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ABSTRACT 

In real world problems some datasets can only be represented in a relational data 

matrix because either the underlying objects are unknown or objects cannot be 

represented as feature vectors. Unlike object-based datasets where we have a well-

defined set of features, relational data describes the relations among objects, which can 

be dissimilarity or a similarity. 

We will address three main issued related to relational data clustering and 

analysis: (i) adapting the Kohonen Self-Organizing Maps (SOM) to relational data and 

incorporating a fuzzy membership function, which results in a new algorithm called 

Relational Fuzzy SOM (RFSOM); (ii) proposing a new technique to measure the 

topology preservation in RFSOM; and (iii) extending the well-known Relational Fuzzy  -

Means (RFCM) to handle non-Euclidean relational datasets. 

We found that (i) by incorporating fuzzy membership into FSOM/RFSOM a 

better and less noisy visualization is produced, (ii) for a given stimulus, adjacent neurons 

will have similar membership, but as the distance between the neuron increases, so does 

the difference in the membership, based on which we measure the topology preservation 

and (iii) Euclideanizing a relational matrix   using the subdominant ultrametric 

transformation leads to best clustering performance, while the  -spread one does the 

worst. We demonstrate our clustering algorithms on various biomedical datasets, such as 

the patient activity of daily living and gene ontology datasets. 

We also investigate the biomedical problem of predicting future patient diagnoses 

based on current diseases using the data provided by the Healthcare Cost and Utilization 



xiv 
 

Project (HCUP). First, we will discuss the problem of patient disease classification using 

random forest (RF) followed by improvement to the prediction model using ontological 

features. The ontological features are computed using an ICD9 ontological similarity 

approach. We found that the classification accuracy using ontological feature surpasses 

the accuracy using the crisp features.  

Finally, we focus on quantifying health care coordination dose using Natural 

Language Processing (NLP) and nursing Electronic Medical Record (EMR) notes. Care 

coordination, which includes transitional care services, is seen as a way to improve 

healthcare, resulting in improved health, and reduced costs. The main innovation of our 

approach is employing a novel domain specific ontology to guide the NLP process. Using 

the extracted activities from 139,173 notes we evaluate the amount of care coordination 

received by every patient in our dataset. We concluded that “Communicate” and 

“Manage” activities are widely used in care coordination. That confirmed the expert 

hypothesis that nurse care coordinators spent most of their time communicating about 

their patients and managing problems. Overall, nurses performed care coordination in 

both Again in Place (AIP) and Home Health Care (HHC), but the aggregated dose is 

larger in AIP. 
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  CHAPTER 1

INTRODUCTION 

Pattern recognition is a subject that has been studied for many years, yet it never 

ceases to evolve, grow and adapt to fit new scientific challenges and solve real world 

problems. In fact, we need pattern recognition more than ever to build intelligent systems 

able to analyze the huge amount of data that continues to accumulate in computers 

around the world due, in part, to the pervasiveness of technology in our daily lives. 

Larger and larger amount of data is being collected almost in every domain. For example, 

the prevalence of smartphones and ubiquity of the various embedded sensors facilitates 

the collection of granular information about users, all without human intervention. 

Wearable sensor-based systems are used in health monitoring and prognosis. Such 

systems can have various sensors such as pulse oximeter that is used to measure the 

amount of oxygen carried in the blood and phonocardiograph, which records the heart 

sound [1].  Other devices such as  the iWatch that also be used for health monitoring [2]. 

Or non-wearable (environmental) sensors used in smart homes to collect a wide array of 

data for monitoring elderly living alone [3]. Two things are important to point out. First, 

while the current technology does an excellent job in collecting and storing data, it lacks 

the ability to understand and convert such data into knowledge that can help us make 

informed decisions. Second, pattern recognition is no longer applicable to only few 

domains such as biology and medicine, in fact, it is being utilized in every domain that is 

data driven, such as ecommerce, defense, advertising, finance, etc.  

Clustering is a key component of pattern recognition and it is widely used in 

numerous applications and fields. Given a set of unlabeled objects, clustering algorithms 
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attempts to categorize those objects into natural groups, where objects within one group 

exhibit similar properties. What makes clustering even more important is the fact that 

most data that exist is in unlabeled form and trying to label a subset of this data is not 

sufficient and not scalable due to the amount data being generated constantly. Although 

many clustering algorithms have been proposed in the literature, clustering remains an 

open field for research. In this work, we will focus on relational clustering and relational 

topographic maps. In addition, we will investigate applications in biomedical and nursing 

informatics that utilizes classifications and NLP.  

1.1. The Problem 

Objects   {          } can be described in two ways. They can be 

represented by numerical features,   {          }, where    is the numerical feature 

vector representing object    and every dimension in    is a feature value (object data). 

Objects can also be described by their relation with each other (relational data). 

Relational data may be represented as a square     matrix    {[   ]|         } 

where     represents the relation between    and   . The relation can be either a similarity 

or dissimilarity (distance) between the two objects. A dissimilarity relation   satisfies the 

following conditions: 

                         (1.1a) 

                                     (1.1b) 

                                    (1.1c) 

One can see the relational data as a more general form for representing objects. In 

fact, we can convert any object data to relational data by computing the distance between 
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objects    and    as     ‖      ‖ 
 
            . If we do not have access to the 

feature vectors we can compute the distance among objects using dynamic time warping 

[4] to measure distance between two time series, or semantic distance [5] to measure 

distance between two concepts, etc. Thus, relational clustering algorithms can group 

objects based on their relations and, from this point of view, they can be seen as more 

general than object data clustering algorithms.  

Numerous relational and non-relational algorithms have been proposed in the 

literature. Best known non-relational clustering algorithms are  -means [6],  -medoids 

[7], Fuzzy  -Means (FCM) [8] and possibilistic  -Means (PCM) [9]. Best known 

relational clustering algorithms are hierarchical clustering [10], Relational Fuzzy  -

Means (RFCM) [11] and the Non-Euclidean Relational  -Means (NERCM) [12]. 

Description of more clustering algorithms can be found in [13]. There is another class of 

clustering algorithms, namely, algorithms that are aimed at data visualization and 

exploration such as the Self-Organizing Map (SOM) or Kohonen Network.  

All clustering algorithms have one objective, that is, given   objects represented 

in   (object-based clustering) or   (relational clustering) the goal is to group them into c 

clusters, where      . If     or     we assume that the data does not exhibit any 

clusters and objects are either all grouped together in one cluster or every object is its 

own cluster, respectively. We can represent the result of any clustering algorithm using a 

     partition matrix    {[   ]|               }, where each element 

    measures the degree of belongingness of    in cluster  . There are three types of 

partitions: crisp, fuzzy and possibilistic. The crisp clustering approach gives the output of 

the cluster analyses as matrices from the set of the hard  -partitions, which is defined as 
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  {        |    {   } ∑   

 

   

   ∑   

 

   

                     } 
(1.2) 

The fuzzy  -partition is more general than the crisp  -partition. Unlike crisp partitions 

where an object is assigned equivocally to one cluster, in fuzzy partitions an object can 

belong to multiple clusters with varying degree of membership. This concept is important 

as an object may exhibit characteristics of multiple clusters. A fuzzy partition is defined 

as 

    

  {        |    [   ] ∑   

 

   

   ∑   

 

   

                     } 

(1.3) 

A possibilistic partition is a generalization of the fuzzy partitions, where the columns in 

the partition matrix do not necessarily sum to 1. Possibilistic clustering is also effective in 

finding coincidental or overlapping clusters. A set of possibilistic  -partitions is defined 

as 

      {        |    [   ] ∑   

 

   

                     } (1.4) 

In possibilistic partitions,     is referred to as the typicality of object    in cluster   and 

one can see that      is a subset of     which is a subset of      (      

           ). 

Overall, cluster analysis seeks to answers three questions: 1) does   or   have 

substructure at any value of c? 2) If substructures exist, how can find them? 3) Once 

clusters are found, how can we validate them? [14] In this work we focus on the second 

question for the case of relational topographic map and relational clustering. 
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1.2. Contributions 

We start with a discussion about relational topographic maps, visualization of 

objects represented in a square relational data and relational clustering. Later in the 

discussion I will address the topic of disease risks classification of patients based on their 

diagnoses and will end it with an application to NLP in nursing informatics. 

 Pattern Recognition in Relational Data 1.2.1.

Chapter 2 presents a new algorithm, Relational Fuzzy Self-Organizing Map 

(RFSOM), which is a generalization of the crisp Relational SOM (RSOM) and a variant 

of RFCM with topological constraint. The notion of Best-Matching Unit (BMU) in 

RFSOM is replaced by a membership function, that is, every neuron is a BMU of an 

input object with a certain degree of membership. We tested the algorithm on twelve 

different datasets that assess different aspects of the performance of the algorithm. The 

results obtained show that the fuzzy membership smoothes the map and results in better 

and less noisy visualization. 

One of the important properties of SOM is its topology preservation of the input 

data. The topographic error is one of the techniques proposed to measure how well the 

continuity of the map is preserved. However, this topographic error is only applicable to 

the crisp SOM algorithms and cannot be adapted to the fuzzy SOM (FSOM) since 

FSOM/RFSOM does not assign a unique winning neuron to the input patterns. In chapter 

3, we propose a new technique to measure the topology preservation of the FSOM 

algorithms. The new measure relies on the distribution of the membership values on the 

map. A low topographic error is achieved when neighboring neurons share similar 

membership values to a given input pattern. 
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But what happens if the input relational data matrix is not Euclidean? That is the 

discussion of chapter 4, which applies to any algorithms that is based on RFCM, such as 

the RFSOM. When   is not Euclidean, RFCM can fail to execute if it encounters 

negative relational distances. To overcome this problem we can Euclideanize the relation 

  prior to clustering. There are different ways to Euclideanize   such as the  -spread 

transformation, where some constant is added to the off-diagonal elements of  . There 

are at least four alternatives to the  -spread method. In chapter 4 we compare five 

methods for Euclideanizing   to  ̃. The quality of  ̃ for our purpose is judged by the 

ability of RFCM to discover the apparent cluster structure of the objects underlying the 

data matrix  . We conclude that the subdominant ultrametric transformation gives the 

best results, producing much better partitions of  ̃ than the other four methods.  

 Predicting Disease Risks from Unbalanced Data 1.2.2.

We present a method using random forest (RF) for predicting disease risk of 

individuals based on their medical history. Medicare data is used, which is publicly 

available through Healthcare Cost and Utilization Project (HCUP). The data set is highly 

unbalanced. Therefore, in order to overcome the class imbalance problem, we used an 

ensemble learning method that consists in repeated random sub-sampling. This technique 

divides the training data into multiple sub-samples, allowing each sub-sample to be fully 

balanced. The performance of support vector machine (SVM) is compared to RF in 

predicting the risk of eight chronic diseases. In combining repeated random sub-sampling 

with RF, one can overcome the class imbalance problem and achieve good results. 

The feature values generated from the HCUP dataset are binary meaning that the 

patient either has the diagnoses or not. However, from our point of view ICD9 represents 
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an ontology, i.e. a controlled vocabulary overlaid with a "is-a" term hierarchy. The 

controlled vocabulary allows for detection of synonymy when two diagnoses are 

compared. The hierarchy (tree) structure allows for assessing the semantic similarity 

between diagnoses. Therefore, we can substitute the binary features with fuzzy 

membership values. The fuzzy membership features were computed using an ICD-9 

ontological similarity approach. The prediction results obtained on three diseases 

(diabetes, atherosclerosis and hypertension) using two classifiers, RF and SVM, show a 

significant improvement in the area under the Receiver Operating Characteristic (ROC) 

curve (AROC) compared to the results obtained using the binary features.  

 Quantifying the Amount of Care Coordination from Nursing Notes Using 1.2.3.

NLP and Ontologies  

We employ NLP aided with a domain specific ontology to guide the extraction of 

care coordination activities and the focus (object) upon which the specific activity was 

performed. Using the extracted nursing activities from about 139,000 notes, we evaluate 

the amount of care coordination received by every patient. We compared two groups of 

patients: Aging in Place (AIP) who received enhanced care coordination and Home 

Healthcare (HHC) who received traditional care. We found that patients in AIP received 

higher care coordination doses than the patients in HHC. 

1.3. Outline 

The first section encompasses three chapters focused on pattern recognition in 

relational data. We start by introducing the RFSOM algorithm in Chapter 2, followed by 

a discussion on how to measure the map continuity and topology preservation in RFSOM 

in chapter 3. Since RFSOM is based in RFCM, we make a transition into chapter 4 which 
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addresses the possible failure that can occur in RFCM based algorithms if the 

dissimilarity matrix   is not Euclidean. 

In the second section, which includes chapter 5 and 6, we will discuss the 

classification of disease risk from the unbalanced HCUP dataset. In chapter 6 we will 

compare the results obtained using crisp and ontological feature values. 

Chapter 7 presents an application of NLP and ontologies in the nursing domain. 

We quantify the amount of care coordination based on nursing notes by employing NLP 

aided with a domain specific ontology to guide the extraction of care coordination 

activities and the focus (object) upon which the specific activity was performed. 

Chapter 8 talks about open pattern recognition problems and future work. I will 

talk about the challenges that RFCM/NERFCM/RFSOM have and needs to be overcome 

in order to scale those algorithms for large datasets. 

1.4. List of Relevant Publications 

The research described in this dissertation is based on materials from the 

following publications: 

1. Mohammed A. Khalilia, James Bezdek, Mihail Popescu, James Keller (2014). 

"Improved Relational Fuzzy c-Means". Pattern Recognition (Under Review) 

2. Mohammed A. Khalilia; Lori L. Popejoy, PhD, APRN, GNS-BC; Mihail 

Popescu, PhD; Colleen Galambos, PhD, MSW; Vanessa Lyons; Marilyn 

Rantz, PhD, RN, FAAN; Lanis Hicks, PhD; Frank Stetzer, PhD (2014). 

Quantifying Care Coordination Dose using Natural Language Processing and 

Domain Specific Ontology. Journal of the American Medical Informatics 

Association (Under Review) 

3. M. Khalilia and M. Popescu, "Fuzzy Relational Self-Organizing Maps," 

International journal of uncertainty fuzziness and knowledge-based system, 

2013 (Under Review) 
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4. Khalilia, M. and Popescu, M. "Topology Preservation in Fuzzy Self-

Organizing Maps". Adv. Trends Soft Computing. (2014) 

5. M. Khalilia and M. Popescu, "Fuzzy relational self-organizing maps," in 2012 

IEEE International Conference on Fuzzy Systems, 2012, pp. 1–6. 

6. M. Popescu and M. Khalilia, "Improving Disease Prediction Using ICD-9 

Ontological Features," in IEEE International Conference On Fuzzy Systems, 

2011, pp. 1805-1809. 

7. M. Khalilia, S. Chakraborty, and M. Popescu, "Predicting disease risks from 

highly imbalanced data using random forest.," BMC medical informatics and 

decision making, vol. 11, no. 1, p. 51, Jan. 2011 (Highly accessed) 
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  CHAPTER 2

RELATIONAL FUZZY SELF-ORGANIZING MAP 

The notion of Best-Matching Unit (BMU) in the proposed Relational Fuzzy Self-

Organizing (RFSOM) algorithm is replaced by a membership function where every 

neuron has a certain degree of matching to an input object. By employing a 

monotonically increasing fuzzifier and a monotonically decreasing neighborhood kernel, 

RFSOM initially assigns winning neurons. However, as time progresses adjacent neurons 

begin communicating and sharing information about the stimulus received. The amount 

of information being shared at a given time is governed by the fuzzifier and the number 

of neurons sharing information is controlled by the neighborhood kernel. In this chpater 

we show that RFSOM is the relational dual of Fuzzy SOM (FSOM). We will compare 

both FSOM and RFSOM on synthetic and real datasets. Then we will assess the 

performance of RFSOM on two real relational datasets, Gene Ontology and a patient data 

consisting of Activity of Daily Living score trajectories. 

2.1. Introduction 

Data visualization and exploration tools help us understand a domain and inform 

decision making. For instance, such tools can assist in confirming certain assumptions we 

make about the data or explore other datasets that exist in high dimensions. Many 

algorithms have been developed for visualization and dimensionality reduction of high 

dimensional data. The class of such algorithms includes, but is not limited to, Principle 

Component Analysis (PCA) [15], Multi-dimensional Scaling (MDS) [16], Isomap [17], 

Locally Linear Embedding (LLE)[18] and Laplacian Eigenmaps[19]. Some of these 
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techniques, such as Laplacian Eigenmaps, construct a weighted graph of   nodes, where 

every node represents a point in a higher dimensional space[19]. Weighted edges connect 

adjacent nodes. The weights are defined using what is called a heat kernel, which assigns 

weights based on the distance between two points in the high dimensional space. Similar 

to the heat kernel, Kohonen’s Self-Organizing Maps (SOM) [20] employs a 

neighborhood kernel that assigns weights for neurons based on their proximity in lower 

dimensions. Also, contrary to LLE where the number of nodes is equal to  , SOM maps 

  points to a predefined   neurons. 

SOM is an unsupervised learning technique aimed at data exploration, clustering 

and visualization. It projects an s-dimensional input space into a low dimensional, usually 

two dimensional, lattice or grid of neurons. SOM is a powerful algorithm and has been 

used in many applications such as the system used to analyze the Sydney 2000 Olympic 

results using Viscovery SOMine software [21] or the SOM embedded in an Android 

device used for fall detection [22]. Another application is omeSOM software and the 

biological SOM which are used in biological sciences for data visualization [23] and the 

WEBSOM that is used for information retrieval and document clustering [24]. These are 

only a handful of numerous possible applications and different implementations of SOM 

that are tailored to address various problems.  

Other variations of SOM are the Fuzzy SOM (FSOM) algorithms. The general 

idea of FSOM is to integrate fuzzy set theory into neural networks to give SOM the 

capabilities of handling uncertainty in the data. For instance, a FSOM algorithm for 

object data was proposed in [25] which is, in some sense, a regularization of the Fuzzy  -

Means (FCM) algorithm. The FSOM in [25] is based on a cost function that is derived by 
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introducing two modifications to the generalized FCM. First, the code vectors are 

distributed on a regular, low dimensional grid as in SOM, and a penalty term is added to 

guarantee a smooth distribution of the codebook vector values on the grid to help 

preserve the topological structure of the data. In [26] fuzzy object SOM based on fuzzy 

inputs and fuzzy weights for market segmentation of credit cards was proposed. FCM is 

applied for fuzzy clustering to identify the ambiguous sampled data located near the 

border between the clusters. In [27], a fuzzy SOM was developed by replacing the 

neurons of the original SOM with fuzzy rules, which are composed of fuzzy sets. The 

output of each rule is a singleton. For that reason, the algorithm maps the s-dimensional 

input space to a one dimensional output space. In [28], a hybrid SOM is proposed to 

predict overlapping clusters of high dimensional data and to detect the uncertainty that 

comes from the overlapping data. This approach is based on rough set theory to generate 

soft clustering. In [29], the same authors proposed a variation to [28] in which a two-level 

stage SA-Rough SOM (Simulated Annealing Rough Self-Organizing Map) was 

proposed.  

Another fuzzy online Kohonen clustering networks was proposed in [30]. The 

authors address major problems of SOM, such as the termination criteria, convergence 

and the SOM dependency on the sequence of the input data. To address these problems, 

FCM model is integrated into the learning rate allowing the neuron weights update 

function to be inversely proportional to their distance from the  th data point,   . As the 

fuzzifier gets smaller, updating the weights reverts back to Hard  -Means (winner take-

all). As it gets larger, the weights are updated with lower individual learning rates. A 

fuzzy SOM algorithm was proposed in [31] where the FCM membership function was 
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used to compute the degree of belongingness between a neuron and an object. However, 

the author abandoned the neighborhood function since it increases the computational 

complexity of SOM.   

SOM was also extended to handle relational data. As previously mentioned, 

objects can be described by feature vectors or by pair-wise relations. Object data 

   {       }       consists of s-tuples of numerical feature vectors,    , that 

describe the objects   . On the other hand, relational data is presented as an   

  matrix  . Every element in  ,    , measures the relationship (similarity or dissimilarity) 

between objects    and   . For example, a dissimilarity relation satisfies the following 

conditions: 

                         (2.1a) 

                                     (2.1b) 

                                    (2.1c) 

Several extensions of SOM were proposed to handle relational data [32]–[34]. In 

[32], a Self-Organizing Map for dissimilarity data was proposed. The authors described 

each neuron by a codebook that represents a subset of input vectors. The codebooks are 

then updated using a cost function that resembles the c-means objective function and 

accounts for both the relational data and the neighborhood topology. In [33], the authors 

extended Neural Gas (NG) and SOM to relational data based on the relational dual of the 

c-means clustering algorithm derived in [12], [35]. Every neuron is represented as a 

coefficient vector      
  (this algorithm will be discussed in detail in Section 2.3).  

An Ontological Self-Organizing Map (OSOM) was proposed to visualize and 

summarize datasets composed of words [34]. Ontological based similarity measures, such 
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as the generalized outer product and ordered weighted average, in addition to the 

relational clustering distance measure, were integrated into SOM. Unlike the RSOM, 

where the coefficient vectors      
 , in OSOM, a prototype is a weight vector of fuzzy 

membership representation of all the terms in the dataset. Hence, the dimensions of the 

prototype vector can be less than  . For instance, the authors used Gene Ontology dataset 

of 194 gene products to test their algorithm. The dataset contains 64 terms; therefore, the 

length of the weight vector is 64 rather than 194 as would be the case in RSOM. 

Regardless of the SOM algorithm being used, be it fuzzy, relational or 

ontological, the goal is to produce a low dimensional map, usually two-dimensional, to 

visualize the data. One type of maps that is widely used is the Unified Distance Matrix 

(U-matrix) which visualizes the topology of the data. A U-matrix contains valleys 

representing the clusters separated by mountain ranges that act as boundaries between the 

valleys. A good SOM produces a nontrivial U-matrix [36]. U-matrix is “nontrivial” when 

its watershed order or the number of distinct catchment basins is greater than one, but 

much less than  . This chpater demonstrates the ability of RFSOM to produce a 

“nontrivial” U-matrix that can preserve the data topology. The reader is referred to [36] 

for more details about the concept of “nontrivial” U-matrix and its significance. 

In this chpater, we present the theoretical framework of RFSOM, and extend and 

elaborate on the RFSOM algorithm concept we proposed in [37]. Here, we present a new 

Fuzzy Self-Organizing Maps (FSOM), which employs a monotonically increasing 

fuzzifier. Based on FSOM, we then derive its fuzzy relational dual. In both FSOM and 

RFSOM the notion of the Best Matching Unit (BMU) no longer exists. Instead, by using 

a monotonically increasing fuzzifier and a monotonically decreasing neighborhood size 
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we give neurons the ability to share and communicate information about the stimulus. To 

our knowledge, this is the first attempt to apply fuzzification to the relational SOM. We 

demonstrate the benefits of RFSOM with extensive evaluations and comparisons to the 

FSOM using multiple synthetic and real datasets.    

The rest of the chapter is organized as follows: Section 2.2 provides a brief 

overview of the Online and Batch SOM (BSOM) algorithm. Section 2.3 briefly 

introduces the RSOM algorithm. Section 2.4 presents the first contribution, which is the 

Fuzzy SOM (FSOM). Section 2.5 presents the second contribution, where we derive the 

relational dual of FSOM algorithm and sets a few theorems that link RFSOM to RSOM.  

Section 2.6 justifies the use of a monotonically increasing fuzzifier and the ability of 

neurons to share information. Section 2.7 addresses the criteria used to evaluate the 

proposed algorithm. Section 2.8 briefly explains the technique used for SOM 

summarization. Section 2.9 presents results obtained on synthetic and real dataset which 

demonstrates the effectiveness of RFSOM. Finally, Section 2.10 concludes with analysis, 

remarks and future work. 

2.2. Self-Organizing Map 

SOM is an unsupervised learning technique that has been widely used in data 

visualization, exploration and clustering. SOM performs dimensionality reduction from a 

high-dimensional data space,   , to a lower dimensional lattice or a map, usually two-

dimensional. This feature allows us to visualize the cluster tendency of high-dimensional 

data. SOM forms a network structure that can be two-dimensional square, hexagonal grid 

or toroidal. Every node or neuron in the structure is connected to its neighbor using a 

neighborhood kernel, which gives SOM the topology preserving characteristic.  
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The online SOM algorithm starts by drawing a random data point,   , from the 

input data which causes the weight vectors,   , to move closer towards    according to a 

neighborhood function,  , and a learning rate, ƞ (notations are summarized in Table 2.1). 

The learning rate      determines the amount of influence    has on every neuron at 

iteration  , while      determines the amount of influence based on the proximity of the 

neuron to the BMU (proximity is defined as the distance between neuron’s   coordinate 

   and neuron’s   coordinate    in 2D). BMU, denoted by   , is the closest neuron to the 

input    and therefore is influenced the most. In other words, SOM assigns a full 

membership for    to the winning neuron    (     ). However, if the entire dataset is 

available, one can use batch SOM (BSOM). BSOM can be significantly faster and does 

not require the specification of the learning parameter   [38]. Algorithm 2.1 outlines the 

BSOM procedure. 

Table 2.1. Notations 

Symbol Description 

  Number of neurons in the lattice  

  Refers to the  th neuron,  1         

   Neuron’s   position in 2D space 

   Feature vector representing   , where       

   The weight vector of the  th neuron in the non-relational SOM
 

    Neighborhood function between neuron   and   

Ƞ Learning rate 

   Refers to the position or index of the winning neuron of    

    The membership grade of ok in neuron i 

  Number of objects in the dataset 

   The  th object in the dataset,  1         

   The coefficient vector of the  th neuron in the relational SOM 

    The distance between    and    

    The distance between    and    

   Initial neighborhood size or radius 

   Final neighborhood size or radius
 

   Initial fuzzifier
 

   Final fuzzifier 

       Fuzzifier value at time   
     Number of training epochs 
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   Set of immediate neighboring neurons to   
 

Algorithm 2.1. Batch Self-Organizing Map (BSOM) 

1 Input: Data   {       }, where    is represented by a feature vector   , map size, c 

neurons, initial radius   , final radius     

2 Output:  ,    

3 Initialize: random weight vectors       

  

4 while          
5      ‖      ‖

                         (2.2) 

 

  

6            
 

                    (2.3) 

 

  

7 

     
         (

 ‖       
‖
 

      
)                            (2.4) 

 

  

8 
         ∑     

   

 

   

∑     

 

   

⁄             (2.5) 

 

9            (    ⁄ )
     ⁄

  (2.6) 

 

10       

11 end while 

 

2.3. Relational Self-Organizing Map 

SOM is a very effective technique when the objects in the dataset are represented 

by feature vectors. However, when objects are described in relational form, one needs to 

use the Relational Self-Organizing Map (RSOM) [33]. In RSOM, it is not necessary to 

know the vectorial representation of the input data to compute the cluster prototypes or 

weight vectors. Instead, a weight vector,   , is expressed as a linear combination of the 

input data points     ∑      
 
    where ∑    

 
     . The dissimilarity between a 

weight vector    and object    is computed based on the coefficients   and the 
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dissimilarity matrix   (2.8). The goal in RSOM is to minimize the following objective 

function [33] 

       ∑
 

 ∑      

 
   

∑ ∑      
      

    

 

    

 

   

 

   

  (2.7) 

RSOM algorithm is outlined below: 

Algorithm 2.2. Relational Self-Organizing Map (RSOM) 

1 Input:     relational data matrix  , map size, c,   ,    

2 Output:  ,    

3 Initialize: random weight vectors       

  

4 while          
5 

    ‖      ‖
           

(  
      )

 
   

                       

(2.8) 

 

6 Assign the winning neuron using (2.3) 

7 Compute the neighborhood function using (2.4) 

8 Update the coefficients vector values 

9 
          

     

∑      

 
   

                         (2.9) 
 

10 Update the neighborhood radius using (2.6) 

11       
12 end while 

2.4. Fuzzy Self-Organizing Map 

Numerous fuzzy SOM algorithms were proposed. This section presents a new 

Fuzzy SOM (FSOM) algorithm which will serve as a foundation for the next section, the 

Fuzzy Relational SOM.  

Contrary to the “winner takes-all” paradigm, as in BSOM and RSOM, FSOM gives 

neurons the ability to share a stimulus with their neighboring neurons. The amount of 

sharing is controlled by the fuzzifier and the number of neurons involved in sharing is 

governed by the neighborhood kernel. More discussion about the fuzzifier and 

information sharing will be presented in Section 2.6. The goal of FSOM is to find a fuzzy 

partition         , where 
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 (2.10) 

and codebook vectors   {       },       , that minimizes the objective function 

          ∑∑   
  ∑   

     

 

   

 

   

 

   

  (2.11) 

The objective function (2.11) is similar to the probabilistic SOM proposed in [39]. And in 

contrast to fuzzy clustering methods where the fuzzifier,  , remains constant with time, in 

RFSOM,   changes at every iteration. For reasons we will discuss in Section 2.6,   uses a 

monotonically increasing function (2.15) where   varies within a range [     ], for 

example,      and     . The fuzzifier   in (2.11) and other equations we will 

encounter refers to the fuzzifier value at time  ,     . Therefore, the notations   and      

are equivalent and we will use   for convenience. 

Theorem 1. Let   {       }      be the set of feature vectors,   {       } be 

the   neurons codebook vectors, ‖      ‖
 
 is the distance between feature vector    

and codebook vector    (               ), and         . Then the set       

might be a minimizer of    only if      ∑ (
∑    

 
   
  

   

∑  
  
 
   
  

   

)

    ⁄

 
   ⁄  and     

 
∑ ∑    

 
   
 
  

 
   

 
   

∑ ∑  
  
 
 
  
  

   
 
   

. 

Proof. To derive the necessary conditions and membership update equations, we set 

Lagrange optimization problem to minimize (2.11) under the constraint ∑    
 
         

as follows: 
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Take the partial derivative with respect to     and set it equal to 0.  
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Solving for    
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By substitute    in     we find that   might be a minimum of     only if 

      [∑(
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]⁄   (2.12) 

To derive the necessary condition for the weight update equation we rewrite (2.11) as  

              ∑∑   
 ∑    (      )

 
(      )

 

   

 

   

 

   

 

Differentiating (2.11) with respect to    and setting it to 0 

 

   
             ∑∑   

 ∑    (  (      ))

 

   

 

   

 

   

    

Solving for    leads to codebook update equation  
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⁄   (2.13) 

As we can see,    is assigned a partial or fuzzy membership in multiple neurons. 

Consequently, the notion of “best-matching unit” is no longer applicable to FSOM and it 

is replaced by the membership degree. In fact, one can think of every neuron   as the 

winning neuron (BMU) of object    with degree    . For this reason, none of the neurons 

in the proposed algorithm is empty, meaning that for every neuron ∑    
 
     . 

By having         , FSOM leads to a smoother topology. The smoother 

topology is mainly due to eliminating empty neurons and the fact that adjacent neurons 

share similar memberships to object   . The importance and practicality of a smoother 

topology becomes more apparent when they are incorporated into the U-matrix. For 

instance, a less distorted and smoother U-matrix may help in increasing the accuracy of 

the U-matrix segmentation which is one of the methods used for the clustering of SOM 

[40], [41]. The FSOM is summarized in Algorithm 2.3. 
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Algorithm 2.3. Fuzzy Self-Organizing Map (FSOM) 

1 Input: Data   {       }, where    is represented by a feature vector   , map size, c, initial 

fuzzifier   , final fuzzifier      ,    

2 Output:  ,    

3 Initialize: random weight vectors       

  

4 while          
5 Calculate the distance between neuron   and    using (2.2) 

6 Compute the membership values,     using (2.12) 

7           (
 ‖      ‖

 

      
)  (2.14) 

 

10 Update weight vectors using (2.13) 

11 Update the neighborhood radius using (2.6) 

12            (    ⁄ )
     ⁄

  (2.15) 
 

13       
14 end while 

2.5. Relational Fuzzy Self-Organizing Map 

In this section, we will derive RFSOM theoretical framework, which is the major 

contribution of this chapter. We will derive the membership and coefficient update 

equations and the fuzzy relational dual of the FSOM. As mentioned earlier, in relational 

clustering it is not necessary to know the vectorial representation of the input data to 

compute the cluster prototypes or weight vectors. Instead, the codebook vector    is 

expressed as linear combination of the input data points     ∑      
 
   , ∑    

 
     , 

where     is computed as 

        ∑     

 

    

⁄  (2.16) 

and     is defined as 

     ∑   
      

 

 

   

  (2.17) 

Using equations (2.11)-(2.13), (2.16) and (2.17), we can re-formulate the fuzzy 

optimization scheme in terms of the relational data,  , which we will do next. 
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Definition. Let          be a fuzzy partition of  , the RFSOM functional    is defined 

as 

    {        ∑
 

 ∑    
 
   

∑ ∑                

 

    

 

   

 

   

}  (2.18) 

The objective function (2.18) attempts to minimize the sum of pairwise distances among 

objects belonging to the same neuron. To better understand the RFSOM objective 

function, we will decompose it into its basic elements: 

   
 
     

 
  

grade of membership of    contributed to neuron   by 

 , weighted by the neighborhood function; 

     ∑   
 
     

 

 

   

  

sum of memberships of    contributed to   from the 

surrounding neurons; 

∑ ∑                

 

    

 

   

  

within neuron   sum of pairwise distances among 

objects weighted by the contributed memberships of    

and     from neighboring neurons. 

Notice that the neurons in FSOM and RFSOM become less competitive than the “winner 

takes-all” SOM. And while    has a membership in neuron  ,    enjoys an additional 

membership in  , contributed by its neighbors. 

Theorem 2. Let    , ‖ ‖ be a norm induced by inner product on   ,   

{       }      be a set of feature vectors, and   [   ]   [‖      ‖
 
] be the set of 

corresponding relational distance data. Then          is a minimizer of    if and only 

if       is a minimizer of    in         . 

Proof. By substituting (2.16) in (2.8) which in turn is substituted in (2.11) we can derive 

the RFSOM objective function     as follows: 
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    we can re-write     as: 
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} 

From the above proof, we can see that                   . By Theorem 1, 

we proved that   {       }      uniquely minimizes           for a fixed    

     . It follows that   is a minimizer of          if and only if    is a minimizer 

of          . 

Theorem 2 establishes the close connection between the functionals     and    

and in theory, we should be able to find the same partitions of objects using     in the 

relational scheme that is found using the object based FSOM. Also, we can show the 

close connection between the functionals     and   which states that     is a 

generalization of   (2.7). 



25 
 

Corollary 1: If {     }
 
  , the rate at which neurons share information decreases and 

the sharing stops when         . At that point, the RFSOM reduces to the “winner 

takes-all” scheme as in the RSOM algorithm. 

 

Proof: When      , the fuzzifier   remains constant throughout the iterations, which 

means         . Also, the limit property of (2.12) states the following: 
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Therefore, at          ,     (2.17) converges to the neighborhood function, 
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Combining those results, we conclude that when         ,                . 

Corollary 1 states that RSOM is a special case of the RFSOM and it can be 

reduced to the “winner-take-all” scheme by using a constant fuzzifier and setting    . 

Theorem 3. When   is large,     is influenced by the memberships of    in the 

neighboring neurons to  . However, as neighborhood size shrinks with time and 

approaches its final value and as           converges to    
 

. 

Proof: The limit property of (2.14) states the following: 
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}            

Therefore, we conclude that     converges to    
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 Note that these theorems also apply to the FSOM discussed earlier in Section 2.4. The 

complete RFSOM algorithm is outlined below: 

Algorithm 2.4. Relational Fuzzy Self-Organizing Map (RFSOM) 

1 Input:     relational data matrix  , map size, c,   ,    

2 Output:  ,    

3 Initialize: random weight vectors       

  

4 while          

5     ‖      ‖
           

(  
      )

 
   

                       

6       [∑(
∑    

 
   
  

   

∑    
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]⁄          

7 for          do 

8           (
 ‖      ‖

 

      
)       

9         ∑     

 

    

⁄       ∑   
 
     

 

 

   

      

10 end for 

11            (    ⁄ )
     ⁄

  
12            (    ⁄ )

     ⁄
  

13       
14 end while 

2.6. Neurons Sharing Information 

The remaining question is why does RFSOM employ a monotonically increasing 

fuzzifier? Why not simply use a constant fuzzifier similar to some clustering algorithms 

such as Fuzzy c-Means? (Note that this Section references RFSOM only, but the same 

argument applies to the FSOM). 

There are two reasons for employing this kind of fuzzifier. First, RFSOM has 

more degrees of freedom, map size, number of neurons initial and final radius. 

Introducing a new parameter,  , can cause undesirable interactions with some of the 

existing parameters. Indeed, both   and   are related and one has to exercise extra care 
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when setting them. Therefore, it is important to understand the behavior of the 

neighborhood function in relation to the fuzzifier. Recall that SOM starts with a larger 

neighborhood radius    which decreases with time until it reaches    and as      the 

neighborhood function       (2.14) causing the membership function (2.12)       ⁄  

(assuming a constant fuzzifier, i.e.    ). The experiments have shown that      is 

large enough to cause this problem. Thus, to alleviate this issue and prevent       ⁄ , 

RFSOM has to balance   and   by employing a monotonically increasing fuzzifier and a 

monotonically decreasing radius. RFSOM will start as “winner take-all” with large radius 

and small fuzzifier       and the membership values become fuzzifier as   increases 

with time.  

Second, a monotonically increasing fuzzifier allows the neurons to share 

information about the sensed stimulus. As stimulus    is sensed at    , a winning 

neuron   is assigned to that stimulus. However, neuron   loses the unity membership at 

    as it starts sharing and communicating information with its neighbors about   , that 

is, when crisp memberships start becoming softer. The harmony between the 

monotonically increasing fuzzifier and the monotonically decreasing neighborhood 

kernel governs and limits the sharing of information. The fuzzifier restricts the amount of 

information being shared with other neurons; as the fuzzifier increases, the membership 

values become more distributed and the amount of information communicated increases. 

On the other hand, the neighborhood kernel limits the intensity and the number of 

neurons sharing information. For instance, a Gaussian neighborhood kernel limits the 

sharing of information among distant neurons, so by the time RFSOM converges, only a 

small number of adjacent neurons should have a high firing strength for some stimulus. 



28 
 

Hence, as time progresses more information is communicated among a smaller subset of 

neurons. In the experimental results, we will show an example demonstrating information 

sharing. 

2.7. Evaluation Criteria 

In this section we present the evaluation criteria used to assess RFSOM 

performance. For the evaluation we use: quantization error, topographic error and 

visualization based approach (U-matrix). 

 Quantization Error 2.7.1.

Quantization error (qe), a widely used SOM evaluation measure [42], is defined 

as the average distance between the objects in the dataset and their corresponding 

winning neurons[43]. A good map is expected to have a small qe. 

   
 

 
∑∑   

     

 

   

 

   

  (2.19) 

Equation (2.19) weights the distance     with the fuzzy membership    . When    

     , (2.19) reduces to the original qe formulation[43]. 

 Topographic Error 2.7.2.

The quantization error is a good overall measure, but it does not reflect the 

topological preservation of the map. Different approaches for measuring the topology 

preservation were proposed [43]. In this chpater we use the topographic error (te) to 

measure the topology preservation. te measures the proportion of the input vector for 

which the first and second BMU are not adjacent neurons. 
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To evaluate RFSOM, however, we do not use the two closest neurons, but rather 

the two neurons with the highest membership of   . Similar to qe, a good map is 

expected to yield a small te. 

 Visualization Based Approach Based on U-matrix 2.7.3.

Although the U-matrix is not a quantitative evaluation technique, nonetheless, it 

provides a quick overall qualitative assessment of how the algorithm performed. A U-

matrix is calculated in the weight vector space (  ) or coefficient space in relational 

algorithms and displayed in the lattice space, which is usually two-dimensional. A U-

height of a neuron  ,       , is defined as the sum of distances from    to the 

neighboring neurons of  ,    [44]. For instance, in a rectangular grid,    refers to the four 

immediate neighbors and the U-Height for neuron   is computed as: 

        ∑ ‖      ‖
 

      

  (2.21) 

However, in relational SOM, such as RFSOM and RSOM, ‖      ‖
 
 is 

calculated in terms of   and   as (see proof in Appendix I) 

‖      ‖
 
    

      
 

 
  
     

 

 
  
      (2.22) 

A U-matrix is generated when the U-height of every neuron is calculated at that 

neuron’s coordinates. The matrix can be displayed in 2D as a planar or in 3D to visualize 
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the topology. When the U-matrix is visualized in 3D, the “mountain ranges” point to 

cluster boundaries and “valleys” refer to cluster centers. 

2.8. SOM Summarization 

Several techniques exist to summarize the results of SOM algorithms. One can 

either cluster the neurons and then identify which objects belong to which cluster[45], or 

use image processing techniques to segment the U-matrix to find its distinct regions [46], 

[47]. In this chapter, we chose the latter technique and used the MATLAB 

implementation of the Watershed algorithm [48]. Once the Watershed algorithm is 

applied on the U-matrix, it returns multiple regions. Every region represents a catchment 

basin encompassing a group of similar neurons. While it is not always the case that we 

will identify the exact number of regions since Watershed algorithm can over-segment 

the U-matrix[49], for the purposes of SOM summarization, over-segmentation is not an 

issue.  

Once the regions are identified, we can uncover the similar neurons grouped in 

every region. For every neuron, we find the most representative object (the object with 

the highest weight or membership value to that neuron). Once every neuron has a 

representative object, a majority voting among neurons in that region is performed to vote 

for an overall representative label for that region. The label is then placed in the centroid 

of the region in question. Therefore, to label the region it is assumed that every object has 

an assigned label. For instance, an object in Hepta dataset is assigned a label   

{             }, while patients in the ADL dataset are labeled with their own and 

unique ADL trajectory. As we will see later in the results section, every region is 
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assigned an identifier as     , where   corresponds to the region index or number and   

is the region label. 

2.9. Experimental Results 

To evaluate the proposed algorithm, RFSOM is compared to the FSOM using 

synthetic and real datasets (Fig. 2.1), which are summarized in Table 2.2. For object-

based datasets, the dissimilarities among objects,    , are calculated using the Euclidean 

distance. The well-separated three Gaussians (WS3G) and the overlapping three 

Gaussians (O3G) datasets are two-dimensional and they differ by the inter-cluster 

variance. Lines dataset contains three parallel lines.  The congressional voting record 

dataset is published by the University of California-Irvine (UCI) Machine Learning 

Repository [50]. Hepta dataset is part of the Fundamental Clustering Problem Suite 

(FCPS) [41], and it is used to demonstrate the behavior of the FSOM and RFSOM. 

In addition to the synthetic datasets that allow us to compare RFSOM to FSOM, 

we test RFSOM using two real datasets, the Gene Ontology (GPD194) and the Activity 

of Daily Living (ADL). GPD194 is a pure relational dataset containing pairwise distances 

among Gene terms measured using fuzzy distance measure [34], and ADL is a relational 

dataset containing pairwise distances among 3,963 patients measured using Dynamic 

Time Warping (DTW) [4]. Notice that RFSOM expects an Euclidean relational matrix   

and non-Euclidean matrix needs to be converted into an Euclidean one using techniques 

such as the  -Spread Tranformation [12]. However, this tranformation is necessary and 

important to perform if equation (2.8) results in negative values [12]. This situation was 

not encounter for GPD194 and ADL datasets and therefore no tranformation was 

necessary. 
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Table 2.2. Datasets 

 
Name Size Dimensions 

No. of 

Classes 

A Hepta 212 3 7 

B Well Separated Gaussians (WS3G)  1,500 2 3 

C Overlapping Gaussians (O3G) 1,500 2 3 

D Parallel Lines 300 2 3 

F Congressional Voting Record 

(CVR) 

435 16 2 

G Gene Ontology (GPD194) 194 - - 

H Activity of Daily Living (ADL) 

Patients 

3,963 - - 

 

 
 

 

(a) Hepta (b) WS3G 

  
(c) O3G (d) Parallel Lines 

Fig. 2.1. Synthetic datasets 

 

The average and standard deviation of the   ,    and objective function values 

over 10 runs were calculated. For most datasets we used the parameters listed in Table 

2.3. Notice that    is not fixed across all datasets, rather it is dataset specific.    is the 
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only parameter that was varied and it was determined by trial and error. Overall, we 

found    [   ] to give reasonable results for all datasets presented in this chapter. 

 

Table 2.3. Algorithm Parameters 

Parameter Value 

   1.01 

   2 

   1-3 

   0.5 

C 400 

Map size       

Neighborhood function Gaussian 

Training length 10 epochs 

 

 Hepta Dataset 2.9.1.

The Hepta dataset contains 212 data points divided into the seven classes of 30 

points each and two additional points in the center group [41]. The center group of points 

is about twice as dense as any of the six groups (Fig. 2.1a, Table 2.2.A, which refers to 

row A in Table 2.2). The goal of the Hepta dataset is to validate if the clustering 

algorithm can find the clusters with varying densities. The maps generated by FSOM and 

RFSOM are shown in Fig. 2.2a-b, respectively. Every map is summarized by displaying 

the most representative labels for the catchment basins. The average   ,    and objective 

function values are presented in Table 2.7.A. 
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(a) FSOM (b) RFSOM 

Fig. 2.2. Topographic map for the Hepta dataset 

 

The behavior of the objective function, quantization error and topographic error is shown 

in Fig. 2.3a-c for one specific run. RFSOM starts with lower values (continuous line in 

Fig. 2.3), but as time progresses both algorithms behave similarly. In fact, these 

properties were observed in every dataset throughout the experiments (see Table 2.7). 

Thus, figures describing the objective function, qe and te, are only shown for this dataset. 

 

   
(a) Objective function (b) quantization error (c) topographic error 

Fig. 2.3. FSOM (dashed line) and RFSOM (continuous line) behavior on Hepta dataset over one run of 10 

iterations 

 

As mentioned before, for a given stimulus all neurons are winners to some degree. 

Neurons with high firing strength to stimulus will have the highest membership while 

neurons that have a weaker response will have a lower membership. The first few 

iterations of RFSOM will assign crisp memberships since   is very small. In other words, 

RFSOM’s first few iterations resemble the RSOM behavior, meaning we start with a 
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winning neuron. As time progresses and the fuzzifier value increases the memberships 

become fuzzier. 

To illustrate this phenomenon for a given stimulus, we need to have a good 

understanding of the membership distribution among neurons. To do that, we will 

construct what we call the HL-matrix. One HL-matrix is constructed for one stimulus and 

has the same dimensions of the U-matrix. Given a stimulus   , the value of the  th neuron 

in the HL-matrix is computed as follows: 

       ∑|        |

    

 (2.23) 

This calculation resembles the U-matrix, except we are now looking at the membership 

level. Of course, the goal is to minimize the values of the HL-matrix. Smaller values 

mean that adjacent neurons share similar memberships with the stimulus. The first 

iteration of RFSOM will assign crisp memberships similar to RSOM which result in an 

HL-matrix as shown in Fig. 2.4a. Fig. 2.4a demonstrates the “winner take-all” at    : 

one neuron (top right corner) has a membership close to 1 and every other neuron has 

membership close to 0 (slight information sharing since       ). At     (Fig. 2.4b), 

  increases to     and the winning neuron starts sharing information about the stimulus 

with its neighbors and the membership value of that stimulus gets divided among those 

adjacent neurons. At     (Fig. 2.4c), where       a boundary begins to form. This 

separates the region in which neurons have high firing strength to the stimulus (see the 

region in the upper right corner of Fig. 2.4c) from the remaining neurons that have a 

weaker response. These two regions and the boundary become more defined in the last 

iteration at     , where    . We clearly see the L region (region with low active 

neurons) and the H region (region with high active neurons) separated by the boundary. 
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Hence, communication among neurons intensifies with time and the maximum sharing of 

information occurs in the last iterations (Fig. 2.4d). The similarities between Fig. 2.4d 

and the U-matrix in Fig. 2.2b are evident. Fig. 2.4d shows the catchment basin containing 

the set of neurons that responded to that stimulus, which corresponds to the catchment 

basin labeled R10, R11, and R13 in Fig. 2.2b. 

 

  
(a)     and        (b)     and       

  
(c)     and       (d)      and     

Fig. 2.4. RFSOM HL-matrix for a given stimulus at various iterations/times 

 

We can verify that two neighboring neurons represent and sense similar stimuli by 

inspecting their coefficient vectors. For instance, let us select two neurons from the upper 

right corner of Fig. 2.4d, more specifically, neuron (18, 18) and (19, 16) whose 

coefficient vectors are shown in Fig. 2.5a-b, respectively. It is clear both neurons 

represent the same stimuli, but with varying weights. 
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(a) (18, 18) (b) (19, 16)  

Fig. 2.5. Neuron coefficients for map location in Fig. 2.4d 

 

 Well-Separated Three Gaussians (WS3G) 2.9.2.

The WS3G dataset contains three classes that are well separated; this is a fairly 

easy dataset to cluster (Fig. 2.1b, Table 2.2.B). The main goal of this dataset is to 

demonstrate the behavior of the FSOM and RFSOM when the inter-cluster distance is 

large. Properties of the WS3G datasets are presented in Table 2.4. 

 

Table 2.4. WS3G Dataset Properties 

No. of 

Points 
MEAN, Μ Std. Dev., σ 

500 (1,1) 0.1 

500 (1,5) 0.1 

500 (4,3) 0.1 

 

The topographic maps for FSOM and RFSOM are shown in Fig. 2.6a-b, respectively. 

Both algorithms were able to successfully identify the three clusters. The average   ,    

and objective function value are shown in Table 2.7.B. Overall, the average values 

calculated are very close in both algorithms. 
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(a) FSOM (b) RFSOM 

Fig. 2.6. Topographic maps for the WS3G dataset 

 

 Overlapping Three Gaussians (O3G) 2.9.3.

O3G is a similar dataset to WS3G; however, the clusters in O3G have larger 

variances which causes overlapping. Properties of the O3G datasets are presented in 

Table 2.5. 

Table 2.5. O3G Dataset Properties 

No. of 

Points 
MEAN, Μ Std. Dev., σ 

500 (1,1) 1 

500 (1,5) 1 

500 (4,3) 1 

 

The topographic maps produced by FSOM and RFSOM are shown in Fig. 2.7a-b, 

respectively. Since the three Gaussian clouds overlap, we expect more fuzziness in the 

maps. Both algorithms identified the three Gaussian clouds correctly as seen in Fig. 2.7. 

However, in FSOM boundaries between the clusters are fuzzier compared to RFSOM. 

Contrary to the WS3G dataset where we observed how close the errors in both algorithms 

are, on the O3G the   ,    and the objective function value are a little higher in FSOM 

than in RFSOM which may explain the difference between the topographic maps. 
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(a) FSOM (b) RFSOM 

Fig. 2.7. Topographic maps for the O3G dataset 

  

 Parallel Lines 2.9.4.

The lines dataset consists of three parallel lines of 100 points each (Fig. 2.1d, 

Table 2.2.D). The purpose of this dataset is to test whether or not FSOM and RFSOM 

would preserve the topology of the data. Indeed, both algorithms are capable of 

preserving the topology of the lines dataset (Fig. 2.8). The measured    and objective 

function values are close and topographic errors are identical (Table 2.7.D). 

  
(a) FSOM (b) RFSOM 

Fig. 2.8. Topographic maps for  the Parallel Lines dataset 
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 Congressional Voting Record (CVR) 2.9.5.

The CVR dataset, obtained from UCI machine learning repository, contains 435 

records. Each record corresponds to a congressman’s vote on 16 issues. The class label 

for a record is either Democrat (D) or Republican (R).  

The topographic maps generated by FSOM and RFSOM are shown in Fig. 2.9a-b, 

respectively. One can say that the maps are almost identical. Also, the errors produced 

from both maps are very close (Table 2.7.E). In fact, the average and the standard 

deviation of the topographic errors of both algorithms are identical (see topographic error 

column in Table 2.7.E). 

 

 

  
(a) FSOM (b) RFSOM 

Fig. 2.9. Topographic maps for the Congressional Voting Record dataset 

 

 Gene Ontology Dataset (GPD194) 2.9.6.

The dataset discussed thus far originally existed in feature vectors and converted 

to relational data using a distance measure. This is not the case for the GPD194 dataset. It 

contains 194 sequences of human gene products and was obtained from ENSEMBL 2009 

[51] and used by Havens et. al. to test the ontological SOM (OSOM) [34]. Table 2.6 

describes the characteristics of the GPD194 dataset [52]. 
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Table 2.6. Charactertistics of the GDP194 Dataset 

ENSEMBL 

Family ID 

   = Protein 

Family 

Gene Symbols No. of 

Genes 

No. of 

Sequences 

339 Myotubularin MTMR1÷4, MTMR1÷4 7 21 

73 Receptor 

Precursor 

FGFR1÷4, RET, TEK, TIE1 7 87 

42 Collagen 

Alpha Chain 

COL1A2, COL21A2, 

COL24A2, COL27A2, 

COL2A1, COL3A1, 

COL4A1, COL4A2, 

COL4A3, COL4A6, 

COL5A3, COL9A1, 

COL9A2 

13 86 

 

The relational data GPD194 was produced using fuzzy measure similarity (FMS), 

which is based on Sugeno λ measure. Describing the FMS is outside the scope of this 

dissertation, and the reader is referred to [52] for more details about the GDP194 dataset 

and the FMS. 

RFSOM was able to identify three main regions (Fig. 2.10), each representing one 

of the Protein families described in Table 2.6. The lower right corner of Fig. 2.10 

corresponds to myotubularin, the lower left region represents receptor precursor, and the 

upper region corresponds to collagen alpha chain. Notice that the collagen alpha chain is 

further divided into three sub-regions: fibril forming collagens, type IV collagens, and 

fibril associated collagens with interrupted triple helices. Those regions are also observed 

and discussed in Popescu et. al [52]. 
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 Fig. 2.10. Topographic map of the GPD194 dataset generated by RFSOM 

 Activity of Daily Livings (ADL) 2.9.7.

ADL dataset contains 3,963 patients originated from the 2006-2007 Minimum 

Data Set (MDS). Every patient has seven individual ADL item scores, each measuring 

the performance of a given activity. Those activities are: self-performance of bed 

mobility; transfer between surfaces; locomotion on the nursing unit; dressing; eating; 

toilet use; and personal hygiene. Patients’ ADL scores are generally assessed every three 

months. For our analysis, we will not address the individual ADL scores, instead focusing 

on the seven-item ADL score, which is the sum of the individual ADL scores. The score 

varies from 0 to 28, where 0 indicates complete independence in all seven activities and 

28 indicates complete dependence on others for all seven activities. For convenience we 

will refer to this score as ADL. 

Not all patients were assessed every three months. Therefore, the length of the 

patients’ trajectories varies depending on the number of times they were assessed. Some 
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patients may have four ADL scores while others may have 12. Hence, measuring the 

distance between patients is more difficult than computing the Euclidean distance. So, 

instead, we need to measure the distances among patients’ trajectories represented as time 

series with uneven length and irregular time steps. To do that, we will use Dynamic Time 

Warping (DTW) distance measure [4].  

DTW starts with two sequences (patients) 

                  and                  of lengths   and  , respectively. We 

construct an     matrix   where the element       corresponds to the distance between 

    and    . For instance,      ,      |        |. Therefore, each element in   

corresponds to the alignment between points    ,     in the sequence    and   , 

respectively. For example, in Fig. 2.11a patient   with four ADL scores is represented on 

the x-axis and patient   with six ADL scores is on the y-axis. The matrix in Fig. 2.12a 

shows the pairwise distances among the ADL scores of both patients. The goal of DTW 

is to minimize the cost of the warping path, which is done by computing a cumulative 

distance between points    ,     of the sequences (Fig. 2.11b), which is computed as 

follows [4] 

 (       )    (       )

    ( (           )  (         )  (         )) 

(2.24) 
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(a) Pairwise distance between ADL scores belonging to 

the two patients 

(b) Cumulative DTW distance matrix with the final 

distance             

Fig. 2.11. Distance matrix produced by DTW 

 

 

Based on the relational data produced using the DTW distance measure, RFSOM 

generated the topographic map as shown in Fig. 2.12. The map shows four distinct 

regions, each region representing a unique set of ADL trajectories. For instance, the 

upper left corner of Fig. 2.12 (R2 and R3) represents 471 patients whose ADL trajectory 

increased before it starting to decline. R5 contains 828 patients whose ADL trajectory 

decreased and it appears to stabilize. The lower left corner (R1 and R4) represents 1,328 

patients whose trajectory consistently increases. R7 contains 780 who exhibit 

characteristics similar to patients in R1 and R4 except for an apparent improvement in 

their ADL score after the sudden increase. Lastly, the upper right corner (R6, R8 and R9) 

represents 556 patients whose ADL trajectory seems to be unstable and fluctuating.  
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 Fig. 2.12. Topographic map generated by RFSOM using the relational data produced using DTW 

 

 

Table 2.7. RFSOM Results 

 
Dataset 

QUANTIZATION 

ERROR 
TOPOGRAPHIC ERROR 

OBJECTIVE 

FUNCTION 

  FSOM RFSOM FSOM RFSOM FSOM RFSOM 

A Hepta 0.0123 

(1x10
-4

) 

0.0087 

(4x10
-5

) 

0.0198 

(0.0187) 

0.0292 

(0.0341) 

2.9 

(0.0275) 

2.09 

(0.0083) 

B Well 

Separated 

Gaussians 

(WS3G) 

0.0018 

(7x10
-6

) 

0.0013 

(3x10
-6

) 

0.0023 

(0.0015) 

0.003 

(0.0011) 

3.18 

(0.0145) 

2.29 

(0.0037) 

C Overlapping 

Gaussians 

(O3G) 

0.0107 

(9x10
-5

) 

0.0082 

(6x10
-6

) 

0.0297 

(0.0247) 

0.0135 

(0.0091) 

18.02 

(0.1433) 

13.72 

(0.0072) 

D Parallel Lines 0.0345 

(0.0042) 

0.0197 

(0.0002) 

0.0177 

(0.0244) 

0.0177 

(0.0104) 

11.54 

(1.41) 

6.51 

(0.088) 

E Congressional 

Voting Record 

(CVR) 

0.0102 

(1x10
-5

) 

0.0071 

(2x10
-6

) 

0.0002 

(0.0007) 

0.0002 

(0.0007) 

4.96 

(0.0063) 

3.44 

(0.0004) 

F Gene 

Ontology 

(GDP194) 

- 0.00004 

(2x10
-5

) 

- 0.534 

(0.316) 

- 0.013 

(0.0029) 

G Activity of 

Daily Living 

(ADL) 

- 0.1204 

(0.0003) 

- 0.171 

(0.172) 

- 465.96 

(7.774) 

A summary of the FSOM and RFSOM performance, the average quantization and topographic errors and objective 

function value are estimated from 10 runs of the algorithms. The value in parentheses represents the standard deviation. 
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2.10. Conclusion 

This chapter presented the RFSOM algorithm, which is a generalization of the 

RSOM[33]. RFSOM acts on relational data that describes the pairwise dissimilarities 

among objects. Unlike RSOM or the classical SOM, by incorporating fuzziness to the 

neurons, the notion of BMU no longer exists in the FSOM and RFSOM. Instead, every 

object is associated with a neuron with varying grade of membership.  

RFSOM’s initial iterations resemble the classical crisp SOM since the fuzzifier is 

small. In other words, RFSOM begins as a “winner takes-all” paradigm and as time 

progresses and the value of the fuzzifier increases, neighboring neurons begin to share 

and communicate information about the stimuli they sense. This is made possible by 

employing a monotonically increasing fuzzifier and monotonically decreasing 

neighborhood kernel. We demonstrated this concept using the HL-matrix, where neurons 

that exhibit strong responses to a given stimuli are separated by a boundary from the 

neurons that display a weaker response. 

We employed five datasets (some from FCPS and the UCI repository) to test the 

performance of FSOM and RFSOM algorithms. Additionally, we tested the performance 

of the RFSOM on real relational data, Gene Ontology and Activity of Daily Living. On 

the datasets that we tested on both the FSOM and RFSOM, we saw similar topographic 

maps and very close error rates. In few cases, the error rates were identical.  

Relational data clustering and visualization are two of the effective approaches to 

handle data that do not exist in object form. However, algorithms such as RFSOM are 

inherently complex, computationally expensive, and most importantly they lack, the 

ability to handle large relational data. For instance, the time complexity of RFSOM is 
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        , where   is the number of neurons,   is the number of objects, and   is the 

number of iterations. The memory complexity is             , where    is the 

memory complexity of the relational matrix  ,        is the complexity for storing the 

distance matrix (2.8), partition matrix (2.12) and the coefficient vectors (2.16).  For 

example, if          and      , the memory usage is estimated to be 2.9 GB. 

Additionally, RFSOM can contain from several hundreds to thousands of neurons, which 

in turn increases the complexity and memory usage of the algorithm. Although RSOM 

was proposed for large dissimilarity datasets[53], direct applicability of that technique to 

RFSOM is not trivial since RFSOM does not assign winning neurons to objects. 

 In the RFSOM evaluation, in section 2.7.2, we used the crisp topographic error to 

measure how well the RFSOM preserves the data topology. So, in order to use the crisp 

topographic error we have to find the two neurons with the highest membership value to 

that stimulus and pretend that those neurons are the first and second best-matching units. 

The flow in this approach is that it relies on only two neurons and does not take full 

advantage of the fuzzy membership values. The next chapter is dedicated to address this 

problem and proposed two new methods to overcome this problem. 

  

  



48 
 

  CHAPTER 3

TOPOLOGY PRESERVATION IN FUZZY SELF-ORGANIZING 

MAPS 

One of the important properties of SOM is its topology preservation of the input 

data. The topographic error is one of the techniques proposed to measure how well the 

continuity of the map is preserved. However, this existing topographic error is only 

applicable to the crisp SOM algorithms and cannot be adapted to the fuzzy SOM (FSOM) 

since FSOM does not assign a unique winning neuron to the input patterns. In this 

chpater, we propose a new technique to measure the topology preservation of the FSOM 

algorithms. The new measure relies on the distribution of the membership values on the 

map. A low topographic error is achieved when neighboring neurons share the same or 

similar membership values in a given input pattern. 

3.1. Introduction 

Self-Organizing Maps (SOM) is an unsupervised neural network algorithm. SOM 

tries to map the s-dimensional input patterns to a 2-dimensional lattice, preserve the 

topology of the data, and cluster the neurons that represent similar input patterns, which 

can be visualized using a 2D or 3D map such as the Unified Distance Matrix (U-Matrix) 

[44]. Several formulations and modifications were proposed to the classical SOM 

algorithm, such as the Self-Organizing Semantic Maps [20], Ontological SOM [34], 

Relational Topographic Maps [33], and WEBSOM [24]. Another class of SOMs is the 

fuzzy SOM algorithms. The general idea of FSOM is to integrate fuzzy set theory into 

neural networks to give SOM the capabilities of handling uncertainly in the data.  FSOM 

can also be divided into two categories: object FSOM [25], [26], [29], [54], [55] where 
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input patterns are represented as feature vectors and the relational FSOM [37] which 

handles relational data. 

Regardless of the type of SOM algorithm they all share one important feature that 

is topology preservation. Topology preservation means that neighboring data points in the 

input space are mapped to nearby neurons in the output space. Once a good mapping is 

established, SOM can represent the high dimensional input space in a 2-dimensional 

output map that preserves the topology of the input data. This in turn yields better 

visualization and reveals more information about the structure and the clusters presented 

in high dimensional input space. To ensure that SOM has established good mapping, we 

need to measure or quantify the goodness of SOM. Different measures are proposed to 

accomplish this goal, such as the quantization error and the topographic error. Those 

errors are widely used in SOM and while the quantization error was adapted for the 

object and relational FSOM [37], no formulation is yet proposed to measure the 

topological preservation or continuity of the map in the FSOM algorithms. 

The topographic errors used in SOM are not directly applicable to FSOM due to 

the fact that FSOM does not assign a unique winning neuron for every object, instead 

every neuron is a winning a neuron of every object with a varying degree of membership. 

Therefore, in this work, we propose a technique to measure the topographic error in 

FSOM algorithms. 

The reminder of the chapter is organized as follows: Section 3.2 gives an 

overview of the fuzzy relational SOM. Section 3.3 discusses some of the well-known 

methods to measure the goodness of SOM. Section 3.4 explains a new approach to 
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measure the topographic error in FSOM. Section 3.5 presents experimental results and we 

conclude this chpater with remarks and discussion in Section 3.6. 

3.2. Relational Fuzzy Self-Organizing Maps 

In this section we give a very brief overview of the fuzzy relational SOM 

algorithm (RFSOM) [37] on which the experimental results discussed in section 3.5 are 

based on. However, the same technique for evaluating the topology preservation can be 

used on object FSOM or any FSOM algorithm. For a complete analysis of RFSOM the 

reader is referred to [37]. 

Given   input objects    {       } described by feature vectors   

 {       }      or by a relational matrix   [   ]   [‖      ‖
 
][33], [37] SOM 

constructs a lattice or map of   number of neurons, that are connected using a 

neighborhood kernel,  , such the neighborhood between neuron   and   is given by 

          (
 ‖      ‖

 

      
)  (3.1) 

where    is the coordinate of the  th neuron in the output space (two dimensional space) 

and   is a monotonically decreasing neighborhood size. Every neuron has a 

corresponding s-dimensional weight vector,   {       } or an n-dimensional 

coefficient vector in the relational algorithm. One of the goals of the classical crisp SOM 

algorithm is to assign every s-dimensional input signal,   , a winning or a best-matching 

unit (BMU),   , according to 

           
 
‖      ‖

                          (3.2) 
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Effectively, SOM assigns a full membership of    in neuron   , 

    {
              
              

 (3.3) 

An alternative to this approach is to assign a fuzzy membership for all objects in every 

neuron as described in [37]. The RFSOM proposed in [37] produces fuzzy partitions 

         where 

      

{
 
 

 
 

        
|
|

    [   ] 

∑    

 

   

   ∑   

 

   

   

                  }
 
 

 
 

  (3.4) 

Introducing fuzzy memberships to SOM as in RFSOM adds another layer of 

complexity due to the fact that all neurons are winners of all objects to some degree. 

Thus, any error measurement made in RFSOM has to factor in all membership values of 

all input signals in all neurons. In [37] we showed that the quantization error in SOM can 

be easily adapted to the RFSOM, but this is not the case regarding the topographic error. 

In the next section we will briefly review two of the major SOM evaluation techniques 

followed by a new method to evaluate the topology preservation of RFSOM in section 

3.4. 

3.3. Topology Preservation in SOM 

Several measures are proposed to measure the goodness of the map. Some 

measures, such as the quantization error, evaluate the fitness of SOM to the input data. 

This error calculates the average distance between the input patterns and their 

corresponding winning neurons. Optimal map is expected to produce a smaller error, 

which means the input patterns are close [43] to their winning neurons. Quantization 

error for SOM is shown in (3.5). 
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∑‖       

‖

 

   

 (3.5) 

Similarly, the FSOM quantization error is defined as [37] 

     ∑∑   
 ‖       

‖

 

   

 

   

 (3.6) 

However, the crisp and fuzzy quantization errors in (3.5) and (3.6) may not 

accurately measure the topographic preservation of the map. Instead, one can quantify the 

relation between the codebook weight vectors and the associated neurons in the map as in 

the topographic product [43]. This gives a sense on how well the s-dimensional space is 

mapped to a 2-dimensional lattice [42]. A different approach is to use the topographic 

error. 

The topographic error measures the continuity of the map or how well an input 

signal preserves the local continuity of the map [43]. When the first and second best-

matching units to object    are adjacent in the map space, then    is said to preserve local 

map continuity and if they are not adjacent then there is a topological error. To evaluate 

the overall topology of the map the proportion of input signals for which the first and 

second best-matching units are not adjacent is measured (3.7) [43]. A lower error yields a 

better map and topology.   

    
 

 
∑       

 

   

 (3.7) 

where 

        {
                                               
                                                                                    

. 
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Another matric for measuring topology preservation in crisp SOM is discussed in 

[56]. The metric is said to be topology preserving if for any   , if    is the     nearest 

neighbor of    , then    is the  th nearest neighbor of   . 

The concept of first and second BMUs is not applicable to FSOM since every unit 

  is a BMU of every object    with a degree    . A possible workaround is to harden the 

fuzzy partition produced by FSOM to find the BMU then compute the topographic error 

as in (3.7). Another approach is to consider the two neurons in which    has the highest 

membership as the first and second BMUs. However, neither of these two approaches 

exploits the membership grade of FSOM. Therefore, a new formulation to measure the 

local continuity of the map in FSOM is needed to evaluate its goodness and the topology 

preservation, which is the topic of the next section. 

3.4. Topology Preservation in RFSOM 

In RFSOM every neuron is a BMU of every object with a varying degree of 

membership. Regardless, both the crisp and fuzzy SOM should preserve the topology. 

Therefore, every pattern presented to RFSOM is also expected to preserve the local 

continuity of the map. One can consider the first and second neuron with the highest 

membership to    as best and second winning neurons,    and   . However, this flawed 

strategy uses only two neurons and discards all other neurons despite the fact other 

neurons might have high membership to   . Relying on two neurons can only give us a 

false sense of the map continuity. Consider a scenario where the first and second neurons 

with the highest memberships to   ,    and    are immediate neighbors, but the neuron 

with the third highest membership to    is distant from    and   . A better approach is 

to use the membership values and utilize all neurons when measuring the topology 
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preservation of RFSOM. More specifically, by looking at the differences of the 

membership values between the neurons and their immediate neighbors we can make a 

conclusion on how well the local topology of the map is preserved. 

For any given object    in RFSOM, we expect neurons with high firing strength 

to    to be concentrated in one region (H region). Also, not all neurons have the same 

firing strength, as we go further away from the H region, the membership values start to 

diminish gradually. If the correct data topology is discovered by RFSOM, the H region 

corresponds to the catchment basin or part of it where    belongs the most. In such case, 

we say that    preserves the local continuity of the map. On the other hand, if the neurons 

of high membership to object    are scattered throughout the map or if no H region is 

identified then the object fails to preserve the topology of the map. For exemplification, 

Fig. 3.1a shows the topographic map for Hepta dataset [41] and Fig. 3.1b shows the H 

region for some input pattern. 

In order to assess how well an object    preserves the local continuity of the map 

we first need to compute the HL-matrix. HL-matrix has the same dimensions as the 

topographic map and   neurons. A topology preserving HL-matrix includes two main 

regions, the H region which contains the neurons with high membership to object    and 

the L region containing the rest of the neurons which have low membership values to   , 

as shown in Fig. 3.1c. Observe that the HL-matrix of    represents a snapshot of the U-

matrix (Fig. 3.1a). Adjacent neurons in regions H and L should have similar membership 

values to   . Hence, the difference in the membership values between a neuron   and its 

immediate neighbors      should be very small with exception to the bordering neurons 

that separate the H and L regions as shown in Fig. 3.1c. For a given object    we first 
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compute its HL-matrix where the value at every neuron’s coordinate is computed as 

follows  

       ∑ |        |

      

 (3.8) 

      corresponds to the sum of differences between the membership     and the 

memberships of    in     . Then that difference is projected on top of the grid position 

of every neuron. This process is performed for every input pattern. For a small 

topographic error the value for every neuron       should be as small as possible, which 

means that the neuron   and its neighbors      have very similar memberships to the 

given input pattern. 

For an object to preserve the local topology it is imperative that we identify a 

single region labeled H. Failure in identifying a single region H will cause the 

topographic error to increase and possibly reaching its maximum value. This technique is 

stricter than the topographic error in (3.7). Here we want to ensure that two adjacent 

neurons have similar membership to   , which is somewhat similar to (3.7), but in 

addition we would like to ensure that    preserves the local continuity within a specific 

region of the map. 

   
(a) Hepta dataset RFSOM 

map 

(b) H region of random point (c) HL-matrix of a random 

point 

Fig. 3.1. Topology preservation for some random point     
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For more accurate evaluation of the topology preservation it is recommended that we 

normalize the HL-matrix as follows 

        
     

∑       
   

 (3.9) 

We give two important reasons for this normalization: first, it sets an upper bound on the 

topographic error, similar to (3.7) the maximum error is 1. Second, normalization is 

crucial when comparing the topographic errors across different maps. Once the 

normalized HL-matrix is computed, the final topographic error of a single object    will 

depend on the neurons identified in the region labeled H. The error is simply the sum of 

values enclosed in the H region of the NHL-matrix (3.10). As the values in the H region 

get smaller, so does the topographic error. Meaning that adjacent neurons in the H region 

share similar memberships to   . 

       ∑      

   

 (3.10) 

The final topographic error of the map is computed as the average topographic error 

overall the objects as 

     
 

 
∑      

 

   

   (3.11) 

We would like to point out few remarks about the proposed measure (3.11): first, 

the only way for a map to result in a zero topographic error is when the values in the H 

region are equal to zero. In other word, when neuron     and its neighbors      have 

an identical membership to   . Second, an HL–matrix may not contain a unique H 

region. In this situation the topographic error can reach its maximum, which is the sum of 

all values in the NHL-matrix (     ). 
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Fig. 3.2 summarizes the process described above. Starting with the input data   

or  , FSOM/RFSOM outputs the 2D map and the     partition matrix  . For every 

column in  , which corresponds to some pattern  , we can visualize the distribution of 

the memberships across the map. The distribution will give us a nice visual of which area 

on the map corresponds to the neuron that have firing strength to the input pattern. Then, 

we compute the HL matrix, which segments the neurons that have high firing strength 

from the ones having low membership values. Finally, based on the neurons in the H 

region we compute the topographic error for the  th patterns, followed by the 

computation of the overall topographic error. 

 

 Fig. 3.2. Topology preservation in FSOM/RFSOM using image segmentation  
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The approach presented so far suffers from some limitations and drawbacks: (a) It 

is computational expensive since it relies on image segmentation. For every pattern   we 

have to perform image segmentation to identify the region containing the neurons with 

high firing strength to  . The more input patterns we have and the large the map is, the 

more time it will take to compute the final topographic error. In many cases it can take 

longer than the actual running time of the FSOM/RFSOM algorithm. (b) Image 

segmentation cannot always be reliable. In fact, the reliability depends on how noisy or 

not noisy the map produced by FSOM/RFSOM is. Some resulting maps can be very 

noisy, which makes it harder for the image segmentation algorithms to identify the region 

with high membership values. (c) It is threshold based. Image segmentation algorithms 

can be very sensitive and can cause over segmentation of the map if we ran the algorithm 

directly on the FSOM/RFSOM map. Therefore, we have to set a threshold on the image 

before segmentation. The hope is the threshold we choose we will allow the segmentation 

algorithm to identify the region were the neurons with high firing strength are located. 

Sometimes we might overestimate or underestimate the threshold resulting in an 

inaccurate topographic error. (d) The proposed error does not use all the neurons to 

compute the topographic error, which contradicts with the whole idea of having a 

membership function. Currently, only those neurons within some defined regions are 

used to measure the error, while in fact we all neurons should contribute according to 

their membership function. Due to those reasons we propose an alternative way to 

measure the topographic error in fuzzy SOM algorithms.     

The alternative approach is more intuitive and simpler than the image 

segmentation based approach. Fig. 3.3 demonstrates how an input pattern preserves the 
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map continuity in fuzzy SOM algorithms. As the distance between any two neurons   and 

  increases, we expect the two neurons to represent different patterns. Hence, for some 

input pattern   the difference between     and     should be get larger as the distance 

between neurons   and   increases. On the other hand, if the neurons   and   are close to 

each other, then we expect the membership values     and     to similar. 

 

 Fig. 3.3. A topology preserving input pattern   

So, in order to compute the fuzzy topographic error for some pattern   we first 

compute the spreading of the membership value among all neurons relative to   using 

(3.12).  

        
|       |

   
            (3.12) 

This gives us the error that every pair of neurons has contributed to  , which we will use 

to compute the overall topographic error for pattern   as:  

       
      

 
∑∑       

 

   

 

 

   

 (3.13) 

Eq. (3.13) is repeated for every  , which results in a final topographic error: 
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∑      

 

   

 (3.14) 

This technique is summarized in Fig. 3.4. 

 

 Fig. 3.4. Topology preservation in FSOM/RFSOM process 

3.5. Experimental Results 

 Fuzzy Topographic Error on O3G 3.5.1.

The overlapping three Gaussian (O3G) dataset contains three clusters of size 500 

each (Fig. 3.5a). Clusters in O3G have larger variance which causes overlapping. We 

setup RFSOM with initial     , final neighborhood radius (  ), initial fuzzifier     , 

final fuzzifier (  ), map dimensions and number of epochs to be 2, 0.5, 1, 2, 1515 and 

10, respectively. The resulting topographic map is shown in Fig. 3.5b. 

From Fig. 3.5c it is clear that the HL-matrix for some given pattern contains the two H 

and L regions, which is an indication that it preserves the local continuity of the map. 
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(a) O3G dataset (b) RFSOM topographic map 

  
(c) HL-matrix for a random point (d) Non-topology preserving map 

Fig. 3.5. Topology preservation from the O3G 

 

In a topology preserving map, such as the one in Fig. 3.1c, the membership     is 

expected gradually increase while approaching the H region and neurons with the highest 

membership should be located within the H region as demonstrated in Fig. 3.6a. On the 

other hand, a non-topology preserving map as in Fig. 3.5d we see a more chaotic 

membership values among the neurons (Fig. 3.6b) causing     to increase. It could also 

mean that the four regions or corners in Fig. 3.5d are wrapped around to form one region 

representing all input patterns, failing to preserve the topology. 
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(a) Topology preserving membership signal (b) Non-topology preserving membership signal 

Fig. 3.6. The membership values for a random point 

 

Now, let us compare      and      for the maps in Fig. 3.1b and Fig. 3.1d. If we 

compute     for the map in Fig. 3.5b (Table 3.1), where the two neurons with the highest 

membership value to an input pattern are used as the first and second BMU, we find it 

higher than the      in Fig. 3.5d (Table 3.1). On the contrary,     has increased from 0.32 

in Fig. 3.1b to       in Fig. 3.1d. In this scenario     reveals more information about 

the goodness of the map resulted from RFSOM since we probably expect Fig. 3.5b to be 

more topology preserving than Fig. 3.5d. 

Table 3.1. Behaviour of      and     when varying    

Map            

Fig. 3.5b 2 0.021 (0.006) 0.32 (0.03) 

Fig. 3.5d 4 0.004 (0.004) 1 (0) 

 

If we instead use the second approach for measure the topographic error we will 

find that           , a very small number compared to the image segmentation based 

approach. That is because the two approaches are searching for different criteria. The 

image segmentation based approach attempts to find a specific region/catchment basin 

where the neurons has a strong firing strength to the input pattern. Then it measures if 
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that region preserves the continuity of the map (local continuity). The second approach 

attempts to compute a global continuity of the map by using all neurons. 

 Fuzzy Topographic Error and Map Dimensions 3.5.2.

In this experiment we will use the Two Diamonds dataset from the Fundamental 

Clustering Problem Suite (FCPS), which contains 800 data points [41] as shown in Fig. 

3.7a. On this dataset we will show how the map dimensions can have an influence on the 

topographic error. Same parameters used on the O3G dataset will be used for the Two 

Diamonds with exception to the map dimensions which is set it be 20   20. The resulting 

topographic map is shown in Fig. 3.7b. 

A smaller map of size 10   10 was also produced for the Two Diamonds dataset. 

It is not shown since it is very similar to the map in Fig. 3.7b. We found the overall 

topological error of the       map measured to be 0.33. As the map size increases it is 

likely that the H region increases which in some cases causes an increase in the 

membership variance among adjacent neurons. On the contrary,       map might have 

lower variance in the memberships among neighboring neurons in the H region and 

hence a lower topographic error (overall topographic error is 0.28). Notice that as the 

map size increases the topographic error increases (Fig. 3.8a). Therefore, it is important 

to choose a map size suitable for the dataset. 
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(a) Two diamonds dataset (b) RFSOM map 

Fig. 3.7. Topology preservation vs. map size 

 

How does the second approach behave as the map size varies? As the map size 

increases we expect the fuzzy membership values to get distributed across a larger 

number of neurons. Hence, causing the membership values to get smaller and smaller as 

the number of neurons gets bigger. Also, as the map gets larger, the distance among the 

neurons will increase, therefore, the ratio of the change in membership and distance 

(3.12) will get smaller causing the topographic error to decrease. On the other hand, as 

the map gets smaller, the membership values will get distributed on smaller number of 

neurons and the distances in a smaller map are smaller than those of a bigger map, hence, 

we expect a bigger topographic error. This behavior is shown in Fig. 3.8b. 

  
(a) Image segmentation based error (b) Second approach 

Fig. 3.8. Fuzzy topographic error vs. map size 
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3.6. Conclusion 

In this chapter we presented a method for measuring the topology preservation in 

fuzzy self-organizing maps. The newly proposed topographic error relies on the 

membership distribution on the map and in some sense is an extension to the crisp 

topographic error. The assumption is that adjacent neurons should have similar 

memberships to a given object   . In addition, we presented the HL-matrix. A topology 

preservation HL-matrix for a given    contains two regions, the H region that 

encompasses the neurons with high membership to    and the L region which contains 

the low membership neurons to   . In the results different scenarios were presented to 

demonstrate how the topographic error behaves when varying the map dimensions. We 

observed that the topographic error in FSOM tends to be higher than the standard 

topographic error used in SOM.  

One drawback of the proposed measure is its dependence on the map dimensions. 

For instance, as the map dimensions or size increases so does the topographic error. To 

overcome this problem, one is expected to specify a map dimension that is suitable to the 

input dataset. The dependency of the topographic error on the SOM parameters is not 

necessarily a bad thing. On the contrary, a high topographic error is an indication that the 

map is not optimal and the parameters require tuning. However, additional experiments 

are needed to study the influence of other parameters such as the neighborhood size and 

the fuzzifier, in addition to the map dimensions, on the proposed topographic error. 

The second approach attempts to find solutions to some of the drawbacks found in 

the image segmentation approach. We longer need to depend on the image segmentation, 

which can be unreliable and can causes unpredictable results. Also, instead of measuring 
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the error based on only a subset of the neurons, which defeats the purpose of using the 

fuzzy membership values, the second approach utilizes all neurons when computing the 

error. 

 In the last two chapters we discussed the relational self-organizing maps, derived 

based on the RFCM formulation. From the experimental results we saw that RFSOM 

work. But have you wondered what would happen if the relational data matrix is not 

Euclidean? Would RFCM and its derivative algorithms fail? And would it always fail if 

the relational matrix is not Euclidean? We will try to answer some of these questions in 

the next chapter. 
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  CHAPTER 4

IMPROVEMENTS TO THE RELATIONAL FUZZY  -MEANS 

CLUSTERING ALGORITHM 

Relational fuzzy  -means (RFCM) is an algorithm for clustering objects 

represented in a pairwise dissimilarity values in a dissimilarity data matrix  . RFCM is 

dual to the fuzzy  -means (FCM) object data algorithm when   is a Euclidean matrix. 

When   is not Euclidean, RFCM can fail to execute if it encounters negative relational 

distances. To overcome this problem we can Euclideanize the relation   prior to 

clustering. There are different ways to Euclideanize   such as the  -spread 

transformation, where some constant is added to the off-diagonal elements of  . There 

are at least four alternatives to the  -spread method. In this article we compare five 

methods for Euclideanizing   to  ̃. The quality of  ̃ for our purpose is judged by the 

ability of RFCM to discover the apparent cluster structure of the objects underlying the 

data matrix  . Our main conclusion: the subdominant ultrametric transformation is a 

clear winner, producing much better partitions of  ̃ than the other four methods. This 

leads to a new algorithm we call the improved RFCM (iRFCM).  

4.1. Introduction 

Consider a set of objects   {       }, where the goal is to group them into   

natural groups. Objects can be described by feature vectors   {       }     such 

that    is an attribute vector of dimension   representing object   . Alternatively, objects 

can be represented using a pairwise relationship. The relationships are stored in a 

relational matrix  , where   [   ] measures the relationship between    and   . If   is a 
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dissimilarity relation denoted by   [   ], then it must satisfy the following three 

conditions: 

                            (4.1a) 

                                            (4.1b)  

                                      (4.1c)  

where condition (4.1a) is self-dissimilarity, (4.1b) is non-negativity and (4.1c) is 

symmetry. A well-known relational clustering algorithm that is suitable for clustering 

objects described by   is the relational fuzzy  -means (RFCM) proposed in [11] 

(Algorithm 4.1). RFCM, the relational dual of the FCM algorithm, takes an input 

dissimilarity matrix   and outputs a fuzzy partition matrix       , where  

    

  {        |    [   ] ∑   

 

   

   ∑   

 

   

                     } 
(4.2) 

The duality relationship between RFCM and FCM is based on the squared Euclidean 

distance or 2-norm that defines the dissimilarity     between two feature vectors    and    

describing    and    and the dissimilarity between the cluster center    and   . In other 

words, RFCM assumes that 

  [   ]   [‖     ‖ 
 
] (4.3) 

 

The relation   [   ] is Euclidean if there exists feature vectors   

{       }     with an embedding dimension    , such that for all         

‖     ‖ 
 
. When   is Euclidean, it has a realization in some Euclidean space. In this 
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case, RFCM and FCM will produce the same partition of relational and feature vector 

representation of the data. If   is not Euclidean, RFCM will still find clusters in any   

whose entries satisfy (4.1) as long as it can execute, but in this case it is possible for 

RFCM to experience an execution failure. This happens when the relational distances 

between prototypes and objects       in equation (4.4) become negative for some   and   

(Algorithm 4.1, line 6). Another important observation about RFCM is that it expects 

squared dissimilarities  . If the dissimilarities are not squared, meaning that we have √  

instead of   such that √     ⁄  [√   ], then the dissimilarities must be squared 

before clustering using RFCM so that   is the Hadamard product   (√ )
 
. 

Throughout this chpater   is assumed to contain squared dissimilarities. 

Non-Euclidean Relational Fuzzy c-Means (NERFCM), repairs RFCM “on the 

fly” with a self-healing property that automatically adjusts the values of       and the 

dissimilarities in   in case of failure [12]. The self-healing property is based on the  -

spread, which works by adding a positive constant   to the off-diagonal elements of  . In 

fact, there exists    such that the  -spread transformed matrix    is Euclidean for all 

    . The parameter   controls the amount spreading and must be as small as possible 

to minimize unnecessary dilation that distorts the original  , which in turn may result in 

the loss of cluster information. The exact value of    is the largest positive eigenvalue of 

the matrix    , where     
 

 
     . Eigenvalue computation is avoided by the self-

healing module, which is invoked during execution only when needed. When activated, 

this module adjusts the current   by adding a minimal  -spread to its all off-diagonal 

elements.  
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An alternative to using NERFCM is to transform the matrix   by a mapping that 

converts it to Euclidean form (we call this operation “Euclideanizing  ”), and then 

running RFCM on the Euclideanized matrix  ̃. This approach guarantees that RFCM will 

not fail since  ̃ is already Euclidean. There are at least five ways to Euclideanize  , 

including the  -spread transformation. In addition to the  -spread transformation, this 

chpater will study the other four Euclideanization approaches indicated under option 1 in 

Fig. 4.1. We defer the possible improvement of the self-healing module with these 

alternative strategies (option 2 in Fig. 4.1) to later study. So this chpater is about 

improving RFCM using option 1, hence iRFCM. A companion paper will consider 

improving NERFCM using option 2, hence iNERFCM. The RFCM algorithm is listed as 

pseudocode in Algorithm 4.1. 
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 Fig. 4.1. Possible solutions RFCM can utilize when input   is non-Euclidean 
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Algorithm 4.1. Relational fuzzy  -means (RFCM) [11] 

1 Input:  ,  , fuzzifier     (default    ),      (default         ),   (default 

        )   

2 Output:  ,    

3 Initialize:       ,     

4 Relational cluster centers   
  (    

      
        

 ),     
        

Note: we use   randomly chosen rows of   as initial centers. 

  

5 while         and         

6 
      (     

   )
 
 
 

 
(    

   )
 

     
                            (4.4) 

 

  

7 for     to   

8 if         for all   
9 

      (
     

∑      
 
   

)

 
   

⁄        (4.5) 

 

10 else 

11 Set       for        ,     [   ] and ∑    
 
      

12 end if 

13 end for 

  

14     
        

       
  ∑    

  
   ⁄ ; for       (4.6) 

 

  

15                
     

{|  
   

   
     

|} 

16       

17 end while 

4.2. Euclidean Distance Matrices (EDM) and the iRFCM Algorithm 

Given a dissimilarity matrix   it is known that 

  is a Euclidean distance matrix (EDM)           is positive semi-definite 

(p.s.d) 

(4.7) 

where   

               (4.8) 

  is the centering matrix defined as 

     
 

 
      (4.9) 

  is the identity matrix and      is defined as  
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     {
   ⁄                                     

     ⁄ (√ )
 

                                        
 (4.10) 

In (4.10) and below, (√ )
 
is the Hadamard square of √ . The trick in using (4.8) is 

knowing if the dissimilarities are squared as in   or not squared as in √ , which 

determines which case of (4.10) to use. This is a question we cannot answer; rather the 

answer depends on one’s knowledge of how the dissimilarities were computed. 

The number of strictly positive eigenvalues of         gives the maximum 

number of the embedding dimensions     for the realization of   [57], [58]. If 

        is not p.s.d then   can be Euclideanized to  ̃ by making         p.s.d using the 

following general transformation 

 ( ̃)                     (4.11) 

where   is some positive constant, 

  {[   ]|                                 } (4.12) 

and      is computed the same way as      using (4.10). Eq. (4.11) implies that the 

Euclideanized  ̃ is given by 

 ̃        (4.13) 

Table 4.1 lists the five transformations that carry non-Euclidean  's into Euclidean  ̃’s 

that we will consider in this chapter. 
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Table 4.1. Transformations of    ̃ 

Name Formula Reference Eqn. 

 -Spread                [12], [57], 

[59] 

(4.14a) 

 

Subdominant 

Ultrametric 

(SU) 

    [   
  ] 

   
      {          |  

                      

       } 
       is the minimum spanning tree of   (Fig. 4.2) 

[60], [61] (4.14b) 

Power Fit 

(PF) 
              [59], [62] (4.14c) 

Exponential 

Fit (EF) 
    (       √ )

 
     

[59], [62] (4.14d) 

Log Fit (LF) 
    (    (  (√ )

 
))

 
         

[62] (4.14e) 

 

Given that   is not Euclidean and   has an Euclidean representation of dimension    , 

the goal is to find a positive constant   to Euclideanize  . In the  -spread case (4.14a) 

we can find the exact  , which is      , where   is the smallest eigenvalue of 

        at (4.8). Bénasséni [59] generalized this concept by incorporating additional 

choices of  . To understand Bénasséni’s generalization we rewrite         in terms of 

its eigendecomposition          (       )   (       )   (       )
 
 where 

 (       ) is the             diagonal matrix of the non-zero eigenvalues of 

        and  (       ) is the corresponding         matrix of the normalized 

eigenvectors. Since  (       ) is positive definite, the minimum constant   that makes 

(4.11) p.s.d is                 where              is given by 

                  ( (       )
   ⁄

  (       )
 
          (       )

  (       )
   ⁄

) 

(4.15) 

A more detailed proof can be found in [59]. 
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In (4.14a) the same constant is added to all the off-diagonal dissimilarity values in 

 . In some cases adding the same constant to all of the off-diagonal elements can cause a 

lot of distortion and a large correspondingly discrepancy between   and  ̃, causing  ̃ to 

lose the original structure of the data. This distortion can propagate into the RFCM 

clustering algorithm, causing a loss in the original cluster information. This is a very 

serious concern when     [   ] and the additive constant   is large (an example of this 

will be shown in the results section). To alleviate this problem, we can use one of the 

other choices of   listed in Table 4.1, such as the subdominant ultrametric (SU). 

The SU of  , denoted as    , is derived from the minimum spanning tree of  , 

      . Recall that   represents an undirected graph whose vertices are the objects 

described by  . A length     is assigned to each edge      . To determine    , construct 

        , such as the one shown in Fig. 4.2.   may not be uniquely determined if some 

edges have identical weights, but     is unique and does not depend on any particular 

choice of   [60]. We use Prim's algorithm to determine the MST [63]. 
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 Fig. 4.2. Example of a minimum spanning tree  

Eq. (4.14b) states that the SU distance between   and  ,    
  , is the maximum weight 

along the path                          connecting objects   and  . In Fig. 4.2 

there are six edges between   and   (bolded color). The first edge       has weight    , 

second edge       has weight    , etc. The SU distance between   and   for the particular 

MST in Fig. 4.2 is then given by the edge with the highest weight 

   
      {                       }      

Unlike the other transformations we will discuss later, the SU distance is a function of the 

original dissimilarities and its objective is to maximize the distance between any two 
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objects. Holman in [61] proved that     on   objects is Euclidean with     

dimensions. Once     is computed we can find  , where               
   . 

The following squared dissimilarity matrix 

  [

      
      
      
      

] 

is not p.s.d since the eigenvalues of                at (4.8) are 

{                    }. 

Using the SU we can Euclideanize  , which first involves computing the MST of   that 

will be used to compute    . 

  [

      
      
      
      

] 

 

      
⇒      

 

   

⇒   

[

      
      
      
      

] 

 

To compute the smallest eigenvalue            
    in (4.15) we first compute       

    

     
   , where     

      ⁄    . 

      
    [

  ⁄    ⁄    ⁄    ⁄

   ⁄   ⁄    ⁄    ⁄

   ⁄    ⁄   ⁄    ⁄

   ⁄    ⁄    ⁄   ⁄

]  [

           
           
         
         

]

 [

  ⁄    ⁄    ⁄    ⁄

   ⁄   ⁄    ⁄    ⁄

   ⁄    ⁄   ⁄    ⁄

   ⁄    ⁄    ⁄   ⁄

] 

        is computed the same way. To save space we do not show the eigenvalues and 

eigenvectors of       
   , but once computed, we will have  (       ),     diagonal 

matrix of non-zero eigenvalues and  (       ),      normalized eigenvectors. 
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Inserting  (       ),  (       ) and         in (4.15) gives            
         . 

Then with  ,     and  , where               
         , in (4.13) results in Euclidean 

form of   realized by the SU transformation,  

 ̃  [

                  
                  
                  
                  

]. 

We can verify that  ̃ is Euclidean by computing the eigenvalues of  ( ̃   ), 

{             }, which indicates that  ( ̃   ) is p.s.d. 

The third choice of   (4.14c) belongs to the family of power functions 

parameterized by  . Using a transformation based on the power fit (PF) involves a 

smaller distortion to the original dissimilarities   compared to the  -spread 

transformation. According to Bénasséni [59] there exists some real constant    such that 

   is Euclidean for     . Notice that for any    
   , as    , then    

  tends 

monotonically to 1. In other words, if       for all     and     the        
    , 

where    is given in (4.14a).  

The exponential fit (EF)     (4.14d) was first mentioned in Dattoro [62] to show 

that some nonlinear compositions of EDMs are also EDMs. Bénasséni [59] used this 

transformation to Euclideanize  . Similar to    ,     is a function of   and the limit 

property of (4.14d) states that as the       (  
     √ )

 

    if       for all     

and    . Bénasséni [59] shows that there exists    such that for     ,     is 

Euclidean. 
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Another nonlinear composition of EDM proposed in Dattoro [62] that can also 

yield EDM and that can be used in the Euclideanization of   is the log fit (LF) given in 

(4.14e). 

The last three transformations in Table 4.1 are parametric and hence require 

finding a value   that makes   Euclidean. In this chapter a greedy search for   was 

performed for these three transformations. There may be a more efficient approach for 

finding  , but this is beyond the scope of this dissertation and will be addressed in future 

work. What follows is the iRFCM algorithm that incorporates the transformations 

mentioned above. 

 

We have listed Algorithms 4.1 and 4.2 for the fuzzy case (   ). There are also 

hard and possibilistic versions of RFCM, the relational hard  -means (RHCM) [11] and 

the relational possibilistic  -means (RPCM) [35]. Algorithm 4.2 will also generalize them 

by replacing line 11 in Algorithm 4.2 with your choice of RHCM or RPCM assuming the 

appropriate changes are made to Algorithm 4.1. 

Algorithm 4.2. Improved relational fuzzy  -means  (iRFCM) 

1 Input:  ,  ,  ,     (default    ),      (default         ),   (default   
      )   

2 Output:      

3 Initialize:          ⁄    
4                
  

5 if         is not p.s.d 

6         ⁄  , where   {                  } 
7                  
8  ̃        
9    ̃ 
10 endif 

  

11       RFCM( ,  ,  ,     ,  ) 
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4.3. Experimental Results 

 Example 1. Mutation Data 4.3.1.

The Mutation dataset [64] contains 20 objects each representing a cytochrome 

(the names of the animal organisms are listed in Fig. 4.4). Fitch and Margoliash [65] 

recount the history of the work in [9] in a delightful one page essay that is historically 

charming. The distance between two cytochromes is defined as the minimum number of 

nucleotides that must be altered in order for the gene of one of the cytochromes to code 

for the other [64]. Squaring the distances in √     given in the lower half of Table 4.3 in 

[64] leads to the conclusion that      is not an EDM. However, when      is submitted 

to RFCM, we find experimentally that it does not fail, even though the theory predicts 

possible execution failure. So, this dataset is ideal for studying how much distortion each 

of the five transformations in Table 4.1 will introduce into the clusters detected by RFCM 

on     . Fitch et. al. [64] visualize the data using the phylogenetic tree shown in Fig. 

4.3. 
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 Fig. 4.3. Mutation phylogeny tree (Fig. 2 in [64]) 

We can also visualize the structure of the data using the Improved Visual Assessment of 

Tendency (iVAT) algorithm [66] as in Fig. 4.4. The four darkest diagonal sub-blocks in 

the image of Fig. 4.4 correspond to the three singletons Mold, Yeast and Fungus and a 

larger block containing the other 17 objects. Thus, the four clusters most strongly 

suggested by Fig. 4.4 are {    }, {  }, {  }, {  }. This agrees exactly with the 

clusters that would be obtained by cutting the tree in Fig. 4.3 at    . We will 

(arbitrarily) call this partition the ground truth     4-partition of     . 
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 Fig. 4.4. iVAT image of the squared Mutation data      

Since RFCM and iRFCM produce fuzzy partitions, we need a way to convert them to 

crisp partitions in order to compare them with our     partition at    . Here we use the 

standard hardening scheme, i.e., the maximum membership in each column of fuzzy 

partition   is replaced by 1, and the remaining     values become 0's. RFCM was 

applied to      for the fuzzifier values        and    . At       , we are 

(almost) seeing the results of running RHCM on this data.  

Table 4.2 lists the    , the ground truth partition of √    , and also the hardened 

4-partitions of      at these two values (       and    ). The five transformation 

methods are identified by the inducing matrix         , which is used in equation (4.10) 

to realize the EDM built with  . There are 3 mismatched labels between     and      
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at       , and 9 label differences at    . As expected, this confirms that at    , 

memberships of the 20 organisms are much more widely distributed across the 4 clusters 

than at       . 

Table 4.2. Hardened 4-partitions found by RFCM(    ) and iRFCM( ̃   ) 

 

 *Cluster 1  +Cluster 2  ●Cluster 3  ■Cluster 4  

         

              

   Organi

sm 
         

                              
                         

1 Man * * * * * * * * * * + + * 

2 Monke

y 
* * * * * * * * * * + + * 

3 Dog * * * * * * * * * * * * * 

4 Horse * * * * * * * * * * * * * 

5 Donke

y 
* * * * * * * * * * * * * 

6 Pig * * * * * * * * * * * * * 

7 Rabbit * * * * * * * * * * * * * 

8 Kangar

oo 
* * * * * * * * * * * * * 

9 Pigeon * * * * * * * ● * ● ● ● ● 

10 Duck * * * * * * * ● * ● ● ● ● 

11 Chicke

n 
* * * * * * * ● * ● ● ● ● 

12 Pengui

n 
* * * * * * * ● * ● ● ● ● 

13 Turtle * * * * * * * ● * ● ● ● ● 

14 Tuna * * * * * * * ● ● ● + + ● 

15 Snake * * * * * * * ● ● ● + + * 

16 Fly * ● * * ● ● ● * ● + + + + 

17 Moth * ● * * ● ● ● ● ● + + + + 

18 Mold + + + + + + + + + ■ ■ ■ ■ 

19 Yeast ● ■ ● ● ■ ■ ■ ■ ■ ■ ■ ■ ■ 

20 Fungus ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 

 

Both RFCM runs group {   } together, and a quick look at the tree in Fig. 4.3 confirms 

this as a primary structure in the data. Visual acuity makes it hard to see this in Fig. 4.4, 

but the pixels corresponding to these 8 organisms are identified and grouped together 

along the vertical axis in Fig. 4.4 too. So, this inference is consistent with both visual 

representations of     , and with our intuition about what clusters "should be" in the 

data, based on our everyday notions about classes of animals. 
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How much are RFCM partitions of      distorted when iRFCM is applied 

to ̃   ? We can get a somewhat surprising picture of what this type of feature extraction 

does by comparing the 5 Euclideanized data results to the results for     . For example, 

compare the columns for      and  ̃    using (4.13) with     and   . At       , 

there are 3 disagreements between the hardened labels of     
 and the 4-partitions      

and    -BUT-     and    both match    perfectly! So, this is an instance where 

feature extraction does its job for clustering, by improving the results obtained by the 

same algorithm on the transformed data. The other three partitions obtained at        

are identical to     
. An interesting conundrum: the transforms that preserve the cluster 

structure in      don't yield the best matches to the ground truth. 

At    , fuzziness increases, memberships are more distributed, and there are 

five different hardened partitions available. The best match partition to     is      (5 

disagreements), the minimum distortion of      
 by Euclideanization is realized by     

(3 disagreements). Another thing we can notice in Table 4.2 is that the PF and EF 

methods offer identical interpretations of this data for both values of  . 

Now that we have presented the various clustering results, let’s take a closer look 

at how every choice   affected the original dissimilarities. Fig. 4.5 shows the mean and 

standard deviation of the transformed dissimilarities  ̃    computed for every  . The  -

spread, PF, EF and LF all have mean   and standard deviation   that are very close to the 

original dissimilarities. The SU on the other hand, resulted in the highest mean        

and standard deviation       . This is expected from the SU as it amplifies the 

dissimilarities using the minimum spanning tree. However, despite the large spreading 

caused by the SU, it has shown to provide better results as we will see in later 
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experiments. Please be careful to distinguish the two effects of Euclideanizing      we 

have studied in this example: Fig. 4.5 is about the distortion of     , whereas Table 4.2 

is concerned with the distortion of RFCM partitions  

     
. Evidently the  -spread transform causes the least distortion from the input data 

(and this seems confirmed by the resultant partition information in Table 4.2). But the SU 

provides the best     matches. Later examples will corroborate our early belief that     

yields the most reliable Euclideanization of   from the clustering point of view. 

 

 Fig. 4.5. The max, mean and standard deviation of the elements in  ̃    for the 5 input matrices 

compared to     . 

 Example 2. GDP194 Data 4.3.2.

The GDP194 dataset contains 194 sequences of human gene products and was 

obtained from ENSEMBL 2009 [51]. The relational data of the gene products was 

computed using a fuzzy measure similarity, which is based on Sugeno’s   measure [52]. 

The GDP194 characteristics are shown in Table 4.3, where we see that the data contains 

three classes and hence we will use iRFCM with    . 
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Table 4.3. Characteristics of the GDP194 dataset 

ENSEMBL 

Family ID 

   = Protein 

Family 

Gene Symbols No. of 

Genes 

No. of 

Sequences 

339 Myotubularin MTMR1÷4, MTMR1÷4 7 21 

73 Receptor 

Precursor 

FGFR1÷4, RET, TEK, TIE1 7 87 

42 Collagen Alpha 

Chain 

COL1A2, COL21A2, COL24A2, 

COL27A2, COL2A1, COL3A1, 

COL4A1, COL4A2, COL4A3, 

COL4A6, COL5A3, COL9A1, 

COL9A2 

13 86 

 

GPD194 as used here is represented by a matrix √     of (unsquared) dissimilarity data, 

which was built from the similarity data such that √          , where     is the fuzzy 

similarity between gene products   and  . We then squared the values, obtaining     , and 

computed the eigenvalues of the matrix  (        ) defined by (4.8). This matrix is not 

p.s.d. (there are 12 negative eigenvalues), so it is possible that RFCM will fail to execute. 

But, unlike      in Example 1, which was also not p.s.d. but for which RFCM ran 

anyway, here RFCM experiences execution failure after encountering 27 negative 

relational distances appearing during the first iteration. At this point, we have the two 

options shown in Fig. 4.1: Euclideanize   using the 5 transformations in Table 4.1, or 

alteration of RFCM with self-healing. Since this chapter is about option 1, we clustered 

the data using iRFCM with    ,     and the five choices of   (Table 4.1). Let   

denote the fuzzy 3-partition produced by iRFCM on  ̃    made with the SU, Fig. 4.6b is 

a visual representation of   made with an induced dissimilarity image     .      is 

given by 

       
   

   
    

{   }
  (4.16) 
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where         ∑       
 
    is the coupling of objects   and   overall   clusters. The 

theory underlying (4.16) and several other examples of the use of this induced 

dissimilarity measure appear in [67]. The SU view in Fig. 4.6b is clearly superior to the 

partitions produced by the other four methods. Part of the SU performance is attributed to 

its attempt to maximize the distance between any two objects by taking the longest edge 

along the path connecting them, thus causing a larger separation among the objects. 

It was reported in [34], [52] that the third family, the collagen alpha chain, is 

divided into three subgroups: fibril forming collagens, type IV collagens, and fibril 

associated collagens with interrupted triple helices. Those groups are visible in Fig. 4.6b, 

in the lower right corner. 

The  -spread transformation result - the all black image in view 4.6c - is very 

interesting. The  -spread is widely cited approach in the literature for Euclideanizing  , 

but for clustering it is not clear that this is the best choice. The induced partition 

dissimilarity in Fig. 4.6c shows no clusters. The dissimilarities in the GDP194 are 

bounded such that        , so adding a large constant to all of the off-diagonal 

dissimilarities can distort the structure of the data. Subsequently, this causes a large 

difference between      and  ̃   . In this case adding the constant,        , to the 

dissimilarities makes it harder for iRFCM to distinguish the objects and hence iRFCM 

assigns a membership       ⁄ , where     to every object. This is one interpretation 

for the black image in Fig. 4.6c - the image we call the "black image of death." 

The PF image in Fig. 4.6d of the dissimilarity induced by the iRFCM partition of 

     using (4.16) suggests that the data contain two compact clusters. The first cluster 

which is the first block along the diagonal corresponds to the 87 sequences in the receptor 
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precursor family. The second cluster corresponds to the first sub-cluster identified in the 

SU case, which is the fibril forming collagens family. 

The EF in Fig. 4.6e suggests a different interpretation of this data. The most notable 

cluster is the black block in Fig. 4.6e corresponding to a subgroup of the receptor 

precursor family, which are the sequences having the gene FGFR2. The lighter color 

block contains the sequences in fibril forming collagens subgroup. The LF in Fig. 4.6f 

has some resemblance to Fig. 4.6d. 

RFCM failed on GDP194 

     such that         

  

(a)              (b)               
    (c)      (        

 ) 

   
(d)               

    (e)               
    (f)               

    
Fig. 4.6. The induced dissimilarity images      produced from clusterings of the GDP194 dataset using 

iRFCM with different choices of   and     

 

There are two take-away messages from this example: (i) the SU is clearly the best way 

to convert      to  ̃    using (4.13) to preclude execution failure of RFCM; and (ii) the 

 -spread is clearly the worst of the five methods considered here. 
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 Example 3. Iris Data 4.3.3.

Anderson's Iris data      , collected by Anderson in 1935 comprises       

feature vectors in     dimensions [68], [69]. Each vector in Iris has one of three (crisp) 

physical labels corresponding to the Iris subspecies it belongs to: Setosa, Versicolor, or 

Virginica. This famous data set has probably appeared in more clustering papers than any 

other dataset on the planet. Perhaps the most interesting property of       is that this data 

has 3 classes (physically labeled) representing the ground truth, but only 2 computer 

point of view clusters. Let's find out what iRFCM thinks. 

We begin with      , and construct from it the matrix      . The   -th entry of this 

matrix is the square of the sup norm between    and   , i.e.,     ‖     ‖   
 

. The 

matrix  (         ) is indefinite (it has 73 eigenvalues    and 77 eigenvalues   ), so 

      is not Euclidean. Similar to Example 2, we find that RFCM (   ,    ) fails to 

execute directly on      , so we compute  ̃     via (4.13) with the five transformations at 

(4.14) which make it Euclidean. The largest negative eigenvalue of  (         ) is 

16.977, so adding this value to all of the off-diagonal elements of      , as the  -spread 

does at (4.14a), makes it Euclidean. 

Fig. 4.7 displays visual representations of the five partitions obtained by iRFCM 

using the five Euclideanized versions of       and the induced dissimilarity matrix      

at (4.16). First, note that three of the five results (views b, d, and f) strongly support the 

conclusion that iRFCM thinks there are only     clusters in Iris, even though we ran 

the algorithm with    . If you look carefully at Fig. 4.7e, you will see that the EF also 

supports this, but with much less assurance. This is consistent with our view of Iris. The 

 -spread partition again produces the black image of death in Fig. 4.7c. Another 
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observation is that except for the  -spread, the first 50 objects received high membership 

values in the first cluster and low, but almost equal memberships in the second and third 

clusters, while the last 100 objects received high, but almost equal membership values in 

the second and third clusters. Overall, it certainly appears the SU again offers the best 

way to extend RFCM when an execution failure occurs due to a non-Euclidean input. 

RFCM failed on Iris 

     such that         

  
(a)               (b)                

    (c)      (         
 ) 

   
(d)                

    (e)                
    (f)                

    
Fig. 4.7. The induced dissimilarity images      produced from clusterings of the Iris dataset using iRFCM 

with different choices of   and     

 

4.4. Conclusion and Discussion 

RFCM is a popular algorithm for (fuzzily) clustering objects described by a 

dissimilarity data matrix  . But since RFCM is the relational dual of FCM, execution of 

the algorithm is guaranteed only when the dissimilarities in   have a Euclidean 

representation with an embedding dimension    . If   is not Euclidean then the 

duality relation will be violated and most importantly the distances       can become 

negative. There are two options to circumvent this problem. Option 2 in Fig. 4.1 

advocates the use of a self-healing RFCM such as NERFCM, which adjusts the 
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dissimilarities and the distances "on the fly," and only when needed, if a negative 

distance is encountered. The second choice (Option 1 in Fig. 4.1) is to Euclideanize   

prior to running RFCM. This second strategy is the one pursued here, leading to a new 

algorithm, iRFCM. 

Five different choices of   were used to Euclideanize   prior to clustering. 

Computationally, the easiest transformation to use is the  -spread. In the  -spread 

approach, the same constant is added to all off-diagonal dissimilarities. If the 

dissimilarities are small and the constant is large, as in the GDP194 data, the original 

structure of the data gets distorted, and with that one can lose the cluster information. Our 

examples suggest that the  -spread mapping delivers good news, and bad news. The 

good news: it minimizes the distortion between   and  ̃; the bad news is that it seems to 

maximize the distortion between the partitions    and   ̃. On the other hand, the SU 

transformation seems have the best performance when visualized using the induced 

partition dissimilarity. The three parametric based transformations, viz., the PF, EF and 

LF, have varying performance, but the main limitation of the parametric functions is 

finding an optimal    that can Euclideanize   and produce reasonable partitions of the 

data. In this chapter we took a simple approach and directly searched for   . Determining 

an optimal value of   for iRFCM clustering using these three transformations is a 

challenging and important problem that we defer to a future investigation. 

Every   produces a different dataset that somewhat resembles the original 

dissimilarities. We have witnessed in the results that different choices of   have resulted 

in different clusterings. The main difference that separates the five methods into three 

types is the effect that they have on the original object distances. The SU distance 
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between two objects is the maximum dissimilarity between those objects in  . This is the 

only transformation among the five that uses original data values (as opposed to 

transformed ones); thus, the positions of the objects are not changed to achieve 

Euclideanization. The PF, EF and LF mappings are all parametric, and all replace the 

original dissimilarities with new ones. In terms of object locations, this amounts to 

rearranging the underlying realization of the objects to make it Euclidean. Thus, these 

three transformations distribute the spread. Finally, the  -spread is the most disruptive of 

the five. Adding the largest negative eigenvalue of         to all of the off-diagonal 

entries of   amounts to spreading (literally) the objects by a fixed, maximal amount, so 

the original dissimilarities in this conversion are all gone.  

Some limitations emerge from Euclideanizing   prior to clustering. First, it is not 

very scalable. It definitely works for small datasets, but as   increases so does the time 

needed to Euclideanize  . It will require a large amount of time to compute the SU 

distance, which involves the construction of the minimum spanning tree. Second, as   

increases, the time to compute the smallest eigenvalue of         will also increase. 

Recall that         always has a zero eigenvalue, and many of the non-zero eigenvalues 

are close to zero. Actually getting the eigenvalues becomes a numerically intractable 

problem due to instability and scalability as   increases. Large-scale parallel eigensolvers 

based on Message Passing Interface (MPI) exist for large matrices, but they were tested 

on matrices with a maximum order of less than 1 million [70]. In the age of very large 

data we need tools that scale to matrices at the order of billions, such as the one based on 

MapReduce and Hadoop proposed in [70]. The situation becomes even more 

computationally expensive when we search for   that makes   Euclidean because for 



93 
 

every  , we have to evaluate whether   is Euclidean or not. Third, the original 

dissimilarities get distorted and can lose their original structure when a constant is added, 

which was made abundantly clear in the  -spread case. A possible and a more scalable 

solution to this is to use a different approach such as self-healing RFCM (NERFCM), 

where the dissimilarities are transformed “on the fly”, only if needed, and only a small 

constant is added to keep the discrepancy between   and  ̃ to the minimum, a topic that 

will be discussed further in future work.  

 In the next two chapters we will switch from clustering to classification, where we 

used random forest and ontologies to predict the risk of future diseases using a Medicare 

dataset.   
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  CHAPTER 5

PREDICTING DISEASE RISKS FROM HIGHLY IMBALANCED 

DATA USING RANDOM FOREST 

We present a method utilizing Healthcare Cost and Utilization Project (HCUP) 

dataset for predicting disease risk of individuals based on their medical diagnosis history. 

The presented methodology may be incorporated in a variety of applications such as risk 

management, tailored health communication and decision support systems in healthcare. 

We employed the National Inpatient Sample (NIS) data, which is publicly available 

through Healthcare Cost and Utilization Project (HCUP), to train random forest 

classifiers for disease prediction. Since the HCUP data is highly imbalanced, we 

employed an ensemble learning approach based on repeated random sub-sampling. This 

technique divides the training data into multiple sub-samples, while ensuring that each 

sub-sample is fully balanced. We compared the performance of support vector machine 

(SVM), bagging, boosting and RF to predict the risk of eight chronic diseases. We 

predicted eight disease categories. Overall, the RF ensemble learning method 

outperformed SVM, bagging and boosting in terms of the area under the receiver 

operating characteristic (ROC) curve (AUC). In addition, RF has the advantage of 

computing the importance of each variable in the classification process. In combining 

repeated random sub-sampling with RF, we were able to overcome the class imbalance 

problem and achieve promising results. Using the national HCUP data set, we predicted 

eight disease categories with an average AUC of 88.79%. 
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1.1. Background  

The reporting requirements of various US governmental agencies such as Center 

for Disease Control (CDC), Agency for Health Care Quality (AHRQ) and US 

Department of Health and Human Services Center for Medicare Services (CMS) have 

created huge public datasets that, we believe, are not utilized to their full potential. For 

example, CDC (www.cdc.gov) makes available National Health and Nutrition 

Examination Survey (NHANES) data. Using NHANES data, Yu et al. [71] predicts 

diabetes risk using an SVM classifier. CMS (www.cms.gov) uses the Medicare and 

Medicaid claims to create the minimum dataset (MDS). Herbert et al. [72] uses MDS data 

to identify people with diabetes. In this chapter we use the National Inpatient Sample 

(NIS) data created by AHRQ (www.ahrq.gov) Healthcare Utilization Project (HCUP), to 

predict the risk for eight chronic diseases. 

Disease prediction can be applied to different domains such as risk management, 

tailored health communication and decision support systems. Risk management plays an 

important role in health insurance companies, mainly in the underwriting process. Health 

insurers use a process called underwriting in order to classify the applicant as standard or 

substandard, based on which they compute the policy rate and the premiums individuals 

have to pay. Currently, in order to classify the applicants, insurers require every applicant 

to complete a questionnaire, report current medical status and sometimes medical 

records, or clinical laboratory results, such as blood test, etc. By incorporating machine 

learning techniques, insurers can make evidence based decisions and can optimize, 

validate and refine the rules that govern their business. For instance, Yi et al [71], applied 

http://www.cdc.gov/
http://www.cms.gov/
http://www.ahrq.gov/
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association rules and SVM on an insurance company database to classify the applicants 

as standard, substandard or declined.  

Another domain where disease prediction can be applied is tailored health 

communication. For example, one can target tailored educational materials and news to a 

subgroup, within the general population, that has specific disease risks. Cohen et al. [73], 

discussed how tailored health communication can motivate cancer prevention and early 

detection. Disease risk prediction along with tailored health communication can lead to 

an effective channel for delivering disease specific information for people who will be 

likely to need it. 

In addition to population level clinical knowledge, de-identified public datasets 

represent an important resource for the clinical data mining researchers. While full 

featured clinical records are hard to access due to privacy issues, de-identified large 

national public dataset are readily available [74]. Although these public datasets don’t 

have all the variables of the original medical records, they still maintain some of their 

main characteristics such as data imbalance and the use of controlled terminologies (ICD-

9 codes). 

Several machine learning techniques were applied to healthcare data sets for the 

prediction of future health care utilization such as predicting individual expenditures and 

disease risks for patients. Moturu et al. [75], predicted future high-cost patients based on 

data from Arizona Medicaid program. They created 20 non-random data samples, each 

sample with 1,000 data points to overcome the problem of imbalanced data. A 

combination of undersampling and oversampling was employed to a balanced sample. 

They used a variety of classification methods such as SVM, Logistic Regression, Logistic 
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Model Trees, AdaBoost and LogitBoost. Davis et al. [76], used clustering and 

collaborative filtering to predict individual disease risks based on medical history. The 

prediction was performed multiple times for each patient, each time employing different 

sets of variables. In the end, the clustering results were combined to form an ensemble. 

The final output was a ranked list of possible diseases for a given patient. Mantzaris et al. 

[77], predicted Osteoporosis using Artificial Neural Network (ANN). They used two 

different ANN techniques: Multi-Layer Perceptron (MLP) and Probabilistic Neural 

Network (PNN). Hebert et al. [72], identified persons with diabetes using Medicare 

claims data. They ran into a problem where the diabetes claims occur too infrequently to 

be sensitive indicators for persons with diabetes. In order to increase the sensitivity, 

physician claims where included. Yu et al. [71], illustrates a method using SVM for 

detecting persons with diabetes and pre-diabetes. 

Zhang et al. [78], conducted a comparative study of ensemble learning 

approaches. They compared AdaBoost, LogitBoost and RF to logistic regression and 

SVM in the classification of breast cancer metastasis. They concluded that ensemble 

learners have higher accuracy compared to the non-ensemble learners. 

Together with methods for predicting disease risks, in this chapter we discuss a 

method for dealing with highly imbalanced data. We mentioned two examples [72], [75] 

where the authors encountered class imbalanced problems. Class imbalance occurs if one 

class contains significantly more samples than the other class. Since the classification 

process assumes that the data is drawn from the same distribution as the training data, 

presenting imbalanced data to the classifier will produce undesirable results. The data set 

we use in this work is highly imbalanced. For example, only 3.59% of the patients have 
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heart disease, thus it is possible to train a classifier with this data and achieve an accuracy 

of 96.41% while having 0% sensitivity. 

5.2. Data 

The Nationwide Inpatient Sample (NIS) is a database of hospital inpatient 

admissions that dates back to 1988 and is used to identify, track, and analyze national 

trends in health care utilization, access, charges, quality, and outcomes. The NIS database 

is developed by the Healthcare Cost and Utilization Project (HCUP) and sponsored by 

the Agency for Healthcare Research and Quality (AHRQ) [10]. This database is publicly 

available and does not contain any patient identifiers. The NIS data contains discharge 

level information on all inpatients from a 20% stratified sample of hospitals across the 

United States, representing approximately 90% of all hospitals in the country [74]. The 

five strata for hospitals are based on the American Hospital Association classification. 

HCUP data from the year 2005 will be used for the experiments. 

The data set contains about 8 million records of hospital stays, with 126 clinical 

and nonclinical data elements for each visit (Appendix II). Nonclinical elements include 

patient demographics, hospital identification, admission date, zip code, calendar year, 

total charges and length of stay. Clinical elements include procedures, procedure 

categories, diagnosis codes and diagnosis categories. Every record contains a vector of 15 

diagnosis codes. The diagnosis codes are represented using the International 

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The 

International Statistical Classification of Disease is designed and published by the World 

Health Organization (WHO). The ICD-9 codes are alphanumeric codes, 3-5 characters 

long and used by hospitals, insurance companies and other facilities to describe health 
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conditions of the patient. Every code represents a disease, condition, symptom, or cause 

of death. There are numerous codes, over 14,000 ICD-9 codes and 3,900 procedures 

codes. 

In addition, every record contains a vector of 15 diagnosis category codes. The 

diagnosis categories are computed using the Clinical Classification Software (CCS) 

developed by HCUP in order to categorize the ICD-9 diagnosis and procedure codes. 

CCS collapsed these codes into a smaller number of clinically meaningful categories, 

called diagnosis categories. Every ICD-9 code has a corresponding diagnosis category 

and every category contains a set of ICD-9 codes. We denote each of the 259 disease 

categories by a value in the range [1, 259]. In Fig. 5.1 we show an example of disease 

category (“Breast cancer”) and some of the ICD-9 codes included in it (174.0 –

“Malignant neoplasm of female breast”, 174.1– “Malignant neoplasm of central portion 

of female breast”, 174.2– “Malignant neoplasm of upper-inner quadrant of female 

breast”, 233.0-“Carcinoma in situ of breast and genitourinary system”).  

 

 

 Fig. 5.1. Disease codes and categories hierarchical relationship 

Demographics such as age, race and sex are also included in the data set. Fig. 5.2 shows 

the distribution of patients across age, race and sex. 
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 Fig. 5.2. Distribution of patient across age, race and sex 

The 2005 HCUP data set is highly imbalanced. The imbalance rate ranges across 

diseases from 0.01-29.1%. 222 diagnosis categories occurs in less than 5% of the patients 

and only 13 categories occur in more than 10% of the patients. In Table 5.2 we show the 

top 10 most prevalent disease categories and in Table 5.3 we show some of the rarest 

diseases present in the 2005 HCUP data set.  

Table 5.1. The 10 most prevalent diseases categories 

Disease Category Prevalence 

Hypertension 29.1% 

Coronary Atherosclerosis 27.65% 

Hyperlipidemia 14.46% 

Dysrhythmia 14.35% 

Other Circulatory Diseases 12.02% 

Diabetes mellitus no complication 12% 

Anemia 11.93% 

 

 Table 5.2. Some of the most imbalanced diseases categories 

Disease Category Percent of Active class 

Male Genital Disease 0.01% 

Testis Cancer 0.046% 

Encephalitis 0.059% 

Aneurysm 0.74% 

Breast Cancer 1.66% 

Peripheral Atherosclerosis 3.16% 

Diabetes Mellitus w/complication 4.7% 
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One limitation of the 2005 HCUP data set is the arbitrary order in which the ICD-

9 codes and disease categories were listed. The codes were not listed in the chronological 

order according to the date they were diagnosed. Also, the data set does not provide 

anonymous patient identifier, which could be used to check if multiple records belong to 

the same patient or to determine the elapsed time between diagnoses.  

5.3. Methods 

 Data Pre-processing 5.3.1.

The data set was provided in a large ASCII file containing the 7,995,048 records. 

The first step was to parse the data set, randomly select N records and extract a set of 

relevant features. Every record is a sequence of characters that are not delimited. 

However, the data set instructions specifies the starting column and the ending column in 

the ASCII file for each data element (length of data element). HCUP provides a SAS 

program to parse the data set, but we chose to develop our own program to perform the 

parsing. 

Feature Selection 

For every record, we extracted the age, race, sex and 15 diagnosis categories. 

Every record is represented as a       dimensional feature vector. Features 1-259 are 

binary, one for each disease category. The remaining three features are age, race and sex. 

We denote the samples that contain a given disease category as “active” and the 

remaining ones as “inactive”. The active and inactive data samples are defined only from 

the point of view of the disease being classified. A snippet of the data set is presented in 

Table 5.4. For example, in Table 5.4, sample 1 is active for disease category 50, while 

sample N is inactive.  
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Table 5.3. Sample Dataset, the shaded column represents the category to predict 

 Cat. 

1 

Cat. 

2 

Cat. 

3 

…. Cat. 

50 

…. Cat. 

257 

Cat. 

258 

Cat. 

259 

Age Race Sex 

Patient 

1 

0 0 0 …. 1 …. 0 1 1 69 3 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Patient 

N 

1 0 0 …. 0 …. 1 0 0 55 1 1 

 

While, in general, using only disease categories may not lead to a valid disease 

prediction, the approach presented in this chapter needs to be seen in the larger context of 

our TigerPlace eldercare research [3]. By integrating large public data sets (such as the 

one used in this chapter) with monitoring sensors and electronic health records (EHR) 

data, we can achieve the required prediction precision for an efficient delivery of tailored 

medical information.  

 Learning from Imbalanced Data 5.3.2.

A data set is class-imbalanced if one class contains significantly more samples 

than the other. For many disease categories, the unbalance rate ranges between 0.01-

29.1% (that is, the percent of the data samples that belong to the active class). For 

example, (see Table 5.3) only 3.16% of the patients have Peripheral Atherosclerosis. In 

such cases, it is challenging to create an appropriate testing and training data sets, given 

that most classifiers are built with the assumption that the test data is drawn from the 

same distribution as the training data [79].  

Presenting imbalanced data to a classifier will produce undesirable results such as 

a much lower performance on the testing that on the training data. Among the classifier 
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learning techniques that deal with imbalanced data we mention oversampling, 

undersampling, boosting, bagging and repeated random sub-sampling [80], [81]. In the 

next section we describe the repeated random sub-sampling method that we employ in 

this work.  

 Repeated Random Sub-Sampling 5.3.3.

Repeated random sub-sampling was found to be very effective in dealing with 

data sets that are highly imbalanced. Because most classification algorithms make the 

assumption that the class distribution in the data set is uniform, it is essential to pay 

attention to the class distribution when addressing medical data. This method divides the 

data set into active and inactive instances, from which the training and testing data sets 

are generated. The training data is partitioned into sub-samples with each sub-sample 

containing an equal number of instances from each class, except for last sub-sample (in 

some cases). The classification model is fitted repeatedly on every sub-sample and the 

final result is a majority voting over all the sub-samples. 

In this chapter we used the following repeated random sub-sampling approach. 

For every target disease we randomly choose N samples from the original HCUP data set. 

The N samples are divided into two separate data sets, N1 active data samples and N0 

inactive data samples, where N1+ N0= N. The testing data will contain 30% active samples 

N1 (TsN1) while the remaining 70% will be sampled from the N0 (TsN0) inactive samples. 

The 30/70 ratio was chosen by trial-and-error. The training data set will contain the 

remaining active samples (TrN1) and inactive samples (TrN0). 

Since the training data is highly imbalanced (TrN1 << TrN0), the TrN0 samples are 

partitioned into NoS training sub-samples, where NoS is the ratio between TrN0 and TrN1. 
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Every training sub-sample has equal number of instances of each class. The training 

active samples (TrN1) are fixed among all the training data sub-samples, while the 

inactive samples will be sampled without replacement from TrN0. There will be NoS sub-

samples to train the model on. Eventually, every inactive sample in the training data is 

selected once, while every active sample is selected NoS times. After training the model 

on all the sub-samples, we employ a “majority voting” approach to determine the final 

class memberships (see Algorithm 5.1). A diagram describing the process of RF and the 

sub-sampling procedure is presented in Fig. 5.3. 

Algorithm 5.1. Repeated Random Sub-Sampling 

1 TsN = total number of samples in the testing data 

2 N0 = number of inactive samples 
 

3 N1 = number of active samples 

4 N = total number of samples in the data set, where N=N0+N1 

  

5 Generate testing data 

6 Randomly select TsN1 samples from N1 , where TsN1=0.3*N1 
7 Randomly select TsN0 samples from N0, where TsN0=TsN - TsN1 

  

9 Ts = TsN0 samples + TsN1 samples (Ts = testing data) 

10  

11 Generate training data 

12 Contains TrN1 samples, TrN1 = remaining N1 samples after generating testing data 

13 Contains TrN0 samples, TrN0 = remaining N0 samples after generating testing data 

  

14 NoS = TrN0/TrN1 

  

15 for s = 1 to NoS do 

16 Generate the s training data sub-sample 

17 TrSS0 = Randomly select TrN1 (number of training active samples) samples from TrN0 

inactive samples without replacement (Guarantees full balance of the training data sub-

samples, except for the last sub-samples, in some cases) 

18 TrSS = TrSS0 + TrN1 

19 ys(x) = classifer(TrSS, Ts) (Predicted class labels for Ts using sub-sample TrSS) 

20 endfor 

  

21 y(x) = majority voting {ys(x)}
NoS

1   (Final predicted class is majority voting over all sub-

samples) 

 

 



105 
 

 

 

 Fig. 5.3. Flow diagram of random forest and sub-sampling approach 

 Random Forest 5.3.4.

RF is an ensemble learner, a method that generates many classifiers and aggregates 

their results. RF will create multiple classification and regression (CART) trees, each 

trained on a bootstrap sample of the original training data and searches across a randomly 

selected subset of input variables to determine the split. CARTs are binary decision trees 

that are constructed by splitting the data in a node into child nodes repeatedly, starting 

with the root node that contains the whole learning sample [82]. Each tree in RF will cast 

a vote for some input x, then the output of the classifier is determined by majority voting 
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of the trees (algorithm 5.2). RF can handle high dimensional data and use a large number 

of trees in the ensemble. Some important features of RF are [83]: 

 It has an effective method for estimating missing data. 

 It has a method, weighted random forest (WRF), for balancing error in 

imbalanced data. 

 It estimates the importance of variables used in the classification. 

Algorithm 5.2. Random Forest for Classification 

1 ntree = number of trees to be generated 

2 N = number of samples in the data set 
 

3 for t = 1 to ntree do 

4 Generate bootstrap sample Z of size N from the original data - with replacement 

5 for each bootstrap Z grow a classification tree 
 

6 for i = 1 to NumberOfNodes do 
7 randomly sample mtry variables from M variables 

8 choose best split among the sampled variables (bagging is special case of RF and 

obtained whenmtry = M) 

9 endfor 

10  

11 yt(x) = class prediction of the tth tree 

12 endfor 

  

13 Yrf (x) = majority voting {yt(x)}
ntree

1   (Final predicted class is majority voting over all trees 

in RF) 

 

Chen et al. [84], compared WRF and balanced random forest (BRF) on six 

different and highly imbalanced data sets. In WRF, they tuned the weights for every data 

set, while in BRF, they changed the votes cutoff for the final prediction. They concluded 

that BRF is computationally more efficient than WRF for imbalanced data. They also 

found that WRF is more vulnerable to noise compared to BRF. In this chapter, we used 

RF without tuning the class weights or the cutoff parameter.  
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 Splitting Criterion  5.3.5.

Like CART, RF uses the Gini measure of impurity to select the split with the 

lowest impurity at every node [85]. Gini impurity is a measure of the class label 

distribution in the node.  The Gini impurity takes values in [0, 1], where 0 is obtained 

when all elements in a node are of the same class. Formally, the Gini impurity measure 

for the variable X={x1, x2, …, xj} at node t, where j is the number of children at node t, N 

is the number of samples, nci is the number of samples with value xi belonging to class c, 

ai is the number of samples with value xi at node t, then the Gini impurity is given by [82] 

 (   )    ∑(
   
  
)
 

 

   

 (5.1) 

The Gini index of a split is the weighted average of the Gini measure over the different 

values of variable X, which is given by 

          ∑
  
 

 

   

 (   ) (5.2) 

The decision of the splitting criterion will be based on the lowest Gini impurity value 

computed among the   variables. In RF, each tree employs a different set of   variables 

to construct the splitting rules.  

 Variable Importance 5.3.6.

One of the most important features of RF is the output of the variable importance. 

Variable importance measures the degree of association between a given variable and the 

classification result. RF has four measures for the variable importance: raw importance 

score for class 0, raw importance score for class 1, decrease in accuracy and the Gini 

index. To estimate variable importance for some variable  , the out-of-bag (OOB) 
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samples are passed down the tree and the prediction accuracy is recorded. Then the 

values for variable   are permuted in the OOB samples and the accuracy is measured 

again. These calculations are carried out tree by tree as the RF is constructed. The 

average decrease in accuracy of these permutations is then averaged over all the trees and 

is used to measure the importance of the variable  . If the prediction accuracy decreases 

substantially, then that suggests that the variable   has strong association with the 

response [86]. After measuring the importance of all the variables, RF will return a 

ranked list of the variable importance. 

Formally, let βt be the OOB samples for tree t, t  {1,..., ntree}, y'
t
i is the 

predicted class for instance i before the permutation in tree t and y'
t
i,α is the predicted 

class for instance i after the permutation. The variable importance VI for variable j in tree 

t is given by 

   
  

∑          
   

 

   

|  |
 
∑            

   
 

   

|  |
 (5.3) 

The raw importance value for variable j is then averaged over all trees in the RF. 

    
∑    

      

   

     
 (5.4) 

The variable importance used in this chapter is the Mean Decrease Gini (MDG), which is 

based on the Gini splitting criterion discussed earlier. The MDG measure the decrease ΔI 

(5.1) that results from the splitting. For two class problem, the change in I (5.6) at node t 

is defined as the class impurity (5.5) minus the weight average of  Gini measure (5.2) [19, 

20]. 



109 
 

       ∑(
  
 
)
 

 

   

 (5.5) 

The decrease in Gini impurity is recorded for all the nodes t in all the trees (ntree) in RF 

for all the variables and Gini Importance (GI) is then computed as [87] 

    ∑ ∑     

      

 (5.6) 

 Classification with Repeated Random Sub-Sampling 5.3.7.

Training the classifier on a data set that is small and highly imbalanced will result 

in unpredictable results as discussed in earlier sections. To overcome this issue, we used 

repeated random sub-sampling. Initially, we construct the testing data and the NoS 

training data sub-samples. For each disease, we train NoS classifiers and test all of them 

on the same data set. The final labels of the testing data are computed using a majority 

voting scheme.  

 Model Evaluation 5.3.8.

To evaluate the performance of the RF we compared it to SVM on imbalanced 

data sets for eight different chronic diseases categories. Two sets of experiments were 

carried out: 

Set I: We compared RF, boosting, bagging and SVM performance with repeated random 

sub-sampling. Both classifiers were fitted to the same training and testing data and the 

process was repeated 100 times. The ROC curve and the average AUC for each classifier 

were calculated and compared. To statistically compare the two ROC curves we 

employed an Analysis of Variance (ANOVA) approach [88] where the standard deviation 

of each AUC was computed as: 
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    √
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  (5.7) 

where Cp, Cn,    are the number positive instances, negative instances and the AUC, 

respectively and 

   
 

     
    

     

     
  (5.8) 

 

Set II: In this experiment we compare RF, bagging, boosting and SVM performance 

without the sampling approach. Without sampling the data set is highly imbalanced, 

while sampling should improve the accuracy since the training data sub-samples fitted to 

the model are balanced. The process was again repeated 100 times and the ROC curve 

and the average AUC were calculated and compared. 

5.4. Results  

We performed the classification using R, which is open source statistical 

software. We used R Random Forest (randomForest), bagging (ipred), boosting (caTools) 

and SVM (e1071) packages. There are two parameters to choose when running a RF 

algorithm: the number of trees (ntree) and the number of randomly selected variables 

(mtry). The number of trees did not significantly influence the classification results. This 

can be seen in Fig. 5.4, where we ran RF for different ntree values to predict breast 

cancer. As we see from Fig. 5.4, the sensitivity of the classification did not significantly 

change once ntree>20. The number of variables randomly sampled as candidates at each 

split (mtry) was chosen as the square root of the number of features (262 in our case), 
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hence mtry was set to 16. Palmer et al. [89] and Liaw et al. [90] also reported that RF is 

usually insensitive to the training parameters. 

 

 Fig. 5.4. RF behaviour when the number of trees (ntree) varies 

For SVM we used a linear kernel, termination criterion (tolerance) was set to 

0.001, epsilon for the insensitive-loss function was 0.1 and the regularization term (cost) 

was set to 1. Also, we left bagging and boosting with the default parameters. 

We randomly selected N=10,000 data points from the original HCUP data set. We 

predicted the disease risks on 8 out of the 259 disease categories. Those categories are: 

breast cancer, type 1 diabetes, type 2 diabetes, hypertension, coronary atherosclerosis, 

peripheral atherosclerosis, other circulatory diseases and osteoporosis. 

 Result set I: Comparison of RF, bagging, boosting and SVM 5.4.1.

RF, SVM, bagging and boosting classification were performed 100 times and the 

average area under the curve (AUC) was measured. The repeated random sub-sampling 

approach has improved the detection rate considerably. On seven out of eight disease 
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categories RF outperformed the other classifiers in terms of AUC (Table 5.5). In addition 

to ROC comparison, we used ANOVA [88] as mentioned earlier to statistically compare 

the ROC of boosting and RF, since both of these classifiers scored the highest in terms of 

AUC. ANOVA results comparing RF ROC and boosting ROC are summarized in Table 

5.6. The lower the p value is the more significant the difference between the ROCs is. 

The results of ANOVA test tells us that although RF outperformed boosting in terms of 

AUC, that performance was only significant in three diseases only (high prevalence 

diseases). The possible reason for performance difference insignificance for the other 5 

diseases (mostly low prevalence diseases) might be the low number of active samples 

available in our sampled dataset. For example, for breast cancer we would have about 

166 cases available. 

Table 5.4. RF,SVM, bagging and boosting performance in terms of AUC on eight disease categories 

Disease RF SVM Bagging Boosting 

Breast cancer 0.9123 0.9063 0.905 0.8886 

Diabetes no complication 0.8791 0.8417 0.8568 0.8607 

Diabetes 

with/complication 

0.94317 0.9239 0.9294 0.9327 

Hypertension 0.9003 0.8592 0.8719 0.8842 

Coronary Atherosclerosis 0.9199 0.8973 0.887 0.9026 

Peripheral 

Atherosclerosis 

0.9095 0.8972 0.8967 0.9003 

Other Circulatory 

Diseases 

0.7899 0.7591 0.7669 0.7683 

Osteoporosis 0.87 0.867 0.8659 0.8635 
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Fig. 5.5. ROC curve for diabetes mellitus 

 

Fig. 5.6. ROC curve for hypertension 
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Fig. 5.7. ROC curve for breast cancer 

 

Table 5.5. Statistical comparison of RF and boosting ROC curves, the lower the value the more significant 

the difference is 

 

We compared our disease prediction results to the ones reported by other authors. 

For instance, Yu et al. [71], describes a method using SVM for detecting persons with 

diabetes and pre-diabetes. They used data set from the National Health and Nutrition 

Examination Survey (NHANES). NHANES collects demographic, health history, 

behavioural information and it may also include detailed physical, physiological, and 

laboratory examinations for each patient. The AUC for their classification scheme I and 

Disease   value 

Breast cancer 0.8057 

Diabetes no complication 0.3293 

Diabetes with/complication 0.6266 

Hypertension 0.2 

Coronary Atherosclerosis 0.2764 

Peripheral Atherosclerosis 0.8203 

Other Circulatory Diseases 0.566 

Osteoporosis 0.908 
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II was 83.47% and 73.81% respectively. We also predicted diabetes with complications 

and without complications and the AUC values were 94.31% and 87.91% respectively 

(Diabetes without complication ROC curve in Fig. 5.5). 

Davis et al. [76] used clustering and collaborative filtering to predict disease risks 

of patients based on their medical history. Their algorithm generates a ranked list of 

diseases in the subsequent visits of that patient. They used an HCUP data set, similar to 

the data set we used. Their system predicts more than 41% of all the future diseases in the 

top 20 ranks. One reason for their low system performance might be that they tried to 

predict the exact ICD-9 code for each patient, while we predict the disease category. 

Zhang et al. [78] performed classification on breast cancer metastasis. In their 

study, they used two published gene expression profiles. They compared multiple 

methods (logistic regression, SVM, AdaBoost, LogitBoost and RF). In the first data set, 

the AUC for SVM and RF was 88.6% and 89.9% respectively and for the second data set 

87.4% and 93.2%. The results we obtained for breast cancer prediction for RF were 

91.23% (ROC curve in Fig. 5.7).  

Mantzaris et al [77] predicted osteoporosis using multi-layer perceptron (MLP) 

and probabilistic neural network (PNN). Age, sex, height and weight were the input 

variables to the classifier. They reported a prognosis rate on the testing data of 84.9%. 

One the same disease, we reported an AUC for RF of 87%. 

One of the important features of the RF approach is the computation of the 

importance of each variable (feature). We used Mean Decrease Gini (Eq. 5.5, 5.6, 5.7) 

measure to achieve the variable importance (Table 5.7). Variables with high importance 

have strong association with the prediction results. For example, Mantzaris et al. [77] 
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mentioned that osteoporosis (row 8) is more prevalent in people older than 50 and occurs 

in women more than men and that agrees with the first and forth important variables (age 

and sex) reported by RF (Table 5.7). Another example is diabetes with complication (row 

3) that often presents with fluid-electrolyte imbalance and it’s incidence is inversely 

correlated with a normal pregnancy. 

Table 5.6. Top four most importance variable for the eight disease categories 

 Result set II: Sampling vs. non-sampling 5.4.2.

In this section we show that classification with sampling outperforms standalone 

classifiers on the HCUP data set (Table 5.8). RF, bagging, boosting and SVM with 

sampling have higher ROC curves and reaches a detection rate of 100% faster than the 

standalone classifiers. For demonstration purposes, we included the comparisons for RF 

with and without sampling for three disease categories, breast cancer, other circulatory 

diseases and peripheral atherosclerosis (ROC curve in Fig. 5.8-5.10). Table 5.8 describes 

the results for the non-sampling classification for the four mentioned classifiers. 

 

Disease Variable 

1 

Variable 2 Variable 3 

1.Breast cancer Age Sex Secondary malignant Secondary 

malignant sddsmalignant malignant 
2. Diabetes no 

complication 

Age Hypertension Hyperlipidemia 

3. Diabetes 

with/complication 

Age Normal  

pregnancy  

Fluid-electrolyte  

Imbalance 

4. Hypertension Age Hyperlipidemia  Diabetes without compl. 

5. Coronary  

atherosclerosis 

Age Hypertension Hyperlipidemia 

6. Peripheral 

atherosclerosis 

Age Coronary  

Atherosclerosis 

Hypertension 

7. Other circulatory 

diseases 

Age Dysthymia Anemia 

8. Osteoporosis Age Race Hypertension 
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Table 5.7. RF, SVM, bagging and boosting performance without sub-sampling in terms of AUC on eight 

disease categories 

Disease RF SVMSVM Bagging Boosting 

Breast cancer 0.8793 0.5 0.5085 0.836 

Diabetes no 

complication 

0.8567 0.5 0.4749 0.8175 

Diabetes 

with/complication 

0.9084 0.648 0.4985 0.8278 

Hypertension 0.8893 0.6908 0.4886 0.8515 

Coronary 

Atherosclerosis 

0.9193 0.6601 0.4945 0.8608 

Peripheral 

Atherosclerosis 

0.8872 0.5 0.4925 0.8279 

Other Circulatory 

Diseases 

0.7389 0.5 0.4829 0.6851 

Osteoporosis 0.7968 0.5 0.4931 0.8561 

  

 

Fig. 5.8. ROC curve for breast cancer (sampling vs. non-sampling) 
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Fig. 5.9. ROC curve for other circulatory diseases (sampling vs. non-sampling) 

 

Fig. 5.10. ROC curve for peripheral atherosclerosis (sampling vs. non-sampling) 
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5.5. Conclusions and Future Work 

Disease prediction is becoming an increasingly important research area due to the 

large medical datasets that are slowly becoming available. While full featured clinical 

records are hard to access due to privacy issues, de-identified large public dataset are still 

a valuable resource for at least two reasons. First, they may provide population level 

clinical knowledge. Second, they allow the data mining researcher to develop 

methodologies for clinical decision support systems that can then be employed for 

electronic medical records. In this study, we presented a disease prediction methodology 

that employs random forests (RF) and a nation-wide de-identified public dataset (HCUP). 

We show that, since no national medical warehouse is available to date, using nation-

wide datasets provide a powerful prediction tool. In addition, we believe that the 

presented methodology can be employed with electronic medical records, if available.  

To test our approach we selected eight chronic diseases with high prevalence in elderly. 

We performed two sets of experiments (set I and set II). In set I, we compared RF to 

other classifiers with sampling, while in set II we compared RF to other classifiers 

without sub-sampling. Our results show that we can predict diseases with an acceptable 

accuracy using the HCUP data. In addition, the use of repeated random sub-sampling is 

useful when dealing with highly imbalanced data. We also found that incorporating 

demographic information increased the area under the curve by 0.33-10.1%. .  

In this chapter we used the NIS dataset (HCUP) created by AHRQ. Few 

researchers have utilized the NIS dataset for disease predictions. The only work we found 

on disease prediction using NIS data was presented by Davis et al. [76], in which 

clustering and collaborative filtering was used to predict individual disease risks based on 
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medical history. In this work we provided extensive proof that RF can be successfully 

used for disease prediction in conjunction with the HCUP dataset.   

Some of the limitations of our approach come from limitations of the HCUP data 

set such as the arbitrary order of the ICD-9 codes and lack of patient identification. For 

example, since the ICD-9 codes are not listed in chronological order according to the date 

they were diagnosed, we inherently use future diseases in our prediction. This explains, in 

part, the high accuracy of our prediction. In addition, the HCUP data set does not provide 

anonymous patient identifier, which can be used to check if multiple records belong to 

the same patient and to estimate the time interval between two diagnoses. Hence we 

might use the data for the same patient multiple times. Additionally, the data set does not 

include the family history; rather it includes the individual diagnosis history which is 

represented by the diseases categories. 

The accuracy achieved in disease prediction is comparable or better than the 

previously published results. The average RF AUC obtained across all disease was about 

89.05% which may be acceptable in many applications. Additionally, unlike many other 

published results were they focus on predicting one specific disease, our method can be 

used to predict the risk for any disease. Finally, we consider the results obtained with the 

proposed method adequate for our intended use, which is tailored health communication.  

The classification discussed in the section relies on representing each patient by a 

crisp feature vector. A patient either has a disease or not. We can change this by 

exploiting the hierarchical relationship among ICD-9 codes and instead represent each 

patient with a fuzzy feature vector, which is the discussion of the next chapter. 

  



121 
 

  CHAPTER 6

IMPROVING DISEASE PREDICTION USING ICD-9 

ONTOLOGICAL FEATURES 

Disease prediction has become important in a variety of applications such as 

health insurance, tailored health communication and public health. Disease prediction is 

usually performed using publically available datasets such as HCUP, NHANES or MDS 

that were initially designed for reporting or cost evaluation but not for prediction. In these 

datasets, medical diagnoses are traditionally arranged in “diagnose-related groups” 

(DRGs).  In this chapter we compare the disease prediction based on crisp DRG features 

with the results obtained employing a new set of features that consist of the fuzzy 

membership of patient diagnoses in the DRG groups. The fuzzy membership features 

were computed using an ICD-9 ontological similarity approach. The prediction results 

obtained on a subset of 30,000 patients from the 2005 HCUP data representing three 

diseases (diabetes, atherosclerosis and hypertension) using two classifiers (random forest 

and SVM) show a significant (about 10%) improvement in the area under the ROC curve 

(AROC). 

6.1. Introduction 

Disease prediction is employed in different domains such as risk management, 

tailored health communication and public health. Risk management plays an important 

role in health insurance industry, mainly in the underwriting process. Health insurers use 

a process called underwriting in order to classify the applicant as standard or substandard, 

based on which they compute the policy rate and the premiums individuals have to pay 

[71].  
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Another domain where disease prediction may be applied is tailored health 

communication. For example, we can target specific medical educational materials and 

news to a subgroup within the general population that has a high predicted risk for a 

given disease. Cohen et al [73] discussed how tailored health communication for cancer 

patients can motivate cancer prevention and early detection. Disease risk prediction along 

with tailored health communication represents an effective preventive medicine method 

that may lead in the long-run to a reduction in the cost of medical care. 

The reporting requirements of various US governmental agencies such as Center 

for Disease Control (CDC), Agency for Health Care Quality (AHRQ) and US 

Department of Health and Human Services Center for Medicare Services (CMS) have 

created huge public datasets that, we believe, are not utilized to their full potential. For 

example, CDC (www.cdc.gov) makes available National Health and Nutrition 

Examination Survey (NHANES) data. Using NHANES data, Yu et al. [91] predicts 

diabetes risk using an SVM classifier. CMS (www.cms.gov) uses the Medicare and 

Medicaid claims to create the minimum dataset (MDS). Herbert et al. [72] uses MDS data 

to identify people with diabetes. In this chapter we use the National Inpatient Sample 

(NIS) data created by AHRQ (www.ahrq.gov) Healthcare Utilization Project (HCUP), to 

predict the risk for three diseases: diabetes, atherosclerosis and hypertension. To compute 

the disease risk we use a new set of ICD-9 features based on ontological similarity 

between the ICD-9 diagnoses contained in a DRG and the ICD-9 diagnoses of the patient. 

We compare this approach with the prediction of the same diseases described in [92]. 

The remainder of this chapter is structured thusly: in Section 6.2 we describe the 

ICD-9 medical taxonomy together with the similarity measure used in the feature 

http://www.cdc.gov/
http://www.cms.gov/
http://www.ahrq.gov/
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extraction process. In Section 6.3 we describe the proposed ontological feature extraction 

algorithm together with a brief description of the classifiers employed, in Section 6.4 we 

show some results obtained on a subset of 2005 HCUP patient dataset and in Section 6.5 

we provide some conclusions and ideas for future research. 

6.2. ICD-9 Medical Taxonomy and Similarity Measure 

International classification of diseases-version 9 (ICD-9) is a diagnose coding 

system used in hospitals for data retrieval and billing purposes. Every code represents a 

disease, condition, symptom, or cause of death. However, from our point of view ICD-9 

represents an ontology, i.e. a controlled vocabulary overlaid with a "is-a" term hierarchy. 

The controlled vocabulary allows for detection of synonymy when two diagnoses are 

compared. The hierarchy (tree) structure allows for assessing the semantic similarity 

between diagnoses. A part of the ICD-9 tree is shown in Fig. 6.1.  

ICD-9 Level 1

Endocrine & Methabolic Diseases Level 2

Disorders of Thyroid Level 3

240 (Nodular Goiter)

241.0 (Difuse goiter)
241.9 

(Unspecified 

goiter)

Level 4

Level 5

 

Fig. 6.1. Partial view of the ICD-9 hierarchy 

From Fig. 6.1 we see that diagnoses 241.0 and 241.9 are semantically related 

although they are syntactically (string-wise) different. Unfortunately, the ICD-9 hierarchy 
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has only 5 levels. This will have an impact on the granularity of the term similarity as 

many pairs of terms will have the same similarity coefficient. However, even with this 

low granularity the impact on prediction performance is significant. 

In our view, the hierarchical structure of the ICD-9 ontology represents the 

knowledge of the medical field as viewed by the domain experts (physicians). The key of 

our approach is to use the domain knowledge (hierarchy) in computing patient 

similarities. Given two patients described by a sequence of ICD-9 diagnoses,    , we first 

consider the problem of computing the association (seen as fuzzy membership),         , 

between two terms (diagnoses)    and   .  

There are many algorithms for defining term similarity in a taxonomy (see 

Chapter 2 in [93]). One way of computing term similarity is to assign each term    

weights based on its importance,    , within the ontology. As a consequence, two 

patients are more similar if they both have the same rare (in the database) disease (say 

cystic fibrosis) than if they both have flu. The term importance can be computed (see 

Chapter 2 in [93]) using path-based, depth-based, density-based, information content-

based approaches. In this work we use a depth-based approach. The importance    , of 

a term in the ICD-9 taxonomy is computed as        ⁄  where   {         } is the 

level of the term within the hierarchy. For example, the     of diagnosis code 241 

(Goiter, level 4) is              ⁄      ⁄      . For consistency, we 

consider               . Now, returning to the problem from the beginning of this 

paragraph, the similarity of two diagnosis terms,         , is defined as: 

                         (6.1) 

where NCA=”nearest common ancestor” of the two terms in the ontology. 
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In Fig. 6.1, the nearest common ancestor (NCA) of 241.0 and 241.9 is 241, and 

so, the similarity between the two diagnoses is                             . 

This is clearly the simplest approach and it is only used here for illustrative purposes. 

For two sets of ICD-9 terms,    {         }and    {         } we can define a 

variety of similarities (see Chapter 2 in [93] for details). In this chapter we consider the 

following simple formula: 

            
   

{       } (6.2) 

6.3. Study Methodology 

To better understand the feature extraction process we first describe the 2005 

HCUP dataset used in this chapter (denoted henceforth HCUP2005). 

 The HCUP2005 dataset 6.3.1.

The Nationwide Inpatient Sample (NIS) is a database of hospital inpatient 

admissions that dates back to 1988 and it is used to identify, track, and analyze national 

trends in health care utilization, access, charges, quality, and outcomes. The NIS database 

is developed by the Healthcare Utilization Project (HCUP) and sponsored by the AHRQ. 

This database is publicly available and does not contain any patient identifiers. The 

database contains discharge level information on all inpatients from a 20% stratified 

sample of hospitals across the United States, representing approximately 90% of all US 

hospitals [74]. HCUP data from the year 2005, denoted as HCUP2005, will be used in 

this chapter.  

The data set contains 7,995,048 hospital stays and 126 clinical and nonclinical 

data elements for each hospital stay. Nonclinical elements include patient demographics, 
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hospital identification, admission date, zip code, calendar year, total charges and length 

of stay. Clinical elements include procedures, procedure categories, diagnosis codes and 

diagnosis categories. Every record contains a vector of 15 ICD-9 diagnosis codes. In 

addition, every record contains a vector of 15 diagnosis category codes (DRGs). The 

diagnosis categorization is performed using the Clinical Classification Software (CCS) 

developed by HCUP. There are numerous ICD-9 codes, over 14,000 codes; CCS 

collapsed these codes into a smaller number of clinically meaningful DRGs. There are 

259 diagnosis categories in the HCUP2005 dataset, every category is denoted by a value 

in the range 1-259. Demographics such as age, race and sex are also included in our data 

set and used predicting the three medical conditions. 

The prevalence in the HCUP2005 dataset of three diseases used in this chapter 

(hypertension, diabetes mellitus and breast cancer) is given in Table 6.1 below. As we see 

from Table 6.1, some diseases like testis cancer might not have a sufficient number of 

samples for training a classifier even on such a large dataset.  

Table 6.1. The prevalence of three diseases in the HCUP2005 dataset 

Disease Prevalence 

Hypertension 29.1% 

Diabetes mellitus, no 

compl. ncomplication 

12% 

Coronary Atherosclerosis 27.65% 

 Testis Cancer 0.046% 

6.4. ICD-9 based Ontological Features 

To predict a disease, we extract from HCUP2005 a random set of   patients,   ⁄  

with the disease and   ⁄  without it. For each patient,    with   {     }, we used 

from HCUP2005 the following variables: age, race, sex, 15 ICD-9 codes (       ) and 15 

diagnosis categories (      ). As mentioned before, there are 259 DRGs,      with 

  {       }, and every group contains a set of ICD-9 codes, 
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     {               }. In [5] we represented each patient Pi using a feature vector
 

  
        , with       dimensions. Features 1-259 (DRG related) were computed as: 

   
      {

               

               
  (6.3) 

Essentially, since the DRGs were computed for us, the feature vector had an 1 in position 

  if      was contained in the diagnoses set of patient  ,      . As a result, each feature 

vector contained at most 15 ones (the number of DRGs stored per patient) which was a 

rather sparse representation. The last 3 features (260, 261, 262) were sex, age and race, 

respectively.  

In this chapter we propose to compute the 259 diagnose related features using a 

fuzzy membership in each     , i.e. a value between 0 and 1 that represents the 

similarity between a diagnose and     . The proposed features will be calculated as: 

     (            )   {       }  (6.4) 

where the above similarity,  , is computed using formula (6.2). Features with index 260, 

261 and 262 are similar to the ones we used in [92], i.e. age, race and sex.  

 Example 1 6.4.1.

Consider a patient with the following set of diagnoses 

  {                                                 }. The crisp [92] and the 

fuzzy (ontological) features (index 1-259) related to this patient are shown in Fig. 6.2. 
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Fig. 6.2. The crisp (red) and fuzzy ontological (blue) features for patient P from example 1 

 

We note that the ontological features coincide with the crisp ones for DRGs that 

contain one of the ICD-9 codes from the diagnoses set (in number of 8). An example is 

      (“diabetes mellitus without complications”) that contains the ICD-9 code 250.00 

(“Diabetes mellitus without complication type II or unspecified type not stated as 

uncontrolled”). However, there are other indices where the ontological features have a 

high value. Take for example       (“diabetes mellitus with complications”) that 

contains among others the ICD-9 code 250.03 (“Diabetes mellitus without complication 

type I uncontrolled”). Since P does not contain this code,    
       . However, since 

                    ,        , the related ontological feature is greater than zero. 

Aside from the fact that by using the relations from the ICD-9 taxonomy we provide a 

better representation of the diagnoses set, we also account for the uncertainty of the 

coding process itself (known to be somewhat unreliable). 

6.5. Classifiers used 

In this chpater we present experiments performed with two classifiers, random 

forests (RF) [83] and support vector machines (SVM) [94].  
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RF is an ensemble learner, a method that generates many classifiers and aggregates their 

results. RF adds a layer of randomness to bagging by building large collection of de-

correlated trees. RF will create multiple CART-like trees, each trained on a bootstrap 

sample of the original training data and searches across a randomly selected subset of 

input variables to determine the split. Each tree in RF will cast a vote for some input x, 

then the output of the classifier is determined by majority voting of the trees. Since the 

focus of this chapter is on features rather than on classifiers themselves, we refer the 

reader to chapter 5 for more details on RF and SVM. 

We performed the classification using R, which is an open source statistical 

software. We used R randomForest and SVM (e1071) packages. The parameters to the 

RF were as follows: number of trees (ntree) was set to 500. Overall, the number of trees 

didn’t seem to influence the classification results. The number of variables randomly 

sampled as candidates at each split (mtry) is equal to the square root of the number of 

features. Since in our case we have 262 features, mtry was consequently set to 16.  

For SVM we used a linear kernel, termination criterion (tolerance) was set to 

0.001, epsilon for the insensitive-loss function was 0.1 and the regularization term (cost) 

was 1. 

6.6. Experiments 

We tested both classifiers, RF and SVM, with          patients extracted 

from HCUP2005,          that had the disease and          that didn’t. Out of 

the 10,000 samples, 7,000 were used for training and 3,000 for testing. Obviously, we 

excluded the target disease from the diagnosis set of the    patients that had it. We 

performed the same experiment for three diseases (first 3 lines in Table 6.1): 
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hypertension, diabetes mellitus and arteriosclerosis. The results obtained are showed in 

the next section. 

6.7. Results 

The classification results, area under the curve (AROC) and receiver operating 

characteristic (ROC) curve, for diabetes are shown in Table 6.2 and Fig. 6.3. 

Table 6.2. AROC results for diabetes prediction 

 Crisp Features Fuzzy Features 

RF 0.9524 0.9996 

SVM 0.8567 0.981 
 

From Table 6.2 we see that the use of fuzzy features lead to a important (4-13%) 

improvement in the ROC curves for both classifiers. This can be also observed in Fig. 

6.3, below. 

 

 

Fig. 6.3. ROC curves for diabetes prediction obtained with random forest (blue) and SVM (red). 

 

The AROC improvement was smaller for RF than for SVM, since RF had already a good 

prediction performance dues to its builtin feature selection property.  
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The results obtained for atheoriosclerosis prediction are shown in Table 6.3 and Fig. 6.4. 

 

Table 6.3. AROC results for artheriosclerosis prediction 

 Crisp Features Fuzzy Features 

RF 0.9647 0.9995 

SVM 0.8833 0.9737 
 

 

Fig. 6.4. ROC curves for ateriosclerosis prediction obtained using random forest (blue) and SVM (red) 

 

For the atherioscelrosis prediction, too, we obtained a significant performance 

improvement (3-9%) when fuzzy features are used. 

The results obtained for hypertension prediction are shown in Table 6.4 and Fig. 

6.5. Again, a notable AROC improvement (5-13%) is obtained by using the fuzzy 

features instead of the crisp ones. 

Table 6.4. AROC results for hypertension prediction 

 Crisp Features Fuzzy Features 

RF 0.9454 0.9991 

SVM 0.8537 0.989 
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Fig. 6.5. ROC curves for hypertension prediction obtained using random forest (blue) and SVM (red) 

6.8. Conclusion 

In this chpater we presented a method for disease predicting using large public 

medical datasets. Disease prediction is important in a variety of applications such as 

health insurance, tailored health communication and public health. The presented method 

is based on employing ICD-9 diagnostic groups (DRGs) and demographics variables in 

conjunction with classification algorithms, such as SVM and RF. As opposed to using a 

crisp DRG membership for the ICD-9 codes, we introduced a novel fuzzy membership 

computed based on ICD-9 ontological similarity. The results presented on three different 

diseases and two classifiers show that the fuzzy features lead to an important 

improvement (between 3 and 13%) in prediction performance. The improvement is due 

to the fact that the fuzzy features capture the relationships between the DRG groups in 

the process of feature extraction. 
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This chapter ends the discussion on the disease classification topic and in the next 

chapter we move to a new topic related to NLP and ontologies and its application the 

nursing informatics.  
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  CHAPTER 7

QUANTIFYING CARE COORDINATION DOSE USING NATURAL 

LANGUAGE PROCESSING AND DOMAIN SPECIFIC ONTOLOGY 

The focus of this chapter is to quantify care coordination. It describes a method 

that employs Natural Language Processing (NLP) aided with a domain specific ontology 

to guide the extraction of care coordination activities and the focus upon which the 

specific activity was performed. Using the extracted activities, we evaluated the amount 

of care coordination received by every patient. We compared two groups of patients: 

Aging in Place (AIP) who received enhanced care coordination and Home Healthcare 

(HHC) who received traditional care. A care coordination ontology was built from the 

Omaha Case Management category. From the parsed notes of every patient, we mapped 

the extracted activities to the ontology. Based on the extracted activities, profiles were 

computed for each Omaha problem and patient. Using these profiles, we computed the 

care coordination dose for all patients. Constructing and testing the profiles was 

performed using 139,173 notes. Patients were tracked from the time they were admitted 

to AIP or HHC until they were discharged. We found that patients in AIP received a 

higher dose than HHC in most problems, with larger doses being given in AIP than in 

HHC in all four Omaha categories. We found “Communicate” and “Manage” activities 

are widely used in care coordination. That confirmed the expert hypothesis that care 

coordinators spent most of their time communicating about their patients and managing 

problems. Overall, nurses performed care coordination in both AIP and HHC, but the 

aggregated dose across Omaha problems and categories is larger in AIP. 
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7.1. Background 

Coordination of healthcare services is vital for older adults who are 

extraordinarily vulnerable to the effects of illness, cognitive decline, disability, poverty, 

and limited social support [95]. Care coordination, which includes transitional care 

services, is seen as a way to improve healthcare, resulting in improved health, and 

reduced costs [96]. Over the last several decades,  a number of care coordination models 

have been proposed, including transitional care models and Aging in Place [97]–[99]. 

Benefits of nurse care coordination include reductions in emergency room visits, 

increased patient survival post-hospitalization, fewer readmissions, reduced costs, and 

increased transitional care safety [100], [101]. As care coordination becomes more 

widely accepted and reimbursed, it will become increasingly important to be able to 

measure activities used in nurse care coordination.  

Although the number of care coordination programs is growing and care 

coordination is generally viewed positively, there remain significant problems with care 

coordination measurement, including the identification of specific activities that 

constitute care coordination, and determining how much care coordination (dose) was 

delivered to each patient. A recent review of 96 measurement instruments reported that 

88% of the care coordination measures relied on survey methods, of which 93% 

measured the aspects of communication, and 81% focused on the transfer of information 

[102]. However, measures that depend on survey methods do not fully capture the 

detailed processes used in care coordination or the activities used to coordinate care. 

Even well-defined frameworks, such as the Agency for Healthcare Research and Quality 

(AHRQ) Care Coordination Measures Atlas [103], do not describe detailed activities, nor 
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suggest specific measures directly linked to activities documented  by practicing care 

coordinators. 

The current state of the art in care coordination measurement relies on structured 

data fields, and custom built tools and surveys to capture the work of care coordinators in 

an abstract way. However, nurses documentation in electronic medical records (EMR) 

includes structured data, and narrative notes (free text) that describe care coordination 

activities. These narrative notes describe the work of care coordinators from the care 

coordinator’s perspective.  

It is time consuming and labor intensive to analyze narrative notes using 

traditional qualitative methods, and the number of notes that can be analyzed using such 

methods are limited. The use of natural language processing (NLP) and domain 

ontologies, can overcome this limitation due to its ability to mine large amounts of 

unstructured narrative notes. Many medical domain specific ontologies can be used to 

mine data, such as the Unified Medical Language System (UMLS) [104], OpenGALEN 

[105], SNOMED [106], in addition to biomedical terminology in general ontologies, such 

as WordNet [107]. In some cases, general ontologies may not be the right choice, since 

they are broad and lack domain specific concepts. This known problem has led 

researchers to build domain-specific ontologies. A domain-specific ontology containing 

concepts within a certain a field, nursing care coordination in our case, is a way to store 

specialized knowledge of a certain domain. An example of such ontology is an 

antimicrobial prescribing that contains 199 classes. In [108] Personally Created Cognitive 

Artifact (PCCAT) studies were used to identify and codify the knowledge nurses use in 
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assessing, diagnosing, planning, implementing, and evaluating patient care needs. The 

study of the PCCAT ultimately resulted in the development of a taxonomy and ontology. 

The study and measurement of care coordination is relatively new, with the 

majority of research studies about care coordination  occurring in the last decade [96]. 

This chapter reports on the development and use of a domain-specific ontology, which 

was built expressly to measure care coordination. It presents an approach for extracting 

care coordination activities from narrative notes, building profiles that describe care 

coordination activities, and finally using the profiles to quantify the care coordination 

dose received by each patient. 

7.2. Methods 

 Setting and Sample 7.2.1.

This study employed an analysis of an EMR data from 217 patients who were 

admitted to a home healthcare agency for enhanced care coordination through AIP [99], 

[101] and 691 who received traditional HHC without enhanced care coordination. Nurses 

in both AIP and HHC documented patient interventions in an EMR that used the 

standardized Omaha System, a taxonomy of nursing care that includes problem 

classification and intervention schemes. Institutional Review Board approval was 

obtained prior to the start of the study. 

 Dataset Description 7.2.2.

In every patient visit, nurses identified, assessed, and documented patients’ 

healthcare problems. The EMR had structured inputs allowing nurses to select from 42 

Omaha problems,  four Omaha categories; 1) Health Teaching, Guidance and 
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Counseling, 2) Treatments and Procedures, 3) Case Management,  4) Surveillance, and 

75 Omaha interventions [109]. In addition to the predefined dropdown menus and 

checkboxes, nurses had the option of inputting free text narratives. Nurses used the 

comment box to document activities or findings that were not easily described in 

structured data.  

The data contain a total of 139,173 narrative notes for the two groups of patients 

divided into four Omaha categories as shown in Table 7.1. Although, the majority of 

narrative notes were written in the category of Surveillance, experts who are doctoral 

prepared nurses and a social worker believed the Omaha Case Management category 

contained activities specific to care coordination.  In order to obtain activities specific to 

care coordination, the Case Management category was used to extract care coordination 

activities, build the ontology, and construct the profiles. The number of interventions for 

each problem is similar in both groups, ranging between 3-5 interventions per problem 

(Table 7.1). Additionally, nurses in AIP documented more problems. In the case 

management category, the average AIP patient had about 40 narrative notes, compared to 

11 notes in HHC. 
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Table 7.1. Characteristics of the dataset by Omaha category and group (AIP,      ;  HHC,      ) 

Category Group No. 

of Notes 

Avg. No. 

Notes per 

Patient 

Avg. No. of 

Problems per 

Patient 

Avg. No. of 

Interventions 

per Problem 

Health teaching, 

guidance and 

counseling 

AIP 7,020 39 3.97 5.05 

HHC 21,047 33 3.35 5.22 

      

Treatments and 

procedures 

AIP 9,156 53 3.15 4.04 

HHC 17,593 29 2.47 4.04 

      

Case management AIP 6,311 40 3.17 3.83 

HHC 4,727 11 1.96 3.06 

      

Surveillance AIP 34,298 158 8.46 4.08 

HHC 39,021 58 5 3.95 

 

A sample of the dataset for one patient is shown in Table 7.2, which contains 

eight short notes documented under case management category for the health care 

supervision problem. 

Table 7.2. A sample patient dataset 

Note No. Intervention Narrative note 

1 Transportation Informed client transportation had been arranged for 09-

04-01 appoints… 

2 Medical dental case Client has a scheduled appointment with Doctor…  on 

07-19-01 at 2:15 PM.  Client was informed about 

appointment. 

3 Medical dental care Contacted Doctor… office to confirmed appoint. on 12-

22-00. 

4 Medical dental care Orders received for new wound care to the feet daily… 

5 Transportation Client was assisted down stairs per …  staff to meet  

Bus yesterday to be taken to Doctor's… appoint… 

6 Transportation Attempted to reach …to arrange transportation for 

Doctor's appoint. on 12-22-00.  No answer. 

7 Transportation …Arrangements for transportation had previously been 

made per…staff. 

8 Transportation Client was assisted down stairs per … staff to meet bus 

yesterday to be taken to Doctor's. appoint… 

 Care Coordination Ontology 7.2.3.

A major goal of this study was to extract from nursing notes concepts of 

importance to care coordination in order to quantify care coordination dose. A care 
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coordination ontology was built to guide the concepts extraction, and those concepts were 

then used to build care coordination patient activity profiles and determine care 

coordination dose. Building a domain-specific ontology is an iterative process that is 

started by identifying the corpus of text on which the ontology will be derived. Only the 

11,038 narratives under the Omaha category Case Management were used in the 

construction of the domain-specific ontology of care coordination. After dividing each 

narrative note into tokens or words using the NLTK tokenizer [110], we identified 16,000 

terms. In order to identify terms that were most important to care coordinators, a 

frequency distribution was computed. The terms with frequency greater than 100 were 

provided to experts, including care coordinators and social workers, to help in 

conceptualizing the ontology. 

A top-down approach to building the ontology was adopted. Five top level 

concepts were identified by the experts: 1) care coordination activities contained action 

verbs used by nurses when coordinating care, 2) care coordination foci represented the 

objects the activities acted upon, 3) actors contained people who interacted with care 

coordinators, 4) problems described specific patient problems identified by the care 

coordinator, and 5) places included locations where patients’ resided when they received 

care. Candidate terms identified from Case Management were added to the appropriate 

class in the ontology. This process resulted in about 900 ontology concepts. Protégé 

[111], an open source software, was used for editing and modeling the ontology. 

At this stage, the ontology had redundant, misplaced, misinterpreted concepts and 

missing synonyms; therefore, refinement and pruning was necessary. In order to address 

these issues, the context in which the terms were used in the narrative notes had to be 
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understood.  For this task, clinicians on the research team who had extension care 

coordination experience examined every concept individually. They analyzed each 

concept by reading the notes in which the concept was found to identify the context of 

use including (a) what the concept referenced, (b) who were the actors involved, and (c) 

why was it relevant to care coordination. This process was performed iteratively, and it 

reduced the size of the ontology to 394 concepts. Of these 394 concepts, 66 were 

classified as care coordination activities, 156 as coordination focus, and the remaining 

concepts were distributed across the other three classes (Table 7.3). The top level 

concepts of care coordination activities and focus are shown in Fig. 7.1. Interested 

readers are encouraged to download the full ontology hosted on BioPortal 

(http://bioportal.bioontology.org/ontologies/NCCO). 
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Table 7.3. Summary of the ontology 

Class Number of Child Nodes
a 

Maximum Depth 

Activities 66 3 

Administer 1  

Assess 4  

Assist 1  

Attempt 1  

Communicate 16  

Identify 1  

Instruct 1  

Manage 34  

Monitor 5  

Obtain 1  

Order 1  

Foci 164 6 

Ability 1  

Access 1  

Adherence 1  

Appointment 1  

Appropriateness 1  

Care 77  

Documentation 12  

Follow-up 1  

Information 3  

Resource 13  

Services 46  

Supervision 1  

Transportation 5  

Understanding 1  

Problems 91 6 

Actors 54 3 

Places 19 3 
a The count includes the parent node. 
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 Fig. 7.1. Top level concepts of care coordination activities and focus 

 Mining Nurses Narratives 7.2.4.

The ontology was then used to mine nurses notes and develop problem profiles 

describing care coordination activities. Each problem profile describes care coordination 

activities pertinent to a specific Omaha problem. There are    coordination activities as 

show in Fig. 7.1, where       and the activities are indexed from 1 to 11 as follows  

  {                                                      

                                     }. 

However, the activities alone are not informative because they were out of context. 

For example the activity adjustment does not mean much by itself, but when combined 

with the foci of medication it describes work done by care coordinators to adjust 

medications. Not every activity was of relevance to the target problem. For that reason, 

the profile contains only those activities that co-occur with at least one care coordination 
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focus from our ontology. Also, in order to simplify the process, we used the top level 

concepts from coordination activities and focus (Fig. 7.1, Table 7.3). Meaning that all 

child nodes were collapsed under one of the activities in  . For example, “Adjust” is a 

child node of “Manage” (which has 34 child nodes) and “Medication” is a child node of 

“Care” (which has 77 child nodes). 

We used a simple method for pairing care coordination activities and foci. That is, 

we paired every activity with all the child nodes of coordination focus. After performing 

sentence boundary disambiguation, tokenization, and stemming [110] on the narrative 

notes using NLTK, the text was searched using an activity recognizer based on regular 

expression. For instance, the following narrative contained one activity “continue 

medication”. The output of the activity recognizer is the tagged narrative as shown 

below. 

“Continues [ACTIVITY] to take her pain medication [FOCUS] prior to 

scheduled SNV's / dressing changes which are very painful for client. 

Continues to have leg spasms and tensed body with pain, and cries out with 

pain at times. Continues to report pain is like someone flaying her with a knife 

and # 10 pain rating on pain scale of 1-10.” 

Notice that the term “Continues” in the second sentence will not contribute any 

information to the profile for two reasons. First, it did not co-occur with a focus and 

second it had already been counted once in the previous sentence. It is also possible that 

in a given note an activity co-occurs with more than one focus. In such case, only the 

focus that is closest to the activity is used, while the others are discarded. For instance, 

the following narrative has the activity “Take” followed by two foci which are 
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“Medication” and “Therapy”. Hence, the focus “Therapy” will be ignored since 

“Medication” is closer to the activity “Take”. 

“Instructed not to allow pain to become severe and best to take [ACTIVITY] 

pain medication [FOCUS ] one hour prior to therapy.” 

Clearly, this approach is simple but the results were promising. Using the search 

technique described above and with the aid of the ontology, the patient and problem 

profiles were computed as described in the next section. 

 Problem Profiles 7.2.5.

In the Case Management category, nurse care coordinators used 32 (      ), 

out of 42 possible problems. Every Omaha problem, denoted as   where        ,  

under which some care coordination activities are documented consisted of a set of 

patients,    {  }, who are identified as having this particular problem. |  | is the 

number of patients having problem  . Sentence boundary disambiguation, tokenization, 

and stemming were performed on the notes associated with every intervention for patient 

     . Then with the aid of the care coordination ontology, the occurrences of the top 

level of coordination activities in the notes were extracted. If we assume that a nurse used 

  
  

 unique interventions to manage patient   who has problem  , then we can represent 

that patient problem in a matrix   
  

 which has   
  

 rows (one row for each intervention) 

and    columns (one column for every activity). 

  
  
 

[
 
 
 
     

      
      

  

    
      

      
  

     

 
    

  
   

    
  

   
    

  
  

]
 
 
 
 

 (7.1) 
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where the element at position       is     
  [    ]. If the care coordinator used the  th 

activity in the  th intervention then     
   , otherwise     

   . Formally, 

    
   {

                
                

 (7.2) 

Thusly, a patient-problem profile is constructed 

     [   
     

       
  ] (7.3) 

where    
  represents the unique number of interventions that contained at least one 

occurrence of the activity   . As the activity    occurs in more interventions, the more 

significance it has in Omaha problem   for patient  . In other words, the patient profile for 

this problem is the column sum of   
  

, where    
  is given by 

   
  ∑    

 

  
  

   

 (7.4) 

Using this process, profiles were constructed for all patients      , where every 

patient profile     is represented as a numerical feature vector of length   . Based on the 

individual patient profiles computed at (7.3) and (7.4), the general profile for problem 

  was computed. The general profile    is defined as the medoid profile among all 

patients      . The medoid profile represents the patient that is closest to all other 

profiles in problem  . Since every patient has a numerical profile as in (7.3), we compute 

the Euclidean distance among all patients in problem  . The patient that minimizes the 

distance to all other profiles is the medoid that is selected to represent problem profile   . 

Formally, the profile    is 
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    |  |

∑‖       ‖ 
 

|  |

   

 (7.5) 

where    is the index to the patient whose profile had the minimum distance to all other 

profiles. Then the profile    is presented as  

         [     
       

         

  ]  [  
    

      
  ] (7.6) 

which is again a numerical feature vector of length    that is the most representative of 

all patients in problem  . Fig. 7.2 summarizes the flow process which was used to extract 

the activity-focus pair from the narrative notes. 

Example 1: Patient profile 

Consider the sample patient data shown earlier in Table 7.2, a single patient with 

narrative notes associated with Omaha problem health care supervision in the case 

management category. The notes are also associated with two different interventions: 

transportation (T) and medical dental care (D). The resulting matrix   
  

 is  

  
  
 [

           
           

], 

where the first row corresponds to intervention T, which contains the activities       

{                                 } and the second row is D intervention 

profile,       {                        }. 

Using (7.3) and (7.4), the resulting patient profile for healthcare supervision problem is 

    [                     ] 

or  

    {                                            } 
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    shows that the activities “Assist”, “Attempt” and “Order” were used in one 

intervention, “Communicate” and “Manage” were used in two interventions. The above 

process was performed for every patient and problem to calculate the profiles, which 

were used in quantifying the coordination dose. 

 Care Coordination Dose 7.2.6.

Computing the care coordination dose is central to the goals of the study. To 

quantify the care coordination dose, patients were followed from their date of admission 

to AIP or HHC for 360 days, until their death, or until the end of the study (whichever 

condition occurred first). The narrative notes documented during that period for each 

patient was extracted and parsed, and finally used to compute a patient profile for every 

problem. Both the individual patient problem profiles and the general problem profiles 

represent the foundation for quantifying the dose. This section describes how to compute 

a numerical care coordination dose for every patient in every problem, and how to 

aggregate individual doses to compute a final care coordination dose.  

When computing the dose for problem  , only those activities where   
    will 

be used in the calculation (only the activities that appear in the problem profile). The 

coordination dose of patient   in problem   is computed as a function of the profiles     

(7.3) and    (7.6) as follows 

     
∑   

    
   

   

∑   
   

   

   (7.7) 

where 

  
  {

       
    

           
   (7.8) 
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      and   

    . If activity    occurs more frequently in the patient profile     

compared to the problem profile    (   
    

    then it is possible for      , which 

indicates that the patient received a high dose. 

The cumulative or aggregated dose overall Omaha problems within some Omaha 

category for patient   is simply the sum of all individual problem doses for that patient 

and is given by 

    ∑   

 

  (7.9) 

Example 2: Patient dose 

Given the profile for healthcare supervision    [                     ],   , where 

   [                     ] and the patient profile for health care supervision from 

example 1,      [                     ], the care coordination dose in healthcare 

supervision for that particular patient is computed using (7.7) as follows 

    
  
     

    
      

  

  
    

    
   

 
   

 

 



150 
 

 

 Fig. 7.2. A flow diagram of the activity-focus extraction process 

7.3. Results 

Based on patient problem profiles and general problem profiles, the care 

coordination dose for AIP and HHC patients were computed. From the problem profiles 

the activities “Communicate” and “Manage” were identified as the most widely used 

activities in care coordination, and appeared in 23 and 29 problem profiles, respectively, 

as shown in Fig. 7.3. This finding was not surprising to the clinical experts. In fact, it 

confirmed their hypothesis that nurse care coordinators spent most of their time 

communicating about their patients and managing their problems. On the other hand, 

“Assist” appeared in three profiles (role change, caretaking/parenting, and other 
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physiological), “Order” occurred in two profiles, “Assess”, “Instruct”, “Monitor” and 

“Obtain” appeared in one profile, while the activities “Administer”, “Attempt” and 

“Identify” are not represented in any of the 32 profiles. This finding is because those 

activities have very low prevalence among the patients, or they did not co-occur with 

coordination foci. Additionally, profiles are composed of the most commonly occurring 

activities, so not all activities in the ontology are represented in the profiles. 

 

 Fig. 7.3. Number of problem profiles representing each activity 

To understand if the activities accurately described care coordination, it was 

necessary to also extract the focus of the activity. Fig. 7.4 displays the top 20 most 

occurring activity-focus pairs in AIP and HHC. These activities are related to 

communication and management, both of which had a large number of child nodes, 16 

and 34, respectively. Overall, more care coordination activities were documented in AIP 

than HHC. Sixty-seven percent of activities that involve communication about durable 

medical equipment occurred in AIP and about 92% of medication management takes 
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place in AIP. Only two activities (“manage care” and “manage documentation”) among 

the 20 considered occurred more often in HHC than in AIP. 

 

 Fig. 7.4. Top 20 most frequent activity-focus pairs in Case Management and the percentage of occurrence 

in every group 

There are also a greater number of unique activities documented in AIP than in 

HHC, which shows that care coordinators in AIP use various techniques to manage 

patients’ care. Fig. 7.5 shows the number of unique activities documented in AIP and 

HHC for every Omaha problem in the Case Management category. We clearly see more 

diverse activities used in AIP. The Caretaking/parenting Omaha problem contains the 

most diverse activities, where 103 unique activities were used by care coordinators in 

AIP, while only 16 were used in HHC. Similarly, Circulation, Healthcare Supervision, 

Medication Regimen, Mental Health and Neuro-Muscular Skeletal show a large 

difference in the number of activities documented in both groups. There are also some 
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Omaha problems where HHC has no documented activities at all such as Cognition, 

Family Planning, and Pain. There is a handful of Omaha problems, where HHC patients 

have more activities, such as Communication with Community Resources, Digestion-

Hydration and Personal Care. 

 

 Fig. 7.5. Number of unique activity-focus pairs by Omaha problem in Case Management 

Table 7.4 reports the different doses of care coordination used for AIP and HHC 

patients as measured in the case management category. This method detected differences 

between the AIP and HHC care coordination doses, with AIP having higher average 

doses of care coordination in all but three problems (Communication with Community 
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Resources, Skin, and Healthcare Supervision). A higher average dose for HHC patients 

can be expected in Communication with Community Resources and Skin Omaha 

problems, since more activities occur in HHC as shown in Fig. 7.5. 

To further validate the problem profiles, we computed the dose for the patients 

using the same time period in the remaining three Omaha categories: Health Teaching, 

Guidance and Counseling, Treatments and Procedures, and Surveillance. Using the 

problem profiles that were initially developed in the case management category, we 

computed the aggregated dose for every patient within every category. The results are 

presented in the lower part of Table 7.4. We discovered that Care Coordination is not 

exclusive to the Case Management category; rather it exists in the other three categories. 

Also, the aggregated dose of care coordination in all categories is higher in AIP than 

HHC. 
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Table 7.4. Care coordination dose by problem and category in AIP and HHC groups 

 Omaha Problem Average Dose Median Dose Max. Dose 

  AIP HHC AIP HHC AIP HHC 

Dose by Omaha Problem in Case Management 

Environmental domain 

    Income 0.9 0.73 1 0.5 1 1 

Psychosocial domain 

    Communication with 

community resources 

0.64 0.67 1 0.5 1 1 

    Mental health 1 1 1 1 2 1 

    Caretaking/parenting 0.8 0.56 0.83 0.5 2 1 

Physiological domain 

     Skin 0.71 1.13 1 1 1 2 

     Neuro-muscular skeletal 0.81 0.54 1 0.5 1.5 1 

     Circulation 0.88 0.4 1 0.5 1 0.5 

     Urinary function 0.83 0.75 1 0.75 1.5 1 

Health-related behaviors domain 

     Nutrition 0.86 0.67 1 0.5 1 1 

     Personal care 0.95 0.91 1 1 2 2 

     Healthcare supervision 0.53 0.66 0.5 0.5 1 1.5 

     Medication regimen 0.86 0.71 1 0.5 1 1 

     

Aggregated Dose by Omaha Category 

Health teaching, guidance and 

counseling 

1.39 0.99 1 1 6 4 

Treatments and procedures 1.21 0.92 1 1 4 2 

Case management 2.2 1.15 1.5 1 11.53 3 

Surveillance 1.4 0.9 1 1 7 3 

7.4. Discussion and Conclusion 

This chapter presented a novel approach to the measurement of care coordination 

dose. Care coordination relies heavily on communication with patients, family members, 

and healthcare team members, all of which is usually detailed in narrative notes. Using 

139,173 narrative notes for building activity profiles, we measured the care coordination 

dose in both AIP and HHC for every Omaha problem. The dose is similar at the problem 

level, but the aggregated dose is higher in AIP. This finding is most likely because AIP 

used a greater number of problems, and nurse care coordinators in AIP documented more 

information in the narrative notes. 
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This is the first kind of work to describe the development of an ontology of care 

coordination that was subsequently coupled with NLP techniques to extract care 

coordination activities from free text. This work also describes a unique way to quantify 

(dose) how much care coordination patients received.  

There are limitations to our method of measuring care coordination. The first 

limitation comes from the simplistic pairing of activities and foci. Not all pairs of activity 

focus are acceptable, for example, instead of “Adjust Note” using “Document Note” 

seems more appropriate. Alternatively, one can set rules for pairing the activity and 

focus, but that is a tedious process and not scalable as more concepts are added to the 

ontology. A better solution could be to use more sophisticated NLP techniques, such as 

part-of-speech tagging and chunking, to identify the activity (verb) and it is focus (noun). 

Another possible solution is to build a context free grammar specifically tailored for 

nurses’ narratives. 

Another limitation of our approach is the use of regular expression to extract the 

activity and focus. One problem of this approach is that if two activities and one focus 

occur in the same sentence, then both activities will be extracted along with the same 

focus, while in fact one activity should be linked to the focus and second activity should 

simply be ignored. A possible solution is to use NLP techniques as discussed earlier. 

Also due to the large number of activities and foci in the ontology, we decided to 

represent the profiles using only the 11 main activities. The child nodes were collapsed 

under their corresponding parent activities. This technique allows the profiles to be more 

readable, compact, and easier to visualize. The drawback to this approach is that the 

profile is less granular and contextual. To demonstrate, suppose two profiles contain the 
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parent activity "communicate"; on the surface, these two profiles might look the same. 

But in reality, these two profiles are different because the first profile contains two of 

"communicate" child nodes, "report" and "call", while the other profile contains child 

nodes "discuss" and "ask”. 

That said, we believe that the method and the results presented will encourage the 

development of more specific and better approaches. For instance, the care coordination 

ontology, along with the extracted activity-focus pairs, can provide the foundation for 

building care coordination content free grammar that can describe the nursing language 

used in care coordination and  be used in parsing activities more accurately.  

This chapter presented the techniques used in parsing the narratives notes, 

building patient profiles, problem profiles, and deriving the dose of care coordination. 

We identified that “Communicate” and “Manage” activities are widely used in care 

coordination; confirming the expert hypothesis that nurse care coordinators spent most of 

their time communicating about their patients and managing problems. Overall, nurses in 

both AIP and HHC preformed care coordination, but the aggregated dose across Omaha 

problems and categories is larger in AIP. 
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  CHAPTER 8

PERSPECTIVES AND OPEN PROBLEMS 

With the advancement of technology, especially the widespread mobile devices 

and sensors that are available at low cost; we are collecting more data than ever. As 

products become more user centric, commercial companies have come to realize the 

value of data in the age of personalization and customization of products and services for 

their users and customers. Tailoring products became more widespread with the 

introduction of mobile devices. Also, the integration of products and services has worked 

greatly for the benefit of the users.  

Fig. 8.1 gives an idea of the amount of data we produce [112]. We send millions 

of emails/second, 20 hours of video upload/minute, 50 million tweets/day, etc. With this 

huge amount of data traditional tools for data analysis are no longer sustainable and new, 

scalable and reliable algorithms are needed to handle the massive amount of data. 
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 Fig. 8.1. The world of data [112] 

Many of the pattern recognition tasks require cluster analysis that work on large 

data. There are many proposed object-based clustering algorithm that are designed to 

scale for large datasets, viz. random sampling and extended FCM [113], single-pass FCM 

[114], online FCM [115], bit-reduced FCM [116] and kernel based FCM [113].  

Extending relational clustering algorithm for large datasets is by far much less 

popular than object-based clustering and that is probably because more object datasets 

exist than relational data. At the time of this writing we searched Google scholar for the 

terms (clustering “large data”), which returned about 124,000 results, while searching for 

(clustering “large relational data”) or (clustering “large dissimilarity data”) returned only 

about 200 results. Among those 200 results, we found few large relational data analysis 
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and clustering algorithms proposed such as eNERF [117], VAT for big data (bigVAT) 

[118] and topographic maps for large dissimilarity datasets [53]. 

8.1. Improved Non-Euclidean Relational Fuzzy  -Means (iNERF) 

The current formulation of the iRFCM proposed in chapter 4 makes it hard to 

cluster datasets beyond        for many reasons. The most obvious reason is the 

computational complexity of computing the eigenvalues of the dissimilarity matrix  . 

But it is even more computationally expensive if we choose a transformation such as the 

subdominant ultrametric, where we are required to compute the minimum spanning tree 

of   and the ultrametric distance. I performed a small experiment to show the running 

time for computing the minimum spanning tree, MST, and the subdominant ultrametric, 

SU, distance as   increases as shown in Fig. 8.2. Notice for SU we only show the running 

time for       . It was not feasible to show the running time for        simply 

because the algorithm took a very long time to run and it was forced to terminate. We ran 

the experiments on a Dual Four Core XEON E5-2609 (2.4GHz, 10M cache) with 64GB, 

DDR3 RDIMM Memory, 1600MHz. 
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 Fig. 8.2. Running time of the MST and SU as   increases 

If we choose other types of transformation, we will face a new problem, we have 

to search for the correct parameter   that makes   Euclidean. These are some of the 

challenges iRFCM faces when dealing with large dissimilarity matrices. Hence, a 

solution is needed to make iRFCM work for datasets containing more than a handful of 

objects. An algorithm to alleviate this problem is the iNERF. The iNERF would be an 

extension to the well-known NERFCM algorithm [12], which avoids computing the 

eigenvalues, instead it computes an underestimated smallest eigenvalue which is then 

added to the off-diagonal elements of  . In addition to the NERFCM approach, the 

iNERF will contain additional pseudo-transformations that are to approximate the actual 

transformations that are carried out in iRFCM: the subdominant ultrametric, power fit, 

log fit and the exponential fit.  
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We have also seen the “black image of death” in chapter 4. The cause of this 

image is probably the amount of spreading we exercise on the matrix. The larger the 

additive constant the more spread out the objects become to the extent that the original 

dissimilarity matrix   gets distorted and we lose the original structure of the data causing 

the clustering algorithm to have difficulty finding the clusters. The “black image of 

death” only occurred in the  -spread transformation. In fact,  -spread is the most 

vulnerable to this problem because in this transformation an additive constant is added to 

all of the off-diagonal elements of   unlike the other four transformations. 

We (James Bezdek, James Keller, Mihail Popescu and I) thought about this 

problem further and one possible solution is to avoid global spreading of the objects, like 

what we did with the five transformations. Instead, we should apply local transformation 

on only those objects that causes the algorithm to fail. This is our next mission, which 

will be followed by adapting NERFCM for big data. 

8.2. Cluster Analysis for Big Relational Data 

Datasets can be very large and they may exist in a high dimensional space. 

Through my collaboration with the School of Medicine and School of Nursing, it became 

more evident how unscalable the existing clustering algorithms are. How can one cluster 

97,000 patients, where every patient is represented by a set of Activity of Daily (ADL) 

scores? Once has to compute the pairwise distances among patients to perform clustering. 

This process will result in a                relational data matrix. Large relational 

data introduces some problems to the clustering algorithms: 

 Increases the computational complexity: as the number of objects and dimensions 

increase so does the computational complexity of the algorithm. In some cases, 
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one can use sampling or dimensionality reduction. However, the surge in the 

computational complexity is inevitable as we will produce and analyze more and 

more data. 

 Increases the memory usage: this is a very critical issue as long as the cost of 

manufacturing memory stays high. No matter how much memory we have the 

datasets are always increasing in size, which means we have to upgrade the 

memory constantly. Take for example the ADL dataset, to accommodate 

relational matrix in memory one need about 35GB of RAM. Increasing the 

memory and disk space is merely a solution, it is a way to avoid the solution and 

ignore the problem. Here we are assuming that the data is loadable (Fig. 8.3). 

Hence, it can fit in memory. But if the data is unloadable (Fig. 8.3) then other 

techniques has to be developed. 

 Increases the data sparsity: the sparsity of the data increases exponentially with 

the dimensionality of the input space. Meaning the data becomes less dense and 

objects become equidistant from one another [119], [120]. If there are no two 

objects that are close to each other then it is hard to find any clusters.  In such 

case it is likely that clustering algorithms will fail to find clusters. 
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 Fig. 8.3. Population   , and samples    ,   and     [113] 

 iNERFCM for Big Data 8.2.1.

That said, iNERF needs to scale for large and unloadable datasets. For unloadable 

relational data we can use random sampling and extension, or we can process the 

relational data in blocks separately and the last stage would be combining the results of 

all the blocks to come up with a final partition  . 

 RFSOM for Big Data 8.2.2.

For RFSOM to create an impact, be scalable and more usable, it needs to handle 

large dataset. Numerous methods are proposed to handle large relational datasets for 

topographic maps [53], [121]. The authors in [121] carried on an experiment to cluster 

77,977 protein sequences. The neurons were presented in vectorial form of 400 

dimensions since the protein sequences can be converted into 400 dimensional dipeptide 

histograms. Those histograms were used to train the SOM and once the neurons were 

labeled by the protein sequences, the vectorial representation is abandoned. By not going 
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further into the experiment, one can see how this technique is not purely relational and it 

relies on vector representation of the objects. In [53] the authors propose a  -

approximations algorithm to cluster large datasets. SOM is provided with a patch,    , 

which represents part of the relational matrix,  . The idea is to add the prototypes from 

processing the previous patch      to the current patch   .  Every prototype is presented 

with   closest objects; therefore for   neurons we have       approximations which 

play the role of a compressed representation of the already seen data points.      stores 

the indices of the  -approximations,         denotes the inter-distances of points from 

the  -approximations produced at time    ,            is the pairwise distances 

among the  -approximations resulted from the patch at     and current patch. Note that 

           is computed on demand using some similarity measure. At time   a new 

relational matrix is created. 

    [
                 

          
   

] (8.1) 

There are some potential drawbacks of this technique. The number of 

approximations depends on various things that must be kept in mind to provide a scalable 

SOM: it depends on the map size. SOM is not a clustering algorithm where one can 

provide   number of clusters (   ). In fact, for best results it is recommended to 

initialize SOM with a large number of neurons to better reflect the topology of the data. 

As   increases, the objects will be distributed on a larger lattice and it is likely that the 

number of objects listed under a winning neuron will decrease. And as   increases so 

does the number of approximations that is required to compress the current patch. In this 

scenario the  -approximation will fail, in other words as                    

 .  
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Example:  

Assume RSOM is initialized with   neurons, where      , and every neuron is 

approximated using   nearest objects and let    . This results in               

approximations. Also assume that the patch size is 1,000 objects. This means that at 

every iteration a new patch,   , of size              is created. Instead, if we use SOM 

with 4,000 neurons (       ), then the new patch size will be               . As 

we can see this is not really a scalable algorithm even if we set    . Consider 

WebSOM which is used to cluster 1,124,134 documents using 104,040 neurons [24].  -

approximations would certainly fail to cluster those documents. Note that the authors in 

[24] used a smaller map of size       to estimate a larger map of size        .  

Second, generating approximations for the empty or interpolating neurons only 

increases the size of the current patch. Interpolating neurons border the clusters and no 

objects are listed under those neurons. Thus, the interpolating neurons can be ignored 

which will decrease the patch size. Ignoring interpolating neurons might work for the 

RSOM since some neurons do not have receptive fields. However, this is not the case in 

RFSOM because none of the neurons are empty as discussed in chapter 4.  
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APPENDIXES 

Appendix I. Distance between relational prototypes in proof 

This proof is based on the weights computed in FSOM. Given the following weight 

update equation for FSOM, which we also presented in 2.13 
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And the RFSOM coefficients update equation 2.16 
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Appendix II. HCUP data variables 

Complete list of 126 HCUP data elements. The elements marked with “*” (rows 33-47) 

are the ones used in the classification as input variables. 

1 AGE Age in years at admission 

2 AGEDAY Age in days (when age < 1 year) 

3 AMONTH Admission month 

4 ASOURCE Admission source (uniform) 

5 ASOURCEUB92 Admission source (UB-92 standard coding) 

6 ASOURCE_X Admission source (as received from source) 

7 ATYPE Admission type 

8 AWEEKEND Admission day is a weekend 

9 DIED Died during hospitalization 

10 DISCWT Weight to discharges in AHA universe 

11 DISPUB92 Disposition of patient (UB-92 standard coding) 

12 DISPUNIFORM Disposition of patient (uniform) 

13 DQTR Discharge quarter 

14 DRG DRG in effect on discharge date 

15 DRG18 DRG, version 18 

16 DRGVER DRG grouper version used on discharge date 

17 DSHOSPID Data source hospital identifier 

18 DX1 Principal diagnosis 

19 DX2 Diagnosis 2 

20 DX3 Diagnosis 3 

21 DX4 Diagnosis 4 

22 DX5 Diagnosis 5 

23 DX6 Diagnosis 6 

24 DX7 Diagnosis 7 

25 DX8 Diagnosis 8 

26 DX9 Diagnosis 9 

27 DX10 Diagnosis 10 

28 DX11 Diagnosis 11 

29 DX12 Diagnosis 12 

30 DX13 Diagnosis 13 

31 DX14 Diagnosis 14 

32 DX15 Diagnosis 15 

*33 DXCCS1 CCS: principal diagnosis 

*34 DXCCS2 CCS: diagnosis 2 

*35 DXCCS3 CCS: diagnosis 3 

*36 DXCCS4 CCS: diagnosis 4 
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*37 DXCCS5 CCS: diagnosis 5 

*38 DXCCS6 CCS: diagnosis 6 

*39 DXCCS7 CCS: diagnosis 7 

*40 DXCCS8 CCS: diagnosis 8 

*41 DXCCS9 CCS: diagnosis 9 

*42 DXCCS10 CCS: diagnosis 10 

*43 DXCCS11 CCS: diagnosis 11 

*44 DXCCS12 CCS: diagnosis 12 

*45 DXCCS13 CCS: diagnosis 13 

*46 DXCCS14 CCS: diagnosis 14 

*47 DXCCS15 CCS: diagnosis 15 

48 ECODE1 E code 1 

49 ECODE2 E code 2 

50 ECODE3 E code 3 

51 ECODE4 E code 4 

52 ELECTIVE Elective versus non-elective admission 

53 E_CCS1 CCS: E Code 1 

54 E_CCS2 CCS: E Code 2 

55 E_CCS3 CCS: E Code 3 

56 E_CCS4 CCS: E Code 4 

57 FEMALE Indicator of sex 

58 HOSPID HCUP hospital identification number 

59 HOSPST Hospital state postal code 

60 KEY HCUP record identifier 

61 LOS Length of stay (cleaned) 

62 LOS_X Length of stay (as received from source) 

63 MDC MDC in effect on discharge date 

64 MDC18 MDC, version 18 

65 MDNUM1_R Physician 1 number (re-identified) 

66 MDNUM2_R Physician 2 number (re-identified) 

67 NDX Number of diagnoses on this record 

68 NECODE Number of E codes on this record 

69 NEOMAT Neonatal and/or maternal DX and/or PR 

70 NIS_STRATUM Stratum used to sample hospital 

71 NPR Number of procedures on this record 

72 PAY1 Primary expected payer (uniform) 

73 PAY1_X Primary expected payer (as received from source) 

74 PAY2 Secondary expected payer (uniform) 

75 PAY2_X Secondary expected payer (as received from source) 

76 PL_UR_CAT4 Patient Location: Urban-Rural 4 Categories 

77 PR1 Principal procedure 
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78 PR2 Procedure 2 

79 PR3 Procedure 3 

80 PR4 Procedure 4 

81 PR5 Procedure 5 

82 PR6 Procedure 6 

83 PR7 Procedure 7 

84 PR8 Procedure 8 

85 PR9 Procedure 9 

86 PR10 Procedure 10 

87 PR11 Procedure 11 

88 PR12 Procedure 12 

89 PR13 Procedure 13 

90 PR14 Procedure 14 

91 PR15 Procedure 15 

92 PRCCS1 CCS: principal procedure 

93 PRCCS2 CCS: procedure 2 

94 PRCCS3 CCS: procedure 3 

95 PRCCS4 CCS: procedure 4 

96 PRCCS5 CCS: procedure 5 

97 PRCCS6 CCS: procedure 6 

98 PRCCS7 CCS: procedure 7 

99 PRCCS8 CCS: procedure 8 

100 PRCCS9 CCS: procedure 9 

101 PRCCS10 CCS: procedure 10 

102 PRCCS11 CCS: procedure 11 

103 PRCCS12 CCS: procedure 12 

104 PRCCS13 CCS: procedure 13 

105 PRCCS14 CCS: procedure 14 

106 PRCCS15 CCS: procedure 15 

107 PRDAY1 Number of days from admission to PR1 

108 PRDAY2 Number of days from admission to PR2 

109 PRDAY3 Number of days from admission to PR3 

110 PRDAY4 Number of days from admission to PR4 

111 PRDAY5 Number of days from admission to PR5 

112 PRDAY6 Number of days from admission to PR6 

113 PRDAY7 Number of days from admission to PR7 

114 PRDAY8 Number of days from admission to PR8 

115 PRDAY9 Number of days from admission to PR9 

116 PRDAY10 Number of days from admission to PR10 

117 PRDAY11 Number of days from admission to PR11 

118 PRDAY12 Number of days from admission to PR12 
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119 PRDAY13 Number of days from admission to PR13 

120 PRDAY14 Number of days from admission to PR14 

121 PRDAY15 Number of days from admission to PR15 

122 RACE Race (uniform) 

123 TOTCHG Total charges (cleaned) 

124 TOTCHG_X Total charges (as received from source) 

125 YEAR Calendar year 

126 ZIPInc_Qrtl Median household income quartile for patient's ZIP Code 
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CODE LISTING 

RFSOM 

RFSOM MATLAB toolbox is available on github repository. 

URL: https://github.com/mohammedkhalilia/SOM 

The online repository includes the source code, documentation and datasets. Furthermore, 

it does not only implement RFSOM, but also includes the following algorithms: 

1. Online SOM 

2. Batch SOM 

3. Fuzzy Batch SOM 

4. Relational SOM 

5. Relational Fuzzy SOM 

 
iRFCM 

iRFCM MATLAB toolbox is available on github repository. 

URL: https://github.com/mohammedkhalilia/iRFCM 

Also, iRFCM repository includes source code, documentation and datasets. The 

repository implements both RFCM and iRFCM. 

  

https://github.com/mohammedkhalilia/SOM
https://github.com/mohammedkhalilia/iRFCM
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