6,908 research outputs found

    On the Triplet Frame for Concept Analysis

    Get PDF
    The paper has two objectives: to introduce the fundamentals of a triplet model of a concept, and to show that the main concept models may be structurally treated as its partial cases. The triplet model considers a concept as a mental representation and characterizes it from three interrelated perspectives. The first deals with objects (and their attributes of various orders) subsumed under a concept. The second focuses on representing structures that depict objects and their attributes in some intelligent system. The third concentrates on the ways of establishing correspondences between objects with their attributes and appropriate representing structures

    On the Triplet Frame for Concept Analysis

    Get PDF

    Viewpoints on emergent semantics

    Get PDF
    Authors include:Philippe Cudr´e-Mauroux, and Karl Aberer (editors), Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani, Arantxa Illaramendi, Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De Tr´eWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio

    Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modelling living systems

    Get PDF
    Forty-two years ago, Capra published “The Tao of Physics” (Capra, 1975). In this book (page 17) he writes: “The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts” and that, unlike ‘classical’ physics, the sub-atomic and quantum “modern physics” shows resonances with Eastern thoughts and “leads us to a view of the world which is very similar to the views held by mystics of all ages and traditions.“ This article stresses an analogous situation in biology with respect to a new theoretical approach for studying living systems, Integral Biomathics (IB), which also exhibits some resonances with Eastern thought. Stepping on earlier research in cybernetics1 and theoretical biology,2 IB has been developed since 2011 by over 100 scientists from a number of disciplines who have been exploring a substantial set of theoretical frameworks. From that effort, the need for a robust core model utilizing advanced mathematics and computation adequate for understanding the behavior of organisms as dynamic wholes was identified. At this end, the authors of this article have proposed WLIMES (Ehresmann and Simeonov, 2012), a formal theory for modeling living systems integrating both the Memory Evolutive Systems (Ehresmann and Vanbremeersch, 2007) and the Wandering Logic Intelligence (Simeonov, 2002b). Its principles will be recalled here with respect to their resonances to Eastern thought

    Modeling and improving Spatial Data Infrastructure (SDI)

    Get PDF
    Spatial Data Infrastructure (SDI) development is widely known to be a challenging process owing to its complex and dynamic nature. Although great effort has been made to conceptually explain the complexity and dynamics of SDIs, few studies thus far have actually modeled these complexities. In fact, better modeling of SDI complexities will lead to more reliable plans for its development. A state-of-the-art simulation model of SDI development, hereafter referred to as SMSDI, was created by using the system dynamics (SD) technique. The SMSDI enables policy-makers to test various investment scenarios in different aspects of SDI and helps them to determine the optimum policy for further development of an SDI. This thesis begins with adaption of the SMSDI to a new case study in Tanzania by using the community of participant concept, and further development of the model is performed by using fuzzy logic. It is argued that the techniques and models proposed in this part of the study enable SDI planning to be conducted in a more reliable manner, which facilitates receiving the support of stakeholders for the development of SDI.Developing a collaborative platform such as SDI would highlight the differences among stakeholders including the heterogeneous data they produce and share. This makes the reuse of spatial data difficult mainly because the shared data need to be integrated with other datasets and used in applications that differ from those originally produced for. The integration of authoritative data and Volunteered Geographic Information (VGI), which has a lower level structure and production standards, is a new, challenging area. The second part of this study focuses on proposing techniques to improve the matching and integration of spatial datasets. It is shown that the proposed solutions, which are based on pattern recognition and ontology, can considerably improve the integration of spatial data in SDIs and enable the reuse or multipurpose usage of available data resources

    A UML Profile for Variety and Variability Awareness in Multidimensional Design: An application to Agricultural Robots

    Get PDF
    Variety and variability are an inherent source of information wealth in schemaless sources, and executing OLAP sessions on multidimensional data in their presence has recently become an object of research. However, all models devised so far propose a ``rigid'' view of the multidimensional content, without taking into account variety and variability. To fill this gap, in this paper we propose V-ICSOLAP, an extension of the ICSOLAP UML profile that supports extensibility and type/name variability for each multidimensional element, as well as complex data types for measures and levels. The real case study we use to motivate and illustrate our approach is that of trajectory analysis for agricultural robots. As a proof-of-concept for V-ICSOLAP, we propose an implementation that relies on the PostgreSQL multi-model DBMS and we evaluate its performances. We also provide a validation of our UML profile by ranking it against other meta-models based on a set of quality metrics

    Relational data clustering algorithms with biomedical applications

    Get PDF

    Vereinheitlichte Anfrageverarbeitung in heterogenen und verteilten Multimediadatenbanken

    Get PDF
    Multimedia retrieval is an essential part of today's world. This situation is observable in industrial domains, e.g., medical imaging, as well as in the private sector, visible by activities in manifold Social Media platforms. This trend led to the creation of a huge environment of multimedia information retrieval services offering multimedia resources for almost any user requests. Indeed, the encompassed data is in general retrievable by (proprietary) APIs and query languages, but unfortunately a unified access is not given due to arising interoperability issues between those services. In this regard, this thesis focuses on two application scenarios, namely a medical retrieval system supporting a radiologist's workflow, as well as an interoperable image retrieval service interconnecting diverse data silos. The scientific contribution of this dissertation is split in three different parts: the first part of this thesis improves the metadata interoperability issue. Here, major contributions to a community-driven, international standardization have been proposed leading to the specification of an API and ontology to enable a unified annotation and retrieval of media resources. The second part issues a metasearch engine especially designed for unified retrieval in distributed and heterogeneous multimedia retrieval environments. This metasearch engine is capable of being operated in a federated as well as autonomous manner inside the aforementioned application scenarios. The remaining third part ensures an efficient retrieval due to the integration of optimization techniques for multimedia retrieval in the overall query execution process of the metasearch engine.Egal ob im industriellen Bereich oder auch im Social Media - multimediale Daten nehmen eine immer zentralere Rolle ein. Aus diesem fortlaufendem Entwicklungsprozess entwickelten sich umfangreiche Informationssysteme, die Daten für zahlreiche Bedürfnisse anbieten. Allerdings ist ein einheitlicher Zugriff auf jene verteilte und heterogene Landschaft von Informationssystemen in der Praxis nicht gewährleistet. Und dies, obwohl die Datenbestände meist über Schnittstellen abrufbar sind. Im Detail widmet sich diese Arbeit mit der Bearbeitung zweier Anwendungsszenarien. Erstens, einem medizinischen System zur Diagnoseunterstützung und zweitens einer interoperablen, verteilten Bildersuche. Der wissenschaftliche Teil der vorliegenden Dissertation gliedert sich in drei Teile: Teil eins befasst sich mit dem Problem der Interoperabilität zwischen verschiedenen Metadatenformaten. In diesem Bereich wurden maßgebliche Beiträge für ein internationales Standardisierungsverfahren entwickelt. Ziel war es, einer Ontologie, sowie einer Programmierschnittstelle einen vereinheitlichten Zugriff auf multimediale Informationen zu ermöglichen. In Teil zwei wird eine externe Metasuchmaschine vorgestellt, die eine einheitliche Anfrageverarbeitung in heterogenen und verteilten Multimediadatenbanken ermöglicht. In den Anwendungsszenarien wird zum einen auf eine föderative, als auch autonome Anfrageverarbeitung eingegangen. Abschließend werden in Teil drei Techniken zur Optimierung von verteilten multimedialen Anfragen präsentiert
    corecore