1,370 research outputs found

    A Computational Study of Genetic Crossover Operators for Multi-Objective Vehicle Routing Problem with Soft Time Windows

    Full text link
    The article describes an investigation of the effectiveness of genetic algorithms for multi-objective combinatorial optimization (MOCO) by presenting an application for the vehicle routing problem with soft time windows. The work is motivated by the question, if and how the problem structure influences the effectiveness of different configurations of the genetic algorithm. Computational results are presented for different classes of vehicle routing problems, varying in their coverage with time windows, time window size, distribution and number of customers. The results are compared with a simple, but effective local search approach for multi-objective combinatorial optimization problems

    Deep Semantic Learning Machine Initial design and experiments

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsComputer vision is an interdisciplinary scientific field that allows the digital world to interact with the real world. It is one of the fastest-growing and most important areas of data science. Applications are endless, given various tasks that can be solved thanks to the advances in the computer vision field. Examples of types of tasks that can be solved thanks to computer vision models are: image analysis, object detection, image transformation, and image generation. Having that many applications is vital for providing models with the best possible performance. Although many years have passed since backpropagation was invented, it is still the most commonly used approach of training neural networks. A satisfactory performance can be achieved with this approach, but is it the best it can get? A fixed topology of a neural network that needs to be defined before any training begins seems to be a significant limitation as the performance of a network is highly dependent on the topology. Since there are no studies that would precisely guide scientists on selecting a proper network structure, the ability to adjust a topology to a problem seems highly promising. Initial ideas of the evolution of neural networks that involve heuristic search methods have provided encouragingly good results for the various reinforcement learning task. This thesis presents the initial experiments on the usage of a similar approach to solve image classification tasks. The new model called Deep Semantic Learning Machine is introduced with a new mutation method specially designed to solve computer vision problems. Deep Semantic Learning Machine allows a topology to evolve from a small network and adjust to a given problem. The initial results are pretty promising, especially in a training dataset. However, in this thesis Deep Semantic Learning Machine was developed only as proof of a concept and further improvements to the approach can be made

    Automated Feature Engineering for Deep Neural Networks with Genetic Programming

    Get PDF
    Feature engineering is a process that augments the feature vector of a machine learning model with calculated values that are designed to enhance the accuracy of a model’s predictions. Research has shown that the accuracy of models such as deep neural networks, support vector machines, and tree/forest-based algorithms sometimes benefit from feature engineering. Expressions that combine one or more of the original features usually create these engineered features. The choice of the exact structure of an engineered feature is dependent on the type of machine learning model in use. Previous research demonstrated that various model families benefit from different types of engineered feature. Random forests, gradient-boosting machines, or other tree-based models might not see the same accuracy gain that an engineered feature allowed neural networks, generalized linear models, or other dot-product based models to achieve on the same data set. This dissertation presents a genetic programming-based algorithm that automatically engineers features that increase the accuracy of deep neural networks for some data sets. For a genetic programming algorithm to be effective, it must prioritize the search space and efficiently evaluate what it finds. This dissertation algorithm faced a potential search space composed of all possible mathematical combinations of the original feature vector. Five experiments were designed to guide the search process to efficiently evolve good engineered features. The result of this dissertation is an automated feature engineering (AFE) algorithm that is computationally efficient, even though a neural network is used to evaluate each candidate feature. This approach gave the algorithm a greater opportunity to specifically target deep neural networks in its search for engineered features that improve accuracy. Finally, a sixth experiment empirically demonstrated the degree to which this algorithm improved the accuracy of neural networks on data sets augmented by the algorithm’s engineered features

    The development and application of metaheuristics for problems in graph theory: A computational study

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.It is known that graph theoretic models have extensive application to real-life discrete optimization problems. Many of these models are NP-hard and, as a result, exact methods may be impractical for large scale problem instances. Consequently, there is a great interest in developing eÂącient approximate methods that yield near-optimal solutions in acceptable computational times. A class of such methods, known as metaheuristics, have been proposed with success. This thesis considers some recently proposed NP-hard combinatorial optimization problems formulated on graphs. In particular, the min- imum labelling spanning tree problem, the minimum labelling Steiner tree problem, and the minimum quartet tree cost problem, are inves- tigated. Several metaheuristics are proposed for each problem, from classical approximation algorithms to novel approaches. A compre- hensive computational investigation in which the proposed methods are compared with other algorithms recommended in the literature is reported. The results show that the proposed metaheuristics outper- form the algorithms recommended in the literature, obtaining optimal or near-optimal solutions in short computational running times. In addition, a thorough analysis of the implementation of these methods provide insights for the implementation of metaheuristic strategies for other graph theoretic problems

    Evolutionary computing driven search based software testing and correction

    Get PDF
    For a given program, testing, locating the errors identified, and correcting those errors is a critical, yet expensive process. The field of Search Based Software Engineering (SBSE) addresses these phases by formulating them as search problems. This dissertation addresses these challenging problems through the use of two complimentary evolutionary computing based systems. The first one is the Fitness Guided Fault Localization (FGFL) system, which novelly uses a specification based fitness function to perform fault localization. The second is the Coevolutionary Automated Software Correction (CASC) system, which employs a variety of evolutionary computing techniques to perform testing, correction, and verification of software. In support of the real world application of these systems, a practitioner\u27s guide to fitness function design is provided. For the FGFL system, experimental results are presented that demonstrate the applicability of fitness guided fault localization to automate this important phase of software correction in general, and the potential of the FGFL system in particular. For the fitness function design guide, the performance of a guide generated fitness function is compared to that of an expert designed fitness function demonstrating the competitiveness of the guide generated fitness function. For the CASC system, results are presented that demonstrate the system\u27s abilities on a series of problems of both increasing size as well as number of bugs present. The system presented solutions more than 90% of the time for versions of the programs containing one or two bugs. Additionally, scalability results are presented for the CASC system that indicate that success rate linearly decreases with problem size and that the estimated convergence rate scales at worst linearly with problem size --Abstract, page ii

    The use of genetic programming for detecting the incorrect predictions of classification models

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsCompanies around the world use Advanced Analytics to support their decision making process. Traditionally they used Statistics and Business Intelligence for that, but as the technology is advancing, the more complex models are gaining popularity. The main reason for an increasing interest in Machine Learning and Deep Learning models is the fact that they reach a high prediction accuracy. On the second hand with good performance, comes an increasing complexity of the programs. Therefore the new area of Predictors was introduced, it is called Explainable AI. The idea is to create models that can be understood by business users or models to explain other predictions. Therefore we propose the study in which we create a separate model, that will serve as a very er for the machine learning models predictions. This work falls into area of Post-processing of models outputs. For this purpose we select Genetic Programming, that was proven to be successful in various applications. In the scope of this research we investigate if GP can evaluate the prediction of other models. This area of applications was not explored yet, therefore in the study we explore the possibility of evolving an individual for another model validation. We focus on classi cation problems and select 4 machine learning models: logistic regression, decision tree, random forest, perceptron and 3 di erent datasets. This set up is used for assuring that during the research we conclude that the presented idea is universal for di erent problems. The performance of 12 Genetic Programming experiments indicates that in some cases it is possible to create a successful model for errors prediction. During the study we discovered that the performance of GP programs is mostly connected to the dataset on the experiment is conducted. The type of predictive models does not in uence the performance of GP. Although we managed to create good classi ers of errors, during the evolution process we faced the problem of over tting. That is common in problems with imbalanced datasets. The results of the study con rms that GP can be used for the new type of problems and successfully predict errors of Machine Learning Models

    Optimization of convolutional neural networks for image classification using genetic algorithms and bayesian optimization

    Get PDF
    Notwithstanding the recent successes of deep convolutional neural networks for classification tasks, they are sensitive to the selection of their hyperparameters, which impose an exponentially large search space on modern convolutional models. Traditional hyperparameter selection methods include manual, grid, or random search, but these require expert knowledge or are computationally burdensome. Divergently, Bayesian optimization and evolutionary inspired techniques have surfaced as viable alternatives to the hyperparameter problem. Thus, an alternative hybrid approach that combines the advantages of these techniques is proposed. Specifically, the search space is partitioned into discrete-architectural, and continuous and categorical hyperparameter subspaces, which are respectively traversed by a stochastic genetic search, followed by a genetic-Bayesian search. Simulations on a prominent image classification task reveal that the proposed method results in an overall classification accuracy improvement of 0.87% over unoptimized baselines, and a greater than 97% reduction in computational costs compared to a commonly employed brute force approach.Electrical and Mining EngineeringM. Tech. (Electrical Engineering
    • …
    corecore