summary of these results as well as a discussion on the

applications of the PTSP and the PVRP are contained in Jaillet and Odoni

(1988). Bertsimas (1988) introduced the framework of a priori optimization

and studied the problems considered in this paper.

Except for an isolated result in the 1970's [Tillman (1969)], VRPs with

- stochastic elements in their definitions have received attention only recently.

Stewart and Golden (1983), Dror and Trudeau (1986), Laporte and Louveau

(1987) and Laporte et al. (1987) use techniques from stochastic program-

ming to solve optimally small problems and find bounds for them. The

definitions of these problems are different from the ones we are considering

in this paper.
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The traveling salesman facility location problem has been considered

by Eilon et al. (1971) and Burness and White (1976), where heuristic ap-

proaches are proposed. Recently in a series of papers, Berman and Simchi-

Levi (1986, 1988a, 1988b) and Simchi-Levi and Berman (1988) solved the

problem on a tree network and proposed a heuristic of relative worst error 

for the general network case as well as for the Euclidean and the rectilinear

metric. Bertsimas (1989a) improved on their results by proving that the

relative worst error is ½(1 - p), where p is the coverage probability.

To our knowledge, the PMST problem has never been examined before

in the literature despite its intrinsic interest as well as its applicability.

A final remark has to do with the relationship between network reliability

theory and the class of PCOPs we are considering. In network reliability

theory [see for example Colbourn (1987)] the nodes are usually assumed

to be always reliable and the type of questions addressed are about the

existence of paths among pairs of nodes. In the class of PCOPs the type of

questions we are addressing as well as the motivation for their definition are

different.

As noted earlier, PCOPs could prove highly useful in many application

contexts in which the explicit consideration of randomness is essential. For

instance, the PTSP arises in practice whenever a company, on any given

day, is faced with the problem of collections (deliveries) from (to) a random

subset of some known global set of customers in an area and does not wish

to or, simply, cannot redesign the tours from scratch every day. Examples in

this category include a "hot meals" delivery system described by Bartholdi

et al. (1983), routing of forklifts in a cargo terminal or in a warehouse

and, interestingly, the daily delivery of mail to homes and businesses by

13



Ill

postal carriers everywhere. In fact it was this last application that led to

the initial formulation of the PTSP by the third author. Jaillet and Odoni

(1988) describe in considerable detail an application in a strategic planning

context in which a package distribution company has decided to begin service

in a particular area. After carrying out a market survey and identifying a

set of potential major customers who during any single time period have a

significant probability of requiring a visit, the company wishes to estimate

the resources necessary to serve these customers. The PTSP then provides

a model for computing approximately the expected amount of travel that

will be required per time period and, by implication, the number of vehicles,

drivers, etc.

In a non-routing context, PTSP models can also be of interest in many

situations in which an ordering of entities of any type has to be found and

that sequence has to be preserved even when some of the entities may be

absent. One such example can be given from the area of job-shop scheduling:

Consider the problem of loading n jobs on a machine at which a changeover

cost is incurred whenever a new job is loaded. With any given ordering of the

n jobs on the machine, we can then associate a total changeover cost. Any

given ordering of the n jobs may also impose specific long-term requirements

on the job-shop, such as a set of tasks to be performed before and after the

processing of the jobs on the machine. These requirements may often be

difficult to modify on a daily basis so that, if on a given day some jobs need

not be processed, the relative ordering previously specified for the remaining

jobs is nonetheless left unmodified. The PTSP is again relevant in analyzing

such situations.

PVRPs are of course "constrained" cases of PTSPs and thus arise in the
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same collection and distribution contexts as PTSPs, whenever the vehicle

capacity Q becomes a practically significant issue. The capacity Q may be

expressed in terms of a maximum allowable vehicle load, maximum number

of stops, maximum distance per tour or some other physical or statutory

limitation. For instance, in the case of the delivery of cash by a bank to a

set of automatic teller machines spatially distributed throughout a city, Q

might be the upper bound on the amount of money that a vehicle might carry

for safety reasons. The uncertainty in this problem is due to the fact that

each machine may or may not require a visit during any given time period,

depending on the amount of money it dispenses. Similar applications of the

PVRP can be found in most problems that combine inventory and routing

considerations. -

Probabilistic traveling salesman location problems arise similarly in the

complex but also very common contexts in which facility location, rout-

ing and, possibly, inventory-related decisions must be made simultaneously.

Note the difference between these problems and the classical "median" (or

"minisum") and "center" (or "minimax") problems in facility location the-

ory. In the case of (P)TSFLPs, once a facility is located, demands are visited

through tours; therefore, the facility location problem must be "central" rel-

ative to the ensemble of the demand points, as ordered by the (yet unknown)

tour through all of them. By contrast, in the classical problems the facility

(or facilities) must be located by considering distances to individual demand

points, thus making the problem more tractable.

Examples of applications of the PMST are less obvious, but important

nonetheless. The problem arises in many cases where a set of points must be

connected through an underlying tree structure, with only portions of that
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structure being activated with each problem instance. For example, in a

communications context the active demand points would be centers that seek

to communicate with each other on each problem instance and the activated

portion of the underlying communications network would be the minimum

tree necessary to establish communications between every possible pair of

active demand points. Similar examples can be drawn from transportation

and from circuit design.

A more unusual application of the PMST problem is in the area of orga-

nizational structures. For instance, a rather intriguing paradigm might be

the following: Suppose the n points that we wish to interconnect represent

our agents or spies in a foreign country. They will undertake in the future a

series of missions, each mission involving a different subset of agents. A mis- 

sion, in our context, is an instance of the problem. We are looking for an a

priori organizational structure in which, for obvious reasons, each agent will

know only the people immediately above or below him/her in the structure;

this implies a spanning-tree-like structure. The probability pi associated

with point i is the a priori probability that agent i will have to participate

in any random mission undertaken by the network. For any given mission,

only that part of the organization which is necessary to interconnect all the

agents participating in that particular mission is activated. The distance

between points i and j is interpreted as the cost or risk of exposure incurred

when agents i and j must communicate or work with each other. Given pi

for i = 1, 2, .. ., n and the distance matrix for all possible pairs (i,j), the

PMST gives the organizational structure which, in the expected value sense,

minimizes the risk of exposure of the network on a random mission.
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2 Asymptotic comparison of re-optimization and

a priori optimization

In this section we characterize the asymptotic behavior of the re-optimization

and the a priori strategies for the four problems we have defined in the in-

troduction, if the locations of the points are uniformly and independently

distributed in the Euclidean plane. This comparison is important in order

to assess the promise and potential usefulness of the a priori strategies.

Let X( n) = (X1,...,Xn) be n points uniformly and independently dis-

tributed in the unit square. Let LSP, LMST, LSTEINER, LRpn be the

length of the TSP, MST, STEINER tree and the VRP (the depot being the

point (0, 0) and the vehicle capacity being Q) defined on X( n) respectively. *-

Let E[s],,S E[PST], E[ 2 ,Sp], E[EsFLp(i)] be the

expectation of the TSP, MST, STEINER tree, VRP and TSFLP solutions

obtained under the re-optimization strategies defined on X( n ). Note that

for the case of the TSFLP the expectation depends on the node i selected

as the server's location node.

Let E[LPTSP], E[LPMST], E[LPVRPa], E[LPRPb]), E[LTSFLp(i)] be the ex-

pectation of the a priori strategies, i.e. the expected length of the optimal a

priori solution to the PTSP, PMST, PVRP under updating methods a and

b, and PTSFLP defined on X( n) .

It is well known that we can characterize very sharply the solutions to

the deterministic problems.

Theorem 1

With probability 1 there are constants [Steele (1981)] PTSP, I3MST, STEINER,
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such that

lim =PTSP, lm = /3MST, lim LSTElNER = ISTEINER-n-coo " n-=oo Vn n-o 

For the VRP [Haimovitch and Rinnooy Kan (1985)]

lim QnE[LvRP = 2E[r], if Qn = (V),
n-OO n

lim RP] = 3TSP, if Qn = (V/
n--oo a/n;

where E(r) is the expected radial distance from the depot to a point in X( n).

0

We now characterize the expectation of the re-optimization strategy for

each problem assuming that each of the n points is present with the same

constant probability p, which is called the c6verage probability. We remark

that in the following theorem the expectation is taken over all the possible

2n instances of the problem and the probability 1 statement refers to the

random locations of the points.

Theorem 2 (Bertsimas (1988), Jaillet(1985))

With probability 1

lim E[EsP] = 3Tspv, lim E[ = MST/T]n-oo / n--oo a

E[En

lim E[ESTEINERV

lim QnE[RP] = 2E[r]p, if Qn = o(v),
n--OO n

E[I RPlim E[RP] = TSPVA, if Qn = ()

lim E[SFLP ()] = TSP Vf, i,n-+oo n

18



where E(r) is the expected radial distance.

Proof

The main idea in the proof is that the principal contribution to E[E ' ] comes

from the sets S with SI E [Lnp(1 - E)J, rnp(1 + e)l]. The reason is that the

number of points present is given by a binomial distribution with parameters

n,p and hence the probability mass function is concentrated within e of

np. In this range of ISI we can apply theorem 1 to obtain theorem 2.

We illustrate the idea with respect to the TSP re-optimization strategy in

appendix A. O

Intuitively theorem 2 means that solutions under the re-optimization

strategy behave asymptotically similarly to those of the corresponding com-

binatorial optimization problems but on np rather than n points. The

asymptotic behavior of the VRP re-optimization strategy suggests that the

strategy behaves like the TSP re-optimization strategy if the capacity Q is

large, a property which is quite intuitive. If the capacity Q is small, the ve-

hicle has to make many trips back to the depot, so that the radial collection

term (2E[r]np/Qn) rather than the routing component dominates. For the

TSFLP re-optimization strategy we observe that asymptotically the loca-

tion component of the problem is unimportant, since the same asymptotic

behavior is observed irrespectively of the location decision i.

We next characterize asymptotically the a priori optimization strategies.

Theorem 3 (Bertsimas (1988), Jaillet(1985))

With probability 1

lim E[LTSP = TsP(), lim E[LMST] = MST(P),
n-loo Vn n-oo n

lim QE[LvP] = 2E[r]p, if Q, =o(V~),
n-"00 fn
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lim E[LfRPa] = PTSP if Qn = (V/,
n--*oo V/

lim QnE[LvRPb] = 2E[r]p, if Q, = o(v/),
n--oo n

lim E[VRPb] = PTSP(P), if Qn = (/Vi),
n--oo

ur E[LPTSFLP(i)] = PTSp(p),Vi,limI

where E(r) is the expected radial distance.

Sketch of the proof

We first prove that the PTSP and the PMST belong to the class of subaddi-

tive Euclidean functionals whose asymptotic behavior has been characterized

by Steele (1981). Their value is almost surely asymptotic to ci, where c *

depends on the functional.

For the PVRP and the PTSFLP we find tight upper and lower bounds

from which we can characterize the asymptotic behavior. For the PVRP

under method a, for example, we prove that

2p 2 p d(O, i)max 3 E d(O, i), LTSP) < E[LpvRpa]< LTSP(- )+2(2+Q)=l ( - )

where d(O, i) denotes the distance between the depot and node i.

In order to illustrate the techniques we are using, we present in detail

the argument for the PTSP in appendix B. O

Comparing theorems 2 and 3 we can observe that the a priori and

re-optimization strategies have very close asymptotic performance almost

surely. The result may be considered surprising in view of the fact that a

priori strategies require the computation of only one solution and are very

easily updated, while re-optimization strategies require the computation of

20



an optimal solution for every problem instance. Yet, a priori strategies

behave asymptotically equally well on average with re-optimization strate-

gies on Euclidean problems. In addition, we conjecture that a priori and

re-optimization strategies have exactly the same asymptotic performance

almost surely, i.e. /TSP(P) = IfrSPV/ and PMST(P) = MSTV-.

3 The complexity of a priori optimization

In the previous section we showed that, in terms of performance, a priori

strategies are attractive compared with re-optimization strategies. In this

section we address the question of how difficult it is to find the optimal a

priori solutions from a computational complexity perspective. _

We first introduce the decision version of a PCOP. Given a complete

graph G = (V, E), IV = n, a cost d: E - R, a vector (pi,...,p,) of the

probabilities of presence of the vertices and a bound B, does there exist

a structure f (a tour, a tree, a route, a tour and a vertex for the PTSP,

PMST, PVRP, PTSFLP respectively) such that

E[Lf] < B?

We can then characterize the complexity of a priori strategies as follows:

Theorem 4 (Bertsimas (1988))

The decision version of all four PCOPs is NP - complete.

Sketch of the proof

For the cases of the PTSP, PVRP and PTSFLP we only need to show

membership in NP, since, as noted earlier, these three problems are gener-

alizations of well known NP - complete problems. Membership in NP is

seen to hold, since given a solution f we can compute E[Lf] in O(n 2 ). For
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example for the PTSP if the tour is = (1, 2, .. ., n, 1) then by looking at

the probability of every link being present we can derive (Jaillet (1988)) the

following expression:

n n j-1 n j-1 n i-1

E[L] = E d(i,j)pipj II (-pk)+E d(j,i)pipj II (l-pk) II (l-Pk)
i=l j=i+l k=i+l j=l i=1 k=j+l k=1

(5)

The case of the PMST is more difficult, because the PMST problem is not

a generalization of a NP - complete problem, since the MST is solved by

a greedy algorithm in O(n 2 ). Membership in NP holds because of the

following closed form expression for the expected length E[LT] of a given a

priori tree T (Bertsimas (1989b)):

E[LT] = c(e){1- (1 -pi)}{l- II (-pi)),
eET iEKe iEV-Ke

where Ke, V - Ke are the subsets of nodes contained in the two subtrees

obtained from T by removing the edge e from T.

We have proved the completeness of the PMST by a reduction from the

problem EXACT COVER BY 3-SETS, which is NP - complete [see Garey

and Johnson (1979)]. For details see Bertsimas (1988). 0

Thus, although we can compute efficiently the expected length of any

given a priori solution to a PCOP, it is still NP - hard to find an optimal

a priori solution.

4 Theoretical approximations to optimal a priori

solutions

In the previous section we found that it is still NP- hard to obtain optimal

a priori solutions to the PCOPs. In this section we address the question of
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approximating the optimal a priori solutions with polynomial time heuris-

tics, whose worst case behavior we can characterize.

The first natural question to address is how heuristic approaches to the

deterministic problem perform when applied to the corresponding proba-

bilistic problem. For example, what is the performance of the well-known

Christofides heuristic for the TSP [see Larson and Odoni (1981)] if applied to

the PTSP? In order to find useful bounds for the routing problems (PTSP,

PVRP) we assume below that the triangle inequality holds. We can then

prove the following:

Theorem 5 (Bertsimas (1988))

Let LD be the length of the optimal solution to the deterministic TSP, MST

or VRP and let LH be the length of a heuristic solution to the same prob-

lem. Let p be the coverage probability and E[Lp] the expected length of the

optimum a priori solution to the corresponding PCOP. If the heuristic has

the property that

LH < c, then E[LH] < C
LD E[Lp] - p

Sketch of the proof

In all cases we show that E[Lf] _ Lf (here we use the triangle inequality in

the case of the two routing problems). Also E[Lp] > pLp. Combining these

inequalities the result follows. For details see Bertsimas (1988). o

Theorem 5 suggests that if the coverage probability is large then con-

stant guarantee heuristics for the deterministic problem still behave well for

the corresponding probabilistic problem. But if p -- 0 the bound is not

informative and indeed one can find examples with p - 0, np -- oo for

which EL -- oo, that is, even if c = 1, the optimal deterministic solution

is an arbitrarily bad approximation to the optimal a priori solution. As an
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indication of the rate at which the ratio ELDI tends to infinity, we can prove

the following:

Theorem 6 (Bertsimas (1988))

For the PTSP with triangle inequality

E[Le ]

We next investigate the existence of constant guarantee heuristics, for the

routing problems we are considering. We restrict our attention to Euclidean

problems and examine the spacefilling curve heuristic, first introduced by

Kakutani (see "The collected work of S. Kakutani", vol II, p.444, 1966) and

proposed by Platzman and Bartholdi (1982) for the Euclidean TSP. The

spacefilling curve heuristic can be described as follows: ,

1. Given the n coordinates (zi,yi) of the points in the plane compute

the number f(zi,yi) for each point. The function f : R2 -+ R is

called the Sierpinski curve [for details on the computation of f(z, y)

see Bartholdi and Platzman (1982).].

2. Sort the numbers f(zi,yi) and visit the corresponding initial points

(zi, yi) in that order, producing a tour T SF.

The key property of the spacefilling curve heuristic that makes its analysis

for the PTSP possible is the following: Consider an instance S of the prob-

lem. Suppose the spacefilling curve heuristic produces a tour TSF(S) if we

run the heuristic on the instance S. Consider now the tour rsF produced

by the heuristic on the original instance of the problem, i.e. when all points

are present. What is the tour that the PTSP strategy would produce in

instance S if the a priori tour is TSF?
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The answer is precisely TSF(S), because sorting has the property of pre-

serving the order in which the points in S will be visited by the spacefilling

curve, which is exactly the property of the PTSP strategy as well. Based on

this critical observation we can then analyze the spacefilling curve heuristic.

Theorem 7 (Bertsimas (1988))

For the Euclidean PTSP and PVRP under method b the spacefilling curve

heuristic produces a tour SF with the property

E[LTsF] < E[LsF]= O(log n).
E[L-,,] E[ETSP

_E[L__] -E[Lr] = Q + O(log n).
E[LPVRPb] E[EVRP]

Sketch of the Proof:

In Platzman and Bartholdi (1983) it is proven that the length of the space-

filling curve heuristic satisfies:

LISF = O(log n).
LTSP

Consider an instance S of the problem. If the spacefilling curve heuristic

is applied to the instance S, it will similarly produce a tour TSF(S) with

length

LTSF(S) = O(log IS) = O(log n).
LTsp(S)

But since rSF(S) is the tour produced by the PTSP strategy at instance S

then

E[LSF] $scv P(S)LrF(S) < scv p(S)O(log n)LTSP(S)

E[ETSP] - SCV p(S)LTSP(S) ZSCV P(S)LTSP(S)

Note that this result does not depend on the probabilities of points being

present. It holds even if there are dependencies on the presence of the points.
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Observe also that the spacefilling curve heuristic ignores the probabilistic

nature of the problem but surprisingly produces a tour which is globally

(in every instance) close to the optimal. A similar argument holds for the

PVRP under method b. O

As a corollary to theorem 7 we can compare the PTSP and the re-

optimization strategies from a worst-case perspective. For the Euclidean

PTSP, since E[Lp] < E[L.SF],

E[4LP] = O(log n).
E[XTSP]

Platzman and Bartholdi (1983) conjecture that the spacefilling curve heuris-

tic is a constant-guarantee heuristic. Unfortunately Bertsimas and Grigni

(1989) refuted the conjecture by exhibiting an example in which the O(log n) '

bound is tight.

For the PTSFLP for which node i needs a visit with probability pi we con-

sider the following location heuristic:

Spacefilling Curve Location Heuristic

1. Given the coordinates of the locations of the customers use the space-

filling curve heuristic to find the a priori tour TSF.

2. Compute h(i, TSF) with a vector of probabilities (Pl,... , Pi-1, 1, pi+l,... ,Pn),

for every node i.

3. Select the point iSF that minimizes h(i, rSF). Location iSF and the

tour SF are the proposed solutions to the PTSFLP.

Using similar techniques with theorem 7 we can analyze the worst case error

of the heuristic.
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Theorem 8 (Bertsimas (1989a))

If pi = Q(1/ log n) for all i, then

h(iSF, SF) = O(log n), (7)

where i* is the optimal location for the TSFLP. O

The final question concerns the heuristic's running time. Step 1 can be

performed in O(n log n). A straightforward implementation of step 2 can be

performed in O(n 3), since we can calculate h(i, rSF) for each i in O(n 2 ) from

(5) (it is the expected length of the a priori tour r7F). By noticing that the

only difference between calculating h(i, rSF) and h(i + 1, rSF) is due to the

corresponding probability vectors, which differ solely in the ith and (i+ 1)th

position, we can calculate h(i+ 1, rSF) in O(n) given h(i, rSF), since only the

contribution of O(n) distances is different in the two expectations, namely

the contributions of the edges d(i, j), d(i+ 1, j) for j = 1,..., n. Thus, we can

compute h(l, rSF) in O(n 2) and then compute h(i + 1, SF) from h(i, 7SF)

in O(n). The total computation takes O(n 2 ) time. Step 3 clearly takes O(n)

time. As a result, the overall heuristic can be implemented in O(n 2) time.

For the PVRP under updating method a Bertsimas (1988) proposes an

O(n3 ) heuristic which produces a route with expected length 5/2 from the

optimal solution.

5 Practical approximations to optimal a priori so-

lutions

In this section we briefly discuss some of our experience in trying to find use-

ful heuristic solutions to PCOPs using the a priori optimization approach.
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We use the Euclidean PTSP as an example, since we have characterized

sharply its asymptotic behavior, so that for random problems we know that

the expected length of the optimal solution would be close to f¥sPsV.

This can be used as a "benchmark" to compare the performance of various

heuristics.

In our numerical experiments we have obtained near-optimal solutions

to Euclidean PTSPs by means of two different types of heuristics. The first

of them is the spacefilling curve heuristic, while the second is based on seek-

ing local optimality. Our implementation of the spacefilling curve heuristic

uses heapsort for the sorting part of the procedure, and thus requires only

O(n log n) time to find a nearly optimal tour rSF. Interestingly, this is even

faster than the computation of the expected length of that tour, E[LISF], 

which requires O(n 2 ) time. Since the computed tour rSF is independent of

the probabilities pi, the spacefilling curve heuristic can be used when these

probabilities are not all the same, or even when they are not accurately

known.

For problems involving equal probabilities pi = p, and not more than a

few hundred nodes, we have had considerable success with two separate it-

erative improvement algorithms based on the idea of local optimality. Given

a tour r and a set S(r) of tours which are minor modifications of r, the tour

Jr is said to be locally optimal if

E[L.] < min E[L,]. (8)

The iterative improvement algorithm works by choosing an initial tour To,

then testing to see if r0 is locally optimal. If a better tour rl is found, it

then replaces To and is itself tested. Since there are only a finite number of
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possible tours, this procedure must eventually converge to a locally optimal

tour r.-which, it is hoped, will be a nearly-optimal solution to the problem.

Lin (1965) used an iterative improvement algorithm for the TSP based on

what he called the A-opt local neighborhood. For a given tour r consisting

of n links between nodes, the neighborhood S,(r) consists of those tours

which differ from r by no more than A links. For A = 2 this is the set of

tours which can be obtained by reversing a section of r; for A = 3 it is the

set of tours obtainable by removing a section of r and inserting it, with or

without a reversal, at another place in the tour. We have implemented both

the 2-opt and 3-opt TSP algorithms, since when p is greater than about 0.5

the TSP solutions provide useful starting points for our more general PTSP

routines. 

Unlike the TSP case, the expected length E[L,] in the PTSP sense de-

pends on all (n 2 - n)/2 independent elements of the distance matrix. We

cannot, therefore, speak of some links leaving and others entering the tour;

rather, it is only the weight given to each of the d(i, j) by equation (5) which

changes. We can still use Lin's A-opt neighborhoods, but the computation

of the changes in expected length becomes considerably more complicated.

It takes O(n 2) time to calculate the change in expected length from r to

an arbitrary tour in S 2(r), so it would seem at first that testing for even

2-p-optimality (referred to heretofore as "2-p-opt") would take O(n 4) time.

We can, however, reduce this to O(n 2) if we examine the tours in the proper

sequence and maintain certain auxiliary arrays of information as the com-

putation proceeds.

Another neighborhood we tried consists of moving a single node to an-

other point in the tour, rather than reversing an entire section. The corre-
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sponding neighborhood, which we call the 1-shift neighborhood, has roughly

twice as many members as S2, it is a subset of S3, and yields much better

results than S2 in our experiments.

A summary of the behavior of each of the heuristics we have used is

shown in Figure 4. The spacefilling curve solutions were used as starting

positions for the 2-p-opt and 1-shift algorithms; this greatly reduces the

amount of work required and does not affect the results for small p. When p

is large, however, the effect on the 2-p-opt results is somewhat detrimental.

The 2-opt and 3-opt TSP algorithms were started from random positions-

note that near p = 1, 2-opt gives significantly better results than 2-p-opt

because of the different starting positions. The more powerful 3-opt and 1-

shift algorithms do not seem to suffer from this effect: 3-opt gives excellent

results for large p regardless of the starting position, and for small p the

1-shift solutions are usually optimal. (This conclusion is based on the fact

that the algorithm always converged to the same tour regardless of the

starting position.) The best general approach seems to be to first use the

spacefilling curve algorithm, followed by 3-opt if p is fairly large, and then

finish by applying 1-shift. The threshold point below which 3-opt ceases

to be helpful is uncertain and probably depends strongly on the specifics

of the problem. For problems with more than a few hundred nodes both

the running time and the memory required for the distance matrix and the

auxiliary matrices begin to become excessive. At that point we were forced

to switch to heuristics like the spacefilling curve algorithm which do not

require O(n 2) memory.

In the calculations for Figure 4 results from 10 separate 100-node prob-

lems were averaged in order to minimize the effects of statistical fluctuations.

30



2

1.8

S 1.6
c
a
1 1.4
e
d

E 1.2
x
P 1
e
C

t 0.8a
t

i 0.6
n

0.4

0.2

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability

Figure 4: A summary of results for several PTSP heuristics on 100-node

problems scaled by /'i. Solutions obtained via the 2-opt and 3-opt TSP

algorithms (dashed lines) are shown for comparison. The horizontal line

shows the value of PTSP , .765. The heuristics are 1) random tour, 2)

angular sorting, 3) spacefilling curve, 4) 2-p-opt and 5) 1-shift.
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The locations of the nodes for each problem were chosen from a uniform dis-

tribution in the unit square, and the expected lengths E[L,] were scaled by

V. The asymptotic results of Section 2 would then lead us to expect that

data from optimal tours would follow a horizontal line on the plot. Our

heuristics confirm this behavior except when p is small. The reason is that

if p is small, 100 points are not enough for the expected length of the optimal

PTSP to reach its asymptotic value.

6 Some Concluding Remarks

This paper has introduced the idea of a priori optimization, an approach

which may be competitive, especially in many practical contexts, with the

strategy of re-optimization, under which every possible instance of the prob-

lem is solved to optimality. a priori optimization strategies were applied to

four problems, the TSP, the VRP, the MST and the TSFLP. In all cases

the a priori strategies have potential areas of application in such fields as

communications, transportation, routing, VLSI design, scheduling, strategic

and organizational planning, etc.

It was showvn that for all problems defined here a priori and re-optimization

strategies have on "average" very close asymptotic behavior, a property that

further underscores the importance of studying a priori strategies. We then

characterized the complexity of the two types of strategies and proposed

heuristics for the PCOPs.

Further generalizations of these ideas include stochastic demands which

are not only binary (demand of one unit with a certain probability), but

can be any random variable. This generalization is especially important in
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the case of the vehicle routing problem. Another important extension is

the inclusion of a dynamic component in the problems, i.e. demands are

generated over time according to a stochastic process. In this case queueing

phenomena arise which are interesting in themselves. A step in this direction

is taken in Bertsimas and van Ryzin (1989), in which the authors analyze a

dynamic version of the traveling repairman problem.

The paper has attempted to indicate the wide range of questions that can

be addressed with respect to the idea of a priori optimization, the novel and

very interesting aspects introduced by it and finally the excellent potential

for deriving new results and solution procedures and for applying them to

many important contexts.
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Appendix A: Proof of theorem 2 for the PTSP
Let W be the number of nodes present and

hk - j LTsp (X(n);S)/ ()
S:ISI=k

where LTSp(X(n); S) is the length of the TSP on the set S. Then

E[Ensp(X(n))] = 0n pk(l - p)n-khk =
n

e Pr{W = k)hk-
k=O

Fix e > 0. Then

Pr{W = k}hk + 
k= np(l+e)l+

Pr{W = k}hk+

rnp(l+)l
+ 

k= Lnp(l-e)J
Pr{W = k}hk.

Since LTsp(X(n);S) < c/TS for some constant c, then hk < cvr;. As a

result,

n

PrW= k}hk+ 
k= rnp(+c)l+l

Pr{W = k}hk < cvPr{lW-npl > npe}.

From the Chernoff bound we have

e¢

Pr{lW - npl > np) < 2[(1 + )l+,]np = 26n,

The contribution of the first two terms is then

Pr{W = k}hk + Pr{W = k}hk < 2cV6n, 6<1.
k= np(l+)l+l

For Lnp(l - )J < k < np(l + e) we apply theorem 1 and obtain that with

probability 1

Ve > 0, 3 k : VS, with ISI = > k, -e < LTSP(X(n; S) T <E *

-E <TsP _< E v~~
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k=O

Lnp(l-e)J -1
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-- < -- TSP < .

In addition,

rnp(l+c)

k= Lnp(l-c)

Therefore,

Pr{W = k} = Pr{IW- npl < npe} > 1- 2".

(PTSP - e)(1 - 26") <

rnp(l+c)l

k=lnp(l-c)J
Pr{W = k}) < (TSP + )1,

from which

(, 3 Tsp-e)(1- 26 n) p(1 - E) <

rnp(l+c)

k= Lnp(l -C)J
Pr{W = k}hk/v/In < (Trsp+)ip(+i).

Combining the above bounds, we find that almost surely Ve > O, Vn > kR

(iTrsp-e)(1- 2 5n) p(l - )
E[Ensp(X(n))]

< TSP < (TSP+E)VP(1+ E)+2cbn.

Since e can be arbitrarily small, we let e - 0 and thus we prove the theorem.

0
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Appendix B: Proof of theorem 3 for the PTSP
Let p be the optimum PTSP tour. Clearly E[LTsp] = E[Lnp]. We will

first prove that with probability 1 limno E[Ln (X(n))]/\V exists. In order

to do this we check whether the functional

f(X()) - E[L (X())

is a subadditive monotone Euclidean functional [Steele (1981)].

1. f(X( n )) is Euclidean, because clearly it is invariant under translation,

i.e.

f(x(n) + ) = f(x(-)),

and it is linear, i.e.

f(aX(n)) = af(X(n)).

2. f(X( n)) is monotone, because clearly

f({} U X('n )) > f(X(n)).

3. Clearly f(X(n)) has finite variance, i.e.

Var[f(X(n))] < 0.

4. f(X(n)) is subadditive, i.e. if Qi, i = 1,... m 2 is a partition of the unit

square in m 2 subsquares then

m2

f(X(n) n [O, r]2) < f((n) n rQi) + crm.
i=l

It is not clear that the subadditivity property holds for the PTSP. We will

next concentrate in proving this property. Consider the following algorithm:
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1. For every non-empty subsquare Qi construct the optimal PTSP tour

ri for the points X(n) n rQi.

2. Select arbitrarily a point from x(n) n rQi in each nonempty subsquare

and call it a representative. Consider the representatives as points

always present (black" points).

3. Construct a TSP tour r* among the representatives.

4. The PTSP tours ri and the r* create a closed walk r, which connects

all the points X( ) .

The expected length of the tour r is

m
2

E[Lr] = E f1(X( ) n rQi) + L, *.

i=l

where fl(X(n) nrQi) is the expected length of the tour ri in which one point,

the representative, is always present (it is a "black" node) and all the others

have probability p of being present. If we turn a "black" node into a "white"

node (a node which has probability p of being present), the expected length.

of the closed walk clearly decreases and so it does if we also transform the

closed walk into a tour. The resulting tour has expected length not smaller

than E[Lp], since by definition rp is the optimal PTSP. Then

m
2

E[LP] < Efi(X() n rQi) + L,-
i=1

It is well known [Larson and Odoni (1981)] that

Lo. by/; = brm,

that is, the optimal TSP tour among I points in an area A is less than

bv/A for some constant b. In our case I < m2 and A = r2. The question
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now is to relate fi(X(") n rQi) with f(X(n) n rQi) or equivalently E[Li]

with E[LnIa node is black ]. Without loss of generality assume that the

optimal PTSP through the points X(n) n rQi is (z1,z2,... ,zk ,zl) where

ki = IX(n) n rQi. If we consider z1 to be the "black node", then it is easy

to prove that fi (X(") n rQi) < f(X( n) n rQ) + 2(1 - p) maxl<j<k, zl - zi .

Since maxl<j<k, lzl - zjI < Vr/m we finally get

f(X(n ) n rQi) < f(X( n ) rQi) + 2(1 - p)Vir/nm.

Therefore, we can conclude that

m
2

E[Lp] = f(X(n) n [o, r]2) < f(X ( n) n rQ,) + (b + Vi2(l - p)/p)rm,
i=l

which means that the PTSP is subadditive.

Monotone subadditive Euclidean functionals are almost surely asymp-

totic to X/. In our case there exists a constant 3TSp(P) such that with

probability 1

lim E[Ln (X(n))]// = PTSP(P).

Furthermore, the following bounds on PTSP(p) can be established (see Jaillet

(1985)):

PTSPV < PTSP(P) < min[#TSp, 0.9 2 qp],

i.e. P3TSP(p)'= e(fV). For details about the other problems see Bertsimas

(1988). 0
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