36 research outputs found

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de EconomĂ­a y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    A Survey on Data Mining Techniques Applied to Energy Time Series Forecasting

    Get PDF
    Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting. Although classical statistical-based methods provides reasonably good results, the result of the application of data mining outperforms those of classical ones. Hence, this work faces two main challenges: (i) to provide a compact mathematical formulation of the mainly used techniques; (ii) to review the latest works of time series forecasting and, as case study, those related to electricity price and demand markets.Ministerio de EconomĂ­a y Competitividad TIN2014-55894-C2-RJunta de AndalucĂ­a P12- TIC-1728Universidad Pablo de Olavide APPB81309

    Advanced Optimization Methods and Big Data Applications in Energy Demand Forecast

    Get PDF
    The use of data collectors in energy systems is growing more and more. For example, smart sensors are now widely used in energy production and energy consumption systems. This implies that huge amounts of data are generated and need to be analyzed in order to extract useful insights from them. Such big data give rise to a number of opportunities and challenges for informed decision making. In recent years, researchers have been working very actively in order to come up with effective and powerful techniques in order to deal with the huge amount of data available. Such approaches can be used in the context of energy production and consumption considering the amount of data produced by all samples and measurements, as well as including many additional features. With them, automated machine learning methods for extracting relevant patterns, high-performance computing, or data visualization are being successfully applied to energy demand forecasting. In light of the above, this Special Issue collects the latest research on relevant topics, in particular in energy demand forecasts, and the use of advanced optimization methods and big data techniques. Here, by energy, we mean any kind of energy, e.g., electrical, solar, microwave, or win

    Improving Demand Forecasting: The Challenge of Forecasting Studies Comparability and a Novel Approach to Hierarchical Time Series Forecasting

    Get PDF
    Bedarfsprognosen sind in der Wirtschaft unerlĂ€sslich. Anhand des erwarteten Kundenbe-darfs bestimmen Firmen beispielsweise welche Produkte sie entwickeln, wie viele Fabri-ken sie bauen, wie viel Personal eingestellt wird oder wie viel Rohmaterial geordert wer-den muss. FehleinschĂ€tzungen bei Bedarfsprognosen können schwerwiegende Auswir-kungen haben, zu Fehlentscheidungen fĂŒhren, und im schlimmsten Fall den Bankrott einer Firma herbeifĂŒhren. Doch in vielen FĂ€llen ist es komplex, den tatsĂ€chlichen Bedarf in der Zukunft zu antizipie-ren. Die Einflussfaktoren können vielfĂ€ltig sein, beispielsweise makroökonomische Ent-wicklung, das Verhalten von Wettbewerbern oder technologische Entwicklungen. Selbst wenn alle Einflussfaktoren bekannt sind, sind die ZusammenhĂ€nge und Wechselwirkun-gen hĂ€ufig nur schwer zu quantifizieren. Diese Dissertation trĂ€gt dazu bei, die Genauigkeit von Bedarfsprognosen zu verbessern. Im ersten Teil der Arbeit wird im Rahmen einer ĂŒberfassenden Übersicht ĂŒber das gesamte Spektrum der Anwendungsfelder von Bedarfsprognosen ein neuartiger Ansatz eingefĂŒhrt, wie Studien zu Bedarfsprognosen systematisch verglichen werden können und am Bei-spiel von 116 aktuellen Studien angewandt. Die Vergleichbarkeit von Studien zu verbes-sern ist ein wesentlicher Beitrag zur aktuellen Forschung. Denn anders als bspw. in der Medizinforschung, gibt es fĂŒr Bedarfsprognosen keine wesentlichen vergleichenden quan-titativen Meta-Studien. Der Grund dafĂŒr ist, dass empirische Studien fĂŒr Bedarfsprognosen keine vereinheitlichte Beschreibung nutzen, um ihre Daten, Verfahren und Ergebnisse zu beschreiben. Wenn Studien hingegen durch systematische Beschreibung direkt miteinan-der verglichen werden können, ermöglicht das anderen Forschern besser zu analysieren, wie sich Variationen in AnsĂ€tzen auf die PrognosegĂŒte auswirken – ohne die aufwĂ€ndige Notwendigkeit, empirische Experimente erneut durchzufĂŒhren, die bereits in Studien beschrieben wurden. Diese Arbeit fĂŒhrt erstmals eine solche Systematik zur Beschreibung ein. Der weitere Teil dieser Arbeit behandelt Prognoseverfahren fĂŒr intermittierende Zeitreihen, also Zeitreihen mit wesentlichem Anteil von Bedarfen gleich Null. Diese Art der Zeitreihen erfĂŒllen die Anforderungen an Stetigkeit der meisten Prognoseverfahren nicht, weshalb gĂ€ngige Verfahren hĂ€ufig ungenĂŒgende PrognosegĂŒte erreichen. Gleichwohl ist die Rele-vanz intermittierender Zeitreihen hoch – insbesondere Ersatzteile weisen dieses Bedarfs-muster typischerweise auf. ZunĂ€chst zeigt diese Arbeit in drei Studien auf, dass auch die getesteten Stand-der-Technik Machine Learning AnsĂ€tze bei einigen bekannten DatensĂ€t-zen keine generelle Verbesserung herbeifĂŒhren. Als wesentlichen Beitrag zur Forschung zeigt diese Arbeit im Weiteren ein neuartiges Verfahren auf: Der Similarity-based Time Series Forecasting (STSF) Ansatz nutzt ein Aggregation-Disaggregationsverfahren basie-rend auf einer selbst erzeugten Hierarchie statistischer Eigenschaften der Zeitreihen. In Zusammenhang mit dem STSF Ansatz können alle verfĂŒgbaren Prognosealgorithmen eingesetzt werden – durch die Aggregation wird die Stetigkeitsbedingung erfĂŒllt. In Expe-rimenten an insgesamt sieben öffentlich bekannten DatensĂ€tzen und einem proprietĂ€ren Datensatz zeigt die Arbeit auf, dass die PrognosegĂŒte (gemessen anhand des Root Mean Square Error RMSE) statistisch signifikant um 1-5% im Schnitt gegenĂŒber dem gleichen Verfahren ohne Einsatz von STSF verbessert werden kann. Somit fĂŒhrt das Verfahren eine wesentliche Verbesserung der PrognosegĂŒte herbei. Zusammengefasst trĂ€gt diese Dissertation zum aktuellen Stand der Forschung durch die zuvor genannten Verfahren wesentlich bei. Das vorgeschlagene Verfahren zur Standardi-sierung empirischer Studien beschleunigt den Fortschritt der Forschung, da sie verglei-chende Studien ermöglicht. Und mit dem STSF Verfahren steht ein Ansatz bereit, der zuverlĂ€ssig die PrognosegĂŒte verbessert, und dabei flexibel mit verschiedenen Arten von Prognosealgorithmen einsetzbar ist. Nach dem Erkenntnisstand der umfassenden Literatur-recherche sind keine vergleichbaren AnsĂ€tze bislang beschrieben worden

    Estudio comparativo completo de varios métodos basados en datos para la gestión de los recursos hídricos en ambientes mediterråneos a través de diferentes escalas temporales

    Get PDF
    Since the beginning of time, there has been innovation in the knowledge and technology of water and the hydraulic systems, to achieve an efficient and upgrade management of them. In this project, as an opening hypothesis, we will apply computational techniques and Artificial Intelligence concepts. Given that the primary asset of these studies is data, we have preferred to use the term ”Data-Driven”, as the term Artificial Intelligence can cause confusion in non-experts. This is an expanding field in all aspects of science and life, where the computing and processing powers are increasing periodic, so does the generation of information. There we have 5G technology, or the Internet of things, where the exponential build up in the volume of data utilised, pushes us to set up frameworks for the treatment and analysis of the information.Data-Driven techniques offers enormous potential to transform our perception to understand,monitor and predict the states of hydro-meteorological variables. Its application provides benefits, however, performing these exercises requires practice and explicit knowledge. Therefore, a deeper understanding of the capabilities and limitations of novel computational techniques within our field of knowledge is needed. Hence, it is essential to carry out ”hydro-informatics” experiences under this assumption. For the development of these models, we identify which points are the most relevant and need to be taken into account in regional conditions or frameworks. In consequence, we will work with the time series collected in the different monitoring networks, selecting the hydrological points of interest, in order to further develop hydrological frameworks that are useful for water management and optimisation. Here, we are interested in seeing the practical applicability to hydro-meteorology under Mediterranean conditions, where data are sometimes scarce, by selecting two hydrographic basins in south-east Andalusia: the Guadalhorce river (MĂĄlaga) and the Guadalfeo river (Granada). In chapter 1, an introduction to the doctoral thesis is made. Likewise, we establish the general and the specific objectives, and the motivation of the thesis. Afterwards, we describe the three fundamental exercises to be carried out in the research work: Regression, Classification and Optimisation. Ultimately, we carry out a brief review of previous works under Mediterranean climatic conditions and similar assumptions. Chapter 2 presents the study areas, analysing the spatial and temporal characteristics of two Andalusian Mediterranean basins in south-east Spain: Guadalhorce (GH) and Guadalfeo (GF). These are hydrographic basins with highly variable/heterogeneous spacetime patterns. The first hydrological system, GH, contains an area of socio-economic importance, such is the city of MÂŽalaga. The second, GF, to the north has the Sierra Nevada National Park, crowned by the MulhacÂŽen peak and flowing in a few kilometres into the area of Motril. In this particular water system, we find large gradients of the geophysical agents. Both systems have regulation structures of great interest for the development and study of their optimisation. We also review the monitoring networks available in these basins, and which environmental agents and/or processes should be taken into account to meet the objectives of this work. We carry out a bibliographic review of the most relevant historical floods, listing the factors associated with these extreme events. In the data analysis stage of this chapter, we focus on the spatialtemporal evolution of the risk of flooding in the two mouths of the Guadalhorce and Guadalfeo Rivers into the AlborÂŽan Sea. We quantify that had stepped up in recent years, noting that dangerous practices have increased the risk of flooding because of the intrusion of land uses with high-costs. This chapter also analyses collected data within the monitoring networks, to understand the occurrence of floods in the river GH related to upstream discharges. We found that this basin has limitations in regulation and cannot mitigate costs downstream. The results got, were part of the work presented in EgĂŒen et al. (2015). These analyses allow us to identify in which parts of the flood management of this hydrological system need a more precise optimisation. Finally, a summary of another important hydrological risk is carried out, such as droughts, and how these water deficits can be represented by standardised indices, both in rainfall and the flow rates. The various approaches and methodologies for hydro-meteorological time series modelling are discussed in the chapter 3. The contrasting concepts are exposed antagonistically, to focus on the different design choices that we need to make: black box vs. grey box vs. white box, parametric vs. non-parametric, static vs. dynamic, linear vs. non-linear, frequency vs. Bayesian, single vs. multiple, among others..., detailing the advantages and disadvantages of each approach. We presented some ideas that emerged in this part of the research in Herrero et al. (2014). The partition, management and data transformation steps for the correct application of these experimental methods are also discussed. This is of great importance, since part of the hard work in the application of these methods comes from the transformation of the data. So that, the algorithms and transfer functions work correctly. Finally, we focus on how to test and validate the deterministic and probabilistic behaviours through evaluative coefficients to avoid coefficients that mask the results, and therefore focus on the behaviours of our interest, in our case precision and predictability. We have also taken parsimony into account in models based on neural networks, since they can easily fall into over-parameterisation. In chapter 4, we present the experimental work, where seven short-term, six daily and one hourly rainfall-runoff regressions are performed. The case studies correspond to various points of interest within the study areas with important implications for hydrological management. On an hourly scale, we analyse the efficiency and predictive capacities of the MLR and BNN at ten time horizons for the level of the Guadalhorce River in CĂĄrtama. We found that, for closer predictive horizons, a simpler approach such as linear (MLR) can outperform other with a priori higher capabilities, such as non-linear (BNN). This finding could simplify greatly its development and application. At a daily scale, we establish a comparative framework between the two previous models and a complete Bayesian method such as the Gaussian Processes. This DD computational technique, allows us to apply different transfer functions under a single model. This is an advantage over the other two DD models, since the results show that they work well in one domain, but do not work well in the other. During the construction of the models, we do the selection of the input variables in a progressive way, through a trial-and-error method, where the significant improvements with respect to the last predictor structure are taken into account preserving the principle of parsimony. Here, we have used different types of data: real data collected in the monitoring networks, and data generated in parallel from physically based hydrological modelling (WiMMed). The results are robust, where the major limitation is the high computational cost by the recurrent and iterative method used. Some results of this chapter, were presented in Gulliver et al. (2014). In chapter 5 three medium-term time scale prediction experiments are performed. We base the first modelling experiment on a quarterly scale, where a hydrological time scheme determines the cumulative flow for specific time horizons. We start the scheme according to the relevant dates where hydrological planning takes place. It is validated that the forecasts are more prosperous after have been consumed the first six months of the hydrological year. Instead of the three months in which we carry out the evaluations. The observed input variables quantified in the water system are: cumulative stream flow, cumulative rainfall, cumulative snowfall values and atmospheric oscillations (AO). At the level of modelling with DD, this experience has shown the importance of combining mixed regression classification models instead of only regression models within static frameworks. In this manner, we reduce and narrow the space of possible solutions and, therefore, we optimised the predictive behaviour of the DD model. During the development of this exercise, we have also carried out a classification practice comparing three DD classifiers: Probabilistic Neural Network (PNN), K-Nearest Neighbour (KNN) and Support Vector Machine (SVM). We see that the SVM behaves better than the others with our data. However, more research is still needed on classifiers in hydro-meteorological frameworks like ours, because of their variability. We showed this part of the doctoral thesis in Gulliver et al. (2016). In the second section of this chapter (Sec. 5.3), we carry out a rain forecast exercise on a monthly scale. To do so, we use BNN following the same construction method of the SVI model exposed in the previous chapter (Sec. Ref. Chapter 4), thus validating it in another time scale. However, the results in predictive terms are poor for this hydro-meteorological variable. This confirms the difficulty of predicting this variable from historical data and without the incorporation of dynamic tools. Thus, the need for complex hydrodynamic modelling for the prediction of this important variable is confirmed. On the other hand, this case serves to empirically infer the causality of the most relevant atmospheric oscillations in the points of study. From multiple simulations with the model-based approach it has been possible to establish which indices have a greater influence. In the last section of this chapter (Section 5.4), an exercise was carried out to predict the deviation or anomaly of rainfall and runoff indices for four time series representative of different locations within the Guadalfeo BR. In this case, we verified the suitability of seven statistical distributions to characterize the anomalies/deviations under Mediterranean conditions. Under this hypothesis, the indices that passed the Shapiro-Wilk normality test were modelled to analyse the capabilities of BNN to predict these indices at various time horizons. Here, predictions of negative phases (droughts or deficit periods) have been poor, and the behaviour of the models for positive phases (wet periods) has been more successful. Regarding the causal inference of IC and its possible influence on the study area, we found out how NAO and WEMO help forecasts for shorter time horizons, while MOI helps for longer cumulative time horizons/times. We have analysed the relevance of these atmospheric variables in each case where sometimes their introduction was convenient and sometimes not, following the rules of construction and detailing them in each case study. Throughout the work, the usefulness of mixed modelling approaches has been verified, using models based on observed data from the different monitoring networks with physical modelling for the reproduction of essential hydrological processes. With the proposed methodology, a positive influence of atmospheric oscillations has been observed for medium-term prediction within the study regions, finding no evidence for short-term predictions (daily scale). The final conclusions and the most important points for future work are presented in the chapter 6. Applications of this type of methods are currently necessary. They help us to establish relationships based on measured hydro-meteorological data and thus ”based on real data”, without hypothesizing any assumptions. These data-based experiences are very useful for limiting future uncertainty and optimizing water resources. The establishment of temporal relationships between different environmental agents allows us, through supervised methods, to establish causal relationships. From here a physical inference exercise is necessary to add coherence and establish a robust scientific exercise. The results obtained in this work, reaffirm the practicality of implementing this Data- Driven frameworks, in both the public and private spheres, being a good starting point for technology transfer. Most of the routines and models provided in this thesis, could be directly applied in Hydro-meteorological Services, or Decision Support Systems for water officials. This includes potential users as varied as public administrations and basin organisations, reservoir managers, energy companies that manage hydroelectric generation, irrigation communities, water bottling plants,... etc. The establishment of iterative and automatic frameworks for data processing and modelling, needs to be implemented, to make the most of the data collected in the water systems.Desde el inicio de los tiempos, se innova en el conocimiento y la tecnologĂ­a de los sistemas hĂ­dricos e hidrĂĄulicos con el fin de conseguir una eficiente y correcta gestiĂłn de los mismos. En este proyecto, como hipĂłtesis de partida, se van a aplicar diversas tĂ©cnicas computacionales y conceptos de Inteligencia Artificial. Dado que el principal activo de estas aplicaciones son los datos, optamos por el tĂ©rmino ”Data-Driven” (DD), ya que el tĂ©rmino de Inteligencia Artificial puede causar confusiĂłn en los no expertos. Este es un campo en expansiĂłn en todos los aspectos de la ciencia y de la vida, donde al tiempo que se incrementan las capacidades de computaciĂłn y de procesamiento, se incrementa la generaciĂłn de datos. AhĂ­ tenemos la tecnologĂ­a 5G, o el internet de las cosas, donde el incremento exponencial del volumen de datos que se utilizan nos obliga a desarrollar marcos para el tratamiento y el anĂĄlisis de los mismos. Los mĂ©todos DD tienen un enorme potencial para transformar nuestra habilidad de establecer un seguimiento supervisado y predecir estados de variables hidro-meteorolĂłgicas. Su aplicaciĂłn provee claramente de beneficios, sin embargo realizar estos ejercicios requiere una prĂĄctica y un conocimiento especĂ­fico. Por ello, es necesario un entendimiento mĂĄs profundo de las capacidades y de las limitaciones de estas tĂ©cnicas computacionales, dentro de nuestro campo de conocimiento y casos especĂ­ficos. Por estos motivos, es esencial realizar experiencias ”hidro-informĂĄticas” bajo este supuesto, identificando asĂ­ que puntos son los mĂĄs relevantes y a tener en cuenta en el desarrollo y la validaciĂłn de estos modelos en condiciones o marcos mĂĄs regionales. Para ello, trabajaremos con las series temporales recogidas en las diferentes redes de monitorizaciĂłn, con series resultantes de modelado hidro-meteorolĂłgico y con series de las oscilaciones atmosfĂ©ricas mĂĄs relevantes en la zona de estudio. El objetivo principal de este trabajo es el desarrollo y la validaciĂłn de marcos metodolĂłgicos basados en datos. Para ello, se seleccionan puntos de interĂ©s, con el fin de desarrollar marcos hidro-meteorolĂłgicos ÂŽĂștiles en la gestiĂłn y optimizaciĂłn de los recursos hĂ­dricos. En este supuesto, nos interesa ver la aplicabilidad prĂĄctica de estas herramientas de aprendizaje automĂĄtico, machine learning, en condiciones mediterrĂĄneas y locales, donde los datos a veces son escasos o de baja calidad. En el primer capĂ­tulo (Cap.1) se realiza una introducciĂłn a la tesis doctoral, estableciendo los objetivos tanto generales como especĂ­ficos, y la motivaciĂłn de la tesis. Seguidamente se realiza a modo introductorio una descripciĂłn de los tres ejercicios fundamentales a realizar en el trabajo de investigaciĂłn: RegresiĂłn, ClasificaciĂłn y OptimizaciĂłn. Finalmente, se realiza una revisiĂłn del estado del arte de trabajos previos bajo condiciones climĂĄticas mediterrĂĄneas y similares. El capĂ­tulo 2 presenta las zonas de estudio, analizando las caracterĂ­sticas espacio-temporales de dos cuencas mediterrĂĄneas andaluzas situadas en el sureste español: rĂ­o Guadalhorce (GH) y rĂ­o Guadalfeo (GF). Son cuencas hidrogrĂĄficas con unos patrones espaciotemporales altamente variables/heterogĂ©neos. El primer sistema hidrolĂłgico, GH, contiene una zona de gran importancia socio-econĂłmica como es la ciudad de MĂĄlaga. El segundo, GF, al norte tiene situado el Parque Nacional de Sierra Nevada, coronado por el pico MulhacĂ©n y desemboca a pocos kilĂłmetros en la costa de Motril. Esto hace que este sea un sistema con grandes gradientes geo-morfolĂłgicos e hidro-meteorolĂłgicos. En ambas cuencas existen estructuras de regulaciĂłn de gran interĂ©s para el desarrollo y estudio de su optimizaciĂłn. TambiĂ©n se revisan las redes de monitorizaciĂłn disponibles en estas cuencas, y que agentes deben ser tenidos en cuenta para la consecuciĂłn de los objetivos del presente trabajo. En la etapa de anĂĄlisis de datos de este capĂ­tulo, nos centramos en la evoluciĂłn espacio temporal del riesgo frente a las inundaciones en las desembocaduras de ambos sistemas hidrolĂłgicos al mar de AlborĂĄn. Se cuantifica el aumento del riesgo frente a inundaciones ante la intrusiĂłn de usos del suelo con altos costes en las zonas potencialmente inundables en estos ÂŽĂșltimos años, constatando asĂ­ una mala prĂĄctica en la planificaciĂłn del territorio dentro de la zona de estudio. TambiĂ©n, en este capĂ­tulo se analizan los datos registrados con el fin de comprender la ocurrencia de avenidas en el rĂ­o GH y su relaciĂłn con los desembalses aguas arriba. En este anĂĄlisis se pudo identificar, como ante algunos eventos pluviomĂ©tricos extremos (> 100mm/24h), esta cuenca tiene limitaciones en la regulaciĂłn, no pudiendo asĂ­ mitigar los costes aguas abajo. Parte de los resultados obtenidos formaron parte del trabajo presentado en EgĂŒen et al. (2015). Estos anĂĄlisis nos permiten identificar la necesidad de una optimizaciĂłn temporal mĂĄs precisa en la gestiĂłn de avenidas en este sistema hidrolĂłgico. Finalmente, realizamos un anĂĄlisis de otro riesgo hidrolĂłgico importante como son las sequĂ­as, y cĂłmo podemos representar este dĂ©ficit hĂ­drico mediante Ă­ndices estandarizados, tanto para la pluviometrĂ­a como para la escorrentĂ­a. En el capĂ­tulo 3 se analizan los diversos enfoques y metodologĂ­as para el modelado de series temporales hidro-meteorolĂłgicas. Los enfoques se exponen de forma antagonista entre las diferentes opciones de modelado que tenemos: caja negra vs. caja gris vs. caja blanca, paramĂ©tricos vs. no-paramĂ©tricos, estĂĄtico vs. dinĂĄmico, lineal vs. no-lineal, frecuentista vs. bayesiano, Ășnico vs mĂșltiple, entre otros..., enumerando las ventajas e inconvenientes de cada enfoque. Algunas ideas surgidas en esta parte de la investigaciĂłn fueron expuestas en Herrero et al. (2014). Por otro lado, tambiĂ©n se discuten los pasos de particiĂłn, gestiĂłn y transformaciĂłn de los datos para una correcta aplicaciĂłn de este tipo de mĂ©todos experimentales. Esto es de gran importancia, ya que parte del trabajo duro en la aplicaciĂłn de este tipo de metodologĂ­as, proviene de la transformaciĂłn de los datos para que los algoritmos y las funciones de transferencia funcionen correctamente. En la parte final de este capĂ­tulo, nos centramos en cĂłmo evaluar y validar el comportamiento determinista y probabilĂ­stico mediante coeficientes evaluativos. En este punto, prestamos especial atenciĂłn en evitar la utilizaciĂłn de coeficientes que enmascaren los resultados o muy generalistas, y por lo tanto nos centramos en aquellos que evalĂșan las capacidades predictivas y de precisiĂłn de los modelos. TambiĂ©n se ha tenido en cuenta la parsimonia para los modelos basados en redes neuronales, ya que pueden caer fĂĄcilmente en una sobre-parametrizaciĂłn. El capĂ­tulo 4 expone trabajo puramente experimental, donde se realizan siete regresiones lluvia escorrentĂ­a a corto plazo, seis diarias y una horaria. Los casos de estudio corresponden a diversos puntos de interĂ©s dentro de las zonas de estudio, con importantes implicaciones en la gestiĂłn hidrolĂłgica. A escala horaria se analiza las capacidades de eficiencia y predictivas de la RegresiĂłn Lineal MĂșltiple (MLR) y Redes Neuronales Bayesianas (BNN) a diez horizontes temporales para el nivel del rĂ­o Guadalhorce en el puente de CĂĄrtama. Se encontrĂł que, para horizontes predictivos mĂĄs cercanos, un enfoque mĂĄs sencillo como puede ser el lineal (MLR), puede superar a uno con mayores capacidades predictivas a priori, como pueden ser uno no lineal (BNN). Simplificando asĂ­, el desarrollo y la implementaciĂłn de este tipo de tĂ©cnicas computacionales bajo este tipo de marcos hidrolĂłgicos. Por otro lado, a escala diaria se establece un marco comparativo entre los dos modelos anteriores, MLR y BNN, y un mĂ©todo bayesiano completo: Procesos Gaussianos (GP). Esta tĂ©cnica computacional, nos permite aplicar funciones de transferencia de diferente naturaleza bajo un Ășnico modelo. Esto es una ventaja con respecto a los otros dos modelos computacionales, ya que los resultados nos indican que a veces funcionan bien en un dominio, pero no funcionan bien en el contrario. Durante la construcciĂłn de los modelos, la selecciĂłn de las variables de entrada se realiza de forma progresiva, mediante un mĂ©todo de prueba y error, donde se tienen en cuenta las mejoras significativas con respecto a la Ășltima estructura de predictores preservando el principio de parsimonia. Se han utilizado datos de diferente naturaleza: datos reales recogidos en las redes de monitorizaciĂłn y datos generados paralelamente de modalizaciĂłn hidrolĂłgica con base fĂ­sica (WiMMed). Los resultados son robustos donde la principal limitaciĂłn es el alto coste computacional por el mĂ©todo recurrente e iterativo. Resultados de este capĂ­tulo fueron presentados en Gulliver et al. (2014). En el capĂ­tulo 5 se realizan tres

    Enhancing statistical wind speed forecasting models : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Manawatƫ Campus, New Zealand

    Get PDF
    In recent years, wind speed forecasting models have seen significant development and growth. In particular, hybrid models have been emerging since the last decade. Hybrid models combine two or more techniques from several categories, with each model utilizing its distinct strengths. Mainly, data-driven models that include statistical and Artificial Intelligence/Machine Learning (AI/ML) models are deployed in hybrid models for shorter forecasting time horizons (< 6hrs). Literature studies show that machine learning models have gained enormous potential owing to their accuracy and robustness. On the other hand, only a handful of studies are available on the performance enhancement of statistical models, despite the fact that hybrid models are incomplete without statistical models. To address the knowledge gap, this thesis identified the shortcomings of traditional statistical models while enhancing prediction accuracy. Three statistical models are considered for analyses: Grey Model [GM(1,1)], Markov Chain, and Holt’s Double Exponential Smoothing models. Initially, the problems that limit the forecasting models' applicability are highlighted. Such issues include negative wind speed predictions, failure of predetermined accuracy levels, non-optimal estimates, and additional computational cost with limited performance. To address these concerns, improved forecasting models are proposed considering wind speed data of Palmerston North, New Zealand. Several methodologies have been developed to improve the model performance and fulfill the necessary and sufficient conditions. These approaches include adjusting dynamic moving window, self-adaptive state categorization algorithm, a similar approach to the leave-one-out method, and mixed initialization method. Keeping in view the application of the hybrid methods, novel MODWT-ARIMA-Markov and AGO-HDES models are further proposed as secondary objectives. Also, a comprehensive analysis is presented by comparing sixteen models from three categories, each for four case studies, three rolling windows, and three forecasting horizons. Overall, the improved models showed higher accuracy than their counter traditional models. Finally, the future directions are highlighted that need subsequent research to improve forecasting performance further

    Patterns and processes of spatial genetic structure in a mobile and continuously distributed species, the bobcat (Lynx rufus)

    Get PDF
    Population structure, the term used to describe the reproductive and demographic cohesiveness of con-specific individuals, is a fundamental concept in ecology and evolution. Despite the importance, patterns and processes of population structure are poorly understood, particularly for highly mobile species with broad distributions. For these organisms, the ability to disperse across large distances and occupy diverse habitats should promote gene flow and limit intraspecific genetic differentiation. However, significant genetic structure is often detected even in the absence of obvious movement barriers, indicating that the factors influencing population subdivision are not always clear. In this dissertation, I examined the patterns and processes of spatial genetic structure over three spatial scales in a mobile and abundant carnivore, the bobcat (Lynx rufus). At the local scale, I integrated telemetry, landscape, and genetic data to test whether habitat fragmentation influences movement behavior of bobcats, and whether these movement constraints translate into fine-scale genetic structuring of bobcats within an agricultural landscape. Despite observing an influence of habitat heterogeneity on bobcat movement behavior, whereby bobcats preferentially moved through forests surrounded by perennial habitat, I did not detect a signature of a landscape effect in the fine-scale genetic structure. However, much of Iowa\u27s landscape was predicted to pose a high level of resistance to bobcat movement, likely impeding connectivity with bobcat populations in neighboring states. At the regional scale, I characterized spatial genetic structure across 15 Midwestern states to delineate populations and identify landscape characteristics influencing recent expansions of bobcats into areas from which they had been extirpated. I identified 6 genetic populations separated by both physical (large expanses of row cropping and a major waterway) and cryptic (zones of sharp changes in habitat type) boundaries. As predicted by the fine-scale analysis, results indicated that bobcats do not readily disperse through this agriculturally-modified landscape, and the newly-established populations in Iowa and northern Missouri are closely linked with bobcats to the southwest, but have had little genetic input from populations to the north and east. At the continental scale, I analyzed genetic data from across the entire United States to determine whether landscape features or other factors generate deeper, broad-scale genetic divergences that warrant recognition as distinct subspecies. The primary signature involved a longitudinal cline with a transition zone occurring along the Great Plains in the central U.S., distinguishing bobcats in the eastern part of the country from those in the western half. Results implicated historical processes as the primary cause of the observed continental-scale genetic patterns, and demographic evidence supported a scenario of post-glacial expansion from two disjunct Pleistocene refugia, which likely were isolated by the aridification of the Great Plains grasslands during interglacial periods. Although genetic patterns were loosely congruent with most subspecific designations, the data supported only two historically independent units: eastern and western bobcats. Collectively, the data indicate that despite the bobcat\u27s mobility and broad niche, population genetic structure is evident and characterized by complex combinations of clines, clusters, and isolation-by-distance arising from habitat heterogeneity, restricted dispersal, and historical processes

    The development of a temporal-BRDF model-based approach to change detection, an application to the identification and delineation of fire affected areas.

    Get PDF
    Although large quantities of southern Africa burn every year, minimal information is available relating to the fire regimes of this area. This study develops a new, generic approach to change detection, applicable to the identification of land cover change from high temporal and moderate spatial resolution satellite data. Traditional change detection techniques have several key limitations which are identified and addressed in this work. In particular these approaches fail to account for directional effects in the remote sensing signal introduced by variations in the solar and sensing geometry, and are sensitive to underlying phenological changes in the surface as well as noise in the data due to cloud or atmospheric contamination. This research develops a bi-directional, model-based change detection algorithm. An empirical temporal component is incorporated into a semi-empirical linear BRDF model. This may be fitted to a long time series of reflectance with less sensitivity to the presence of underlying phenological change. Outliers are identified based on an estimation of noise in the data and the calculation of uncertainty in the model parameters and are removed from the sequence. A "step function kernel" is incorporated into the formulation in order to detect explicitly sudden step-like changes in the surface reflectance induced by burning. The change detection model is applied to the problem of locating and mapping fire affected areas from daily moderate spatial resolution satellite data, and an indicator of burn severity is introduced. Monthly burned area datasets for a 2400km by 1200km area of southern Africa detailing the day and severity of burning are created for a five year period (2000-2004). These data are analysed and the fire regimes of southern African ecosystems during this time are characterised. The results highlight the extent of the burning which is taking place within southern Africa, with between 27-32% of the study area burning during each of the five years of observation. Higher fire frequencies are exhibited by savanna and grassland ecosystems, while more dense vegetation types such as shrublands and deciduous broadleaf forests burn less frequently. In addition the areas which burn more frequently do so with a greater severity, with a positive relationship identified between the frequency and the severity of burning
    corecore