The article describes an investigation of the effectiveness of genetic
algorithms for multi-objective combinatorial optimization (MOCO) by presenting
an application for the vehicle routing problem with soft time windows. The work
is motivated by the question, if and how the problem structure influences the
effectiveness of different configurations of the genetic algorithm.
Computational results are presented for different classes of vehicle routing
problems, varying in their coverage with time windows, time window size,
distribution and number of customers. The results are compared with a simple,
but effective local search approach for multi-objective combinatorial
optimization problems