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Abstract: Data mining has become an essential tool during the last decade to analyze large1

sets of data. The variety of techniques it includes and the successful results obtained in2

many application fields, make this family of approaches powerful and widely used. In3

particular, this work explores the application of these techniques to time series forecasting.4

Although classical statistical-based methods provides reasonably good results, the result of5

the application of data mining outperforms those of classical ones. Hence, this work faces6

two main challenges: i) to provide a compact mathematical formulation of the mainly used7

techniques, ii) to review the latest works of time series forecasting and, as case study, those8

related to electricity price and demand markets.9

Keywords: Energy; time series; forecasting; data mining10

1. Introduction11

The prediction of the future has fascinated the human being since its early existence. Actually, many12

of these efforts can be noticed in everyday events such as energy management [1], telecommunications13

[2], pollution [3], bioinformatics [4], earthquakes [5], and so forth. Accurate predictions are essential in14

economical activities as remarkable forecasting errors in certain areas may involve large loss of money.15

Given this situation, the successful analysis of temporal data has been a challenging task for many16

researchers during the last decades and, indeed, it is difficult to figure out any scientific branch with no17

time-dependant variables.18

A thorough review of the existing techniques devoted to forecast time series is provided in this19

survey. Although a description of classical Box-Jenkins methodology is also discussed, this text is20

particularly focused on those methodologies that make use of data mining techniques. Moreover, a21
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family of energy-related time series are examined due to the scientific relevance exhibited during the last22

decade: electricity price and demand time series. These series have been chosen since they present some23

peculiarities such as nonconstant mean and variance, high volatility or presence of outliers, that turns the24

forecasting process into a particularly difficult task to fulfil.25

Actually, the electric power markets have become competitive markets due to the deregulation carried26

out in the last years, allowing the participation of all producers, investors, traders or qualified buyers.27

Thus, the price of the electricity is determined on the basis of this buying/selling system. Consequently,28

a will of obtaining optimized bidding strategies has arisen in the electricity-producer companies [6],29

needing both insight into future electricity prices and assessment of the risk of trusting in predicted30

prices.31

On the other hand, the process of forecasting the quantity of electricity required for a specific32

geographical area during a time period is called load forecasting or demand forecasting. This process33

is key since current technology allows to store only little amount of electricity in batteries. Therefore,34

the demand forecasting plays an important role for electricity power suppliers because both excess and35

insufficient energy production may lead to large costs and significative reduction of benefits.36

Some works have already reviewed electricity price time series forecasting techniques. For instance,37

[7] collates a massive review of artificial neural networks, but it barely reviews other data mining38

techniques. Also, Weron [8] presented an excellent review, describing many different approaches for39

several markets. However, none of them are focused on the whole data mining paradigm. Moreover,40

they do not provide mathematical foundations for all the methods they evaluated. And this is maybe the41

most significative strength of the paper, since information relating to underlying mathematics is provided,42

as well as an exhaustive description of the measures typically used to evaluate the performance. In short,43

this survey is to provide the reader with a general overview of current data mining techniques used in44

time series analysis and to highlight all the skills these techniques are exhibiting nowadays. As case45

study, their application to a real-world energy-related set of series is reported.46

As it will be shown in subsequent sections, the majority of the techniques have been applied to47

Pennsylvania-New Jersey-Maryland (PJM) [9], New York (NYSIO) [10] and Spain (OMEL) [11]48

electricity markets. This is due to their standard market design structure, which is basically a49

two-settlement market comprising a day-ahead market and a real-time intraday market. By contrast,50

both Australian National Electricity Market (ANEM) [12] and Ontario [13] follow a single settlement51

real-time structure and few researchers have dealt with such markets. ANEM is also well-known for52

its volatility and its frequent appearance of outliers, turning this market into a perfect target for robust53

forecasting. Additionally, the Californian electricity market (CAISO) [14] has also been widely analyzed54

because of the well-known problems that it experienced in the second half of 2000’s. Some other markets55

appear in this work, given the relevance of the model applied. Such are the cases for the UK, India,56

Malaysia, Finland, Turkey, Egypt, Nord Pool, Brazil, Jordan, China, Taiwan or Greece. Note that most57

of them provide public access to data.58

The remainder of this work is structured as follows. Section 2 provides a formal description of a time59

series and describes its main features.60

Section 3 describes statistical indicators and errors typically used in this field. Also, the concept of61

persistence model and forecasting skill is here described.62
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In particular, Section 4 describes the approaches based on linear methods. Classical Box and63

Jenkins-based methods such as AR, MA, ARMA, ARIMA, ARCH, GARCH or VAR are thus reviewed.64

Note that from this section on, all sections consist of a brief mathematical description of the technique65

analyzed and a review of the most representative works.66

As for Section 5, it is a compendium of the non-linear forecasting techniques currently in use in the67

data mining domain. In particular, these methods are divided into global (neural networks, support vector68

machines, genetic programming) and local (nearest neighbors).69

In Section 6, rule-based forecasting methods are analyzed, providing a brief explanation of what a70

decision rule is, and revisiting the latest and most relevant works in this domain.71

The use of wavelets, as relevant method for hybridization, is detailed in Section 7 as well as discussing72

the most relevant improvements achieved by means of these techniques.73

A compilation of several works that cannot be classified in none of the aforementioned groups is74

described in Section 8. Thus, forecasting approaches based on Markov processes, on Grey models, on75

Pattern-Sequence similarity or on manifold dimensionality reduction, are there detailed.76

Due to the large amount of ensemble models that are being used nowadays, Section 9 is devoted to77

cover these methods.78

Finally, the conclusions drawn from the exploration of all existing techniques are summarized in79

Section 10.80

2. Time series description81

This section is to describe temporal data features as well as to provide mathematical description for82

such a kind of data. Thus, a time series can be understood as a sequence of values observed over time83

and chronologically ordered. Time is a continuous variable, however, samples are recorded at constant84

intervals in practice. When the time is considered as a continuous variable, the discipline is commonly85

referred as functional data analysis [15]. The description of this category is out of scope in this survey.86

Let yt, t = 1, 2, ..., T be the historical data of a given time series. This series is thus formed by87

T samples, where each yi represents the recorded value of the variable y at time i. Therefore, the88

forecasting process consists in estimating the value of yT+1 (ŷT+1) and, the goal, to minimize the error,89

which is typically represented as a function of yT+1 − ŷT+1. This estimation can be extended when the90

horizon of prediction is greater than one, that is, when the objective is to predict a sample at a time91

T + h (ŷT+h). In this situation, the best prediction is reached when a function of
∑h

i=1(yT+i − ŷT+i) is92

minimized.93

Time series can be graphically represented. In particular, the x–axis identifies the time (t = 1, 2, ..., T )94

whereas the y–axis the values recorded at punctual time stamps (yt). This representation allows the visual95

detection of the most highlighting features of a series, such as oscillations amplitude, existing seasons96

and cycles or the existence of anomalous data or outliers. Figure 1 illustrates, as example, the price97

evolution for a particular period of 2006 in the Spanish electricity market.98

An usual strategy to analyze time series is to decompose them in three main components [16,17]:99

trend, seasonality and irregular components, also known as residuals.100
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Figure 1. Time series example.

1. Trend. It is the general movement that the variable exhibits during the observation period, without101

considering seasonality and irregulars. Some authors prefer to refer the trend as the long–term102

movement that a time series shows. Trends can present different profiles such as linear, exponential103

or parabolic.104

2. Seasonality. This component typically represents periodical fluctuations of the variable subjected105

to analysis. It consists of the effects reasonably stable along with the time, magnitude and106

direction. It can arise from several factors such as weather conditions, economical cycles or107

holidays.108

3. Residuals. Once the trend and cyclic oscillations have been calculated and removed, some residual109

values remain. These values can be, sometimes, high enough to mask the trend and the seasonality.110

In this case, the term outlier is used to refer these residuals, and robust statistics are usually applied111

to cope with them [18]. These fluctuations can be of diverse origin, which makes the prediction112

almost impossible. However, if by any chance, this origin can be detected or modeled, they can be113

thought of precursors in trend changes.114

Figure 2 depicts how a time series can be decomposed in the variables above described.115

Obviously, real-world time series present a meaningful irregular component, which makes their116

prediction a especially hard task to fulfil. Some forecasting techniques are focused on detecting trend117

and seasonality (especially traditional classical methods), however, residuals are the most challenging118

component to be predicted. The effectiveness of one technique or another is assessed according to its119

capability of forecasting this particular component. It is for the analysis of this component where data120

mining-based techniques has been shown to be particularly powerful, as this survey will attempt to show121

in next sections.122

3. Accuracy measures123
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Figure 2. Time series main components decomposition.

The purpose of error measures is to obtain a clear and robust summary of the error distribution. It is124

common practice to calculate error measures by first calculating a loss function (usually eliminating the125

sign of the single errors) and then computing an average. Let in the following yt be the observed value126

at time t, also called the reference value, and let ŷt be the forecast for yt. The error Et is then computed127

by yt − ŷt. Hyndman and Koehler [19] give a detailed review of different accuracy measures used in128

forecasting and classify the measures into the groups detailed in subsequent sections.129

3.1. Scale-dependent measures130

There are some commonly used accuracy measures whose scale depends on the scale of the data.131

These are useful when comparing different methods on the same set of data, but should not be used, for132

example, when comparing across data sets that have different scales.133

The most commonly used scale-dependent measures are based on the absolute error AEt = |yt − ŷt|134

or squared error SEt = (yt − ŷt)
2. These errors are averaged by arithmetic mean or median, leading to135

the mean absolute error (MAE, Eq. (1)), the median absolute error (MDAE, Eq. (2)), the mean squared136

error (MSE, Eq. (3)) or the root mean squared error (RMSE, Eq. (4)).137

MAE =
1

n

n∑
t=1

|yt − ŷt| (1)

MDAE = median(|yt − ŷt|) (2)

MSE =
1

n

n∑
t=1

(yt − ŷt)
2 (3)
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RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (4)

When comparing forecast methods on a single data set, the MAE is popular as it is easy to understand138

and compute. While MAE do not penalize extreme forecast errors, MSE and RMSE emphasize the fact139

that the total forecast error is in fact much affected by large individual errors, i.e. large errors are much140

expensive than small errors. Often, the RMSE is preferred to the MSE as it is on the same scale as the141

data. However, MSE and RMSE are more sensitive to outliers than MAE or MDAE.142

3.2. Percentage errors143

To address the scale-dependency, the error can be divided by the reference value. Thus, the percentage144

error (PE) is given by 100(yt−ŷt)/(yt). Percentage errors have the advantage of being scale-independent145

and, therefore, they are frequently used to compare forecast performance across different data sets. The146

most commonly used measure is the Mean Absolute Percentage Error (MAPE, Eq. (5)).147

MAPE =
1

n

n∑
t=1

∣∣∣∣100yt − ŷt
yt

∣∣∣∣ (5)

These measures have the disadvantage of being infinite or undefined if yt = 0 for any t in the period148

of interest, and having an extremely skewed distribution when any yt is close to zero. Where the data149

involves small counts (which is common with intermittent demand data) it is impossible to use these150

measures as occurrences of zero values of yt occur frequently.151

By using the median for averaging these problems are easier to deal with, as single infinite or152

undefined values do not necessarily result in an infinite or undefined measure. However, they also153

have the disadvantage that they put a heavier penalty on positive errors than on negative errors. This154

observation led to the use of the so-called symmetric measures sMAPE and sMdAPE, defined in Eq. (6)155

and Eq. (7).156

sMAPE =
1

n

n∑
t=1

200
|yt − ŷt|
|yt|+ |ŷt|

(6)

sMdAPE = median

(
200

|yt − ŷt|
|yt|+ |ŷt|

)
(7)

3.3. Relative errors157

An alternative way of scaling is to divide each error by the error obtained using another standard158

method of forecasting as benchmark. Let rt = et/e
∗
t denote the relative error where e∗t is the forecast159

error obtained from the benchmark method. Usually, the benchmark method is the random walk where160

ŷt is equal to the last observation. Then we can define Mean Relative Absolute Error (MRAE, Eq. (8))161

and Median Relative Absolute Error (MdRAE, Eq. (9)).162

MRAE = mean(|rt|) (8)
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MdRAE = median(|rt|) (9)

A serious deficiency in relative error measures is that e∗t can be small. In fact, rt has infinite variance163

because e∗t has positive probability density at 0. One common special case is when et and e∗t are normally164

distributed, in which case rt has a Cauchy distribution.165

3.4. Relative measures166

Rather than use relative errors, one can use relative measures. For example, let MAEb denote the167

MAE from the benchmark method. Then, a relative MAE is given by:168

RelMAE = MAE/MAEb (10)

Similar measures can be defined using RMSE, MDAE or MAPE. An advantage of these methods is169

their interpretability. For example relative MAE measures the possible improvement from the proposed170

forecast method relative to the benchmark forecast method. When RelMAE < 1, the proposed method171

is better than the benchmark method and when RelMAE > 1, the proposed method is worse than the172

benchmark method.173

When the benchmark method is a random walk, and the forecasts are all one-step forecasts, the relative174

RMSE is the Theil’s U statistic, as defined in Eq. (11). The random walk (where ŷt is equal to the last175

observation) is the most common benchmark method for such calculations.176

U =

√
1
n

∑n
t=1 (yt − ŷt)2√

1
n

∑n
t=1 y

2
t

√
1
n

∑n
t=1 ŷ

2
t

(11)

The Theil’s U statistic is a normalized measure of total forecasting error and 0 ≤ U ≤ 1. This177

measure is affected by change of scale and data transformations. For assessing good forecast accuracy,178

it is desirable that the Theil’s U statistic is close to zero. U = 0 means a perfect fit.179

3.5. Persistence model180

The persistence model is an important dynamic property of any time series and usually related to181

memory properties. Specifically, a time series is a persistent process if the effect of infinitesimally small182

shock will influence future predictions of the time series for a very long time. Thus the longer the183

influence time the longer is the persistence.184

If a series suffers an external shock, the persistence degree provides information about the impact of185

the shock on such series, whether it will soon revert to its mean path or it will be further pushed away186

from the mean path. In case of a highly persistence series, a shock to the series tends to persist for long187

and the series drifts away from its historical mean path. On the contrary, for the case of a time series188

with low persistence degree after a shock, the time series tends to get back to its historical mean path.189

The persistence of a time series model has been measured by different ways in literature [20].190
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3.6. Forecasting skill191

The forecasting skill is a type of measures that scores the ability of a forecasting method to predict192

future values of a time series with respect to a reference model as benchmark. The forecasting skill is a193

scaled representation of the relative forecasting error and its purpose is the same of the relative measures194

introduced in subsection 3.4.195

The most commonly used forecasting skill measure is shown in Eq. (12) and it is based on the196

previously introduced mean squared error (MSE, see Eq. (3)). MSE is the error of the tested forecasting197

method and MSEb is the error of the reference benchmark.198

SS = 1− MSE

MSEb

(12)

A perfect forecast skill implies SS = 1, a forecast with similar skill to the benchmark forecast199

produces a SS close to 0, and a forecast which is less skillful than the benchmark would produce a200

negative SS value.201

4. Forecasting based on linear methods202

There exist real complex phenomena that cannot be represented by means of linear difference equations203

since they are not fully deterministic. Therefore, it may be desirable to insert a random component in204

order to allow a higher flexibility on its analysis.205

Linear forecasting methods are those that try to model a time series behavior by means of a linear206

function. From all the existing techniques, seven of them are quite popular: AR, VAR, MA, ARMA,207

ARIMA, ARCH and GARCH. These models follow a common methodology, whose application to time208

series analysis was first introduced by Box and Jenkins. The original work has been extended and209

published many times since its first apparition in 1970, but the newest version can be found in [21].210

Autoregressive –AR(p)–, moving average –MA(q)–, mixed –ARMA(p, q)– autoregressive211

integrated moving average –ARIMA(p, d, q)– autoregressive conditional heteroskedastic –ARCH(q)–212

and generalized autoregressive conditional heteroskedastic –GARCH(p, q)– models were described213

following this idea, where p is the number of autoregressive parameters, q is the number of moving214

average parameters and d is the number of differentiations for the series to be stationary. Vector215

autoregressive models –V AR(p)– are the natural extension for AR models to multivariate time series,216

where p denotes the number of lags considered in the system.217

4.1. Autoregressive processes218

An autoregressive process (AR) is denoted by AR(p), where p is the order of the AR process. This219

process assumes that every yt can be expressed as a linear combination of some past values. It is a simple220

model but that adequately describes many real complex phenomena. The generalized AR model of order221

p is described by:222

yt =

p∑
i=1

αiyt−i + ϵt (13)
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where αi are the coefficients that models the linear combination, ϵt the adjustment error, and p the223

order of the model.224

When the error is small compared to the actual values, a future value can be estimated as follows:225

ŷt = yt + ϵt

=

p∑
i=1

wiyt−i (14)

4.2. Vector autoregressive models226

Vector autoregressive models (VAR) are the natural extension of the univariate AR to multivariate227

time series. VAR models have shown to be especially useful to describe dynamic behaviors in time228

series and therefore to forecast. In a VAR process of order p with N variables –V AR(p)–, N different229

equations are estimated. In each equation a regression of the target variable over p lags is carried.230

Unlike the univariate case, VAR allow that each series to be related with its own lag and the lag of231

the other series that form the system. For instance, in two time series systems, there are two equations,232

one for each variable. This two-series system (V AR(1), N = 2) can be mathematically expressed as233

follows:234

y1,t = α11y1,t−1 + α12y2,t−1 + ϵ1,t (15)

y2,t = α21y1,t−1 + α22y2,t−1 + ϵ2,t (16)

(17)

where yi,t for i = 1, 2 are the series to be modeled, and α’s the coefficients to be estimated.235

Note that the selection of an optimum length of the lag is a critical task for VAR processes and, for236

this reason, has been widely discussed in literature [22].237
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4.3. Moving average processes238

When the error ϵt cannot be assumed as negligible, AR processes are not valid. In this situation it is239

practical to use the moving average (MA) process, where the series is represented as linear combination240

of the error values:241

yt =

q∑
i=1

βiϵt−i (18)

where q is the order of the MA model and βi the coefficients of the linear combination. As observed,242

it is not necessary to make explicit use of past values of yt to estimate its future value. Finally, MA243

processes are seldom used alone in practice.244

4.4. Autoregressive moving average processes245

Autoregressive and moving average models are combined in order to generate better approximations246

than that of Wold’s representation [23]. This hybrid model is called autoregressive moving average247

process (ARMA) and denoted by ARMA(p, q). Formally:248

yt =

p∑
i=1

αiyt−i +

q∑
i=1

βiϵt−i + ϵt (19)

Again, ARMA assumes that ϵt is small compared to yt to estimate future values of yt. The estimates249

of ϵt past values at time t− i can be obtained from past actual values of yt and past estimated values of250

ŷt:251

êt−i = yt−i − ŷt−i (20)

Therefore, the estimate for ŷt is calculated as follows:

ŷt =

p∑
i=1

αiyt−i +

q∑
i=1

βiϵ̂t−i (21)

4.5. Generalized Autoregressive Conditional Heteroskedastic processes252

Autoregressive conditional heteroskedastic processes (ARCH), firstly presented in [24], or extended253

ARCH models, called generalized autoregressive conditional heteroskedastic processes (GARCH),254

introduced in [25], are especially designed to deal with volatile time series, that is, with series that255

exhibit high volatility and outlying data (for detailed information refer to [26,27]). The ARCH model256

considers that the conditional variance is dependent of the time, namely, a MA process of order q of the257

square error values:258

σ(ϵt|ϵt−1) =

q∑
i=1

βiϵ
2
t−i (22)
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The extension of an ARCH model to a GARCH model is similar to the extension of AR models to259

ARMA models. The conditional variance depends on their own past values in addition to the past values260

of the square errors:261

σ(ϵt|ϵt−1) =

p∑
i=1

αiσ(ϵt−i|ϵt−i−1) +

q∑
i=1

βiϵ
2
t−i (23)

4.6. Autoregressive integrated moving average processes262

Autoregressive integrated moving average processes (ARIMA) are the most general methods and are263

the result of combining AR and MA processes. ARIMA models are denoted as ARIMA(p, d, q), where264

p is the number of autoregressive terms, d the number of nonseasonal differences, and q the number of265

lagged forecast errors in the prediction equation. These models follows a common methodology, whose266

application to time series analysis was first introduced by Box and Jenkins [21]. Thus, this methodology267

proposes an iterative process formed by four main steps as illustrated in Figure 3.268

Figure 3. The Box-Jenkins methodology.

1. Identification of the model. The first task to be fulfilled is to determine wether the time series269

is stationary or not, that is, to determine if the mean and variance of a stochastic process do not270

vary along with time. If the time series does not satisfy this constraint, a transformation has to be271

applied and the time series has to be differentiated until reaching stationarity. The number of times272

that the series has to be differentiated is denoted by d and is one of the parameters to be determined273

in ARIMA models.274

2. Estimation of the parameters. Once d is determined, the process is reduced to an ARMA model275

with parameters p and q. These parameters can be estimated by following non-linear strategies.276

From all of them, three stand out: the evolutionary algorithms, the least squares (LS) minimization277

and the maximum likelihood (ML). Evolutionary algorithms and LS consist in minimizing the278

square error of forecasting for a training set while the ML consists in maximizing the likehood279

function, which is proportional to the probability of obtaining the data given the model.280
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Comparisons between different Box-Jenkins time series models can be easily found in the281

literature [28–31], but there are very few works comparing the results of different parameter282

estimation methods. ML and LS were compared in [32] to obtain an ARIMA model to predict283

the gold price. The results reported an error of 0.81% and 2.86% when using a LS and a ML,284

respectively. A comparative analysis between autocorrelation function, conditional likelihood,285

unconditional likelihood and genetic algorithms in the context of streamflow forecasting was made286

in [33]. Although similar results were obtained by the four methods, the autocorrelation function287

and the methods based on ML were the most computationally cost, especially when increased the288

order of the model. For that, the authors finally recommended the use of evolutionary algorithms.289

The good performance of several metaheuristics to solve optimization problems along with the290

limitations of the classical methods, such as the low precision and poor convergence, has motivated291

the appearance of recent works comparing evolutionary algorithms and traditional methods for292

parameter estimation in time series models [34,35]. In general, evolutionary algorithms obtain293

better results due to the likelihood function is highly nonlinear, and therefore, conventional294

methods usually converge to a local maxima contrarily to genetic algorithms, which tend to find295

the global maxima [36].296

3. Validation of the model. Once the ARIMA model has been estimated several hypotheses have297

to be validated. Thus, the fitness of the model, the residual values or the significance of the298

coefficients forming the model are forced to agree with some requirements. In cases in which this299

step is not fulfilled, the process begins again and the parameters are recalculated.300

In particular, an ARIMA model is validated if estimated residuals behave as white noise, that is,301

if they exhibit normal distribution as well as constant variance and null mean and covariance.302

To determine if they are white noise, autocorrelation and partial autocorrelation functions are303

calculated. These values must be significatively small.304

Additionally, to assess different models’ performance, Akaike information criterion (AIC)305

and Bayesian information criterion (BIC) measures are typically used (instead of classical306

error measures, such as MAE or RMSE) given their ability to avoid the overfitting that307

overparameterization causes.308

A problem with the AIC is that it tends to overestimate the number of parameters in the model and309

this effect can be important in small samples. If AIC and BIC are compared, it can be seen that310

the BIC penalizes the introduction of new parameters more than the AIC does, hence it tends to311

choose more parsimonious models [37].312

4. Forecasts. Finally, if the parameters have been properly determined and validated, the system is313

ready to perform forecasts.314

4.7. Related work315

The authors in [38] used the GARCH method to forecast the electricity prices in two regions of New316

York. The obtained results were compared to different techniques such as dynamic regression (DR),317
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transfer function models (TFM) and exponential smoothing. They also showed that accounting for the318

spike values and the heteroscedastic variance in these time series could improve the forecasting, reaching319

error rates lesser than 2.5%.320

García et al. [39] proposed a forecasting technique based on a GARCH model. Hence, this paper321

focused on day-ahead forecast of electricity prices with high volatility periods. The proposal was tested322

on both mainland Spanish and California deregulated markets.323

Also related with electricity prices time series, the approach proposed by Malo et al. in [40] was324

equally noticeable. In it, the authors considered a variety of specification tests for multivariate GARCH325

models that were used in dynamic hedging in the Nordic electricity markets. Moreover, hedging326

performance comparison were conducted in terms of unconditional and conditional ex-post variance.327

An application of ARMA models to electricity prices can be found in [41], where the exogenous328

variable is the electricity demand. The study was carried out with data of California. The average329

error verges on 10%.330

In [42] ARIMA models, selected by means of Bayesian Information Criteria, were proposed to obtain331

the forecasts of electricity prices in the Spanish market. In addition, the work analyzed the optimal332

number of samples used to build the prediction models.333

Weron et al. [43] presented twelve parametric and semi-parametric time series models to predict334

electricity prices for the next day. Moreover, in this work forecasting intervals were provided and335

evaluated taking into account the conditional and unconditional coverage. They concluded that the336

intervals obtained by semi-parametric models are better than that of parametric models.337

Table 1 summarizes the content of this section. Note that 5+ models means that the approach has338

been compared to five or more models. As it can be appreciated, linear methods were very popular at the339

beginning of 2000’s as main methods to make predictions. However, nowadays, these kind of methods340

have turned into baselines for other methods to be compared to.341

Table 1. Summary on linear methods.

Reference Technique Outperforms Metrics Horizon Year Market
[38] GARCH DR/TFM/Smoothing RMSE/MAPE 1 day 2002 NYISO
[39] GARCH ARIMA RMSE 1 day 2000 CAISO/OMEL
[40] GARCH 5+ models MAPE/MAE 1 day 2004 Northern Europe
[41] ARMA 5+ models RMSE 1 day 2000 CAISO
[42] Mixed ARIMA ARIMA RMSE/MAPE 1 day 2000-2002 OMEL
[43] ARIMA 5+ models MAE/MAPE 1 day 2004 CAISO/Nord Pool

5. Forecasting based on non-linear methods342

Non linear forecasting methods are those that try to model a time series behavior by means of a non linear343

function. This function is often generated by lineally combining non-linear functions whose parameters344

have to be determined. Moreover, the non linear methods can be classified in global or local methods345

depending on the characteristics required for the function to find.346
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5.1. Global methods347

On the other hand, global methods are based on finding a linear function able to model the output data348

from the input ones. Several techniques form this family of methods, among which the most important349

are: artificial neural networks, whose main advantage is that they do not need to know the input data350

distribution; the support-vector machines, which are very powerful classifiers that follow a philosophy351

similar to that of the artificial neural networks; and genetic programming, where the type of non-linear352

function that models the data behavior can be selected.353

5.1.1. Artificial neural networks354

This section is devoted to artificial neural networks (ANN) which have widely applied for forecasting355

energy time series. In particular, a general description is presented in Section 5.1.1.1 and two specific356

ANN, namely extreme learning machine (ELM) and self-organizing Kohonen’s maps (SOM) are357

introduced in Sections 5.1.1.2 and 5.1.1.3, respectively. Finally, Section 5.1.1.4 presents a review of358

recently published literature related to ANN.359

5.1.1.1. Fundamentals360

ANNs were originally conceived by McCulloch and Pitts in [44]. These mechanisms search for361

solving problems by using systems inspired in the human brain and not by applying step by step as362

usually happens in most techniques. Therefore, these systems own a certain intelligence resulting from363

the combination of simple interconnected units –neurons– that work in parallel in order to solve several364

tasks, such as prediction, optimization, pattern recognition or control.365

Neural networks are inspired in the structure and running of nervous systems, in which the neuron is366

the key element due to its communication ability. The existing analogies between ANN and the synaptic367

activity are now explained. Signals that arrive to the synapse are the neuron’s inputs and can be whether368

attenuated or amplified by means of an associated weight. These input signals can excite the neuron if a369

positive weighted synapsis is carried out or, on the contrary, they can inhibit it if the weight is negative.370

Finally, if the sum of the weighted inputs is equal or greater than a certain threshold, the neuron is371

activated. Neurons present, consequently, binary results: activation or not activation. Figure 4 illustrates372

an usual structure of an ANN.373

There are three main features that characterize a neural network: topology, learning paradigm and the374

representation of the information. A brief description of them are now provided.375

1. Topology of the ANN. Neural networks architecture consists in the organization and position of376

the neurons with regard to the input or output of the network. In this sense, the fundamental377

parameters of the network are the number of layers, the number of neurons per layer, the378

connection grade and the type of connections among neurons. With reference to the number379

of layers, ANN can be classified into monolayer or multilayer networks (MLP). The first ones380

only have one input layer and one output layer, whereas the multilayer networks [45] are a381

generalization of the monolayer ones, which add intermediate or hidden layers between the input382

and the output. When discussing about the connection type, the ANN can be feedforward if the383

signal propagation is produced in just one way and, therefore, they do not have a memory or384



Version November 6, 2015 submitted to Energies 15 of 41

Figure 4. Mathematical model of an ANN.

recurrent if they keep feedback links between neurons in different layers, neurons in the same layer385

or in the same neuron. Finally, the connection grade can be totally connected if all neurons in a386

layer are connected with the neurons in the next layer (feedforward networks) or with the neurons387

in the last layer (recurrent networks) and, otherwise, partially connected networks in cases where388

there is not total connection among neurons from different layers.389

2. Learning paradigm. The learning is a process that consists in modifying the weights of the ANN,390

according to the input information. The changes that can be carried out during the learning process391

are removing (the weight is set to zero), adding (conversion of a weight equal to zero to a weight392

different to zero) or modifying neurons connections. The learning process is said to be finished or,393

in other words, the network has learnt when the values assigned to the weights remain unchanged.394

3. Representation of the input/output information. ANN can be also classified according to395

the way in which information relative to both input and output data is represented. Thus, in a396

great number of networks input and output data are analog which entails activation functions also397

analogs, either linear or sigmoidal. In contrast, there are some networks that only allow discrete398

or even binary values as input data. In this situation, the neurons are activated by means of an399

echelon function. Finally, hybrid ANNs can be found in which input data may accept continuous400

values and output data would provide discrete values or viceversa.401

5.1.1.2. Extreme Learning Machine402

Extreme Learning Machine (ELM) [46] is a feedforward neural network with an only hidden layer403

that uses a method for the training faster than the classical ANNs. Namely, the ELM randomly generates404

the weights W 1 that connect the input layer with the hidden layer and computes the weights W 2 that405

connect the hidden layer with the output using a simple matrix computation. Thus, the output y is406

defined by the following model:407

y = W 2ϕ(W 1x) (24)

where ϕ is the activation function and x is the input vector.408
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The training consists in computing the weights W 2 as follows:409

H = ϕ(W 1xi) (25)

W 2 = H+yi (26)

where (xi, yi) are the points of the training set and H+ represents the pseudoinverse of the matrix H .410

5.1.1.3. Self Organizing Maps411

The learning in ANN can be either supervised (perceptron and backpropagation [47] techniques) or412

unsupervised, from which the self-organizing Kohonen’s maps (SOM) [48] stands out.413

SOM have been mainly applied to discover patterns in data. The learning paradigm is based on414

a competitive learning, that is the neurons compete among them and win the neuron with the nearest415

weights to the input vector. Then, all neurons near to the win neuron update their weights according to a416

specific rule defined by:417

wj
n+1 = wj

n + µn(x− wj
n) (27)

where wj
n is the weight associated to the neuron j at the n-th iteration, µn is the learning factor and x is418

the input vector.419

The neurons that are not neighbors to the win neuron do not update their weights. Finally, a clustering420

of the data is obtained when the training phase ends.421

5.1.1.4. Related work422

Many references proposing the use of ANNs, or a variation of them, as a powerful tool to forecast423

time series, can be found in the literature. The most important works are detailed below. Furthermore,424

the creation of hybrid methods that highlight most of the strengths of each technique is currently the425

most popular work among the researchers. However, from all of them, the combination of ANN and426

fuzzy set theory has become a new tool to be explored.427

Rodríguez and Anders [49] presented a method to predict electricity prices by means of an ANN428

and fuzzy logic, as well as a combination of both. The basic selected network configuration consisted429

of a back propagation neural network with one hidden layer that used a sigmoid transfer function and430

a one-neuron output layer with a linear transfer function. They also reported the results of applying431

different regression-based techniques over the Ontario market.432

A hybrid model which used ANNs and fuzzy logic was introduced in [50]. As regards the neural433

network presented, it had a feed-forward architecture and three layers, where the hidden nodes of the434

proposed fuzzy neural network performed the fuzzyfication process. The approach was tested over the435

Spanish electricity price market and showed to be better than many other techniques such as ARIMA or436

MLP.437

Taylor et al. [51] compared six univariate time series methods to forecast electricity load for Rio de438

Janeiro and England and Wales markets. These methods were an ARIMA model and an exponential439

smoothing (both for double seasonality), an artificial neural network, a regression model with a previous440

principal component analysis and two naive approaches as reference methods. The best method was the441
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proposed exponential smoothing and the regression model showed a good performance for the England442

and Wales demand.443

Another neural network-based approach was introduced in [52] in which multiple combinations were444

considered. These combinations consisted of networks with different number of hidden layers, different445

number of units in each layer and several types of transfer functions. The authors evaluated the accuracy446

of the approach reporting the results from the electricity markets of mainland Spain and California.447

The use of ANN for forecasting electricity prices in the Spanish market was also proposed in [53].448

The main novelty of this work lies on the proposed training method for ANN, which is based on making449

a previous selection for the MLP training samples, using an ART-type [54] neural network.450

In [55], the authors discussed and presented results by using an ANN to forecast the Jordanian451

electricity demand, which is trained by a particle swarm optimization technique. They also showed the452

performance obtained by using a back propagation algorithm (BP) and autoregressive moving average453

models.454

Neupane et al. [56] used an ANN model with carefully selected inputs. Such inputs were selected by455

means of a wrapper method for feature selection. The proposal was applied to data from Australia, New456

York and Spain electricity markets, outperforming the PSF algorithm performance.457

The feature selection problem to obtain optimal inputs for load forecasting has also been addressed458

by means of ANN [57]. The authors evaluated the performance of four feature selection methods in459

conjunction with state-of-the-art prediction algorithms, using two years of Australian data. The results460

outperformed those of exponential smoothing prediction models.461

In spite of the widespread use of the ANNs, the ELM has not been too explored to predict energy time462

series. An ELM and bootstrapping to predict probabilistic intervals for Australian electricity market was463

proposed in [58]. First, an ELM was applied to obtain point forecasts, and later, a bootstrap method was464

used for uncertainty estimations. The results were compared with two ANNs, namely a back-propagation465

ANN and a radial basis function neural network, showing that ELM outperforms other methods in most466

of the test sets. For the same market, prediction intervals (PI) were also obtained in [59]. In this case, a467

maximum likelihood method was used to estimate the noise variance indeed of a bootstrap method. The468

results were compared to a random walk (RW), and both traditional ANN and ELM with a bootstrap469

method. The proposed method provided the best training time and errors.470

In [60] five recent methods to train radial-basis function (RBF) networks were applied to obtain471

the short-term load forecasting in New England. These method were SVR, ELM, decay RBF neural472

networks, improved second order and error correction. The best results regarding the training, errors,473

network size, and computational time were obtained with the error correction.474

Li et al [61] presented a wavelet transform to deal with the nonstationary of the load time series and475

an ELM with weights initially computed by an artificial bee colony algorithm to predict the load time476

series in New England and North American from the wavelet series. The authors showed that the use of477

an optimization algorithm to set the weights in ELM improves the forecasting errors.478

Most approaches based on SOMs published in the literature for forecasting tasks, use the SOM to479

group the data in an initial stage, and later obtain a prediction model for each group. In [62] the authors480

propose to combine SOM and support vector machines to predict hourly electricity prices for next-day.481

First, they applied a SOM to split the data into groups, and then, a support vector machine model for each482
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group is used to obtain the prediction of the prices in the New England electricity market. In this work,483

two months were used to validate the method, which provided errors of 7% approximately. Likewise,484

a SOM along with an ANN was applied to forecast the prices for Australian and New York electricity485

markets [63]. In this case, the ANN predicted the nearest cluster and the prediction was obtained by486

the centroid of the cluster. The errors reported for the year 2006 were around a 1.76% and 2.88% for487

Australian and New York markets, respectively. A SOM without combining with another technique was488

presented in [64] to predict the prices for the Spanish electricity market. A preprocessing to select the489

input variables was proposed as a previous step to the prediction, which was obtained from the prices of490

the nearest centroid to the input data. The proposed SOM obtained forecasts with an error of 2.32% for491

the daily market.492

Table 2 summarizes the content of this section.

Table 2. Summary on ANN, SOM and ELM for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[49] Hybrid ANN 5+ models MAPE 1 day 2002 Ontario
[50] Hybrid ANN MLP/ARIMA/RBF MRE 1 day 2002 OMEL
[51] ANN 5+ models RMSE/MAE 1 day 2003 Brazil
[52] ANN ARIMA/Naive MAPE 1 day 2000/2002 CAISO/OMEL
[53] ART-NN ARIMA/ANN MAPE 1 day 2003 OMEL
[55] ANN ARMA/BP RMSE/MAPE 1 day 2004 Jordan
[56] ANN PSF MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[57] ANN Smoothing MAE/MAPE 1 day 2007 ANEM
[58] ELM 5+ models MAE/MAPE/RMSE 1 day 2006/07 ANEM
[59] ELM RW/ANN PI 1 day 2007/09 ANEM
[60] ELM RBF/SVR MAPE 1 day 2011 ANEM
[61] ELM 5+ models MAPE 1 day 2006 NYISO/ANEM
[62] SOM SVM MAE/MAPE 1 day 2005 ANEM
[63] SOM PSF MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[64] SOM 5+ models MAPE 1 day 2011 OMEL

493

5.1.2. Genetic programming494

5.1.2.1. Fundamentals495

A genetic algorithm (GA) [65] is a kind of searching stochastic algorithm based on natural selecting496

procedures. Such algorithms try to imitate the biological evolutive process since they combine the497

survival of the best individuals in a set, by means of an structured and random process of information498

exchange.499

Every time the process iterates, a new set of data structures is generated gathering just the best500

individuals of older generations. Thus, the GA are evolutionary algorithms due to their capacity to501

efficiently exploit the information relating to past generations. This fact allows the speculation about502

new searching points in the solution space, trying to obtain better models thanks to its evolution.503

Many genetic operators can be defined. However, selection, crossover and mutation are the most504

relevant and used and are now going to be briefly described.505
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1. Selection. During each successive generation, a proportion of the existing population is selected to506

breed a new generation. Individual solutions are selected through a fitness-based process, where507

fitter solutions (as measured by a fitness function) are typically more likely to be selected. Certain508

selection methods rate the fitness of each solution and preferentially select the best solutions. Other509

methods rate only a random sample of the population, as this process may be very time-consuming.510

Most functions are stochastic and designed so that a small proportion of less fit solutions are511

selected. This helps keep the diversity of the population large, preventing premature convergence512

on poor solutions. Popular and well-studied selection methods include roulette wheel selection513

and tournament selection.514

2. Crossover. Just after two parents are selected by any selection method, crossover takes place.515

Crossover is an operator that mates these two parents to produce offspring. The newborn516

individuals may be better than their parents and the evolution process may continue. In most517

crossover operators, two individuals are randomly selected and recombined with a crossover518

probability, pc. That is, an uniform number r is generated and if r ≤ pc the two randomly selected519

individuals undergo recombination. Otherwise, the offspring can be sheer copies of their parents.520

The value of pc can either be set experimentally or set based on schema-theorem principles [65].521

3. Mutation. Mutation is the genetic operator that randomly changes one or more of the individuals’522

genes. The purpose of the mutation operator is to prevent the genetic population from converging523

to a local minimum and to introduce to the population new possible solutions.524

Genetic programming (GP) is a natural evolution of GA and its first apparition in the literature dates525

of 1992 [66]. It is a specialization of genetic algorithms where each individual is a computer program.526

Therefore it is used to optimize a population of computer programs according to a fitness landscape527

determined by a program’s ability to perform a given computational task. Hence, specialized genetic528

operator that generalize crossover and mutation are used for tree-structured programs.529

The main steps to be followed when using GP are now summarized. Obviously, depending on the530

type of the application, these steps may change in order to be adapted to the particular problem to be531

dealt with.532

1. Random generation of an initial population, that is, programs.533

2. Iterative execution until the stop condition –to be determined in each situation– is fulfilled:534

(a) To execute each program of the population and to assign an aptitude value, according to their535

behavior in relation with the problem.536

(b) To create new programs by applying different primary operations to the programs.537

i. To copy an existing program in the new generation.538

ii. To create two programs from two existing ones, genetically and randomly recombining539

some chosen parts of both programs, making use of the crossover operator, which will540

also be randomly chosen for each program.541

iii. To create a program from another randomly chosen by randomly changing a gene.542
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3. The program identified as possessing the best aptitude (the best for the last generation) is the543

designed result of the GP running.544

5.1.2.2. Related work545

The viability of forecasting the electricity demand via linear GP is analyzed in [67]. Hence, the546

authors considered load demand patterns for ten consecutive months, observed every thirty minutes for547

the Victoria State of Australia. The performance was compared with an ANN and a neuro-fuzzy system548

(EFuNN) and the system delivered best results in terms of accuracy and computational cost.549

An evolutionary technique applied to the optimal short-term scheduling of the electric energy550

production was presented in [68]. The equations that define the problem led to a nonlinear mixed-integer551

programming problem with a high number of real and integer variables. The required heuristics,552

introduced to assure the feasibility of the constraints, are analyzed, along with a brief description of553

the proposed GA. Results from the Spanish power system were reported and compared to dynamic554

regression (DR).555

Another price forecasting strategy was proposed in [69]. In fact the authors presented a mutual556

information-based feature selection technique (MI) in which the prediction part was a cascaded557

neuro-evolutionary algorithm. The accuracy was largely evaluated since they compared their results558

–obtained from Pennsylvania-New Jersey-Maryland and Spanish electricity markets– with seven559

different models.560

The electricity energy consumption is forecasted by using genetic algorithms in Turkey [70]. The561

results were compared with conventional regression techniques, and the estimated values of the Turkish562

Ministry of Energy and Natural Resources (TMENR). An estimation for the electricity demand in the563

year 2020 is also provided.564

A variant of genetic programming, Multi-Gene Genetic Programming (MGGP), was introduced in565

[71] and applied to Egypt load forecasting. The method was compared with RBF network and the566

standard genetic programming.567

A variant of genetic programming, improved by incorporating semantic awareness in algorithm, for568

short term load forecasting is described in [72]. The authors analyzed South Italy data and outperformed569

standard GP and some other machine learning methods.570

Finally, Table 3 summarizes all the methods reviewed in this section.

Table 3. Summary on GP for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[67] Linear GP ANN/EFuNN RMSE 2 days 1995 ANEM
[68] GP DR MRE/MAE 1 day 2002 OMEL
[69] MI GP 5+ models MAE/MSRE 1 day 2007 PJM/OMEL
[70] GP TMENR MSE 1 day 2020 Turkey
[71] MGGP RBF/GP MAPE 1 day 2012 Egypt
[72] Semantic GP 5+ models MAE/MSRE 1 day 2009/10 Italy

571
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5.1.3. Support vector machines572

5.1.3.1. Fundamentals573

The support vector machine (SVM) model the way is nowadays understood, initially appeared in574

1992 in the Computational Learning Theory (COLT) Conference and it has been subsequently studied575

and extended [73,74]. The interest for this learning model is continuously increasing and it is considered576

an emerging and successful technique nowadays. Thus, it has become to a widely accepted standard in577

machine learning and data mining disciplines.578

The learning process in SVM represents an optimization problem under constraints that can be solved579

by means of quadratic programming. The convexity guarantees a single solution which is an advantage580

with regard to the classical model of ANN. Furthermore, current implementations provide moderate581

efficiency for real-world problems with thousands of samples and attributes.582

Support vector machines aims at separating points by means of what they defined as hyperplane,
which are just linear separators with a high dimensionality whose functions are defined according to
different kernels. Formally, a hyperplane in a D-dimensional space is defined as follows:

h(x) =< w, x > +b (28)

where x is the sample, wϵRD is the orthogonal vector to the hyperplane, bϵR, w is the weight vector, b583

is the bias or threshold decision and < w, x > expresses the scalar product in RD.584

In case of a binary classifier is required, the equation can be reformulated as:

f(x) = sign (h(x)) (29)

where the sign function is defined as:

sign(x) =

{
+1, if x ≥ 0

−1, if x < 0
(30)

There exist many algorithms directed to create hyperplanes (w, b) given a dataset linearly separable.585

These algorithms guarantee the convergency to a solution hyperplane although particularities of all of586

them will lead to slightly different solutions. Note that there can be infinity hyperplanes that perform587

adequate separations. So the key problem for the SVM is to choose the best hyperplane, in other words,588

the hyperplane that maximizes the minimum distance (or geometric margin) between the samples in the589

dataset and the hyperplane itself.590

Another peculiarity of SVM is that only take into consideration those points belonging to the frontiers591

of the region of decision, which are the points that do not clearly belong to a class or to another. Such592

points are named support vectors. Figure 5 illustrates a bidimensional representation of an hyperplane593

equidistant to two classes, as well as showing the support vectors and the existing margin.594

If non linear transformation is carried out from the input space to the feature space, non linear595

separators-based learning is reached with SVM. Kernel functions are used thus in order to estimate596

the scalar product of two vectors in the features space. Consequently the election of an adequate kernel597

function is crucial and a priori knowledge of problem is required for a proper application of SVM.598

Nevertheless, the samples may not be linearly separable (see Figure 6) even in the features space.599
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Figure 5. Hyperplane (w, b) equidistant to two classes, margin and support vectors.

Figure 6. Non linearly separable dataset.

Trying to classify properly all the samples can seriously compromise the generalization of the600

classifier. This problem is known as overfitting. In such situations it is desirable to admit that some601

samples will be misclassified in exchange for having more promising and general separators. This602

behavior is reached by inserting soft margin in the model, whose objective function is composed by the603

addition of two terms: the geometric margin and the regularization term. The importance of both terms604

is pondered by means of a typically called parameter C. This model appeared in 1999 [75], and it was605

the model that really allowed the practical use that SVMs have nowadays, since it provided robustness606

against the noise.607

On the other hand, SVMs can be easily adapted to solve regression problems by means of the608

introduction of a loss function. SVMs are commonly called Support Vector Regression (SVR) for time609

series forecasting. Now, the problem consists in finding a non linear function f that minimizes the610

forecasting error for the training set. The ϵ-insensitive loss function Lϵ defined by Eq. (31) is typically611

used due to a reduced number of support vectors is obtained. The ϵ parameter represents the error612

allowed for each point of the training set.613

Lϵ(y) =


0 if |y − f(x)| ≤ ϵ

|y − f(x)| − ϵ otherwise

(31)
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To approximate all data of the training set with an error less than ϵ is not always possible in practice.614

For this reason, slack variables ξi and ξ∗i are inserted to allow errors greater. Thus, the SVR model615

consists in solving the following problem:616

minimize
1

2
||w||2 + C

∑
i

(ξi + ξ∗i )

subject to yi − f(xi) ≤ ϵ+ ξi

f(xi)− yi ≤ ϵ+ ξ∗i

(32)

where (xi, yi) are the points of the training set, w is the margin and C is the regularization parameter.617

Once the optimization problem has been solved, the following function is obtained:618

f(x) =
n∑

i=1

(α+
i − α−

i )K(x, xi) (33)

where α+
i and α−

i are the multipliers of Lagrange of the dual optimization problem and K is the kernel619

function.620

5.1.3.2. Related work621

Many works have been focussed on forecasting time series by applying SVM. Hence, the study carried622

out in [76] analyzed the suitability of applying SVM to forecast the electric load for the Taiwanese623

market. The results were compared to that of linear regressions and ANN. The same time series type, but624

related to the Chinese market, was forecasted in [77], in which the authors reached a globally optimized625

prediction by applying a SVM.626

The occurrence of outliers (also called spike prices) or prices significantly larger than the expected627

values is an usual feature found in these time series. With the aim of dealing with this feature, the authors628

in [78] proposed a data mining framework based on both SVM and probability classifiers.629

The research published in [79] proposed a new prediction approach based on SVM and rough sets630

techniques (RS) with a previous selection of features from data sets by using an evolutionary method.631

The approach improved the forecasting quality, reduced the speed of convergence and the computational632

cost as regards a conventional SVM and a hybrid model formed by a SVM and simulated annealing633

algorithms (SAA).634

The Taiwanese electricity market was forecasted by means of SVR in [80]. The author proposed a635

novel initialization of the SVR by using particle swarm optimization. The results were compared to other636

SVR but with different initialization strategies, mainly, the least-squares (LS) method.637

A two-stage multiple SVM based model for midterm electricity price forecasting was proposed in638

[81].The first stage was used to separate input data into different price zones, and was carried out by639

means of a single SVM. Then, four parallel designed SVM were applied to forecast the electricity price.640

The method was applied to PJM market and the results compared to the standard SVM.641

Finally, Table 4 summarizes all the methods reviewed in this section. Note the GRNN stands for642

general regression neural networks.643



Version November 6, 2015 submitted to Energies 24 of 41

Table 4. Summary on SVM for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[76] SAA-SVM ARIMA/GRNN MAE/MSRE 1 day 2004 China
[77] SVM ANN MAPE 1 day 2005 China
[78] M-SVM SVM MAE/MSRE 1 day 2006 ANEM
[79] RS-SVM SAA-SVM MAE/MSRE 1 day 2007 NYISO
[80] PSO-SVM LS-SVM MSE 1 day 2009 Taiwan
[81] M-SVM SVM MAE/MSRE 1 day 2009/10 PJM

5.2. Forecasting based on local methods644

Due to the complexity to find a global function that models the whole system, the local models emerge645

as learning methods for time series forecasting. Conversely to global methods, a local model does not646

use the input data to predict the output but only the points close to the point to forecast. In general, global647

models have a lower computational cost than local models, since the latter have to be rebuilt for each648

point of the test set. But, the accuracy achieved by local methods is usually better than that of global649

methods. The main local methods for prediction tasks are the methods based on nearest neighbors.650

5.2.1. Forecasting based on nearest neighbors651

5.2.1.1. Fundamentals652

One of the most popular way of either predicting or classifying a new data, based on past and known653

observations, it the nearest neighbors technique (NN), that was first formulated by Cover and Hart in654

1967 [82]. The classical example to illustrate the application of NN refers to a doctor that tries to655

predict the result of a surgical procedure by comparing it with the obtained result from the most similar656

patient subjected to the same operation. However, a single case in which surgery had failed may have657

an excessive influence over other slightly different cases in which the operation had successfully carried658

out. For this reason, the NN algorithm is generalized with the k nearest neighbors, kNN. Thus, a simple659

election of the k nearest neighbors generates a prediction for every cases. Moreover, this rule can be660

extended by weighting the importance of the neighbors, giving a larger weight to the really nearest661

neighbors.662

The search of the nearest neighbor process can be defined as follows:663

Definition. Given a dataset P = p1, ..., pn in a metric espace X of distance d, two different type of664

queries are wanted to be answered:665

• Nearest neighbor: find the point in P nearest to qϵX666

• Range: given a point qϵX and r > 0, return all the points pϵP that satisfy d(p, q) ≤ r667

Figure 7 illustrates an example in which k is set to three (three nearest neighbors are searched for)668

and an Euclidean metric is used.669

Formally, the classification rule is formulated as follows:670
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Figure 7. Three nearest neighbors of an instance to be classified.

Definition. Let D = {e1, . . . , eN} be a dataset with N labeled examples, in which each example ei has
m attributes (ei1, . . . , eim) belonging to the metric space Em and a class Ci ∈ {C1, . . . , Cd}. The
classification of each new example e′ fulfils that:

e′ ⊣ Ci ⇔ ∀j ̸= i · d(e′, ei) < d(e′, ej) (34)

where e′ ⊣ Ci indicates the assignation of the class label Ci to the example e′; and d expresses a671

distance defined in the m-dimensional space, Em.672

5.2.1.2. Related works673

One example is thus labeled according to the nearest neighbor’s class. This closeness is defined by674

means of the distance d which turns the election of this metric essential, since different metrics will most675

likely generate different classifications. As a consequence the election of the metric is widely discussed676

in the literature, as shown in [83]. Note that the other main drawback that this technique presents is the677

selection of the number of neighbors to consider [84].678

In [85] a forecasting algorithm based on nearest neighbors was introduced. The selected metric679

was the weighted Euclidean distance and the weights were calculated by means of a GA. The authors680

forecasted electricity demand time series in the Spanish market and the reported results were compared681

to those of an ANN. The same algorithm was tested on electricity price time series in [86] in which the682

authors proposed a methodology based on weighted nearest neighbors (WNN) techniques. The proposed683

approach was applied to the 24-hour load forecasting problem and they built an alternative model by684

means of a conventional dynamic regression (DR) technique, where the parameters are estimated by685

solving a least squares problem, to perform a comparative analysis.686

A modification of the WNN (mWNN) methodology was proposed in [87]. To be precise, they687

explained how the relevant parameters –the window length of the time series and the number of neighbors688

to be chosen– are adopted. Then, the approach weighted the nearest neighbors in order to improve the689

prediction accuracy. The methodology was evaluated with the Spanish electricity prices time series.690

Later, WNN was also applied to the California electricity market (CAISO) [88]. This time, the authors691

reported results for year 2000 and compared the approach to ARIMA-based models.692

A multivariate KNN (mKNN) regression method for forecasting the electricity demand in the UK693

market was presented in [89]. They reported results date from 2004 and were compared to several694

benchmarks, as well as to univariate KNN (uKNN).695

A work reporting short term load forecasting results for India, years 2012 and 2013, can be found in696

[90]. This paper evaluates the accuracy of Holt-winter model and K-NN algorithm. Their performance697
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is compared to SARIMA, ANN and SVM, showing that K-NN is the method with better results in terms698

of MAPE.699

Finally, Table 5 summarizes all the methods reviewed in this section. It can be concluded that there700

exist few works based on KNN to forecast time series, which have mainly been assessed by means of701

diverse distance metrics in order to identify univariate time series motifs or episodes in the historical702

data [91].703

Table 5. Summary on KNN methods for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[85] KNN ANN MRE/MAE 1 day 2002 OMEL
[86] WNN DR MRE/MAE 1 day 2002 OMEL
[87] mWNN ANN/GARCH MRE/MAE 1 day 2002 OMEL
[88] WNN ARIMA MAE/MAPE 1 day 2000 CAISO
[89] mKNN uKNN/Benchmarks MAPE 1 day 2004 UK
[90] KNN/Holt SARIMA/ANN/SVM MAPE 1 day 2012/13 India

6. Rule-based forecasting704

6.1. Fundamentals705

Prediction based on decision rules usually makes reference to the expert system developed by706

Collopy and Armstrong in 1992 [92]. The initial approach consisted of 99 rules that combined707

four extrapolation-based forecasting methods: linear regression, Holt-Winter’s exponential smoothing,708

Brown’s exponential smoothing and random walk. During the prediction process, 28 features were709

extracted in order to characterize the time series. Consequently, this strategy assumed that a time710

series can be reliably identified by some features. Nevertheless, just eight features were obtained by711

the system itself since the remaining ones were selected by means of experts’ inspections. This fact712

implies high inefficiency insofar as too much time is taken, the ability of the analyst plays an important713

(and subjective) role and it shows a medium reliability.714

Formally, an association rule (AR) can be expressed as a sentence such that: If A Then B, with A a715

logic predicate over the attributes whose fulfillment involves to classify the elements with a label B. The716

learning based on rules tries to find rules involving the highest number of attributes and samples.717

ARs were first defined by Agrawal et al. [93] as follows. Let I = {i1, i2, ..., in} be a set of n items,718

and D = {tr1, tr2, ..., trN} a set of N transactions, where each trj contains a subset of items. Thus, a719

rule can be defined as X ⇒ Y , where X, Y ⊆ I and X ∩Y = ∅. Finally, X and Y are called antecedent720

(or left side of the rule) and consequent (or right side of the rule), respectively.721

When the domain is continuous, the association rules are known as quantitative association rules
(QAR). In this context, let F = {F1, ..., Fn} be a set of features, with values in R. Let A and C be two
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disjunct subsets of F , that is, A ⊂ F , C ⊂ F , and A ∩ C = ∅. A QAR is a rule X ⇒ Y , in which
features in A belong to the antecedent X , and features in C belong to the consequent Y , such that:

X =
∧
Fi∈A

Fi ∈ [li, ui] (35)

Y =
∧

Fj∈C

Fj ∈ [lj, uj] (36)

where li and lj represent the lower limits of the intervals for Fi and Fj respectively, and the couple ui

and uj the upper ones. For instance, QAR could be numerically expressed as:

F1 ∈ [12, 25] ∧ F3 ∈ [5, 9] ⇒ F2 ∈ [3, 7] ∧ F5 ∈ [2, 8] (37)

where F1 and F3 constitute the features appearing in the antecedent and F2 and F5 the ones in the722

consequent.723

6.2. Related work724

Ismail et al. [94] presented a mathematical model for forecasting electricity peak load demand using725

a rule-based approach. The method was applied to data from Malaysia. The results were compared to726

SARIMA and regression models.727

A data association mining-based rule extraction mechanism to extract the patterns in consumers’728

reaction to price forecasts can be found in [95]. The resulting rules were then employed to fine-tune729

the initially generated demand and price forecasts of a multi-input multi-output (MIMO) engine. The730

methodology was tested on Australia’s and New England’s electricity data.731

A rule-based approach to forecast anomalous load conditions for Great Britain data was introduced732

in [96]. The authors used Holt-Winters-Taylor exponential smoothing, ARMA, ANN, and singular733

value decomposition based exponential smoothing to demonstrate how these methods can be adapted734

to discover outliers, when used together with a rule-based approach.735

By contrast, not all the rule-based system provides crisp decisions. Hence, fuzzy rule-based systems736

are usually used when the available data presents missing values. In these systems, each element can737

belong to different groups with different grade of membership, not providing thus strict rules for every738

sample. Due to its flexibility for dealing with incomplete, imprecise or uncertain data, fuzzy rule-based739

strategies are often applied to prediction purposes. Hence a fuzzy association rule can be expressed as:740

If X is A Then Y is B, where X, Y are disjoint subsets of attributes that forms the database and A, B741

contain the fuzzy sets that are associated with X and Y.742

A fuzzy rule based approach is presented to generate a crisp estimate for system load in [97]. To get743

this done, historical load, temperature, and time information were converted into fuzzy information. The744

method was applied to the European Energy Exchange (EEE) and the prediction results were compared745

to the conventional method (CM).746

A novel fuzzy logic methodology for short term load forecasting was introduced in [98]. It was747

concluded that using time, temperature and similar previous day load as the inputs and by formulating748

rule base of fuzzy logic using available data where enough to obtain reliable fuzzy rules for some749

particular days. Data from Indian market were analyzed.750
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A paper focused on improving the performance of fuzzy rules-based forecasters through application751

of FCM algorithm can be found in [99]. The approach was evaluated by using data of certain region of752

the USA.753

In general, the search of rule-based works to forecast electricity led to the conclusion that this kind754

of works is scarce. That is, there could be an interesting starting point for those researchers wanting to755

develop new algorithms.756

Finally, Table 6 summarizes all the methods reviewed in this section, where NP means not provided757

(the authors did not compared their approach to any other).758

Table 6. Summary on rule-based methods for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[94] Rules MA/Smoothing MAE 1 day 2001-2005 Malaysia
[95] MIMO NP MAPE 1 day 2009 ANEM
[96] Holt/Rules SARMA/ANN MAPE 1 day 2007 UK
[97] Fuzzy rules CM MAPE 1 day 2002-2005 EEE
[98] Fuzzy rules NP MRE 1 day 2013 India
[99] Fuzzy rules Holt/ARIMA MSE/MAPE 1 day 2005 Brazil

7. Wavelet transform methods759

7.1. Fundamentals760

All the methods described are applied in the time domain. However, time series can also be analyzed761

in the frequency domain by means of several techniques. Fourier transform –and different Fourier-related762

transforms such as short-time Fourier transform (STFT), fast Fourier transform (FFT) or discrete Fourier763

transform– is the most widely used tool to extract the spectral components from temporal data. However,764

there is another technique derived from this analysis which is more suitable to time series analysis in the765

frequency domain: the wavelet transform.766

There are two different types of wavelet transforms. The discrete wavelet transform (DWT)767

performance is similar to that of low and high-pass filters, since it divides the time series in high and768

low frequencies. On the other hand, the continuous wavelet transform (CWT) works as if it was a769

band-pass filter, isolating just the frequency band of interest. Although both strategies can be used to770

perform spectral analysis, only the CWT is going to be described in this Section because it is much more771

useful –and, consequently, used– in time series analysis. DWT is usually used in data that present great772

variations and discontinuities, which is not the case of time series that frequently as modeled by smooth773

variations.774

Hence, the CWT is a convolution of a time series and the wavelet function [100]. That is, the time
series is filtered by a function that plays the same role of the window in the STFT. Nevertheless, in
wavelet transform this window has a variable length according to the frequency band to be studied.
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Formally, the N points-CWT of a time series xn, sampled each ∆t units of time, is defined as the
convolution of such series with an extended and delayed wavelet function Ψ(t):

CWTx(n, s) =
1√
s

N−1∑
n′=0

xn′Ψ∗

(
n′ − n

s
∆t

)
with n = 0 . . . N − 1 (38)

As this product has to be done N times for the scale s considered, if N is too large it is faster to
estimate the result by using the FFT than by means of the definition. From the convolution theorem
[101], the CWT can be obtained from the inverse fast Fourier transform (IFFT) of time series and the
wavelet’s direct transform:

CWTx(n, s) = IFFT

(
1√
s
FFT (x(n,∆t)FFT (Ψ(n,∆t, s)

)
(39)

Since s is the single parameter from which the transform depends on, the estimation of the CWT can775

be carried out by means of FFT algorithms for each scale as well as simultaneously for all the points776

forming the series.777

7.2. Related work778

Conejo et al. [102] proposed a new approach to predict day-ahead electricity prices based on the779

wavelet transform and ARIMA models. Thus, they decomposed the time series in a set of better-behaved780

constitutive series by applying the wavelet transform. Then, the future values of these new series were781

forecast using ARIMA models, with a prior application of the inverse wavelet transform. This approach782

improved former strategies that they had also published [103–105].783

Aggarwal et al. [106] also forecasted electricity prices. For this purpose, they divided each day into784

segments and they applied a multiple linear regression (MLR) to the original series or the constitutive785

series obtained by the wavelet transform depending on the segment. Moreover, the regression model786

used different input variables for each segment.787

Pindoriya et al. [107] proposed an adaptive wavelet-based neural network (AWNN) for short-term788

electricity price time series forecasting for Spanish and California markets. As for the neural network, the789

output of the hidden layer neurons was based on wavelets that adapted their shape to training data. The790

authors concluded that their approach converged with higher rate and outperformed in the forecasting791

the electricity prices compared to other methods due to the ability for modeling the non-stationary and792

high frequency signals. The target market was PJM.793

An approach based on non-decimated multilevel wavelet (ML-WL) transform, combined with feature794

selection and machine learning prediction algorithm was presented in [108]. The feature selection795

integrated autocorrelation and ranking-based methods. The method was applied to Australian electricity796

data, outperforming exponential smoothing with single and double seasonality, the industry model and797

all other baselines.798

A methodology to forecast normal and spike prices was proposed in [109]. Normal price module was799

forecasted as a mixture of wavelet transform, ARIMA and ANN models. Price spike occurrences were800

generated by a three classifiers ensemble. The forecasting accuracy of the proposed method is evaluated801

with real data from Finland energy market.802
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The work presented in [110] used Local Linear Wavelet Neural Network (LLWNN) trained by a803

special adaptive version of the PSO algorithm, with parallel implementation. Experiments for short term804

load and price forecasting were conducted for Greece and the USA energy markets and were compared805

to a classic PSO algorithm.806

Finally, Table 7 summarizes all the methods reviewed in this section, where WL stands for wavelets.807

Table 7. Summary on wavelets for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[102] WL-ARIMA ARIMA MRE 1 day 2002 OMEL
[106] WL-MLR GARCH RMSE/MAPE 1 day 2003-2005 ANEM
[107] AWNN ANN/MLP/RBF MAPE/MSE 1 day 2002/2004 OMEL/PJM
[108] ML-WL-FS Smoothing MSE 1 day 2010 ANEM
[109] WL-ARIMA-ANN ARIMA MAPE 1 day 2010 Finland
[110] LLWNN PSO RMSE/MAPE 1 day 2012 Greece/NYISO

8. Other models808

Despite of the vast description of methods provided in prior sections, some authors proposed new809

forecasting approaches that cannot be classified into any of the aforementioned categories. For this810

reason, this section is describe to introduce all these works.811

Hence, transfer functions models (TFM) –known as dynamic econometric models in the economics812

literature– based on past electricity prices and demand were proposed to forecast day-ahead electricity813

prices by Nogales et al. in [111], but the prices of all 24 hours of the previous day were not known. They814

used the median as measure due to the presence of outliers and they stated that the model in which the815

demand was considered presented better forecasts.816

The authors in [112] focussed on the one year-ahead electricity demand prediction for winter seasons817

by defining a new Bayesian hierarchical model (BH). They provided the marginal posterior distributions818

of demand peaks. The results for one year-ahead were compared to those of the National Grid Trasc819

(NGT) group in the United Kingdom.820

A fuzzy inference system (FIS) –adopted due to its transparency and interpretability– combined with821

traditional time series methods was proposed for day-ahead electricity price forecasting [113].822

A novel non-parametric model using the manifold learning (MFL) methodology was proposed in823

[114] in order to predict electricity price time series. For this purpose, the authors used cluster analysis824

based on the embedded manifold of the original dataset. To be precise, they applied manifold-based825

dimensionality reduction to curve modeling, showing that the day-ahead curve can be represented by a826

low-dimensional manifold.827

Another different proposal can be found in [115], where a forecasting algorithm based on Grey828

Models was introduced to predict the load of Shanghai. In the Grey model the original data series829

was transformed to reduce the noise of the data series and the accuracy was improved by using Markov830

chains techniques.831

The use of clustering as an initial step to forecast electrical time series has been used. For instance,832

the authors in [116,117] evaluated the performance of both K-means and Fuzzy C-Means in detecting833
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patterns in the Spanish market. Later, these patterns were used to transform the time series into834

a sequence of labels showing the benefits of using this information as previous step in time series835

forecasting [118]. Finally, an extended and improved approach, PSF, was introduced in [119], where836

New York, Australian and Spanish electricity and demand time series were successfully forecasted,837

showing remarkable performance compared to classical methods. The same method was adapted to838

forecast outliers (o-PSF) for the same markets in [120].839

A method using a principal component analysis (PCA) network was introduced in [121] to forecast840

day-ahead prices. The PCA network extracts essential features from periodic information in the market.841

Later, these features are used as inputs in a multilayer feedforward network. PJM market was used to842

test the proposed method and the results compared to ARIMA models.843

Finally, Table 8 summarizes all the methods reviewed in this section.844

Table 8. Summary on other models for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[111] TFM ARIMA RMSE/MAPE 1 day 2003 PJM
[112] BH NGT RMSE 1 year 2002/03 UK
[113] FIS ARMA/GARCH RMSE/MAPE 1 day 2003/04 PJM
[114] MFL ARIMA/Holt MSE up to 1 month 2010 NYISO
[115] Grey-Markov Grey MRE 1 day 2005/06 Shangai
[119] PSF 5+ methods MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[120] o-PSF 5+ methods MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[121] PCA ANN MAE 1 day 2008 PJM

9. Ensemble models845

Recently, ensemble models are beginning to receive attention from the research community due to the846

good performance obtained for classification problems [122,123]. In general, ensemble models consists847

in combining different models in order to improve the accuracy of the individual models. In most of848

works, the combination is usually based on a system of majority votes (bagging) or weighted majority849

votes (boosting).850

In the last years, ensemble techniques have been also applied to the prediction of energy time series.851

Fan et al. [124] proposed a machine learning model based on Bayesian Clustering by Dynamics (BCD)852

and SVM. First, Bayesian clustering techniques were used to split the input data into 24 subsets. Then,853

SVM methods were applied to each subset to obtain the forecasts of the hourly electricity load for the854

city of New York.855

The work in [125] introduced a price forecasting method based on wavelet transform combined with856

ARIMA and GARCH models. The method was assessed on Spanish and PJM electricity markets and857

compared to some other forecasting methods.858

An ensemble of RBF neural networks for short-term load forecasting in seven buildings from Italy859

can be found in [126]. The main novelty of this work is the introduction of a new term in the objective860

function to minimize the correlation between the error of a network with the errors of the rest of861
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networks of the ensemble. In this case, the results were compared to SARIMA, which proved to be862

more competitive in most of the buildings.863

An ensemble of ELM was presented in [127] to short-term load forecasting of Australian electricity864

market. Both the weights of the input layer and the number of nodes in hidden layer for each ELM were865

randomly set. The median of the outputs generated for each ELM was the final prediction. The results866

reported an error of 1.82% for the year 2010 versus 2.89%, 2.93%, and 2.86% obtained by a single ELM,867

a back-propagation ANN and a RBF neural network, respectively.868

Many ensembles of ANN have been recently published in the literature with the purpose of electricity869

prices or load forecasting. In fact, most of the proposed ensemble techniques for regression tasks have870

been ensembles of ANN. For instance, the authors in [128] proposed the hybrid method PSF-NN, which871

combines pattern sequence similarity with neural networks. The results show that the use of ensemble872

of NNs instead of a single NN in the NN component of the PSF-NN prediction method is beneficial873

considering that it produces better accuracy at acceptable computational cost.874

Another ensemble based on PSF was introduced in [129]. In this case, five forecasting models using875

different clustering techniques: K-means, SOM, Hierarchical Clustering, K-medoids model, and Fuzzy876

C-means were used. The ensemble model was implemented with an iterative prediction procedure. The877

method was applied to New York, Australia and Spain markets, and the results compared to those of the878

original PSF algorithm.879

The performance of an ensemble of ANN was compared with a Seasonal Autoregressive Integrated880

Moving Average (SARIMA) model, a Seasonal Autoregressive Moving Average (SARMA), a Random881

Forest, a Double Exponential Smoothing and Multiple Regression in [130], providing the best results.882

The ANNs composing of the ensemble were trained with different subsets provided by a previous883

clustering.884

An ensemble was proposed in [131] to predict the load in California for the next day. The authors885

used a reference forecast made by the system operator as input variable of the proposed method, and this886

prediction was improved by means of two Box-Jenkins time series models. Then, the forecasts provided887

by these two models were combined to obtain the final prediction. The weights of the combination888

were optimized by means of least square method, and moreover, the authors built different ensembles889

considering global weights or weights depending on the hour or the day.890

Finally, Table 9 summarizes all the methods reviewed in this section.891

Table 9. Summary on ensembles for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market
[124] BCD+SVM SVR MAPE 1 day 2001-2003 NYISO
[125] WL+GARCH 5+ models RMSE/MAPE 1 day 2002 OMEL/PJM
[126] ANN SARIMA MSE/MAE/MAPE 1 day 2010 Italy
[127] ELM ANN/RBF MAE/MAPE 1 day 2010 ANEM
[128] PSF+ANN 5+ models MAE/MAPE 1 day 2010 ANEM
[129] PSF+Clust PSF MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[130] ANN SARIMA MAPE 1 day 2012 C&I
[131] ARIMA 5+ models RMSE/MAE/MAPE 1 day 2013 CAISO/ERCOT
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10. Conclusions892

It is expected that this work serve as initial guide for those researchers interested in time series893

forecasting and, in particular, in forecasting based on data mining approaches. Thus, a brief but rigorous894

mathematical description of the main existing data mining techniques that have been applied to forecast895

time series is reported. Due to the wide variety of application of such techniques, one case study has been896

selected: The analysis of energy-related time series (electricity price and demand). The large amount897

of works carried out during the last decade in this topic highlights the strengths that data mining had898

already exhibit in other fields.899

With reference to the type of prediction, it can be concluded that almost all methods use a horizon900

of prediction equals to one day. There are few works forecasting recent years since, for comparative901

purposes, they prefer to use older data. Moreover, there are several techniques that have been rarely used902

so far in this research areas: nearest-neighbors and genetic programming. This fact suggests that much903

work is still remaining for such models. On the contrary, ANN and SVM have been extensively used904

for this forecasting task. Linear models are still being used, but mainly to be used as baselines, since905

most of the data mining approaches outperform them in terms of accuracy. Wavelets and rule-based906

methods are mainly used in hybrid approaches and are causing significative accuracy improvement when907

properly combined. The accuracy measures mainly used are MAPE and RMSE. Finally, the current trend908

in electricity forecasting points to the development of ensembles, thus highlighting single strengths of909

every method.910
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