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Drone-aided routing: A literature review

Giusy Macrina∗ Luigi Di Puglia Pugliese ¶

Francesca Guerriero∗† Gilbert Laporte ‡§

Abstract

The interest in using drones in various applications has grown signifi-
cantly in recent years. The reasons are related to the continuous advances
in technology, especially the advent of fast microprocessors, which support
intelligent autonomous control of several systems. Photography, construc-
tion, and monitoring and surveillance are only some of the areas in which
the use of drones is becoming common. Among these, last-mile delivery is
one of the most promising areas. In this work we focus on routing prob-
lems with drones, mostly in the context of parcel delivery. We survey and
classify the existing works and we provide perspectives for future research.
Keywords: Logistics, unmanned aerial vehicles, drones, vehicle routing
problem, survey.

1 Introduction

The continuous technological advances over the past decade have lead to an in-
creasing use of unmanned aerial vehicles (UAVs), commonly known as drones,
in several areas, such as logistics, military operations, public security, traffic
surveillance, and monitoring. In particular, the use of drones has recently gained
popularity when several major online retailers, such as Amazon, Google, DHL,
and Walmart announced the introduction of drones in their parcel delivery pro-
cess (Yoo et al., 2018). In 2013 Amazon revealed “Amazon Prime Air”, the
project of delivering packages to customers with drones up to five pounds in 30
minutes, and conducted the first pilot test in 2016 (www.amazon.com, 2016).
Even if this project is still in development, the company succesfully introduced
drones within a few months of the announcement and stated its ambitious goal
of reaching 50% of zero-impact shipments by 2030. Alphabet Wing is the drone
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delivery service offered by Wing, a Google parent company. The company an-
nounced the starting of pilot tests for its unmanned aircraft in Christiansburg,
Virginia (https://x.company, 2019) and of a trial service in Finland at the end
of 2019 (www.bbc.com, 2019). “Parcelcopter” is the name of the DHL drone,
which was used for the first time in 2013 in Bonn to deliver medicines to the
Deutsche Post DHL Group employees from a pharmacy located on the other side
of the Rhine. In 2014 the Trend Research Team of DHL Customer Solutions and
Innovation published a report on the new trends in delivery processes and anal-
ysed the future role, the potential applications, and the limits of drones usage
in this sector (www.dhl.com, 2014). During the 2013–2015 period, the parcel-
copter capacity has been enhanced, and between January and March 2016,
DHL successfully concluded a three-month test of its third parcelcopter gen-
eration in Bavaria through the winds and snow of the Alps (www.dpdhl.com,
2019). In July 2017, Walmart started testing drone services in Central New
York and at Griffiss International Airport in Rome (www.newyorkupstate.com,
2017). In October 2019, it requested permission from the Federal Aviation
Administration (FAA) to test its own delivery drones for commercial purposes
(https://thewiredshopper.com, 2019).

Other companies have shown interest in using drones for their deliveries. In
March 2015, Zookal, an Australian textbook distributor, tested delivery drones
in Australia, Singapore, and Malaysia (www.cnn.com, 2013). In November 2015,
Royal Mail announced its interest in using both drones and autonomous vehicles
for mail delivering, the countryside areas are likely to be the first to experience
the service (www.telegraph.co.uk, 2015).

In September 2016, UPS started testing drones for two main purposes: com-
mercial deliveries to remote or difficult-to-access locations and internal transport
between or within warehouses. The first test has successfully lead to deliv-
ery of urgent medicine from Beverly, Massachusetts to an island near Boston
(https://pressroom.ups.com, 2016). In February 2017, UPS used an electric van
equipped with a recharging station for battery-powered drones and launched
the drone to drop off a package at a home in Florida (www.usatoday.com,
2017). In 2019, it was granted FAA approval for commercial drone deliveries
(www.supplychaindive.com, 2019). The company announced that it is building
its infrastructure, expanding its services for healthcare customers, and using
drones for new purposes in the future.

In October 2016, Zipline International, an American start-up, launched a
medical service in Rwanda, delivering medicines to remote parts of the country,
with the aim of expanding its business in the U.S. (www.airmedandrescue.com,
2019). In 2019, it extended its UAV medical service in the south of Ghana,
by opening four distribution centers and using 30 drones to distribute vaccines,
blood, and life-saving medications to 2,000 health facilities, serving 12 million
people across the country (www.airmedandrescue.com, 2019).

In 2017, the German auto manufacturer Mercedes-Benz, in collaboration
with the drone manufacturer Matternet, started a pilot project for on-demand
delivery of e-commerce goods (https://media.daimler.com, 2017). This project
explores drone integration with Mercedes-Benz’s commercial vehicles. Its “Vi-
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sion Van” is a driverless vehicle that would be automatically loaded by robots
at a warehouse. Autonomous drones would then be able to take the packages
and depart from the van’s roof to carry them to their final destination.

The use of drones for delivery applications is expected to grow significantly
in the next few years. Indeed, due to the sharp increase in online shopping,
customers are becoming more demanding in terms of speed of delivery service.
Since the number of online stores is exponentially expanding, the time of deliv-
ery may affect the choice of customers’ purchases. However, while fast delivery
is a key factor of success for online retailers, it may prove very expensive. In
addition, customers and companies are becoming increasingly aware of the eco-
logical problems. The reduction of negative externalities (e.g., CO2 emissions,
noise, traffic) has become a worldwide goal. Therefore, introducing green so-
lutions in transportation planning is becoming a crucial strategy. Finding an
efficient, effective, and eco-friendly organization in last-mile delivery now poses
an important challenge for retailers. In this context, drones could prove a good
compromise between finding an innovative and faster solution for last-mile de-
livery and safeguarding the environment.

Contribution and organization of the paper. In this paper we present a
structured literature review of the recent operations research contributions on
drone-aided routing problems (RP-D). We focus on problems arising in parcel
delivery and on the papers published between 2015 and May 2020. In the
last few years, several reviews about the use of drones in logistics have been
conducted (Barmpounakis et al., 2016; Otto et al., 2018; Khoufi et al., 2019;
Coutinho et al., 2018; Rojas Viloria et al., 2020; Chung et al., 2020). Our
survey is different from these works in several aspects.

The aim of the paper of Barmpounakis et al. (2016) is to review the research
dedicated to the use of drones in transportation, with a specific emphasis on
traffic monitoring, freight delivery, road construction and photogrammetry, and
remote sensing. Hence, the focus of this paper is clearly different. Otto et al.
(2018) give an extensive survey of the works addressing the use of drones in civil
applications, with a broader scope than routing. The papers reviewed have been
published between 2001 to 2017 and only a few related to routing problems in
transportation are considered. Coutinho et al. (2018) review contributions in
UAV trajectory optimisation, routing, and task assignment published between
2010 and 2017. In particular, they introduce a taxonomy and identify 20 at-
tributes common to these classes of problems, for helping the readers to find the
similarities among them. The number of reviewed papers which study routing
problems is low and the focus of this paper is clearly different from ours. The
contribution of Khoufi et al. (2019), shares some similarities with our work,
since the authors give particular attention to the RP-D in transportation (i.e.,
extended variants of the traveling salesman problem and vehicle routing problem
for drones). They describe in details the problems studied, their main features,
and provide information on the proposed solution approaches. The survey of
Khoufi et al. (2019) covers the period from 2015 to 2018 and only one paper
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on delivery routing problem, published in 2019, is analyzed. Hence, our work is
complementary to the paper of Khoufi et al. (2019); indeed 46 additional papers
(including 14 published in 2015–2018) are discussed in our review, but are not
described in Khoufi et al. (2019). The recent work of Rojas Viloria et al. (2020)
is aimed at reviewing papers addressing generic routing problem with drones.
The authors classify the literature according to the objectives to be optimized,
the constraints, the solution approaches, the applications area, and the fleet’s
characteristics (i.e., the possibility of using or not a complementary vehicle).
Particular attention is devoted to applications. The papers are grouped in five
classes: military, internal logistics, entertainment, surveillance and data collec-
tion, and parcel delivery. Our work has a different focus: we have selected the
most recent papers, that consider RP-D in the context of parcel delivery (only
29 works on this topic are reviewed in Rojas Viloria et al. (2020)), and we have
analyzed them mainly from an operations research point of view.

Another recent survey is that of Chung et al. (2020), which proposes a de-
tailed review of optimization models and methods for drone-truck combined
operations problems. The authors analyze papers dealing with routing, task as-
signment, area coverage, scheduling, communication, and facility location. They
describe and discuss the main features of the problems, then the methodologies
used to solve them. In conclusion, they identify possible research directions.

Our main purpose is to provide insights into current research trends in the
application of operations research techniques to solve routing problems with
drones and to outline possible future research directions. In particular, we re-
view 63 articles that focus on routing problems for parcel delivery. We consider
works published in scientific journals, conference proceedings, and book chap-
ters. We searched in the following databases: Elsevier, Wiley, Springer, Scopus,
Research Gate, and Google Scholar. We used several keywords such as “routing
with drones”, “traveling salesman problem with drones”, “delivery with drones”,
“vehicle routing with unmanned aerial vehicle”, “delivery with unmanned aerial
vehicle”. We give a new and simple classification of the problems, then provide
a detailed description of their main features, the similarities and differences
among the works, and describe the approaches used to solve them. We also
provide a summary of the main features of the problems in tables, which can
help the researchers compare the works and explore new possible configurations.

The remainder of this paper is structured as follows. In Section 2 we provide
a short description of the technological background and we analyse the most used
classification of drones. We provide a classification and an accurate description
of RP-D and the proposed solution approaches in Section 3. Final remarks are
given in Section 4 along with potential future research directions.

2 Technological background

Several authors have proposed overviews and classifications of UAVs based on
several parameters. In this section we provide a brief description of the main
available classifications.
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2.1 Application area

The application area is one of the characteristic used to classify drones. In-
deed, drones are used in several fields such as monitoring, delivery, agriculture,
wireless coverage, and military applications. Singhal et al. (2018) identify three
main areas of application: civilian, environment, and defence, and then give a
classification, reported in Figure 1.

Figure 1: Potential applications of drones (Singhal et al., 2018).

Civilian. Otto et al. (2018) review and classify the most promising emerg-
ing civil applications of drones: physical infrastructure including energy, roads,
railways, oil and gas and construction, agriculture, transport, security, and en-
tertainment and media. Barmpounakis et al. (2016) focus on drones in trans-
portation and review works describing their use in traffic monitoring, logistics,
road construction, photogrammetry, and remote sensing. The authors write
that transportation is one of the most promising areas of drone applications, but
future uses of drones have to take into account safe navigation above transporta-
tion infrastructures, efficiency in the use of energy, and mining of information
based on predictive analytic.

The use of commercial drones in construction is becoming more common,
especially for aerial photography, surveying, inspections, as well as safety and
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security monitoring activities on construction sites (Tantum and Liu, 2017).
Li and Liu (2019) describe the phases of drone-based construction manage-
ment, namely land surveying, logistics, onsite construction, maintenance and
demolition. They discuss the advantages of using drones, as well as their main
challenges. They recognize many advantages in using drones in the construc-
tion industry, such as avoiding dangerous operations to surveyors who usually
work in a dangerous environment, speeding up the collection and automating
the analysis of terrain data, having positive impacts on environment during
some activities such as land mapping, aerial photography, and aerial surveying,
that are usually performed by gasoline fuelled planes. They also point out that
one of the main limitations in using drones in construction management is cen-
tered on the local regulations surrounding their usage, which may vary from
one region to another. In addition, construction workers can be distracted by
a flying drone during construction processes, professional operators are needed
for guiding drone flights, and the use of drones may be limited by the weather
conditions and their battery life.

Rao Mogili and Deepak (2018) propose a review of drone applications in
precision agriculture for increasing crop productivity. Drones can be used for
several purposes, in particular for spraying chemicals or water on crops, hence
speeding up the process as well as the monitoring of the area. In the latter
case, the monitoring system is composed of a multispectral camera mounted on
a UAV. The UAV flies over the area, while the camera takes pictures and gives
information about geographic coordinates. These pictures are then analysed
by means of some indicators. Based on the results, it is easier to identify the
infected areas where to spray the pesticides, which may reduce the waste of
resources.

In the context of disaster management, drones can become very useful to
save lives, for monitoring the area of disaster as well as for transporting essen-
tial goods for humanitarian logistics. Hence, this is a very promising area of
application. Adams and Friedland (2011) provide a survey of UAV utilization
for imagery collection for disaster monitoring and management. High-resolution
images, collected by UAVs, can be analyzed and used to produce dense surface
models, hazard maps, detailed building renderings and other disaster area char-
acteristics. They analyze the benefits of using UAVs and describe how they have
been employed in several real disaster events such as hurricanes Katrina, Wilma
and Ike, Typhoon Morakot, and earthquakes in L’Aquila (2009), Haiti (2010),
and Japan (2011). Erdelj et al. (2017) focus on the joint role that wireless
sensor networks and multi-UAV systems can play in disaster management, by
providing a detailed review of the relevant research activities and open issues on
this topic. They identify six groups of applications and three unexplored areas
of applications depicted in Figure 2.

When a natural disaster occurs and roads are damaged, drones can be used
as a mode of transportation for essential goods. In fact, since drones are not
road constrained, they are not influenced by road conditions. Hence, on the one
hand integrating drones into humanitarian logistics is convenient and efficient,
on the other hand some critical technological factors have to be taken into ac-
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Figure 2: Applications of wireless sensor networks and multi-UAVs in disaster
management (Erdelj et al., 2017)

count. In fact, drones have a limited payload and a limited flight time. Kim
et al. (2019) develop a stochastic facility location model for integrating drones
in humanitarian logistics, which takes into account the uncertainty on char-
acteristics of drone operating conditions. In particular, they study the energy
consumption and the uncertain factors affect the battery life. They also propose
a fast algorithm to solve the problem. Recently, Glock and Meyer (2020) study
and solve the problem of managing the mission planning after a disaster in order
to coordinate emergency response teams, by using drones for fast mapping the
area. Other interesting scientific contributions on the use of drones in disaster
management are the papers by Restas (2015), Erdelj et al. (2015), Oubbati et al.
(2019), Aiello et al. (2020), Akrama et al. (2020), Ejaz et al. (2020), and Park
et al. (2020).

The use of drones for monitoring and surveillance activities in civilian appli-
cation is very common. Vehicles or subjects tracking, traffic management or fire
detection are only some of the possible applications. Surveillance activities can
occur in indoors environments (Raja and Pang, 2016; Chakrabarty et al., 2016),
in large outdoor environments such as air traffic monitoring (Kim and Sivits,
2015), maritime monitoring (Jeon et al., 2019; Suteris et al., 2018), ground-
traffic monitoring (Roudet et al., 2016; Sutheerakul et al., 2017; Barmpounakis
and Geroliminis, 2020) or, in general, for target tracking (Zorbas et al., 2013,
2016; Di Puglia Pugliese et al., 2016; Zhen et al., 2019).

Entertainment is another interesting civilian area in which drones can be
used. Recently, some authors focused on the use of drones for filming sports
events (see Natalizio et al. (2013), Di Puglia Pugliese et al. (2017), Natalizio
et al. (2020)).
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Environment. The use of drones in environmental actions, such as observing
the effects of climate change, controlling air quality, managing national parks,
and monitoring different ecosystems is becoming very common. Smith (2015)
analyses the use of drones in environment management by using several inter-
national examples. Indeed, drones for monitoring destructive activities have
been used by the World Wildlife Fund in Africa, as well as in Brazil by the
environmental police to monitor deforestation in the Amazon.

Monitoring air quality using small sensors on-board a UAV is becoming very
common as well as very complicated, for several reasons, such as power consump-
tion and weight constraints, propeller effect and the choice of the sensors. Hence,
several studies have focused on the development and evaluation of effective UAVs
for monitoring air quality (see Juan et al. (2015) and Villa et al. (2016)). Other
environmental research applications include soil and crop monitoring. Kavoosi
et al. (2020) study the use of drones for monitoring soil residue cover, with a
focus on crop residue management. Other applications for soil monitoring can
be found in Capolupo et al. (2015) and Corbane et al. (2012). Capolupo et al.
(2015) study the use of drones for the detection of soil contaminated by copper in
the south of Italy, while Corbane et al. (2012) consider their use for the analysis
of the soil surface characteristics in a Mediterranean area. Drones are also used
in hydrology applications for measuring several parameters related to the water
surface. Tauro et al. (2016) study the benefits of using drones in the context of
hydrology, focusing on surface flow measurements. Indeed, drones have several
application potentials for flow measurements in difficult-to-access water envi-
ronments during adverse hydro-meteorological events. Instead, aquatic surface
drones are used in marine environment monitoring for several purposes such as
the monitoring of water quality, coral reefs, fish farms, and so on (Velez, 2015;
Christensen et al., 2015). These drones operate on the surface of the water,
but there exists another class of waterproof UAVs that operate underwater, the
so-called underwater drones. These drones are divided into two main classes:
remote operational vehicles, guided by remote human control, and autonomous
underwater vehicles that operate in the water independently by direct human
input. Both classes of underwater drones are used for studying sea animals.
Some examples are the automatic fish recognition (see Meng et al. (2018)) or
the monitoring and protecting of fishes species (see Dumiak (2017)), and also for
investigating underwater regions as in Spears et al. (2014), where the authors
present an application of underwater UAVs in under-ice conditions, to be used
in polar regions.

Defence. Callam (2015) and Dunn (2013) focus on the use of UAVs in mil-
itary applications. In particular, Callam (2015) traces the history of drone
applications in the U.S. military since 1982, and then discusses the effect of
armed UAVs on military capabilities, limitations, and costs. He concludes that
even if drones improved military capability in terms of helping protect both
soldiers and civilian people, they will never replace humans on the battlefield.
Dunn (2013) discusses the use of drones in military operations, pointing out
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the scarce attention relative to the impacts of this technology on the traditional
notions of safety and security.

2.2 Size

Drone sizes vary from vast fixed-wing UAV, with a wing span of 61 m and a
weight of 15,000 kg, to smart dust (SD) which is composed of several micro-
electro-mechanical systems, with a minimum size of one mm and a weight of
0.005 g (see Hassanalian and Abdelkefi (2017)). Between UAV and SD there
are several types of drones, called micro-drones, such as the micro unmanned
air vehicle (µUAV), the micro air vehicle (MAV), the nano air vehicle (NAV),
and the pico air vehicle (PAV) (see Figure 3).

Figure 3: Classification of drones based on size (Hassanalian and Abdelkefi,
2017).

Other classifications based on the weight are given by Arjomandi et al. (2006)
and Weibel and Hansman (2006) who both identify five categories, whereas
Singhal et al. (2018) divide drones into 10 classes.

2.3 Fuselage

Considering the shape of fuselage, we can identify three configurations widely
used in the design of the UAVs, which are fixed-wing, rotary-wing, and flapping-
wing. Shraim et al. (2018) compare the three types of drones showing their main
features. We compile their classification in Table 1, characterized by eight rows;
the first one (Maneuver) gives the measure of the maximum achievable time
rate of change of the velocity vector at any point in the flight envelope (see
Verbeke and De Schutter (2018)), the row Cost indicates the operational cost,
construction and repairing effort is depicted in the third row. The fourth row
indicates the energy consumption, that is the energy consumed to maintain
the vehicle in the air, the fifth one reports the level of flight safety, which
measures the loss of control’s risk, while the sixth one gives the flight range,
i.e. the distance an aircraft can fly between takeoff and landing. The last two
rows indicate the potential drones’ applications in civil and military sectors,
respectively.
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Table 1: Comparison between rotary wings, fixed wings, and flapping wings,
adapted from Shraim et al. (2018)

Wings
Fixed Rotary Flapping

Maneuver Low High Medium
Cost Low Medium High
Construction and repairing Low Medium High
Energy consumption Low High Medium
Flight safety High Medium Low
Range High Medium Low
Civil applications Low High High
Military applications Medium Medium Medium

Fixed-wing. The main advantage of UAVs with fixed wings is their simpler
structure, which requires less complicated maintenance and repairs. In addition,
they are able to carry greater payloads for longer distances using less power.
One of their main disadvantage is that fixed wings need a constant air movement
during the flight, hence these drones cannot stay stationary. For this reason,
they are not indicated for stationary operations such as monitoring.

Rotary-wing. The most usual rotary winged UAV is the quadcopter (a UAV
with four rotors). However, there are other common UAVs such as the heli-
copter (one rotor), the hexacopter (six rotors) and the octocopter (eight rotors)
(see Shraim et al. (2018)). UAVs with 12 or 16 rotors have been developed
but their use is not very common. Since the blades are in constant movement,
the UAVs with rotary wings do not require air moving over their wings. The
main advantage of these UAVs is that they can take off and land vertically, in a
small place, thus they are more performing in terms of agility of manoeuvring.
They are indicated for operations requiring a high level of precision maneuver-
ing, such as monitoring. The electronic and mechanic structures of the rotary
winged UAVs are more complex than those of the fixed wings, hence the main
disadvantage of these drones is their higher maintenance cost.

Flapping-wing. Flapping wings mimic the birds flying, by using two identi-
cal mechanisms actuated by two motors (see Grand et al. (2008)). They usually
belong to one of three classes, namely, MAV, NAV, and PAV (see Hassanalian
and Abdelkefi (2017)). The design of MAVs wings is inspired from birds, PAV
from insects, while NAV wings are inspired from very small birds and huge in-
sects. The design and technology of flapping wings are more complex compared
with those of fixed and rotary wings, due to their complex aerodynamics. Their
operational costs are overall high and their flight time endurance is reduced be-
cause of the extreme power needed for the flapping technology. However, since
flying with flapping wings yields unique maneuverability advantages when the
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size of UAVs is reduced, their interest among researchers is rapidly increasing.

Hybrid. Recently, some researchers have started to project hybrid UAVs
which combine fixed-, rotary- and flapping-wing systems. The fixed or flapping-
wing MAV is an example of a UAV that uses fixed wings for lift and flapping
wings for propulsion (see Hassanalian and Abdelkefi (2017)).

2.4 Propulsion system

The propulsion systems may be classified into 10 categories, namely reciprocat-
ing piston engines, wankel rotary engines, propeller-based systems, gas turbine
engines, rocket propulsion, electric motor-based systems, battery-based systems,
proton exchange membrane fuel cell, photovoltaics, ultracapacitor (Griffis et al.,
2009). Here, we focus on the most common and used types: the gas turbine,
the electric motor-based and the battery-based propulsion systems.

Gas turbine. The gas turbine, commonly known as combustion turbine, is an
internal combustion engine that generates chemical energy from fuel and con-
verts it into mechanical energy. Gas turbine engines are widely used and their
reliability is largely proven. However, this mechanism is very heavy. Recently,
a new concept of microturbine engines has been developed. Thus, several small
UAVs use a gas microturbine engine, especially in manufacturing. Among the
advantages of gas microturbines, we note their high power density and thrust
capability. However, they are expensive, loud and complex. Gas turbine are typ-
ically used in fixed and rotary wing drones (Hassanalian and Abdelkefi, 2017).

Electric motor. Electric motors use electricity to create rotational motion.
For electric propulsion systems, electric motors are used as a power plant to
drive propeller blades for propulsion; all that is needed is a continuous source
of electricity. On the one hand, electric motors which are conceptually very
simple, have low costs due to economies of scale, require low maintenance, are
robust and do not generate negative externalities. On the other hand, they may
require large currents, they are sensitive to water or other conductive liquids and
they can be affected by electromagnetic interferences. These types of motors
usually constitute a good option for UAVs, and hence they are widely used.
Nowadays, two types of electric motors are used in UAVs, namely brushed
and brushless. Figure 4 shows on the left side the brushed motor and on the
right side the brushless one. In the brushed motor, there are permanent and
stationary magnets on the outside, (i.e., the stator), and a spinning armature
with electromagnets (wound wire coils) on the inside. The armature rotates,
so it is called rotor. The stator, acting as a two-pole electromagnet, repels the
rotor, which is attached to a shaft. The shaft houses a commutator, that is the
device responsible for collecting current. As the magnetic field causes the rotor
to spin, the commutator is being fed current by the brushes. The brushes, often
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made of carbon, lightly “brushed” against the commutator, giving a constant
flow of electricity from the power source.

On the contrary, in the brushless motor, the permanent magnets are on
the rotor and the electromagnets in the stator. The main difference between
brushed and brushless motors is that the brushless one uses permanent mag-
nets to generate power. Thus, brushless motors do not need a commutator
and brushes, the electronic part of the motor is contained in the stator. It
uses three phases of driving coils and a specialized sensor that tracks rotor
position (http://toolsinaction.com, 2017; http://electronics.howstuffworks.com,
2006; www.e-jpc.com, 2018; Büchi, 2012).

Figure 4: Brushed direct current (DC) and brushless DC motors
(www.e-jpc.com, 2018).

The most appropriate are the brushless motors because they are smaller and
lighter than the brushed ones. Generally, electric motors are used in flapping
wings drones (Hassanalian and Abdelkefi, 2017).

Battery. Batteries are electrochemical energy storage devices consisting of one
or more electrochemical cells, that convert stored chemical energy into electrical
energy. Hence, they do not require fuel or oxygen. The most commonly used
batteries are the rechargeable ones. In particular, due to their low weight,
lithium batteries are the most used for micro-drones (Hassanalian and Abdelkefi,
2017). A rechargeable battery consists of one or more electrochemical cells in
series. Electrical energy from an external electrical source is stored in the battery
during charging; electricity can then be used to supply energy to an external
load during discharging (Buckley et al., 2018). The advantages of battery-based
systems are numerous: they are silent, lightweight, and self-contained (i.e., they
do not require external reactants). In addition, because of the use of the electric
motor as the prime mover, they are reliable, require low maintenance, have a
high level of control and perform well in high-altitude operations. Among their
main disadvantages we can cite the limited endurance and the limits of the
recharge of batteries.
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3 Drones in routing problems

We classified the problems into four categories: 1) the traveling salesman prob-
lem with drones (TSP-D) [3.1], 2) the vehicle routing problem with drones
(VRP-D) [3.2], 3) the drone delivery problem (DDP) [3.3] and 4) the carrier
vehicle problem with drones (CVP-D) [3.4]. We grouped these four categories
into two macro-classes. The first two categories (i.e., TSP-D and VRP-D) be-
long to the macro-class of problems where deliveries may be performed by either
the trucks or the drones. The third and fourth categories (i.e., DDP and CVP-
D) belong to the macro-class of problems in which only drones perform the
deliveries. Figure 5 depicts our classification.

Figure 5: Classification of routing problems with drones.

Figure 6 shows the publication trend, during the period 2015–2020. It is
worth noting that for 2020, we consider only the first five months of the year,
hence, we highlighted this year in yellow. Looking at Figure 6 and focusing on
the period 2015–2019, an increasing trend is observed. The same tendency is
also confirmed for the year 2020, since 15 papers have already been published
in the first five months. Most papers focus on TSP-D variants; in fact, we
have identified 28 papers on the TSP-D out of 63, that is about the 44% of the
reviewed works. In addition, we surveyed 17 contributions on the VRP-D (26%),
five on the DDP (about 8%), and 13 on the CVD-P (21%). The observed trend
underlines an increasing interest in the other variants of the RP-D, in particular
the VRP-D and CVD-P.
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Figure 6: Trend representation of reviewed publications during the period 2015–
2020.

3.1 The TSP with drones (TSP-D)

Murray and Chu (2015) introduce the routing problem combining truck and
drone. In this work the authors present two new variants of the traditional TSP
called the flying sidekick traveling salesman problem (FSTSP) and the parallel
drone scheduling TSP (PDSTSP), respectively.

The FSTSP considers the problem of serving a set of customers either with
a single truck or a single drone. The objective is to minimize the completion
time, that is the time required to service all customers and return both vehicles
to the depot. Several constraints are related to the drone. In particular, a drone
can visit only one customer, it has a restricted flight autonomy, and it cannot
transport some heavy weight packages, which means that some customers can
be served only by the truck. The vehicles must depart from, and return to
a single depot exactly once, either in tandem (i.e., the truck transports the
drone) or independently. In addition, they must visit any node at most once.
Hence this also apply to the drone. The vehicles of a same type have the same
speed. However, different travel times for the truck and the drone are taken
into account. The authors present an integer linear programming model which
is solved by Gurobi. Since solving instances with up to 10 customers requires
several hours, they propose a heuristic which starts by finding a solution of the
classic TSP, and then attempts to insert the drone and remove some customers
from truck route by evaluating the achievable savings.

In the second model presented, i.e., the PDSTSP, the customers can be
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served by a single truck or by a fleet of one or more identical drones. The
objective is to minimize the makespan, that is the time at which the truck
returns to the depot. Since in this version of the problem drones and truck
do not cooperate, there is no synchronization between them. The drones start
and end their routes at the depot, can serve one customer at a time and can
perform multi-trips leaving the depot more than once. To solve this model, the
authors propose a heuristic based on constructing an initial solution in which
the drones serve all the eligible customers (e.g., those requiring parcels that not
exceed the drone capacity) and then applying local search heuristics to improve
this solution.

Agatz et al. (2018) propose two route-first, cluster-second heuristics based
on local search and dynamic programming to solve a TSP-D very similar to the
FSTSP presented by Murray and Chu (2015). In contrast to the FSTSP, a drone
can join the truck at the node where it was released, and the drone is faster than
the truck. Thus, different speeds for the two types of vehicles are taken into
account. In particular, these authors confirm the findings of Ferrandez et al.
(2016), namely the net speed of drones must be twice higher than that of the
vehicles.

Several authors have proposed algorithms to solve the problems introduced
by Murray and Chu (2015) and Agatz et al. (2018). In addition, these two works
serve as a basis for several TSP-D extensions and variants. Yurek and Ozmutlu
(2018), Ponza (2016), Freitas and Penna (2020), Mbiadou Saleu et al. (2018),
Bouman et al. (2018), propose several algorithms for these problems.

3.1.1 The FSTSP and its variants

Ferrandez et al. (2016) study a truck-drone in tandem delivery system. They
propose a K-means clustering approach to determine the vehicle stops (the
places from which to launch the drone) and a genetic algorithm to construct a
tour for the truck (i.e., they solve a TSP). They analyse the system in terms of
time and energy. In particular, they estimate energy consumption as a linear
function of the flight time and assume a constant speed for both the drone and
the truck. Their studies confirm that the use of drones is significant in terms of
reducing times, only when their speed is at least twice that of the truck.

Carlsson and Song (2017) analyse the benefit of using a delivery system
with a single truck and a single drone, and describe how much improvement
can be realized by introducing drones to deliver packages. In their model, the
drones may be launched from several points not restricted to customer locations.
Ponza (2016) proposes a simulated annealing heuristic for the FSTSP, by adding
constraints to avoid two infeasible situations. The first one happens when a
drone is launched before it comes back to the truck, the second one when a
drone has both a launch and a rendezvous preceded by a launch. He tested his
methodology on a new set of instances with up to 200 customers.

Since the formulations of Murray and Chu (2015) and Agatz et al. (2018)
require huge computational times to be solved, Yurek and Ozmutlu (2018) pro-
pose an iterative algorithm by decomposing the problems into two stages and
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solving a mixed integer linear programming (MILP) model in the second stage.
They describe an optimization-based heuristic. They introduce a new set of in-
stances for the problem and evaluate the performance of their exact algorithm
on small size instances with 10, 11 and 12 customers. They then evaluate the
heuristic performance on 20-customer instances.

Freitas and Penna (2020) propose a metaheuristic to solve both the FSTSP
and the TSP-D variants. They start by solving a TSP using a MILP solver, then
apply a variable neighbourhood search metaheuristic to enhance the solution
and insert the drone deliveries. They tested their heuristic on two benchmark
sets (Ponza (2016) and Agatz et al. (2018)) as well as on a new set of instances
derived from well-known TSP instances with up to 200 customers. Overall, the
proposed heuristic outperforms the existing methods.

Bouman et al. (2018) present an exact dynamic programming algorithm to
solve the TSP-D variant of Agatz et al. (2018). Their computational study
demonstrates that their algorithm outperforms solving a MILP directly. In
addition, they show that restrictions on the number of locations the truck can
visit while the drone is away can reduce the solution times without worsening
the overall solution quality.

In addition, Poikonen et al. (2019) propose four heuristic approaches based
on branch-and-bound for the TSP-D variant of Agatz et al. (2018). The only
difference between the two works is that they modified the partitioning proce-
dure of Agatz et al. (2018) such that the truck may remain stationary while
the drone makes a delivery. In their computational study, they compare their
four heuristic approaches in terms of effectiveness and efficiency, analysing the
trade-off between objective value and computation time. In addition, they an-
alyze the effect of drone battery duration and speed on the TSP-D solutions,
concluding that a single drone with a battery life of 20 minutes and double the
speed of the truck produces very significant savings.

Starting from the work of Murray and Chu (2015), Ha et al. (2018a) pro-
pose two heuristics for the FSTSP, considering a different objective function
which aims at minimizing operational costs (i.e., the transportation cost and
the cost related to wasted time for synchronizing drone and truck) instead of
the completion time. The first heuristic is based on the approach presented by
Murray and Chu (2015), while the second algorithm is a GRASP. They tested
their algorithms on a new set of instances with up to 100 customers.

Phan et al. (2018) extend the work of Ha et al. (2018a) by considering an
adapted version of their GRASP to solve a variant of the TSP-D, called the
TSP with multiple drones. They propose an adaptive large neighbourhood
search (ALNS) for the TSP with multiple drones. Their results show that the
ALNS is more effective than the extended GRASP.

Ha et al. (2018b) and Salama and Srinivas (2020) propose a multi-objective
variant of the FSTSP. In particular, Ha et al. (2018b) extend their previous
work (see Ha et al. (2018a)), by considering two objective functions for the
FSTSP: the first one minimizes the total operational cost, while the second one
minimizes the completion time. The authors propose a hybrid genetic algorithm,
which combines genetic search and local search, to solve the problem under
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both the objective functions. They test their heuristic on the benchmark sets
of Murray and Chu (2015) and Ha et al. (2018a) concluding that on average, it
performs better than the GRASP proposed by Ha et al. (2018a) both in terms
of effectiveness and efficiency.

Salama and Srinivas (2020) present mathematical programming models to
jointly optimize customer clustering and truck and drones routing. As in Phan
et al. (2018), the fleet is composed of one truck and multiple drones. In partic-
ular, a single truck carries several drones to some focal points in each cluster,
from which to launch the drones. The drones then dispatch the packages to cus-
tomers, performing one delivery per trip and one for each cluster. Customers
can be served either by a drone or by a truck, in which case the customer loca-
tion becomes a launching point for a drone. The authors consider two objective
functions: the first one minimizes the total delivery costs, while the second one
minimizes the completion time. Since these objective may be conflicting, the
authors consider them separately as well as together to generate a set of best
trade-off solutions. They propose a machine learning warm-start procedure to
accelerate the MILP solution. The heuristic contains three main steps: the first
one iteratively uses the K -means clustering to find the focal point, the second
phase aims at moving each cluster focal point to the nearest delivery location
that is served only by a truck. Finally, the third phase aims at finding an opti-
mal truck route using a standard TSP model. In order to investigate how much
the location of truck stops impacts the solution quality, the authors compare
two policies: in the first one drones can be launched from a truck at a customer
location only, while in the second strategy drones can be launched from any-
where in the delivery area, i.e., at a customer location or at a non-customer
location. After an extensive computational study, the authors conclude that al-
lowing the focal points to be anywhere in the delivery area, instead of restricting
them to customer locations, yields substantial savings with respect to cost and
completion time.

Multiple drones are also considered by Moshref-Javadi et al. (2020a), Moshref-
Javadi et al. (2020b), Chang and Lee (2018) and Murray and Raj (2020). In
particular, Moshref-Javadi et al. (2020a) and Moshref-Javadi et al. (2020b) pro-
pose a new formulation for the FSTSP by modelling it as a special case of the
traveling repairman problem. In the variant of Moshref-Javadi et al. (2020a)
multiple drones can be launched from the same place, but the truck does not
wait for them to return. The objective is to minimize the overall customer wait-
ing time. In contrast, in the variant of Moshref-Javadi et al. (2020b) drones have
to be retrieved at the place where they were launched. Hence, the truck has to
wait for the return of all the drones launched before continuing its route. In
addition, drones can be launched more than once from the same truck stop lo-
cation to serve multiple customers consecutively. Moshref-Javadi et al. (2020a)
develop an efficient algorithm to solve real-world-size instances, based on the
well-known ALNS metaheuristic. They test their model and their metaheuris-
tic on several benchmark small-size instances, on which the metaheuristic finds
near-optimal solutions within short computing times. They also solve instances
generated considering a real-world case study of e-commerce deliveries in São
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Paulo, Brazil. They compare their model with the classical traveling repair-
man problem, showing the effectiveness of using a multi-modal system delivery
with the respect of a single truck system. Moshref-Javadi et al. (2020b) propose
a hybrid tabu search-simulated annealing algorithm for solving their variant
on real-world-size problem instances. They conduct several bound analysis to
demonstrate the reduction in customer waiting times obtained with the truck-
drones system delivery compared with a truck-only system. They conclude that
the most influential parameters on the performance of the system are the num-
ber of drones per truck, the speed ratio of the drones to truck, and the service
times of the truck and drones.

Chang and Lee (2018) develop an integer non-linear programming model to
compute a delivery route for a truck carrying drones, minimizing total delivery
time. As Ferrandez et al. (2016), they propose a heuristic based on K-means
clustering and TSP modeling. In particular, their problem solving approach
consists of three steps: 1) clustering delivery locations, 2) routing centers of
clusters, 3) finding shift-weights. The authors consider different speeds for the
truck and the drone, and the objective is to minimize the total delivery time
(i.e., the traveling time of truck and drones, and the service time).

In the FSTSP variant of Murray and Raj (2020) drones may have different
travel speeds, payload capacities, service times and flight endurances. To take
flight endurance into account, the authors consider an equal power consumption
across all flight phases and calculate the minimum energy required by a drone
to complete a visit. The energy used by a drone is evaluated as a linear function
of parcel weight, speed and operation time (see Dorling et al. (2017)). To accu-
rately determine the operation time, hence to estimate the time of endurance,
the authors divide the drone flight into eight phases. They consider two variants
of the problem. In the first one drone may leave or enter to the depot only if
the truck is present at the depot; in the second one the drone is independent.
The problem is solved by a three-phase heuristic, considering realistic size tests
with up to 100 customers.

Practical limitations of drones are also considered in the TSP-D variant
introduced by Jeong et al. (2019). In particular, they propose an energy-payload
consumption model and a two-phase heuristic to account for the limited battery
capacity and “no-fly zones”, which are areas where flying is forbidden. Drones
may serve one customer at a time and the objective is to minimize the completion
time.

Starting from the model proposed by Agatz et al. (2018), Marinelli et al.
(2017) extend the TSP-D assuming, for the first time, that the drone can be
launched and connect to a truck either at a node or along a route arc. They add
several constraints to the original model in order to include the possibility of
stopping the truck at any point along an arc. This allows a better exploitation
of the battery of the drone, by reducing the travelled distance and consequently
overall travelling costs. They present a GRASP for the problem. They then
evaluate the effectiveness of their algorithm on a set of instances proposed by
Bouman et al. (2018).

As Agatz et al. (2018), González-R et al. (2020) propose an FSTSP that
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allows the truck to wait for the drone at the same location, in addition, the
drone may perform multiple visits. However, they note that this holds even
if they do not impose explicitly that a truck cannot wait for a drone at the
same place where it was launched. The authors model constraints taking into
account drone energy consumption but for simplicity, as in Ferrandez et al.
(2016), they suppose that it is linear to the distance flown. The battery of the
drone is swapped at certain a priori rendezvous points hence, when a drone route
starts after the swapping, its battery is fully charged. They propose an iterative
greedy search heuristic combined with simulated annealing. They study the
performance of their approach on benchmark instances.

In the variant of the TSP-D proposed by Agárdi et al. (2020), the drone
must be launched and retrieved at the same node. Hence, the truck may wait
for the drone. Multiple visits for the drones are allowed and the objective is
to minimize the total distance travelled and flown. The authors propose four
heuristics: a nearest neighborhood algorithm, an arbitrary insertion algorithm,
a genetic algorithm, and a hill climbing algorithm. Their computational study
shows that the genetic algorithm exhibits the best performance.

Luo et al. (2017) propose a variant of the classic two-echelon TSP, where
the truck carries a drone available for deliveries. In particular, the drone visits
a predetermined set of customers unreachable by the truck. In the network,
there are several rendez-vous points where the truck can stop and the drone can
take off or land. The drone can serve more than one customer before landing.
The objective is to minimize the total routing time for the drone. The authors
formulate the model and provide two constructive heuristics and an exact depth-
first search algorithm to solve small-size instances.

3.1.2 The PDTSP and its variants

Mbiadou Saleu et al. (2018) focus on the PDTSP proposed by Murray and Chu
(2015). They propose an iterative two-step heuristic considering the PDTSP
as a bilevel problem in which the first level partitions the customers between
the trucks and the drones, and the second one optimizes the routing. In their
computational study, they first evaluate the efficiency of their heuristic on the
Murray and Chu benchmark instances (Murray and Chu, 2015), concluding
that it is very fast. They then propose a new set composed of six larger size
instances, with up to 229 customers, and analyse the benefits of using drones in a
delivery system. Dell’Amico et al. (2020) propose a simplified MILP model and
several matheuristics for the PDTSP, all based on the classical Lin-Kernighan
algorithm for the TSP combined with local search procedures and the resolution
of the MILP. The authors test their algorithms on the benchmark instances
introduced by Mbiadou Saleu et al. (2018) and Murray and Chu (2015). Their
computational study confirms that the proposed algorithms yield competitive
results with the respect to the state-of-the-art methods, especially on small- and
medium-size instances, in terms of both efficiency and effectiveness.

Dayarian et al. (2020), Li et al. (2018), Kim and Moon (2019) and Schermer
et al. (2020) propose several variants of the PDTSP. In particular, Dayarian et al.
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(2020) introduce an innovative dynamic variant in which the role of drones is not
the conventional one, i.e., the drones do not deliver packages. In fact, they study
a delivery system in which trucks make deliveries and are regularly resupplied
by a drone. Resupply can take place anywhere as long as the delivery truck
is stopped. This system is particularly efficient for dynamic deliveries, because
it can speed up the process at low costs. The authors formally introduce the
problem as a VRP-D, describing the main features and the constraints; however,
they focus on the single-drone, single-truck variant. For this reason, we have
classified this work as a particular case of the TSP-D. The authors develop
different algorithms and compare their performance. In addition, they quantify
the potential benefits of drone resupply, both in terms of increasing in the
number of orders served and reducing service time.

Li et al. (2018) describe continuous approximation methods for a particular
variant of the PDSTSP in which the delivery system is organized in a three-tier
structure with one main distribution center and multiple depots. They partition
the region, in which the customers are uniformly distributed, into hexagonal
sub-regions, considering the limited delivery range of the drones. The truck
starts its route from the distribution center, leaves some packages at each depot
which will be delivered by drones, and then continues its route to deliver the
remaining packages to the customers. Even if the designed distribution system
would require a synchronization between truck and drones, the authors consider
the two fleets to be independent. Their objective is to minimize the total delivery
cost of the delivery service. They use continuous approximation to study the
impact of several key factors on delivery costs, such as the number of hexagons
and customer density. Hence, they conclude that the use of a joint delivery
system with truck and drones is more effective than that one with only trucks,
particularly when customer density increases.

Kim and Moon (2019) solve an extension of the PDSTSP introduced by
Murray and Chu (2015). To overcome the limitations of flight range of the
drones, they develop a TSP with a drone station. The drone station is a fa-
cility that stores drones and charging devices. The authors assume that the
station can supply a sufficiently large number of drones and is positioned near
customers areas, away from the depot. Thus, the main difference is that the
drones are stored in, and launched from, a drone station. Even if the drones can
be charged at the station, the time needed to recharge a drone is not consid-
ered. The authors propose an approach very similar to that of Murray and Chu
(2015), based on a decomposition of the problem. However, their decomposition
guarantees an optimal solution. For their computational study they generate
instances with up to 80 customers; however, the TSP with a drone station is
solved only for instances with at most 11 customers.

Similarly to Kim and Moon (2019), Schermer et al. (2020) consider drone
stations as well. In their variant, there are several stations with no fixed cost
whose locations are decision variables. In particular, they assume that some
stations may be opened for drone deliveries. Several drones are located in each
station and each drone may serve one customer at a time. The primary ob-
jective function is to minimize the makespan. The authors also introduce an
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alternative objective which minimizes the overall costs. In this case, a fixed cost
for using a station is considered. The authors model their problem and solve it
with a commercial solver, considering the minimization of the makespan. They
generated instances with up to 50 customers and three drone stations. Their
results highlight the benefits of using drone stations in terms of reducing the
delivery time.

3.1.3 Sum-up on the TSP-D

Table 2 summarizes the main characteristics of the surveyed TSP-D. For each
contribution indicated in the first column “Reference”, 13 additional columns
correspond to the following parameters: #DR and #DP represent the number
of drones and depots, respectively, the objective function, “TW” refers to the
presence of time windows while “Drop-pickup” indicate the presence of drop
and pickup operations. Then, there are five parameters describing drones: 1)
whether drone can perform multiple visits, 2) whether energy consumption is
evaluated, 3) whether recharge before a new drone sortie, calculated by using an
energy model, is considered, 4) drone departure occur on a node or along an arc,
5) whether capacity is considered. Table 2 also gives information about truck
capacity constraints, synchronization between truck and drones, and whether
the problem contains stochastic or dynamic information.

Looking at Table 2 it is clear that no contribution considers customer time
windows and drop and pickup operations. In addition, all authors suppose
that the capacity of trucks is unlimited. Except for two, all studies considered
state that a drone may perform a single delivery and a large part of them do not
consider drone capacity but suppose that all customers may be served by drones.
In addition, most papers do not use an energy consumption model or make an
accurate evaluation of the energy spent, but impose a limit on the maximum
distance or the maximum flight time of drone. Only one work considers a
dynamic framework. Most contributions work with deterministic information,
hence dynamic or stochastic situations have not been widely studied.

Table 3 summarizes the practical contributions given by the TSP-D sur-
veyed. In particular, for each contribution, it shows whether a mathematical
model is formulated, and specifies the proposed mathematical approaches and
the instances used for testing them. It is worth noting that the majority of
the works develop heuristics to solve the variant of TSP-D, and only four out
of 19 propose an exact algorithm. Since it is very difficult to find an optimal
solution of the TSP-D, the largest instance size is 30 customers (see Chang and
Lee (2018)).
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Table 3: Mathematical model, algorithm and instances proposed for the TSP-D.
Reference Problem

class
Mathematical
model

Approach Instances

Murray and Chu (2015) FSTSP yes heuristic new: up to 10 customers
Murray and Chu (2015) PDSTSP yes heuristic new: up to 10 customers
Ferrandez et al. (2016) FSTSP no heuristic new: 100 customers
Ponza (2016) FSTSP yes heuristic new: up to 200 customers
Luo et al. (2017) FSTSP yes heuristic/exact new: up to 20 customers
Marinelli et al. (2017) FSTSP yes heuristic Bouman et al. (2018)
Carlsson and Song (2017) FSTSP no heuristic new: up to 500 customers
Agatz et al. (2018) FSTSP yes heuristic new: up to 100 customers
Mbiadou Saleu et al. (2018) PDSTSP yes heuristic new: up to 229 customers &

Murray and Chu (2015)
Bouman et al. (2018) FSTSP no exact new: up to 20 customers
Yurek and Ozmutlu (2018) FSTSP yes heuristic/exact new: up to 20 customers
Phan et al. (2018) FSTSP yes heuristic Ha et al. (2018a)
Chang and Lee (2018) FSTSP no heuristic/exact new: 30 customers
Ha et al. (2018a) FSTSP yes heuristic new: up to 100 customers
Ha et al. (2018b) FSTSP yes heuristic Murray and Chu (2015) &

Ha et al. (2018) Ha et al.
(2018a)

Li et al. (2018) PDSTSP yes heuristic new: up to 20 customers
Poikonen et al. (2019) FSTSP no heuristic new: up to 200 customers
Kim and Moon (2019) PDSTSP yes heuristic new: up to 80 customers
Jeong et al. (2019) FSTSP yes heuristic new: 10 customers
Freitas and Penna (2020) FSTSP no heuristic Ponza Ponza (2016) &

Agatz et al. (2018)
Murray and Raj (2020) FSTSP yes heuristic new: up to 100 customers
Schermer et al. (2020) PDSTSP yes new: up to 50 customers
Dell’Amico et al. (2020) PDSTSP yes heuristic Mbiadou Saleu et al. (2018)

& Murray and Chu (2015)
Salama and Srinivas (2020) FSTSP yes heuristic new: up to 35 customers
Dayarian et al. (2020) FSTSP no heuristic new: up to 60 customers
Moshref-Javadi et al. (2020a) FSTSP yes heuristic new: up to 101 customers
Moshref-Javadi et al. (2020b) FSTSP yes heuristic new: up to 159 customers
González-R et al. (2020) FSTSP yes heuristic new: up to 250 customers
Agárdi et al. (2020) FSTSP yes heuristic
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3.2 The VRP with drones (VRP-D)

The VRP-D is a generalization of the TSP-D in which the fleet is composed of
several vehicles and of one or more drones.

Wang et al. (2017) introduce the VRP-D, considering a fleet of trucks equipped
with drones delivering parcels to customers. Drones can be dispatched from and
picked up by the trucks at the depot or at any of the customer locations. The
authors conduct an analysis of several worst-case scenarios, from which they
propose bounds on the best possible time savings achievable when using drones
and trucks instead of trucks alone. The authors ignore cost, as well as the lim-
ited battery life of a drone, and assume that the trucks and the drones follow
the same distance metrics.

Schermer et al. (2018) propose two heuristics for the VRP-D introduced by
Wang et al. (2017), considering the minimization of makespan. The heuristics
are composed of two main phases: initialization and improvement. The initial-
ization phase is a route-first cluster-second heuristic. It is used in both heuristics
to compute an initial solution for a TSP using trucks only. The improving phase
is composed of several local search moves. The main difference between the two
heuristics is that the first one is a two-stage approach which initially ignores the
presence of drones and inserts them during the improvement phase. Instead,
in the second approach, which is a single-phase heuristic, drones are inserted
before starting the improving phase. In the computational phase, the authors
consider uncapacitated trucks and limit drone deliveries to one package. They
conclude that the two-stage heuristic is the best option.

Starting from the work of Wang et al. (2017), several authors have extended
the VRP-D model by adding new constraints or considering several variants.
Poikonen et al. (2017) extend the study of the worst-case results performed by
Wang et al. (2017), by considering limited battery life for a drone, using different
metrics for trucks and drones and focusing on a different objective function that
also takes economic savings into account. The minimization of completion time
is the primary objective, but the authors also consider a cost function.

Ulmer and Thomas (2018) present a dynamic variant of the VRP-D in which
trucks and drones working separately may serve a set of customers within a
delivery deadline. Drones and trucks differ with respect to their capacity (drones
may deliver at most one package, trucks are uncapacitated), their charging
requirement (drones require charging their battery), their speed (as in Agatz
et al. (2018) drones are faster than trucks), and the network (trucks are limited
to the links of the network). The objective is to maximize the expected number
of customers served during a working day, and hence the total reward. The
proposed model allows subsequent adaption of decisions, due to the presence of
stochastic requests. The authors present a Markov decision process model for
the dynamic VRP.

Di Puglia Pugliese and Guerriero (2017) extend the VRP-D by introducing
time windows for customers and a time limit for the vehicles. The objective of
the VRP-D with time windows is to minimize the total travel cost. The authors
carry out a numerical study comparing the VRP with time windows and the
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VRP-D with time windows. They then discuss the advantages and drawbacks
of using drones in last-mile delivery. Drones allow a reduction of the completion
time but the activation of the drones is highly influenced by the transportation
cost. Considering the same transportation cost for the trucks and the drones,
the latter are no longer profitable. The higher the truck transportation cost,
the higher the number of deliveries performed by the drones.

Time windows are also considered by Ham (2018), which extends the PDSTSP
of Murray and Chu (2015) by considering a fleet of several trucks and two dif-
ferent types of drone tasks: drop and pickup. After a drone completes a drop,
it can fly directly to another customer for pickup, or it can fly back to the depot
and start a new tour. In addition, a customer can order multiple products with
different time windows. Drones and trucks work separately and have to start
and end their tours at the depot. The objective is to minimize the makespan.
In addition, the author proposes also a multi-depot variant, where the objective
is to minimize the completion time. The problem is solved by means of a con-
straint programming procedure, improved by using variable ordering heuristics.

In the VRP-D variant of Daknama and Kraus (2018), drones may deliver one
package at time and have to return to a truck to recharge their battery after each
delivery. As in Poikonen et al. (2017) drones and trucks use different metrics, in
particular, the drones move according to the Euclidean metric while the trucks
move according to the Manhattan metric (see Murray and Chu (2015)). The
main difference with the model presented by Poikonen et al. (2017) is that a
drone can change the truck from which it was launched after visiting a customer.
The objective is to minimize the total delivery time. The authors propose a
local search heuristic for the problem, which firstly solves a multi-TSP ignoring
drones and then applies local search moves to explore neighbourhoods and add
the drones.

Wang and Sheu (2019) extend the work of Wang et al. (2017) by introducing
multiple visits for drones, with the goal of minimizing the logistics cost. They
propose an arc-based model formulation, then reformulate it as a path-based
model and apply branch-and-price to solve it. They carry out a computational
study for testing the behaviour of their approach, as well as a sensitivity analysis
by varying the maximum flying duration of drones. They conclude that using
drones with a higher flying duration can reduce the total logistics cost by about
10%.

Schermer et al. (2019a) assume that drones may also be launched and col-
lected at some discrete locations on each arc. They call this problem the VRP-D
with en route operations. The authors assume that drones may not be retrieved
at the same location from which they were launched, and that the battery of each
drone is recharged instantaneously after each delivery operation. They model
the VRP-D with en route operations as a MILP and use it to solve to optimality
small-size instances through a commercial solver. They then propose a heuristic
that combines the variable neighborhood search and tabu search. Their numer-
ical study highlights how the introduction of en route operations can lead to
more efficient solutions, due to the potential reduction of the makespan. Scher-
mer et al. (2019b) formulate a MILP model for a new variant of the VRP-D
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that allows the execution of cyclic operations for drones, i.e., operations that
start and end at the same vertex. Since the problem is high complex, the au-
thors introduce several additional valid inequalities and discuss the benefits of
using the new MILP formulation when it is solved through a commercial solver.
They then propose a matheuristic that decomposes the problem into an allo-
cation component and a sequencing component, solved heuristically through a
classical savings heuristic and local search procedures for the VRP, and drone
assignment and scheduling, determined through the modelling and resolution of
a MILP. In their computational study, they show the benefits of using drones to
minimize the makespan and conclude that their heuristic is both effective and
efficient.

Chiang et al. (2019) focus on the environmental impact of using drones in
tandem with vehicles. In particular, they present a VRP-D that incorporates
the evaluation of CO2 emissions. In their configuration, each vehicle carries one
drone that can make a single delivery before returning to the vehicle. A vehicle
may perform deliveries while the drone is flying, and hence the drone returns
to the vehicle at a point different from its point of departure. The authors
estimate the carbon emissions as a function of weight and distance travelled.
In particular, they consider the curb weight of the vehicle, the weight of the
drone when it is on the vehicle, the weight of the parcels, and the distance
travelled. In addition, they propose two objective functions: the first one mini-
mizes CO2 emissions, the second one total cost, including fuel cost. The authors
solve their problem with a genetic algorithm. They analyse the effects of using
drones in the delivery process on both total cost and emissions. Their study
highlights that the use of drones leads to solutions that are cost effective as well
as environmentally friendly.

Recently, Di Puglia Pugliese et al. (2020) also focus on the environmental
impact of using drones in parcel delivery, by evaluating polluting emissions
produced of both trucks and drones. In particular, they evaluated the CO2

emissions of trucks as a function of the distance travelled and the weight carried
by the truck. Since drones are characterized by zero emissions, the authors
consider the CO2 produced by the facilities which are involved in the process of
power generation. Starting from the work of Di Puglia Pugliese and Guerriero
(2017), Di Puglia Pugliese et al. (2020) model several configurations of the
problem: a classical VRP with only trucks, a DDP with only drones and a
VRP-D with trucks and drones. They then solved the models and compared the
results. The numerical results collected on an extensive computational study,
suggest that the VRP-D configuration has the best trade-off between efficiency
and reduction of negative externalities.

Kitjacharoenchai et al. (2019) and Sacramento et al. (2019) define two VRP-
D variants starting from the FSTSP model proposed by Murray and Chu (2015).
In particular, Kitjacharoenchai et al. (2019) extend the FSTSP model to the
case of multiple drones and trucks. They call this problem the Multiple Travel-
ing Salesman Problem with Drones. The objective is to minimize the delivery
time. The authors suppose that each truck has an unlimited capacity to carry
either drones and packages, hence limitations on truck capacity and on cus-
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tomer demand are not considered. A truck may launch or retrieve only one
drone at the same customer location, each drone may transport one package at
a time and can complete its delivery and return to the truck before complete
discharging of the battery. The proposed heuristic contains two phases. The
first phase constructs an initial solution for the multi-TSP, while the second
phase uses several remove and insert operators to find a solution for the multi-
TSP with drones. Since the initial solution strongly influences the effectiveness
of the second phase, the authors develop three heuristics: a genetic algorithm,
a combined K-means and nearest neighbour algorithm, and a random cluster
and tour approach. The model presented by Kitjacharoenchai et al. (2019) has
been extended by Kitjacharoenchai and Lee (2019), through the introduction
of capacity constraints for both trucks and drones. Kitjacharoenchai and Lee
(2019) tested their model on a real-world scenario setting, based on the map of
Lafayette and West Lafayette.

Sacramento et al. (2019) take into account the time at which a truck or a
drone visits a customer. The drones and the trucks are synchronized during the
tour, but at the end of the deliveries they may return to the depot in tandem
or separately. The objective is to reduce the operational cost. The authors
propose an ALNS metaheuristic to solve their problem and use several real-
life values of parameters to test it on instances with up to 200 customers. They
perform a detailed sensitivity analysis on several drone features, i.e., the battery
cost, the endurance, the drone speed and the payload capacity, and they study
the effects on the planning of the transport operations. They conclude that
the drone endurance has a clear impact on solutions as well as on the payload
capacity. In contrast, the speed of the drone does not affect the cost.

Kitjacharoenchai et al. (2020) and Liu et al. (2020) describe the delivery
process which involves trucks and drones as a two-level delivery system. The
first level is the routing of the trucks from the main depot to customers, the
second one the routing of drones from truck to customers. Hence, both the
works propose the two-echelon VRP-D. In particular, Kitjacharoenchai et al.
(2020) consider a limited capacity for both trucks and drones, as well as a
limited battery capacity for drones, defined as the maximum amount of flight
time. The drone has to be launched and retrieved only once by the same truck
and can perform more than one delivery. The objective is to minimize the
completion time. The authors propose a MIP model and two heuristics to solve
their problem, the first one based on a construction algorithm and the second one
on large neighbourhood search. They test their algorithms on instances derived
from benchmark instances of the capacitated VRP. Their computational study
highlights that the heuristic based on the large neighbourhood search is more
performing than the constructive one, and is also efficient for solving the classical
capacitated VRP. They also study the impact of using one or multiple drones in
the delivery configuration, concluding that the multiple drone configuration is
more suitable. Liu et al. (2020) consider truck and drone capacity and the effect
of varying payload on energy consumption for drone battery. In particular, they
use a consumption model that considers the payload, the efficiency of the motor,
the distance travelled and the constant flying speed. The authors propose a
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hybrid heuristic based on nearest neighbourhoods and savings strategies. They
then conduct several experiments on random test instances with different scales
to assess the efficiency of the proposed algorithm. In addition, they carry out a
sensitivity analysis based on a practical case in China, with three factors: the
ratio of light parcels, the maximum payload of drone, and the drones’ battery
power. They conclude that the use of the drones could save more costs when
there are more light parcels and a higher drone capacity, payload and battery
power.

3.2.1 Sum-up on the VRP-D

Table 4 summarizes the main features of the surveyed VRP-D. Time windows
are considered in three out of 17 contributions, only one considers pickup oper-
ations as well as multiple visits for the drones. It is worth noting that energy
consumption and recharge are considered only in two contributions; in partic-
ular, Liu et al. (2020) propose an energy consumption model, while in Ulmer
and Thomas (2018) a fixed amount of energy is supposed to be recharged. As
in the TSP-D, most of the works consider a maximum distance or a maximum
flight time endurance for drones and suppose that the time needed to charge
the battery or swap it is fixed. Only seven works consider drone capacity, but
the majority of the papers take truck capacity into account. Stochastic requests
are considered in only one contribution.

Table 5 provides information on the presence of the mathematical formu-
lation for the proposed VRP-D variant, the algorithm and the test instances.
With the exception of one work, all the surveyed contributions that propose a
solution approach use a heuristic. Instances size varies from 13 to 1,000 cus-
tomers.
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Table 5: Mathematical model, algorithm and instances proposed for the VRP-D
Reference Mathematical Algorithm Instances

model

Wang et al. (2017) no
Poikonen et al. (2017) no
Di Puglia Pugliese and Guerriero
(2017)

yes new: up to 100 customers

Daknama and Kraus (2018) no heuristic new: up to 200 customers
Schermer et al. (2018) no heuristic new: up to 1000 customers
Ulmer and Thomas (2018) yes heuristic new: up to 800 customers
Ham (2018) no heuristic new: up to 100 customers
Wang and Sheu (2019) yes exact new: up to 13 customers
Kitjacharoenchai et al. (2019) yes heuristic new: up to 50 customers
Kitjacharoenchai and Lee (2019) yes
Sacramento et al. (2019) yes heuristic new: up to 200 customers
Schermer et al. (2019a) yes heuristic Agatz et al. (2018)
Schermer et al. (2019b) yes heuristic Agatz et al. (2018)

& Murray and Chu (2015)
Chiang et al. (2019) yes heuristic new: up to 500 customers
Kitjacharoenchai et al. (2020) yes heuristic Augerat (1995)
Liu et al. (2020) yes heuristic new: up to 100 customers
Di Puglia Pugliese et al. (2020) yes Di Puglia Pugliese and Guerriero

(2017)

3.3 The drones delivery problem (DDP)

The DDP is a variant of the VRP in which the fleet is composed of drones only.
Usually, this problem takes into account several particular aspects related to
drones such as energy consumption, battery capacity, and limited flying range.

Dorling et al. (2017) solved a DDP in which drones may perform multi-trips
and serve more than one customer per route. They model energy consumption as
a function of a battery and payload weight, considering a constant speed value.
The authors present a MILP formulation and develop a simulated annealing
heuristic.

Yadav and Narasimhamurthy (2017) develop a heuristic to optimize delivery
schedule of drones. Drones may serve one or several customers, depending on
the capacity constraints, but they do not take into account battery life limits.

Coelho et al. (2017) propose a multi-objective DDP and, to overcome dif-
ficulties related to limited driving range, they introduce charging stations. In
order to evaluate energy consumption, the authors use a consumption rate only
related to the speed of the drone, which is a decision variable, and evaluate the
amount of energy needed to recharge at the charging stations. They propose a
mathematical formulation and a metaheuristic. In the variant of Troudi et al.
(2019), drones may perform multiple visits and multiple missions per day. To
calculate the energy consumption during a mission, they propose an approxima-
tion model similar to that of Dorling et al. (2017). Their objective consists of
minimizing simultaneously the total distance flown, the total number of drones
in the solution, and the total number of batteries used.

Liu (2019) focuses on an on-demand meal delivery process and proposes a
dynamic drones delivery model to optimize this process. He formulates both a
static model and a dynamic model, which take into account several constraints
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and assumptions related to food delivery. In particular, a drone may transport
a single food carton, which can hold several orders of a standard size. How-
ever, different types of food (hot meals and cold drinks) cannot be carried in
the same carton. Hence a single order may have to be split among several
drones. The model is designed for real-life situations, hence it considers several
practical issues such as the uncertainty of the orders locations and size, battery
consumption and swapping. The objective function contains three components:
ensuring safety, minimizing lateness, and maximizing efficiency. The author
proposes an optimization-drive, progressive algorithm for online dispatch oper-
ations, suitable for online use as well as for offline simulation studies, and adopts
a first-come first-serve principle.

3.3.1 Sum-up on the DDP

Looking at Table 6, which depicts the main features used in the DDPs surveyed,
it is clear that a major degree of attention has been devoted to drone charac-
teristics. Indeed, all the works consider capacitated drones and multiple visits.
In addition, three contributions propose a model to describe energy consump-
tion. In particular, Dorling et al. (2017) and Troudi et al. (2019) use a factor
to evaluate energy consumption which does not consider speed and flight time.
Coelho et al. (2017) use a simple function that depends on the drone speed to
evaluate energy consumption, and they allow the recharging of drones at some
stations. No paper considers time windows and only one allows pickup oper-
ations. Two works consider a real-time scenario, in which orders may arrive
during throughout the day. Table 7 summarizes the information related to the
presence of mathematical formulation, the type of algorithm and the instances
used for the computational study in each work.

3.4 The carrier-vehicle problem with drones (CVP-D)

The carrier-vehicle problem is a combination of TSP-D, VRP-D and DDP, where
a team of cooperating vehicles with complementary capabilities performing au-
tonomous deliveries. In this delivery system, large and slow carriers (e.g., ships
or large ground vehicles) transport small-size and high-speed vehicles (e.g.,
drones) with a limited operational range. The main idea is to allow fast ve-
hicles to visit a set of customers within a short time, using the slow carrier as a
base for multiple trips.

In their variant, Mathew et al. (2017) study a system in which a drone
carried by a slow and large truck has to perform parcel deliveries. In particular,
the role of the truck is to carry all the packages to be delivered as well as the
drone. The role of the drone is to perform single deliveries from the truck to the
specific delivery point. Thus, the drone flies for the final length of each delivery.
The authors also propose a special case of this problem, where the drone can
visit customers and some fixed depots.

In the work of Savuran and Karakaya (2020) the route of the carrier is fixed
a priori. Thus, a big aircraft is used as mobile depot for a single drone that
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Table 7: Mathematical model, algorithm and instances proposed for the DDP
Reference Mathematical Algorithm Instances

model

Yadav and Narasimhamurthy (2017) yes heuristic new: up to 45 customers
Dorling et al. (2017) yes heuristic new: up to 500 customers
Coelho et al. (2017) yes heuristic new: up to 10 customers
Liu (2019) yes heuristic new: up to 353 customers
Troudi et al. (2019) yes new: up to 10 customers

must visit a set of fixed targets. Unlike Mathew et al. (2017), multiple visits
for the drone are allowed, while respecting its given flight range. The goal is to
visit as many targets as possible. The authors propose a genetic algorithm for
their problem.

The problem presented by Bin Othman et al. (2017) is strongly related to
that of Mathew et al. (2017). In fact, the authors use the same configurations,
but assume that the truck route is predetermined, as in Savuran and Karakaya
(2020). The authors study four different cases of the problem, combining the
following features: the drone can immediately take off from the truck after
getting the parcel or can “hitch a ride” on the truck before proceeding, the truck
is allowed or not to wait for the drone at the same place before proceeding. They
propose a polynomial-time approximation algorithm for the graph problem.

Boysen et al. (2018) also consider a CVP-D in which the route of the truck
servicing a set of customers is already given. They model the problem as a
particular case of the FSTSP. Since the route of the truck is known a priori, the
authors focus on the optimization of the drone schedule launched and collected
from the truck during its fixed route at some fixed points, hence the truck can
be viewed as a carrier. The authors consider both the cases where there is one
or several drones on the truck, and differentiate on the degree of freedom with
respect to where a drone returns to the truck, i.e., whether the take-off and
landing stops are the same or not. In particular, they examine three policies. In
the first one the start and landing points coincide, in the second one the drone
may be collected no later than the next stop after the start, in the third one
no restriction are considered. Hence, combining all scenarios, they obtain six
variants and investigate their computational complexity. They conclude that
a configuration with two drones, that can be collected no later than the next
stop after the start, is the most beneficial in terms of reducing the makespan. In
addition, they integrate their drone subproblem into a metaheuristic framework,
considering the first two policies and a single drone configuration, which are
solvable in polynomial time.

Poikonen and Golden (2019) extend the work of Savuran and Karakaya
(2020) considering that the route of the carrier is not already fixed a priori.
They take into account two possible scenario: in the first one, a drone can carry
one package at time, while in the second one multiple deliveries are allowed.
The authors propose a branch-and-bound algorithm capable of solving small-
size instances. They also describe heuristics based on greedy approaches and
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local search strategies for larger instances.
The main goal of the work presented by Gambella et al. (2017) is to solve to

optimality the generic carrier-vehicle problem which minimizes the completion
time. The authors present a mixed-integer, second-order conic programming
model and propose a ranking-based exact enumeration procedure.

Karak and Abdelghany (2019) and Wikarek et al. (2019) propose two pickup
and delivery variants of the CVP-D. In particular, in the configuration proposed
by Karak and Abdelghany (2019) drones are mounted on a single vehicle and
may visit one or more customers to pick up or deliver their packages. In addition,
the drones can be dispatched and collected several times from the same station,
but each station may be visited only once. Hence the truck waits at the station
until all the drones that are planned to return to that station have been collected.
Drones batteries are replaced with fully charged batteries whenever they are
collected by the vehicle. The authors model the problem and propose a hybrid
savings heuristic (Clarke and Wright, 1964) along with the vehicle-driven and
drone-driven heuristics.

In the Wikarek et al. (2019) variant, drones may be launched or retrieved
from the truck only at specific predefined mobile distribution centers. The
launch and landing locations can be different. The authors focus on the op-
timization of the routing of drones as well as on the location of the mobile
distribution centers, but they do not consider truck routes.

Bai et al. (2019) introduce precedence constraints on the ordering of the
customers to be served for a CVP-D with one truck equipped with one drone.
They propose several task assignment algorithms for their problem and carry
out a computational study, comparing their approach with a state-of-the-art
genetic algorithm. The numerical experiments have shown the efficiency of the
proposed algorithms.

Dukkanci et al. (2019), Poikonen and Golden (2020) and Han et al. (2020)
propose three variants of the CVP-D that explicitly consider the drone energy
consumption, expressed as a function of several parameters. Dukkanci et al.
(2019) study a delivery system that may be viewed as a combination of systems
used in FSTSP proposed by Murray and Chu (2015) and the DDP studied by
Dorling et al. (2017). Even if they consider the possibility of using trucks to
transport drones, only drones serve the customers by starting or ending their
routes from or at the depot or the trucks. The speed of the drone is a decision
variable and the energy consumption is modelled explicitly. They formulate a
non-linear model for the problem that minimizes operational costs, and then
reformulate it as a second-order cone-programming problem. Their results on
realistic problem tests demonstrate the impacts of making deliveries with drones.
In the Poikonen and Golden (2020) variant, the drones carried by a truck may
perform multiple visits and carry multiple heterogeneous packages. An energy
dissipation rate is used to account for the limited capacity of the drone battery.
The authors consider two values for the drone speed: 10 m per second and 15
m per second, but they suppose that the energy consumption is not affected by
the speed choice. They propose a heuristic called “route, transform, shortest
path” to solve the problem.
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Han et al. (2020) propose an artificial bee colony heuristic for a CVP-D with
time windows. In their variant, trucks carry both goods and drones to cus-
tomers locations, while drones deliver vertically the packages to the customers.
Each truck is equipped with a single drone. The objective aims at minimizing
the weighted sum of three terms: the total energy consumption of trucks, the
energy consumption of drones, and the number of trucks employed. The en-
ergy consumption is evaluated with a coefficient that depends on distance and
speed. The CVP-D variant proposed by Moeini and Salewski (2020) is different
from the previously introduced works, because the carrier is equipped with a
mixed fleet of drones and autonomous transport vehicles (ATVs). The vehicle
visits a set of designated points only once to dispatch and collect drones and
ATVs. Each drone as well as each ATV may perform one delivery at a time.
The authors develop a genetic algorithm to solve their problem and show the
advantages of using a combination of drones and ATVs.

3.4.1 Sum-up on the CVP-D

Table 8 presents the main features of CVP-Ds surveyed. In the majority of the
works the fleet is composed of one truck and one or several drones. Only two
contributions out of eight consider more than one truck carrying several drones,
only two papers deal with time windows, and two allow for picking operations.
Two contributions propose an energy consumption model, but recharges are
not allowed. Focusing on energy consumption model, Dukkanci et al. (2019)
propose an explicit calculation of the energy consumption as a function of the
drone speed, which is a variable, while in Poikonen and Golden (2020) the en-
ergy function takes into account the package weights. All papers are restricted
to deterministic scenarios. Table 9 gives information about the presence of a
mathematical model, the algorithm type and instances used for the computa-
tional tests.

3.5 Technological features of drones in routing problems

Since the majority of contributions provide theoretical insights on routing prob-
lems with drones, with drones, they often do not provide specific information
about real technological setting of drones and measurement values in benchmark
instances. Several contributions on TSP-D and VRP-D, carry out a sensitiv-
ity analysis by varying the value of drone speed, with the respect to the truck
speed. In particular, the authors choose speed values for drones that range from
1 to 5 times the speed of the trucks (see, Agatz et al. (2018); Mbiadou Saleu
et al. (2018); Bouman et al. (2018); Phan et al. (2018); Poikonen et al. (2019);
Kim and Moon (2019); Schermer et al. (2020); Moshref-Javadi et al. (2020a,b);
González-R et al. (2020); Schermer et al. (2018, 2019b); Kim and Moon (2019))
and range from 5 km/h to 90 km/h. Considering also the DDP and the CVP-D,
in the majority of the works, the speed value is fixed to around 30 km/h, on
average. Payload capacity ranges from 1.2 kg (see Troudi et al. (2019)) to 20
kg (see Poikonen and Golden (2020)).
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Table 9: Mathematical model, algorithm, and instances proposed for the CVP-D

Reference Mathematical Algorithm Instances
model

Savuran and Karakaya (2020) yes heuristic new: up to 1100 customers
Mathew et al. (2017) yes heuristic new: up to 12 customers
Bin Othman et al. (2017) yes
Gambella et al. (2017) yes exact new: up to 15 customers
Boysen et al. (2018) yes heuristic new: up to 100 customers
Dukkanci et al. (2019) yes new: up to 30 customers
Karak and Abdelghany (2019) yes heuristic new: up to 100 customers
Wikarek et al. (2019) yes heuristic new: up to 20 customers
Bai et al. (2019) yes heuristic new: up to 120 customers
Poikonen and Golden (2019) no exact new: up to 200 customers
Poikonen and Golden (2020) yes heuristic new: up to 50 customers
Moeini and Salewski (2020) no heuristic new: up to 75 customers
Han et al. (2020) yes heuristic new: up to 100 customers

Flight endurance is measured either in minutes or kilometers. The values
proposed for this parameter are widely different and range from 10 minutes to
30 minutes and from one km to about 24 km. Even if the majority of the works
consider flight endurance as a fixed parameter, actually it depends on the loaded
cargo (Murray and Raj (2020)).

Only four studies consider realistic features for drones. We summarize the
main characteristics in Table 10. Looking at Table 10, it is evident that all the
works consider a rotary-wing configuration of the fuselage. Indeed, as intro-
duced in Section 2, the main advantage of this type of drone is the agility of
manoeuvring. In addition, it has a medium flight range and can take off and
land vertically in small places, like balconies or private dedicated areas. Hence,
rotary-wing drone seems the most suitable for delivery applications, especially
in the last-mile context. The number of rotors varies from four to eight and
the payload capacity from 1.2 kg to 20 kg. Jeong et al. (2019), Dorling et al.
(2017) and Troudi et al. (2019) also provide information about the type of the
battery used, that is a lithium polymer battery (LiPo), and the motor, an elec-
tric brushless type, that is the most commonly used. Focusing on the number
of rotors, Poikonen and Golden (2020) conduct a comparative analysis of two
types of drones: quadcopter and octocopter. Their results highlight that with
larger octocopters, which have a larger effective range, an average improvement
in terms of objective function values of about 8% is obtained.

4 Conclusions and research perspectives

We have reviewed the main contributions related to transportation systems in
which deliveries are performed by trucks and drones. Our literature review
confirms the interest of the scientific community in delivery processes aided by
drones. We have identified four main problem classes: 1) the traveling salesman
problem with drone, TSP-D; 2) the vehicle routing problem with drones, VRP-

37



Table 10: Realistic drone features
type of rotors flight speed payload landing drone cost/ battery motors
drone endurance capacity time energy cost

Jeong et al. (2019) Octocopter
(MK8-3500)

8 4 km/40 min 2/3.5 kg 4500mAh,
6S, LiPo

brushless

Dorling et al. (2017) Hexacopter
(3DR Ar-
duCopter
Hexa-B)

6 6 m/s 3 kg 60 s $500 / 0.1
$/kJ

brushless

Troudi et al. (2019) Quadcopter
(MD4-1000)

4 1 km / 56 min 13 m/s 1.2 kg 22.2 V, 6S2P
13 Ah, LiPo

brushless

Mathew et al. (2017) Quadcopter 4 0.15 km 8.3 m/s 30 s
Poikonen and Golden
(2020)

Quadcopter 4 10 m/s 3 kg 0.0556 $/kJ.

Octocopter 8 15 m/s 20 kg 0.0556 $/kJ.

D; 3) the drones delivery problem, DDP, and 4) the carrier-vehicle problem with
drones, CVP-D.

For each class, we have analysed the contributions based on the operational
assumptions, features, and methodologies. We have also summarized, for each
class of problem, the main characteristics of each work in several sum-up tables,
which are useful for quickly comparing the main features of the different prob-
lems and detecting the unexplored variants, characteristics, and combinations.

Several authors focus on the optimization of the completion time. This
is a common objective since the major advantage of using the drones is that
they are not influenced by traffic conditions, hence they are faster than trucks.
This implies a better quality of service and helps achieve on-time deliveries.
Some contributions focus on the minimization of the transportation cost and a
fraction of them take into account time window restrictions to guarantee quality
of service. Clearly, the issue of energy consumption and CO2 emissions has not
been sufficiently studied.

There is also a lack of contributions regarding uncertain data. Few papers
on the VRP-D and the DDP consider stochastic or dynamic requests. Other pa-
rameters subject to uncertainty, such as travel times, and energy consumption,
have not been taken into account

Given the above general considerations, we propose possible directions for
future research in what follows.

Environmental impacts. The integration of drones in last-mile deliveries
has a less negative impact on environment than that observed for the classical
engine-fuelled vehicles. In particular, drones do not produce CO2 emissions,
they are less noisy and they can help in reducing traffic congestion in city cen-
ters. Thus, studying the use of drones under a “green” perspective would be
very interesting. Among the reviewed papers, only two have focused on neg-
ative externalities. In particular Chiang et al. (2019) calculate the polluting
emissions of classical vehicles. They then study the benefits of using drones in
terms of minimizing CO2 emissions with the respect of the truck-only config-
uration. Di Puglia Pugliese et al. (2020) calculate the polluting emissions of
classical vehicles as well as the CO2 emissions produced by the facilities which
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are involved in the process of power generation for drones. They also analyze the
effect of using drones in deliveries, by considering several system configurations
(i.e. only trucks, trucks and drones, only drones). Both these papers conclude
that the use of drones leads to more suitable solutions in terms of reduction
of negative externalities. Several features related to CO2 emissions could be
taken into account. In fact, the production of polluting emissions is strongly
related to the load of the classical trucks. Investigating how the use of drones
in tandem with trucks with the respect of a non-synchronized fleet could be
studied. In this perspective, the use of transshipment depots, as parking bases
for drones could be investigated. In addition, these studies could be extended
by considering the use of alternative fuel vehicles, such as electrical vehicles.

Energy evaluation. Energy management is crucial for implementing an ef-
ficient and safe delivery process. Specifically for drones, energy disruptions
could cause severe damage in urban areas. Several aspects related to energy
consumption and recharging strategies are worth investigating. The majority
of the reviewed papers consider energy consumption as an approximate maxi-
mum time or distance on the flight of drones. Also, battery recharging time is
considered to be instantaneous. These contributions are mainly related to the
DDP and CVP-D where recharging aspects are also considered. To the best of
our knowledge, no papers on TSP-D and VRP-D have been published with a
focus on energy consumption and on related recharging issues. More accurate
energy consumption models can be incorporated in the definition and in the
resolution process of the problems. Intermediate service or recharging points
can be considered in order to prevent energy disruptions.

Realistic drone parameter. Using realistic technological features of drones,
for testing the models and the methods, could be very relevant for practitioners.
In fact, among the reviewed papers, a few uses realistic settings and only four
of them give information about the types of drones used, the real models and
their main characteristics. Drones with a rotary-wings fuselage seems to be the
most suitable type. However, comparing the performance of this model with
other technologies, such as hybrid drones, can lead to more effective and efficient
solutions. Even if the use of drones could improve the efficiency of the service, it
is very important to evaluate the real costs of using them in delivery operations.
On the one hand, drones with wings-rotary fuselage are the most agile, on the
other hand, they have a high energy consumption, hence a higher routing cost.
Future research could focus on finding a good trade-off between maximizing
performance and minimizing cost, considering more realistic scenarios.

Dynamic systems. Last-mile delivery is becoming a crucial part of logistic
processes, especially for on-line retailers. In fact, on-line customers are becom-
ing more and more responsive to quality of service. Hence, providing a fast
service to a lower price is a key issue for the retailers. Drones can help speed
up the deliveries at lower cost. Only two of the surveyed works address this
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topic. Dayarian et al. (2020) proposed a delivery system for dynamic customer
requests, in which a drone resupplies one truck dynamically during its tour,
while Liu (2019) focuses on an on-demand meal delivery process. Optimizing
the dynamic deliveries is a new and interesting challenge. Future research should
study the impacts of using drones in dynamic system, considering all the real
technological constraints related to drones, and should also propose efficient
algorithms to solve this problem.

Uncertainty. The behaviour of transportation systems with drones under un-
certainty is worth studying. Beside uncertain travel times and requests, it should
be interesting to consider others parameters connected to the drone operations,
which can be affected by uncertainty. We mention, for example, energy con-
sumption, which depends on weather conditions, and the amount of available
energy, which is influenced by the atmospheric temperature.

Safety. Policies and regulations for drone flights vary between regions. How-
ever, safety constraints have to be taken into account when a drone-based de-
livery system is studied. For example, the maximum allowable flight altitude
and the maximum transportable load. Other constrains are time restrictions, in
fact, usually drones cannot fly after dark. There are also some forbidden areas,
where drones cannot fly. Among the analyzed papers, only Jeong et al. (2019)
introduce the concept of no-fly zones. Hence, the design of drone routes un-
der no-fly zones restrictions is certainly an important topic worthy of scientific
investigation.

Relaxing some assumptions. Other operational assumptions related to
drones can be considered. For example it could be worth investigating a multi-
delivery setting along with the possibility for the drones to take off and land on
different trucks. Technological advances now allow drones to land on a moving
truck. This assumption can improve the overall delivery service, but synchro-
nization issues need to be properly addressed. The majority of the contribu-
tions assume a single delivery per trip for the drones. However, new drones are
equipped with a multi-package payload compartment which allows the possibil-
ity of carrying more than one item (see, e.g., www.unmannedsystemstechnology.com
(2020); www.dogonews.com (2019); www.cnet.com (2018)), meaning that mul-
tiple deliveries can be performed in the same trip. This operational assumption
is certainly worth investigating. It is also important to analyze the behaviour
of both the trucks and the drones under time restrictions. Several variants can
be addressed by exploiting the versatility of the drones.
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