
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 2012

Evolutionary computing driven search based software testing and Evolutionary computing driven search based software testing and

correction correction

Joshua Lee Wilkerson

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Wilkerson, Joshua Lee, "Evolutionary computing driven search based software testing and correction"
(2012). Doctoral Dissertations. 1964.
https://scholarsmine.mst.edu/doctoral_dissertations/1964

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1964&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1964?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1964&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

EVOLUTIONARY COMPUTING DRIVEN SEARCH BASED SOFTWARE

TESTING AND CORRECTION

by

JOSHUA LEE WILKERSON

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2012

Dr. Daniel Tauritz, Advisor
Dr. Thomas Weigert
Dr. Bruce McMillin

Dr. Ali Hurson
Dr. Sahra Sedighsarvestani

Copyright 2012

Joshua Lee Wilkerson

All Rights Reserved

iii

ABSTRACT

For a given program, testing, locating the errors identified, and correcting

those errors is a critical, yet expensive process. The field of Search Based Software

Engineering (SBSE) addresses these phases by formulating them as search problems.

This dissertation addresses these challenging problems through the use of two compli-

mentary evolutionary computing based systems. The first one is the Fitness Guided

Fault Localization (FGFL) system, which novelly uses a specification based fitness

function to perform fault localization. The second is the Coevolutionary Automated

Software Correction (CASC) system, which employs a variety of evolutionary comput-

ing techniques to perform testing, correction, and verification of software. In support

of the real world application of these systems, a practitioner’s guide to fitness function

design is provided.

For the FGFL system, experimental results are presented that demonstrate

the applicability of fitness guided fault localization to automate this important phase

of software correction in general, and the potential of the FGFL system in particular.

For the fitness function design guide, the performance of a guide generated fitness

function is compared to that of an expert designed fitness function demonstrating the

competitiveness of the guide generated fitness function. For the CASC system, results

are presented that demonstrate the system’s abilities on a series of problems of both

increasing size as well as number of bugs present. The system presented solutions

more than 90% of the time for versions of the programs containing one or two bugs.

Additionally, scalability results are presented for the CASC system that indicate that

success rate linearly decreases with problem size and that the estimated convergence

rate scales at worst linearly with problem size.

iv

ACKNOWLEDGMENTS

First, I would like to thank the Missouri University of Science and Technology

Intelligent Systems Center for providing financial support for this project.

I would like to thank the members of my Ph.D. committee: Dr. Daniel Tauritz,

Dr. Bruce McMillin, Dr. Thomas Weigert, Dr. Sahra Sedighsarvestani, and Dr. Ali

Hurson. They all helped both me and this project become what we are today in one

way or another, and we both are certainly better for it. I would like to especially

thank Dr. Tauritz for teaching me what it is to be a researcher and an academic.

I would also like to thank Clayton Price for all of the advice and support he

has given me throughout my time as a student. Clayton has been a good friend and a

great mentor over the years, helping me become the teacher I am (for better or worse

:)).

I would like to thank all of my family and friends for all the support and advice

that they provided me.

Most importantly, I would like to thank my wife Kelley. Kelley has been the

encouragement to push through when I was overwhelmed, the motivation to stay

focused when I grew tired of it all, the smile I needed when things went wrong, the

source of self-confidence I needed when I had none of my own, and so much more.

Kelley, you were the light at the end of this tunnel; thank you and I love you.

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . x

NOMENCLATURE .. xi

SECTION

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

2.1. SOFTWARE ENGINEERING FOUNDATION.. 4

2.1.1. Manual Software Testing . 5

2.1.2. Automated Software Testing . 5

2.2. EVOLUTIONARY COMPUTATION FOUNDATION 7

2.2.1. Genetic Algorithms . 7

2.2.2. Genetic Programming . 8

2.2.3. Co-Evolution . 9

3. FITNESS FUNCTION DESIGN .. 12

3.1. FITNESS FUNCTION GENERATION .. 13

3.1.1. Addressing Problem Specifications. 14

3.1.2. Classification Taxonomy . 15

3.1.2.1. Phenotypic and genotypic . 17

3.1.2.2. Tractable and intractable . 19

3.1.2.3. Decision and optimization . 21

3.1.3. Fitness Function Components . 22

3.2. EXAMPLES . 24

3.2.1. Finding the Inverse of a Function . 24

3.2.1.1. Classify requirement one . 24

3.2.1.2. Classify requirement two . 25

3.2.1.3. Fitness function generation . 26

3.2.2. Correction of a Sorting Program . 26

3.2.2.1. CASC system fitness function. 27

3.2.2.2. Results in comparison . 30

vi

4. AUTOMATED FAULT LOCALIZATION .. 33

4.1. RELATED WORK .. 34

4.2. FITNESS GUIDED FAULT LOCALIZATION .. 36

4.2.1. Running Example . 38

4.2.2. Trace Comparison Technique. 40

4.2.3. Trend Based Line Suspicion Technique . 43

4.2.4. Fitness Monitor Technique . 47

4.2.5. Result Combination . 50

4.3. EXPERIMENTAL SETUP .. 50

4.4. RESULTS . 52

4.5. TARANTULA+ .. 54

4.5.1. Preliminary Tarantula+ Results . 56

5. COEVOLUTIONARY AUTOMATED SOFTWARE CORRECTION 58

5.1. BACKGROUND AND RELATED WORK .. 60

5.1.1. Background . 60

5.1.2. Related Work. 65

5.1.2.1. Test case generation . 65

5.1.2.2. Automated program repair . 66

5.1.2.3. Comparison of related approaches . 72

5.2. DESIGN.. 75

5.2.1. Approach Overview . 75

5.2.2. System Initialization Module . 80

5.2.2.1. CASC parsing . 80

5.2.2.2. Program population initialization . 82

5.2.3. Testing and Verification Module . 82

5.2.3.1. Test case population creation . 84

5.2.3.2. Covering test set creation . 84

5.2.3.3. Testing and verification. 85

5.2.4. Testing and Correction Module . 87

5.2.4.1. Evaluation and survival selection . 88

5.2.4.2. Optimization methods . 89

5.2.4.3. Multi-objective solution prioritization . 94

5.2.4.4. Program reproduction . 96

5.2.4.5. Stagnation detection . 104

5.3. EXPERIMENTAL SETUP .. 105

5.3.1. Test Case Details: printtokens2 . 110

5.3.2. Test Case Details: replace . 111

5.3.3. Test Case Details: remainder . 114

vii

5.3.4. Test Case Details: triangleClassification . 115

5.3.5. General Experimentation Results . 116

5.4. SCALABILITY EXPERIMENTATION SETUP .. 123

5.4.1. Previous Scalability Results . 125

5.4.2. New Scalability Experimentation Results . 128

6. CONCLUSION.. 133

7. FUTURE WORK.. 135

7.1. FITNESS FUNCTION DESIGN .. 135

7.2. THE FGFL SYSTEM .. 136

7.3. THE CASC SYSTEM.. 137

BIBLIOGRAPHY .. 140

VITA . 149

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Requirement Classification Taxonomy . 16

4.1 High Level Flow Chart of the FGFL System . 37

4.2 Fitness Plots for the Running Example . 49

5.1 Typical 2-Population Coevolutionary Cycle . 61

5.2 Weimer’s Software Correction System . 69

5.3 Arcuri’s JAFF System . 70

5.4 Summary of Representation Languages and Supported Code Modifica-
tions for Systems Performing Correction at the Source Code Level 73

5.5 CASC Testing, Correction, and Verification Process . 76

5.6 Buggy Bubble Sort Function . 80

5.7 Parsing Result for Running Example . 83

5.8 Example program distance calculation . 91

5.9 Example fitness sharing calculation for a front of program individuals 92

5.10 Example Program Crossover . 100

5.11 Example 2 Node Program Mutation . 103

5.12 Details on remainder and triangleClassification Bugs . 107

5.13 Example printtokens2 Test Case . 112

5.14 Example replace Test Case . 114

5.15 Example remainder Test Case . 115

5.16 Percentage of Runs Yielding a Solution in General Experiments Ordered
by Program . 117

5.17 Percentage of Runs Yielding a Solution in General Experiments Ordered
by Number of Bugs Present . 118

5.18 Percentage of Solutions Yielded in General Experiments that are True
Solutions Ordered by Program . 119

ix

5.19 Percentage of Solutions Yielded in General Experiments that are True
Solutions Ordered by Number of Bugs Present . 120

5.20 Average Number of Verification Cycles Used in Successful Runs 122

5.21 Box Plot for the Number of Evaluations Used to Generate a Solution 122

5.22 Box Plot for the CPU Time Used for the Experimental Runs in Seconds . 123

5.23 Box Plots of Solution Birth Generation for Scalability Studies 128

5.24 Trend Lines Generated for Average Solution Birth Generation for Suc-
cessful Experiments in Scalability Studies . 129

x

LIST OF TABLES

Table Page

3.1 Classification of Both Fitness Functions Considered. 31

3.2 Experiment Success Rates Over 100 Runs. 31

4.1 Test Cases and Fitness Values for Running Example . 40

4.2 LCS Tabulation Used to Find the Divergent Path Between TC1 and TC3

in the Trace Comparison Technique . 41

4.3 Comparison Between Traces for Running Example . 43

4.4 Vote Assignments for Trace Comparison Technique on Running Example. 44

4.5 Vote Assignments for Trend Based Line Suspicion Technique on Running
Example. 47

4.6 Vote Assignments for Run-Time Fitness Monitor Technique on Running
Example. 50

4.7 Vote Assignments for Running Example. 50

4.8 Description of Buggy Programs used to Test the FGFL System. 51

4.9 Average Rank of Bug Line in Experiment Results . 52

4.10 Preliminary Tarantula+ Results . 57

5.1 Currently Supported C++ Node Classes . 83

5.2 Name Registry Generated for Running Example . 84

5.3 Node Compatibilities for Program Crossover. 98

5.4 Possible Node Mutations . 102

5.5 Summary of Programs and Bugs used in the Study . 108

5.6 Configuration Details for Experiments. 109

5.7 Scoring Table Used for triangleClassification . 117

5.8 Number of Nodes (N) in Source Programs . 125

5.9 Parameters for Scalability Experiments . 125

5.10 Results Summary for 2011 Scalibility Study . 126

5.11 Results Summary for 2012 Scalibility Study . 131

xi

NOMENCLATURE

ATC Abstract Test Case

CASC Coevolutionary Automated Software Correction

COEA COEvolutionary Algorithm

CS Covering test case Set

EA Evolutionary Algorithm

ES Evolvable Section

FGFL Fitness Guided Fault Localization

GP Genetic Programming

LOC Lines of Code

MOEA Multi-Objective Evolutionary Algorithm

MOOP Multi-Objective OPtimization

MOSP Multi-Objective Solution Priortization

PSTC Problem Specific Test Case

SAA Suspicion Adjustment Amount

SBSE Search Based Software Engineering

SBST Search Based Software Testing

SOOP Single-Objective OPtimization

TBLS Trend Based Line Suspicion

TSP Traveling Salesman Problem

1. INTRODUCTION

Testing and correcting a piece of software is a time consuming and expensive

task. Software is becoming a more pervasive part of life every day; as such, the need for

fast and effective testing tools is higher than ever. Automation of the software testing

process is one of the most promising approaches to satisfying this need. Search Based

Software Engineering (SBSE) rephrases software engineering tasks as optimization

problems, then applies artificial intelligence techniques to them. In SBSE, Search

Based Software Testing (SBST) is the most active area of research [39].

This thesis presents a study into the automation of the SBSE tasks of software

testing, fault localization, software correction, and software verification. Like many

SBSE approaches, automation is achieved through the use of a fitness function to

guide the search process. However, the development of an effective fitness function is

often a difficult problem in and of itself. This thesis also presents a guide for fitness

function design, focused on design for Evolutionary Algorithms (EAs) , since they are

the most commonly used search algorithm in SBSE [39].

The overall hypothesis of the presented research is that in order to advance

current work in SBST, software specifications must be incorporated into the search

algorithms used. This incorporation most obviously fits into the fitness function for

the searches used. The rationale behind this hypothesis is that in order to achieve

high degrees of optimization in software engineering, the system must be told in some

way what defines expected, correct behavior for a piece of software. The most obvious

source for this definition is from software specifications, since they, by definition, are

this information. To this end, research into the generation, verification, communica-

tion, and incorporation of specifications is extremely valuable to SBST. The research

in this thesis focuses on the communication and incorporation of specifications into

2

the presented SBST studies.

The most significant contributions of this work are:

• A novel investigation into structuring the fitness function design process. The

presented approach organizes the design process into a series of steps, prescrib-

ing an ordered thought process to the design procedure; and so is useful for

both non-expert practitioners and expert users of EAs.

• The Fitness Guided Fault Localization (FGFL) system. A novel application

of specification based fitness functions to automated fault localization. Current

automated fault localization techniques rely on an oracle (typically a human ex-

pert) to define correct program performance. The presented approach removes

this requirement, relying instead on a fitness function derived from the software

specifications.

• The Coevolutionary Automated Software Correction (CASC) system. An au-

tomated software testing and correction system that advances the state of the

art by:

– Incorporating and automating the testing and verification tasks into the

system.

– Novelly extracting information from source code to construct a constraint

system to better guide the search processes in the system.

– Employs a polymorphic test case definition that allows for dynamic test

case generation at run time, rather than the static test case set employed

by competing state of the art approaches.

– Novelly supports multi-objective optimization, mapping objectives to in-

dividual specifications for the software. In addition to the problem specific

3

objectives, the system also provides a set of optional objectives that, if

activated, are optimized after the problem specific objectives.

While touching on many areas of SBSE, the primary focus of the work sum-

marized in this thesis is automated testing, correction, and verification of software.

The other studies discussed are preliminary investigations, intended to explore the

viability of the discussed approaches as well as formulate major problems to be solved

in order to advance the approaches.

The work is an extension of the author’s MS thesis [102]. The majority of the

new discussions in this thesis are extended versions of published works [103, 104, 105,

106].

4

2. BACKGROUND

This section discusses the foundational concepts of the approaches presented

in this dissertation. Works more specifically related to the presented approaches are

discussed in the sections corresponding to the approaches.

2.1. SOFTWARE ENGINEERING FOUNDATION

Software engineering can be defined as “the application of a systematic, dis-

ciplined, quantifiable approach to the development, operation, and maintenance of

software” [91]. Software testing is a subset of the software engineering process that

is focused on ensuring the correctness and completeness of a piece of software. There

are many different types of formal software testing and each type has many different

aspects. The FGFL and CASC systems perform both black box functional testing

and structural testing [80]. Black box testing is a method of testing where the tester

has no access to the internals of the program being tested, the only thing that can

be seen is the input going in and output coming out. Functional testing is simply

testing (at any level) for correct functionality of a program. Structural testing is when

testing is performed with knowledge of the internal workings of a piece of software

(also referred to as white box testing).

In the modern software development process, software testing is becoming in-

creasingly important, particularly in financial terms. In 1978 Jones [52] estimated

that catching an error in the system specification phase is approximately 50 times

cheaper than it is to correct the error later in the system testing phase. In a 2002

news release [92] the National Institute of Standards and Technology (NIST) esti-

mated that software errors cost the U.S. economy approximately $59.5 billion a year,

which accounts for approximately 0.6 percent of the gross domestic product. In the

5

referenced news release, the NIST states that “although all errors cannot be removed,

more than a third of these costs, or an estimated $22.2 billion, could be eliminated by

an improved testing infrastructure that enables earlier and more effective identifica-

tion and removal of software defects”. From this, it is clear that efficient and effective

software testing and correction methods need to be developed in order to keep up

with advancements in software development methods.

2.1.1. Manual Software Testing. The general process of testing a piece

of software manually involves planning out the testing strategy to use on the software,

developing the actual test cases to use, executing the tests, gathering the results and

analyzing and interpreting them, and repeating the process for any bugs that were

identified. Manual software testing is often performed by a team of testers who have

been involved (at least to some degree) in the development process.

Most software testing performed today is done by human testers. The process

of testing a piece of software is quite time consuming. This is problematic because

there are many modern tools available to developers which makes them able to pro-

duce code more quickly and efficiently, which means that testers are being asked to

test more and more code in less time. Because of this, testing is becoming a bottleneck

in the software production process.

2.1.2. Automated Software Testing. Search Based Software Engineer-

ing (SBSE) [40] is a relatively new area in software engineering. Works in SBSE

rephrase software engineering problems as optimization problems and apply search-

based optimization algorithms to them. SBSE approaches have been proposed for a

wide variety of software engineering tasks; however, the majority of works in SBSE

are on Search Based Software Testing (SBST) [114]. As such, there is a plethora

of published work in this area (e.g., the CREST SBSE repository currently contains

over 500 papers on SBST alone). High level discussion of SBST is provided in this

section, with select works mentioned; for a more comprehensive listing/discussion of

6

works in this area, the reader is directed to the CREST SBSE repository [114] and

the published surveys on the area by McMinn [65, 66], Nie [74], and Dick [31].

Miller and Spooner were the first to employ SBST [70]. The method they

presented involved setting the integers and conditional values in the program to ar-

bitrary constants to drive the program down a pre-specified execution path, then

various floating point inputs were provided as input to the program. Korel followed

this idea up in [54] and [55] by actually executing the program being tested, whereas

Miller and Spooner used symbolic execution. In Korel’s implementation, if the exe-

cution follows the selected execution path at a branch point, then a zero is assigned

to that branch point, otherwise a positive integer is assigned. So by minimizing the

assignments, an input can be selected which follows the selected execution path.

A variety of optimization algorithms have since been used for SBST, with EAs

being the most commonly used [37, 66]. Xanthakis et al. were the first to apply an

EA to SBST [108] to perform structural testing of a program. Most SBST research is

focused on structural testing. These works can be organized into the sub-categories of

branch-distance based [70, 54, 55, 108, 67, 68], control based [78, 48], or a combination

of both [93, 98, 99]. In general, a major issue for SBST structural testing is that the

relationship between the components of a test case and the resulting program coverage

is often difficult for these systems to detect, especially if the program has coverage

elements that are rarely covered by test cases in the test case space.

Functional testing has received much less attention in SBST research. This

is largely due to the difficulty of mapping specification to implementation in an au-

tomated manner. One approach of note (as it is discussed later in the context of

another work) is that of Tracey et al. [93, 94]. Using formally structured pre- and

post-conditions, Tracey rated test case performance by how close a test case was to

satisfying the pre-condition while violating the post-condition. This rating was calcu-

lated using a table of scoring functions for the logical operators used in the pre- and

7

post-conditions that indicated how close to being satisfied the a given relationship

was.

2.2. EVOLUTIONARY COMPUTATION FOUNDATION

Evolutionary Computation (EC) is a type of computational intelligence which

is inspired by the biological mechanisms of evolution. EC is a broad field which

encompasses many different varieties of EAs. A typical EA creates and evolves a

population of potential solutions for a given problem. The EA population initially

samples the problem space in a random fashion, but in successive iterations it becomes

more directed in its search for a solution. EAs are effective for solving Combinatorial

Optimization (CO) problems. CO problems usually have large problem spaces and are

classified as NP-Hard [22] (a class of problems which are believed to not be efficiently

solvable in general). EAs, however, typically have the innate ability of being able to

navigate large problem spaces well; this is why EAs so readily apply to CO problems.

CO problems can rise from many fields, such as mathematics, artificial intelligence,

and software engineering, which makes EC applicable to a large set of typically hard

problems.

As mentioned earlier, the field of EC encompasses many different algorithms

that all follow the same general evolutionary model, despite the fact that many of

these algorithms were developed independently of each other. Historically, the three

major algorithm families that made up EC were genetic algorithms, evolutionary

programming and evolutionary strategies. More recently, GP has also joined the EC

field. The CASC system uses two historical EA flavors: genetic algorithms and GP;

which are combined using co-evolution.

2.2.1. Genetic Algorithms. Genetic algorithms are one of the first EC

methods conceived and are still some of the more commonly used EA’s today. The

concept of the Genetic Algorithm (GA) was popularized by John Holland in the

8

1970’s, particularly in his book published in 1975 [42], which was focused on his

studies of adaptive behavior. The canonical GA is an EA whose individuals (i.e., the

members of the evolving population) are represented as fixed length binary bit strings

(other representations have since been used), which favor crossover over mutation as

the principle variation operator.

Since the early 1990’s a push has been made to combine many of the original

algorithms in the EC field into one unified EA model. A typical cycle in the unified

EA closely follows the standard evolutionary cycle: initial creation (typically random,

but possibly seeded) followed by a cycle of reproduction and mutation, evaluation,

and competition. This cycle continues until a predetermined termination condition is

reached, such as a set number of generations have passed or a goal fitness is reached in

the population. The structure for an EA is laid out by the evolutionary mechanisms

it is based on, the only part that is application specific and must be decided by the

implementer is the representation for an individual and the fitness function used to

determine how well an individual is performing. If a non-standard representation is

used, then appropriate customized variation operators need to be defined.

2.2.2. Genetic Programming. GP is a type of EA in which a tree

representation is used for the the individuals in the evolving population. As data

structures, trees have a wide range of application; however, the application which

is most relevant to the CASC system is that of evolving computer programs. In

this implementation, each individual in a GP population will contain the parse tree

for the program which it ultimately represents. The first reported results of GP

were published by Steven Smith in 1980 [90]. In 1985 Nichael Cramer [24] also

published results yielded by using GP techniques. Since the early 1990’s, John Koza

has done a lot to popularize GP, particularly through his classic four-book series on

GP [57, 58, 59, 60]. William Langdon and Ricardo Poli are two researchers who

also have contributed significantly to the field of GP. In [62] Langdon presents many

9

new and emerging GP techniques are along with the original foundations of GP. Poli

has also done a lot of work on parallel distributed GP [79], which is focused on the

evolution of programs which can readily be parallelized.

The methods used by GP are very similar to that of a typical EA except the

evolutionary operators have been modified to interact with tree structures. Repro-

duction is performed using a crossover method in which subtrees are interchanged

between parents to create the offspring. This makes the reproduction operator a very

pivotal part of the evolutionary process because even exchanging a single subtree in

a program parse tree can greatly change the outcome of the program the parse tree

represents.

Mutation is performed by replacing a randomly selected subtree in an individ-

ual with a randomly created subtree. This implies that the mutation operator must

be aware of the subtree functionality as to maintain the integrity of the program,

e.g., a subtree with a binary arithmetic operator as the root, such as the addition

operator, can only mutate to another binary operator subtree, such as subtraction,

multiplication, or division. Another option is to make the mutation operator capable

of removing or supplying operands in the event that the arity of the node changes.

To evaluate a GP individual representing a computer program, first the in-

dividual’s parse tree is pretty-printed into its program form. The program is then

compiled, if necessary, and executed. The fitness is then determined based on the

output of the program.

2.2.3. Co-Evolution. Co-evolution is an extension of the standard EA

model where the fitness of an individual is dependent on other individuals in its own

or other populations. This relationship can be categorized as either cooperative or

competitive. In nature the relationship can take on many forms, for example any

predator-prey or non-symbiotic parasite-host relationship represents a competitive

(although necessary) mutual dependence. An example of a more cooperative rela-

10

tionship would be nectar seeking insects performing pollination for the plants which

supply the nectar.

The CASC system uses competitive co-evolution between a population of

evolving programs and a population of evolving test cases. This competition is in-

tended to create a type of evolutionary arms race between the two populations. An

evolutionary arms race works much like an actual arms race except it occurs on a

genetic level. As the individuals in one population improve in fitness, pressure is

placed on the individuals in the other population to improve as well. This process

will continue and, if given enough time to evolve, each population will ideally be

driven to perform as well as possible. The concept of an evolutionary arms race is not

a new one. Christopher Rosin [85, 86] performed extensive research on methods for

competitive co-evolution, examining the parasite-host relationship which yields the

evolutionary arms race.

The co-evolutionary method has a unique set of problems which can arise

during the evolutionary process. These problems are inherently hard to detect, and

as such much work has been done in finding ways to pre-emptively counter these

problems. One possible problem that can occur in the co-evolutionary process is

the phenomenon known as evolutionary cycling. Evolutionary cycling is basically

the evolutionary version of rock-paper-scissors, i.e., the genetic configurations of the

populations cycle back on themselves and do not advance past a certain point. This

phenomenon is hard to detect because the cycle can involve hundreds of states. In [84]

Rosin introduced the concept of an evolutionary history or hall of fame. The main

purpose of the evolutionary hall of fame is to counter evolutionary cycling. The hall

of fame works by storing the best individuals of every generation, then the individuals

in following generations compete against individuals sampled from the other popu-

lation(s) as well as from the hall of fame. So, to perform well an individual must

outperform both the current generation’s best individuals as well as the best ances-

11

tral individuals, which ideally will disallow cycling. This method is used in modern

co-evolutionary systems to not only counter the possibility of evolutionary cycling,

but to also speed up (and generally improve) the evolutionary process.

Another problem which can arise during the co-evolutionary process is evolu-

tionary equilibrium. This is where the evolving populations come to a point where

they are content with their performance against the other population(s). This con-

tentness causes the evolution to fail in that the populations are no longer pushing

each other to improve. John Cartlidge is a researcher who has put considerable work

into addressing the potential problems in co-evolution [20], and this problem is one

which he addressed. The solution Cartlidge presents is to temporarily remove some of

the better individuals from one population causing the equilibrium to be lost, which

in turn would prompt the populations to start evolution again.

The third significant potential problem that can arise during co-evolution is

disengagement. In this case, one population evolves so much faster than the other that

all individuals of the other are utterly defeated, making it impossible to differentiate

between better and worse individuals without which there can be no evolution. To

counter disengagement Cartlidge uses his “reduced virulence” method to inhibit the

development of the excelling population, allowing the other population(s) to catch up

in terms of performance.

Disengagement and cycling are the only two coevolutionary problems that

have been observed in the CASC system. Steps have been taken to account for this,

and are described in detail in Section 5.

12

3. FITNESS FUNCTION DESIGN

The design of an effective fitness function for a given problem is often difficult

(even for experienced designers [47]). Evidence of this difficulty can be seen in publi-

cations like [83, 109, 33], which are by researchers who use EAs but have experienced

difficulty in the design of an effective fitness function. The goal of this research is

to both create a guide to assist non-expert practitioners in the design of high perfor-

mance fitness functions, and the formalization of fitness function design to provide a

foundation for rigorous investigation.

Many researchers informally develop application specific methods for fitness

function design, but do not generalize these methods. Research into the evolution

of fitness functions (e.g., [82, 25, 97]) has some relevance to fitness function design,

though much of that research is also driven by application specific goals.

The goal of a fitness function is to guide the evolutionary process through the

problem environment to an optimal solution. The effectiveness of the fitness function

used by an EA is directly related to the effectiveness of the EA as a whole. The fitness

function is the primary point in the EA where the problem specifications are enforced.

For this reason, the problem specifications are an ideal location to start the fitness

function design process. The presented guide starts by identifying the requirements

that define a solution to the problem outlined in the specifications. Each requirement

is classified using the provided taxonomy and then a fitness function component

is generated (based on the classifications applied) that is responsible for enforcing

the requirement in the fitness function. The fitness function components are finally

combined into a fitness function for the problem, which can be either composite or

multi-objective.

13

A number of approaches have been investigated in related research to attempt

to classify fitness functions or determine their effectiveness for a particular problem.

In [44] a survey of fitness function classification techniques for EAs using binary

string representation is presented. Many of the classified techniques are focused on

calculating GA-hardness, i.e., epistasis variance, fitness distance correlation, and bit

wise epistasis. The survey points out where the presented methods have critical

flaws, making them only applicable to specific problems. A similar survey for fitness

functions used in evolutionary robotics provides another method for classification [73].

The classes presented, however, are specific to the types of fitness functions used in

evolutionary robotics; the majority of fitness functions used in other types of EAs

would all fall into a single class of the presented classifications.

3.1. FITNESS FUNCTION GENERATION

The proposed method for fitness function generation can be divided into a

series of generalized steps. The first step is to identify the individual requirements

indicated by the problem specifications, i.e., the problem requirements such that if

a candidate solution fully satisfies each requirement, then it is a valid solution to

the problem. The second step is to classify each requirement according to a taxon-

omy. Each classification implies information regarding the nature and design of an

associated fitness function component. The last step is to use the classifications for

each requirement to generate an appropriate fitness function component using the

information from the requirement’s classification. These fitness function components

are then composited either into a single fitness function or implemented as separate

dimensions in a multi-objective fitness function.

Through this discussion, the classic Traveling Salesman Problem (TSP) (see

[23] for an introduction to the TSP) will be employed as running example to help

illustrate the various classifications in the taxonomy. The specification for the TSP

14

is: given an adjacency matrix A, find the shortest Hamiltonian circuit of the graph

represented by A. Assume that non-adjacent nodes have an infinite length in the

corresponding adjacency matrix entry. Non-infinite entries in A indicate both that

the corresponding nodes are adjacent and the length of the path between the nodes.

3.1.1. Addressing Problem Specifications. The purpose of the fitness

function is to guide the evolutionary process through the problem space, ultimately

arriving at a valid solution to the problem. In order to generate an effective fitness

function, the characteristics of a valid solution to the problem must be defined. If

properly indicated, the problem specifications should contain this information in some

form, which means that the first step is to identify the solution requirement(s) from

the problem specifications.

In some cases, problem specific knowledge can be exploited to speed up conver-

gence and/or generate solutions of a specific type. This exploitation can be included

in the problem requirements and as such be assimilated into, and promoted by the fit-

ness function. For example, assume that a program is being evolved and a specific set

of statements s are known to be required in order to generate a high quality solution.

In this case, the specification that a solution must contain s would be added to the

problem specifications, and would generate additional requirement(s) for the fitness

function to address. However, if it is only thought that these statements are required,

then in the case this assumption is incorrect, having it as a requirement would result

in a negative impact on the search. In such cases, the appropriate approach is to seed

the initial population with this bias.

For some problems there may only be a single requirement of the solution,

in which case the specifications can be used directly as the problem requirement

when generating the fitness function. Otherwise, each identified requirement should

address an atomic aspect of the solution, as doing so will facilitate the construction

of a fitness function. The fitness function must address every aspect of a problem’s

15

defined solution in order to properly guide the evolutionary process. So, each solution

requirement obtained from the problem specifications will ultimately yield a fitness

function component. Once all requirements have been classified, the resulting fitness

function components are combined into the fitness function for the problem. This

ensures that every requirement set forth by the problem specifications is considered

in the fitness function.

The TSP has two apparent requirements for a candidate solution (i.e., a path

through the graph represented by A) to be a valid solution:

1. The path must be a Hamiltonian cicuit (i.e., it must visit all nodes without

revisiting and it must return to the starting node).

2. The Hamiltonian circuit must be the shortest possible.

3.1.2. Classification Taxonomy. After the problem requirements have

been identified, the next step is to begin bridging the gap between written problem

requirements and a fitness function. The method proposed addresses this task by

defining a taxonomy, which classifies the problem requirements and in doing so pro-

vides information on the nature of the fitness function. The taxonomy is shown in

Figure 3.1.

As was discussed in the previous section, the starting point is the problem

specifications. Determining the solution requirements is the action going from Prob-

lem Specifications to Problem Requirement.

Next, an appropriate solution representation and EA configuration must be

determined to solve the problem, which are both based on the problem specifications.

There may be solution requirements that arise based on the algorithm selected. These

requirements arise due solely to the selected EA configuration and as such cannot be

expected to be included in the problem specifications, since for a given problem there

may be a number of possible algorithms to use. As example of an algorithm induced

16

Figure 3.1: Requirement Classification Taxonomy

requirement, suppose that for a given problem we choose to employ Genetic Pro-

gramming (GP). An issue that is typical to GP is tree bloat in the evolving candidate

solutions [57]. So in response to this, suppose we want our fitness function to pe-

nalize bloating by promoting smaller tree structure. The fitness function component

responsible for this requirement has nothing to do with the problem being solved,

just the algorithm that was selected to solve the problem. This illustrates the need

for algorithm induced requirements.

For the TSP example, assume that a standard EA is to be used and a candidate

solution will be an ordered list of graph node identifiers which represents the solution’s

path through the graph. For example, if a candidate solution C=[a, b, c, d, a] then

the path that C takes is node a, node b, node c, node d, then back to node a. Path

17

lengths can be assessed using the A matrix with the candidate solution. To make

this example simpler, assume that the EA operators will only generate valid paths

through the graph (by using the A matrix), so the fitness function does not need to

check path validity. There are no obvious algorithm induced requirements for this

EA configuration and representation, so this example will only have problem based

requirements.

3.1.2.1. Phenotypic and genotypic. The first level of classification ad-

dresses how the requirement will be assessed. A phenotypic requirement is based on

some aspect of a candidate solution’s expression in the problem environment, indepen-

dent of the candidate’s genetic representation. Conversely, a genotypic requirement

is based on some aspect of a candidate solution’s genetic structure.

Since the problem specifications are stated independent of a specific algorithm,

it is impossible for a problem requirement to be genotypic. Similarly, algorithm

induced requirements are based solely on the algorithm selected and are independent

of the specific problem being addressed. As such, problem requirements are always

phenotypic and algorithm requirements are always genotypic.

In many cases, it is advantageous to convert phenotypic requirements to geno-

typic, if possible. The reasoning behind this is that if desirable phenotypic behavior

can be mapped to a genotypic configuration (i.e., desired candidate solution behav-

ior can be mapped to a solution representation characteristic), then promoting this

configuration will be much easier (as it will be known what genes are responsible for

the desired behavior) and convergence will occur much quicker. In Figure 3.1 this

conversion is shown as the dashed edge from Phenotypic to Genotypic.

Another way of looking at phenotypic to genotypic conversion is as a map-

ping of problem requirements to algorithmic requirements (due to the fact that these

requirements are always phenotypic and genotypic, respectively). For example, con-

sider the classic n-queens problem for which one requirement is that each placed queen

18

must not be in the attack lines of the other n− 1 queens (vertical, horizontal, and di-

agonal). A basic solution representation for this problem would be a two dimensional

array of size n x n; however, the aforementioned problem requirement can be mapped

to an algorithmic requirement to dramatically reduce the search space by adjusting

the solution representation to an array containing a permutation of the numbers 1

through n, where element i represents what row in column i the queen is placed on.

This conversion will speed up the convergence of the EA in question by significantly

reducing the search space of the problem by removing horizontal and vertical attack

lines from consideration, which will also make the assessment of a candidate solution

easier.

In terms of the fitness function component, the genotypic and phenotypic clas-

sifications indicate whether or not input will be required by the component. Geno-

typic components will not require any input aside from the candidate solution itself,

since they are based solely on the genetic structure of the candidate. Phenotypic

components will require input from the problem environment, since the component is

assessing an aspect of a candidate solution in the context of its problem environment.

As such, phenotypic components will require the input of the entire, or a sampling of

the, problem environment (which is decided in the second classification, discussed in

the next section).

For the TSP example, both requirements from Section 3.1.1 are problem re-

quirements, so they both fall under phenotypic classification. The first requirement

has no obvious conversion to genotypic classification. However, the second require-

ment (i.e., the Hamiltonian circuit must be the shortest possible) could be converted

to a genotypic classification by adjusting the structure of a candidate solution to also

contain the path length to get to the indicated node in the solution array (and as

such the requirement could be assessed based solely on the solution genotype). For

example, a candidate solution C=[(a,0); (b,3); (c,2); (d,1); (a,4)] would have a total

19

path length of 10. This conversion will not improve the rate of convergence of the

fitness function, and is made for the sake of this example (as the conversion affects

the remaining classifications).

The conversion of the second TSP requirement performs an explicit enrichment

of the genotype by adding partial performance information to it. This style of en-

richment will typically provide improved algorithm efficiency, by making component

fitness calculation easier (though in this example the efficiency gain is negligible). The

n-queens example discussed earlier, however, performs implicit genotype enrichment

in which information from a problem requirement is used to enhance the algorithm

with an improved solution representation. This style of enrichment can result in

both efficiency and performance improvements, as the requirement is being mapped

directly into the genotype of a candidate solution.

3.1.2.2. Tractable and intractable. The second classification is concerned

with the practicality of assessing a given requirement. Essentially this classification

determines if the resulting fitness function component will calculate the true fitness

value or an approximation to the true fitness value. Suppose for a given requirement

the problem domain is all real numbers; for this requirement it is impossible to cal-

culate the true fitness value, so this requirement is intractable and an approximation

must be made by using a sampling from the set of real numbers. On the other hand,

suppose the problem domain for a requirement is a finite graph. This requirement

would likely be classified as Tractable, since it is feasible to calculate the true fitness

by operating on the problem graph. These two examples, though illustrative, do not

represent all possible scenarios for this classification. Since the primary concern is

practicality, a requirement may be classified as tractable in one case and yet in an-

other the exact same requirement could be classified as intractable. This requirement

is very much dependent on the resources available to a specific user.

20

In Figure 3.1 you can see that genotypic requirements can only be classified

as tractable. The reasoning behind this restriction is that genotypic requirements

are based on the genetic structure of a candidate solution, which implies that the

calculation of the true fitness of such a requirement should be feasible as long as the

candidate solution representation is practical.

This classification further fleshes out the details of the input to a fitness func-

tion component. Phenotypic fitness function components can calculate either the

true or approximate fitness for the requirement. If the true fitness is calculated (i.e.,

the requirement is tractable), then the component will operate on the entire problem

domain for the requirement, and thus will need to have access to it. If the component

calculates an approximate fitness (i.e., the requirement is intractable), then it will

operate on a sample set taken from the problem domain, which means a sampling

method must also be decided upon for the fitness function component. In many cases

a single sampling function is used for multiple fitness function components (to ensure

that each component operates on the same sample set), so this decision may affect

more than one component.

In the running TSP example, the first requirement was classified as phenotypic

and as such can be either tractable or intractable. For this example, assume that

resources are such that it is feasible to calculate the path cost for a full Hamiltonian

circuit of the graph, if such a circuit is discovered. So since the problem space is

manageable and navigation of it is feasible, it is possible to calculate the true fitness

for the first requirement, thus the requirement is classified as tractable. The second

TSP requirement was converted to genotypic classification so it will also be classified

as tractable, based on the prior reasoning in this section.

Intractable classification has non-trivial implications for the fitness function

component in question. Section 3.2 presents examples of intractable classification.

21

3.1.2.3. Decision and optimization. The third classification defines the

basic nature of the requirement in question. If a requirement is either satisfied or it

is not (with no intermediate satisfaction), then it is a decision requirement. If there

are intermediate levels of satisfaction of the requirement, then it is an optimization

requirement.

EAs require a gradient in the fitness function in order for the evolutionary

process to be effective. If a fitness function is defined as a decision problem, then the

evolutionary process degenerates into basically a random search. For this reason, any

requirement that is classified as a decision requirement should be transformed into

an optimization requirement in order to effectively guide the evolutionary process.

For example, suppose that a requirement is that the output of a candidate solution

is to be in sorted order. Clearly, the output is either sorted or it is not, so the

requirement receives a decision requirement. So in order to transform the requirement

to optimization, a method is needed for determining how close to being sorted the

output is and then use that for the fitness function component.

Additionally, the more gradient that each fitness function has, the better; i.e.,

having a single ‘partially satisfied’ intermediate level of satisfaction is not going to

greatly benefit the evolutionary process. So, some requirements may be classified as

optimization, but will still need to be refined in order to generate a more effective

fitness function.

Per standard terminology, EAs attempt to maximize fitness values (i.e., more

fit candidate solutions are better). So there may also need to be steps taken to modify

an optimization fitness function component to adhere to this.

This classification (i.e., decision/optimization) indicates how the fitness func-

tion component is actually going to enforce the requirement that it is based on. As a

result, this classification will often require more consideration than that of the other

classifications. However, once this classification is made, the user should have a very

22

good idea about how the fitness function component will work, making implementa-

tion much simpler.

The approach taken in assessing an optimization requirement should be care-

fully considered, as some methods (even with sufficient gradient) can still be ineffective

at guiding the evolutionary mechanism to satisfy the underlying problem requirement.

For example, if relationships exists between the genes in a solution, then an effective

fitness function component should consider all such relationships when calculating

the fitness. An example of this is shown in Section 3.2.2.1.

In the TSP example, the first requirement is stated as a decision problem, i.e.,

either the path is a Hamiltonian circuit or it is not. So that means that the next step

is to decide on a way to convert this requirement into an optimization problem. One

possible conversion is to reward for each unique node visited and to penalize for both

revisiting a node and for not returning to the starting node (if necessary, a penalty

could also be applied for illegal moves through the graph). So assuming that this

conversion is acceptable, the requirement is classified as a decision problem with a

conversion to an optimization problem.

The second TSP requirement is already an optimization problem, i.e., the

shorter the path the better. However, the requirement is a minimization problem; so

it must be converted to maximization. Negating the value is one method to perform

this conversion, assume for the running example that this is what is decided upon.

3.1.3. Fitness Function Components. The last step is to combine all

of the fitness function components into the fitness function for the problem. This

step is largely dependent on the developer’s desired format for the fitness function.

One option for this step is to combine the fitness function components into a large

single function in which the component fitness values are combined together into a

single fitness value. This option may work well for some cases; however, combining the

various component fitness values can sometimes be difficult. Weighting the component

23

fitnesses can often be challenging and, even if a good weighting scheme is developed,

it is still possible for components to conspire in order to increase their component

fitness values to the detriment of overall performance. A second option is to use

Multi-Objective EA (MOEA) [27] methods to calculate a fitness rank based on the

pareto front generated by using each fitness function component as a new dimension.

This allows for the optimization of the component fitness values without the potential

trouble of component weighting and conspiracies.

In the TSP example, the first requirement was classified as a phenotypic, tract-

able, decision problem with optimization conversion. So from this, the component

will take the problem space (i.e., the A matrix) as an argument (in addition to a

candidate solution) and will calculate the true fitness using the method discussed.

Suppose this method is implemented as a function called CheckHamCirc which takes

an individual S and the adjacency matrix A as arguments.

The second requirement was classified as a (converted) genotypic, tractable,

optimization problem. So the fitness function component for the second requirement

will take only a candidate solution as an argument and will calculate the true fitness

for the requirement by negating the path length of the candidate solution. Sup-

pose this component is implemented as a function called InverseLength that takes a

candidate solution as an argument.

The last step in this example is to generate the fitness function F for the prob-

lem using the fitness function components. One option is to combine the components

into a single expression, like is shown in Equation 1.

F (S) = CheckHamCirc(S,A) + InverseLength(S) (1)

If the component fitness values are normalized to fall in the same range (e.g., both

return a value in [0,100]) then there will likely be no problem with using this fitness

24

function. However, another option is to implement this fitness function as a two

dimensional MOEA. In this case, the pareto front contains the current best solutions.

3.2. EXAMPLES

3.2.1. Finding the Inverse of a Function. For this example suppose our

problem is to find the inverse of a given function f non-symbolically. If the function

g is the inverse of f, then if f(x)=y that means g(y)=x. A formal discussion of this

problem can be found in [101]. From these specifications the sole requirement for this

problem can be identified:

1. For a function g to be a solution, f(g(x)) = x

Now an appropriate EA configuration must be decided upon. The evolutionary

operators will need to be able to easily modify the elements in candidate solution

functions, so a tree representation for the candidates would be useful; this means

that GP would be a good decision for this problem. GP implementations often

experience tree bloat during the evolutionary process, so it would be a good idea

to promote smaller tree size in the fitness function, which means there will be an

algorithm induced requirement:

2. Tree size should be minimized

3.2.1.1. Classify requirement one. This first requirement was identified

from the problem specifications, which means that it is phenotypic.

The domain for this problem is all real numbers (assuming no domain restric-

tions based on the particular function used for f). Clearly, it will be impossible to

calculate a true fitness for this requirement, so it is intractable. This means that the

component will require a sampling method of some sort to select values with which

to test the candidate solutions. There are three implementation questions concerned

25

with how this testing is conducted (these questions are typically common to problems

requiring sampling methods):

• How many values is each candidate tested against?

• How often are the values reselected?

• Are all candidates tested against the same values?

Suppose for this problem it is decided that there will be 1000 values (decided

upon arbitrarily for the purpose of this example) selected using a random sampling

function prior to execution and each candidate will be tested against all selected

values.

Since multiple samples give multiple intermediate fitness values for each can-

didate, a composition method will need to also be decided upon. Typical composition

methods are summation and averaging; for this example suppose averaging is decided

upon (i.e., the component fitness will be the average of all 1000 intermediate fitness

values).

This requirement is stated as a decision problem, so it must be transformed

to an optimization problem. One possible transformation is to use the fact that if

a function g is an inverse of f , then f(g(x)) = x and anything else yielded by this

can be used to generate an error value (i.e., error =
√
f(g(x))− x); suppose this

method is decided upon for the fitness function component.

3.2.1.2. Classify requirement two. The second requirement is algorithm

induced, which means that it is genotypic and, therefore, tractable; so the true fitness

will be calculated by the fitness function component.

The second requirement is stated as an optimization problem, so no transfor-

mation will be necessary. However, the requirement is a minimization problem and

fitness functions are per definition maximized. One method of changing minimization

to maximization is to negate the output value; assume this for this example.

26

3.2.1.3. Fitness function generation. The first requirement was clas-

sified as a phenotypic, intractable, decision problem with a transformation to opti-

mization. From the classification process we determined that the candidate solutions

will be tested against a static set of values selected before execution, say these values

are stored in an array D. Also, the component fitness will be calculated by taking

the average of all 1000 intermediate fitness values. With this information, the fitness

function component can now be pieced together (where g is the candidate whose

fitness is being calculated):

0.001 ·
∑
x∈D

√
f(g(x)− x (2)

The second requirement was classified as a genotypic, tractable, optimization

problem (with a conversion from minimization to maximization). Through the classi-

fication process, the implementation of this fitness function component is straightfor-

ward (assume that the TreeSize function counts the number of nodes in the argument

candidate solution):

−TreeSize(g) (3)

The final step is to decide how to combine the fitness components. Just like

in the first example, this fitness function would likely work fine as a single equation

(i.e., just sum the component fitness values) or a MOEA could be created using the

components.

3.2.2. Correction of a Sorting Program. The presented guide was

used to create the fitness and objective functions used by modern versions of the

CASC system (described in Section 5). In the publication for the presented guide,

a previous version of CASC was used as a real world case study for the guide. In

this study the performance of a guide generated fitness function was compared to the

27

fitness function used by Arcuri, the author of a similar automated software correction

system (discussed in detail in Section 5.1.2).

Both CASC and Arcuri’s system attempted to correct buggy versions of the

bubble sort algorithm. The fitness functions used by these systems are based on the

specifications of the software being corrected, and so the problem specification used

were that of any sorting algorithm: the output of the algorithm should be the input

in sorted order.

3.2.2.1. CASC system fitness function. From the specifications de-

scribed in the previous section, two solution requirements can be identified:

1. The elements outputted must be in sorted order

2. The elements outputted must be a permutation of the elements inputted

Since we are using GP, tree bloat could be an issue; however, testing of the

CASC operators has shown that the system does not suffer from bloating. So bloat

does not need to be considered in the fitness function.

The first requirement is a problem requirement, which means that it will be

phenotypic. Because the requirement is phenotypic, the next step is to determine

if it is tractable or intractable. There is an infinite number of possible inputs to

a sorting algorithm, so the problem is clearly intractable. This algorithm shows an

example of a case where a requirement is intractable but the sampling method is built

into the problem thus making an additional sampling method unnecessary. This is

due to the fact that the candidate solution inputs are also being evolved in a second

population. So when calculating the fitness for a candidate solution, the algorithm’s

selection operator will select the inputs from the other population. The component

will have multiple intermediate fitness values, so a composition method will need to

be selected; the CASC system uses the average of average value of the intermediate

fitness values as the fitness, so that will be used in this example.

28

The first requirement is stated as a decision problem (i.e., the output is either

sorted or it is not), so it must be transformed into an optimization problem. This

transformation can be done in a number of ways, one of which is by first considering

what it means for an element to be in sorted order among other elements: the element

is greater than or equal to all elements before it and less than or equal to all elements

after it.

A possible approach would be to generate a score for each output element

x that is incremented by one if element x is less than or equal to element x + 1

and also if element x is greater than or equal to element x − 1. The scores for all

elements would be summed and returned as the score for the input. However, using

this approach only considers the relationship an element has with two of the other

elements, disregarding all of the other relationships. This effectively limits the fitness

function component to assess that a variable is in the correct position relative to its

neighboring elements, which essentially means there is no penalty for how far out

of place an element is relative to its correct position. More gradient in the fitness

could be achieved (and as a result more evolutionary guidance provided) if all element

relationships were assessed.

Instead, consider an approach that generates a score for each element x that

is equal to the number of elements before x that are greater than or equal to x plus

the number of elements after x that are less than or equal to x ; the scores for all

elements are then summed up and returned as the score for the output. In this

approach all relationships between the elements are considered and each element is

penalized based on how far out of position it is, which will provide greater guidance

to the search. This scoring approach is implemented for this example as a function

calledCountSorted.

The second requirement is also a problem requirement, meaning that it is

phenotypic. The fitness function component will need to operate on the same input

29

values as the first requirement. As such, this requirement will receive the same clas-

sification as the first (i.e., intractable) and will not need a sampling method specified

(it will use the same as the first).

The second requirement is stated as a decision problem, so it must also be

transformed. A straightforward transformation is to just count the number of ele-

ments missing and use that value. The number of missing elements should be mini-

mized, so a conversion to maximization must be performed. One way to convert this

value is to use it to apply a penalty to the first component, e.g., if all elements are

present, then there is no penalty, if half of the elements are present, then the fitness

of the first component is halved, etc. Say a function is implemented to calculate the

amount of penalty called CalcPenalty.

Using the classifications for the requirements, piecing together the resulting

fitness function is straightforward. The requirements operate on the same set of

inputs (determined by the algorithm selection method) and the second component

acts as a penalty to the first component. The resulting fitness function is shown in

Algorithm 1.

Algorithm 1 Guide Generated Fitness Function for CASC
Score← 0
Inputs← SelectInputArrays()
for i← 1 to SizeOf(Inputs) do

output← execute(P, Inputs[i])
newScore← CountSorted(output)
penalty ← CalcPenalty(inputs[i], output))
Score← Score+ newScore · penalty

end for
P.F itness← Score

SizeOf(Inputs)

30

3.2.2.2. Results in comparison. The comparison was made against the

original version of Arcuri’s system [8, 11, 9]. In addition to some key design differences

(described in Section 5.1.2), the system used two additional requirements that were

not used in the CASC system. The full set of requirements considered in Arcuri’s

fitness function is as follows:

1. The elements outputted must be in sorted order

2. The elements outputted must be a permutation of the elements inputted

3. Program tree size should be minimized

4. Run time exceptions should be minimized

The added third requirement is a straight forward algorithm induced require-

ment, an example is shown in Section 3.2.1. The fourth requirement is an additional

problem requirement that is made possible by the fact that Arcuri’s system interpre-

tively executes the candidate solution programs, whereas the CASC system compiles

the programs and executes the resulting binary program. Using interpretive execu-

tion, Arcuri’s system is able to count and respond to (i.e., step over) exceptions that

arise during execution. Run time exceptions in the CASC system result in program

termination and the candidate solution is assigned the minimum fitness value. The

guide classifications of both fitness functions are shown in Table 3.1.

When comparing the systems, both were tested against the same buggy soft-

ware and both used parameter configuration values that were as equivalent as possible.

The software being corrected consists of eight buggy implementations of bubble sort

detailed in [11].

Four system configurations were considered. Results are presented for Arcuri’s

system both using the automatically generated fitness function and additionally the

same fitness function with an added short program penalization (under the rationale

31

Table 3.1: Classification of Both Fitness Functions Considered

Req. Classification
CASC Fitness Function

1 Phenotypic Intractable Decision
2 Phenotypic Intractable Decision

Arcuri Fitness Function
1 Phenotypic Intractable Decision
2 Phenotypic Intractable Decision
3 Genotypic Tractable Optimization
4 Phenotypic Intractable Optimization

that “it is very unlikely that a correct solution (i.e., an evolutionary program that

satisfies the formal specification) might be much smaller (i.e., having many less nodes)

than the buggy instance” [11]). Experiments were conducted with the CASC system

using the guide generated fitness function as well as Arcuri’s fitness function (except

for the run time exception portion). The results of all experiments are summarized

in Table 3.2.

Table 3.2: Experiment Success Rates Over 100 Runs

Bug Arcuri Arcuri w/ CASC w/ CASC w/

ID Penalty Guide Fit. Arcuri Fit.

1 64% 84% 98% 100%

2 74% 94% 92% 90%

3 83% 97% 96% 43%

4 68% 85% 53% 66%

5 68% 79% 0% 0%

6 0% 0% 6% 6%

7 0% 0% 0% 0%

8 0% 0% 0% 0%

32

The results presented in Table 3.2 provide evidence showing that the guide

generated fitness function performs at least as well as the fitness function used in the

state of the art system (and even performs better in some cases) for the first three

bugs considered. For the fourth bug the guide fitness function is still competitive,

though it does not perform as well as Arcuri’s fitness function. In many of the

CASC experiments using the Arcuri fitness function, a conspiracy of fitness function

components occurred resulting in the solution program simply outputting the values

1, 2, 3, 4, .., regardless of input; Arcuri reports similar observations when using the

fitness function with his system [9]. The guide generated fitness function, however,

had no occurrences of a fitness function component conspiracy. The significance of

these results is that they provide evidence that the guide can be used by a practitioner

to generate a competitive fitness function (in terms of quality).

The performance of the two systems on the fifth bug is anomalous, as there

is no obvious reason for the differences in performance. However, this difference may

be due to the different operators employed by the two systems.

33

4. AUTOMATED FAULT LOCALIZATION

Fault localization is an essential step in software debugging and it is also

the most expensive step in this process [96]. The high cost of fault localization is

due to the fact that in many cases software errors are located manually employing

software analysis tools and techniques. Therefore the task of fault localization would

greatly benefit from automation. This serves as motivation for the development of

automated tools and techniques that either assist in or autonomously accomplish fault

localization.

This section presents the Fitness Guided Fault Localization (FGFL) system,

which focuses on fault localization in software for which a fitness function can be de-

rived and source code is available. This derivation can be from specifications (formal

or informal), an oracle (e.g., the software developer), or some other source. In the

FGFL system, the fitness function should both indicate when the software is per-

forming correctly and quantify the degree of error when software operates incorrectly.

The FGFL system novelly employs the fitness function to guide dynamic analysis of

the software in question.

The FGFL system employs an ensemble of dynamic analysis techniques to per-

form fault localization. Currently, three such techniques have been implemented. The

techniques currently implemented are: trace comparison, trend based line suspicion,

and run-time fitness monitor.

Each FGFL technique can be activated or deactivated for a given run, which

allows the user to omit a technique if it is expected to not be applicable for a particular

program. The results for activated techniques are aggregated using a confidence based

voting system in which each technique has a number of votes it can potentially apply

to lines in the software suspected to contain the error.

34

A series of preliminary experimentation is presented using a prototype of the

FGFL system in which it is tested against a variety of seeded software errors. Multiple

technique configurations are also tested in an attempt to identify synergies between

the techniques for various bug types. The results of these experiments demonstrate

the potential of automated fitness guided fault localization and serve as a proof of

concept for the FGFL system.

Of the three techniques currently implemented in the FGFL system, two are

enhanced versions of established techniques; namely, execution slice comparison (or

dicing) [6] and the Tarantula technique [51, 50, 49]. The FGFL versions of these

techniques exploit the fitness function in order to strengthen the established tech-

niques. The dicing technique achieves a higher degree of automation through the

fitness function, which serves as an oracle that can indicate test cases that pass or

fail at run time. The modification of the Tarantula technique to exploit the fitness

function allows a higher degree of precision in the results by introducing a gradient to

test case performance. The run-time fitness monitor is a completely novel technique,

which tracks changes in fitness during the execution of the program.

4.1. RELATED WORK

Automatic fault localization is a very active research field with a vast amount

of research literature. Due to space considerations, only the most pertinent research

to the FGFL system is reviewed here. For a more in depth discussion of this field

see [111, 107].

Static slicing [63] was proposed as a technique to assist in bug localization

by isolating possible areas that can contain an error. Static slicing uses static code

analysis techniques to determine the statements that may influence a variable at a

given point in the program. Dynamic slicing [56, 5, 4] is similar to static, except that

more information is used to determine which statements actually influence a variable

35

reference, rather than the lines that may. An execution slice [3] is the set of lines

that are executed for a given test case. The trace comparison technique implemented

in the FGFL system is an enhanced version of execution slice comparison [6], which

takes the set difference between the execution slices of a passed and a failed test case,

termed the dice. The dice for the negative test case (i.e., the lines unique to the failed

test case execution slice) are indicated as likely containing the error. This technique

is described in more detail in Section 4.2.2. Also, a new FGFL technique is being

considered, which combines dynamic slicing techniques with the fitness monitor; this

is discussed further in Section 7.

Delta debugging [110, 112] is an approach that has some conceptual similarities

to the trace comparison technique included in the FGFL system. In delta debugging,

positive and negative test cases are sought after that minimize the difference between

their execution traces. This is accomplished by studying cause-effect relationships

by isolating portions of the test case input that are related to the observed error.

Iterative delta debugging [13] applies the delta debugging technique to more complex

errors that are masked by other errors in the software. Though similar conceptually,

the implementation of the trace comparison and the assumptions made regarding the

trace are different between the FGFL technique and delta debugging. Primarily, the

assumption that minimizing the difference between positive and negative execution

traces is beneficial is not held in the FGFL system, as an error can just as easily be

the result of the code that was not executed as the code that was. The FGFL trace

comparison technique takes a more conservative approach, using the largest difference

between execution traces in order to avoid overlooking an error. This approach results

in a sometimes increased search space versus delta debugging, which minimizes the

search space at the cost of sometimes overlooking an error.

The Tarantula debugging tool [51, 50, 49] is a coverage-based technique that

monitors, for each line, how many positive and negative test cases execute the line.

36

Lines are assigned suspicion levels based on the proportions of passed and failed test

cases that executed the line in question. The trend-based line suspicion technique

in the FGFL system is an enhanced version of this technique. In the Tarantula

technique, the contribution a test case has to an executed line is binary, i.e., the test

case was either passed or failed. With the addition of a fitness function, a gradient is

achieved when assessing the test cases that executed a line; test cases that performed

very poorly contribute more suspicion to the line than test cases that are near correct.

Also, test cases that are passed reduce suspicion in the lines executed. The results are

then adjusted using confidence values based on the minimum and maximum possible

suspicion obtainable, which is similar to the H heuristic in Tarantula.

4.2. FITNESS GUIDED FAULT LOCALIZATION

The FGFL system currently operates on a subset of C++ programs (no focus

has been placed on fault localization in object oriented software). During execution,

the system takes the source code of the software to be corrected as input. Next, a

copy of the source code is made that has been instrumented to produce technique-

specific output that is used for analysis by the selected techniques. An automatically

defined and instantiated class is added to the source code, which is responsible for

managing the output details as well as various file streams used to output execution

information. Calls to the member functions of this class are automatically placed

throughout the source code as is appropriate for the activated techniques.

Figure 4.1 shows a high level view of the general operation of the FGFL system.

Each block in this flow chart is discussed in detail in this section.

The FGFL system uses an EA to generate a set of test cases for the program

in question. A polymorphic test case object is used by the system to define what

a test case is for a given problem as well as various operations needed to evolve a

population of the test case. This object is described in detail in Section 5.2.1.

37

Figure 4.1: High Level Flow Chart of the FGFL System

Some of the techniques used by FGFL apply suspicion to lines based on the

fitness value for a test case. Given this, there needs to be a balance between both

positive and negative test cases as well as among the negative test cases. And so, the

test case generation EA used in FGFL has two goals: first to create a specified number

of positive test cases (i.e., test cases that do not demonstrate any error), second to

create negative test cases (i.e., test cases that demonstrate the error) that have a

uniform distribution of fitness values. The fitness used in the generation EA (called

the generation fitness) is based on what is desired in the performance fitness values of

the generated test cases. The first goal is accomplished by giving positive test cases

an arbitrarily high generation fitness as long as the specified number of positive test

38

cases has not been found. Once a sufficient number of positive test cases are created,

additional positive test cases are given an arbitrarily low generation fitness. Negative

test cases are assigned a generation fitness value equal to the minimum difference

between the test case’s performance fitness and that of all other test cases in the

population. This essentially applies pressure between the negative test cases, pushing

them apart from each other in terms of performance fitness. If the specified number

of positive test cases or a uniform negative test case distribution is not created, then

the user is prompted about whether or not to continue with the fault localization

process.

Through testing all generated test cases, each selected technique generates a

suspicion level for each line in the program being considered. The techniques are given

an equal number of freely distributable votes, which are used to indicate where the

error is according to the results obtained by the technique. These votes are applied

to lines in the program based on the technique’s confidence that the line contains an

error. The confidence for a line is a function of the suspicion level for that line and

both the maximum and minimum possible suspicion obtainable for the technique,

which are described in the detailed technique descriptions later in this section. The

number of votes allotted to each technique is equal to the Lines Of Code (LOC) count

in the program being considered. Each technique can distribute its votes as it sees

fit, with no restriction placed on the number of votes that must be cast (i.e., the

techniques can use a fractional portion of the votes allowed). After each technique

has distributed its votes across the program, the votes for each line from all techniques

are averaged to obtain the final suspicion levels for each line of code. This aggregation

scheme allows for a great deal of flexibility in the FGFL system and also allows the

techniques to contribute to the result as much as is appropriate.

4.2.1. Running Example. Through this discussion, an incorrect version

of bubble sort will be used as a running example. For the sake of clarity, the running

39

example is a reduced version of the experiments detailed in Section 4.3. The formal

specifications for this program are:

• ∀ 0 ≤ i < SIZE: data[i] ≤ data[i+1]

• ∀ x ∈ input: x ∈ data

The program will take in a test case (an ordered list of SIZE values) in the

form of an input array. The data array will start as a copy of the input array (so the

input array can be used to make sure values are not lost), be sorted in place, then will

be output as the result of the program. The output (i.e., the resultant data array) of

the program will be correct when it satisfies all program specifications. Pseudocode

for the running example program is shown in Algorithm 2. To make this example

more illustrative, assume that the pseudocode in Algorithm 2 is embedded in a longer

program, say 15 lines, where all lines not shown can be assumed to be correct. In

this figure, the error is shown on line 11, in which data[i] should be temp.

Algorithm 2 Pseudocode for Running Example Program

5: data← input
6: for i← 0 to SIZE do
7: for j ← 0 to SIZE − 1 do
8: if data[j] > data[j + 1] then
9: temp← data[j]
10: data[j]← data[j + 1]
11: data[j + 1]← data[j]

end if
end for

end for

The fitness function used in this running example will be the one generated

using the fitness function design guide discussed in Section 3, shown in Figure 1 on

page 29.

40

The test cases that will be used with this example are shown in Table 4.1,

along with the output produced for each test case by the running example program

and the resulting fitness for the run. This example will divide the fitness function

range into four segments and will use one test case for each segment.

Table 4.1: Test Cases and Fitness Values for Running Example

ID Input Array Data Array Fitness Test Case Type
TC1 [1, 2, 3, 4, 5] [1, 2, 3, 4, 5] 1.00 positive
TC2 [1, 2, 4, 3, 5] [1, 2, 3, 3, 5] 0.80 negative
TC3 [1, 2, 4, 5, 3] [1, 2, 3, 3, 3] 0.60 negative
TC4 [5, 2, 4, 1, 3] [1, 1, 1, 1, 3] 0.40 negative
TC5 [5, 3, 4, 2, 1] [1, 1, 1, 1, 1] 0.20 negative

4.2.2. Trace Comparison Technique. The trace comparison technique in

the FGFL system is conceptually based on the execution slice comparison technique

presented by Agrawal et al. in [6], though there are a few notable variations in

the FGFL version. The trace comparison technique compares the traces of each

positive/negative test case pairing, attempting to find where in the execution the

negative test case diverged from the positive. Rather than doing a strict set difference

to find the negative execution dice, divergent execution paths in the negative traces

are detected using a version of the dynamic programming solution to the Longest

Common Substring (LCS) problem (where the strings being considered are the lists

of line numbers executed when using the test cases) that has been modified to interpret

the results differently.

Table 4.2 shows an example of the table generated by the modified LCS al-

gorithm when comparing the traces for positive test case TC1 and negative test case

TC3 in the running example. A value, x, in this table indicates that the last x lines

in the traces at that point (i.e., the corresponding line in that row/column of the

41

Table 4.2: LCS Tabulation Used to Find the Divergent Path Between TC1 and TC3

in the Trace Comparison Technique

traces) are matched. It is assumed that the executions will execute the same lines

initially, which will be termed the path header, and will eventually sync back up after

the divergent path to execute the same lines at the end, termed the path footer. The

bolded values along the diagonal of Table 4.2 in the upper left hand segment repre-

sent the path header. The dashed edges at the end of the path header represent the

start of the divergent path. The bolded values along the diagonal in the lower right

hand segment represent the path footer. The dashed edges at the start of the path

footer represent the end of the divergent path. The vertical dashed edges define the

divergent path in the negative test case trace and the horizontal dashed edges show

the lines that were executed in the positive test case until the two traces re-synced.

The table generated by the modified LCS algorithm contains a great deal of in-

formation regarding the execution traces. Methods to further exploit this information

are being investigated and are discussed in Section 7.

42

The most notable weakness of Agrawal’s technique (and as such the trace

comparison technique in FGFL) is the assumption that any branching that occurs in

the execution is relevant to the performance of the program. However, it is possible

for a divergent path to exist between two positive test cases due to a benign (relative

to program performance) branch in the execution. A benign branch that is distant

(in terms of executed statements) from the actual error could affect the divergent

path a great deal. If this problem is a possibility for a given program (it is not in

the running example), a technique that can overcome this issue is to generate the

execution dices between all positive test cases obtained; any lines that are present in

one of the generated dices are marked as invalid boundaries for the divergent path.

This technique can be further strengthened by generating additional positive test

cases.

Suspicion is added evenly to line numbers found in the divergent paths of

negative test cases. This technique is not useful in the event that there is no difference

between positive and negative test cases, such as when the error is not a branch error.

Cases in which a strict set difference can be used to determine lines unique to

the negative execution slice are still being investigated, as this would help to tighten

the boundary for the bug location in some situations. Consider the running sorting

example; in this example line 11 contains the error and as such the positive test

case, TC1, never executes lines 9-11. The divergent paths in the negative test case

traces begin the first time that lines 9-11 are executed. Since these lines are in a

branch statement that is contained in nested loops, both the branch statement (line

8) and the two loop statements (lines 6 and 7) are also included in the divergent

path. Table 4.3 illustrates the differences between the lines that are included in the

positive trace and the lines included in a divergent path. In the case of this error,

it is safe to strictly remove any lines that are both in the positive trace and the

divergent path from consideration, leaving only lines 9-11 as likely locations for the

43

error. This results in a considerably tighter boundary on the potential bug location

when compared to reporting all lines in the divergent path.

However, assume that the running example is adjusted to place the error on

line 7 and line 11 is now correct. Say that the new error reduces the number of

iterations of the inner loop. In this case the positive trace and the divergent paths

will still include the lines indicated in Table 4.3, but if lines from the positive trace

are removed from consideration in the divergent path, then the true bug location will

not be reported. For this reason, the FGFL trace comparison technique does not

remove lines in the positive trace from consideration in the divergent path.

Table 4.3: Comparison Between Traces for Running Example

Relevant Lines in Positive Trace 5 6 7 8
Relevant Lines in Divergent Path 6 7 8 9 10 11

Votes are distributed in this technique evenly amongst the lines indicated by

corresponding suspicion levels. There is not currently a mechanism implemented for

this technique to apply only a portion of its votes. The binary nature of this technique

makes the development of such a mechanism difficult, as a line was either executed

by the negative test case or it was not. Possibilities for this addition are discussed in

Section 7.

Table 4.4 shows the results of the trace comparison method on the running

example.

4.2.3. Trend Based Line Suspicion Technique. The Trend Based

Line Suspicion (TBLS) technique employs the fitness to determine the amount of

suspicion to add to all lines in a given execution. Ideally, lines that are executed more

frequently in low performance executions will tend to accumulate more suspicion than

44

Table 4.4: Vote Assignments for Trace Comparison Technique on Running Example

Line(s) 1-5 6 7 8 9 10 11 12-15
Votes 0 2.5 2.5 2.5 2.5 2.5 2.5 0

those executed by both positive and negative test cases. This technique is sensitive

to both branch and loop related errors in software.

The TBLS technique is an enhanced version of the Tarantula technique pre-

sented by Jones et al. in [51, 50, 49]. As mentioned earlier, the TBLS technique

exploits the fitness function in order to provide additional gradient the the Tarantula

technique. In Tarantula, the H heuristic is used to calculate line suspicion based

on the number of passed and failed test cases that execute the line. In the TBLS

technique, the amount of suspicion applied to a line is a function of the fitness for the

test case (i.e., how the program performed with the test case as input). The addition

of the fitness function allows for a higher degree of precision in the application of

suspicion to program lines.

The TBLS technique uses an equation that is a function of the fitness for

an execution and calculates a Suspicion Adjustment Amount (SAA). Currently, it is

assumed that the fitness function is normalized to fall in [0, 1], which implies that

the fitness function needs to be bounded; however, a modification is possible to allow

unbounded fitness functions and is discussed in Section 7. The range of this function

should be centered about the midpoint in the fitness range and should output positive

SAA for low fitness values and a negative SAA for high fitness values. The linear

equation to achieve these characteristics in the SAA is:

SAA = −2 · fitness+ 1 (4)

45

In this function, the SAA is calculated by inverting the fitness and scaling it to

fall between [-1,1]. Preliminary experimentation has shown that this linear equation

performs well for the current experimental problem set. Non-linear versions of this

equation may be investigated in the future if experimental results indicate a need for

this.

Each line in the program has an associated suspicion level (zero initially). The

program is executed for a set number of test cases; an even sampling of high/maximum

fitness and low/minimum fitness runs is ideal, which is achieved by the segmented

test set. For each execution, the SAA is calculated and added to the suspicion levels

of the lines in the trace for the run. Ideally, lines that are executed more (or even

solely) by the low/minimum fitness executions should have a higher suspicion level,

whereas lines executed by either both low and high or just high fitness executions

should have a low suspicion.

Algorithm 3 shows how confidence values (and ultimately, votes) are calculated

from line suspicions. This algorithm is conceptually similar to the H heuristic used

in the Tarantula technique. The S array is filled using the traces and SAA values

generated by test case executions, after which Algorithm 3 is employed. After the

application of this algorithm, the values in the C array indicate the number of votes

that will be applied to the corresponding lines. Lines 1-5 make all suspicion values

positive, if necessary. Lines 6-9 are where confidence levels are calculated. The

calculation on line 7 determines how many votes will be applied to line i based on

the proportion of suspicion the line contributes to the sum of all suspicion obtained.

However, this calculation does not take into account the confidence of the results, i.e.,

at this point a small suspicion level (relative to the maximum possible suspicion) can

receive a large number of line votes if it represents a large portion of the total suspicion

that was obtained. This discrepancy is accounted for on line 8, which adjusts the vote

amount obtained on line 7 based on how much suspicion line i obtained relative to

46

Algorithm 3 Algorithm for Determining Confidence Values

1: if Min(S) < 0 then
2: for i = 1 to LOC do
3: S[i] = S[i] + |Min(S)|
4: end for
5: end if
6: for i = 1 to LOC do
7: C[i] = S[i]·LOC

Sum(S)

8: C[i] = C[i] · S[i]−Smin

Smax−Smin

9: end for

• C: array that ultimately contains confidence values for each line

• S: array that contains the calculated line suspicion values

• Smax and Smin: the maximum and minimum suspicion values possible, respec-
tively

• Min(): returns the minimum value in the argument array

• Sum(): returns the sum of the values in the argument array

the total suspicion possible.

The minimum possible suspicion value, Smin, is attained when a line is in the

execution trace of every test case that generates a negative SAA and in no test case

traces that generate a positive SAA. Similarly, the maximum possible suspicion value,

Smax is attained when a line is in the execution trace of every test case that generates

a positive SAA and in no test case traces that generate a negative SAA. The FGFL

system determines these values as it generates test cases.

Table 4.5 contains the unaltered suspicion values, raw votes (i.e., not taking

confidence into consideration), and confidence-based votes for the running example.

The raw votes in the table are the values of the C array after line 7 of Algorithm 3

and the confidence-based votes are these values after line 8.

47

Table 4.5: Vote Assignments for Trend Based Line Suspicion Technique on Running
Example

Line(s) 1-5 6 7 8 9 10 11 12-15
Suspicion -1 -1 -1 -1 0 0 0 -1
Raw Votes 0 0 0 0 5 5 5 0
Confidence

0 0 0 0 3.46 3.46 3.46 0
Votes

4.2.4. Fitness Monitor Technique. The fitness monitor technique tracks

fitness values during program execution. For each test case, the technique calculates

the difference between the fitness before and after each line, which shows the effect

that the line has on the fitness value. The lines that cause a change in fitness (termed

fluctuation lines) and the surrounding lines are of interest in order to monitor them

as units rather than individual lines, which is further explained later in this section.

When using the fitness monitor technique, the user supplies information on

the variable(s) in the source program that are necessary for fitness calculation (using

constructs provided by the FGFL system). In the running example, the data array

would be indicated (the input array is already known, as it was provided by the

system). Also, the user would indicate that data is an array of five integers and

that the lines during which data should be monitored are 5 through 15 (this allows

proper scoping and/or variable initialization, if needed). Using the provided FGFL

constructs this process is simply accomplished in four statements. When creating

the instrumented version of the source program, the FGFL system creates member

functions in the generated class that are used to output the indicated variables to a

file along with line numbers to indicate the last two lines that were executed. Calls to

these functions are then placed throughout the source code. After execution, the file

containing this information is analyzed and fluctuation lines are noted by the system.

48

For each fluctuation line, fluctuation regions are determined. A fluctuation

region is defined as a set of lines during which the fitness is changing. Each region

begins with a single fluctuation line, and additional lines are added to the region until

the fitness becomes stable surrounding the region (i.e., adding additional lines would

not affect the overall fitness change across the region). It is possible for fluctuation

regions to overlap, which allows emphasis to form on lines that are commonly con-

sidered to contribute to changes in fitness. The purpose of the fluctuation regions is

to attempt to monitor the overall effect of code segments, rather than single lines.

To illustrate the benefit of fluctuation regions, consider the program in the

running example. In this program, lines 9-11 perform a swap operation. The fitness

function for this example applies a penalty when values present in the input are not

present in the output (i.e., the data array). Even in a correct version of the running

example program, after line 10 is executed an input value will not be in the data array,

which will cause a decrease in fitness. Without fluctuation regions this decrease in

fitness would cause the fitness monitor technique to report that line 10 likely contains

an error. However, with fluctuation regions, lines 9-11 are considered a region, which

overall increases fitness (still assuming that a correct version of the program is being

used) and as such will not be indicated to contain an error.

Lines contained in fluctuation regions that overall cause a decrease in fitness

receive increased suspicion (incremented by one). Currently, regions that cause an

increase in fitness do not affect line suspicion values; however, the possibility of these

lines receiving a decrease in suspicion is being considered in future experimentation.

After all test cases have been executed, the suspicion values are converted to raw votes

and then to confidence based votes using Algorithm 3. Smax is defined as the total

number of fluctuation lines found in all test cases. This value is achieved if the line

is contained in every fluctuation region that causes a decrease in fitness. Smin is zero

in this technique, which is achieved if a line is either never included in a fluctuation

49

Figure 4.2: Fitness Plots for the Running Example

region or is only included in those that cause an increase in fitness.

Figure 4.2 shows the plots for fitness values during execution of the running

example. For each test case, the only fluctuation line indicated is line 10. Each drop

in fitness in Figure 4.2 is a point in the execution where line 10 was executed. The

only exception is in TC2. In this test case one value is out of place in the input

array, which is reducing the fitness to 0.8; when line 10 executes, the last value is

overwritten by the out of place value. At this point the array is in sorted order, but

is being penalized for loosing a value from the input, resulting in a fitness of 0.8, and

as such, no fluctuation in fitness is observed.

The fluctuation regions for TC3, TC4, and TC5 are established around line 10,

and include lines 9 and 11. Every time a fluctuation region has an overall reduction

in fitness, the region includes these lines. Due to this, lines 9, 10, and 11 all have

suspicion equal to Smax and receive all votes, as shown in Table 4.6.

50

Table 4.6: Vote Assignments for Run-Time Fitness Monitor Technique on Running
Example

Line(s) 1-5 6 7 8 9 10 11 12-15
Votes 0 0 0 0 5 5 5 0

4.2.5. Result Combination. After all test cases have been executed, the

results are combined and presented. The overall votes for each line are calculated

by taking the average votes applied to that line by each technique. Averaging was

chosen over other aggregation techniques to counter false positives in the individual

techniques that were not caught by the confidence based vote adjustments.

Table 4.7 shows the votes for all techniques and the overall votes applied to

each line. Lines 9-11 received the most votes overall and as such would be reported

as the most likely location for the error.

Table 4.7: Vote Assignments for Running Example

Line(s) 1-5 6 7 8 9 10 11 12-15
Trace

0 2.5 2.5 2.5 2.5 2.5 2.5 0
Comp.

TBLS 0 0 0 0 3.46 3.46 3.46 0

Fitness
0 0 0 0 5 5 5 0

Monitor

Overall 0 0.83 0.83 0.83 3.65 3.65 3.65 0

4.3. EXPERIMENTAL SETUP

The FGFL system has been tested on a statistical analysis program that reads

in a set of values, performs a set of statistical calculations on the input values, sorts

51

the input values, and then performs additional statistical calculations on the values

that require the values to be sorted. Three versions of the program were used, each

of which uses a different sorting technique: bubble sort, insertion sort, and selection

sort. The programs are all between 46 and 50 lines long. The bugs for these programs

were seeded in and are described in Table 4.8. These experiments are to function as

both a proof of concept of the system as a whole and a test to expose strengths,

weaknesses, and synergies within the system.

Table 4.8: Description of Buggy Programs used to Test the FGFL System

Algorithm ID Bug Type Bug Line(s)
Bubble Sort BBL1 Incorrect Array Index 26

Incorrect Array Index 27
Bubble Sort BBL2 ’-’ Used in Place of ’+’ 27

Insertion Sort INS1 Incorrect Index Variable 28
Insertion Sort INS2 Incorrect Loop Predicate 25
Selection Sort SEL1 Copy & Paste Error 27,28
Selection Sort SEL2 Incorrect Branch Predicate 26
Selection Sort SEL3 Incorrect Loop Predicate 25

For the presented experimentation a test case was defined as a set of seven

values (this length was arbitrarily selected). 10 sets of randomly generated test cases

were used to test each program. Each test case set consisted of 75 test cases, of which

15 were positive. The fitness range was divided up into four regions [0, 0.2), [0.2,

0.4), [0.4, 0.8), and [0.8, 1.0), with each region also consisting of 15 test cases.

The specifications for this program would contain assertions indicating that

the first set of statistical results are correct, that the values were correctly sorted,

and that the second set of statistical results are correct. As such, the fitness function

for these programs would consist of components responsible for checking each set

of assertions. For simplicity, the sorting portion of this fitness function has been

52

focussed on, as that is the section of the program where all of the errors were seeded.

The fitness function used in the running example (shown in Algorithm 1) was used in

the presented experiments, with the modification to allow descending sorting as well

as ascending under the rationale that difference between the two is just a matter of

result interpretation and has no bearing on the correctness of the calculations.

4.4. RESULTS

The results obtained from the proof of concept experiments are summarized

in Table 4.9. This table shows the average rank of the bug line(s) in the results for

each possible FGFL configuration, where a line’s rank is defined as the number of

lines whose votes are greater than or equal to that of the line in question (if the bug

spans multiple lines, then the minimum votes between the lines is used).

Table 4.9: Average Rank of Bug Line in Experiment Results

Trace
AllTrace TBLS & Comp.

Trace Fit. Comp. Fit. & Fit.
Prog. Comp. TBLS Mon. & TBLS Mon. Mon.

BBL1 16.0 10.9 4.0 4.9 4.0 3.0 3.0
BBL2 16.0 4.9 2.0 4.9 1.0 2.0 1.0
INS1 17.0 45.9 1.0 22.4 1.0 1.0 1.0
INS2 17.0 45.0 6.0 20.9 12.1 5.3 10.6
SEL1 20.0 9.9 46.0 4.5 9.9 20.0 4.5
SEL2 49.0 49.0 49.0 49.0 49.0 49.0 49.0
SEL3 20.0 45.8 8.9 25.8 15.9 8.3 15.9

From these results it is apparent that the system has trouble identifying errors

in control predicates (e.g., INS2, SEL2, and SEL3). This result, however, is not un-

expected given the nature of the techniques in the FGFL prototype. Errors in control

53

statements often require special consideration in fault localization techniques, and no

such consideration was made in the FGFL prototype. None of the techniques were

able to narrow down the location of the bug in SEL2. This error, in particular, caused

a branch predicate to always evaluate to false. This result reveals the system’s need

for a technique focusing on statement reachability, which could implicate incorrect

predicates as a result.

The single technique that seemed to perform the best was the run-time fitness

monitor, with the exception of SEL1. In this program the error was in variable

assignments which indirectly influence a drop in fitness; this indirect effect on the

fitness caused the technique to report lines that were just a symptom of the true bug.

In light of this result, a technique that combines the concept of the run-time fitness

monitor with a dynamic slicing technique may be beneficial to the system; this is

discussed further in Section 7.

In general, the addition of the trace comparison or run-time fitness monitor

technique to another technique (including each other) appears to result in a lower

average bug line rank for the technique. The addition of the TBLS technique to a

technique, however, seemed to in many cases increase the average bug line rank for

the technique. Inspection of the experiment result data indicates that this is largely

due to benign branching in the statistical calculation portions of the program. This

observation indicates that a similar mechanism as the one described in Section 4.2.2

(to account for benign branching) needs to be added to the TBLS technique.

On the non-control oriented bugs the system performed very well. With all

techniques active, the system averaged a bug line rank of less than 5 (i.e., a 90% or

more reduction in lines from the original source). In many cases the combination of

all techniques outperformed the techniques operating independently, which indicates

54

that the ensemble approach of the FGFL system is effective.

4.5. TARANTULA+

A second fitness guided fault localization system has been created, based on

the trace comparison and TBLS techniques in the FGFL system. This system is

called Tarantula+1. Tarantula+ removes many of the assumptions that Tarantula

makes as well as improves and further automates the process originally proposed by

Jones

Tarantula+ uses the results of trace comparison and TBLS techniques along

with static analysis of the faulty program to discover lines that are most likely re-

sponsible for causing an error. The TBLS technique has been altered to allow test

cases with more extreme fitness values alter line suspicion more dramatically. This is

done by using Algorithm 4.

Algorithm 4 Suspicion Adjustment Amount Calculation used in Tarantula+

SAA = −2 · fitness+ 1
if SAA < 0 then

SAA = −(SAA2)
else

SAA = SAA2

end if

Additionally, the support was added to modified TBLS technique that allowed

the user to indicate error branches in the program through the use of an error comment

(the specific comment used is indicated to the Tarantula+ system via the system’s

configuration file). All lines in an identified error branch would automatically be

1The Tarantula+ system is the work of the author and his undergraduate mentee Alex Bertels.
This section summarizes the preliminary studies performed on the system as presented in Alex’s
CS390 Undergraduate Research report and which are the basis for a conference paper in preparation.

55

given zero suspicion. This was done becuase positive test case execution traces would

receive a negative SAA value, making them less suspicious than lines in error branches

that were never executed, which could confuse the system results.

Tarantula+ has the capability of providing additional automated static anal-

ysis of the faulty program using the parse trees produced by the system’s parser (the

same parse used by the CASC system, described in Section 5.2.2.1). By using these

trees to find various relationships between statements and code elements, additional

suspicion can be applied to lines indirectly responsible for the incorrect outcome. For

instance, the conditions within branch and loop statements that determine whether

or not certain lines are executed indirectly affect the final outcome of the program.

Using the trace comparison and TBLS techniques, branch and loop statements that

contain the error can be ran by both positive and negative executions and would

not receive as much suspicion as the lines within its scope. By allowing the loop or

branch to contain as much suspicion as the most suspicious line that is in its scope,

the statement can take responsibility for running lines that should not have been ran.

Another observation made by the system is that if an incorrect condition of an

’if’ statement causes that condition to result in false when it should have been true,

then the corresponding ’else if’ and ’else’ statements are given the option of executing

lines within their scopes. This could result in the ’else if’ or ’else’ statements receiving

suspicion for the ’if’ or another ’else if’ having wrong conditions. A solution to this

problem was to take the sum of the suspicion to the corresponding ’if’, ’else if’, and

’else’ statements and apply the sum to each of the statements.

The last observation currently made by the system addresses the idea that an

incorrect assignment of a variable can affect any other statement that variable may

be on. For each function, each variable will accumulate suspicion for each suspicious

line that the variable appears in. These suspicion totals will be assigned to any line

in which that variable is assigned a value or is incremented or decremented.

56

These three observations take advantage of the suspicion applied by the tech-

niques and the relationships between statements to correctly distribute suspicion.

This process is crucial to avoid misrepresenting the likeliness that a line contains the

fault.

4.5.1. Preliminary Tarantula+ Results. Some preliminary experimen-

tation has been performed using the Tarantula+. The results of these experiments

are summarized in Table 4.10. In these experiments, the trace comparison technique

was only used for analysis of single function programs or in programs where the diver-

gent path was in one function. The current implementation of the technique does not

provide meaningful results if the divergent path starts and ends in different functions.

More work is currently being done to ensure that the technique only adds suspicion

to those lines in the divergent path and not every line that falls between the start

and end.

Two programs of the Siemens Suite, a widely-used set of programs for fault

localization, were tested along with some additional programs. These programs are

listed with a description of some of the errors tested, the techniques used, and how

the error line placed in comparison to the other lines in the program. Programs such

as print tokens2 and replace, which contain many branch and loop statements, allow

for more variety in the execution traces. Having a unique execution trace is ideal

for any fault localization system. The results for shorter programs like remainder

and triangleClassification benefit less from the additional suspicion added by the

analysis of the program and more from the direct results of techniques. Future work

will include finding a balance between the analysis suspicion and technique suspicion

based on the program length.

57

Table 4.10: Preliminary Tarantula+ Results

Program Error
Techniques Error Rank

Used (Percentile)

print tokens2

Condition:
TBLS 97.70%

Incorrect Index

Condition:
TBLS 95.70%

Additional Condition

Incorrect assignment TBLS 96.90%

Semicolon after
TBLS 54.00%

if statement

replace

Condition:
TBLS 75.00%

> instead of ≤
Incorrect assignment TBLS 94.90%

tcas2

TBLS +
52.00%

Condition: Trace Comparison

Missing Condition TBLS 0.00%

Trace Comparison 52.00%

TBLS +
94.80%

Condition: Trace Comparison

|| instead of && TBLS 94.80%

Trace Comparison 94.80%

Incorrect Assignment

TBLS +
98.30%

Trace Comparison

TBLS 98.30%

Trace Comparison 98.30%

remainder
Incorrect Assignment

TBLS +
94.10%

Trace Comparison

Incorrect Operator
TBLS+

30.00%
Trace Comparison

triangleClass.

TBLS +
47.00%

Condition: Trace Comparison

&& instead of || TBLS 47.00%

Trace Comparison 54.00%

58

5. COEVOLUTIONARY AUTOMATED SOFTWARE CORRECTION

For a given program, testing, locating the errors identified, and correcting those

errors is a critical, yet expensive process. The National Institute of Standards and

Technology has estimated that inadequate software testing tools and methods cost

the U.S. economy alone between $22.2 and $59.5 billion a year [92]. Detecting and

fixing errors is typically a difficult, time-consuming, and manual process. The number

of software bugs typically exceeds the resources available to address them. In many

cases, mature software projects are forced to ship with both known and unknown

errors for lack of development resources to deal with every defect. Clearly, efficient

and effective software testing and correction methods need to be developed [37]. A

variety of challenges need to be overcome in order to achieve this, some of which are

addressed in this article.

One of the major challenges is how to explore the large related spaces of test

case and correction possibilities. The space of all possible programs is theoretically

infinite (though limited in a practical sense by memory size). If a buggy program

is viewed as a single point in this space, it is reasonable to assume that the correct

version of the program will likely be near that point in terms of modifications, under

the rationale that programmers do not create programs at random [29]. Even with

this assumption, it is still impractical in non-trivial problems to exhaustively explore

the space of all programs that are near the source program.

To explore these large search spaces, the efficient solution is Search Based

Software Engineering (SBSE) [40], which is the application of artificial intelligence

search techniques to solve problems in software engineering, including software testing

and correction [39]. Most existing work in SBSE focuses on software testing [39],

typically test case generation to maximize the coverage of possible scenarios. In

59

general, the criteria to generate test cases are based on the use of metrics to ensure

the coverage of the language meta-model, without considering explicitly the program

specifications [30, 95, 113]. In other works, multi-objective optimization is used to

minimize the number of test cases and maximize the coverage of the language meta-

model [38, 61].

Automated software correction has received much less attention in the SBSE

community [37]. The Coevolutionary Automated Software Correction (CASC) sys-

tem [102, 103, 105, 106] performs automated program testing, correction, and verifi-

cation through the use of EAs. CASC operates at the source code level (as opposed

to lower level representations, such as assembly code), rating performance based on

compilation and execution results. Programs and test cases are evolved in tandem,

exploiting the competitive relationship naturally present between them. Similar to

CASC, the works of Ackling [1], Arcuri [10], and Weimer [100] are also focused on

automated software correction at the source code level through the use of EAs. These

works differ from CASC in that they all rely on the provision of an a priori gener-

ated set of test cases for the program being corrected, whereas CASC relies on a

test case definition to generate and evolve test cases dynamically at run-time. The

systems presented by Ackling and Weimer support a very limited set of possible code

modifications and, as such, are limited in possible applications. Arcuri’s JAFF sys-

tem performs code modifications in a manner similar to the CASC system, namely

through the use of the concepts of Strongly Typed Genetic Programming [72] to de-

fine compatible modifications. Unfortunately, the constraints used in JAFF to define

compatible modifications are not explicitly stated, making direct comparison with

the system impossible, as these constraints directly define the problem space being

navigated by the system.

This paper describes a revised and improved version of CASC, including the

following major improvements:

60

• The CASC software correction process has been augmented with candidate

solution identification and a verification cycle that performs focused testing on

the candidate solution using a highly exploratory EA.

• The system exploits additional code element relationships to allow for automatic

state space reduction, resulting in more intelligent program modification.

• The operators used for program modification during the correction process have

been improved to focus on more promising search paths and better avoid invalid

ones.

• A stagnation detection system has been added to determine if the correction

search process has become stuck in a local optima and, if so, resets the search.

This paper is further organized as follows. Section 5.1 summarizes related

work on evolutionary software correction. Section 5.2 details the design of CASC. The

experiments run are detailed in Section 5.3; results and discussion of these experiments

are presented in Section 5.3.5.

5.1. BACKGROUND AND RELATED WORK

5.1.1. Background. All optimization in the CASC system is driven by

EAs. In general, an EA is a stochastic, population-based optimization algorithm, in-

spired by biological evolution [42]. A typical EA generation consists of reproduction

(i.e., the creation of new individuals), evaluation (i.e., rating individual performance),

and survival selection (i.e., removal of low performing individuals). These processes

are described in detail for CASC in Section 5.2. The task of automated software

testing, correction, and verification is quite complex, with many unique character-

istics. Accordingly, CASC incorporates some advanced/specialized EA concepts to

more effectively address various aspects of these tasks.

61

In terms of testing, a good test case is one that causes the program under test

to perform incorrectly. Conversely, a good program is one that performs as specified

for all test cases; however, in most cases it is infeasible to run a program against all

test cases and so, in these cases, a program is considered good if it performs as spec-

ified for all sampled test cases. CASC exploits the inherent competitive relationship

between a program and its associated test cases using a competitive COEvolutionary

Algorithm (COEA) during the correction process. Competitive COEAs are a type of

EA specifically developed to solve this type of problem of competing, interdependent,

evolving populations, also known as the parasite-host relationship [41, 85, 86]. In

CASC, the test cases evolve to better find flaws in the programs, while the programs

evolve to better behave to specification when exposed to the test cases. The compe-

tition between the evolutionary cycles ideally results in an evolutionary arms race,

promoting the escalation of the quality of individuals in the evolving populations. A

typical competitive two-population COEA cycle is shown in Figure 5.1; the CASC

COEA operates in a manner very similar to this.

Figure 5.1: Typical 2-Population Coevolutionary Cycle

62

Adamopoulos et al. were one of the first to publish the concept of coevolving

programs and test cases [2]. Their goal was to generate more effective program test

cases. To achieve this goal a program was seeded with various errors resulting in a

set of modified programs, termed mutants. Test cases were then developed whose

goal was to identify the mutants. In order to generate more effective test cases, both

the test cases and mutants were evolved according to their performance, creating a

coevolutionary system.

The representation and specific evolutionary operators for the test cases are

obviously problem specific, making the integration of these details into a generalized

system a difficult design problem. In CASC, this problem is addressed through the use

of the polymorphic design paradigm [14], as discussed in more detail in Section 5.2.1.

Programs are represented as parse trees in CASC, and are evolved using the concepts

of GP [59]. GP is a type of EA focused on the evolution of individuals being repre-

sented by trees (as opposed to the more typical array representation). Accordingly,

there are evolutionary operators defined to specifically work with this representation.

As program parse trees have a number of unique characteristics, a specialized repre-

sentation language and set of GP operators have been defined for CASC, as detailed

in Section 5.2.2.1 and Section 5.2.4.4, respectively.

CASC performs automated black-box functional testing of software. Initially,

the testing is non-directed in terms of functionality. The system non-deterministically

explores the functionality of the software, comparing actual output to expected out-

put. If the expected output is not achieved, then faulty functionality has been iden-

tified. The input that created the erroneous output is then exploited (using an EA)

to create other inputs that also demonstrate the error.

Structural testing has also been added to CASC; the benefits of which are

investigated in the presented study. For every program that is detected as a candi-

date solution, a test case set is created that maximizes the decision coverage in the

63

candidate solution. Just like in non-automated applications, the high coverage test

case set is intended to improve the testing entity’s ability to identify errors quickly

and to improve confidence in the resulting verified solution.

CASC supports both Single- and Multi-Objective OPtimization (SOOP and

MOOP, respectively), where the objectives being optimized are derived from the spec-

ifications for the software being tested and corrected. MOOP is a style of optimization

developed to address the difficulties present in optimization problems with multiple,

conflicting objectives. If SOOP is used for these problems, then objectives are often

combined into a single objective using a weighted sum. Determining the optimal

method of objective composition is a difficult task, often resulting in trade-offs be-

tween the objectives. MOOP simultaneously optimizes the objectives as independent

functions. As such, MOOP is recommended in the CASC system for correction of

programs with more than one specification. While MOOP was developed to address

conflicting objectives, it is still beneficial to use in CASC even when objectives are not

conflicting, as separate objective scores provide increased granularity for comparing

individual performance.

CASC employs a NSGA-II [28] style MOOP system. NSGA-II organizes in-

dividuals into fronts based on dominance. Individual A dominates individual B,

denoted A ≺ B, if A performs as good as B on all objectives and outperforms B

on at least one objective. The NSGA-II front creation algorithm is shown in Algo-

rithm 5. In this algorithm, fronts are being calculated for population P , where Sa

represents the set of individuals dominated by individual a, nb represents the number

of individuals that dominate individual b, and Fc is the set of individuals on front c.

The individuals on front i are not dominated by any individuals on fronts i or greater.

The result of any search using MOOP is the non-dominated front at the conclu-

sion of the search. This is typically viewed as a benefit of MOOP under the rationale

that the user is given a variety of solutions to choose from after the search completes.

64

Algorithm 5 NSGA-II Front Generation Algorithm

for each p ∈ P do
for each q ∈ P do

if p ≺ q then
Sp = Sp ∪ {q}

else if q ≺ p then
np = np + 1

end if
end for
if np = 0 then

F1 = F1 ∪ {p}
end if

end for
i = 1
while Fi 6= ∅ do

H = ∅
for each p ∈ Fi do

for each q ∈ Sp do
nq = nq − 1
if nq = 0 then

H = H ∪ {q}
end if

end for
end for
i = i + 1
Fi = H

end while

However, it can be reasonably expected that the user of a automated program cor-

rection system wants a single, corrected program as the result, rather than a set of

programs. Previous versions of the CASC system simply reported this as the result

of the run, putting the burden of identifying the solution to use from the resulting set

onto the user. The presented addition of candidate solution identification and verifi-

cation to CASC remedies this issue, with a single solution presented as the result of

all runs that are successful.

The search space being navigated by the CASC system is infinite in theory,

only being limited by memory size in practice. In general, the CASC system deals

65

with this by limiting the search to paths that are more likely to yield a solution. This

is accomplished by analyzing the code being corrected and limiting the modifications

based on the information obtained. The revised version of the CASC system presented

here improves on this technique by increasing the amount of information extracted

from the code as well as introducing generic biases on modifications more likely to

yield solution programs.

A common risk of all EA based approaches is the possibility that the search can

be stuck in local optima in the search space. Previous versions of the CASC system

exhibited this behavior in some cases. In response to this, the presented version

detects when search stagnation has occurred, resetting the search when detected.

5.1.2. Related Work. There are several studies that have recently focused

on test case generation and bugs in software using different techniques. These tech-

niques range from fully automatic to guided manual inspection. However, there are

only a very few contributions focused on taking specifications into consideration when

generating test cases and correcting software errors.

5.1.2.1. Test case generation. SBST is the most active research area of

SBSE [39, 66]. Accordingly, there is an abundance of proposed approaches for test

case generation, e.g., [17, 18, 19, 34, 45, 88]. For detailed discussions of the work in

the SBST area, see the surveys published by McMinn [65, 66] and Nie [74].

EAs are the most popular search-based algorithms for test case generation [7].

Different criteria have been used to generate test cases, such as: the coverage of

loops [30], the existence of internal states [113], and the presence of possible excep-

tions [95]. An important objective in addition to meta-model coverage is minimizing

the number of test cases. The ideal scenario is to reduce the number of test cases

without any loss of coverage. This is the main motivation for the few works to use

multi-objective techniques to find the best compromise between these conflicting ob-

jectives [38, 61]. In general, the aim of branch coverage has been to find test cases

66

which traverse a specific branch. [38] presents the first multi-objective approach to

branch coverage which adds the conflicting objective of minimizing the consumption

of dynamic memory. [61] employs different search based testing techniques to pro-

duce fewer test cases without loss of coverage. CASC differs from these works in its

use of program specification based objectives and, as such, test cases are generated

with the goal of demonstrating a specific bug in the program (i.e., the bug that is

being corrected) rather than maximizing meta-model coverage. In addition, existing

multi-objective works only address test case generation and not program correction.

5.1.2.2. Automated program repair. Current research in the area of

automated program repair can be divided into three categories:

1. Correction of specific program errors [16, 75],

2. Program correction through modification of machine code [76, 87],

3. Program correction through modification of source code [106, 1, 10, 100]

Many of these works use EAs in the correction process [1, 10, 16, 76, 87, 100]. The

search process in an EA is guided by a fitness function that rates an individual’s

performance on the problem in question. The fitness function in CASC is assumed

to be derived from the program specifications; so, for a given program-test case pair-

ing, a run is scored based on how close to specification the program ran. Similar

requirements are made in work related to CASC, in which sets of test cases are re-

quired that are known to demonstrate the bug in question [1, 10, 100]; these sets are

generated through the use of an oracle2, which enforces the program specifications.

The derivation of a fitness function from specification can be a difficult task, most

obviously accomplished through formal specifications [104, 12]. This may seem un-

fortunate, given that formal software specifications are rarely used in industry [77].

2In software engineering, an oracle is a mechanism to determine whether a program passes or
fails a specific test case [69], often in the form of a human expert’s judgment.

67

However, as SBSE research progresses, the benefits of the automated testing, repair,

and programming tools that exploit formal specifications will eventually outweigh the

cost of developing formal program specifications.

Works in the first category are focused on the correction of specific software

errors, detected by unique signatures for when the bug is occurring. The work of

Bradbury et al. [16] is focused on the correction of concurrency errors through the

use of EAs. In [75] Novark et al. show an approach for automated correction of

memory allocation errors. The work of Sidiroglou et al. [89] describes a method for

automated server patching when zero-day exploits are detected.

Works in the second category focus on evolving programs written in machine

code [76, 87], under the rationale that machine code has fewer syntactic restrictions

than higher level languages (and as such is generally more robust to naive modifi-

cation) and that working at the machine code level increases the generality of the

system (i.e., applicable to any source language that can be compiled to machine

code). Orlov et al. evolve machine code compiled from Java programs [76]. Valid

programs were produced by a crossover mechanism that performs a validation check

on offspring produced, and repeats the crossover process if the offspring are invalid.

Schulte, Forrest and Weimer present a similar approach, except that machine code

is evolved at the instruction level (i.e., instruction operands are not modified) rather

than at the code element level [87]. In this approach, code is never generated, only

modified by adding, deleting and moving instructions. This implies that in order to

fix an error, the instruction(s) needed for the repair must already be present in the

source program to be corrected. A drawback of the approach of evolving programs at

the machine code level is that when translating a language from a high level language

to machine code, a great deal of context information that is relatively easy to extract

at high level becomes difficult (or even impossible) to extract at the machine code

level (e.g., type information, qualifiers, code intention). The loss of this information

68

opens up a number of ultimately invalid search paths in the program space that can

be trivially removed from consideration when working with a high level language.

The third category consists of work focused on automated repair through mod-

ifications made to the programs at the source code level. The three competing ap-

proaches in this category all rely on a set of test cases being provided that demonstrate

the bug in question, whereas CASC has no such requirement.

Ackling et al. present a system prototype that, instead of evolving programs,

evolves sets of modifications (i.e., patches) to the source program [1]; trivially allow-

ing limitation of the number of modifications made in a patch. Promising results

are presented for small programs, with a very limited set of modifications currently

supported by the system. A limitation of the presented approach is that it is assumed

that the error present can be corrected by replacing a code element with another of

the same arity and precedence, as this is how modifications are defined in the system.

This essentially locks the structure of program during evolution. For the supported

set of modifications and the programs considered in the cited paper, this limitation

is of little consequence, as the operator code elements represented are all of the same

precedence and arity and the bugs considered can be corrected given these limitations.

Future versions of this approach will need to account for this limitation in order to

be a general purpose program correction system.

Weimer et al. present a system focused on correction of off the shelf legacy

C programs [100]. A high level view of this system is shown in Figure 5.2. Program

analysis methods are used to localize modifications to areas suspected to contain the

error. The system makes modifications to source code at the statement level. This

restriction, while leading to superior scalability, greatly limits the scope of errors

correctable by the system, essentially making the system specialized to situations

where the code statement(s) needed to correct an error can be assumed to be present

in the source program.

69

Figure 5.2: Weimer’s Software Correction System

Arcuri’s JAFF system [10] is the most closely related work to CASC. It focuses

on the correction of Java source code and supports an explicitly defined subset of the

language, with multiple hard coded aspects (e.g., specific variable names and numeric

constants are added for each problem). Earlier versions of the system supported turn-

based coevolution (i.e., repeatedly, the program population evolved for x generations,

then the test case population was evolved for y generations) [8, 9, 11], while the most

current version only performs program evolution [10]. A high level view of the current

JAFF system is shown in Figure 5.3

One of the major distinguishing characteristics of Arcuri’s system is its abil-

ity to automatically generate a fitness function for a problem given a set of formal

specifications. This is accomplished using the scoring system proposed by Tracey et

al. [93, 94]. This is a strong benefit as generating a fitness function for a problem

often is a bottleneck, particularly for non-expert practitioners. However, composing

70

Figure 5.3: Arcuri’s JAFF System

the various objectives of a program into a single function is often a difficult process,

resulting in trade offs between the objectives. These trade-offs are often decided upon

by taking into account the specifics of the objectives. Having the fitness function gen-

erated automatically means that these decisions have been made ahead of time and

hard coded into the system. Clearly, these hard-coded decisions cannot expected to

be optimal for all problems. In contrast, CASC requires the fitness function to be

provided to the system (described further in Section 5.2.1), which avoids the draw-

backs of hard-coded decisions and offers greater user flexibility. Both the presented

71

guide for fitness function design (Section 3) and the support of MOOP are intended

to mitigate the burden of fitness function design on CASC users.

In [9] Arcuri presents a variety of applications for his system. In addition to

automated program correction, Arcuri’s system was applied to automatic program

refinement and automatic improvement of execution time. When performing auto-

matic program refinement3 the system uses the problem specifications to create a

fitness function (as described previously); however, in this case there is no source

program to start from. The system’s goal in this case is to evolve a program that

satisfies the problem specifications provided. The problem of evolving a program from

scratch is a very difficult one primarily due to the infinite problem space. For this

reason, the problems that were used for experimentation were very basic problems

(i.e., triangle classification, swap, order (a conditional swap), sorting, and median cal-

culation). Even for these simple programs, Arcuri’s system had difficulty consistently

generating programs that satisfied the given problem specifications.

Arcuri’s system was also applied to automatic improvement of program ex-

ecution time. In this application the system’s goal was to improve the execution

time of a program while preserving the semantics of the program. In this applica-

tion a program’s fitness value is determined based on both semantic performance and

non-functional performance (i.e., CPU cycles used during execution). The results

presented demonstrate that the system was able to improve execution time in many

of the problems considered.

A majority of the related approaches discussed use some form of test case

pass/fail fitness function, whereas CASC’s fitness function is based on software spec-

ifications. The additional gradient and sensitivity provided through the use of spec-

ification based fitness is invaluable to the search process, even when there are not

many edits needed to correct the problem. During search based software correction,

3A more intuitive name for this application would be automated program creation.

72

the program is being non-deterministically modified in search of performance im-

proving modifications. The majority of these modifications can typically be expected

to reduce the overall performance of the program. Pass/fail based fitness functions

can be expected to struggle with this, as the degree of the failure is not reflected

in this metric. For example, assume that functionality A contains an error in the

source program. Now assume that a program is created that also introduces an error

into functionality B. A test case that demonstrates both functionality A and B will

not indicate the introduction of this error in a pass/fail based fitness function, only

that the program failed. However, in a specification based fitness function, it can

reasonably be assumed that all of the program functionality was represented in the

specifications, and, accordingly, is accounted for in the fitness function. And so, when

using a specification based fitness function, the program with an error in functionality

B would be trivially rejected for introducing a decrease in performance; this can not

be expected to always be the case when using a pass/fail based fitness function. The

added gradient and sensitivity of a specification based fitness function not only allows

for more precise guidance towards improving performance, but also more effectively

ensures that the search does not get further away from a solution.

5.1.2.3. Comparison of related approaches. Investigation of the im-

pact that non-trivial representation languages have on automated program correction

systems is an important study for automated program correction. While a more com-

prehensive representation language theoretically allows more bugs to be handled by

the system, the resulting search space increases proportionally with language size,

which potentially makes the search impractical. CASC handles this increase in prob-

lem space by examining the source program and recording information about the code

elements present and their relationships. This information is then exploited during

program modification, essentially resulting in automatic state space reduction.

73

Figure 5.4 contains a summary of the representation languages used and code

modifications supported by the approaches working at the source code level4. The

problem space being navigated by these systems is a function of the size of the rep-

resentation language used and the code modifications supported.

Figure 5.4: Summary of Representation Languages and Supported Code Modifica-
tions for Systems Performing Correction at the Source Code Level

4This summary was compiled to the best knowledge of the authors; in some cases information
had to be inferred from the published works for the considered approaches.

74

As can be seen, the approach presented by Ackling et al. is still in the early

stages of development, currently supporting a small representation language and mod-

ification set. While promising results were presented on a limited problem set, the

system in its current state lacks the representational richness necessary to be a gen-

eral purpose software correction system, such as CASC. This precludes it from being

compared using the problem set presented in this article, while giving it an unfair

advantage on the published limited problem set when compared to a general purpose

software correction system.

The approach presented by Weimer et al. appears to represent all code el-

ements handled by the other existing approaches, based on the discussion in the

published work [100]. In this approach, crossover is performed by exchanging full

statements (i.e., full lines of code) between individuals. Accordingly, all code ele-

ments that serve as the root operation for a statement are indicated as crossable in

the summary, with the exception of the few elements explicitly stated as not being

modified in the cited work. Mutation is defined in this approach as the insertion,

deletion, or swap of statements within a program. In the summary, code elements

that serve as the root operation for a statement are indicated as supporting mutation

in a limited fashion under the rationale that the system is operating at the statement

level whereas the other approaches operate at the code element level. This approach

has essentially been specialized for errors that can be corrected through statement

duplication, moving, and/or deletion in the source program. As with all specialized

approaches, it can be expected that this approach will excel when dealing with the

problem it was designed for, but will struggle with other problems; in fact, this ap-

proach cannot correct programs that do not already have the statements needed to

correct the bug(s) present. As such, comparing this specialized approach with the

CASC system would not be appropriate, as CASC is a general fault correction system.

75

Arcuri’s JAFF system supports a rich representation language. The primary

limitation to the language used is that program specific content (e.g., variable names,

numeric constants) must be added to the language manually for each program consid-

ered [10]. The JAFF system uses a constraint system to guide the code modification

process; unfortunately, no details are given on the actual constraints used in the cited

work. Because of this, the modifications supported for the represented code elements

are left as unspecified in the summary. It is not expected that all of the listed un-

specified modifications are supported, given the operators described in the cited work;

however, they have not been stated as being disallowed, and so must be considered

possible. Without this information, comparison with the JAFF system is difficult, as

the size of the problem space cannot be determined. Regardless, the JAFF system is

the only general fault correction system in the related approaches, and so a subset of

the experiments conducted with JAFF have been reproduced using the CASC system,

with comparison results reported in Section 5.3.5.

CASC has been augmented with a verification cycle to help ensure that solu-

tions presented by the system are actual solutions. This process is initialized with a

high coverage test case set, in order to both increase the efficiency with which false

positive solutions are identified as well as improve confidence in resultant solutions.

Related approaches mostly rely on the user of the system to identify and reject false

positive solutions. The JAFF system employs two static test case sets that are pro-

vided to the system; one for the correction process and the other is used to verify

candidate solutions. As stated previously, the effectiveness of static test case sets is

dependent on the generating entity’s ability to create a comprehensive test case set.

5.2. DESIGN

5.2.1. Approach Overview. As is shown in the high level CASC flow chart

in Figure 5.5, CASC is organized into three conceptual modules: System Initializa-

76

tion, Testing and Verification, and Testing and Correction. The System Initialization

module is passed through one time at the start of a run and is not reentered. This

module performs setup tasks needed by the other modules.

Figure 5.5: CASC Testing, Correction, and Verification Process

After initialization is complete, control is passed to the Testing and Verification

module. This module attempts to identify test cases that demonstrate buggy behavior

in the current candidate solution (in the first pass, this is the source program). If

a bug is not demonstrated then the system exits; otherwise the system attempts to

77

create additional test cases that demonstrate the bug and then passes control to the

Testing and Correction module.

The Testing and Correction module is responsible for creating a program

(based on the source program) that passes all test cases created by the system. If

no such program is found, then the system exits; otherwise the created program

is marked as the candidate solution and control is passed back to the Testing and

Verification module.

CASC utilizes multiple EAs, which are described in this section. For each run,

a set of EA strategy parameters used by the system are provided via a configuration

file. Except when specifically noted, the set of EA strategy parameters provided in

this file are used uniformly by the EAs in the system.

This section is organized based on the major phases in the flow chart chart

shown in Figure 5.5:

• System initialization is discussed in Section 5.2.2; with program parsing and

program population initialization discussed in Sections 5.2.2.1 and 5.2.2.2, re-

spectively.

• The Testing and Verification module is described in Section 5.2.3. Test case

initialization is discussed in Section 5.2.3.1, coverage based test case set creation

is discussed in Section 5.2.3.2, and the testing and verification EA is described

in Section 5.2.3.3.

• The Testing and Correction module is described in Section 5.2.4. Program and

test case evaluation is described in Section 5.2.4.1, with the optimization meth-

ods supported in CASC described in Section 5.2.4.2. The program reproduction

operators used are described in Section 5.2.4.4. Search stagnation detection is

discussed in Section 5.2.4.5.

78

The method of communication of problem specific information to an auto-

mated repair system is an important aspect of any such system; in order to be prac-

tical, the system must have the versatility to address a variety of problems. In the

CASC system the test case object embodies all problem specific information needed

by the system and supporting subsystems. This is accomplished through the use

of the dynamic polymorphism design paradigm [14]. An Abstract Test Case (ATC)

object is provided by the system, laying out guidelines for the expected functionality

that a Problem Specific Test Case (PSTC) object will need. The goal of this design

is to centralize all problem specific implementation in a single object, making the

transition to new problems as smooth as possible. Key functionality included in the

current ATC object is:

• Mutation, crossover, and randomization of test cases

• Creation of input needed by the program from the test case

• Creation of expected output for the test case

• Reading in and storing the output of an execution

• Scoring an execution (i.e., calculation of objective scores for the problem)

This functionality essentially makes the system able to serve as its own oracle, remov-

ing the need for an external oracle. Clearly, this object is limited to the application of

a specific class of problems; namely those for which expected output can be generated

for the test case. Through use of the polymorphic design of the system, additional

ATC objects could be designed for other classes of problems.

The described ATC object may, at first, appear to impose steep requirements

on the user of the CASC system; however, for any system to remove the need for

a priori generated test case sets made through the use of an external oracle, similar

requirements will need to be made. In other words, the system will need to be told

79

what defines a test case for the problem and how to use and manipulate such a

test case. Through the use of the described ATC object (or another similar object),

automated software engineering systems (such as CASC) can clearly be expected to

achieve a higher degree of automation and perform more comprehensive and intelligent

search than those that rely on a priori generated test sets and external oracles.

The comprehensiveness of the testing performed by the CASC system is di-

rectly related to that of the PSTC being used. For example, if a bug is only demon-

strated for test cases with duplicate genes, but the PSTC disallows the creation of

duplicate genes in a test case, then the system will not be able to demonstrate the

bug and, as such, be unable to correct it. If known beforehand, information regard-

ing the nature of the error in the program could be exploited during the design of a

PSTC by restricting the test cases that can be generated by the PSTC, making the

implementation simpler. However, such restrictions introduce bias into the system

and, as such, limit its effectiveness and so should be used with caution. Following

the previous example, assume a PSTC is implemented that focuses exclusively on the

generation and manipulation of test cases that contain duplicate genes. The CASC

system would be expected to quickly identify the error in question and would likely

correct it; however, if the error was masking a second error or, in the process of cor-

recting the error, the system introduced a new error that was not reliant on duplicate

genes, then the solution presented by the system would essentially be a false posi-

tive. Similarly, these dangers are also present when using a priori generated test case

sets, since when these are used the system is completely reliant on the generating

entity’s ability to generate a test case set with the necessary degree of comprehension

to correct the problem effectively.

For the remainder of this discussion, a running example will be used to demon-

strate various aspects of CASC using the buggy bubble sort function shown in Fig-

ure 5.6. For the sake of the example, assume that this function is being focused on for

80

correction and, as such, the specifications being used are specifically for the sorting

function; namely that after execution the resulting data array is a permutation of

input data array and that it is in sorted order. Also assume that the function shown

is embedded in an otherwise complete program that in some way communicates the

input and output data array. In this program the error is on line 6, which should be

data[j] = data[j+1].

const int SIZE = 10;

...

void sort(int data[])

{

1 int i, j, temp;

2 for(i = 0; i < SIZE; ++i) {

3 for(j = 0; j < SIZE - 1; ++j) {

4 if(data[j] > data[j + 1]) {

5 temp = data[j];

6 data[j+1] = data[j];

7 data[j+1] = temp; } } }

}

Figure 5.6: Buggy Bubble Sort Function

5.2.2. System Initialization Module. This module is primarily responsi-

ble for parsing the source program and creating the initial program population from

the source program. After the first pass through, this module is never reentered

during the run.

5.2.2.1. CASC parsing. The first major task in CASC is to parse the source

program, resulting in a tree representation of the program that can then be analyzed

and modified. A tree representation is used because it is a natural representation

for the code elements, cleanly displaying relationships between them. This makes it

81

relatively simple to perform modifications to, and generate the code represented by,

the trees.

Special comment tags can be used in the source program to mark the start

and end of the Evolvable Sections (ESs) of code (i.e., sections where a semantic

error is suspected). If these tags are used, then the code that is not part of an ES

is not modified during evolution. If no tags are indicated, then the bodies of all

the routines in the program are considered to be ESs (support for file/global scope

evolution is not yet supported by CASC). Clearly, the problem space for the program

population can be dramatically reduced through the use of the ES tags. Because of

this, it is highly recommended to first apply fault localization software/techniques

to the buggy software artifact to identify the ESs (although preliminary scalability

experiments showed CASC having a sub linear relationship with problem size [105]).

The CASC parser first converts the source code to srcML [21] using the srcML

toolkit. srcML is an XML representation of source code containing both the code text

and selective abstract syntax tree information. The srcML toolkit currently supports

C, C++, and Java; hence these are the languages currently supported by CASC,

though C++ is the language that has been focused on. The resulting XML document

is processed using the pugixml [53] library, which creates object trees based on the

innate tree structure of XML. ESs are identified using the XML node information

and are converted to ES objects, which are added to a Program object. A CASC

Program is essentially a set of one or more ES objects along with the information

typically stored for individuals in an EA (e.g., fitness, objective scores, book-keeping

data). Each ES object contains a forest of trees (representing the code for the ES,

one tree per line of code) and a variable name registry for the ES (indicating valid

variable names to use during code modification for the ES).

Name registries are created during the parsing process from global declara-

tions, function parameter lists for the function containing the ES, and local declara-

82

tions. Each name has an associated type (e.g., int, char, float), qualifier information,

and modifier information stored for the name. Additionally, all name registries also

share an object registry, containing a listing of known user-defined objects; essentially

each registered user-defined object has a name registry associated with it, containing

information on the public members of the object. The object registry allows for in-

telligent modification/use of user defined types during evolution. Member references

are treated as atomic subtrees during code modification (i.e., the object, the member

access operator, and the member being accessed), creating simple compatibility for

modification between primitive variables and object instances.

Nodes in the ES trees are assigned a type indicating the nature of the node.

Each node’s type belongs to a node class, which is used during evolution to help

maintain syntactic validity in generated programs. The node classes used by CASC

for C++ programs are shown in Table 5.1. The Misc node class contains specific

names (e.g., cout, cin, NULL), operators, and other code elements that should not

be generated during code evolution.

The CASC parser monitors scope level during the parsing process; when ES

trees are created, each root node is assigned the appropriate scope level. CASC uses

scope to indicate lines affected by control statements.

For the running example, assume that lines 2-7 in the function shown in Fig-

ure 5.6 are indicated as an ES. The trees that would be generated for this program

are shown in Figure 5.7 along with the associated name registry in Table 5.2.

5.2.2.2. Program population initialization. The program population is

initialized by modifying copies of the source program employing the mutation and ar-

chitecture alter operators. These operators are described in detail in Section 5.2.4.4;

the primary difference in their application in this phase is that when doing muta-

tion, the proportion of program nodes mutated is randomly selected from a Gaussian

distribution.

83

Table 5.1: Currently Supported C++ Node Classes

Node Class Associated Node Types

Function Function Calls

Terminal
Numeric Literal, Variable, Array, Logic(true, false)
Obj. Reference, Obj. Dereference

Ternary Operator ?:

Binary Operator +, -, *, /, =, Modulus, Comma

Unary Operator !, -, ++, - -, new, delete, &, *

Logical Binary
Operator &&, ||, <, >, <=, >=, ==, !=

Bitwise Operator Bitwise And, Bitwise Or, Bitwise Xor, Bitwise Not

Branch if, else, else if

Loop for, while

Misc Declaration, return, Comment, Insertion, Extraction,
cout, cin, cerr, endl, stdout, stdin, String Literal, NULL,
switch, case, default, break

Figure 5.7: Parsing Result for Running Example

5.2.3. Testing and Verification Module. This module is responsible for

searching for test cases that demonstrate errors in the current candidate solution. If

a test case is discovered that demonstrates an error, then the test case is propagated

throughout the test case population. This propagation ensures engagement between

the test case and program population in the Testing and Correction module. If no test

84

Table 5.2: Name Registry Generated for Running Example

Name Type Details

SIZE int global, constant
data int array

i int
j int

temp int

cases are discovered that demonstrate an error, then the current candidate solution

is reported as a result for the run and the system exits.

5.2.3.1. Test case population creation. The first task upon entering

this module is to randomize the test case population. If entered from the System

Initialization module, then this serves as the initial test case population creation. If

entered from the Testing and Correction module, then a candidate program solution

has been identified that passes all test cases in the current population. Thus, the test

case population is re-randomized to initialize the verification process.

5.2.3.2. Covering test set creation. In addition to the initially random

test case population, the system has the ability to generate and add a Covering test

case Set (CS) for the candidate solution program to the test case population. The

use of this functionality is designated by the user via the configuration options for

the system. The goal of adding the CS to the test case population is to increase

confidence in the results presented by the Testing and Verification module, as well as

attempt early detection of false positive candidate solutions.

Coverage metrics are often used to indicate the extent to which a test case

set tests a given program. The decision coverage metric was decided on as an initial

exploration into the benefits of using a high coverage test set in the CASC system, as

it is a relatively easy metric to calculate and maximize while still generating quality

test case sets.

85

The CS is created by first instrumenting the candidate solution program to

report decision outcomes to a file during execution. This is accomplished by first

creating a fully parsed version of the candidate solution, i.e., parse trees are created

for all routines in the program, rather than just for the ES(s). The program is then

instrumented (via the parse trees) by identifying the decision outcomes, assigning

each outcome a unique ID, and then modifying the trees to output the appropriate

ID when the outcome is used. An EA style approach is used to perform CS creation.

A population of test cases is initially created randomly. Each test case is executed

using the instrumented program and the set of decisions covered is stored for the

test case. After all test cases have been executed, the CS is then created using a

greedy approach. Test cases with the most unique decision outcomes covered (not

considering the outcomes already in the set) are added to the CS one at a time until

no unique outcomes are covered by the remaining test cases. The next generation of

test cases is created by replacing all test cases not in the CS from the last generation

using the test case reproduction methods described in Section 5.2.3.3. This process

continues until either a user specified number of generations have completed or all

identified decision outcomes are covered by the CS.

5.2.3.3. Testing and verification. CASC uses an EA to perform testing

and verification of candidate solution programs. This process begins by evaluating

the test case population against the candidate solution program. This is done by

executing the candidate solution program against each test case, scoring the results

using the scoring function(s) included in the PSTC. CASC assumes that the pro-

gram being corrected operates deterministically and, as such, uses a lookup table to

store the score(s) for a given program-test case pairing to avoid unnecessary repeat

executions. CASC fitness scoring is described in detail in Section 5.2.4.2.

After evaluation, if a bug has not already been demonstrated by the test case

population, the system determines if a bug was demonstrated during the evaluation.

86

If a bug was demonstrated, then the system sets the flag indicating that a bug has

been demonstrated and sets the number of generations remaining to be a user defined

number of engagement generations; a recommended minimum for this parameter is

the number of generations indicated for the Testing and Correction module. The

engagement generations allow the demonstrated bug time to propagate in the test

case population before entering the Testing and Correction module.

If the generation limit has not been met, the system goes on to perform survival

selection. This process is conducted using an inverted tournament selection scheme.

In this scheme a subset (of user defined size) of individuals are selected at random

from the population, then the individual with the lowest fitness value is removed from

the population.

Following survival selection, the system performs test case reproduction. Three

reproduction operators are employed by the system: randomization, mutation, and

crossover. These operators are problem specific and, as such, are part of the PSTC.

The operators are applied based on a probability distribution. If a bug has not been

identified yet, then a system defined distribution is used that is focused on exploration

over exploitation (i.e., mutation and randomization is used much more frequently than

crossover), under the rationale that if no bug has been identified, then there is no

high performing genetic material identified to exploit. If a bug has been identified,

then a user defined probability distribution is used, to allow fine tuning of the balance

between exploitation and exploration, as desired.

CASC employs a modified fitness proportional selection with re-selection al-

lowed. First a subset of individuals is selected randomly (similar to typical tourna-

ment selection). Next each individual is assigned a selection probability proportional

to its fitness within the subset, with an arbitrarily chosen minimum probability of

1%. This method was chosen over rank based selection because it was found that in

many experiments the selected subsets contained a significant portion of individuals

87

with equal or near equal fitness values. It is very easy for individuals to have equal or

near equal fitness but have quite different genotypic representations; this technique

allows these differences a fair chance at propagation without arbitrary bias.

Once the generation limit is met, if a bug has not been demonstrated, then

the candidate solution is reported as a solution and the system exits. If a bug was

demonstrated, then the top performing test cases identified are made elite, guaran-

teeing their preservation for the rest of the run. This is similar to the Hall of Fame

mechanism proposed by Rosin to prevent cycling in a coevolutionary search [86]. The

main difference between the two approaches is that individuals placed in the Hall

of Fame are removed from the population, making them unavailable for use during

recombination; whereas in CASC, being made elite simply protects the individual

from being selected during survival selection. If SOOP is being performed, then the

set of non-elite test cases currently safe from survival selection (i.e., the top survival-

selection-tournament-size minus 1 individuals) are made elite. If MOOP is being

used, then the test cases in the non-dominated front are made elite. The test case

population size is increased by the number of test cases made elite so as to maintain

the number of evolving individuals across multiple verification cycles. To avoid pop-

ulation bloat, the number of test cases that can be made elite can never exceed 25%

of the original population size. If the size of the new would-be elite set exceeds this,

then just the oldest individuals are taken. Making these individuals elite ensures that

a candidate solution program must pass these test cases as well as all others generated

by the system in order to be presented as a solution.

5.2.4. Testing and Correction Module. If a bug is identified in the

Testing and V erification module, then the Testing and Correction module is used

to attempt to create a program that corrects the bug. While searching for a solution,

the system will be non-deterministically creating modified programs that, in many

cases, essentially introduce additional bugs into the program. The system’s ability

88

to recognize errors introduced into programs is determined by the accuracy of the

specifications for the software (i.e., the definition of correct execution) and the degree

of comprehension in the test cases used/generated by the system. To account for

this possibility, CASC utilizes a two-population competitive coevolutionary cycle,

which is basically two overlaid evolutionary cycles intersecting at the point of fitness

evaluation. The two populations being evolved are a population of programs and

a population of test cases (i.e., program inputs). The fitness of each program is

estimated by its performance on a sampling of test cases. Similarly, the fitness of

each test case is estimated by its performance on a sampling of programs. Since each

population is attempting to optimize these fitness values, an evolutionary arms race

results.

5.2.4.1. Evaluation and survival selection. Upon first entering the Test-

ing and Correction module, the program population needs to be evaluated against the

test case population created in the Testing and Verification module. If this is the first

pass through the Testing and Correction module, then the program individuals need

to be assigned initial fitness values. If the module is being entered after successfully

identifying a false-positive candidate solution, then the program population needs to

be exposed to the counter test case(s) that were identified.

The evaluation phase is the point where the two evolutionary cycles meet and

the populations interact. In order to maximize population exposure, each individual

is executed against all opponents in the competing population. Results from repeat

program-test case pairings are retrieved from the lookup table. The remaining pair-

ings are executed in parallel on a computing cluster employing MPI. CASC uses a

master-slave parallel computing topology, where each slave computing node is respon-

sible for handling all executions involving a subset of the program population (these

sets are balanced during the competition and reproduction phases). The slave com-

puting nodes run required executions concurrently in threads. Once all threads have

89

completed and the results have been reported to the main node (and stored for future

reference in the lookup table) the overall fitness for each individual is calculated.

Programs are compiled at creation during program reproduction. While the

CASC system attempts to maintain syntactic validity during program modification,

the system is currently only aware of a subset of the grammatical rules in the languages

supported. To account for this, compilation results are monitored and if a program

has a compiler error, then it is given an arbitrarily low fitness and marked as being

invalid for execution. If a program experiences a run time error, then the program

is assigned an arbitrarily low fitness for the pairing and the associated test case is

assigned a high fitness for the pairing. Program time outs are monitored based on a

user specified maximum allowable CPU time; if a program runs for longer than this

limit, then the execution is terminated, the program is assigned an arbitrarily low

fitness and is marked as invalid for future execution.

Both populations employ the survival selection method that is described in

Section 5.2.3.3. Using this technique, individuals are removed from the population

one at a time until the population size returns to the indicated population size. If

a population is already at the indicated size (as may be the case upon first entry

into the Testing and Correction module), then this process is simply skipped for that

population.

5.2.4.2. Optimization methods. CASC supports both SOOP and MOOP.

A run is scored by comparing actual program output with expected output for a given

test case. In order for CASC to correctly guide the evolutionary process, the objective

function(s) should be based on the specifications for the program being corrected.

The same objective function(s) are used by both populations, where the optimization

direction (i.e., minimize or maximize) for one population is reversed for the other (in

SOOP it is assumed that the program population is maximizing the objective/fitness

function). The objective functions are implemented as part of the PSTC.

90

In the CASC MOOP system, it is assumed that each objective is associated

with an individual specification for the program. An individual’s fitness is calculated

as the percentage of its population that it dominates (which is determined based

on the individual’s objective scores). The number and optimization direction of the

objective functions are user specified via the PSTC.

When using MOOP, intra-front genotypic diversity can be promoted by acti-

vating a fitness sharing [35] mechanism. Before fitness sharing is applied (and when

fitness sharing is disabled), all individuals on a front are assigned the same fitness

value (since they all dominate the same percentage of the population). For exam-

ple, if the non-dominated front dominates 75% of the population and the second front

dominates 50%, the non-dominated front will receive 0.75 fitness and the second front

will receive 0.50 fitness. CASC’s fitness sharing mechanism uses the unused fitness

ranges between these fronts (i.e., [0.75, 1] and [0.50, 0.74]) to promote genetically

unique individuals while still maintaing the calculated front structure.

First, a sharing factor is calculated between all individuals on a front using

the following equation from Goldberg and Richardson [35]:

Sh(d) =

1−
(

d

σshare

)α
if d ≤ σshare (5a)

0 if d > σshare (5b)

where in CASC, d is the genotypic distance between two individuals normalized by

dividing by the number of genes in the largest individual in the current front. The

value σshare indicates the maximum distance two individuals can be apart and still

share fitness. The value α is used to define the growth of the sharing factor (i.e.,

sub-linear, linear, or super-linear).

Genotypic distance between individuals is calculated by traversing the pro-

gram trees in question, creating a list of the nodes in each program, and finding the

Levenshtein (i.e., edit) distance [15] between the lists. Before the tree for each pro-

91

gram line is traversed, a scope node is added to the list that indicates the scope for

the nodes that follow it in the list (so that scope can be considered in the edit distance

as well). Edit distance is then calculated between the node lists for two programs,

the result of which is stored as the genotypic distance between those two individuals.

Figure 5.8 gives a visual example of program distance calculation (assume that trees

not shown in this figure are the same for both programs).

Figure 5.8: Example program distance calculation

The niche count for an individual x (ncx) is the sum of the sharing factors

between x and all of the individuals on the same front as x (including itself). The

min and max niche counts (ncmin and ncmax) are then determined for all individuals

on the front, and used to adjust the individual fitness values according to the following

equation:

fitnessi = fL + (fH − fL) · ncmax − nci
ncmax − ncmin

(6)

92

where fL and fH are the lower and upper bounds on the fitness range for the front,

respectively. An example fitness sharing calculation is shown in Figure 5.9. This

example applies the fitness sharing algorithm to a five program front, starting with

a fitness of 0.5 and the next front having a fitness of 0.7. This gives the algorithm

a range of [0.5, 0.69] to work with. Programs 4 and 5 are copies of each other and

the other programs are unique. The edit distances between each program are shown

in the symmetric matrix on the lower left. From this matrix, it can be seen that

program 2 generally has a high edit distance to the other programs, relative to the

others. Similarly, programs 4 and 5 have a relatively low edit distance. Using the

calculations shown, these relationships are captured and shown in the resulting shared

fitness values, where program 2 is given the highest fitness in the range and programs

4 and 5 remain at 0.5 fitness.

Figure 5.9: Example fitness sharing calculation for a front of program individuals

93

A general (i.e., non-problem-specific) objective can be activated in CASC that

scores programs based on their edit distance from the source program. The ratio-

nale behind this objective is two-fold: first, it can reasonably be assumed that the

source program is not far from correct in terms of edits needed, since programmers do

not develop randomly; thus keeping the program population genetically close to the

source program should help focus the search more effectively. Second, program bloat

can become an issue in the program population; this objective will keep program

individuals close to the same size as the source program. This objective is scored as:

score =
⌊
dsrc
w

⌋
, where dsrc is the edit distance between the individual and the source

program and w is the (user configurable) tier width allowed. The tier width defines

the number of edits from the source program that are allowed before a penalty is

incurred. For example, if w is set as 5, then a programcan have an edit distance of up

to 5 from the source program, before being penalized by being assigned to the second

tier.

The CASC system performs optimization at the global scope level (i.e., per-

formance is rated on the program as a whole), while it performs modifications at a

potentially deeper scope level (dependent on the ES(s) for the program). Obviously,

the objectives being optimized must be able to detect incorrect behavior in the ES in

order to both correct the bug and avoid introducing new bugs. Accordingly, the PSTC

must be created to match the resolution of the specifications being used. For example,

one of the programs used for CASC experimentation is a text replacement program

that searches for instances of a provided pattern in text and replaces them with an

indicated string. While this program was provided as an independent program, its

functionality is common in a number of other programs. The testing and correction

of this program could just as easily be the high resolution testing and correction of

a program that has this text replacement functionality. If this were the case, the

objectives and PSTC used for the correction of this program would not change, as

94

they would need to be made to correct the text replacement program/functionality,

not the larger program that the text replacement functionality is part of.

5.2.4.3. Multi-objective solution prioritization. Generic objectives

(such as the edits from source objective described in Section 5.2.4.2) improve the

system’s ability to guide its search processes. However, if MOOP is used, then the

scores from these objectives can create a non-dominance relationship based purely on

generic objective performance, disregarding the problem specific scores. For example,

assume that the edits from source objective did not use the described tier system, but

simply the number of edits from the source program. This would create the situation

where an individual that performed perfect on all problem specific objectives and

was one edit from the source would have a non-dominance relationship with the

source program original (buggy) source program. This situation is the reason that

the described tier system is used for this objective; however, it may not always be

clear what value should be used for the tier-width, making this objective difficult to

use in some cases.

Multi-Objective Solution Prioritization (MOSP) is an extension to NSGA-II

that implements prioritization levels for objectives, allowing the system to focus on

the optimization of high priority objectives (such as the problem specific objectives

in CASC) before lower priority objectives (such as the edits from source objective)5.

In order to implement MOSP, the ranking/sorting scheme needs to be modified

to take into account different levels of optimization; this is achieved by modifying the

dominance operator to compare only objectives at the required level. Rather than

comparing all objectives for a problem at once, this operator compares only the

objectives for dominance at the specified level, allowing the use of many objectives

without destroying the dominance scheme established by the primary objectives. The

5The MOSP algorithm is the work of the author and his undergraduate mentee James Bridges.
This section summarizes the algorithm which is the basis for James’ CS448 Advanced Evolutionary
Computing project report and a conference paper in preparation.

95

next addition to NSGA-II is a recursive call on each front produced by the algorithm.

This effectively refines each front by evaluating it on subsequent prioritization level(s).

Using MOSP does not alter the dominance scheme imposed by NSGA-II,

rather it further refines the results. Each front produced has the unique property

that individuals along it will all dominate the same number of individuals; however,

if it is deemed that an individual can dominate members on its own front by priori-

tization objectives, then effectively a new front is created. This new front is called a

micro front; each micro front is positioned between the fronts created by the primary

objectives. During construction, the micro fronts are guaranteed to never dominate

the original front they were created from or individuals on higher micro-fronts for the

current front and will always dominate the next lower primary objective front.

MOSP is built around the concept of prioritization levels. The zeroth pri-

oritization level always contains the primary objectives; i.e., hard requirements of

the problem to be solved. The other levels contain the soft requirements, each level

can have 1 to n objectives. None of the prioritization levels can be null, each level

must contain at least one objective. It can be derived that it does not matter how

many objectives a level contains because the domination criteria is still the same, i.e.,

dominance criteria for an individual at its respective level. As discussed the use of

these prioritization levels creates micro fronts. These micro fronts produce two useful

properties. One property is that they create granularity among solutions in order to

differentiate against the optional objectives. What this amounts to is an increased

domination count which increases the chance for the individual to be selected as a

parent to produce offspring. Likewise, if an individual is in a higher micro front than

its respective primary objective front, then the individual has a higher chance of being

selected as a member of the new population for the next iteration of the EA. The

other property is the prevention of front pollution. Front pollution occurs when the

objectives an individual is being ranked against detract from the main purpose of

96

optimization (such as the example given initially in this section). The prioritization

scheme prevents this type of behavior by ensuring primary objectives are satisfied

first regardless of objective scores, only after the primary objective constraint has

been satisfied will the optional objectives be applied.

Proof of concept experiments were conducted using the MOSP algorithm on

the classic 0-1 Knapsack problem. These experiments had very strong results, indicat-

ing the general viability of the proposed approach. Initial studies of the incorporation

of the MOSP algorithm into CASC have had promising results. Further investigation

and study of the combination of these approaches is left as future work for the CASC

system.

5.2.4.4. Program reproduction. New programs are produced by applying

one of five GP operators: copy, reset, crossover, mutation, and architecture alteration.

The operator to apply is selected based on a user configurable probability distribution.

Then a new program is produced and added to the program population, and the

process is repeated until a specified number of new programs have been produced.

CASC employs a modified fitness proportional selection with re-selection al-

lowed. First a subset of k individuals is selected randomly (as in tournament se-

lection). Next each individual is assigned a selection probability proportional to its

fitness within the subset, with an arbitrarily chosen minimum probability of 1%. This

method was chosen over rank based selection because it was found that in many exper-

iments the selected subsets contained a significant portion of individuals with equal

or near equal fitness values. It is very easy for program individuals to have equal or

near equal fitness but have quite different genotypic representations; this technique

allows these differences a fair chance at propagation without arbitrary bias.

The copy GP operator selects a program from the program population and

places a duplicate copy into the program population. This operator’s primary purpose

is to promote the genetic material of successful individuals.

97

The reset GP operator from [10] makes a copy of the source program and puts

it into the evolving population. The purpose of this operator is to make sure that the

original genetic material does not get lost in the evolutionary process.

The crossover GP operator is the primary exploitation operator in the CASC

system, using subtree exchange to recombine genetic material present in the program

population. The node classification system is used to define compatibility between

subtrees, as unrestricted subtree exchange between programs would have a high like-

lihood of resulting in syntactically invalid programs. While the compatibility system

helps to ensure syntactic validity, it does not yet encompass all grammatical rules for

C++, and as such can still result in syntactically invalid programs. Regardless, using

the current compatibility system, the crossover operator yielded syntactically valid

programs on average 88% of the time in the experiments presented in this paper.

The first compatibility check performed is intended to help preserve intention

in the code. This is done by matching the expression roots for the trees containing

the selected subtrees. Expression roots in the CASC system are the root node for the

line, an Array node, or a Function Call node. The expression root is determined

by starting at the root of the selected subtree and traversing up (toward the root)

until one of these nodes is found. Matching the expression roots for the exchanged

subtrees makes it so that, for example, an addition subtree that serves as an index

for an array is only swapped with other indexing subtrees. Similarly, an assignment

subtree that is part of a for statement will only be swapped with other assignment

statements that are being used the same way.

The second compatibility check used during crossover is focused on achieving

syntactic validity in the resulting programs. For the selected subtree, the classification

of the root node for the subtree (i.e., node class and type) is used to determine the

classifications that the root node for another subtree must have in order to be com-

patible. Table 5.3 shows the classification compatibilities currently used by CASC.

98

Table 5.3: Node Compatibilities for Program Crossover

Root Node Class Root Node Type Compatible
Classification(s)

Binary Op: = Binary Op: =

Binary Op: all except =
Binary Op. Binary Op: all except = Terminal
Terminal Terminal: All Unary Op: Negate

Unary Op: (Pre)Increment
Unary Op: (Pre)Decrement

Unary Op

Binary Op: all except =
Negate Terminal

(Pre)Increment Unary Op: Negate
(Pre)Decrement Unary Op: (Pre)Increment

Unary Op: (Pre)Decrement

Not
Unary Op: Not
Logic Op: All

Logic Op All Types
Unary Op: Not
Logic Op: All

Bitwise Op

Biwise Not Bitwise Not

Bitwise And Bitwise And
Bitwise Or Bitwise Or
Bitwise Xor Bitwise Xor

Special
Coment

None
Declaration

All Other All Other Nodes with same type

After the two parents are selected for crossover, a subtree s1 is selected at

random in the first parent. In the second parent, all subtrees that pass both com-

patibility checks with s1 are identified. If no compatible subtrees are found in the

second parent, then a new subtree is selected in the first parent and the process is

repeated. The second subtree is then selected at random from the compatible set and

the subtrees are exchanged, creating two new individuals.

99

Figure 5.10 illustrates a possible crossover operation for the running example.

In this example, the j node outlined in red is selected as the subtree to exchange

in parent 1. The nodes outlined in red and blue in the second parent represent

compatible subtrees in the second parent, all of the other nodes do not pass one or

both of the compatibility checks. For example, the temp node in tree 4 is in the

Terminal node class, making it compatible with j; however, temp’s expression root

type is Assignment whereas j’s is Array (the data node), making it incompatible.

The + node outlined in red in parent 2 is the node that is selected to be exchanged

with parent 1, resulting in the two child programs shown.

The mutation GP operator is responsible for exploring the program search

space by bringing in new genetic material to the population. The mutant program

starts as a copy of the selected parent program. Next all of the mutable nodes in

the mutant are identified. Mutable nodes are defined as those that have a reasonable

mutation that can be performed on them. The mutable nodes of the CASC system

and their possible mutations are summarized in Table 5.4.

Subtrees are generated as needed by the various mutations. For non-context

specific nodes (i.e., Binary Ops, Unary Ops, Logic Ops), generated node types are

simply randomly selected as is described in Table 5.4. For context specific nodes (i.e.,

non-Number Terminals), the name registry is used to randomly select an appropri-

ate/valid name to use for the node. Local and global names that are available in the

ES are stored as such in the name registry. During name selection, if there are both

local and global names available, then there is 25% bias put towards selecting a local

name over a global one in order to promote more eploration using local names than

global ones. Also, the name registry indicates which names are constant, which is

used to avoid generating code that attempts to modify a constant variable.

If a Number is to be generated, then its value is randomly selected from a

Gaussian distribution centered around zero, favoring numbers in the range [−5, 5],

100

Figure 5.10: Example Program Crossover

101

as it is typical programming practice to make larger numbers constant variables in

most cases. Negative values are allowed for these values, thus Number nodes are not

mutated by making them the child of a Negate node (as other Terminals can be).

Additionally, the variable type information associated with the names in the

name registry is used to restrict the amount of type mixing that is introduced by

generated code. After the node to be mutated is selected, the subtree containing the

node (bounded by the expression root, as defined in the discussion for the crossover

GP operator) is iterated over. During this process, the variable types present in

the subtree are gathered; then during code generation, only names with the same

or compatible types (e.g., the various integer types are all compatible) are used. If

this results in no available names for a particular mutation, then the variable type

restriction is removed. This restriction is used with a 75% probability, promoting

exploration using types already present in the containing expression.

Figure 5.11 shows an example of a possible mutation for the running example.

The nodes highlighted in blue in the parent have been selected for mutation. The <

node is mutated by being replaced with a Not node, making the < node a child of

the new node. The + node is mutated by being overwritten with its left-hand-side

operand. The resulting mutant would be a solution to this problem.

The architecture altering GP operator is used to make drastic changes to the

architecture of a program. The alterations currently implemented are the insertion of

a randomly generated assignment statement, the insertion of a randomly generated

flow control block (i.e., loop or branch), and the deletion of lines of code. The

alteration to perform is selected randomly (with equal probabilities). If a flow control

block is generated, then the controlling statement is randomly generated and the

position and lines affected by the flow control block are randomly selected. The

purpose of this operator is to allow for drastic changes to the program that may be

necessary in order to find a solution.

102

Table 5.4: Possible Node Mutations

Node Class Node Type Possible Mutation(s)

Unary Op

(Pre)Increment Randomly change to one of the other
(Pre)Decrement increase/decrease unary ops

Not
Overwrite operator with operand

Negate

Terminal

Logic Flip logic

Replace with randomly generated
binary op (with node as operand)

Variable Replace with randomly generated
Array terminal

Replace with ’Negate’ (with node as
operand)

Number

Replace with randomly generated
binary op (with node as operand)

Adjust the value by +/- 1

Replace with randomly generated
terminal

Binary Op

Replace with randomly selected Binary
Op (excluding Assign and Comma)

All Replace with operand node (randomly
(excluding Assign selected)

and Comma) Replace with ’Negate’ (with node as
operand)

Logic Op All

Replace with randomly selected Logic
Op (excluding Assign and Comma)

Replace with operand node (randomly
selected)

Replace with ’Not’ (with node as
operand)

BitwiseOp

Bitwise And Randomly change to different binary
Bitwise Or bitwise operator
Bitwise Xor

103

Figure 5.11: Example 2 Node Program Mutation

These operators are randomly applied based on supplied probabilities. After

the specified number of new programs have been generated, the new programs are

compiled and evaluated as necessary, which is described in detail in Section 5.2.4.1.

At this point, the number of successes for the crossover and mutation operators are

recorded, where a success is when the program produced outperforms the source

program. These statistics are used to implement adaptive parameter control with a

frequency specified by the user. For example, say there were 200 mutations performed

since the last parameter update and 120 of these were successes (60%) and that

there were 150 crossovers performed, 75 of which were successful (50%). In this

case the system would increase the likelihood of performing mutation and decrease

the likelihood of crossover, both by a single user specified amount. The minimum

probability that each operator can have is 10%, which allows the operator to recover

104

in the future, if appropriate. This allows the system to respond to the current state

the program population is in.

5.2.4.5. Stagnation detection. At the end of each generation, the perfor-

mance of the program population is analyzed to check for stagnation. Essentially, if

the top performing program(s) are not surpassed for an extended period of time, then

the search has likely become stuck in a local optima and, as such, has stagnated.

If MOOP is being used, then stagnation is determined based on the size and

stability of the non-denominated front. If the same individuals remain on the non-

dominated front for an extended period of time, then the search is at the very least

struggling, if not stuck in a local optima. The check for non-dominated front stability

allows for the removal of individuals due to survival selection as well as the addition

of new individuals to the front. Additionally, the size of the non-dominated front is

checked, as a typical characteristic of convergence is the clustering of individuals at

an optima. If it is determined that the non-dominated front has been stable for a

set number of generations and 95% of the population is on the non-dominated front,

then the system assumes that stagnation has occurred.

If SOOP is being used, then stagnation is determined based on the number of

consecutive generations that the top program individual has been the best program

seen. At the end of each generation, the unique ID number of the best program in

the population is compared to that of the previous generation. If the same ID is

detected for a set number of generations, then the system assumes that stagnation

has occurred.

When stagnation is detected, the system restarts the program search process.

All programs in the current population are replaced by the source program, which are

subsequently modified in the reproduction phase, starting off the new search. The

test case population is maintained through this process, namely keeping all test cases

from the previous search. This is done to help guide the new search more effectively,

105

keeping it away from any false positive solutions that may have been identified in

previous searches.

5.3. EXPERIMENTAL SETUP

The experiments conducted were intended to not only demonstrate the sys-

tem’s current abilities, but also to ascertain its limits through exposure to increas-

ingly difficult problems. There are a number of general aspects that define problem

difficulty for the CASC system. Two of these aspects were focused on in these exper-

iments: ES size and number of bugs present.

The size of the ES(s) in the program defines the number of trees present in the

program, as such this directly impacts the size of the search space. CASC currently

delegates ES identification to an external fault localization utility (i.e., the FGFL

system, Tarantula, or Tarantula+), and so has little control on this aspect of problem

difficulty. In the presented experiments, the ESs were placed as conservatively as

possible (i.e., to contain the entire routine(s) containing the error(s)) in order to

make as few assumptions as possible regarding the external fault localization utility’s

abilities. System performance overall can be expected to improve significantly as ES

size decreases through fault localization.

The number of errors present also affects the difficulty of a given problem;

especially if there is a relationship between the errors (e.g., one error masking an-

other). As the number of errors increases, so does the amount of work needed to find

a solution. Currently the system relies on program performance to propagate any

partial solutions that are discovered. And so, if correcting an error does not result in

improved program performance, then the correction is not guaranteed propagation or

even survival. Clearly, the issue of identification and propagation of partial solutions

needs to be addressed, and is discussed more in Section 7. For the presented exper-

iments, increasing numbers of bugs were seeded into the programs being corrected,

106

with both bugs that were independently identifiable and that had relationships with

each other.

The programs used in the presented study were from the Siemens test suite

and a subset of those used by Arcuri in his latest JAFF publication.

The Siemens test suite [43] programs were downloaded from the Software-

artifact Infrastructure Repository [32]. The Siemens test suite consists of seven pro-

grams (with varying goals), each of which have multiple bug versions with seeded

errors. These programs, originally written in K&R C, were updated to C++, but

were otherwise kept semantically equivalent to the original. The results presented

here are focused on CASC’s performance on the Siemens programs printtokens2 and

replace. The printtokens2 program is 570 lines of code, consisting of 19 routines.

The replace program is 564 lines of code, consisting of 21 routines. The printtokens2

bug versions used were v4, v6, and v7. The replace bug versions used were v11, v13,

and v33. These bug versions were selected because the bugs are simple, reasonable

errors in routines that are at a deep scope level within the program. The ESs were set

to encompass the entire routine containing the bug, to demonstrate how the system

performs when fault localization is only able to indicate the routine that contains the

error

The programs used from Arcuri’s work were remainder and triangleClassifica-

tion. These were selected because they were some of the larger programs considered

by Arcuri (in terms of tree nodes) and they are relatively straightforward programs,

used in a wide variety of software engineering research. Unfortunately, the details of

the specific bugs used in the Arcuri’s study were not given, making a true compar-

ison between the systems impossible. Bugs were seeded into these programs for the

presented study. The details of the bugs used are given in Figure 5.12.

Given the three bugs used for each program, say bugA, bugB, and bugC,

three versions of each program were made, p1, p2, and p3. Program p1 contains

107

remainder triangleClassification

1: int main(int argc, char* argv[]) { int main (int argc, char* argv[]) {
2: int num, denom; int a, b, c;
3: int R = 0, Cy = 0, Ny = 0; a = atoi(argv[1]);
4: num = atoi(argv[1]); b = atoi(argv[2]);
5: denom = atoi(argv[2]); c = atoi(argv[3]);
6: R = num; if(a<= 0 || b<= 0 || c<=0)
7: if(num!=0) { cout << ”Invalid” << endl;
8: if(denom!=0) { else if(a==b && b==c)
9: if(num>0) { cout << ”Equilateral” << endl;
10: if(denom>0) { else if(a==b || b==c || a==c)
11: while((num-Ny)>=denom){ cout << ”Isosceles” << endl;
12: Ny = Ny + denom; else if(a!=b && b!=c && a!=c)
13: R = num - Ny; cout << ”Scalene” << endl;
14: Cy = Cy + 1; } } return 0; }
15: else { triangleClassification Bugs

16: while((num+Ny)>=abs(denom)){ v1 Line 6, replace second ||
17: Ny = Ny + denom; with &&
18: R = num + Ny; v2 Line 8, replace c with a
19: Cy = Cy - 1; } } } v3 Line 10, replace second a
20: else { with b
21: if(denom>0) {
22: while(abs(num+Ny)>=denom){
23: Ny = Ny + denom;
24: R = num + Ny;
25: Cy = Cy - 1; } }
26: else {
27: while((num-Ny)<=denom){
28: Ny = Ny + denom;
29: R = num - Ny;
30: Cy = Cy + 1;}}}}}
31: cout << Cy << ” R ” << R << endl;
32: return 0; }
remainder Bugs

v1 Line 13, replace Ny with Cy
v2 Line 22, replace >= with <=
v3 Line 6, replace num with denom

Figure 5.12: Details on remainder and triangleClassification Bugs

108

bugA, program p2 contains bugA and bugB, and program p3 contains bugA, bugB,

and bugC. The sizes of the resulting ESs used for these programs is summarized in

Table 5.5 (on page 108). The program IDs established in this table will be used in

the following discussions.

Table 5.6 (on page 109) summarizes the configuration values used for the exper-

iments conducted in this study, unless specifically noted otherwise in the discussion.

These configuration values were selected with minimal forethought, as parameter tun-

ing is typically a difficult, time consuming process that, if required, would reduce the

practicality of the system. The Normal Operation probability distribution for test

case operators is used for all EAs in CASC except during the verification process,

in which the Exploration Focused probability distribution provided automatically by

the system is used.

Table 5.5: Summary of Programs and Bugs used in the Study

ID Program Bugs
LOC for # Nodes
ES(s) in ES(s)

R1 replace v11 53 144
R2 v11, v13 84 213
R3 v11, v13, v33 113 294
P1 printtokens2 v4 85 193
P2 v4, v6 208 233
P3 v4, v6, v7 246 307
M1 remainder v1 59 154
M2 v1, v2, 59 154
M3 v1, v2, v3 59 154
T1 triangleClassification v1 16 85
T2 v1, v2 16 85
T3 v1, v2, v3 16 85

In the following sections, the PSTC objects used for each program are de-

scribed. As the CASC system relies on expected output to detect malfunction, most

109

Table 5.6: Configuration Details for Experiments

Generations MOOP

Verification 1500 Fit. Share. Alpha 1
Engagement 200 Fit. Share. Sigma 0.15

Correction 150
CS Generation 150

Program Population Test Case Population

Population Size 200 Population Size 100
Children per Gen. 200 Children per Gen. 100

Tourn. Size 20 Tourn. Size 10
Survival Tourn. Size 40 Survival Tourn. Size 20

Copy Prob. 2.5% Exploration Focused:
Reset Prob. 5.0% Mutate Prob. 35%

Base Crossover Prob. 20.0% Crossover Prob. 10%
Base Mutate Prob. 70.0% Randomize Prob. 55%
Arch. Alter Prob. 2.5% Normal Operation:

Adap. Param. Freq. 10 Gen. Mutate Prob. 45%
Adap. Param. Reward 2.5% Crossover Prob. 45%

Tier Width for Edits
5 per ES

Randomize Prob. 10%
from Source Objective

Allowed CPU Time 1 sec.

of the presented PSTCs were designed using a back-to-front design scheme , with the

remainder PSTC being the only exception (the reasoning behind this is discussed in

Section 5.3.3). In the back-to-front design scheme, the expected output is generated

for the test case, then the input that would yield that output is created. Following

this design scheme, the core data for each test case is the expected output (rather

than the more typical input). Accordingly, this is what is typically modified during

test case reproduction.

Additionally, the back-to-front design scheme makes the most sense in practical

application of the CASC system. If the input was the core data used for each test

case, then the generation of expected output would involve, in many cases, essentially

110

encoding the program that is being corrected into the test case. Clearly, this would

be an unrealistic requirement.

5.3.1. Test Case Details: printtokens2. printtokens2 is a lexical analysis

program. The token types supported are Number, Identifier, Keyword, Character,

Comment, String, and Special Symbol; with a restriction on the length of comments.

A test case is randomly created by first randomly selecting a token type, and then

randomly generating an appropriate lexeme for the token.

Recombination of printtokens2 test cases is achieved using uniform crossover.

Tokens and their associated lexemes are uniformly selected to form a child. The

length of the child test case is chosen randomly from the inclusive selection between

the lengths of the two test cases. If the child’s length is greater than the shorter

parent, then there is a bias towards the test case with longer length. A printtokens2

test case can be mutated through a change of the lexemes or token types that the

test case contains, selected with even probability. When a token type of a test case

is mutated, a new token type is chosen at random and the lexeme associated with

it is regenerated in a similar manner to that of the initial randomization of the test

case. The mutation of a lexeme of a token is more involved; depending on token type,

the lexeme is modified accordingly to preserve validity for the token type. Number

token lexemes are selected randomly from the range [0,100]. Keyword and Special

Symbol token lexemes are selected randomly from the keywords or special characters

specific to printtokens2. Mutation of the identifier is performed through addition,

modification, or complete removal of characters in the lexeme. An important feature

to note is that the randomization and mutation phases generate only valid lexemes

that are accepted by the correct program.

During evaluation, input to printtoken2 is created by concatenating the lex-

emes of the test case into a space separated list. Expected output for a test case

is generated based on the known token type and lexemes of the test case in ques-

111

tion. When comparing the expected output with the actual output of a printtokens2

program, the objectives are:

1. The token types match

2. The lexemes match

3. The order of the token types match

4. The order of the lexemes match

Objective 1 is calculated as the percentage of token types missing in the output. The

other objectives are calculated as the edit distance between lexemes (objective 2)

or order of token types and lexemes (objectives 3 and 4, respectively). When using

MOOP, objective 1 is maximized and the others are minimized (from the perspective

of the program population). When using SOOP, the minimization objective scores

are negated, and then all of the scores are summed, effectively converting the problem

into a maximization problem.

A sample printtokens2 test case is shown in Figure 5.13.

5.3.2. Test Case Details: replace. replace is a pattern matching and

replacement program. A replace test case consists of three main parts:

1. A pattern to search for

2. A replacement string to substitute in for words that match the pattern

3. Text to search for pattern matches in

Patterns consist of single characters, wild-card characters, conditional character lists,

conditional character ranges, and escape characters (tab and end-line characters).

All pattern elements can also have the closure qualifier, indicating that at that point

in the pattern a matching word6 can have zero or more instances of that pattern

6Note that in this discussion, “words” in the input text are considered to be strings of characters
separated by either space characters or end lines

112

Test Case:
(Character, a), (Keyword, xor), (Identifier, bcd), (Comment), (String, “text”),
(Endline), (Keyword, lambda), (Number, 42)

Input: (surrounding quotes added)
“a xor bcd ; “text”
lamda 42”

Expected Output:
identifier,“a”.
keyword,“xor”.
identifier,“bcd”.
keyword,“lambda”.
numeric,42.

Figure 5.13: Example printtokens2 Test Case

element. The conditional character pattern elements indicate a set of characters that

are acceptable at that point in the program. These elements can have the negation

qualifier to indicate that all characters except those in the set can be used at that

point. Patterns (as a whole) can also have bol and eol qualifiers, which indicate

that to match the pattern a word must be either at the beginning or end of a line

in the text, respectively. The replacement string consists of either characters or

ditto’s (represented by the & character). A ditto indicates that when replacing a

matched word we insert the matched word itself in the replacement string at that

point. For example, if the replacement string “->&<-” was used and the word “abc”

was matched, the output would be “->abc<-”. The text to be searched for pattern

instances (i.e., the target text) is composed of words generated specifically to be

either instances or non-instances of the pattern. The expected output is generated

by exploiting the fact that all words in the target text are known to be instances or

non-instances.

113

Uniform crossover is used for all three components of the test case. When

performing mutation, one of the three components is selected (with equal probability)

and then one mutation operation is performed on that component (the operations

have equal probability of selection, as well). The pattern can be mutated by swapping

locations of pattern elements, deleting a pattern element, randomly altering the text

for a pattern element, adding a random pattern element, altering the qualifier(s) for a

pattern element, and altering the bol or eol qualifiers for the pattern. The replacement

string can be mutated by swapping two characters in the string, removing a character,

randomly changing a character, and adding a character to the string. The target text

can be mutated by swapping two pattern instance locations, removing a pattern

instance (adding a non-instance), swapping the location of a pattern instance and

a non-instance, generating new text for a pattern instance, and adding a pattern

instance (removing a non-instance).

Expected output for a test case is generated by replacing the known pattern

instances in the input text with the appropriate replacement text string. When

comparing the expected output with the actual output of a replace program, the

objectives are:

1. Non-pattern-instances in the input text are not altered

2. Pattern-instances in the input text are replaced with the replacement string

After a program individual runs, the words in the output are read in and stored as a

list. Then the expected output for the test case is generated and stored in the same

manner. The list of expected words is then iterated and the edit distance between

the expected output and the actual output is summed, where the sum for pattern-

instances and non-instances is kept separate. After all words have been iterated, the

resulting sums are reported as scores for the appropriate objective function. Accord-

ingly, the program population attempts to minimize these scores, while the test case

114

population is maximizing them. If SOOP is used, then these scores are summed and

returned as the fitness for the run. The resulting value is then negated for program in-

dividuals (since CASC assumes the program population is always maximizing fitness

when performing single-objective optimization).

An example of a replace test case is shown in Figure 5.14.

Pattern:
(Character, “a”), (Wildcard), (Character List, “bcd”), (Character Range, “1-9 ”,
Closure), (Character, “!”)

Replacement Text: “-->&<--” (where the & character indicates a ditto)

Target Text:
(“qw$gh^A”), (“zxXcv”), (“a|b1234!”, instance), (“+bvAsDw”), (Endline),
(“aad!”, instance), (“yu#aB”), (“a\(d3!”, instance), (Endline),
(“Tbc>?”)

Expected Output:
qw$gh^A zxXcv -->a|b1234!<-- +bvAsDw

-->aad!<-- yu#aB -->a(d3!<--

Tbc>?

Figure 5.14: Example replace Test Case

5.3.3. Test Case Details: remainder. The remainder program takes as

input two integers (a numerator and a denominator), and outputs the quotient and

remainder from dividing the input values. There are five basic cases to consider in

the remainder program: the four possible permutations of signs for the numerator

and denominator and the case when either of the inputs are zero.

As mentioned earlier, the remainder PSTC does not use the back-to-front

design scheme. Quotient calculation for integer division is a primitive operation in

C++, and so that was used to determine the expected quotient for a given numerator

115

and denominator. This result was then used to calculate the remainder for the division

using naive calculation7 (i.e., remainder = numerator - (denominator * quotient).

remainder test cases are mutated by simply randomly selecting a new sign

and a new value for the numerator or denominator. Recombination of remainder

test cases uses uniform crossover between the parent test case’s numerator and de-

nominator values.

The objectives used for the remainder program are:

1. The correct quotient should be specified by the program

2. The correct remainder should be specified by the program

Both objectives are scored by taking the absolute value of the expected value minus

the output value. Accordingly, these objectives are both minimization objectives,

from the perspective of the program population. When using SOOP, the objective

scores are summed and negated.

An example remainder test case is shown in Figure 5.15.

Input: (Numerator, “42”), (Denominator, “-13”)

Expected Output: (Quotient, “-3”), (Remainder, “3”)

Figure 5.15: Example remainder Test Case

5.3.4. Test Case Details: triangleClassification. The triangleClassifi-

cation program takes as input 3 integers indicating the lengths of a sides of a triangle

and outputs the type of triangle indicated (equilateral, isosceles, or scalene), using the

tightest classification possible. If any of the side lengths are less than or equal to zero

7This approach was used instead of basic modulus because the remainder program operates
slightly different than C++ modulus in some of the aforementioned cases.

116

then the program indicates that invalid input has been provided. The core data item

for triangleClassification test cases is the triangle type expected, including invalid.

The type is selected first, then appropriate side lengths are randomly generated.

Mutation of triangleClassificaion test cases is performed by selecting a new

type, and then randomly changing as few of the sides as possible to represent the new

type. When performing recombination of triangleClassification test cases, the type

of the child test case is randomly selected from within the set of types covered by the

parent test cases. That is to say, if the parent test cases are the same type, then the

child will be that type. If the one parent is of type equilateral and the other is of

type scalene, then the child can be any type except invalid (as equilateral triangles

are also isosceles). If either of the test cases are invalid, then the child can be any

type.

There is only a single objective for the triangleClassification program: the

correct classification should be given. Program individuals attempt to maximize this

objective, and it is scored using Table 5.7, where the vertical axis is the expected

type and the horizontal axis is the indicated type. Given the way that the triangle-

Classification program is written, it is possible that a program could be created that

gives no output; when this is the case, the indicated type is NA in the table. This

table was designed to capture how close to correct a classification is by taking into

account how much more incorrect it could be. For example, if a test case represents

an equilateral triangle, but is classified as scalene, then this result is scored 0.25. The

rationale behind this is that at least the program indicated that it was a triangle,

rather than indicating invalid or simply providing no output at all.

5.3.5. General Experimentation Results. Each program was run 30

times using MOOP and SOOP, totaling in 720 runs. Figure 5.16 shows the percentage

of runs that yielded a solution for each program using both MOOP and SOOP.

Figure 5.17 shows the success rate for the runs ordered by the number of bugs present

117

Table 5.7: Scoring Table Used for triangleClassification

Equ. Isc. Scl. Inv. NA
Equ. 1.00 0.75 0.25 0.00 -1.00
Isc. 0.75 1.00 0.50 0.00 -1.00
Scl. 0.25 0.50 1.00 0.00 -1.00
Inv. 0.00 0.00 0.00 1.00 -1.00

in the program. With a single bug present, the system performed quite well on all

programs, achieving an average 86.25% success rate on these runs. With two bugs

the average success rate falls, to 74.58%. With three bugs present, the system really

struggled, achieving only 26.88% average success rate. This highlights the system’s

need for the addition of partial solution identification techniques.

Figure 5.16: Percentage of Runs Yielding a Solution in General Experiments Ordered
by Program

MOOP outperformed SOOP in the majority of the programs considered, and

performed at least as good for all programs. This was the expected result, as even

118

when the problem objectives are not conflicting, MOOP can still be expected to per-

form at least as good as SOOP. If the three bug runs are omitted, MOOP achieved an

average success rate of 93.75%, whereas SOOP only achieved 67.08%. Both optimiza-

tion methods struggled when there were three bugs present in the program, though

MOOP still performed better than SOOP on average in these cases.

Figure 5.17: Percentage of Runs Yielding a Solution in General Experiments Ordered
by Number of Bugs Present

Solutions presented by the system were subjected to manual testing to deter-

mine if the solution was a true solution. This testing used a hand-crafted set of test

cases, designed specifically to demonstrate functionality implemented in the ES(s)

for the bugs (not just the functionality affected by the bug(s)). The output of the

solutions for these tests was compared that of the original unmodified program and

if no differences were shown, then the solution was a true solution. Figure 5.18 shows

the percentage of solutions presented by the system that are true solutions ordered

119

by the program used for the runs. Figure 5.19 shows this percentage as well, except

ordered by the number of bugs present in the program used for the runs.

Figure 5.18: Percentage of Solutions Yielded in General Experiments that are True
Solutions Ordered by Program

Programs with more a complicated test case space will naturally be more prone

to the presentation of false solutions, as these programs often have more border cases

and/or rarely traversed execution paths. For example, the test case space for the

triangleClassification program is defined by a finite set of relationships between the

input values. The test case space for the replace program, however, is dramatically

more complex, defined by pattern elements, pattern element order, pattern modifiers

present, replacement text used, etc. And so, with all other aspects equal, replace will

have a higher likelihood of producing a false solution than triangleClassification, since

the test case space is so much larger for replace. This is reflected in Figure 5.18, which

shows that solutions presented for triangleClassification were always true solutions

120

and the number of true solutions found for replace decreased as the number of code

elements increased.

The percentage of solutions generated that are true solutions is indicative of

the CASC verification system’s performance. Like the system’s correction module, the

verification module performed very well with up to two bugs present in the program,

achieving an average true solution rate of 96.04% with one bug and 85.81% with two

bugs. The performance of the verification system cannot be effectively assessed when

three bugs were present, since few solutions were presented overall by the system.

Figure 5.19: Percentage of Solutions Yielded in General Experiments that are True
Solutions Ordered by Number of Bugs Present

Figure 5.20 shows the average number of verification cycles used in the runs

that yielded a solution. The values shown indicate the number of times the system

entered the verification EA in the TestingandV erification module. All runs that

yield a solution result in at least one verification cycle; values greater than one for

this statistic indicate how often false positive solutions were identified and rejected

121

by the system. Where Figure 5.18 and Figure 5.19 indicate how often the verification

system did not catch a false solution, Figure 5.20 indicates how often these solutions

were caught by the system and then system went on to find another solution.

In general, the remainder and triangleClassification programs used more veri-

fication cycles than the other programs for all configurations. This is due to the rate

at which the test case population is able to converge on a genotypic structure that

generates an error in the prevailing members of the program population. Both the

remainder and triangleClassification test case spaces are much smaller than that of

printtokens2 and replace, making convergence much easier. With rapid convergence

possible, the test case population will quickly cluster around identified optima, then

when a program is identified that corrects the error being focused on, it will pass all

of the test cases that were exploiting the error. However, while correcting the original

error, additional errors could be created and not identified, due to the focused nature

of the test case population. And so, when the candidate solution is identified and

the system goes into the Testing and Verification module the error introduced during

correction is identified trivially, since the test case population is no longer focused on

a specific genotypic configuration.

Figure 5.21 displays box plots for the number of evaluations performed when

the solution for a run was found. The boxes shown are bounded by the first and third

quartiles of this value, the cross is at the median, and the endpoints of the lines on

the top and bottom of the boxes are at the max and min value, respectively. An

evaluation is defined as a single program-test case pairing. This gives an overview of

the effort used to generate a solution for the problems considered. For the one and

two bug problems, most solutions were presented in less than five million evaluations.

The remainder runs generally took more evaluations to generate a solution than the

others. This is due to both the number of verification cycles used in these runs and the

arithmetic nature of the program (making it very sensitive to arbitrary modification).

122

Figure 5.20: Average Number of Verification Cycles Used in Successful Runs

Figure 5.21: Box Plot for the Number of Evaluations Used to Generate a Solution

Figure 5.22 shows box plots for the CPU time used in all of the experimental

runs, in seconds. The majority of runs finished in less than 20000 seconds (i.e.,

approximately five and a half hours). A large amount of time during runs is spent

waiting for non-terminating programs to be killed, which is currently done at the

123

second resolution. These times could be reduced through higher resolution program

timing and the addition of more search guidance to the system.

Figure 5.22: Box Plot for the CPU Time Used for the Experimental Runs in Seconds

5.4. SCALABILITY EXPERIMENTATION SETUP

The full search space of possible programs is infinite; however, when correcting

software it can be assumed that the incorrect program is not far from the correct

program [29]. With this assumption, the search space for CASC can be loosely

approximated as:

S = (mN)k (7)

where N is the number of nodes (i.e., atomic code elements) in the incorrect program,

m is the number of modifications that can be performed on a node, and k is the

minimum number of modifications needed to reach a solution [9].

124

Reduction of k would have the most affect on the search space; unfortunately,

the k value cannot be controlled. However, for 50% of bugs the value of k is 10 or

less; for 95% of bugs k is 50 or less [81, 26]. Reduction of the m value would also

result in search space reduction; however, it would also reduce the scope of CASC’s

effective application, since reducing m reduces the number of tools CASC has at its

disposal.

The N value, however, can be reduced by limiting the portion of the source

program that CASC considers. In previous versions of CASC, the section of code

considered by the system was indicated using special guard statements recognized by

the CASC parser, which were set manually. N can be reduced by more aggressively

setting the guards at the risk of leaving some, or even all, of the incorrect code

elements out. Fault localization techniques can be used to increase the confidence of

guard placements.

A preliminary scalability study for CASC was presented in 2011 [105]. A

buggy version of bubble sort presented by Arcuri [11] was used as the base program

in this study (specifically bug 4 from the cited publication). At the time, CASC

supported only SOOP. The fitness function used is shown in Algorithm 1 (where the

numMissing function returns the number of elements in input that are missing in

output). Ten versions of this program were created in which each version has an

additional line included between the guard statements marking the buggy code, e.g.,

OneLine has just the buggy line of code included between the guards, TwoLines has

the same line as OneLine plus one more non-buggy line, ThreeLines has the same

lines as TwoLines plus one more non-buggy line, etc.. The effect that adding a line

has on the N value varies depending on the line that was added. Table 5.8 shows the

N values for the generated source programs.

For each version of the source program, 50 experimental runs were executed.

The parameters used for the experiments are summarized in Table 5.9.

125

Table 5.8: Number of Nodes (N) in Source Programs

OneLine 4 TwoLines 11 ThreeLines 15
FourLines 23 FiveLines 37 SixLines 49
SevenLines 58 EightLines 64 NineLines 67

Table 5.9: Parameters for Scalability Experiments

Num. Generations 400

Program Population Parameters
Pop. Size 50

Programs Created Per Gen. 50
Selection Tourn. Size 5
Survival Tourn. Size 10

Copy Probability 2.5%
Reset Probability 5%

Architecture Alter Probability 2.5%
Crossover Probability 45%
Mutation Probability 45%

Off-by-One Mutation Bias 10%
Nodes Altered in Mutation 1

Copy/Mutation Update Freq. 10 Gen.
Copy/Mutation Update Reward 2.5%

Test Case Population Parameters
Pop. Size 50

Seeded Test Cases 5
Test Cases Created Per Gen. 25

Selection Tourn. Size 10
Survival Tourn. Size 10

Mutation Rate 10%
Values Changed in Mutation 1

5.4.1. Previous Scalability Results. This section presents the results

from the scalability study for CASC presented in 2011 [105]. Ideally, the CASC

system should be able to correct the buggy program as quickly as possible on every

run. Accordingly, the scalability study is focused on the success rate of the system

and the birth generation of solutions in successful runs.

126

The results for the experiments are summarized in Table 5.10. A linear trend

line can be generated for the success rate (shown in this table) with an associated R2

value of 0.9076; based on this is evidence it can be hypothesized that there exists a lin-

ear correlation between success rate and problem size. A sub-linear correlation seems

to also be possible; as the problem size increases, the success rate is reduced by de-

creasing amounts (with the exception of the SixLines experiments, which performed

unexpectedly well). This possibility is confirmed by the generation of a logarithmic

trend line, which produces nearly the exact same R2 value (0.9075).

Table 5.10: Results Summary for 2011 Scalibility Study

Success Average Birth
Rate Gen. of Solution

OneLine 100% 15
TwoLines 98% 26
ThreeLines 88% 36
FourLines 78% 123
FiveLines 68% 135
SixLines 76% 126
SevenLines 64% 174
EightLines 62% 118
NineLines 60% 190

Figure 5.23 gives an overview of the distribution of birth generations for valid

solutions (based on the minimum and maximum generations observed and first, sec-

ond, and third quartiles) for the scalability studies, with that of the original study

shown in Figure 5.23a. As discussed previously, as the number of code elements

increases, the number of successful experiments decreases. This impacts the statis-

tical confidence for the higher node count experiments; however, each experiment

contributed at least 30 experiments to Figure 5.23a.

127

In the version of the CASC system used in the previous study, individuals were

ranked first by fitness, then by node count. This allowed for the promotion of equally

fit individuals with fewer nodes over those with more nodes. Using this approach, it

was possible for a solution to be found early on in the search, then replaced in the

last generation by a new solution that has one less node. This situation is believed

to be the cause of the high maximum generations reported in Figure 5.23a.

For the first three programs, 75% of the solutions were found in less than 50

generations. With the addition of the fourth line, 75% of the solutions were found in

less than 210 generations, which is a significant increase given that the fourth line only

adds eight nodes to the source program. The fourth line is a branch statement whose

then clause contains the other three lines included in the program. It is likely that

the observed increase in convergence rate is due to the relationship that the fourth

line has with the other three lines. Modifications made to line four can determine

whether or not the other three lines are executed; as such modifications made to the

other three lines may not impact the performance of the program at all.

The experiments for programs FourLines through NineLines roughly perform

along a steadily increasing trend, with the exception of the EightLines experiments.

There is no clear reason for the distribution of these results to be so notably different

from the expected values (relative to the performance of the other experiments).

The average birth generation of valid solutions is indicative of the convergence

rate of the CASC system. The average birth generation of valid solutions for these

experiments is shown in Table 5.10. A plot of these values for both scalability studies

is shown in Figure 5.24, with that of the original study shown in Figure 5.24a. Also

shown in this figure are generated linear and logarithmic trend lines for these values,

whose R2 values are 0.8186 and 0.848, respectively. This result indicates that the

estimated convergence rate of the previous version of the CASC system as problem

size increases is at worst linear, and very possibly sub-linear.

128

(a) 2011 Study

(b) 2012 Study

Figure 5.23: Box Plots of Solution Birth Generation for Scalability Studies

5.4.2. New Scalability Experimentation Results. The 2011 scalability

study was redone for the version of the CASC system described in this dissertation.

129

(a) 2011 Study

(b) 2012 Study

Figure 5.24: Trend Lines Generated for Average Solution Birth Generation for Suc-
cessful Experiments in Scalability Studies

130

Since the original study, CASC has had a number of high impact changes made, in

terms of the search space being navigated. Most notably (in the context of this study),

the system now represents a much larger portion of the C++ language and supports

many more possible code modifications. With these enhancements the system can

handle a much wider variety of programs and bugs, but at the cost of a much larger

search space.

The CASC system used in the 2011 study supported 32 node types for program

tree construction. In the 2011 version, variable names were discovered by the system

when they were used in code (as opposed to the declarations being specifically sought

out). The code modifications possible were similar to what is used in the current

version, but were less guided.

The version of the CASC system described in this dissertation supports 59

node types for program tree construction. Even though the programs used in the

study are the same (i.e., contain the same base code elements), code elements not

already present in the source code can be introduced during code modification. And

so, with more types that can be generated (as described in Section 5.2.4.4), this

represents a significant increase in search space from the version used in the 2011

study. Additionally, the CASC system now identifies all names available in the ES

through complete source code parsing. Each variable name identified is essentially

another node type available for use in code generation; as such, each name identified

results in an increase in search space. These increases in search space are contrasted

by more guidance added to the search. The major sources of search guidance are the

identification and exploitation of apparent code intention, variable type and qualifier

sensitivity, and finer granularity in performance assessment through MOOP.

The goal of reproducing this study is to provide a grounds for comparison

between the version of the CASC system used in the original study and the current

version. This comparison provides insight into how well the current version of the

131

CASC system is handling the increase in problem space by using the previous study

as a benchmark.

The same parameter values used in the original study (shown in Table 5.9 on

page 125) were used when appropriate; otherwise, the parameter values used in the

general experiments were used (shown in Table 5.6 on page 109). MOOP was used

in the new study, since it was shown to be generally at least as good as SOOP, and

better in many cases.

Table 5.11 summarizes the results from the new study. When compared to

the previous results summary in Table 5.10 on page 126, it is clear from the observed

success rate that the system was able to much more consistently find solutions, despite

the increased problem space.

Table 5.11: Results Summary for 2012 Scalibility Study

Success Average Birth
Rate Gen. of Solution

OneLine 100% 10
TwoLines 98% 35
ThreeLines 98% 47
FourLines 94% 40
FiveLines 92% 66
SixLines 88% 80
SevenLines 94% 89
EightLines 92% 75
NineLines 100% 89

Figure 5.23b provides a summary of the birth generations for solution programs

found in successful runs of the new experiments. The generation count used to create

this figure only includes generations in the Testing and Correction module, since

that is the location where the program search space is being navigated in the CASC

system.

132

In these plots, the cross symbols indicate the median of the recorded birth

generations and the bottom and top of the boxes are the first and third quartiles.

In general, the boxes for the new study are smaller and lower in the plot. Smaller

boxes indicate more consistency in the data, while boxes that are lower indicates that

solutions are found earlier in the run.

As discussed in the previous section, the addition of the fourth line introduced

a great deal of interdependence between the lines being evolved; resulting in a sig-

nificantly more complex search space. This increase in complexity is reflected in the

solution birth generations for the 2011 study. The plots for the 2012 study, however,

do not indicate that the system has any issue dealing with this increase in search

space complexity. This can likely be attributed to the addition of context sensitiv-

ity to the code modifications supported. With this addition, the system is able to

identify apparent intent in the code, and perform modifications accordingly. In the

context of this study, this results in increased sensitivity to the fact that the fourth

line is a branch statement, and that the condition for the branch should be modified

with that in mind.

Figure 5.24b shows a plot of the average birth generation for solutions in this

study. In the same manner as the 2011 study, trend lines have been added to this plot

to approximate the system’s rate of convergence on a solution. Again, it is clear that

system performed much more consistently in 2012 study, as the line plot of average

solution birth generation is much smoother than in the 2011 study. Both linear and

logarithmic trend lines are also shown in this plot. The R2 value for the linear trend

line is 0.8671 and was 0.9055 for the logarithmic trend line. The higher R2 values

(relative to the 2011 study) indicate a tighter fit for the trend lines to the data. This

indicates that the current CASC system holds more tightly to the hypothesis that

the convergence rate for the system is at worst linear, and very possibly sub-linear

with program size.

133

6. CONCLUSION

This dissertation discusses research into fitness function design, fitness guided

fault localization, and automated software testing, correction, and verification.

The presented guide for fitness function design is targeted at non-expert prac-

titioners, but also formalizes fitness function design and thus establishes a foundation

for the rigorous investigation of this critical component of EAs. A requirement clas-

sification taxonomy for fitness function design is presented which shows in a series of

steps how, in a structured manner, to transform problem specifications into a set of

fitness function components and ultimately their composition into a fitness function.

A series of examples illustrates the applicability of the guide to a variety of problem

types. The results demonstrate the guide’s ability to generate fitness functions that

are competitive with expertly designed fitness functions.

A prototype of the FGFL system is presented, which consists of an ensem-

ble of automated fault localization techniques that exploit a fitness function for the

faulty software in question. Experimentation was presented that served as proof of

concept for both fitness guided fault localization in general and the FGFL system

in particular. The experimentation was conducted on seven programs with different

seeded bugs. The results indicate that all techniques currently in the FGFL system

have trouble dealing with control based faults. However, on other fault types the

system performed quite well. Individually, the novel run-time fitness monitor tech-

nique performed the best out of the three techniques, resulting in 82% or more of

the lines being removed from suspicion from the source program (with control faults

omitted). With all techniques active, the system yielded a 90% or more reduction in

lines from the source. The final conclusion is that employing a fitness function has

the ability to improve the existing state of the art in automated fault localization.

134

The results presented here merit investigating all other state of the art automated

fault localization techniques for potential enhancement employing a fitness function.

The primary focus of the research summarized in this dissertation was on au-

tomated software correction. The current version of the CASC system is described

in detail. Major features of this system include: support for both single- and multi-

objective optimization, automatic detection and utilization of code element relation-

ships during correction, a polymorphic test case definition that allows for run-time

test case generation and evolution, a testing and verification cycle, and support for

structural testing to increase solution confidence. Experimentation is presented that

demonstrates the CASC system’s ability to handle problems of increasing difficulty,

both in terms of problem size and the number of bugs present. On one and two

bug problems (of varying sizes), the system performed well in all regards. The in-

troduction of a third bug and the resulting increase in problem size resulted in much

lower performance, clearly indicating current limits of the system. Additionally, the

published CASC scalability study from 2011 was reproduced with the current system

in order to investigate how well the system handled the increase in search space that

came with the recent additions to the system, using the original study as a bench-

mark. The new study showed that the system was able to outperform the version

used in the original study, despite the increase in search space.

135

7. FUTURE WORK

7.1. FITNESS FUNCTION DESIGN

The presented research on fitness function design has uncovered a number of

avenues for further investigation to improve the provided guide.

• The next logical step is to supplement the guide with methods for determin-

ing the quality of the generated fitness functions. This would allow the guide

to assess fitness functions in a quantitative manner in addition to the current

qualitative approach. These methods could guide users to develop quality fit-

ness functions using methods like fitness landscape characterization [71], fitness

function approximation [46], adaptive fitness function design [64], etc.

• There is still an element of fitness function design experience that is helpful

in the design process even while using the guide. This could be removed by

performing focused investigation and formalization of these areas.

• Fitness functions are not used solely by EAs. A step that would widen the

applicability of the outlined guide would be to generalize the design process to

black box search algorithms. This would likely necessitate some reworking of

current guide elements, but would overall likely be beneficial to a much wider

group of researchers.

• It seems possible that generalized coding templates could be used to generate

a suggested fitness function given a few problem specific details and the classi-

fications applied. This would definitely increase the usefulness of the guide for

practitioners, though it will likely be difficult to decide on a set of optimal im-

plementations for common fitness function design needs. However, if such a set

136

of implementations could be decided upon, it would then be possible to encode

the whole process into a user guided tool that would generate a fitness function

in a fully automated manner, again, dramatically increasing the usefulness of

the guide.

7.2. THE FGFL SYSTEM

The FGFL system is in a state of active development. The future steps for

the system are:

• Benchmarking: The next major step for the FGFL system in general is to begin

testing on commonly used program test suites in order to do direct comparisons

with state of the art fault localization methods. The Siemens Test Suite is the

first set of programs that will be focused on, after which additional programs

from the Software-artifact Infrastructure Repository will be used for further

testing.

• Trace Comparison Technique: The values in the region of the LCS table that

indicate the divergent path could be used to determine substrings within the

divergent path that are executed in the positive test case as well. The lines

in these substrings should generate less suspicion since they were executed by

both positive and negative test cases. This approach would allow a gradient

to be used when applying votes for this technique as well as help reduce the

assumptions made regarding the behavior of the program in question.

• Trend-Based Line Suspicion Technique: Currently, this technique assumes that

the fitness function is bounded. An extension to allow unbounded fitness func-

tions could use approximated boundaries based on observed performance during

testing. After all test cases have been executed, a function based on the maxi-

mum and minimum observed fitnesses could generate approximated boundaries.

137

Using these boundaries, the observed fitness values could be normalized to fall

in the range of [0,1], after which the technique could generate suspicion and

votes as normal.

Also, the experimental results presented indicate a need for a mechanism to

reduce the effect that benign branching can have on the TBLS technique.

• Dynamic Slicing: Through the experimental results it was shown that the per-

formance of a technique can be dramatically effected by errors that indirectly

influence the fitness value. A possible new technique for the FGFL system could

use dynamic slicing techniques to backtrack to statements that influence highly

suspicious lines. This technique could be applied automatically when a notable

discrepancy between technique results is detected, like, for example, the results

for the fitness monitor on program SEL1 in Section 4.4.

7.3. THE CASC SYSTEM

The CASC system has a number of very promising potential avenues of re-

search:

• The system currently spends a lot of time waiting for non-terminating programs

to be killed. Accordingly, the system would benefit from a higher resolution

timing mechanism, to kill long-running programs earlier.

• The CASC system would likely benefit from rigorous parameter sensitivity

testing and tuning. Discovery of commonly effective parameter configurations

would both improve CASCs results as well as make it a more accessible system.

• Currently the CASC system uses uniform parameter settings for many of the

EAs used by the system. An investigation into the possible benefits of decou-

pling these EA parameter values should be conducted.

138

• The code relationships detected by the CASC system greatly improve its abil-

ity to perform intelligent correction. The current set of relationships detected

are basic programming knowledge for human developers; it is anticipated that

the addition of more advanced concepts to the CASC system will improve its

performance even further.

• Currently the CASC system only handles evolving programs that use objects

from the outside, i.e., from routines that are not part of these objects. Extending

the system to be able to perform correction in routines that are in objects will

greatly increase the application of the system.

• While the system is able to create syntactically valid programs on average 88%

of the time, the incorporation of a more comprehensive definition of the C++

grammar can be expected to be of great value to the system. An ambitious

method to accomplish this would be to build in support for the use of a grammer

file in the system. This file would contain grammatical rules for the source

language of the program being corrected. This would both ensure syntactic

validity during code modification as well as provide a basis for the dynamic

definition of code modification techniques.

• A more targeted testing technique would be a strong improvement to the CASC

system; particularly when dealing with programs containing multiple bugs. If

specific errors in the output could be detected, then the system could focus

on creation of test cases demonstrating that error, allowing for focused error

correction. If achieved, this would allow the system to correct errors one at a

time, rather than attempting to correct them simultaneously.

• The addition of linkage learning [36] concepts to the program evolution process

in CASC would allow the system to more efficiently promote partial solutions

139

in the program genotypes. This improvement can be expected to dramatically

speed up the system in general.

• There are a number of objectives that can be generally applied to the CASC

system. The presented MOSP algorithm would make the incorporation of these

objectives into the CASC system very straightforward, and as such would make

the system generally more flexible.

140

BIBLIOGRAPHY

[1] T. Ackling, B. Alexander, and I. Grunert. Evolving Patches for Software Repair.
In Proceedings of GECCO 2011 - the Genetic and Evolutionary Computation
Conference, pages 1427–1434, New York, NY, USA, 2011. ACM.

[2] K. Adamopoulos, M. Harman, and R. M. Hierons. How to Overcome the
Equivalent Mutant Problem and Achieve Tailored Selective Mutation Using
Co-evolution. In Proceedings of GECCO 2004 - the Genetic and Evolutionary
Computation Conference, pages 1338–1349, 2004.

[3] H. Agrawal. Toward Automatic Debugging of Computer Programs. PhD thesis,
Purdue University, 1991.

[4] H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with Dynamic Slicing
and Backtracking. Software Practice and Experience, 23(6):589–616, June 1993.

[5] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In Proceedings of the
ACM SIGPLAN 1990 conference on Programming language design and imple-
mentation, pages 246–256, New York, NY, USA, 1990. ACM.

[6] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault Localization
Using Execution Slices and Dataflow Sets. In Proceedings of the 6th IEEE
International Symposium on Software Reliability Engineering, pages 143–151,
1995.

[7] S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege. A Systematic Re-
view of the Application and Empirical Investigation of Search-Based Test Case
Generation. IEEE Transactions on Software Engineering, 36(6):742–762, 2010.

[8] A. Arcuri. On the Automation of Fixing Software Bugs. In ICSE Companion
’08: Companion of the 30th International Conference on Software Engineering,
pages 1003–1006, New York, NY, USA, 2008. ACM.

[9] A. Arcuri. Automatic Software Generation and Improvement through Search
Based Techniques. PhD thesis, University of Birmingham, 2009.

[10] A. Arcuri. Evolutionary Repair of Faulty Software. Applied Soft Computing,
11(4):3494 – 3514, 2011.

[11] A. Arcuri and X. Yao. A Novel Co-Evolutionary Approach to Automatic Soft-
ware Bug Fixing. In IEEE Congress on Evolutionary Computation, 2008, pages
162–168, June 2008.

[12] A. Arcuri and X. Yao. Co-Evolutionary Automatic Programming for Software
Development. Information Sciences, (In Press), 2010.

141

[13] C. Artho. Iterative Delta Debugging. In Proceedings of the 4th International
Haifa Verification Conference on Hardware and Software: Verification and Test-
ing, pages 99–113, Berlin, Heidelberg, 2009. Springer-Verlag.

[14] J. J. Barton and L. R. Nackman. Scientific and Engineering C++: An Intro-
duction with Advanced Techniques and Examples. Addison-Wesley Professional,
1994.

[15] P. E. Black. “Levenshtein Distance”, in Dictionanry of Algorithms
and Data Structures. Accessed June 2011. http://xlinux.nist.gov/dads/
HTML/Levenshtein.html.

[16] J. S. Bradbury and K. Jalbert. Automatic Repair of Concurrency Bugs. In Pro-
ceedings of the International Symposium on Search Based Software Engineering
- Fast Abstacts, Sept. 2010.

[17] R. C. Bryce and C. J. Colbourn. One-Test-at-a-Time Heuristic Search for
Interaction Test Suites. In Proceedings of GECCO 2007 - the Genetic and
Evolutionary Computation Conference, pages 1082–1089. ACM, 2007.

[18] O. Bühler and J. Wegener. Evolutionary Functional Testing of an Automated
Parking System. In Proceedings of the 9th International Conference on Infor-
mation Systems Analysis and Synthesis, Orlando, Florida, 2003.

[19] O. Bühler and J. Wegener. Evolutionary Functional Testing. Computers &
Operations Research, 35(10):3144–3160, 2008.

[20] J. P. Cartlidge. Rules of Engagement: Competitive Coevolutionary Dynamics
in Computational Systems. PhD thesis, University of Leeds, 2004.

[21] M. L. Collard. Addressing Source Code Using srcML. In IEEE Interna-
tional Workshop on Program Comprehension Working Session Textual Views
of Source Code to Support Comprehension, pages 3–5. IEEE, 2005.

[22] W. Cook, W. Cunningham, W. Pulleybank, and A. Schrijver. Combinatorial
Optimization. John Wiley and Sons, 1997.

[23] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2001.

[24] N. L. Cramer. A Representation for the Adaptive Generation of Simple Sequen-
tial Programs. In J. John, editor, Proceedings of an International Conference
on Genetic Algorithms and the Applications. Carnegie Mellon University, 1985.

[25] K. Dahal, S. Remde, P. Cowling, and N. Colledge. Improving Metaheuristic Per-
formance by Evolving a Variable Fitness Function. In 8th European Conference
on Evolutionary Computation in Combinatorial Optimization, pages 170–181,
2008.

142

[26] V. Dallmeier and T. Zimmerman. Extraction of Bug Localization Benchmarks
from History. In IEEE International Conference on Automated Software Engi-
neering (ASE), pages 433–436, 2007.

[27] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley and Sons, 2001.

[28] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization. John Wiley & Sons, Chich-
ester, 2001.

[29] R. DeMillo, R. Lipton, and F. Sayward. Hints on Test Data Selection: Help for
the Practicing Programmer. Computer, 11(4):34–71, 1978.

[30] E. Diaz, R. Blanco, and J. Tuya. Tabu Search for Automated Loop Coverage in
Software Testing. In Proceedings of the International Conference on Knowledge
Engineering and Decision Support, pages 229–234, 2006.

[31] S. Dick and A. Kandel. Computational Intelligence in Software Quality Assur-
ance. World Scientific, 2005.

[32] H. Do, S. G. Elbaum, and G. Rothermel. Supporting Controlled Experimenta-
tion with Testing Techniques: An Infrastructure and its Potential Impact. Em-
pirical Software Engineering: An International Journal, 10(4):405–435, 2005.

[33] L. Doitsidis and N. Tsourveloudis. An Empirical Study for Fitness Function
Selection in Fuzzy Logic Controllers for Mobile Robot Navigation. In Annual
Conference on IEEE Industrial Electronics, pages 3868–3873, Nov. 2006.

[34] S. Ghazi and M. Ahmed. Pair-Wise Test Coverage Using Genetic Algorithms.
In Proceedings of The 2003 Congress on Evolutionary Computation, volume 2,
pages 1420–1424, 2003.

[35] D. E. Goldberg and J. Richardson. Genetic Algorithms with Sharing for Mul-
timodal Function Optimization. In Proceedings of the International Conference
on Genetic Algorithms and their application, pages 41–49, Hillsdale, NJ, USA,
1987.

[36] B. W. Goldman and D. R. Tauritz. Linkage Tree Genetic Algorithms: Variants
and Analysis. In Proceedings of GECCO 2012 - the Genetic and Evolutionary
Computation Conference, New York, NY, USA, 2012. ACM.

[37] M. Harman. The Current State and Future of SBSE. In 2007 Future of Software
Engineering, FOSE ’07, pages 342–357, Washington, DC, USA, 2007. IEEE
Computer Society.

[38] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo. Optimizing for
the Number of Tests Generated in Search Based Test Data Generation with an
Application to the Oracle Cost Problem. In Proceedings of the International

143

Conference on Software Testing, Verification and Validation Workshops, pages
182–191, 2010.

[39] M. Harman, S. A. Mansouri, and Y. Zhang. Search Based Software Engineering:
A Comprehensive Analysis and Review of Trends Techniques and Applications.
Technical Report TR-09-03, Department of Computer Science, King’s College
London, Apr. 2009.

[40] M. Harman, U. Ph, and B. F. Jones. Search-Based Software Engineering. In-
formation and Software Technology, 43(14):833–839, 2001.

[41] W. D. Hillis. Co-Evolving Parasites Improve Simulated Evolution as an Opti-
mization Procedure. Physica D, 42(1-3):228–234, 1990.

[42] J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge MA, 1992, 1st Edition: 1975, University of Michigan Press, Ann Arbor.

[43] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the Ef-
fectiveness of Dataflow- and Control-Flow-Based Test Adequacy Criteria. In
Proceedings of the International Conference on Software Engineering, pages
191–200, May 1994.

[44] T. Jansen. On the Classification of Fitness Functions. Technical report, Uni-
versity of Dortmund, 1999.

[45] Y. Jia and M. Harman. Constructing Subtle Faults Using Higher Order Mu-
tation Testing. In Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 249–258, Sept. 2008.

[46] Y. Jin. A Comprehensive Survey of Fitness Approximation in Evolutionary
Computation. Soft Computing, 9(1):3–12, 2005.

[47] Y. Jin and J. Branke. Evolutionary Optimization in Uncertain Environments
- A Survey. IEEE Transactions on Evolutionary Computation, 9(3):303–317,
2005.

[48] B. Jones, H.-H. Sthamer, and D. Eyres. Automatic Structural Testing Using
Genetic Algorithms. Software Engineering Journal, 11(5):299–306, Sept. 1996.

[49] J. A. Jones. Semi-Automatic Fault Localization. PhD thesis, Georgia Institute
of Technology, 2008.

[50] J. A. Jones and M. J. Harrold. Empirical Evaluation of the Tarantula Au-
tomatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, pages 273–282,
New York, NY, USA, 2005. ACM.

[51] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of Test Information to
Assist Fault Localization. In Proceedings of the 24th International Conference
on Software Engineering, pages 467–477, New York, NY, USA, 2002. ACM.

144

[52] T. C. Jones. Measuring Programming Quality and Productivity. IBM Systems
Journal, 17(1):39–63, 1978.

[53] A. Kapoulkine. pugixml Procssing Library. http://www.pugixml.org/, Accessed
June 2011.

[54] B. Korel. Automated Software Test Data Generation. IEEE Transactions on
Software Engineering, 16(8):209–215, Aug. 1990.

[55] B. Korel. Automated Test Data Generation for Programs with Procedures. In
Proceedings of the International Symposium on Software Testing and Analysis,
pages 209–215, 1996.

[56] B. Korel and J. Laski. Dynamic Program Slicing. Information Processing
Letters, 29:155–163, Oct. 1988.

[57] J. R. Koza. Genetic Programming: On the Programming of Computers by the
Means of Natural Selection. MIT Press, Cambridge MA, 1992.

[58] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge MA, 1994.

[59] J. R. Koza. Genetic Programming III: Darwinian Invention and Problem Solv-
ing. Morgan Kaufmann, 1999.

[60] J. R. Koza. Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers, 2003.

[61] K. Lakhotia, M. Harman, and P. McMinn. A Multi-Objective Approach to
Search-Based Test Data Generation. In Proceedings of GECCO 2007 - the Ge-
netic and Evolutionary Computation Conference, pages 1098–1105, New York,
NY, USA, 2007. ACM.

[62] W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-
Verlag, 2002.

[63] J. R. Lyle and M. Weiser. Automatic Bug Location by Program Slicing. In Pro-
ceedings of the 2nd International Conference on Computers and Applications,
pages 877–883, 1987.

[64] M. Majig and M. Fukishima. Adaptive Fitness Function for Evolutionary Al-
gorithm and Its Applications. In International Conference on Informatics Ed-
ucation and Research for Knowledge-Circulating Society, pages 119–124, 2008.

[65] P. McMinn. Search-Based Software Test Data Generation: A Survey. Software
Testing, Verification, and Reliability, 14(2):105–156, 2004.

[66] P. McMinn. Search-Based Software Testing: Past, Present, and Future (keynote
paper). In Proceedings of the 4th International Workshop on Search Based
Software Testing, pages 153–163. IEEE Computer Society, 2011.

145

[67] C. Michael and G. McGraw. Automated Software Test Data Generation for
Complex Programs. In Proceedings of the 13th IEEE International Conference
on Software Engineering, pages 136–146, 1998.

[68] C. Michael, G. McGraw, and M. Schatz. Generating Software Test Data by
Evolution. IEEE Transactions on Software Engineering, 27(12):1085–1110, Dec.
2001.

[69] E. Miller and W. E. Howden. Software Testing and Validation Techniques.
IEEE Computer Society, Long Beach, CA, 1978.

[70] W. Miller and D. Spooner. Automatic Generation of Floating Point Test Data.
IEEE Transactions on Software Engineering, SE-2(3):223–226, Sept. 1976.

[71] M. Mitchell, S. Forrest, and J. Holland. The Royal Road for Genetic Algorithms:
Fitness Landscapes and GA Performance. In Proceedings of the First European
Conference on Artificial Life, pages 245–254, 1991.

[72] D. J. Montana. Strongly Typed Genetic Programming. Evolutionary Compu-
tation, 3(2):199–230, 1994.

[73] A. Nelson, G. Barlow, and L. Doitsidis. Fitness Functions in evolutionary
robotics: a survey and analysis. Robotics and Autonomous Systems, 57(4):345–
370, 2009.

[74] C. Nie and H. Leung. A Survey of Combinatorial Testing. ACM Computing
Surveys, 43(2):11:1–11:29, Feb. 2011.

[75] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically Cor-
recting Memory Errors with High Probability. Communications of the ACM,
51(12):87–95, Dec. 2008.

[76] M. Orlov and M. Sipper. Flight of the FINCH through the Java Wilderness.
IEEE Transactions on Evolutionary Computation, 15(2):166–182, 2010.

[77] G. Palshikar. Applying Formal Specifications to Real-World Software Develop-
ment. IEEE Software, 18(6):89–97, 2001.

[78] R. P. Pargas, M. J. Harrold, and R. Peck. Test-Data Generation Using Genetic
Algorithms. Software Testing, Verification & Reliability, 9:263–282, 1999.

[79] R. Poli. Parallel Distributed Genetic Programming, Invited Chapter in D.
Corne, M. Dorigo and F. Glover (Eds), New Ideas in Optimisation, chapter 27,
pages 403–431. McGraw-Hill, 1999.

[80] R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill,
6th edition, 2005.

146

[81] R. Purushothaman and D. Perry. Toward Understanding the Rhetoric of Small
Source Code Changes. IEEE Transactions on Software Engineering, 31(6):511–
526, 2005.

[82] S. Remde, P. Cowling, K. Dahal, and N. Colledge. Evolution of Fitness Func-
tions to Improve Heuristic Performance. Learning and Intelligent Optimization:
Second International Conference, pages 206–219, 2008.

[83] A. Rodrigues, P. de Mattos Neto, and T. Ferreira. A Prime Step in the Time
Series Forecasting with Hybrid Methods: The Fitness Function Choice. In In-
ternational Joint Conference on Neural Networks, pages 2703–2710, 2009.

[84] C. D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University
of California: San Diego, 1997.

[85] C. D. Rosin and R. K. Belew. Methods for Competitive Co-evolution: Finding
Opponents Worth Beating. In L. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms, pages 373–380, San Francisco,
CA, 1995. Morgan Kaufmann.

[86] C. D. Rosin and R. K. Belew. New Methods for Competitive Coevolution.
Evolutionary Computation, 5(1):1–29, 1997.

[87] E. Schulte, S. Forrest, and W. Weimer. Automated Program Repair Through
the Evolution of Assembly Code. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’10, pages 313–316,
New York, NY, USA, 2010. ACM.

[88] T. Shiba, T. Tsuchiya, and T. Kikuno. Using Artificial Life Techniques to
Generate Test Cases for Combinatorial Testing. In Proceedings of the 28th
Annual International Computer Software and Applications Conference - Volume
01, COMPSAC ’04, pages 72–77, Washington, DC, USA, 2004. IEEE Computer
Society.

[89] S. Sidiroglou and A. Keromytis. Countering Network Worms Through Auto-
matic Patch Generation. IEEE Security & Privacy, 3(6):41–49, Nov. 2005.

[90] S. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD
thesis, University of Pittsburgh, 1980.

[91] U. S. A. Standards Coordinating Committee of the IEEE Computer Society.
IEEE Standard Glossary of Software Engineering Terminology. IEEE Computer
Society, Dec. 1990 (Reaffirmed in 2002).

[92] G. Tassey. The Economic Impacts of Inadequate Infrastructure for Software
Testing. Technical report, NIST, May 2002.

[93] N. Tracey. A Search-Based Automated Test Data Generation Framework for
Safety-Critical Software. PhD thesis, University of York, 2000.

147

[94] N. Tracey, J. Clark, and K. Mander. Automated Program Flaw Finding Using
Simulated Annealing. In Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA ’98, pages 73–81, New York,
NY, USA, 1998. ACM.

[95] N. Tracey, J. Clark, and J. McDermid. Automated Test-Data Generation for
Exception Conditions. Software - Practice and Experience, 30(1):61–79, 2000.

[96] I. Vessey. Expertise in Debugging Computer Programs: An Analysis of the Con-
tent of Verbal Protocols. IEEE Transactions on Systems, Man and Cybernetics,
16(5):621–637, Sept. 1986.

[97] C. Voudouris. Guided Local Search. Technical report, European Journal of
Operational Research, 1995.

[98] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary Test Environment for Au-
tomatic Structural Testing. Information and Software Technology, 43(14):841–
854, 2001.

[99] J. Wegener, K. Buhr, and H. Pohlheim. Automatic Test Data Generation For
Structural Testing Of Embedded Software Systems By Evolutionary Testing. In
Proceedings of GECCO 2002 - the Genetic and Evolutionary Computation Con-
ference, pages 1233–1240, San Francisco, CA, USA, 2002. Morgan Kaufmann
Publishers Inc.

[100] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen. Automatic Program Re-
pair with Evolutionary Computation. Communications of the ACM, 53(5):109–
116, May 2010.

[101] E. Weisstein. Inverse function. From Mathworld - A Wolfram Web Resource.
Accessed August 2010. http://mathworld.wolfram.com/InverseFunction.html.

[102] J. L. Wilkerson. Co-Evolutionary Automated Software Correction: A Proof of
Concept. Master’s thesis, Missouri University of Science and Technology, 2008.

[103] J. L. Wilkerson and D. R. Tauritz. Coevolutionary Automated Software Cor-
rection. In Proceedings of GECCO 2010 - the Genetic and Evolutionary Com-
putation Conference, pages 1391–1392, 2010.

[104] J. L. Wilkerson and D. R. Tauritz. A Guide for Fitness Function Design.
In Proceedings of GECCO 2011 - the Genetic and Evolutionary Computation
Conference, pages 123–124, New York, NY, USA, 2011. ACM.

[105] J. L. Wilkerson and D. R. Tauritz. Scalability of the Coevolutionary Automated
Software Correction System. In Proceedings of GECCO 2011 - the Genetic and
Evolutionary Computation Conference, pages 243–244, New York, NY, USA,
2011. ACM.

148

[106] J. L. Wilkerson, D. R. Tauritz, and J. Bridges. Multi-Objective Coevolutionary
Automated Software Correction. In Proceedings of GECCO 2012 - the Genetic
and Evolutionary Computation Conference, New York, NY, USA, 2012. ACM.

[107] W. E. Wong and V. Debroy. A Survey of Software Fault Localization. Technical
Report UTDCS-45-09, University of Texas at Dallas, Nov. 2009.

[108] S. Xanthakis, C. Ellis, C. Skourlas, A. L. Gall, S. Katsikas, and K. Karapoulios.
Application of Genetic Algorithms to Software Testing. In Proceedings of the 5th
International Conference on Software Engineering and its Applications, pages
625–636, 1992.

[109] C. Yalcin. Evolving Aggregation Behavior for Robot Swarms: Evolving Aggre-
gation Behavior for Robot Swarms: A Cost Analysis for Distinct Fitness Func-
tions. In International Symposium on Computer and Informational Sciences,
pages 1–4, 2008.

[110] A. Zeller. Isolating Cause-Effect Chains from Computer Programs. In Pro-
ceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 1–10, New York, NY, USA, 2002. ACM.

[111] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufman, 2005.

[112] A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-Inducing Input.
IEEE Transactions on Software Engineering, 28(2):183–200, Feb. 2002.

[113] Y. Zhan and J. A. Clark. The State Problem for Test Generation in Simulink.
In Proceedings of GECCO 2006 - the Genetic and Evolutionary Computation
Conference, pages 1941–1948, New York, NY, USA, 2006. ACM.

[114] Y. Zhang, M. Harman, and A. Mansouri. The SBSE Repository: A Repos-
itory and Analysis of Authors and Research Articles on Search Based Soft-
ware Engineering. 2012. CREST Centre UCL. Accessed June 2012. http:

//crestweb.cs.ucl.ac.uk/resources/sbse_repository/.

149

VITA

Joshua Lee Wilkerson was born in Springfield, Missouri. He graduated with

honors from Strafford High School in the spring of 2001 and enrolled as an under-

graduate at the University of Missouri - Rolla, now Missouri University of Science

and Technology (S&T), later that fall. He graduated cum laude in summer of 2005

with a BS in computer science. He was enrolled in the S&T computer science grad-

uate program in fall of 2005. He received his master’s degree in computer science in

December of 2008. He receive his Ph.D. in computer science from S&T in August of

2012. He then went on to work at the Naval Air Warfare Center, Weapons Division

at China Lake, California; a part of the Naval Air Systems Command organization

in the United States Department of the Navy.

	Evolutionary computing driven search based software testing and correction
	Recommended Citation

	tmp.1411741741.pdf.R0eIr

