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Abstract 

Financial contagion refers to a scenario in which small shocks, which initially affect 

only a few financial institutions or a particular region of the economy, spread to the 

rest of the financial sector and other countries whose economies were previously 

healthy. This resembles the “transmission” of a medical disease. Financial contagion 

happens both at domestic level and international level. At domestic level, usually the 

failure of a domestic bank or financial intermediary triggers transmission by 

defaulting on inter-bank liabilities, selling assets in a fire sale, and undermining 

confidence in similar banks. An example of this phenomenon is the failure of Lehman 

Brothers and the subsequent turmoil in the US financial markets. International 

financial contagion happens in both advanced economies and developing economies, 

and is the transmission of financial crises across financial markets. Within the current 

globalise financial system, with large volumes of cash flow and cross-regional 

operations of large banks and hedge funds, financial contagion usually happens 

simultaneously among both domestic institutions and across countries. 

There is no conclusive definition of financial contagion, most research papers 

study contagion by analyzing the change in the variance-covariance matrix during the 

period of market turmoil. King and Wadhwani (1990) first test the correlations 
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between the US, UK and Japan, during the US stock market crash of 1987. Boyer 

(1997) finds significant increases in correlation during financial crises, and reinforces 

a definition of financial contagion as a correlation changing during the crash period. 

Forbes and Rigobon (2002) give a definition of financial contagion. In their work, the 

term interdependence is used as the alternative to contagion. They claim that for the 

period they study, there is no contagion but only interdependence. Interdependence 

leads to common price movements during periods both of stability and turmoil.  

In the past two decades, many studies (e.g. Kaminsky et at., 1998; Kaminsky 

1999) have developed early warning systems focused on the origins of financial crises 

rather than on financial contagion. Further authors (e.g. Forbes and Rigobon, 2002; 

Caporale et al, 2005), on the other hand, have focused on studying contagion or 

interdependence.  

In this thesis, an overall mechanism is proposed that simulates characteristics 

of propagating crisis through contagion. Within that scope, a new co-evolutionary 

market model is developed, where some of the technical traders change their 

behaviour during crisis to transform into herd traders making their decisions based on 

market sentiment rather than underlying strategies or factors. The thesis focuses on 

the transformation of market interdependence into contagion and on the contagion 
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effects. The author first build a multi-national platform to allow different type of 

players to trade implementing their own rules and considering information from the 

domestic and a foreign market. Traders’ strategies and the performance of the 

simulated domestic market are trained using historical prices on both markets, and 

optimizing artificial market’s parameters through immune - particle swarm 

optimization techniques (I-PSO). The author also introduces a mechanism 

contributing to the transformation of technical into herd traders. A generalized auto-

regressive conditional heteroscedasticity - copula (GARCH-copula) is further applied 

to calculate the tail dependence between the affected market and the origin of the 

crisis, and that parameter is used in the fitness function for selecting the best solutions 

within the evolving population of possible model parameters, and therefore in the 

optimization criteria for contagion simulation. The overall model is also applied in 

predictive mode, where the author optimize in the pre-crisis period using data from 

the domestic market and the crisis-origin foreign market, and predict in the crisis 

period using data from the foreign market and predicting the affected domestic market. 
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Chapter 1 : Introduction 

1.1. Background and Motivation 

A series of financial crises, such as the Mexican crisis of 1987, the Asian turmoil of 

1997, and the Russian instability of 1998, all share a common feature – problems 

spread from one country to neighbouring countries, and even regionally or globally. 

The spread is due to the cross-market linkages. If the cross-market linkages stay stable 

then the crisis is transferred through interdependence, and the recovery follows the 

recovery of the underlying economic reasons in the country of origin. When the cross-

market linkages get destabilized due to the crisis, then the crisis starts “feeding on 

itself” and the recovery of the underlying economic reason is not sufficient to get 

control of the crisis; a more comprehensive strategy with international involvement is 

required. The second type of crisis exhibits the phenomenon called ‘financial 

contagion’.  

There is no conclusive definition of financial contagion, most research papers 

study contagion by analyzing the change in the variance-covariance matrix during the 

period of market turmoil. King and Wadhwani (1990) first test the correlations 
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between the US, UK and Japan, during the US stock market crash in 1987. Boyer 

(1997) finds significant increases in correlation during financial crises, and reinforces 

a definition of financial contagion as a correlation breakdown during the crash period. 

Forbes and Rigobon (2002) define financial contagion as “a significant increase in 

cross-market linkages after a shock to a group of countries”. They claim that for the 

period they study, there is no contagion but only interdependence. Interdependence 

leads to common price movements during periods both of stability and turmoil.  

In the past two decades, many studies (e.g. Kaminsky et al., 1998; Kaminsky 

1999) have developed early warning systems focused on the origins of financial crises 

rather than on financial contagion. Further authors (e.g. Forbes and Rigobon, 2002; 

Caporale et al, 2005), on the other hand, have focused on studying contagion or 

interdependence. In this thesis, the author simulates the transmission of financial 

crises, modelling through computational intelligence the behaviour of market players 

and their various strategies. 

Computational intelligence combines elements of learning, adaptation, and 

evolution. In this thesis the author choose to use a hybrid computational approach 

involving artificial immune–particle swarm intelligence, genetic programming, and a 

mixed-game, to implement the challenging task of developing a system capable of 
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simulating realistic market behaviour and the contagion phenomenon. In the next 

section, the author will discuss the application of computational intelligence 

approaches in the area of finance. 

1.2. Structure of Thesis 

In Chapter 2, the author introduce the origin, development, and applications to finance 

of different evolutionary computing approaches. The reason for considering these in 

detail is the conclusion the author reach in the previous section here that evolutionary 

computing is the most representative computational intelligence area with financial 

applications. The model the author develops later in the thesis is also based on a 

hybrid evolutionary approach.  

In chapter 3, the author will briefly discuss the correlation coefficient as a 

measure of dependence between two random variables, and the limitations of this 

measure. Then, the author will introduce the copula as an alternative measure, 

together with a discussion of copula types and how their parameters are estimated. 

The reason for focusing on an effective measure of market interdependence is to be 

able to introduce that in the objective function of the optimization approach. An 

effective measure of interdependence also contributes to recognizing the shift towards 
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contagion between markets. 

In chapter 4, the author develop a comprehensive market model comprising four 

types of traders: technical, game, herd, and noise traders, respectively. Then, the 

author extend this one-market model to an international two-market model, in order to 

explore how financial contagion happens. This is achieved by evolving the two-

market model and observing the interactions between the markets. The two-market 

model is extendible to a multi-national market, i.e. a multiple-market model. 

In chapter 5, the author propose an Immune Particle Swarm Optimization 

(Immune-PSO) algorithm, which is combined with an Immune Clone Selection 

algorithm. The reason for developing these algorithms is to improve the optimization 

technique applied to the two-market (multiple-market) model. Within the new 

approach, several operators are performed – a clone copy, a clone hyper-mutation and 

a clone selection - during the evolutionary steps of the model. The author also 

compare, on a set of test functions, the performance of the new approach with the 

genetic algorithm used in the previous chapter. Finally, the Immune-PSO is 

implemented to estimate the parameters of our agent-based multinational market 

model. 
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In chapter 6, the author further modifies the co-evolutionary market model by 

introducing a mechanism allowing for some of the technical and game traders to 

transform their behaviour during crisis periods. Thus, during crises they will make 

their decisions based on market sentiment rather than following their usual trading 

strategies.  

In chapter 7, the author draw up and summarize the conclusions of this study. The 

main contributions are highlighted, and directions for further research are proposed. 

. 
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Chapter 2 : Nature-inspired Computational 

Approaches: Origin, Development and Applications 

to Finance 

 

Nature-inspired Computing is a collection of nature-inspired analytical and 

optimization tools. The systems resulting from the implementation of these techniques 

are better able to cope with complex problems.  

Evolutionary computing (EC) is the most representative computational 

intelligence area with financial applications. The model the author develop later in the 

thesis is also based on a hybrid evolutionary approach. According to Isasi et al. (2007), 

EC is divided into four main areas: evolutionary programming (EP), evolutionary 

strategies (ES), genetic algorithms (GA) and genetic programming (GP). They have 

been developed independently, where EP focuses on optimizing continuous functions 

without recombination, ES focus on optimizing continuous functions with 

recombination, GA focus on optimizing general combinatorial problems, and GP 

evolves programs, (Forrest 1993, Holland 1975, Michalewicz 1996).  
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Along with the earlier established areas of EP, ES, GA and GP, the author also 

review here the recently developed artificial immune systems (AIS) and swarm 

intelligence (SI) approaches and their applications to finance. These latter techniques 

are also nature-inspired, and particularly relevant to the algorithm the author design 

and implement. Artificial Immune is adaptive systems, which are inspired by 

theoretical immunology and observed immune functions, principles and models, and 

then applied to problem solving. The techniques are inspired by specific 

immunological theories that explain the function and behaviour of the mammalian 

adaptive. (Castro et al., 2002) Swarm intelligence describes the collective behaviour 

of decentralized, self-organized systems, where interactions between agents lead to 

the emergence of "intelligent" global behaviour, (Beni and Wang, 1989). Examples of 

SI include ant colony optimization (ACO) and particle swarm optimization (PSO), 

(Dorigo, 1992; Eberhart& Kennedy, 1995).  

All of these approaches are widely used in various areas such as chemical 

industry, power system, machine design, robotic design, signal processing, biology, 

operational research, system identification, optimal control, learning, prediction, and 

fault diagnosis. Each of them has been also successfully applied to the area of finance 

and economics. The author will focus on four techniques in this chapter, directly 

relevant to our research, namely, GA, GP, PSO and AIS. 

http://en.wikipedia.org/wiki/Artificial_immune_system#cite_note-0
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2.0. Overview of Applications of Computational Intelligence Approaches to 

Financial Problems 

Financial markets, as highly nonlinear dynamic systems, are affected by many 

fundamental and sentiment factors, including interest rates, inflation rates, and 

political issues. Having the interdependency between the factors, it is difficult to 

model stock price movements with traditional methods. Computational intelligence 

approaches (CI), as a more powerful framework for dealing with complex problems, 

are being introduced to financial analysis.  Currently, applications of CI are 

increasingly covering various aspects of finance and economics. The range of 

techniques includes the main CI areas - artificial neural networks (ANN), 

evolutionary computing (EC), and fuzzy logic -as well as the more specific swarm 

intelligence technologies, support vector machines, and simulated annealing (SA), to 

name a few. 

Evolutionary approaches have been applied to problems in finance for a 

considerable time now. Bauer (1994) uses genetic algorithms (GA) based intelligent 

systems to find out effective market timing strategies. Allen and Karjalainen (1995) 

use GAs to identify profitable trading rules for the S&P 500 index using daily prices 

from 1928 to 1995. Chen and Yeh (1996) use genetic programming (GP) to prove the 
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efficient market hypothesis, namely, to formalize the notion that stock price is 

unpredictable. Mahfoud and Mani (1996) introduce a GA-based system to forecast 

share price. Neely et al. (1997) apply a GP-based model to predict foreign exchange 

rates and the result is reported as a success. Li and Tsang (1999) develop a financial 

genetic programming technique (FGP), and the result indicates that FGP outperforms 

random walk. 

Regarding the application of evolutionary strategies (ES), Streichert (2002) uses 

ES to discover technical trading rules. In recent years, evolutionary strategies have 

been used, in combination with other approaches. Hong (2007) proposes an integrated 

model of support vector regression (SVR) and ES. With ES, the problem of 

determining the parameters for SVR is resolved. The model overcomes the 

disadvantage of traditional time series forecasting, which has problems capturing the 

nonlinear patterns. Experimental results show that the proposed model outperforms 

other approaches that have been applied for exchange rate forecasting. Mora (2008) 

uses a self-organizing map (SOM) to reduce the dimensions of the prediction problem. 

In this model, the capability of GP is merged with ES, to generate classification trees. 

The result indicates that the model outperforms an evolutionary ANN method. Fan et 

al (2008) propose a real-valued quantum-inspired evolutionary strategy (QIES). This 

model is similar to estimation of distribution algorithms (EDAs). They also compare 
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the results with those from a canonical GA. The results are reported to be robust and 

also suggest a good potential for high-dimensional optimization. 

ANNs, nearly as popular as EC, are also powerful techniques to employ and are 

now widely used in the area of finance. Kimoto and Asakawa (1990) produce a timing 

prediction system for sale and purchase, based on modular neural networks for stocks 

on the Tokyo stock exchange. The authors claim that their model achieves accurate 

predictions. Yoon and Swales (1991) examine the capability of ANN, and compare it 

with other techniques such as multiple discriminate analyses. Results indicate that 

ANN enhances investors’ forecasting ability. Aiken and Bsat (1994) apply ANNs to 

the area of real estate. Yao and Poh (1995) use back-propagation neural networks to 

predict movements in the Kuala Lumpur Stock Exchange (KLSE), and report a 

significant profit. Harrald and Kamstra (1997) conduct GP experiments to evolve 

ANNs to forecast stock price volatility. Lee (2001) adopts ANN to identify stock 

price trends. Chang (2004) proposes an integrated ANN and auto-regressive 

integrated moving average model to forecast the future fluctuation of the stock market 

index. The author concludes, however, that due to the noise and complexity, and the 

dimensionality of stock price, all those models have their inherent limitations. In other 

words, the input variables interfere with each other; hence the results are not 

convincing. 
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Furthermore, fuzzy logic is also popular in the financial arena but is often 

combined with other techniques. Wang et al (1998) propose an integrated model 

which combines GA with fuzzy knowledge. This model can integrate multiple fuzzy 

rule sets and their membership functions. Results show that their approach 

outperforms every individual knowledge base. Larsen and Yager (2000) present a 

hybrid soft computing technique for automated stock market forecasting and trend 

analysis. Firstly, they use principal component analysis to initiate the input data. Then, 

they use a neuro-fuzzy system to analyze the trend of stock prices. Lee (2001) 

suggests a Takagi-Sugeno-Kang (TSK) fuzzy rule-based system. In this model, a 

technical index is used as the input variable. The result, which is a linear combination 

of input variables, is tested on Taiwanese electronic shares from the Taiwan Stock 

Exchange (TSE). It is reported that the model can successfully forecast the price 

variation for stocks. Serguieva and Kalganova (2002) build a fuzzu-neuro-

evolutionary classifier of risky investments. Due to the complexity of the problem 

they tackle, an evolutionary strategy is applied using bidirectional incremental 

evolution (BIE) to evolve a fuzzy network. The model is tested with data on UK 

companies traded on the London Stock Exchange. Kuzemin and Lyashenko (2007) 

propose a fuzzy set theory approach which is used as the basis for analysis of 

financial flows in the economic security system. Qin and Li (2008) formulate a 
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European option-pricing formula for fuzzy financial markets, and discuss some of 

their mathematical properties.  

From the above review of literature, the author can see that application of 

computational intelligence approaches in the financial area mainly include processing 

and analyzing financial data (financial forecasting), pricing complex financial 

products (securities pricing), and analyzing market behaviour (trading strategy 

generation). Evolutionary computing is the most representative of the computational 

intelligence approaches, and can successfully provide agents with learning capability. 

In the next chapter, the author will focus on the application of evolutionary computing 

in the area of finance. 

2.1. Genetic Algorithms 

Holland called his method a genetic algorithm (Holland, 1975). Genetic algorithms 

are categorized as global search heuristics. They are implemented in computer 

simulations where a population of abstract representations, called chromosomes, of 

candidate solutions to an optimization problem evolves towards better solutions. 

Traditionally, solutions are represented binary as strings of 0s and 1s, but other 

encodings are also possible. (Vajedia 2003) In each generation, the fitness of every 
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individual in the population is evaluated and multiple individuals are selected from 

the current population based on their fitness. The best chromosomes are picked to be 

parents for the next generation. Then new child chromosomes are generated, e.g. 

representing new trading strategies, by crossover (setting points and exchanging the 

genes in the chromosomes between the points) and mutation (randomly changing one 

gene at a given point). Finally, the poorest strategies are replaced by the new child 

strategies. The new population is then used in the next iteration of the algorithm. 

Commonly, the algorithm terminates when either a maximum number of generations 

has been produced, or a satisfactory fitness level has been reached for the population. 

The process is illustrated in Figure 2-1 below. 
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Figure 2-1: GA flowchart 

2.1.1. Population Representation and Initialization 

GAs operates on a number of potential solutions, called a population, consisting of 

some encoding of the parameter set simultaneously. Typically, a population is 

composed of between 30 and 100 individuals, although, a variant called the micro GA 

uses very small populations, less than 10 individuals, with a restrictive reproduction 

and replacement strategy in an attempt to reach real-time execution (Karr, 1991). In 

this thesis, micro GA is used due to the complexity of our agent based model .The 

most commonly used representation of chromosomes in the GA is that of the single-

level binary string. Here, each decision variable in the parameter set is encoded as a 

binary string and these are concatenated to form a chromosome. Whilst binary-coded 



 

27 

 

GAs are most commonly used, there is an increasing interest in alternative encoding 

strategies, such as integer and real-valued representations. 

The use of real-valued genes in GAs is claimed by Wright (1991) to offer a 

number of advantages in numerical function optimization over binary encodings. 

Efficiency of the GA is increased as there is no need to convert chromosomes to 

phenotypes before each function evaluation; less memory is required as efficient 

floating-point internal computer representations can be used directly; there is no loss 

in precision by discretisation to binary or other values; and there is greater freedom to 

use different genetic operators. Having decided on the representation, the first step in 

the SGA is to create an initial population. This is usually achieved by generating the 

required number of individuals using a random number generator that uniformly 

distributes numbers in the desired range. For example, with a binary population of 

Nind individuals whose chromosomes are Lind bits long, Nind× Lind random 

numbers uniformly distributed from the set {0, 1} would be produced.  

2.1.2. Objective and Fitness Functions 

The objective function is used to provide a measure of how individuals have 

performed in the problem domain. In the case of a minimization problem, the fittest 

individuals will have the lowest numerical value of the associated objective function. 
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This raw measure of fitness is usually only used as an intermediate stage in 

determining the relative performance of individuals in a GA. Another function, the 

fitness function, is normally used to transform the objective function value into a 

measure of relative fitness (De Jong, 1975), thus 

F (x) = g (f (x) )                                                                                               (2.1) 

where f is the objective function, g transforms the value of the objective function to a 

non-negative number and F is the resulting relative fitness. 

2.1.3. Fitness Calculation 

(i). Proportional fitness assignment 

A commonly used transformation is that of proportional fitness assignment. The 

individual fitness, 𝐹𝐹(𝑥𝑥𝑖𝑖)  of each individual is computed as the individual’s raw 

performance, 𝑓𝑓(𝑥𝑥𝑖𝑖), relative to the whole population, i.e. 

𝐹𝐹(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖)
∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1

       ,                                                                            (2.2) 

where Nis the population size and xi is the phenotypic value of individual i. Whilst 

this fitness assignment ensures that each individual has a probability of reproducing 

according to its relative fitness, it fails to account for negative objective function 
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values. 

(ii). Rank-based fitness assignment 

In rank-based fitness assignment, the population is sorted according to the objective 

values. The fitness assigned to each individual depends only on its position in the 

individuals rank and not on the actual objective value. Rank-based fitness assignment 

overcomes the scaling problems of the proportional fitness assignment. The 

reproductive range is limited, so that no individuals generate an excessive number of 

offspring. Ranking introduces a uniform scaling across the population and provides a 

simple and effective way of controlling selective pressure. Rank-based fitness 

assignment behaves in a more robust manner than proportional fitness assignment and, 

thus, is the method of choice. (Bäck, T. &Hoffmeister, 1991) 

(iii). Linear ranking 

Consider Nind as the number of individuals in the population, Pos as the position of 

an individual in this population (the least fit individual has Pos=1, the fittest 

individual Pos=Nind) and SPas the selective pressure. The fitness value for an 

individual is calculated as: 
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𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑝𝑝𝑝𝑝𝐹𝐹) = 2 − 𝑆𝑆𝑆𝑆 + 2 ∗ (𝑆𝑆𝑆𝑆 − 1) ∗ (𝑆𝑆𝑝𝑝𝐹𝐹−1)
(𝑁𝑁𝑖𝑖𝐹𝐹𝑁𝑁 −1)

   (2.3) 

Linear ranking allows values of selective pressure in [1.0, 2.0]. 

Riechmann (2000) linked the theory of genetic algorithm learning to evolutionary 

game theory and showed that economic learning via genetic algorithms can be 

described as a specific form of an evolutionary game. In that paper the fitness is 

defined as: 

Fitness=agent’s quantity ∙(price-unit costs)        (2.4) 

The quantity the agent supplies reflects their own strategy, the market price reflects 

the state of the whole population, which means, given total demand, it reflects 

aggregate supply, i.e. the sum of all individual supply strategies. The total supply has 

an important influence on each agent’s fitness. 

2.1.4. Selection 

Selection is the process of determining the number of times, or trials, a particular 

individual are chosen for reproduction and, thus, the number of offspring that an 

individual will produce. (Baker, 1987) 
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(i). Roulette wheel selection 

The simplest selection scheme is roulette-wheel selection, also called stochastic 

sampling with replacement (Baker, 1987). This is a stochastic algorithm and involves 

the following technique. The individuals are mapped to contiguous segments of a line, 

such that each individual's segment is equal in size to its fitness. A random number is 

generated and the individual whose segment spans the random number is selected. 

The process is repeated until the desired number of individuals is obtained (called 

mating population). This technique is analogous to a roulette wheel with each slice 

proportional in size to the fitness. 

Table 2-1 shows the selection probability for 11 individuals, linear ranking and 

selective pressure together with the fitness value. Individual 1 is the fittest individual 

and occupies the largest interval, whereas individual 10 as the second least fit 

individual has the smallest interval on the line. Individual 11, the least fit interval, has 

a fitness value of 0 and get no chance for reproduction. 

Table 2-1: Selection probability and fitness value 

Number of individual 1 2 3 4 5 6 7 8 9 10 11 
fitness value 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 
selection probability 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0 

http://www.geatbx.com/docu/algindex-10.html#P1111_137236
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For selecting the mating population, the appropriate number of uniformly distributed 

random numbers (uniformly distributed between 0.0 and 1.0) is independently 

generated. For example, for a sample of six random numbers: 

0.81, 0.32, 0.96, 0.01, 0.65, 0.42, 

Figure 2-2 shows the selection process of the individuals for the example in Table 

together with the above sample trials. 

 

Figure 2-2: Roulette-wheel selection 

After the selection, the mating population consists of the following individuals: 

1, 2, 3, 5, 6, 9. 

The roulette-wheel selection algorithm provides a zero bias but does not guarantee 

minimum spread. 
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(ii). Stochastic universal selection 

Stochastic universal sampling (Baker, 1987) provides zero bias and minimum spread. 

The individuals are mapped to contiguous segments of a line, such that each 

individual's segment is equal in size to its fitness exactly as in roulette-wheel selection. 

Here equally spaced pointers are placed over the line as many as there are individuals 

to be selected. Consider NPointer as the number of individuals to be selected, then the 

distance between the pointers is1/NPointer and the position of the first pointer is 

given by a randomly generated number in the range [0, 1/NPointer]. 

Thus for 6 individuals to be selected, the distance between the pointers is 

1/6=0.167. Figure 2-3 shows the selection for the above example, where 1 random 

number in the range [0, 0.167] is used: 

:  

Figure 2-3: Stochastic universal sampling 

After the selection, the mating population consists of the following individuals: 

1, 2, 3, 4, 6, 8. 

http://www.geatbx.com/docu/algindex-10.html#P1111_137236
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Stochastic universal sampling ensures a selection of offspring which is closer to what 

is deserved then roulette wheel selection. 

2.1.5. Crossover  

The basic operator for producing new chromosomes in GA is that of crossover. 

Like its counterpart in nature, crossover produces new individuals that have some 

parts of both parent’s genetic material.  

(i).Single-point crossover 

The simplest form of crossover is that of single-point crossover, see below: 

 

Figure 2-4: Single-point crossover 

(ii). Multi-point crossover 

For multi-point crossover, the bits between successive crossover points are 

exchanged between the two parents to produce two new offspring. The section 
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between the first allele position and the first crossover point is not exchanged between 

individuals. This process is illustrated in Figure 2-5 bellow: 

 

Figure 2-5: Multi-point Crossover 

The idea behind multi-point, and indeed many of the variations on the crossover 

operator, is that the parts of the chromosome representation that contribute most to the 

performance of a particular individual may not necessarily be contained in adjacent 

substrings (Booker, 1987). Further, the disruptive nature of multi-point crossover 

appears to encourage the exploration of the search space, rather than favoring the 

convergence to highly fit individuals early in the search, thus making the search more 

robust (Spears & De Jong, 1991).  

(iii). Uniform Crossover 

Single and multi-point crossover defines cross points as places between loci 

where a chromosome can be split. Uniform crossover (Syswerda, 1989) generalises 
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this scheme to make every locus a potential crossover point. A crossover mask, the 

same length as the chromosome structures is created at random and the parity of the 

bits in the mask indicates which parent will supply the offspring with which bits. 

Consider the following two parents, crossover mask and resulting offspring:   

P1 = 1 0 1 1 0 0 0 1 1 1 
P2 = 0 0 0 1 1 1 1 0 0 0 
Mask = 0 0 1 1 0 0 1 1 0 0 
O1 = 0 0 1 1 1 1 0 1 0 0 
O2 = 1 0 0 1 0 0 1 0 1 1 

Here, the first offspring, O1, is produced by taking the bit from P1 if the 

corresponding mask bit is 1 or the bit from P2 if the corresponding mask bit is 0. 

Offspring O2 is created using the inverse of the mask or, equivalently, swapping P1 

and P2. Uniform crossover, like multi-point crossover, has been claimed to reduce the 

bias associated with the length of the binary representation used and the particular 

coding for a given parameter set.  

(iv). Intermediate Recombination 

Given a real-valued encoding of the chromosome structure, intermediate 

recombination is a method of producing new phenotypes around and between the 

values of the parents’ phenotypes (Mühlenbein & Schlierkamp-Voosen, 1993). 
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Offspring are produced according to the rule, where α is a scaling factor chosen 

uniformly at random over some interval, typically [-0.25, 1.25] and P1 and P2 are the 

parent chromosomes. Each variable in the offspring is the result of combining the 

variables in the parents according to the following expression with a new α chosen for 

each pair of parent genes.  

O1 = P1 × α (P2 − P1)                                                                                 (2.5) 

(v). Linear Order Crossover 

Linear Order Crossover was first proposed by Falkenauer & Bouffouix (1991). It is 

implemented as follows: 

Step 1: Randomly select a subsequence of genes from one of the two parent 

chromosomes and copy it into a new offspring maintaining the position of the 

subsequence.  

Step 2: Cross out the genes in the selected subsequence of Step 1 from the 

second parent. Then place the remaining genes of the second parent from left to right 

in the child's chromosome around the already inserted subsequence. This completes 

one offspring. 
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 Step 3: Repeat Steps1and2, but reverse the roles of the two parents.  

Matta (2009) uses GA to solve multiprocessor open shop scheduling problem which is 

categorized as a hard combinatorial optimization problem. In that paper he uses 

Linear Order Crossover. 

 
Figure 2-6: Example of two parent chromosomes 

 

Figure 2-7: Illustrative example of crossover 

Consider the two parent chromosomes shown in Figure 2-6. The sub-sequence 

from (5, 2) to (2, 3) of parent1 was randomly selected to be copied directly into the 

offspring. Figure 2-7 illustrates the creation of an offspring. The selected subsequence 

of parent1 is directly placed into the same position in the offspring and the other 

genes of parent2 are placed around this subsequence, forming a feasible offspring. 

This process is repeated with the parent roles reversed to create a second offspring. 

2.1.6. Mutation 

In natural evolution, mutation is a random process where one allele of a gene is 

replaced by another to produce a new genetic structure. In GAs, mutation is randomly 
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applied with low probability, typically in the range 0.001 to0.01, and modifies 

elements in the chromosomes. Usually considered as a background operator, the role 

of mutation is often seen as providing a guarantee that the probability of searching 

any given string will never be zero and acting as a safety net to recover good genetic 

material that may be lost through the action of selection and crossover (Goldberg, 

1989). The effect of mutation on a binary string is illustrated bellow: 

 

Figure 2-8: Single point mutation 

Many variations on the mutation operator have been proposed. For example, 

biasing the mutation towards individuals with lower fitness values to increase the 

exploration in the search without losing information from the fitter individuals (Davis, 

1989) or parameterising the mutation such that the mutation rate decreases with the 

population convergence (Fogarty,1989). Mühlenbein & Schlierkamp-Voosenhas 

(1993) introduced a mutation operator for the real-coded GA that uses a non-linear 

term for the distribution of the range of mutation applied to gene values. It is claimed 

0001 100000 

0000 100000 
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that by biasing mutation towards smaller changes in gene values, mutation can be 

used in conjunction with recombination as a foreground search process.  

2.1.7. Termination of GA 

Because the GA is a stochastic search method, it is difficult to formally specify 

convergence criteria. As the fitness of a population may remain static for a number of 

generations before a superior individual is found, the application of conventional 

termination criteria becomes problematic. A common practice is to terminate the GA 

after a pre-specified number of generations and then test the quality of the best 

members of the population against the problem definition. If no acceptable solutions 

are found, the GA may be restarted or a fresh search initiated.  

2.1.8. Applications 

Genetic algorithms have been widely applied in various areas. For example, 

Charbonneau (1995) suggests that GA are useful for problems in astrophysics and 

applies them to three specific problems: fitting the rotation curve of a galaxy based on 

observed rotational velocities of its components, determining the pulsation period of a 

variable star based on time-series data, and deriving the critical parameters in a 

magneto hydrodynamic model of the solar wind. Obayashi et al. (2000) uses a 

multiple-objective genetic algorithm to design the wing shape for a supersonic aircraft. 

http://www.talkorigins.org/faqs/genalg/genalg.html#charbonneau1995
http://www.talkorigins.org/faqs/genalg/genalg.html#obayashi2000
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Sato et al. (2002) use genetic algorithms to design a concert hall with optimal acoustic 

properties, maximizing the sound quality for the audience, for the conductor, and for 

the musicians on stage. The authors state that these solutions have proportions similar 

to Vienna's Grosser Musikvereinsaal, whose acoustic properties are considered to be 

one of the best in the world.  

GA hasfurther been applied to financial problems. LeBaron (1999) proves that 

GA is a powerful method to locate improvement in complicated higher-dimension 

space, after a long discussion of the time series properties of an artificial stock market. 

Allen et al. (1999) use GA to learn technical trading rules for the S&P 500 index 

using daily price data from 1928-1995; the rules are able to identify the index when 

daily returns are positive and volatility is low.Mahfoud and Mani (1996) use a genetic 

algorithm to predict the future performance of 1600 publicly traded stocks. In their 

paper, GA are used to evolve a set of if/then rules to classify each stock and to 

provide, as output, both a recommendation on what to do with regards to that stock 

(buy, sell, or no prediction) and a numerical forecast of the relative return. The results 

are compared to those of an established neural net-based system, used to forecast 

stock prices and manage portfolios for three years. Overall, the genetic algorithm 

significantly outperforms the neural network. Similar success was achieved by 

Andreou, Georgopoulos and Likothanassis(2002), who used hybrid genetic algorithms 

http://www.talkorigins.org/faqs/genalg/genalg.html#sato2002
http://www.talkorigins.org/faqs/genalg/genalg.html#mahfoud1996
http://www.talkorigins.org/faqs/genalg/genalg.html#andreou2002
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to evolve neural networks that predicted the exchange rates of foreign currencies up to 

one month ahead. GA clearly outperforms the other methods. More recent 

applications of GA include Chun-Teck Lye (2011) which presents a hybrid approach 

by associating GA and Sequential Quadratic Programming (SQP) to improve the 

Stutzer Index optimization. 

2.2. Genetic Programming 

Genetic programming is another of the EC approaches and focuses on finding 

computer programs that perform a user-defined task (Banzhaf 1998). The first 

statement of modern "tree-based" GP, that is procedural languages organized in tree-

based structures and operated on by suitably defined genetic operators, is given by 

Michael Cramer (1985). That work is later greatly expanded by John Koza, a main 

proponent of GP, who has pioneered the application of genetic programming in 

various complex optimization and search problems (Koza, 1990). GP is a 

specialization of GA where each individual is a computer program. The fitness 

landscape of GP is determined by a program’s ability to perform a given 

computational task. The population of computer programs is optimized according to 

fitness. Thus GP evolves computer programs represented in memory as tree structures. 

Trees can be easily evaluated in a recursive manner. Every tree node has an operator 

http://scialert.net/asci/author.php?ascicat=ALL&author=Chun-Teck&last=Lye
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function and every terminal node has an operand, making mathematical expressions 

easy to evolve and evaluate.  

2.2.1. Solution Initialization 

The innovation of GP lies in the variable sized solution representation which requires 

efficient initial population construction, and this feature makes it different from other 

evolutionary algorithms. Individuals are represented as trees constructed randomly 

from a primitive set. This primitive set contains functions and terminals. A tree’s 

internal nodes are selected from the functions and leaf nodes are selected from the 

terminals. GP allows variety in composition of solution structures using same 

primitive set. Initialization plays an important role in success of an evolutionary 

algorithm. A poor initial population can cause any good algorithm to get stuck in local 

optima. On the other hand a good initialization can make most of the algorithms work 

sufficiently well. There are a few initialization techniques popular in tree based GP.  

(i). Full method  

The full method is very similar to the grow method except the terminals are 

guaranteed to be of a certain depth. This guarantee does not specify the number of 

nodes in an individual. This method requires a final depth, d. 

1. Every node, starting from the root, with a depth less than d, is made of a 
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randomly selected function. If the node has a depth equal to d, the node is 

made of a randomly selected terminal.  

2. All functions have a number (equal to the arity of the function) of child nodes 

appended, and the algorithm starts again. Thus, only if d is specified as one, 

could this method produce a one-node tree.  

(ii). Grow method 

With this technique the entire population is created by using the grow method which 

creates one individual at a time. An individual created with this method may be a tree 

of any depth up to a specified maximum, m.  

1. Starting from the root of the tree every node is randomly chosen as either a 

function or terminal.  

2. If the node is a terminal, a random terminal is chosen.  

3. If the node is a function, a random function is chosen, and that node is given a 

number of children equal to the arity (number of arguments) of the function. 

For every one of the function’s children the algorithm starts again, unless the 

child is at depth m, in which case the child is made of a randomly selected 

terminal. This method does not guarantee individuals of a certain depth 

(although they will be no deeper than m). Instead it provides a range of 

structures throughout the population.  
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2.2.2. Selection 

The evolutionary operators are applied on individuals particularly selected for that 

operation. The individuals are selected using a particular selection mechanism. Two of 

such mechanisms are defined as follows.  

(i).Tournament selection  

In this type of selection, a tournament is conducted among few individuals chosen 

randomly from the population. The winner or best member is selected as a result of a 

tournament. The tournament size determines how many random members are selected 

for the tournament. Tournament size determines the selective pressure; large 

tournament size favours fitter solutions for selection. (Fang &Li, 2010) 

(ii). Fitness proportionate selection  

All the trees have probability of selection based upon their fitness. The probability of 

selection for a population of size ‘N’ is calculated as  

𝐹𝐹(𝑥𝑥𝑖𝑖) = 𝑓𝑓(𝑥𝑥𝑖𝑖)
∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1

                                                                                        (2.6) 

This is also called Roulette Wheel Selection mechanism. Several other selection 

mechanisms also exist in the literature like Rank Based Selection and Stochastic 

Universal Sampling. (Koza, 1997) 
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2.2.3. Crossover 

Crossover operator works by selecting two parents from the population. Two random 

subtrees are selected from each parent and swapped to create children. Advancements 

have been made to pure random crossover operator in order to make it more efficient 

and propagate good building blocks among generations. The information regarding 

size (Langdon, 2000), depth (Ito et al., 1998) or homogeneity (Langdon, 2000) of 

subtrees is also exploited while performing this operation.  

2.2.4. Mutation 

Mutation used in GP is of three types. In point mutation, a single node in a parent tree 

is selected and replaced with a random node of the same type. E.g. a function node is 

replaced by a function node of the same arity, and a terminal node is replaced by a 

randomly selected terminal node. (Koza, 1997) 

(i)Shrink mutation selects a node randomly and the subtree rooted at that node is 

replaced by a single terminal node. (Koza, 1997) 

(ii)Grow mutation selects a random node and a randomly generated subtree is 

replaced by the subtree rooted at that node. (Koza, 1997) 
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2.2.5. Reproduction 

In this operator an individual is selected and copied directly to the new generation 

without any changes or modifications to it. Koza (1997) allowed 10% of the 

population to reproduce. If the fitness test does not change, reproduction can have a 

significant effect on the total time required for GP because a reproduced individual 

will have an identical fitness score to that of its parent. Thus a reproduced individual 

does not need to be tested, as the result is already known. For Koza, this represented a 

10% reduction in the required time to fitness test a population. However, a fitness test 

that has a random component, which is effectively a test that does not initialise to 

exactly the same starting scenario, would not apply for this increase in efficiency. The 

selection of an individual to undergo reproduction is the responsibility of the selection 

function. 

2.2.6. Solution Fitness 

Fitness is the performance of an individual corresponding to the problem it is aimed to 

solve. It tells which elements or the regions of the search space are good. The fitness 

measure steers the evolutionary process towards better approximate solutions to the 

problem. Fitness of individuals in a population can be measured in many ways. It can 

be measure of error between the original and desired output of a solution. It can be 

compliance of the structure to the task based on a user specified criteria. The 
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difference between fitness evaluation in GP and other evolutionary algorithms is that 

each individual of GP is a program which needs recursive execution of the nodes of 

the tree in a precise manner. This adds an overhead to the algorithm, increasing its 

evolution time and required computational sources.  

2.2.7. Applications 

In 1990s, GP was mainly used to solve relatively simple problems because it is very 

computationally intensive. Recently it has produced many novel and outstanding 

results in areas such as quantum computing, electronic design, game playing, sorting, 

and searching, due to improvements in GP technology and the exponential growth in 

CPU power. For example, it has been used for novel designs such as patented antenna 

designs (Lohn et al., 2005), patented analogue electronic circuits (Koza et al., 2004), 

and a small molecule design (Nachbar, 2000). It is also being used commercially to 

characterize dynamic processes such as chemical processes (Hinchliffe et al., 1999), 

and image processing (Zhang, 2007). Further, Kishore et al. (2000) explore the 

feasibility of applying genetic GP to multi-category pattern classification problem, for 

the first time. GP can discover relationships among observed data and express them 

mathematically. In their paper, a methodology for GP-based n-class pattern 

classification is developed, and the reported results indicate a very good performance. 
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Genetic programming also has a rich history of applications in the area of finance. 

Chen and Yeh (1996) use GP to prove the efficient market hypothesis (EMH), namely, 

to formalize the notion that stock price is unpredictable. Chen (2000) proposes a new 

GP-based architecture to study artificial stock markets. In his model, a new concept, 

“business school”, is introduced. In essence, business school is a procedure to map the 

phenotype and genotype, and in the author’s words, “school is for discovering the 

secret of success”. Furthermore, traders’ search behaviour is also considered, and the 

result indicates that the return series is independently and identically distributed (iid), 

conforming to EMH. However, the authors claim that many of their traders are able 

quite often to find useful signals from the business school. Wilson and Banzhaf (2009) 

compare two GP approaches: a co-evolutionary genetic programming approach (PAM 

DGP) and a standard linear genetic programming (LGP), implemented for trading of 

stocks across market sectors. Both implementations are found to be impressively 

robust to market fluctuations while reacting efficiently to opportunities for profit, 

where PAM DGP proved slightly more reactive to market changes than LGP.  

Furthermore, Tsang et al. (2009) develop an artificial financial market and use it 

to model stock markets’ behaviour. The model introduces technical, fundamental and 

noise traders. Technical traders are sophisticated GP-based agents that co-evolve by 

forecasting investment opportunities using technical analysis. By identifying the 
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statistical properties of price series and introducing the “red queen principle” in 

evolution, they demonstrate that GP could play a key role in studying stock markets. 

Almanza et al. (2007) use a GP based repository method (RM) to find out significant 

movements in financial stock prices. Results show that the contribution of GP 

processing is very valuable to the performance of RM. Markose et al. (2001) develop 

and implement a financial genetic programming model (FGP) on intraday tick data for 

stock index options and futures arbitrage. This model is suitable for online trading 

when profitable window arbitrage opportunities exist, which range from one to ten 

minutes. This application indicates that FGP, in its interactive capacity, allows experts 

to channel their knowledge into machine discovery. 

2.3. Particle Swarm Optimization 

Particle swarm optimization is a population-based stochastic optimization technique 

developed by Eberhart and Kennedy in 1995, and inspired the by social behaviour of 

bird flocking or fish schooling. (Eberhart& Kennedy, 1995) PSO shares similarities 

with evolutionary techniques such as GA. The system is initialized with a population 

of random solutions, and searches for optima by updating successive generations. 

However unlike GA, PSO has no evolution operators such as crossover and mutation. 

In PSO, the potential solutions, called particles, fly through the problem space by 
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following the current optimum particles (Jaco&Schutte, 2005). Figure 2-9 below 

presents the flowchart . pseudo code for the overall PSO algorithm see appendix A 

 

Figure 2-9: PSO flowchart  
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Each particle keeps track of its coordinates in the problem space, which are associated 

with the best solution or fitness it has achieved so far, and the fitness value is also 

stored and called pbest (particle best). Another "best" value that is tracked by the 

particle swarm optimizer is the best value obtained so far by any particle within the 

neighbours of the particle, and this location is called lbest (local best). When a particle 

takes all the population as its topological neighbours, the best value is global and is 

called gbest (global best). The particle swarm optimization concept consists of, at each 

time step, changing the velocity of or accelerating randomly each particle toward its 

pbest and lbest locations, with separate random numbers being generated for 

acceleration toward the pbest and lbest locations (Jaco&Schutte, 2005). 

Standard Particle Swarm Optimization (SPSO) achieves optimization by means 

of cooperation and competition between individual members of the population. Each 

particle represents a possible solution to the problem. SPSO starts by initializing a 

group of solutions, and then finds the optimum solution through iteration. Each 

particle 𝑖𝑖 updates itself by tracing two “best values”: one is the best solution pbest 

found by the particle itself and denoted as 𝑝𝑝𝑖𝑖  , and the other is the best solution gbest 

found by its neighbours and denoted as 𝑝𝑝𝑔𝑔 . This process could be described 

mathematically as follows. In an n dimensional searching space, a population contains 
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m particles, 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2.⋯𝑥𝑥𝑚𝑚 } , where the position of particlei is 𝑥𝑥𝑖𝑖 =

{𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2.⋯𝑥𝑥𝑖𝑖𝐹𝐹 }and its velocity is𝑣𝑣𝑖𝑖 = {𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2.⋯𝑣𝑣𝑖𝑖𝐹𝐹 }, while the local best solution is 

𝑝𝑝𝑖𝑖 = {𝑝𝑝𝑖𝑖1 ,𝑝𝑝𝑖𝑖2 ,⋯𝑝𝑝𝑖𝑖𝐹𝐹 }  and the global best solution is 𝑝𝑝𝑔𝑔 = {𝑝𝑝𝑔𝑔1,𝑝𝑝𝑔𝑔2,⋯𝑝𝑝𝑔𝑔𝐹𝐹 } . A 

particle’s velocity and position are updated through the following formulas: 

𝑣𝑣𝑖𝑖𝑁𝑁
𝑗𝑗+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑁𝑁

𝑗𝑗 + 𝑐𝑐1𝑅𝑅1�𝑝𝑝𝑖𝑖𝑁𝑁
𝑗𝑗 − 𝑥𝑥𝑖𝑖𝑁𝑁

𝑗𝑗 � +  𝑐𝑐2𝑅𝑅2�𝑝𝑝𝑔𝑔𝑁𝑁
𝑗𝑗 − 𝑥𝑥𝑔𝑔𝑁𝑁

𝑗𝑗 �,(2.7) 

𝑥𝑥𝑖𝑖𝑁𝑁
𝑗𝑗+1 =  𝑥𝑥𝑖𝑖𝑁𝑁

𝑗𝑗 + 𝑣𝑣𝑖𝑖𝑁𝑁
𝑗𝑗+1       ,                                                (2.8) 

where 𝑁𝑁 = 1, 2 … .𝐹𝐹;  𝑖𝑖 = 1, 2 … .𝑚𝑚. Here 𝐹𝐹 is the dimension of the search space, 𝑚𝑚 is 

the population size, 𝑗𝑗  is the current generation, while 𝑐𝑐1, 𝑐𝑐2  are the acceleration 

constants and 𝑅𝑅1 ,𝑅𝑅2 are uniformly distributed random numbers in the range from 0 

to 1. Also 𝑤𝑤 is the weight given to the extent to which the previous velocity affects 

the current velocity. The velocity is normally restricted within the 

interval[−𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥  , 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 ], and 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑘𝑘 × 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥  where 0.1 ≤ 𝑘𝑘 ≤ 1. 

2.3.1. Algorithms Refinement 

Clerc and Kennedy (2002) apply a constriction factor, v, to the new velocity  

𝑣𝑣𝑖𝑖𝑁𝑁
𝑗𝑗+1 = 𝜒𝜒{𝑣𝑣𝑖𝑖𝑁𝑁

𝑗𝑗 + 𝑐𝑐1𝑅𝑅1�𝑝𝑝𝑖𝑖𝑁𝑁
𝑗𝑗 − 𝑥𝑥𝑖𝑖𝑁𝑁

𝑗𝑗 � +  𝑐𝑐2𝑅𝑅2�𝑝𝑝𝑔𝑔𝑁𝑁
𝑗𝑗 − 𝑥𝑥𝑔𝑔𝑁𝑁

𝑗𝑗 �}   ,       (2.9) 

𝜒𝜒 = 2
|2−𝑐𝑐−√𝑐𝑐2−4𝑐𝑐|

  where  c=𝑐𝑐1 + 𝑐𝑐2, c>4                                  (2.10) 

With this formulation, the velocity limit,𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 , is no longer necessary. A choice need 

not be made between constriction and inertia (𝑤𝑤); Eberhart and Shi (2000) show that 
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with judicious parameter settings (𝑤𝑤  set to 𝜒𝜒 , and 𝑐𝑐1 + 𝑐𝑐2 >4) the two approaches 

arealgebraically equivalent and improved performance could be achieved across a 

wide range of problems. 

Parsopoulos and Vrahatis (2004) modified the constricted algorithm to harness 

the explorative behaviour of global search and exploitative nature of a local 

neighbourhood scheme. To combine the two, two velocity updates are initially 

calculated: 

𝐺𝐺𝐹𝐹+1 = 𝜒𝜒{𝑣𝑣𝑖𝑖𝑁𝑁
𝑗𝑗 + 𝑐𝑐1𝑅𝑅1�𝑝𝑝𝑖𝑖𝑁𝑁

𝑗𝑗 − 𝑥𝑥𝑖𝑖𝑁𝑁
𝑗𝑗 � +  𝑐𝑐2𝑅𝑅2�𝑝𝑝𝑔𝑔𝑁𝑁

𝑗𝑗 − 𝑥𝑥𝑔𝑔𝑁𝑁
𝑗𝑗 �}   (2.11) 

𝐿𝐿𝐹𝐹+1 = 𝜒𝜒{𝑣𝑣𝑖𝑖𝑁𝑁
𝑗𝑗 + 𝑐𝑐1𝑅𝑅1

′ �𝑝𝑝𝑖𝑖𝑁𝑁
𝑗𝑗 − 𝑥𝑥𝑖𝑖𝑁𝑁

𝑗𝑗 � +  𝑐𝑐2𝑅𝑅2
′ �𝑝𝑝𝑙𝑙𝑁𝑁

𝑗𝑗 − 𝑥𝑥𝑙𝑙𝑁𝑁
𝑗𝑗 �}     (2.12) 

 

where G and L are the global and local velocity updates respectively, 𝑝𝑝𝑔𝑔  is the global 

best particle position and 𝑝𝑝𝑙𝑙  is the particle’s local neighbourhood best particle position. 

These two updates are then combined to form a unified velocity update (U), which is 

then applied to the current position: 

𝑈𝑈𝐹𝐹+1 = (1 − 𝑢𝑢)𝐿𝐿𝐹𝐹+1 + 𝑢𝑢𝐺𝐺𝐹𝐹+1𝑢𝑢 ∈ [0,1]                          (2.13) 

𝑥𝑥𝐹𝐹+1 = 𝑥𝑥1 + 𝑈𝑈𝐹𝐹+1(2.14) 

where u is a unification factor that balances the global and local aspects of the search 

and suggestions are given to add mutation style influences to each in turn. 

Experimentation was promising and further work has been carried out since for 

dynamic environments (Parsopoulos and Vrahatis 2005a, 2005b). 
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2.3.2. Applications 

PSO has been applied to a number of areas. Yuan et al. (2004) apply PSO topower 

systems, such as distribution system expansion planning, generator maintenance 

scheduling, unit commitment, load dispatch, optimal power flow calculation and 

optimal control of reactive power, harmonic analysis and capacitor configuration. 

They claim, through a thorough study of PSO, that its great latent capacity will be 

brought into play in the electricity market auction, bidding strategy, and electricity 

market simulation. Kannana et al. (2003) present the application of variants of the 

PSO technique to the expansion planning problem. The results obtained are compared 

with dynamic programming (DP) and show that PSO outperforms DP in terms of both 

speed and efficiency.  

PSO is also increasingly used in the area of finance. Nenortaite and Simutis 

(2004) present a decision-making method based on the application of neural networks 

and particle swarm techniques, which is used to generate one-step-ahead investment 

decisions. The experiments presented in the paper show that the application of their 

proposed method achieves better results than the market average. Kendall and Su 

(2005) apply PSO to the construction of optimal risky portfolios for financial 

investments. A particle swarm solver is developed and tested on various restricted and 

unrestricted risky investment portfolios. The particle swarm solver demonstrates high 
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computational efficiency in constructing optimal risky portfolios of less than fifteen 

assets. Kwok et al (2009) propose the use of PSO to determine the appropriate 

long/short durations, when optimizing the rules generated by technical traders to 

maximize trading profit. The results are verified as effective. Jha et al., (2009) apply 

PSO to pricing options. The results are compared with the classical Black-Scholes 

model for simple European options and indicate that PSO is the superior method. 

2.4. Artificial Immune Systems 

Artificial Immune Systems are adaptive systems, which are inspired by theoretical 

immunology and observed immune functions, principles and models, and then applied 

to problem solving (Castro et al., 2002). AIS is distinct from computational 

immunology and theoretical biology. These are rather concerned with simulating 

immunology using computational and mathematical models, in order to gain a better 

understanding of the immune system. Such models, though, first led to establishing 

AIS as a new field of study, and they continue to provide a fertile ground for 

inspiration. Finally, the field of AIS is not concerned with the investigation of the 

immune system as a substrate computation, such as DNA computing. 

AIS begin in the mid 1980s with Farmer, Packard and Perelson (1986) and 

http://en.wikipedia.org/wiki/Artificial_immune_system#cite_note-0
http://en.wikipedia.org/wiki/Computational_immunology
http://en.wikipedia.org/wiki/Computational_immunology
http://en.wikipedia.org/wiki/Computational_immunology
http://en.wikipedia.org/wiki/Theoretical_biology
http://en.wikipedia.org/wiki/DNA_computing
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Bersini and Varela's papers on immune networks (1990). However, it is only in the 

mid 90s that AIS become a subject area in its own right. The common techniques are 

inspired by specific immunological theories that explain the function and behaviour of 

the mammalian adaptive. 

2.4.1. Clonal Selection Algorithm 

Clonal Selection Algorithm (CSA) is a class of algorithms inspired by the clonal 

selection theory of acquired immunity, which explains how B and T lymphocytes 

improve their response to antigens over time. This is called “affinity maturation”. 

These algorithms focus on the Darwinian attributes of the theory where selection is 

inspired by the affinity of antigen-antibody interactions, reproduction is inspired by 

cell division, and variation is inspired by somatic hyper-mutation. (deCastro, Von, 

2002) Figure 2-4 below presents the flowchart and pseudo code for the overall CSA 

algorithm.  

http://en.wikipedia.org/wiki/Clonal_Selection_Algorithm
http://en.wikipedia.org/wiki/Clonal_Selection_Algorithm
http://en.wikipedia.org/wiki/Clonal_selection
http://en.wikipedia.org/wiki/Clonal_selection
http://en.wikipedia.org/wiki/Clonal_selection
http://en.wikipedia.org/wiki/Lymphocyte
http://en.wikipedia.org/wiki/Antigens
http://en.wikipedia.org/wiki/Affinity_maturation
http://en.wikipedia.org/wiki/Darwinism
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Somatic_hypermutation
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Figure 2-10: CSA flowchart
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2.4.2 Applications 

Clonal selection algorithms are most commonly applied to optimization and pattern 

recognition domains, some of which resemble parallel hill climbing and a genetic 

algorithm without the recombination operator, (deCastro and VonZuben, 2002). 

deCastro and VonZuben propose a powerful computational implementation of the 

clonal selection principle that explicitly takes into account the affinity maturation of 

the immune response. The algorithm is shown to be an evolutionary strategy capable 

of solving complex machine learning tasks, like pattern recognition and multimodal 

optimization. White and Garrett (2003) examine the clonal selection algorithm 

CLONALG and the suggestion that it is suitable for pattern recognition. CLONALG 

is tested over a series of binary character recognition tasks and its performance 

compared to a set of benchmark binary matching algorithms. A number of 

enhancements are made to the algorithm to improve its performance and the 

classification tests are repeated. Results show that given enough data, CLONALG can 

successfully classify previously unseen patterns and that adjustment to the existing 

algorithm can improve performance. Clonal selection algorithms haven’t been used in 

the area of finance up to date. But as an optimization technique, it could still be 

applied to optimise the parameters of finance models in theory. 

2.5. Game Theory 

Game theory is the study of strategic decision making. More formally, it is "the study 

of mathematical models of conflict and cooperation between intelligent rational 

http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Artificial_immune_system#cite_note-3
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decision-makers."(Roger 1991). 

2.5.1. Types of Games 

Nash equilibrium 

In game theory, the Nash equilibrium (named after John Forbes Nash, who proposed 

it) is a solution concept of a game involving two or more players, in which each 

player is assumed to know the equilibrium strategies of the other players, and no 

player has anything to gain by changing only his own strategy unilaterally. If each 

player has chosen a strategy and no player can benefit by changing his or her strategy 

while the other players keep theirs unchanged, then the current set of strategy choices 

and the corresponding payoffs constitute Nash equilibrium. (Osborne & Ariel, 1994) 

Non-cooperative game and cooperative game 

In game theory, a non-cooperative game is one in which players make decisions 

independently. Thus, while they may be able to cooperate, any cooperation must be 

self-enforcing. A game in which players can enforce contracts through third parties is 

a cooperative game. (Harsanyi, John, 1974) 

Zero-sum game 

In game theory and economic theory, a zero-sum game is a mathematical 

representation of a situation in which a participant's gain (or loss) of utility is exactly 

balanced by the losses (or gains) of the utility of the other participant(s). If the total 

gains of the participants are added up, and the total losses are subtracted, they will 

http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Contract
http://en.wikipedia.org/wiki/Cooperative_game
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Economic_theory
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Utility
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sum to zero. Thus cutting a cake, where taking a larger piece reduces the amount of 

cake available for others, is a zero-sum game if all participants value each unit of cake 

equally (see marginal utility). In contrast, non-zero-sum describes a situation in which 

the interacting parties' aggregate gains and losses are either less than or more than 

zero. A zero-sum game is also called a strictly competitive game while non-zero-sum 

games can be either competitive or non-competitive. (Ken 2007). 

The prisoner's dilemma is a canonical example of a game analyzed in game theory 

that shows why two individuals might not cooperate, even if it appears that it is in 

their best interest to do so. It was originally framed by Merrill Flood and Melvin 

Dresher working at RAND in 1950. Albert W. Tucker formalized the game with 

prison sentence payoffs and gave it the "prisoner's dilemma" name (Poundstone, 

1992). A classic example of the prisoner's dilemma (PD) is presented as follows: 

Two men are arrested, but the police do not possess enough information for a 

conviction. Following the separation of the two men, the police offer both a similar 

deal—if one testifies against his partner (defects/betrays), and the other remains silent 

(cooperates/assists), the betrayer goes free and the one that remains silent receives the 

full one-year sentence. If both remain silent, both are sentenced to only one month in 

jail for a minor charge. If each testifies against the other, the other, each receives a 

three-month sentence. Each prisoner must choose either to betray or remain silent; the 

decision of each is kept quiet. What should they do? If it is supposed here that each 

player is only concerned with lessening his time in jail, the game becomes a non-zero 

sum game where the two players may either assists or betrays the other. In the game, 

http://en.wikipedia.org/wiki/Cake_cutting
http://en.wikipedia.org/wiki/Marginal_utility
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Merrill_Flood
http://en.wikipedia.org/wiki/Melvin_Dresher
http://en.wikipedia.org/wiki/Melvin_Dresher
http://en.wikipedia.org/wiki/Melvin_Dresher
http://en.wikipedia.org/wiki/RAND_Corporation
http://en.wikipedia.org/wiki/Albert_W._Tucker
http://en.wikipedia.org/wiki/Zero_sum_game
http://en.wikipedia.org/wiki/Zero_sum_game
http://en.wikipedia.org/wiki/Zero_sum_game
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the sole worry of the prisoners seems to be increasing his reward. The interesting 

symmetry of this problem is that the logical decision leads each to betray the other, 

even though their individual ‘prize’ would be greater if they cooperated.(Osborne & 

Ariel 1994) 

 

Figure 2-11: Prisoners’ dilemma 

In the regular version of this game, collaboration is dominated by betrayal, and as a 

result, the only possible outcome of the game is for both prisoners to betray the other. 

Regardless of what the other prisoner chooses, one will always gain a greater payoff 

by betraying the other. Because betrayal is always more beneficial than cooperation, 

all objective prisoners would seemingly betray the other if operating purely rationally. 

However, in reality humans display a systematic bias towards cooperative behavior in 

Prisoner's dilemma and similar games, much more so than predicted by a theory based 

only on rational self interested action. (Ahn et al 2003) 
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2.5.2 Applications 

Shafer and Vovk（2008）use a game-theoretic framework for probability to derive a 

capital asset pricing model from an efficient market hypothesis, with no assumptions 

about the beliefs or preferences of investors. While efficient market hypothesis says 

that a speculator with limited means cannot beat a particular index by a substantial 

factor, the model they derive says that the difference between the average returns of a 

portfolio and the index should approximate the difference between the portfolio’s 

covariance with the index and the index’s variance. 

ItayandPauzner(2004) explore a model with two countries which might be subject 

to a self-fulfilling crisis, induced by agents withdrawing their investments in the fear 

that others will do so. While the fundamentals of the two countries are independent, 

the fact that they share the same group of investors may generate a contagion of crises. 

The realization of a crisis in one country reduces agents’ wealth and thus makes them 

more risk averse (they assume decreasing absolute risk aversion). This reduces their 

incentive to maintain their investments in the second country since doing so exposes 

them to the strategic risk associated with the unknown behaviour of other agents. 

Consequently, the probability of a crisis in the second country increases. This yields a 

positive correlation between the returns on investments in the two countries even 

though they are completely independent in terms of fundamentals.  

Dasgupt (2004) models financial contagion as an equilibrium phenomenon in a 

dynamic setting with coordinating game with incomplete information and multiple 
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banks. The equilibrium probability of bank failure is uniquely determined. They 

explore how the cross holding of deposits motivated by imperfectly correlated 

regional liquidity shocks can lead to contagious effects conditional on the failure of a 

financial institution. They show that contagious bank failure occurs with positive 

probability in the unique equilibrium of the economy, and demonstrate that the 

presence of such contagion risk can prevent banks from perfectly insuring each other 

against liquidity shocks via the cross-holding of deposits. 

Frankela et al (2008) study games with strategic complementarities, arbitrary 

numbers of players and actions, and slightly noisy payoff signals. They prove limit 

uniqueness: as the signal noise vanishes, the game has a unique strategy profile that 

survives iterative dominance. This generalizes a result of Carlsson and van Damme 

(1993) for two players, two action games. The surviving profile, however, may 

depend on fine details of the structure of the noise. They provide sufficient conditions 

on payoffs for there to be noise-independent selection. 

Angeletos et al., (2007a) use coordination games of incomplete information to 

study the regime change. They extend the static benchmark examined in the literature 

by allowing agents to take actions in many periods and to learn about the underlying 

fundamentals over time. They first provide a simple recursive algorithm for the 

characterization of monotone equilibria. They then show how the interaction of the 

knowledge that the regime survived past attacks with the arrival of information over 

time, or with changes in fundamentals, leads to interesting equilibrium properties. 
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First, multiplicity may obtain under the same conditions on exogenous information 

that guarantee uniqueness in the static benchmark. Second, fundamentals may predict 

the eventual regime outcome but not the timing or the number of attacks. Finally, 

equilibrium dynamics can alternate between phases of tranquillity–where no attack is 

possible–and phases of distress–where a large attack can occur–even without changes 

in fundamentals  

Angeletos et al (2007b) studies defence policies in a global-game model of 

speculative currency attacks. Although the signalling role of policy interventions 

sustains multiple equilibria, a number of novel predictions emerge which are robust 

across all equilibria. (i) The central bank intervenes by raising domestic interest rates, 

or otherwise raising the cost of speculation, only when the value it assigns to 

defending the peg - its “type” is intermediate. (ii) Devaluation occurs only for low 

types. (iii) The set of types who intervene shrinks with the precision of market 

information. (iv) A unique equilibrium policy survives in the limit as the noise in 

market information vanishes, whereas the devaluation outcome remains indeterminate. 

(v) The payoff of the central bank is monotonic in its type. (vi) The option to 

intervene can be harmful only for sufficiently strong types; and when this happens, 

weak types are necessarily better off. While these predictions seem reasonable, none 

of them would have been possible in the common-knowledge version of the model. 

Combined, these results illustrate the broader methodological point of the paper: 

global games can retain significant selection power and deliver useful predictions 

even when the endogeneity of information sustains multiple equilibria.  
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Bobtcheff and Mariotti (2012) study a preemption game in which two potential 

competitors come into play at some random secret times. The presence of a 

competitor is revealed to her opponent only when the former moves, which terminates 

the game. They show that all perfect Bayesian equilibria give rise to the same 

distribution of players’ moving times, and the author explicitly construct such 

equilibrium. The intensity of competition is non-monotonic over time, and private 

information tends to alleviate rent dissipation. Our results have a natural interpretation 

in terms of eroding reputations.  

2.6. Summary 

Nature-inspired computational approaches are often viewed as global optimization 

methods, although convergence to a global optimum is only guaranteed in a weak 

probabilistic sense. However, one of the strengths of nature-inspired techniques is that 

they perform well on "noisy" functions where there may be multiple local optima. 

They tend not to get "stuck" on local minima and can often find globally optimal 

solutions.  

Evolutionary computing is becoming a successful methodology in approaching 

problems in the area of finance. It has already been proven to be a powerful tool in 

domains where more conventional analytical solutions may not be a good alternative. 

The choice of optimization techniques it offers have the advantages of speed of 

convergence, along with not getting easily stuck in local optima. Characteristics that 

answer well our criteria in choosing parameter exploration techniques for the hybrid 
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computational model. The author will particularly use genetic programming in 

developing the technical traders’ strategies in our multinational-market model. 

Swarm intelligence and artificial immune systems are relatively new nature-

inspired approaches, compared to evolutionary computing, but have been already 

widely used in a range of areas. Swarm intelligence is also being increasingly applied 

to problems in finance, while financial applications of artificial immune systems are 

still rare and the author are yet to see further development there. Our work is a step in 

that direction, and the author will implement an algorithm for optimising the 

parameters of the overall multiple-market model with its different types of traders, 

where the algorithm is a combination of SI and AIS techniques. Particularly, it is a 

particle swarm optimization with a clonal selection algorithm (Immune-PSO).  

Co-evolutionary algorithms (CoE), as an enhancement of nature-inspired 

algorithms, are a corollary of the fact that in complex domains it is difficult to assess 

an objective fitness measure for the problem. Co-evolution is also more realistic, 

reflecting similarity to real biological evolution. In CoE, fitness itself is a 

measurement of interacting individuals, which allows the potential for evolving 

greater complexity by allowing pieces of a problem to evolve in tandem. Thus, 

individual fitness is subjective, and is a function of its interaction with other 

individuals. For that reason, the author chooses to apply a co-evolutionary approach to 

the overall model and co-evolve the behaviours of different traders within the multi-

national markets. This leads to co-evolving the behaviours of the markets, which is 
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the more realistic option within the global financial system. 

Finally, Game theory is the study of the ways in which strategic interactions 

among economic agents produce outcomes with respect to the preferences (or utilities) 

of those agents, where the outcomes in question might have been intended by none of 

the agents. It is easily understood and more suitable to be applied to our agent based 

model. 



 

69 

 

Chapter 3 : Measures of Interdependence for 

Random Variables 

3.1 Introduction 

Interdependence measures capture how two uncertain variables, e.g. two markets 

indices, are related to each other. In our agent-based model, described in details in 

Chapters 4 and 6, interdependence measures are used in the fitness function for the 

evolving model and its parameters. In this chapter, the author briefly discusses the 

correlation coefficient as a measure of interdependence between two random variables, 

and the limitations of this measure. Then, the author introduces the copula as an 

alternative measure, together with a discussion of types of copula and how their 

parameters are estimated. 

3.2 Interdependence 

3.2.1 Linear Correlation Coefficient 

The linear correlation coefficient (𝑟𝑟 ) between two random variables is a number 

between −1 and 1 which measures how close to a straight line a set of points falls in a 

plane, with the two coordinates of points given by corresponding realizations of two 

random variables. The closer to zero the correlation coefficient is, for a given set of 

points, the further away from a straight line they fall (hence the term "linear" 
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correlation coefficient)(Black, 2006).The sign and the absolute value of a correlation 

coefficient respectively describe the direction, and the magnitude of the relationship 

between two variables. 

 The greater the absolute value of a correlation coefficient, the stronger the 

linear relationship.  

 The strongest linear relationship is indicated by a correlation coefficient of -1 

or 1. 

 The weakest linear relationship or the luck of relationship is indicated by a 

correlation coefficient equal to 0.  

 A positive correlation means that if one variable gets larger, the other variable 

tends to get larger.  

 A negative correlation means that if one variable gets larger, the other variable 

tends to get smaller.  

The formula for linear correlation coefficient is 

𝜌𝜌(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝑝𝑝𝑣𝑣 (𝑋𝑋 ,𝑌𝑌)
�𝑉𝑉𝑚𝑚𝑟𝑟 (𝑋𝑋)𝑉𝑉𝑚𝑚𝑟𝑟 (𝑌𝑌)

    ,                   (3.1) 

where 𝐶𝐶𝑝𝑝𝑣𝑣(𝑋𝑋,𝑌𝑌) is the co-variance of X, Y. 𝑉𝑉𝑚𝑚𝑟𝑟(𝑋𝑋) and 𝑉𝑉𝑚𝑚𝑟𝑟(𝑌𝑌) are the variances of 

X or Y, respectively.  

For random variables which are normally distributed, linear correlation 

completely characterizes the interdependence between them. However, the linear 

correlation coefficient is far less meaningful for non-normal distributions. 

Unfortunately, researchers find the data in the area of financial markets do not follow 

a normal distribution.  Given this limitation of the linear correlation coefficient, the 

http://stattrek.com/Help/Glossary.aspx?Target=Absolute%20value


 

71 

 

rank correlation coefficient has been given more weight in the area of financial 

markets. 

3.2.2 Rank Correlation Coefficients 

In statistics, rank correlation is the study of relationships between different rankings 

on the same set of items. A rank correlation coefficient measures the correspondence 

between two rankings and assesses its significance. Two of the more popular rank 

correlation statistics are Kendall's tau rank correlation coefficient (Kendall's ℌ) and 

Spearman's rank correlation coefficient (Spearman's 𝜌𝜌).  Rank correlation coefficient 

has at least four advantages.  First of all, it is less sensitive to bias due to the effect of 

outliers. Secondly, it can be used to reduce the weighting of outliers, as large distances 

get treated as a one-rank difference. Thirdly, it does not require an assumption of data 

being distributed normally. Lastly, when one or more outlier exist, it is advisable to 

study the rankings rather than the actual values (Asuero et al, 2006).  

3.2.2.1 Kendall's rank correlation coefficient 

In statistics, the Kendall rank correlation coefficient, commonly referred to as 

Kendall's tau (ℌ ) coefficient, is used to measure the association between two 

measured quantities. A tau test is a non-parametric hypothesis test which uses the 

coefficient to test for statistical dependence. Specifically, it is a measure of rank 

correlation: that is, the similarity of the orderings of the data when ranked by each of 

the quantities. It is named after Maurice Kendall, who developed it in Kendall (1938), 

though Gustav Fechner had proposed a similar measure in the context of time series in 

1897 (Kruskal, 1958). 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Ranking
http://en.wikipedia.org/wiki/Significance
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Kendall%27s_tau_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Kendall%27s_tau_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Association_(statistics)
http://en.wikipedia.org/wiki/Non-parametric_statistics
http://en.wikipedia.org/wiki/Hypothesis_test
http://en.wikipedia.org/wiki/Rank_correlation
http://en.wikipedia.org/wiki/Rank_correlation
http://en.wikipedia.org/wiki/Rank_correlation
http://en.wikipedia.org/wiki/Ranked
http://en.wikipedia.org/wiki/Maurice_Kendall
http://en.wikipedia.org/wiki/Gustav_Fechner
http://en.wikipedia.org/wiki/Time_series
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Definition: Let (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2), … , (𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹) be a set of joint observations from two 

random variables 𝑋𝑋 and 𝑌𝑌 respectively. Any pair of observations (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) and (𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗 ) 

are said to be concordant if 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗𝑚𝑚𝐹𝐹𝑁𝑁𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗moves in the same direction, otherwise they 

are said to be discordant. (Nelsen, 2001) In other words, if 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑗𝑗  and𝑦𝑦𝑖𝑖 > 𝑦𝑦𝑗𝑗 , or 

𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑗𝑗  and𝑦𝑦𝑖𝑖 < 𝑦𝑦𝑗𝑗 𝐹𝐹ℎ𝐹𝐹𝐹𝐹𝑝𝑝𝑚𝑚𝑖𝑖𝑟𝑟 (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 ) are said to be concordant, otherwise 

discordant. The Kendall τ coefficient is defined as: 

ℌ = (𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑝𝑝𝑓𝑓𝑐𝑐𝑝𝑝𝐹𝐹𝑐𝑐𝑝𝑝𝑟𝑟𝑁𝑁𝑚𝑚𝐹𝐹𝐹𝐹𝑝𝑝𝑚𝑚𝑖𝑖𝑟𝑟𝐹𝐹 )−(𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑝𝑝𝑓𝑓𝑁𝑁𝑖𝑖𝐹𝐹𝑐𝑐𝑝𝑝𝑟𝑟𝑁𝑁𝑚𝑚𝐹𝐹𝐹𝐹𝑝𝑝𝑚𝑚𝑖𝑖𝑟𝑟𝐹𝐹 )
1
2𝐹𝐹(𝐹𝐹−1)

  .              (3.2) 

Properties: The denominator value is the total number of pairs, so the coefficient 

must be in the range −1≤ℌ≤1.  If the agreement between the two rankings is perfect, 

i.e. the two rankings are the same, the coefficient has value of 1.  

(a) If the divergence between the two rankings is perfect, i.e. one ranking is the 

reverse of the other, the coefficient has value of −1.  

(b) If X and Y are independent variables, then the author would expect the 

coefficient to be approximately zero.  

3.2.3 Copula - A General Measure of Interdependence 

A copula is a multivariate joint distribution defined on the 𝐹𝐹 -dimensional unit 

cube[0,1]𝐹𝐹 , such that every marginal distribution is uniform on the interval [0,1]. 

Specifically, 𝐶𝐶: [0,1]𝐹𝐹 → [0,1] is an 𝐹𝐹-dimensional copula, or briefly 𝐹𝐹-copula, if: 

http://en.wikipedia.org/wiki/Denominator
http://en.wikipedia.org/wiki/Independence_(probability_theory)#Independent_random_variables
http://en.wikipedia.org/wiki/Joint_distribution
http://en.wikipedia.org/wiki/Unit_cube
http://en.wikipedia.org/wiki/Unit_cube
http://en.wikipedia.org/wiki/Unit_cube
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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𝐶𝐶(𝑢𝑢) = 0 whenever 𝑢𝑢 ∈ [0,1]𝐹𝐹  has at least one component equal to 0; 

𝐶𝐶(𝑢𝑢) = 𝑢𝑢𝑖𝑖  whenever 𝑢𝑢 ∈ [0,1]𝐹𝐹  has all the components equal to 1 except the  

𝑖𝑖th one, which is equal to 𝑢𝑢𝑖𝑖; 

𝐶𝐶(𝑢𝑢) is 𝐹𝐹-increasing, for each hyper-rectangle 

𝐵𝐵 = �𝑥𝑥,𝑦𝑦� = �𝑥𝑥1,𝑦𝑦1� × �𝑥𝑥2,𝑦𝑦2� × ⋯�𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹� ∈ [0,1]𝐹𝐹 .                      (3.3) 

3.2.3.1 Sklar's Theorem 

The theorem proposed by Sklar (1959) underlies most applications of the copula. 

Sklar's theorem states that given a joint distribution function 𝐻𝐻 for 𝑝𝑝 variables, and 

respective marginal distribution functions, there exists a copula 𝐶𝐶 such that the copula 

binds the margins to give the joint distribution. 

For the bivariate case, Sklar's theorem can be stated as follows. For any bivariate 

distribution function 𝐻𝐻(𝑥𝑥, 𝑦𝑦) , let 𝐹𝐹(𝑥𝑥) = 𝐻𝐻(𝑥𝑥,∞)  and 𝐺𝐺(𝑦𝑦) = 𝐻𝐻(∞,𝑦𝑦)  be the 

univariate marginal probability distribution functions. Then there exists a copula 𝐶𝐶 

such that 

𝐻𝐻(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶(𝐹𝐹(𝑥𝑥),𝐺𝐺(𝑦𝑦))  ,     (3.4) 

where the distribution 𝐶𝐶 is identified with its cumulative distribution function. If the 

marginal distributions 𝐹𝐹(𝑥𝑥) and 𝐺𝐺(𝑦𝑦) are continuous, the copula function 𝐶𝐶 is unique. 

Otherwise, the copula 𝐶𝐶 is unique on the range of values of the marginal distributions. 

Sklar's Theorem is very important because 𝐹𝐹(𝑥𝑥),𝐺𝐺(𝑦𝑦) could be any distribution, 

and even if they are of different distribution, Sklar's Theorem still holds. That means 

the author can find a unique function to link two distribution functions. Further, this 

http://en.wikipedia.org/w/index.php?title=N-increasing&action=edit&redlink=1
http://en.wikipedia.org/wiki/Hyperrectangle
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function can be parameterized independently from the underlying univariate 

distributions. 

3.2.3.2 Copula Family 

A: Gaussian copula 

One example of a copula often used for modelling in finance as introduced by Li 

(2000) is the Gaussian copula, which is constructed from the bi-variate normal 

distribution via Sklar's theorem. With 𝛷𝛷𝜌𝜌  being the standard bivariate normal 

cumulative distribution function with correlation𝜌𝜌, the Gaussian copula function is 

𝐶𝐶𝜌𝜌 (𝑢𝑢, 𝑣𝑣) = 𝛷𝛷𝜌𝜌�𝛷𝛷−1(𝑢𝑢),𝛷𝛷−1(𝑣𝑣)�    ,                          (3.5) 

where 𝑢𝑢 , 𝑣𝑣 ∈ [0,1]  and 𝛷𝛷  denotes the standard normal cumulative distribution 

function. 

Differentiating 𝐶𝐶 yields the copula density function: 

𝑐𝑐𝜌𝜌 (u,v)=
𝜑𝜑𝑋𝑋𝑌𝑌𝜌𝜌 �𝛷𝛷−1(𝑢𝑢),𝛷𝛷−1(𝑣𝑣)�

𝜑𝜑(𝛷𝛷−1(𝑢𝑢),𝛷𝛷−1(𝑣𝑣))
     ,                          (3.6) 

where 
𝜑𝜑𝑋𝑋𝑌𝑌𝜌𝜌 (𝑥𝑥,𝑦𝑦) = 1

2𝜋𝜋�1−𝜌𝜌2 𝐹𝐹𝑥𝑥𝑝𝑝 �−
1

2(1−𝜌𝜌2)
[𝑥𝑥2 + 𝑦𝑦2 − 2𝜌𝜌𝑥𝑥𝑦𝑦]�                (3.7) 

is the density function for the standard bivariate Gaussian, φis the standard normal 
density. 

B. Archimedean copulas 

One particularly simple form of an 𝐹𝐹-dimensional copula is 

𝐻𝐻�𝑥𝑥1 ,𝑥𝑥2 ,𝑥𝑥3 , ⋯𝑥𝑥𝐹𝐹� = 𝛹𝛹−1(∑ 𝛹𝛹(𝐹𝐹𝑖𝑖𝐹𝐹
𝑖𝑖=1 (𝑥𝑥𝑖𝑖)))  ,            (3.8) 

http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/David_X._Li
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
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where 𝛹𝛹 is known as a generator function. Such copulas are known as Archimedean. 

Any generator function which satisfies the properties below is a basis for a valid 

copula: 

𝛹𝛹(1) = 0 ;  𝑙𝑙𝑖𝑖𝑚𝑚𝑥𝑥→0 𝛹𝛹(𝑥𝑥) = ∞; 𝛹𝛹′(𝑥𝑥) < 0 ; 𝛹𝛹′′ (𝑥𝑥) > 0  .             (3.9) 

Archimedean copulas are an important family of copulas, which have a wide range of 

applications. There are a number of reasons for this. They are easy to construct, there 

is a great variety of copula families belonging to this class (Roger, 2006). 

Three common Archimedean copulas 

(i) Clayton copula(Nelsen,1999): 

𝐶𝐶𝜃𝜃(𝑥𝑥, 𝑦𝑦) = 𝑚𝑚𝑚𝑚𝑥𝑥(�𝑥𝑥−𝜃𝜃 + 𝑦𝑦−𝜃𝜃 − 1�
−1/𝜃𝜃

, 0) (3.10) 
and its generator is 𝛹𝛹𝜃𝜃(𝐹𝐹) = (𝐹𝐹−𝜃𝜃 − 1), where 𝜃𝜃 ∈ [−1,∞)\{0} 

For 𝜃𝜃 = 0 in the Clayton copula, the random variables are statistically independent. 

The generator function approach can be extended to create multivariate copulas, by 

simply including more additive terms. 

(ii) Gumbel copula(Nelsen,1999):: 

𝐶𝐶𝛼𝛼(𝑥𝑥,𝑦𝑦) = 𝐹𝐹𝑥𝑥𝑝𝑝�−[(−𝑙𝑙𝐹𝐹𝑥𝑥)𝛼𝛼 + (−𝑙𝑙𝐹𝐹𝑦𝑦)𝛼𝛼 ]1/𝛼𝛼�       (3.11) 

and its generator is: 

𝛹𝛹𝛼𝛼(𝐹𝐹) = (−𝑙𝑙𝐹𝐹(𝐹𝐹))𝛼𝛼 , where𝛼𝛼 ∈ [1,∞) 

(iii) Frank copula(Nelsen,1999): 

𝐶𝐶𝛼𝛼(𝑥𝑥, 𝑦𝑦) = − 1
𝛼𝛼
𝑙𝑙 𝐹𝐹 �1 + (𝐹𝐹−𝛼𝛼𝑥𝑥 −1)(𝐹𝐹−𝛼𝛼𝑦𝑦 −1)

𝐹𝐹−𝛼𝛼−1
�                                            (3.12) 

and its generator is: 
𝛹𝛹𝛼𝛼(𝐹𝐹) = −𝑙𝑙𝐹𝐹(𝐹𝐹

−𝛼𝛼𝐹𝐹 −1
𝐹𝐹−𝛼𝛼−1

),where 𝛼𝛼 ∈ [−∞,∞)\{0} 

http://en.wikipedia.org/wiki/Archimedean_property
http://en.wikipedia.org/wiki/Statistical_independence
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3.3. GARCH Model and Clayton-Copula for Return Simulation 

3.3.1 Selecting the Copula Function 

In our agent-based model, an interdependence measure is used in the fitness function, 

which further contains a group of parameters to be optimized. Previous models for 

contagion simulation use the linear correlation coefficient in the optimisation criterion. 

Given the limitation of that measure of interdependence, as described earlier in this 

chapter, the use of a copula function is suggested here. Copulas are becoming popular 

in the area of financial mathematics, overall.  Given two random variables 𝑋𝑋,𝑌𝑌, with 

univariate distributions 𝐹𝐹𝑥𝑥,𝐹𝐹𝑦𝑦, suppose that a joint distribution 𝐻𝐻(𝑥𝑥, 𝑦𝑦)also exists. 

Then there exists a copula, which maps the pair (𝐹𝐹𝑥𝑥,𝐹𝐹𝑦𝑦) into𝐻𝐻(𝑥𝑥,𝑦𝑦). Crucially, such 

function can be parameterized independently from the underlying univariate 

distributions. Different choices of copula functions focus on different aspects of 

interdependence (Nelsen, 1999; Cherubini, 2004). 

In this work, the author use the Clayton copula to model the interdependence 

between two markets, as the author focus on the left tail risk. One of the qualities of 

the Clayton copula consists of capturing well tail dependence. The Clayton copula is 

defined in equation (3.11)  

3.3.2 Calculating Tail Dependence 

Tail dependence describes the conditional probability that one margin exceeds a 

certain threshold given that the other margin has already exceeded that threshold. Let 

𝑋𝑋 and 𝑌𝑌  be random variables with distribution functions 𝐹𝐹and𝐺𝐺 , respectively. The 

upper tail dependence parameter 𝜆𝜆𝑈𝑈  is the limit, if it exists, of the conditional 
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probability that 𝑌𝑌 is greater than the 100𝜁𝜁-th percentile of 𝐺𝐺 given that 𝑋𝑋 is greater 

than the 100𝜁𝜁-th percentile of 𝐹𝐹 as the parameter 𝜁𝜁 approaches 1 (Bickel et al., 2006). 

Therefore, 

𝜆𝜆𝑈𝑈 =  𝑙𝑙𝑖𝑖𝑚𝑚𝜁𝜁→1− 𝑆𝑆[𝑌𝑌 > 𝐺𝐺−1(𝜁𝜁) | 𝑋𝑋 > 𝐹𝐹−1(𝜁𝜁)]  .              (3.13a) 

Similarly, the lower tail dependence parameter 𝜆𝜆𝐿𝐿  is the limit, if it exists, of the 

conditional probability that 𝑌𝑌 is less than or equal to the 100𝜁𝜁-th percentile of 𝐺𝐺 given 

that 𝑋𝑋 is less than or equal to the 100𝜁𝜁-th percentile of 𝐹𝐹 as 𝜁𝜁 approaches 0: 

𝜆𝜆𝐿𝐿 =  𝑙𝑙𝑖𝑖𝑚𝑚𝜁𝜁→1− 𝑆𝑆[𝑌𝑌 ≤ 𝐺𝐺−1(𝜁𝜁) | 𝑋𝑋 ≤ 𝐹𝐹−1(𝜁𝜁)]   .              (3.13b) 

The author are interested in the lower tail dependence coefficient of the Clayton 

copula, in particular. According to Nelsen (1999) it is evaluated as: 

𝜆𝜆𝐿𝐿,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹 = 2−
1
𝜃𝜃     .           (3.14) 

Furthermore, there is a relationship between parameter 𝜃𝜃 from the Clayton copula and 

the Kendal ℌ  coefficient, and therefore between tail depencence and ℌ . The 

relationship is in the following form: 

𝜃𝜃 = 2ℌ
1−ℌ

      ,                             (3.15a) 

𝜆𝜆𝐿𝐿,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹 = 2
ℌ−1
2ℌ       .                      (3.15b) 

Therefore, in order to use tail dependence as a risk-relevant measure of 

interdependence between financial market series, the author need to evaluate 

parameter 𝜃𝜃 of the Clayton copula, and it is possible to do that by first calculating 

Kendal’s ℌ . As defined in formula 

(3.2), ℌ = (𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑝𝑝𝑓𝑓𝑐𝑐𝑝𝑝𝐹𝐹𝑐𝑐𝑝𝑝𝑟𝑟𝑁𝑁𝑚𝑚𝐹𝐹𝐹𝐹𝑝𝑝𝑚𝑚𝑖𝑖𝑟𝑟𝐹𝐹 )−(𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝐹𝐹𝑟𝑟𝑝𝑝𝑓𝑓𝑁𝑁𝑖𝑖𝐹𝐹𝑐𝑐𝑝𝑝𝑟𝑟𝑁𝑁𝑚𝑚𝐹𝐹𝐹𝐹𝑝𝑝𝑚𝑚𝑖𝑖𝑟𝑟𝐹𝐹 )
1
2𝐹𝐹(𝐹𝐹−1)

, where any pair of 
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observations (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖),(𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗 ) is concordant if (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 )(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗 ) > 0 while otherwise 

pairs are discordant. Furthermore, to be able to link ℌ to 𝜃𝜃 and 𝜆𝜆𝐿𝐿,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹  in formula 

(3.15a, b), the observations (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) should be drawn from uniform distributions. Thus 

it is necessary to transform first the raw data, which may come from different 

underlying distributions. The author next applies CARCH modelling to transform the 

return series data. 

3.3.3 Mapping to Uniform Distribution 

A large number of references (e.g. Engel, 1982) reveal that Generalized Auto-

Regressive Conditional Heteroskedasticity (GARCH) models can successfully capture 

market dynamics and volatility. Here, the author chooses GARCH (1,1) to model 

both the return data series in the domestic market and in the foreign market. Let us 

consider normal GARCH (1,1) model: 

𝑅𝑅𝐹𝐹 = 𝜇𝜇 + 𝜖𝜖𝐹𝐹  (3.16a) 
𝜖𝜖𝐹𝐹 = 𝜎𝜎𝐹𝐹 ∗ 𝜀𝜀𝐹𝐹  , 𝜀𝜀𝐹𝐹 ∽ 𝑁𝑁(0,1)               (3.16b) 

𝜎𝜎𝐹𝐹2 = 𝛼𝛼0 + 𝛼𝛼1𝜖𝜖𝐹𝐹−1
2 + 𝛽𝛽𝜎𝜎𝐹𝐹−1

2    ,       (3.16c) 

where 𝑅𝑅𝐹𝐹  models the real return series𝑟𝑟𝐹𝐹 , 𝜇𝜇 is the mean value of 𝑟𝑟𝐹𝐹 , 𝜎𝜎𝐹𝐹  is the standard 

deviation, and 𝜀𝜀𝐹𝐹  is a random variable with standard normal distribution, while 

𝛼𝛼0,𝛼𝛼1,𝛽𝛽  are model parameters. (Bollerslev, 1986) The returns are modelled as 

conditionally normal, and a maximum likelihood aproach can be used to evaluate the 

parameters. 

Next, the author transforms the stock return series 𝑟𝑟𝐹𝐹 into the uniform distribution 

with the following formula: 

𝑆𝑆𝑟𝑟𝑝𝑝𝑛𝑛(𝑅𝑅𝐹𝐹+1 ≤ 𝑟𝑟𝐹𝐹+1) = 𝑆𝑆𝑟𝑟𝑝𝑝𝑛𝑛(𝑅𝑅𝐹𝐹+1 − 𝜇𝜇 ≤ 𝑟𝑟𝐹𝐹+1 − 𝜇𝜇) = 𝑆𝑆𝑟𝑟𝑝𝑝𝑛𝑛(𝜖𝜖𝐹𝐹+1 ≤ 𝑟𝑟𝐹𝐹+1 − 𝜇𝜇) 
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=𝑆𝑆𝑟𝑟𝑝𝑝𝑛𝑛(𝜎𝜎𝐹𝐹+1 ∗ 𝜀𝜀𝐹𝐹+1 ≤ 𝑟𝑟𝐹𝐹+1 − 𝜇𝜇)=𝑆𝑆𝑟𝑟𝑝𝑝𝑛𝑛(�𝛼𝛼0 + 𝛼𝛼1𝜖𝜖𝐹𝐹2 + 𝛽𝛽𝜎𝜎𝐹𝐹2𝜀𝜀t+1 ≤ 𝑟𝑟𝐹𝐹+1 − 𝜇𝜇) 

=𝑆𝑆𝑟𝑟𝑝𝑝𝑛𝑛 �𝜀𝜀𝐹𝐹+1 ≤
𝑟𝑟𝐹𝐹+1−𝜇𝜇

�𝛼𝛼0+𝛼𝛼1𝜖𝜖𝐹𝐹2 +𝛽𝛽𝜎𝜎𝐹𝐹2
� = 𝑁𝑁� 𝑟𝑟𝐹𝐹+1−𝜇𝜇

�𝛼𝛼0+𝛼𝛼1𝜖𝜖𝐹𝐹2 +𝛽𝛽𝜎𝜎𝐹𝐹2
�                , (3.17) 

where 𝑅𝑅𝐹𝐹  satisfies (3.16) above. Thus the author can uniquely map the real time series 

𝑟𝑟𝐹𝐹  to a time series that has uniform distribution and takes values between 0 and 1. 

Applying that mapping to two stock return series, the author then can estimate 

Kendal’s ℌ  with formula (3.2) where the pairs of 

observations�𝑥𝑥𝑖𝑖
𝑚𝑚𝑚𝑚𝑝𝑝 ,𝑥𝑥𝑖𝑖

𝑚𝑚𝑚𝑚𝑝𝑝 �,�𝑥𝑥𝑗𝑗
𝑚𝑚𝑚𝑚𝑝𝑝 , 𝑥𝑥𝑗𝑗

𝑚𝑚𝑚𝑚𝑝𝑝 � are taken from the mapped series. Finally, 

Clayton copula’s parameter 𝜃𝜃 and the tail dependence 𝜆𝜆𝐿𝐿,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹  are evaluated using 

formula (3.15). 

3.4 Conclusions 

In this chapter, the author briefly discusses the correlation coefficient as a measure of 

interdependence between two random variables, and the limitations of this measure. 

Then, the author introduces the copula as an alternative. Specifically, the author 

choose the Clayton copula to model the interdependence between two markets, as the 

author focus on the left tail risk and one of the qualities of the Clayton copula consists 

of capturing well lower tail dependence. The author also introduce a GARCH (1, 1) 

approach to help to transform the share price series into uniform distribution which 

are used for estimating Kendal’s ℌ. Finally, Clayton copula’s parameter 𝜃𝜃 and the tail 

dependence 𝜆𝜆𝐿𝐿 ,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹  are evaluated. The tail dependence will be used in the next 

chapter as the optimization criteria in the fitness function and will contribute as a 

more reliable measure of interdependence than the linear correlation coefficient. The 
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comprehensive model GARCH Clayton copula is the contribution of the author and 

the components GARCH (1, 1), and Clayton copula are developed by mathematicians 

before the author. 
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Chapter 4 : An Agent-Based Model of Financial 

Contagion 

4.1 Introduction 

A series of historical financial crises, such as Mexico in 1987, Asia in 1997, and 

Russia in 1998, all share a common feature – problems spread from one country to 

others. The spread is due to the cross-market linkages. If the cross-market linkages 

stay stable then the crises is transferred through interdependence, and the recovery 

follows the recovery of the underlying economic reason in the country of origin. 

When the cross-market linkages get destabilized due to the crisis, then the crisis starts 

“feeding on it self” and the recovery of the underlying economic reason is not 

sufficient to get control of the crisis; a more comprehensive strategy with international 

involvement is required. The second type of crisis exhibits the phenomenon called 

‘financial contagion’.  

There is no conclusive definition of the financial contagion phenomenon 

described above. Most research papers identify contagion by analyzing the change in 

the variance-covariance matrix during the period of market turmoil. King and 

Wadhwani (1990) first test the correlations between the US, UK and Japan, during the 

US stock market crash in 1987. Boyer (1997) finds significant increases in correlation 

during financial crises, and reinforces a technical definition of financial contagion as a 
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correlation breakdown during the crash period. Forbes and Rigobon (2002) define 

financial contagion as “a significant increase in cross-market linkages after a shock to 

a group of countries”. In their work, the term “interdependence” is used as the 

alternative to “contagion”. Interdependence leads to common price movements during 

periods both of stability and turmoil.  

In the past two decades, many studies (e.g. Kaminsky et at., 1998; Kaminsky 

1999) developed early warning systems focused on the origins of financial crisis 

rather than on financial contagion. Other works (e.g. Forbes and Rigobon, 2002; 

Caporale et al., 2005) focused on studying contagion compared to interdependence. In 

this chapter, the author model and simulate the transmission of financial crises, 

through the behavior of market players and their various strategies, using an 

integrated approach that involves a mixed-game (Game), co-evolutionary genetic 

programming (GP), a multinational agent-based model, and Clayton Copula. Our 

multinational model is developed to suit analyzing financial contagion; it is composed 

of four types of traders - Technical-GP, Technical-Game, Herd and Noise traders. A 

Technical-GP trader is a trader who makes decisions based on the technical analysis 

of price charts. Technical-GP traders analyze price charts to develop theories about 

the direction in which the market is likely to move. Technical-GP traders are 

modelled in the artificial market here through co-evolutionary genetic programming. 

Technical-Game traders make decision based on their decision tables. Game theory is 

a branch of applied mathematics and economics. The so-called “minority game”, as a 

further development of game theory, is especially useful to simulate real financial 

markets (Lebaron, 2006). Herd traders, as important as Technical-GP and Technical-
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Game traders when describing market behaviour, are the ones who make buy and sell 

decisions following the prevailing behaviour, regardless of other factors and market 

fundamentals. Herd behaviour has been identified as a major factor behind contagion 

(Cont and Bouchaud, 2000). Finally, Noise traders are stock traders whose decisions 

to buy, sell, or hold are irrational and erratic: their presence in financial markets can 

cause prices and risk levels to diverge from expected levels even if all other traders 

are rational (De Long et al., 1990). 

In this chapter, the author develops a comprehensive model comprising the four 

types of traders: technical-GP, technical-Game, herd, and noise traders, respectively. 

Furthermore, the one-market model is extended to a two-market model, in order to 

explore how financial contagion happens, by observing the evolution of the 

interactions between the two markets.  

4.2 Price Formation and Assets Allocation 

Real financial markets are composed of different types of participants who interact 

through asset trading. A market player 𝑖𝑖 generally holds two types of assets: 

a risky asset, denoted by ℎ𝑖𝑖(𝐹𝐹); 

cash, denoted by 𝑐𝑐𝑖𝑖(𝐹𝐹). 

The proportions of technical-GP, technical-Game, herd and noise traders, are denoted 

as 𝑁𝑁𝐺𝐺𝑆𝑆 ,𝑁𝑁𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹 ,𝑁𝑁𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑁𝑁𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 , respectively. The notation 𝑆𝑆(𝐹𝐹)  stands for the share 

price at time 𝐹𝐹. The initial conditions include 10 shares, £1000 each and £10,000 cash 
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available to each player. At any step in time, a trader buys or sells certain number of 

assets according to their own trading rules. 

The price formation mechanism that the author uses here is similar to the one 

used in Giardina and Bouchaud (2003). A player i, takes a decision 𝑁𝑁𝑖𝑖(𝐹𝐹), at each time 

step, where a decision to buy is denoted with 𝑁𝑁𝑖𝑖(𝐹𝐹) = 1 , to sell with 𝑁𝑁𝑖𝑖(𝐹𝐹) = −1, and 

to do nothing 𝑁𝑁𝑖𝑖(𝐹𝐹) = 0. Moreover, they will make a bid or offer of a fraction 𝑞𝑞𝑖𝑖(𝐹𝐹) of 

their current holdings, where 

𝑞𝑞𝑖𝑖(𝐹𝐹) =

⎩
⎪
⎨

⎪
⎧ 𝑔𝑔 𝑐𝑐𝑖𝑖(𝐹𝐹)

𝑆𝑆𝑖𝑖(𝐹𝐹)
𝑖𝑖𝑓𝑓𝑁𝑁𝑖𝑖(𝐹𝐹) = 1

−𝑔𝑔ℎ𝑖𝑖(𝐹𝐹)𝑖𝑖𝑓𝑓𝑁𝑁𝑖𝑖(𝐹𝐹) = −1

0               𝑖𝑖𝑓𝑓𝑁𝑁𝑖𝑖(𝐹𝐹) = 0

�                                    (4.1) 

and 𝑔𝑔 denotes the fraction of the maximum change of an agent’s holdings. It is an 

important parameter related to the cautiousness of the agents. In a market with 

heterogeneous agents, 𝑔𝑔 should be deferent for each agent. However, to make the 

simulation simple, the author assumes all agents are risk neutral and all have the same 

cautiousness coefficient. Namely, 𝑔𝑔  is constant. 𝐵𝐵(𝐹𝐹)  stands for the aggregated 

volume of bids, and 𝑂𝑂(𝐹𝐹) for the aggregated volume of offers. These functions are 

used to calculate the excess demand 𝐷𝐷(𝐹𝐹) = 𝐵𝐵(𝐹𝐹)− 𝑂𝑂(𝐹𝐹), and 𝐷𝐷(𝐹𝐹) is used in a price 

determination equation similar to the ones proposed in Cont (2003). Thus price is 

calculated with the following formula: 

𝑆𝑆(𝐹𝐹) = 𝑆𝑆(𝐹𝐹 − 1) + 𝐷𝐷(𝐹𝐹)/𝜆𝜆                                         (4.2) 
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where 𝜆𝜆 is an important parameter representing the market sensitivity to the order 

imbalance. 

The fraction of fulfilled orders is similar to the one introduced in Giardina and 

Bouchaud (2003). The total number of shares that can be bought at the new price is 

calculated as:  

𝐵𝐵(�𝐹𝐹) = 𝐵𝐵(𝐹𝐹) 𝑆𝑆(𝐹𝐹−1)
𝑆𝑆(𝐹𝐹)

   (4.3) 

From formula (4.3), the author can see that if price goes up at time point 𝐹𝐹, the actual 

number of shares that can be bought 𝐵𝐵(�𝐹𝐹) is less than the original order B(𝐹𝐹), and vice 

versa. The fraction of fulfilled buy𝜎𝜎+ and sell orders 𝜎𝜎− can be described as follows: 

𝜎𝜎+ = 𝑚𝑚𝑖𝑖𝐹𝐹(1， 𝑂𝑂(𝐹𝐹)
𝐵𝐵(�𝐹𝐹)

)   and𝜎𝜎− = 𝑚𝑚𝑖𝑖𝐹𝐹(1， 𝐵𝐵(�𝐹𝐹)
𝑂𝑂(𝐹𝐹)

)                       (4.4) 

If global amount of sell orders 𝑂𝑂(𝐹𝐹) is bigger than the actual number of shares that 

can be bought 𝐵𝐵(�𝐹𝐹), then the fulfilled buy orders are still 𝐵𝐵(�𝐹𝐹), namely, the fraction of 

fulfilled buy 𝜎𝜎+ is 1. Similarly, if global amount of sell orders 𝑂𝑂(𝐹𝐹) is smaller than the 

actual number of shares that can be bought 𝐵𝐵(�𝐹𝐹), then only 𝑂𝑂(𝐹𝐹) shares could be 

bought. That is to say, the fraction of fulfilled buy 𝜎𝜎+ is 𝑂𝑂(𝐹𝐹)
𝐵𝐵(�𝐹𝐹)

. The same rule applies to 

the fraction of sell orders𝜎𝜎−. 

Having established this, the author can now calculate the amount of shares 𝜌𝜌𝑖𝑖(𝐹𝐹) 

that the agent 𝑖𝑖 will buy or sell,  
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𝜌𝜌𝑖𝑖(𝐹𝐹) =

⎩
⎪
⎨

⎪
⎧ 𝑔𝑔𝜎𝜎+

𝑐𝑐𝑖𝑖(𝐹𝐹)
𝑆𝑆𝑖𝑖(𝐹𝐹)

𝑖𝑖𝑓𝑓𝑁𝑁𝑖𝑖(𝐹𝐹) = 1

−𝑔𝑔𝜎𝜎−ℎ𝑖𝑖(𝐹𝐹)𝑖𝑖𝑓𝑓𝑁𝑁𝑖𝑖(𝐹𝐹) = −1

0                    𝑖𝑖𝑓𝑓𝑁𝑁𝑖𝑖(𝐹𝐹) = 0

�        (4.5) 

Finally, the author can update the traders’ holdings of cash and the risky asset: 

ℎ𝑖𝑖(𝐹𝐹) = ℎ𝑖𝑖(𝐹𝐹 − 1) + 𝜌𝜌𝑖𝑖(𝐹𝐹)                                   (4.6a) 

𝑐𝑐𝑖𝑖(𝐹𝐹) = 𝑐𝑐𝑖𝑖(𝐹𝐹 − 1) +  𝜌𝜌𝑖𝑖(𝐹𝐹)𝑆𝑆(𝐹𝐹)                               (4.b) 

4.3 Single Market Model 

Noted above, in our model, the author classifies the market players into four 

categories: 

a) Noise traders: these make decisions to buy, sell or do nothing with different 

probabilities. These probabilities are different for each player and are randomly 

predefined at the beginning and remain constant during simulation. 

b) Herd traders: these tend to follow the trend of price movements, and the 

probability of a ‘hold’ transaction at time 𝐹𝐹 is denoted with 𝑝𝑝0,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁  and calculated as 

follows: 

𝑝𝑝0,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 (𝑖𝑖) = 1

1+𝑁𝑁|𝜁𝜁𝐹𝐹−1|
   ,                                           (4.7) 

where parameter 𝑁𝑁 controls the sensitivity to price change. This formula ensures that 

when the price movement 𝜁𝜁𝐹𝐹−1is big, then the probability of holding a share is small 

and vice versa. 

The probability of a “buy” decision is correspondingly: 
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𝑝𝑝1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 (i)= (1- 𝑝𝑝0,𝐹𝐹

𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 (i)) 𝐹𝐹𝑥𝑥𝑝𝑝 (𝜁𝜁𝐹𝐹−1)
𝐹𝐹𝑥𝑥𝑝𝑝 (𝜁𝜁𝐹𝐹−1)+𝐹𝐹𝑥𝑥𝑝𝑝 (−𝜁𝜁𝐹𝐹−1)

     .                    (4.8) 

Here, 𝜁𝜁𝐹𝐹  is the overall price change at time 𝐹𝐹. Correspondingly, the probability of a 

“sell” decision is: 

𝑝𝑝−1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 (𝑖𝑖)=1-𝑝𝑝0,𝐹𝐹

𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 (𝑖𝑖) − 𝑝𝑝1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 (𝑖𝑖)  (4.9) 

c) Technical-Game traders: in our model, these play a mixed game, which is to 

say that technical-Game traders are divided into two groups, one of which plays a 

minority game and the other play a majority game. Tanaka-Yamawaki and Tokuka 

(2006) propose a minority game, where traders take one of two possible actions: buy 

(1) or sell (0). If the minority side is defined to mean the decision made by a minority 

of traders, those who end up on the minority side win the game – the price will move 

in their favour. After each trade is executed, all the traders know, by the way the price 

has moved, whether the right choice would have been to buy or sell. Also in the 

model, all agents have their own decision table.  

In our model, the author add one more choice “hold” (do nothing) to the model, 

to make it more realistic. Now the buy, hold and sell decision are denoted by 1, 0 and 

−1,  respectively. 

Table 4-1: An exemplary decision table 

Historical 
string Strategy(1) Strategy(2) Strategy(3) 

-1,-1 +1 0 0 
-1,0 +1 +1 0 

-1,+1 0 -1 +1 
0,-1 0 0 0 
0, 0 -1 0 -1 
0,+1 +1 +1 -1 
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+1,-1 0 +1 -1 
+1,0 -1 +1 -1 

+1,+1 0 -1 0 

Elements of the decision table: 

 Memory size,  𝑚𝑚 

 Number of strategies, 𝑘𝑘, included in a decision table  

 Binary descriptions (−1 sell, 0 hold, 1 buy) 

 Huge pool (33𝑚𝑚 ) of possible strategies 

Table 4-1 gives an example of a decision table, with 𝑚𝑚 = 2, and 𝑘𝑘 = 3. There are 

𝐾𝐾 = 19,683  possible strategies for 𝑚𝑚 = 2 . The decision table of a single agent 

includes only a few strategies out of these, in our case 𝑘𝑘 = 3 strategies. The strategy 

table becomes a baseline for a trader to make decisions. For example, if the historical 

string “−1 − 1” happened, which means the correct decision for the past two trade 

days would have been “sell”, then strategy one recommends to choose 1 in the current 

period, which means “buy”, but strategy two recommends to hold choosing 0. To 

select a strategy and evolve decision tables after each trade, traders re-evaluate all 

strategies; increasing the score for each strategy that produced the right decision and 

reducing the score for the strategies that gave wrong decisions. During the next 

trading period, each trader makes decision following the strategy with the highest 

score that is available to him or her. Importantly, all the traders have their own 

decision tables, each trader works with different 𝑘𝑘 strategies out of the large strategy 

pool 𝐾𝐾. The example in Table 4-1 presents one particular trader. The score 𝑤𝑤𝐹𝐹𝑖𝑖  for 

each strategy is calculated as follows: 
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𝑤𝑤𝐹𝐹𝑖𝑖 ,𝐹𝐹 = 𝑤𝑤𝐹𝐹𝑖𝑖 ,𝐹𝐹−1 + 𝛼𝛼𝐹𝐹    ,  𝛼𝛼𝐹𝐹 = �
1  𝑟𝑟𝑖𝑖𝑔𝑔ℎ𝐹𝐹𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖𝐹𝐹𝑖𝑖𝑝𝑝𝐹𝐹
0                   ℎ𝑝𝑝𝑙𝑙𝑁𝑁

−1 𝑤𝑤𝑟𝑟𝑝𝑝𝐹𝐹𝑔𝑔𝑁𝑁𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑖𝑖𝑝𝑝𝐹𝐹
�    ,            (4.10) 

where 𝛼𝛼𝐹𝐹  is the decision made in time period 𝐹𝐹. 

d) Technical-GP traders (Martinez-Jaramillo and Tsang, 2009): technical-GP 

analysis is a key feature of our model. This group of traders presents the richest range 

of behaviours. Technical-GP traders use GP to develop trading rules, and each 

individual technical-GP trader is represented by a different decision tree. The basic 

elements of such decision trees are rules and forecast values. A single rule is made up 

with a combination of three technical indicators, one rational operator such as “greater 

than” or “less than or equal to”, and a real-value threshold. The three technical 

indicators are moving average (MA), trading breakout (TRB), and volatility (VOL). A 

single rule interacts with other rules in one decision tree through logical operators 

such as “or”, “and”, “not” and “if-then-else”, as shown in Figure 4-1 presenting an 

example of a decision tree. The root node is always an “if-then-else” node (ITE); an 

ITE node has two children, each of which could be either a decision node or another 

“if-then-else” node. The code following Figure 4-1 shows how the decision-rule logic 

is derived from the decision tree. 

For each technical GP player at time t, after the crossover and mutation of its 

group of decision trees, test its decision trees by comparing the right decisions with 

the decisions made by its decision trees from the start time to time t-1. Calculate the 

number of right decisions made by each tree and rank them by the fitness according to 
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the following contingent Table 4-2.The best tree will be selected and used to make 

decision at time t. 

 

Table 4-2: Contingent table 

 

 

RC is the fitness of each decision tree. 
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Figure 4-1: An exemplary decision tree 

 

In the above algorithm, parameters 𝑚𝑚, 𝑛𝑛, 𝑐𝑐 are different for each technical-GP trader, 

which allows for any trading preferences. The parameters are initially drawn 

randomly for each trader, from a standard normal distribution, and then remain 

constant during the evolution of the decision trees and the optimisation of the overall 

model. The technical indicators are calculated based on the periods 𝐿𝐿𝑀𝑀𝑀𝑀 , 𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵 ,𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿 , 

correspondingly, and based on the data used to evaluate the model. The Moving 

Average (MA) indicator is defined as: 

𝑀𝑀𝑀𝑀(𝐿𝐿𝑀𝑀𝑀𝑀 , 𝐹𝐹) =
𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹)−1 

𝐿𝐿 ∑ 𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−𝑖𝑖)𝐿𝐿𝑀𝑀𝑀𝑀
𝑖𝑖=1

1 
𝐿𝐿 ∑ 𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−𝑖𝑖)𝐿𝐿𝑀𝑀𝑀𝑀

𝑖𝑖=1
    ,  (4.11a) 

the Trading Breakout (TRB) indicator is defined as: 
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𝑇𝑇𝑅𝑅𝐵𝐵(𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵 , 𝐹𝐹) = 𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹)−𝑚𝑚𝑚𝑚𝑥𝑥 (𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−1),⋯𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵 ))
𝑚𝑚𝑚𝑚𝑥𝑥 (𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−1),⋯𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵 ))

   ,   (4.11b) 

and the Volatility (VOL) indicator is defined as: 

𝑉𝑉𝑂𝑂𝐿𝐿(𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿 , 𝐹𝐹) = 𝜎𝜎(𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−1),⋯𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿 )
1 

𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿
∑ 𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 (𝐹𝐹−𝑖𝑖)𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿
𝑖𝑖=1

   (4.11c) 

d.1) Co-evolutionary GP setup for technical-GP traders: the basic decision tree 

for a technical-GP trader is introduced above and the author can now build on this to a 

co-evolutionary nature following a “red queen” principle. The “red queen” principle 

was originally proposed by Leigh Van Valen (1973) as a metaphor of a co-

evolutionary arms race between species. The result is that inevitably, when competing 

for scarce resources, one party is going to end up the winner controlling the majority 

of those resources. In our setting, the red queen principle is applied in the form of “red 

queen retraining”, similar to Martinez-Jaramillo and Tsang (2009). When a trader’s 

wealth falls below the average wealth, he/she launches a GP mechanism to evolve the 

population of rules by retaining half of his/her current population and initializing the 

other half randomly. 

4.4 Traders in the Multinational Market Model 

The author considers a two-nation market for notational and computational simplicity. 

The results can be generalized to involve more than two countries. 

a) Noise traders in a multinational market model: within a single market, 

noise traders make decisions to buy, sell or do nothing, with different probabilities𝑝𝑝𝑛𝑛 ,

𝑝𝑝𝐹𝐹𝑚𝑚𝐹𝐹𝑁𝑁𝑝𝑝ℎ , respectively. The probabilities are predefined and remain constant during 
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the whole process of simulation. These settings remain generally the same in the 

multinational market model; however, the author now has noise traders associated 

with each of the markets. For example, 𝑝𝑝𝑛𝑛
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 ,𝑝𝑝𝐹𝐹

𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 , 𝑝𝑝ℎ
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 , are the 

probabilities for noise traders’ decisions in market A. For market B, the corresponding 

probabilities are𝑝𝑝𝑛𝑛
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝐵𝐵 , 𝑝𝑝𝐹𝐹

𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝐵𝐵 , 𝑝𝑝ℎ
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝐵𝐵. 

b) Herd traders in a multinational market model: in the multinational market 

model, herd traders summarize the latest price changes in all markets, and have a 

tendency to follow the overall market trend (price change) 𝜁𝜁 with sensitivity 𝜏𝜏𝑀𝑀𝑚𝑚𝑟𝑟𝑘𝑘𝐹𝐹𝐹𝐹 . 

This means that herd traders in market 𝑀𝑀 will tend to follow the overall price change 

in all markets 𝜁𝜁 with sensitivity 𝜏𝜏𝑀𝑀  towards that change. For example, in the case of 

two markets, market A and market B, the probability 𝑝𝑝1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(𝑖𝑖) at time t of herd 

traders in market A to make a buy (1) decision is given as follows: 

𝑝𝑝1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟d,𝑀𝑀(i)= 𝐹𝐹𝑥𝑥𝑝𝑝 (𝜁𝜁𝐹𝐹−1

𝑀𝑀 )
𝐹𝐹𝑥𝑥𝑝𝑝 �𝜁𝜁𝐹𝐹−1

𝑀𝑀 �+𝐹𝐹𝑥𝑥𝑝𝑝 (−𝜁𝜁𝐹𝐹−1
𝑀𝑀 )

   ,                           (4.12a) 

𝜁𝜁𝐹𝐹−1
𝑀𝑀 = 𝜁𝜁 ∗ 𝜏𝜏𝑀𝑀 = ∑ 𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 𝐹𝐹−1

𝑀𝑀𝑚𝑚𝑟𝑟𝑘𝑘𝐹𝐹𝐹𝐹 −𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 𝐹𝐹−2
𝑀𝑀𝑚𝑚𝑟𝑟𝑘𝑘𝐹𝐹𝐹𝐹

𝑆𝑆𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹 𝐹𝐹−2
𝑀𝑀𝑚𝑚𝑟𝑟 𝑘𝑘𝐹𝐹𝐹𝐹 𝜏𝜏𝑀𝑀𝐵𝐵

𝑀𝑀𝑚𝑚𝑟𝑟𝑘𝑘𝐹𝐹𝐹𝐹 =𝑀𝑀    .             (4.12b) 

Higher sensitivity will lead to a higher probability of following the overall price 

change. The probability to make a sell decision (−1) is 𝑝𝑝−1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(𝑖𝑖) = (1 − 𝑝𝑝1,𝐹𝐹

𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(𝑖𝑖)), 

if the author only consider buy and sell decisions (Caporale et al., 2009). However, in 

order to add one more strategy “hold”, the author have further introduced into the 

above formula, the probability of a hold strategy calculated as follows:  

𝑝𝑝0,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(𝑖𝑖) = 1

1+𝑁𝑁 |𝜁𝜁𝐹𝐹−1
𝑀𝑀 |

                                            (4.13) 
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by analogy with formula (4.7). The probability of a “buy” decision is revised then to: 

𝑝𝑝1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(𝑖𝑖) = (1− 𝑝𝑝0,𝐹𝐹

𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀) 𝐹𝐹𝑥𝑥𝑝𝑝 (𝜁𝜁𝐹𝐹−1
𝑀𝑀 )

𝐹𝐹𝑥𝑥𝑝𝑝 �𝜁𝜁𝐹𝐹−1
𝑀𝑀 �+𝐹𝐹𝑥𝑥𝑝𝑝 (−𝜁𝜁𝐹𝐹−1

𝑀𝑀 )
    .                    (4.14) 

Correspondingly, the probability of a “sell” decision becomes: 

𝑝𝑝−1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(i)= 1- 𝑝𝑝0,𝐹𝐹

𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(i) -𝑝𝑝1,𝐹𝐹
𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑀𝑀(𝑖𝑖)    .                     (4.15) 

c) Technical-Game players in a multinational market model: in order to 

simulate the linkage between two markets, the mixed-game-based players are 

extended by allowing players to make investment decisions based on information 

from both domestic and foreign markets, while investing in the domestic market 

(Caporale et al. 2009). The author again consider two markets, 𝑀𝑀 and 𝐵𝐵, where 𝑀𝑀 is 

the domestic market and 𝐵𝐵 is the foreign market. An agent 𝑖𝑖  (𝑖𝑖 = 1,⋯𝑁𝑁𝑀𝑀) operating 

in market 𝑀𝑀, has a probability 𝑆𝑆𝑖𝑖
𝐷𝐷𝑂𝑂𝑀𝑀 ,𝑀𝑀(𝑖𝑖) of choosing an action at time 𝐹𝐹 based on the 

domestic market, described as follows: 

𝑆𝑆𝑖𝑖
𝐷𝐷𝑂𝑂𝑀𝑀 ,𝑀𝑀(𝑖𝑖) = 𝐹𝐹𝑥𝑥𝑝𝑝(𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹

𝑀𝑀 𝑤𝑤𝐹𝐹𝑀𝑀 (i))
𝐹𝐹𝑥𝑥𝑝𝑝 �𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹

𝑀𝑀 𝑤𝑤𝐹𝐹𝑀𝑀 (𝑖𝑖)�+𝐹𝐹𝑥𝑥𝑝𝑝 (− 𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹
𝑀𝑀 𝑤𝑤𝐹𝐹𝑀𝑀 (𝑖𝑖))

      ,       (4.16) 

where 𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹𝑀𝑀  is a scale factor. Agents will take actions based on either the domestic 

or the foreign market. Thus the probability 𝑆𝑆𝑖𝑖
𝐹𝐹𝑂𝑂𝑅𝑅 ,𝑀𝑀(𝑖𝑖)   of an agent in market 𝑀𝑀 

choosing an action based on the foreign market is 1 − 𝑆𝑆𝑖𝑖
𝐷𝐷𝑂𝑂𝑀𝑀 ,𝑀𝑀(𝑖𝑖). Parameter 𝑤𝑤𝑖𝑖𝑀𝑀(𝑖𝑖) is 

updated after each period. If a decision based on the foreign market history loses the 

game, then 𝑤𝑤𝐹𝐹𝑀𝑀(𝑖𝑖) = 𝑤𝑤𝐹𝐹−1
𝑀𝑀 (𝑖𝑖) + 1. If the action based on the foreign market history 

wins the game, and the decision based on the domestic market history loses, then 

𝑤𝑤𝐹𝐹𝑀𝑀(𝑖𝑖) = 𝑤𝑤𝐹𝐹−1
𝑀𝑀 (𝑖𝑖) − 1. Therefore, if the decisions based on the domestic and foreign 
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markets are different, 𝑤𝑤𝐹𝐹𝑀𝑀(𝑖𝑖)  is updated (Caporale et al. 2009). By analogy, the 

probabilities and score update can be evaluated for the case when an agent 𝑖𝑖  (𝑖𝑖 =

1,⋯𝑁𝑁𝐵𝐵) operates in market 𝐵𝐵, and therefore market 𝐵𝐵 is his/her domestic market. 

Once a trader chooses a market to make a decision, for example, market 𝐵𝐵, he/she 

then makes the decision using the historical price of market 𝐵𝐵, and the decision table 

for market 𝐵𝐵. After the trade, he/she updates the score for each strategy in decision 

table 𝐵𝐵. 

Table 4-3: A trader’s decision table involving markets A and B 

Historical 
string 𝐹𝐹1

𝑀𝑀  𝐹𝐹2
𝑀𝑀  𝐹𝐹3

𝑀𝑀  
 

𝐹𝐹1
𝐵𝐵  𝐹𝐹2

𝐵𝐵  𝐹𝐹3
𝐵𝐵  

-1,-1 1 0 0 
 

0 1 1 
-1,0 1 1 0 

 
1 1 0 

-1,+1 0 -1 1 
 

1 1 1 
0,-1 0 0 0 

 
0 0 0 

0,0 -1 0 1 
 

1 0 1 
0,+1 1 1 1 

 
1 1 1 

+1,-1 0 1 1 
 

0 1 1 
+1,0 -1 1 1 

 
1 1 1 

+1,+1 0 -1 0 
 

0 1 0 
 

d) Technical-GP traders in a multinational market model: the process by 

which the technical-GP traders choose the market - domestic or foreign - on the 

information of which to base their decision to trade in the domestic market, is similar 

to the process followed by the technical-Game players. All Technical-GP players also 

co-evolve their decision trees. 
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4.5 Evaluating the Integrated Model 

 

Figure 4-2: Multinational agent-based model 

In the artificial multinational market, as pictured in Figure 4-2, each type of player 

makes decisions based on the information from all markets. For example, in market 𝑀𝑀, 

during each trade, after decisions are made, a new market price is calculated with the 

price formation formula. The price information of both markets, 𝑀𝑀 and 𝐵𝐵, becomes 

public information and each player re-evaluates their strategies. If a decision made 

based on market𝐵𝐵, a foreign market, is more accurate than that based on market 𝑀𝑀, the 

domestic market, the player will have a higher probability of choosing information 

from market 𝐵𝐵 to make a decision in the next trading period. The same rules apply to 

players in market𝐵𝐵.  
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4.5.1 Model Parameters 

The aim of our model is to simulate shifts from interdependence to contagion. In 

particular, the author target simulation of the effects of the 1997 regional crisis, 

originating in Thailand, on the South Korea’s market. To achieve this purpose, the 

author needs to optimize the parameters in the multiple-market model. The model is 

capable of simulating multiple markets. However, the author will now consider two 

markets and use the real time series for one of the markets to optimise the model 

parameters while simulating the second market. The second market is simulated in 

such way that the tail dependence between the simulated time series and the real time 

series from the first market，is as close as possible to the tail dependence between the 

real markets. Let us assume that the real market is B and the simulated market is 𝑀𝑀. 

The model parameters then include the proportions of each type of trader - 

technical-GP, technical-Game, herd, and noise traders - denoted as 

𝑁𝑁𝐺𝐺𝑆𝑆 ,   𝑁𝑁𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹 ,𝑁𝑁𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁 ,𝑁𝑁𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 , correspondingly. The heterogeneous model’s parameters 

further include the sensitivity of market 𝑀𝑀 towards the order imbalance 𝜆𝜆𝑀𝑀  in the price 

formation formula (4.2), and 𝑝𝑝𝑛𝑛
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 ,𝑝𝑝𝐹𝐹

𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 , 𝑝𝑝ℎ
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀  corresponding to the 

behaviour of noise traders in market𝑀𝑀, as well as the sensitivity 𝜏𝜏𝑀𝑀  in formula (4.12b) 

of herd traders in market 𝑀𝑀 towards the overall price change on both markets, and the 

scale factor 𝑁𝑁 in formula (4.13). The other parameters are the memory sizes 𝑚𝑚1,𝑚𝑚2for 

the strategies of minority and majority technical-Game players in market 𝑀𝑀 , the 
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number of strategies 𝑘𝑘1,𝑘𝑘2 included in a decision table of minority and majority Game 

players, the scale factor 𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹𝑀𝑀  in formula (4.16) relevant to the choice of 

information market, the time periods 𝐿𝐿𝑀𝑀𝑀𝑀 ,𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵 ,𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿  in calculating the technical 

indicators for GP traders in market 𝑀𝑀, and a scale factor 𝛾𝛾𝐺𝐺𝑆𝑆𝑀𝑀  corresponding to 𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹𝑀𝑀  

but now relevant to the choice of information market by GP traders. The model 

parameters are summarised in Table 4-3. 

Table 4-4: Symbols and parameters in the artificial market simulating contagion 

Symbol Parameter 
𝑁𝑁𝐺𝐺𝑆𝑆  
 

 

Technical-GP traders proportion 
𝑁𝑁𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹  Technical-Game traders proportion 
𝑁𝑁𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁  Herding traders proportion 
𝑁𝑁𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹  

 
 

Noise traders proportion 
𝑝𝑝𝑛𝑛
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 Probability to buy for noise traders 
𝑝𝑝𝐹𝐹
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 Probability to sell 
𝑝𝑝ℎ
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀 Probability for hold 
𝑘𝑘1 strategies for a minority technical-Game player 
𝑘𝑘2 strategies for a majority technical-Game player 
𝐿𝐿𝑀𝑀𝑀𝑀  Time period for calculating the MA indicators  
𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵  Time period for calculating the TRB indicators 
𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿  Time period for calculating the VOL indicators 
𝛾𝛾𝐺𝐺𝑆𝑆𝑀𝑀  Scale factor for Tech-GP market choosing 
𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹𝑀𝑀  Scale factor for Tech-Game market choosing 
𝑚𝑚1 Memory size of minority Technical-Game players 
𝑚𝑚2 Memory size of majority Technical-Game players 
𝜏𝜏𝑀𝑀 sensitivity to price change for herd traders 
𝜆𝜆𝑀𝑀 sensitivity of the market, in price formation,   

 towards the order imbalance 
 

4.5.2 Parameter Optimisation 

In order to measure the performances of parameter configurations, the author compare 

the tail dependence between the two real markets, with the tail dependence generated 
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by the artificial financial market, i.e. the dependence between the simulated market 𝑀𝑀 

and real market 𝐵𝐵. The tail dependence coefficient, as introduced in Chapter 3, is 

based on the Clayton copula. The fitness function 𝑓𝑓 is then formulated in such way 

that the fitness of parameter configurations could improve between 0  and 1  , i.e. 

fitness of 0 to 100%.  

𝑓𝑓�𝜆𝜆𝐿𝐿 ,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹 � = 1
10
∑ �2 𝐹𝐹

−�𝜆𝜆𝐿𝐿 ,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹
𝑟𝑟𝐹𝐹𝑚𝑚𝑙𝑙 −𝜆𝜆𝐿𝐿 ,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹

𝐹𝐹𝑖𝑖𝑚𝑚 ,𝑗𝑗 �

𝐹𝐹
−�𝜆𝜆𝐿𝐿 ,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹

𝑟𝑟𝐹𝐹𝑚𝑚𝑙𝑙 −𝜆𝜆𝐿𝐿 ,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹
s𝑖𝑖𝑚𝑚 ,𝑗𝑗 �

+1
�10

𝑗𝑗=1    ,        (4.17) 

where the left tail dependence between the real markets is denoted as 𝜆𝜆𝐿𝐿,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹
𝑟𝑟𝐹𝐹𝑚𝑚𝑙𝑙 , while 

the tail dependence coefficients generated through simulations of the artfifcial market 

model is denoted as 𝜆𝜆𝐿𝐿,𝐶𝐶𝑙𝑙𝑚𝑚𝑦𝑦𝐹𝐹𝑝𝑝𝐹𝐹
𝐹𝐹𝑖𝑖𝑚𝑚 ,𝑗𝑗 . At each step of the optimization procedure, the author 

run 10 simulations with the same set of parameters, i.e. (𝑗𝑗 = 1, … ,10) as indicated in 

formula (4.17). The average fitness over the 10 simulations is then assigned as the 

fitness of that parameter configuration. The author then modify the parameters, and 

re-evaluate the fitness function. The process stops if the fitness function approaches 1 

or the maximum number of iterations is reached. Next in Chapter 5, the author 

develops a hybrid evolutionary algorithm capable of optimizing the artificial financial 

market introduced here.  

4.6. Conclusion 

In this chapter the author develop an agent-based financial market model comprising 

four types of traders - technical-GP, technical-Game, herd and noise traders – who 

make buy, hold and sell decisions, based on different characterising strategies. The 
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developed model also represents multiple markets rather than a single market, in order 

to simulate how financial contagion happens and observe the evolution of interactions 

between markets. Several features of our model are expected to contribute to the 

capability of simulating real markets and even the complex phenomenon of contagion. 

First, the model involves agents with different type of behaviour, and even different 

strategies within the same type of behaviour, which provides for a richer, complex, 

and more realistic simulated system. Second, the strategies incorporate information 

from two (multiple) markets rather than a single market; thus the simulated market’s 

links emerge through the underlying behaviours of agents. Third, instead of following 

previous studies and using a linear measure of how markets are co-related with each 

other, the author introduce the non-linear Clayton copula function and the Clayton 

tail-dependence coefficient to measure non-linear interdependence between non-

normally distributed financial data. That measure captures more realistic cross-market 

links, and it is used in the fitness function for optimizing our model parameters. In the 

next chapter, the author will develop hybrid optimization techniques to explore the 

parameters used in our model. 
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Chapter 5 : Immune-Particle Swarm Optimization 

Algorithm 

The agent-based artificial market the author have introduced in the Chapter 4 involves 

different types of traders, information from more than one market, and a set of 

parameters to be optimised for the overall problem, while the technical traders also 

optimise their strategies. The complexity of the model requires developing an 

optimisation algorithm capable of handling the task and achieving good convergence. 

As the author discussed in Chapter 2, different optimization techniques have their 

advantages and disadvantages. The author propose here an Immune Particle Swarm 

Optimization (Immune-PSO) algorithm, which is combined with an Immune Clone 

Selection algorithm ． Clone copy ， clone hyper-mutation and clone selection 

operations are performed during the evolutionary steps of the model．  Cloning 

individual particles in proportion to their affinity can protect high fitness individuals 

and speed up convergence. Clone hyper-mutation provides a mechanism producing 

new particles and maintaining diversity．Clone selection, which selects the best 

individuals, avoids degenerating algorithm’s effectiveness． 

5.1 Immune-PSO 

During the PSO search process, if one particle finds a temporary best solution, all the 
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other particles will tend to draw close to it, thus causing the phenomenon of clustering, 

and leading to a decrease in the diversity of the population. If the temporary best 

solution is a local best solution, searching in other spaces becomes less possible, and 

premature convergence to local optima occurs.  The author introduce an immune 

clone algorithm which overcomes this drawback of the standard PSO algorithm.  

Figure 5-1 presents the flowchart of the Immune-PSO. First, a group of particles 

are initialized and the algorithm calculates the fitness of each particle, picking the best 

solution pbest of each individual as well as identifying the global best solution gbest. 

After that, the immune clonal algorithm runs. The author views the particles as 

antibodies and calculates their affinity. This is followed by clone copy, hyper-

mutation, and clone selection operations. Finally, the author updates the particles’ 

(antibodies) speed and position. If the results meet the terminal condition, the author 

displays the result and end processing.  
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Figure 5-1: Flowchart of Immune-PSO 

5.2 Implementation of the Immune-PSO Algorithm 

5.2.1 Calculating the Affinity of Particles 

Affinity is the criterion used to measure the goodness of each antibody in the 

population. If the author views particles as antibodies, then to calculate an antibodies’ 

affinity means to calculate a particles’ affinity. The affinity takes both the fitness and 

particle’s position into consideration, and its formula is as follows: 

𝑚𝑚𝑓𝑓𝑓𝑓𝑖𝑖𝐹𝐹𝑖𝑖𝐹𝐹𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖
𝑁𝑁𝑖𝑖𝐹𝐹𝑖𝑖+1

    ,                                  (5.1) 
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where 𝑁𝑁𝑖𝑖𝐹𝐹𝑖𝑖  is the distance between particle i and the global best solution gbest  

𝑁𝑁𝑖𝑖𝐹𝐹𝑖𝑖 = �∑ �𝑝𝑝𝑖𝑖𝑗𝑗 −𝑔𝑔𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗 �
2𝐷𝐷𝐷𝐷𝑀𝑀

𝑗𝑗=1      .                           (5.2) 

Here, 𝑝𝑝𝑖𝑖𝑗𝑗  and 𝑝𝑝𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗  are the position of particle 𝑖𝑖  and the global best particle in 

dimension 𝑗𝑗, correspondingly. The author can see from formula (5.2) that the closer 

the particle to global best, and the higher the fitness, the larger the affinity.  

5.2.2 Clone Copy 

The number of copies of each individual is calculated in proportion to its affinity. The 

number of copies of the 𝑖𝑖th individual is: 

𝐹𝐹𝑢𝑢𝑚𝑚𝑖𝑖 = � 𝑚𝑚𝑓𝑓𝑓𝑓𝑖𝑖𝐹𝐹𝑖𝑖𝐹𝐹𝑦𝑦 𝑖𝑖
∑ 𝑚𝑚𝑓𝑓𝑓𝑓𝑖𝑖𝐹𝐹𝑖𝑖𝐹𝐹𝑦𝑦 𝑖𝑖
𝐹𝐹
𝑖𝑖=1

� .𝑚𝑚   ,                                (5.3) 

where 𝑚𝑚 is the size of the population. The larger the affinity, the better the individual, 

and thus the more offspring it will clone. Therefore, the superior individual is 

preserved and propagated, and this accelerates the speed of convergence.   

5.2.3 Clone Hyper-mutation 

For each copy of an individual, a probability is assigned to determine whether to 

execute hyper-mutation. During the course of evolution, the diversity of the 

population will decrease rapidly, as all the particles gather around the best one. If the 

best solution is a local best solution, the result will converge to a local optimum. 

Hyper-mutation can help to avoid getting stuck on the local best value.  

Hyper-mutation, namely Gaussian Mutation (GM), together with Cauchy 

Mutation (CM) has already been successfully applied to Evolutionary algorithms 
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(e.g.Hinterding, 1996; Radha,et al., 2009). This chapter uses both approaches. GM is 

used for small length mutation; CM is used for large length mutation, and the decision 

on which one to choose depends on the individual’s fitness. GM helps to promote 

accuracy, and CM helps to avoid local best value.  

(1) Gaussian Mutation (GM(Hinterding, 1996)): following GM, 𝑝𝑝𝑖𝑖  will be 

replaced by𝑝𝑝𝑖𝑖′  

𝑝𝑝𝑖𝑖′ = 𝑝𝑝𝑖𝑖 + 𝑁𝑁(0,1)         ,                   (5.4) 

where 𝑁𝑁(0,1) is the standard normal distribution. 

(2) Cauchy Mutation (CM)( Radha,et al., 2009): Cauchy density function is 

defined as  

𝑓𝑓𝐶𝐶𝑚𝑚𝑢𝑢𝑐𝑐 ℎ𝑦𝑦 (𝑥𝑥) = 𝐹𝐹
𝜋𝜋(𝐹𝐹2+𝑥𝑥2)

      ,              (5.5) 

where 𝐹𝐹 > 0 is a scale factor. Then, 

𝑝𝑝𝑖𝑖′ = 𝑝𝑝𝑖𝑖 +  𝜌𝜌𝜎𝜎𝑘𝑘     ,                     (5.6) 

where 𝜎𝜎𝑘𝑘 is generated by Cauchy function, and 𝜌𝜌 is an adjusting factor. 

5.2.4 Clone Selection 

After clone copy, clone hyper-mutation is carried out, and the author then chooses the 

best individuals to constitute the next generation. The parent solutions, and the 

offspring solutions following copy and mutation, are both considered at the selection 

stage. Figure 5-2 presents the process, where 𝑝𝑝1, 𝑝𝑝2,…,𝑝𝑝𝑚𝑚  correspond to the parent 

population, and 𝑝𝑝1
∗, 𝑝𝑝2

∗,…,𝑝𝑝𝑚𝑚∗  present the new population. 
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Figure 5-2: Main operations of the clone selection algorithm 

 

5.3 Performance Assessment 

The author will test our algorithm on a set of benchmarks, including the following 

functions: Branin, Shekel’s Foxholes, Goldstein-Price, generalized Rosenbrock’s, 

Schwefel’s, and Six-Hump Camel-Back function. 
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5.3.1 Testing Functions 

（1）Branin Function 

 

Figure 5-3: Branin function 

150,105              

 ,10cos
8
111065

4
1.5)(

21

1

2

1
2
122

≤≤≤≤−

+





 −+






 −+−=

xx

xxxxXf
πππ  

398.0)425.2,425.9(                     
)275.2,142.3()275.2,142.3())(min( *

==
=−=

f
ffXf  

（2）Shekel’s Foxholes Function 

 

Figure 5-4: Shekel’s Foxholes function 
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（3）Goldstein-Price Function 

 

Figure 5-5: Goldstein-Price function 
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（4）Generalized Rosenbrock’s Function 

 

Figure 5-6: Generalized Rosenbrock’s function 
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（5）Schwefel’s function 

 

Figure 5-7: Schwefel’s function 
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（6）Six-Hump Camel-Back Function 

 

Figure 5-8: Six-Hump Camel-Back function 
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5.3.2 PSO compared to Immune-PSO 

Settings for a generic PSO 

 Learning factor c1=1.4962 
 Learning factor c2=1.4962 
 Maximum iteration time =1000;             
 Population size =40;                   
 Stopping criteria: eps=10^ (-6);            

Table 5-1: Performance of standard PSO 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 
Actual 0.398 0.998 3 0 0 -1.031 
PSO 0.4 1.005 3 0 0.0001 -1.031 
MSE 4.00E-06 4.90E-05 0 0 0 0 

 

Table 5-2 Performance of Immune-PSO 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 
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Actual 0.3979 0.998 3 0 0 -1.031 
I-PSO 0.3979 0.998 3 0 0.0001 -1.031 
MSE 0 0 0 0 1E-08 0 

 

The author can see from the above comparison that our Immune-PSO outperforms the 

standard PSO in function Branin and Foxhole. The standard PSO gets stuck in the 

local optimum while our Immune PSO find out the global optimum solution 

successfully.  

5.3.3 Experiment setting for GA 

The author compares the performance of our Immune-PSO algorithm in the 

benchmark functions to that of the GA toolbox in MATLAB 7.8. In order to choose 

the best GA setting for the test functions, the author designed a procedure considering 

three key operators - mutation, crossover, selection – and their combinations. Detailed 

results for the 18 groups of settings are provided in the appendix. 

Mutation:  Gaussian mutation, uniform mutation, adapt feasible mutation 
Crossover: one point crossover, two point crossover, intermediate crossover 
Selection: stochastic universal selection, roulette wheel selection 

Table 5-3: Ranked performance for each group 

Group Number Running Time Error 

3 38.9627 0 

6 39.7517 0 
9 44.8487 0 

18 45.8885 0 
17 47.5795 1E-04 

15 43.3207 0.0001 
12 41.5987 0.0001 

8 47.009 0.0001 
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7 43.9643 0.0002 
16 48.0341 0.0005 

10 44.9437 1.0814 
1 51.2532 1.1941 

2 23.4252 21.6722 
4 37.8866 28.6966 

11 42.7292 29.3478 
13 50.4376 35.0674 

14 40.6572 90.8184 
5 39.4206 158.219 

 

The author has two criteria to measure the performance of an optimization technique, 

running time and accuracy. In order to find the best experiment setting, the author 

give priority to accuracy and the above table is sorted by accuracy in terms of 

absolute error. The running time corresponds to the total average running time for 

each test function. The author can see from the table that groups 3, 6,9,18 all perfectly 

captured the global optimum, but group 3 achieves this in minimum time (38.9627). 

The setting of group 3 will be used when comparing GA and Immune-PSO. 

Setting of group 3: 
Stochastic Universal Selection  
Gaussian Mutation  
Stall Generation Limit: 30  
Population Size: 1000  
Intermediate Crossover  

Table 5-4: Performance of Group 3 

Function Name Real Value Experiment Value Average Running Time Error 

Branin 0.3979 0.3979 6.869 0 

Foxhole 0.998 0.998 7.7103 0 

GoldsteinPrice 3 3 6.1596 0 

Rosenbrock 0 0 6.052 0 

Schwefel 0 0 5.9968 0 

SixHump -1.0316 -1.0316 6.175 0 
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38.9627 0 

When the author compare the performance of each group of setting for an 

individual function, the author find that group 6(Stochastic Universal Selection, 

Uniform Mutation, Intermediate Crossover) is suitable for functionsBranin, 

Rosenbrock and SixHump while group 3 (Stochastic Universal Selection, Gaussian 

Mutation, Intermediate Crossover) is suitable for functions Foxhole, GoldsteinPrice 

and Schwefel. 

Table 5-5 is a summary of appendix B. It indicates that Stochastic Universal 

Selection and Intermediate Crossover can help improve the performance of GA, since 

they appear in groups 3, 6 and 9. Intermediate Crossover appears in all four best 

groups (3, 6, 9, and 18). 

Table 5-5: Best player for each testing function 

Function Group Number Running Time Error 

Branin 6 5.9438 0 

Foxhole 3 7.7103 0 
GoldsteinPrice 3 6.1596 0 

Rosenbrock 6 6.0184 0 
Schwefel 3 5.9968 0 

SixHump 6 6.1273 0 

 

5.3.4 Immune-PSO compared to GA 

Table 5-6: Performance of Immune-PSO (population size 10000) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 
PSO 0.3979 0.998 3 0 0 -1.031 
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MSE 0 0 0 0 0 0 

Running Time 84.352 110.856 90.358 96.658 88.534 107.851 
 

Table 5-7: Performance of Immune-PSO (populaion size 1000) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 

PSO 0.3979 0.998 3 0 0 -1.031 

MSE 0 0 0 0 0 0 

Running Time 7.615 8.964 7.113 7.542 7.634 6.997 

Table 5-8: Performance of Immune-PSO (population size 100) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 
PSO 0.3979 0.998 3 0 0 -1.031 

MSE 0 0 0 0 0 0 

Running Time 7.615 8.964 7.113 7.542 7.634 6.997 

Table 5-9: Performance of Immune-PSO (population size 10) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 

PSO 0.3979 0.998 3 0 0 -1.031 

MSE 0 0 0 0 0 0 

Running Time 5.615 6.644 6.128 7.542 5.654 6.319 

 

Table 5-10: Performance of GA (population size 10000) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 
GA 0.3979 0.998 3 0 0 -1.031 

MSE 0 0 0 0 0 0 

Running Time 78.869 70.7103 76.1596 76.852 75.9968 76.175 

Table 5-11: Performance of GA (population size 1000) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 
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GA 0.3979 0.998 3 0 0 -1.031 

MSE 0.0999824 136.24726 2.4542356 0.039442 2.131016 1E-08 

Running Time 7.653 8.124 6.587 7.845 8.457 6.954 

Table 5-12: Performance of GA (population size 100) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 
GA 0.3979 1.992 3 0.0082 0 -1.0316 

MSE 0 0.988036 0 6.724E-05 0 3.6E-07 

Running Time 6.869 7.7103 6.1596 6.052 5.9968 6.175 

Table 5-13: Performance of GA (population size 10) 

Function Branin Foxhole GoldsteinPrice Rosenbrock Schwefel SixHump 

Actual 0.3979 0.998 3 0 0 -1.031 

GA 0.7141 12.6705 4.5666 0.1986 1.4598 -1.0311 
MSE 0.0999824 136.24726 2.4542356 0.039442 2.131016 1E-08 

Running Time 5.457 4.689 5.004 6.398 6.154 5.954 

 

Table 5-14: Summary of the performance of I-PSO with different Population size 

Population 10000 1000 100 10 
MSE 0 0 0 0 

Running Time 578.609 45.865 45.865 37.902 

Table 5-15: Summary of the performance of GA with different Population size 

Population 10000 1000 100 10 
MSE 0 0 0.9881036 140.97193 

Running Time 454.7627 45.62 38.9627 33.656 

 

All results in the tables are the average of 100 runs, for each test function. The true 

minimum value of each function is indicated in the first row. MSE stands for the mean 

squared error of the value obtained through each algorithm. When use GA on the 
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complex problem, GA is tuned. GA in matlab is by no means the original basic GA, it 

has been revised by thousands of people, and the author can guess from the size of 

GA toolbox that it is a hybrid algorithm to certain extent despite the fact that it still 

called GA. that is why it is no worse than our I-pso. As I calculated in the viva, it 

takes i-pso about four days to produce a result and about 3 days for i-pso with 

population size of 10. You may not surprise as your previous student takes several 

days to get a result and our model is more complex than that one. It takes 6-9 seconds 

for GA with a population size of 1000 to produce a result. Intuitively, this is 

incredible as the author assure it takes 100 times as long as a population size of 10. 

However, further experiment show that  it takes 70-90 seconds to produce a result 

with a population size of 10000 which takes  ten times as long as size of 1000. The 

conclusion got is there is a non-linear relationship between population and running 

time, so does the complexity of test function.  And there may be a joint effect of 

complexity and population size. That means it is possible that the running time will 

significantly increase when the population size is less 1000, say 100 or even less. 

Although the author cannot test the second assertion as it takes unreasonably lone 

time to test it (may be years), the author could still come to the conclusion that GA 

with population size of 1000 takes much longer and is not suitable for our model. 

5.3.5 Optimization of the Market Model 

Having tested the Immune-PSO on benchmark functions and confirmed its general 

performance, the author now apply the algorithm to the complex artificial market 

model. The optimisation is performed using real data for 222 trading days during the 
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Asian crisis of 1997, divided in equal trading periods around the crisis point. Table 5-

16 presents the optimum parameter configurations achieved through I-PSO. 

Table 5-16: Optimum parameter values for the simulation of South Korea’s market 

Symbol Represents 
Parameters, 

I-PSO 
𝑁𝑁𝐺𝐺𝑆𝑆 
 

 

Technical-GP traders proportion 0.14 

𝑁𝑁𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹  Technical-Game traders proportion 0.34 

𝑁𝑁𝐻𝐻𝐹𝐹𝑟𝑟𝑁𝑁  Herding traders proportion 0.32 
𝑁𝑁𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹  

 
 

Noise traders proportion 0.20 

𝑝𝑝𝑛𝑛
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀  Probability to buy for noise traders 0.33 

𝑝𝑝𝐹𝐹
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀  Probability to sell for noise traders 0.29 

𝑝𝑝ℎ
𝑁𝑁𝑝𝑝𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑀𝑀  Probability for hold for noise traders 0.38 
𝑘𝑘1 strategies for a minority technical-Game player 30 
𝑘𝑘2 strategies for a majority technical-Game player 52 
𝐿𝐿𝑀𝑀𝑀𝑀  Time period for calculating the MA indicators  8 
𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵  Time period for calculating the TRB indicators 14 
𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿  Time period for calculating the VOL indicators 20 
𝛾𝛾𝐺𝐺𝑆𝑆𝑀𝑀  Scale factor for Tech-GP market choosing 24 
𝛾𝛾𝐺𝐺𝑚𝑚𝑚𝑚𝐹𝐹𝑀𝑀  Scale factor for Tech-Game market choosing 31 
𝑚𝑚1 Memory size of minority Technical-Game players 30 

𝑚𝑚2 Memory size of majority Technical-Game players 56 
𝜏𝜏𝑀𝑀  sensitivity to price change for herd traders 34 

𝜆𝜆𝑀𝑀 
sensitivity of the market, in price formation, 
towards the order imbalance 
 

4.3 

Table 5-17 also presents the characteristics of the real and simulated South 

Korea’s index return distribution, as well as the real and simulated dependence with 

Thailand’s market. The dependence is measured through Kendal’s tau rather than the 

correlation coefficient, following the argument in Chapter 3 for better capturing 

market dependence.  
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Table 5-17: Real and simulated dependence between South Korea’s and Thailand’s 

Target Value Real  I-PSO 

Kurtosis of daily return distribution 3.08 7.54 

Volatility 63.7 47.6 

Kendal’s tau for the pre-crisis phase -0.4334  -0.2143 

Kendal’s tau during the crisis phase 0.7328 0.2314 

 

The real and simulated market indices of South Korea, along with the real Thai 

index, are compared in Figure 5-9. 

 

Figure 5-9: Immune-PSO - a comparison of the simulated and real market indices of 
South Korea and the real Thai index, from 25/02/1997 to 31/12/1997 

Analysing the chart, the author find that in the pre-crisis phase, the simulated index 

relatively well approximates the real time series. The pattern however differs in the 

crisis phase. An issue here may be that the model assumes that the number of each 
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type of traders remains the same throughout the experiment. This may not be the case. 

When a crisis happens, more and more rational traders become herd traders, e.g. sell 

all their shares to avoid loss and push the price further down.  

5.4 Conclusion 

In this chapter, the author have developed a sophisticated optimization technique, 

which is accurate on benchmark functions, and capable to approach the complex 

market model introduced in Chapter 4. The proposed technique is a hybrid algorithm, 

namely, an Immune Particle Swarm Optimization (Immune-PSO) algorithm，which 

includes Immune Clone Selection．Thus, clone copy，clone hyper-mutation and 

clone selection operations are performed during the evolutionary steps in optimising 

the model. Cloning individual particles in proportion to their affinity can protect high 

fitness individuals and speed up convergence. Clone hyper-mutation provides a new 

mechanism producing new particles and maintaining diversity．Clone selection, 

which selects the best individuals, can avoids degenerating algorithm’s effectiveness. 

The typical benchmark functions are performed and the result was compared with GA 

using MATLAB GA Toolbox with appropriate setting. The results indicate that our 

technique performs at least as good as GA, and can be a reliable technique for the 

optimization of the agent based model. The optimisation and simulation results, 

however, reveal that the agent model follows reasonably well the market in the pre-

crisis period, but fails to capture financial contagion during the crisis phase. The 

author consider as a reason that the number of each type of traders in the model never 
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change, which is not the case in reality. To address the issue, the author introduce a 

mechanism allowing that technical traders could change their status during the 

simulation experiment, and relate that model feature to the observation that when a 

crisis happens, more and more rational traders become herd traders. 
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Chapter 6 : Financial Contagion: A Propagation 

Mechanism 

6.1 Background of the Asian crisis of 1997 

There are two views towards the cause of the 1997 Asian crisis. One is that the 

panicand inadequate policy responses triggered a region-wide financial crisis and the 

economic disruption that followed (Sachs and Radelet, 1998).An alternative view is 

that weaknesses in the Asian financial systems were at the root of the crisis (e.g. 

Moreno, Pasadilla, and Remolona, 1998). Although the two implications vary greatly, 

the two views are not mutually exclusive. Both causes contributed to the crisis. 

The economic shocks affecting East Asia at the time were followed by "runs" on 

the financial systems and currencies. Even well-managed banks or financial 

intermediaries are vulnerable to panics, because they traditionally engage in maturity 

transformation. That is, banks accept deposits with short maturities (say, three months) 

to finance loans with longer maturities (say, a year or longer). Maturity transformation 

is beneficial because it can make more funds available to productive long-term 

investors than they would otherwise receive. Outside crisis periods, banks have no 

problem managing their portfolios to meet expected withdrawals. However, if all 

depositors in panic decided to withdraw their funds from a given bank at the same 
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time, the bank would not have enough liquid assets to meet its obligations, threatening 

the viability of an otherwise solvent financial institution. As pointed out by Radelet 

and Sachs (1998), East Asian financial institutions had incurred a significant amount 

of external liquid liabilities that were not entirely backed by liquid assets, making 

them vulnerable to panics. As a result of the maturity transformation, some otherwise 

solvent financial institutions may indeed have been rendered insolvent because they 

were unable to deal with the sudden interruption in the international flow of funds. 

As investors tested currency pegs and financial systems in the region, those 

economies with the most vulnerable financial sectors (Indonesia, South Korea, and 

Thailand) experienced the most severe crises. In contrast, economies with more robust 

and well-capitalized financial institutions (such as Singapore) did not experience 

similar disruptions, in spite of slowing economic activity and declining asset values. 

Firstly, financial intermediaries were not always free to use business criteria in 

allocating credit. In some cases, well-connected borrowers could not be refused credit; 

in others, poorly managed firms could obtain loans to meet some government policy 

objective. Hindsight reveals that the cumulative effect of such type of credit allocation 

can produce massive losses. Second, financial intermediaries or their owners were not 

expected to bear the full costs of failure, reducing the incentive to manage risk 

effectively. In particular, financial intermediaries were protected by implicit or 

explicit government guarantees against losses, because governments could not bear 

the costs of large shocks to the payments system (McKinnon and Pill, 1997). The 

importance of implicit government guarantees in the most affected economies was 
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highlighted by the generous support given to financial institutions experiencing 

difficulties. For example, in South Korea, the very high overall debt ratios of 

corporate conglomerates (400% or higher) suggested that these borrowers were 

ultimately counting on government support in case of adverse outcomes. That was 

confirmed by events in 1997, when the government encouraged banks to extend 

emergency loans to some troubled conglomerates which were having difficulties 

servicing their debts, and supplied special loans to weak banks. Those responses 

further weakened the financial position of lenders and contributed to the uncertainty 

that triggered the financial crisis towards the end of 1997.Since weaknesses in East 

Asian financial systems had existed for decades and were not unique to the region, 

why did Asia not experience crises of this magnitude before? Two explanations are 

likely. First, rapid growth disguised the extent of risky lending. For many years, such 

growth allowed financial policies shielding firms that incurred losses from the adverse 

effects of their decisions. However, such policies would make economies highly 

vulnerable during periods of uncertainty. Second, innovations in information and 

transactions technologies had linked those countries more closely to the world 

financial markets in the 1990s, thus increasing their vulnerability to changes in market 

sentiment. 

Closer integration with the world financial markets adds dimensions of 

vulnerability that are not present in a closed economy. In a closed economy, bad loans 

caused by risky lending may not lead to a run because depositors know that the 

government can supply enough liquidity to financial institutions to prevent any losses 
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to depositors. In an open economy, that same injection of liquidity can destabilize the 

exchange rate. As a result, during periods of uncertainty, runs or speculative attacks 

on a currency can be avoided only if the holders of domestic assets are assured that 

the government can meet the demand for foreign currency. Those East Asian 

economies where foreign exchange reserves were large relative to their short-term 

borrowing (Philippines, Malaysia, and Taiwan) were in a better position to provide 

such assurances than those economies where such reserves were relatively low (South 

Korea, Indonesia, and Thailand). 

6.2. Methodology 

6.2.1. Introduction 

During crisis periods, some of the technical traders in real markets would give up 

their original trading strategies and become herd traders. In this chapter the author 

develop further the artificial market introduced earlier into a co-evolutionary market 

model where technical traders can change their behaviour during crisis periods and 

make their decisions based on the latest market sentiment rather than their usual 

criteria. 

The strategy-changing process applied here is based on the reasoning in game 

theory, though the author does not formally apply game theory and consider this as a 

direction for future research. Let us consider the trading process just before the outset 

of a crisis, and compare it with the prisoner’s dilemma. If all traders maintain their 

approach to decision making and strategy choice, then they are all better off, and the 
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author will refer to this as the cooperative setting of the trading process. If all become 

herd traders then all are worse off and suffer larger losses, due to pushing the prices 

further down than they would have otherwise gone. The author will refer to that as the 

non-cooperative setting of the trading process. Nuances here are the mostly-

cooperative setting and the mostly non-cooperative setting. In the former, most traders 

maintain their approach to decision making and strategy choices; while in the latter, 

most traders follow the latest sentiment. A trader in the mostly non-cooperative setting 

is on average worse off than a trader in the mostly cooperative setting, again for the 

reason of pushing the prices further down though not to the limit. 

The author can see that in the 1997 Asian crisis, the market portfolio, as 

represented by the stock market index, lost almost 70% of its assets. The detail here is 

that a technical trader may not necessarily change his status and follow the market 

sentiment right after a shock. He would keep observing and only when the long term 

adverse price change exceeds what he can bear, then he may choose to give up his 

trading strategy and become a herd trader. As the number of herd traders increases, the 

depth of the crisis may worsen and affect the recovery. As the herd traders follow the 

downward trend in the market where the crisis originates, and as our model provides a 

mechanism linking with other markets and transferring the sentiment, the traders in 

linked markets are gradually conditioned in their activity by the crisis in the original 

market. Thus the downward trend spreads to linked markets, leading to a significant 

increase in the correlation coefficient between markets. This behaviour meets the 

definition given in Forbes and Rigobon(2002), and contributes to the mechanism 

causing financial contagion.  
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6.2.2A Co-evolutionary Mechanism 

The author define the probability of status change as follows: 

𝑆𝑆𝑟𝑟𝑝𝑝𝑛𝑛𝑇𝑇𝐹𝐹𝑐𝑐ℎ(𝛸𝛸𝐹𝐹) = 1
1+𝐹𝐹𝛸𝛸𝐹𝐹

     (6.1a) 

𝛸𝛸𝐹𝐹 = −𝑆𝑆𝐶𝐶 + 𝑟𝑟𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝑚𝑚𝐹𝐹𝑐𝑐𝐹𝐹 = −�𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹1,𝐹𝐹 + 𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹𝑚𝑚 ,𝐹𝐹� + 𝑟𝑟𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝑚𝑚𝐹𝐹𝑐𝑐𝐹𝐹 (6.1b) 

𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹1,𝐹𝐹 = 𝑚𝑚1 (𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹1,𝐹𝐹
𝐷𝐷𝑝𝑝𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑐𝑐 + 𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹1,𝐹𝐹

𝐹𝐹𝑝𝑝𝑟𝑟𝐹𝐹𝑖𝑖𝑔𝑔𝐹𝐹  )    (6.2) 

𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹𝑚𝑚 ,𝐹𝐹 = 𝑚𝑚2 (𝛥𝛥𝑝𝑝r𝑖𝑖𝑐𝑐𝐹𝐹𝑚𝑚 ,𝐹𝐹
𝐷𝐷𝑝𝑝𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑐𝑐 + 𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹𝑚𝑚 ,𝐹𝐹

𝐹𝐹𝑝𝑝𝑟𝑟𝐹𝐹𝑖𝑖𝑔𝑔𝐹𝐹  )    (6.3) 

𝛥𝛥𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹1,𝐹𝐹
𝐷𝐷𝑝𝑝𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑐𝑐 = 𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹𝐹𝐹𝐷𝐷𝑝𝑝𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑐𝑐 − 𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝐹𝐹t−1

Domestic   (6.4) 

Δprice1,t
Foreign  =  pricet

Foreign − pricet−1
Foreign   (6.5) 

Δpricem,t
Domestic = � Δpricet−i

Domestic
m−1

i=1

=                                                            

                                         = � �pricet−i
Domestic − pricet−i−1

Domestic �
m−1

i=1
  (6.6) 

Δpricem ,t
Foreign = � Δpricet−i

Foreign
m−1

i=1

= 

= � �pricet−i
Foreign − pricet−i−1

Foreign �
m−1

i=1
 (6.7) 

 

Formulas (6.1), whereΧt  is the composite force of the resistance and price change 

(PC), meets two criteria:  

(a) When the overall price change (Δprice1,t + Δpricem,t ) is within limits, a 

trader has a high probability of his status or strategy-selection remaining 

unchanged.  
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(b) When the overall price change (Δprice1,t + Δpricem,t ) in absolute value is 

large enough to exceed the positive constant resistance, a trader has a high 

probability of changing his status to a herd trader. Here, the author particularly 

considers large negative price changes corresponding to a crisis period. 

In formulas (6.2) and (6.3),a1  and a2  are scale factors, Δprice1,t  is the last price 

change and  Δpricem ,t  is the long-term bias. A trader will factor in his previous 

memories, which will persist for a while, but gradually fade to be replaced by recent 

memories. In our model setting, some technical traders will change their behaviour 

under certain circumstances and join the troop of herd traders. Converting back to 

technical traders may require an external intervention. 

6.2.3. Summary 

To simplify the setup - financial contagion occurs when a crisis happens in a 

foreign market, which causes panic in the domestic market. Then traders start selling 

stocks to reduce their potential loss, which pushes the price down to levels that trigger 

a financial crisis in the domestic market. The model gives an initial insight into the 

financial contagion phenomenon.  

6.3 Results and Analysis 

The author start the optimization using as initial parameter configuration, the values 

obtained by the I-PSO in Chapter 5 and presented in Table 5-8. Then the author 

optimize further, introducing to the set of parameters a1 and a2 from formulas (6.2) 

and (6.3). Notice that now the proportions of different types of technical traders and 
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herd traders are not part of the parameter configuration, as they change throughout a 

simulation. The proportion of noise traders is still part of the sets of parameters, 

however. A constant resistance is allocated randomly, as an integer number between 

0 and 100 , to each technical trader i . The new optimised set of parameters is 

presented in Table 6-1. 

Table 6-1: Optimum parameter values for the simulated South Korean market 

Symbol Represents 
Parameters, I-PSO 

NNoise  
 

 

Noise traders proportion 0.11 

 pb
Noise ,A  Probability to buy for noise traders 0.33 

 ps
Noise ,A  Probability to sell for noise traders 0.26 

 ph
Noise ,A  Probability for hold for noise traders 0.30 
k1 Strategies for a minority technical-Game player 28 
k2 Strategies for a majority technical-Game player 49 

LMA  Time period for calculating the MA indicators  7 
LTRB  Time period for calculating the TRB indicators 15 
LVOL  Time period for calculating the VOL indicators 22 
γGP

A  Scale factor for Tech-GP market choosing 17 
γGame

A  Scale factor for Tech-Game market choosing 24 
m1 Memory size of minority Technical-Game players 24 

m2 Memory size of majority Technical-Game players 51 
τA  Sensitivity to price change for herd traders 25 

λA  Sensitivity of the market, in price formation, 
towards the order imbalance  3.8 

a1  Scale factor for short memory 31 

a2  Scale factor for long memory 42 

 

Next, Figure 6-1 compares the real and simulated market indices of South Korea, 

using the optimum parameter configuration, along with the real Thai index. The 

characteristics of the real and simulated South Korea’s market are presented in Table 

6-2, where Kendal’s tau uniquely corresponds to Clayton copula’s tail dependence. 
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Figure 6-1: Co-evolutionary market - a comparison of the simulated and real market indices of 
South Korea and the real Thai index, from 25/02/1997 to 31/12/1997 

 

Table 6-2: Real and simulated dependence between South Korea’s and Thailand’s markets 

Target Value Real  I-PSO 

Kurtosis of daily return distribution 3.08 5.43 

Volatility 63.7 52.6 

Kendal’s tau for the pre-crisis phase -0.4334 -0.4133 

Kendal’s tau during the crisis phase 0.7328 0.6512 

The change is brought by the variable status of traders, which can be observed in 

Figures 6-2, 6-3 and 6-4. The status profiles for technical-GP traders, technical-Game 

traders, and herd traders are shown in Figure 6-2. Figure 6-3 is particularly focused on 

the daily increment of herd traders. Finally, Figure 6-4 presents the net order of the 
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four types of traders, including noise traders. 

 

Figure 6-2: South Korea simulation: changes in trader status 

 

Figure 6-3: Daily increment of herd traders 
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Figure 6-4: Net order of the four types of traders 

The simulated price index now follows closer the real one, and the simulated 

dependence coefficient, in both pre-crisis and crisis period, approximates well the real 

dependence. Figure 6-3 further demonstrates the daily increase in herd traders. The 

author can see that the number of herd traders increases from about 1% to almost 

2.5%, 10 days before the crisis, then continues to almost 1% increase each day. Figure 

6-4 next shows the net orders, i.e. buy order less sell orders, for the four types of 

traders. Since the net order affects the market price in the model, the author can 

follow the trend of price change by observing the net order total across all traders. The 

net order total is represented with black stars in the graph. Initially, the market price is 

affected by the joint impact of all four types of traders. As the crisis progresses, the 

red line (herd traders) gets closer to the black star (net order total). Therefore, mostly 

herd traders’ behaviour contributes to market price levels during crisis, though a 
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significant number of other types of traders remain on the market.  

Finally, traders’ assets, whether noise, herd, technical-Game or technical-GP 

traders, all suffered a big loss. Total asset value decreased from 10,000 to 3,000, 

losing almost 70% percent of their value. Since the crisis originated in Thailand, the 

situation could be worse there. The above analysis reveals that herd traders are a 

factor in the mechanism of financial contagion. A question to raise here is as follows: 

since the crisis is caused by market conditions, mainly caused by international 

currency speculators, beyond the control of individual traders and even their 

governments, how then can the author recover or better still prevent the crisis from 

happening? This is a difficult issue, and requires the co-ordination in action and the 

shared responsibilities of governments.  
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6.4. Comparing the Results from I-PSO and GA 

 

Figure 6-5: GA for SK and Thailand 

 

Figure 6-6: I-PSO for SK and Thailand 

 

Table 6-3: Real and simulated dependence between Thailand and SK markets 

Target Value Real  I-PSO GA 
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Kurtosis of daily return distribution 3.08 7.54 8.9 

Volatility 63.7 47.6 35.6 

Kendal’s tau for the pre-crisis phase -0.4334  -0.2143 -02349 

Kendal’s tau during the crisis phase 0.7328 0.4714 0.4612 

The author can see from the results above that I-PSO is better overall. 

6.5 Simulated Prediction of Contagion from Thailand to South Korea  

As the main goal of this thesis is to model and predict financial contagion, the author 

optimize in the pre-crisis period using data from the domestic market (South Korea) 

and the crisis-origin foreign market (Thailand), and predict in the crisis period using 

data from the foreign market and predicting the affected domestic market.  

 

Figure 6-7:Pre-crisis period optimisation-simulation for SK and Thailand 
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Figure 6-8: Crisis period predictive-simulation for SK and Thailand 

Using the model parameters optimised during the pre-crisis period, the author 

simulate the post-crisis period, and can see from Figure 6-8above that the predictive 

simulation approaches the real contagion behaviour well. 

6.6. Application to the Russian crisis of 1998 

6.6.1. Background 

The financial crisis was caused by the high fixed exchange rates between the Ruble, 

the falling productivity and foreign currencies intervention as well as the chronic 

fiscal deficit. The economic cost of the World War One also contributed to the crisis. 

Russian economy showed some signs of improvement in the first half of 1997, 

however, soon after this, problems began to get serious gradually. Two external 

shocks, which were the Asian financial crisis that began in 1997 and the following 

dropping demand (and as a result the price also dropped) for crude and non-ferrous 

http://en.wikipedia.org/wiki/Fixed_exchange_rate
http://en.wikipedia.org/wiki/Fiscal_deficit
http://en.wikipedia.org/wiki/First_Chechen_War
http://en.wikipedia.org/wiki/Asian_financial_crisis
http://en.wikipedia.org/wiki/Nonferrous_metals
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metals, had severely influences on Russian’s foreign (IMF, 2012). When the East 

Asian financial crisis broke out in 1997, prices of energy and metals, which were 

Russia's two most valuable sources of capital flows, plummeted. In view of the fragile 

economy in Russia, the rapid decline in the value of those two capital sources resulted 

in an economic chaos in the country where GDP per capita fell, unemployment soared,  

as well as global investors liquidate their assets in Russia. At the time, Russia 

employed a "floating peg" policy toward the Ruble, meaning that the Central Bank 

decided that at any given time the ruble-to-dollar exchange rates would stay within a 

particular range. If the Ruble threatened to devalue outside of that range or "band", 

the Central Bank would intervene by spending foreign reserves buying Rubles 

(Joseph, 2003) 

The Russian government has no ability to implement a coherent set of economic 

reforms has led to the falling confidence of investors and can be compared to the 

chain reaction severe erosion at the central bank. Investors sell the Rouble and 

Russia's assets (such as securities); it also brings pressure on the Ruble downward to 

flee market. Forcing central Banks to use foreign exchange reserves to defend 

Russia's currency, which in turn further blow to investor confidence, weaken the 

Ruble. It is estimated that between October 1, 1997 and August 17, 1998, the Central 

Bank spent approximately $27 billion of its U.S. dollar reserves in order to maintain 

the floating. 

The Russian stock, bonds, and currency markets collapsed On August 13, 1998, 

as a result of investors fearing that the government would devalue the Ruble or default 
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on domestic debt, or both of the results. Annual production in the Ruble denominated 

bonds doubled. The stock market had to be closed for half an hour as prices 

plummeted. When this happened, it was down 65 percent with a small number of 

shares actually traded. From January to August 1998, the stock market had lost more 

than 75 percent of its value, 39 percent in the month of May alone. (Kotz, 1998) The 

nearby economies were also affected, including Ukraine, which we will use in the 

contagion simulation next. 

6.6.2. Results and Analysis 

Figure 6-7 compares the real and simulated market indices of Ukraine, using the 

optimum parameter configuration, along with the real Russian index. The 

characteristics of the real and simulated Ukraine’s market are presented in Table 6-5, 

where Kendal’s tau uniquely corresponds to Clayton copula’s tail dependence. 

 

http://en.wikipedia.org/w/index.php?title=Domestic_debt&action=edit&redlink=1
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Figure 6-9: Co-evolutionary market - a comparison of the simulated and real market indices of 
Ukraine, along with the real Russian index, from 28/04/1997 to 04/09/1998 

 

Table 6-4: Optimum parameter values for the simulated Ukraine market 

Symbol Represents 
Parameters, I-PSO 

NNoise  
 

 

Noise traders proportion 0.12 

 pb
Noise ,A  Probability to buy for noise traders 0.31 

 ps
Noise ,A  Probability to sell for noise traders 0.22 

 ph
Noise ,A  Probability for hold for noise traders 0.35 
k1 Strategies for a minority technical-Game player 28 
k2 Strategies for a majority technical-Game player 49 

LMA  Time period for calculating the MA indicators  7 
LTRB  Time period for calculating the TRB indicators 15 
LVOL  Time period for calculating the VOL indicators 27 
γGP

A  Scale factor for Tech-GP market choosing 17 
γGame

A  Scale factor for Tech-Game market choosing 34 
m1 Memory size of minority Technical-Game players 24 

m2 Memory size of majority Technical-Game players 51 
τA  Sensitivity to price change for herd traders 22 

λA  Sensitivity of the market, in price formation, 
towards the order imbalance  4.1 

a1  Scale factor for short memory 41 

a2  Scale factor for long memory 42 
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Table 6-5: Real and simulated dependence between Ukraine’s and Russian’s markets 

Target Value Real  I-PSO 

Kurtosis of daily return distribution 3.98 4.23 

Volatility 43.7 58.6 

Kendal’s tau for the pre-crisis phase -0.3314 -0.4133 

Kendal’s tau during the crisis phase 0.7328 0.6322 

The change is brought by the variable status of traders, which can be observed in 

Figures 6-8, 6-9 and 6-10. The status profiles for technical-GP traders, technical-

Game traders, and herd traders are shown in Figure 6-8. Figure 6-9 is focused on the 

daily increment of herd traders. Figure 6-10 presents the net order of the four types of 

traders, including noise traders. 
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Figure 6-10: Ukraine simulation: changes in trader status 

 

Figure 6-11: Daily increment of herd traders 
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Figure 6-12: Net order of the four types of traders 

The simulated price index follows closely the real one, and the simulated dependence 

coefficient, in both pre-crisis and crisis period, approximates the real dependence.  

6.7. Simulated Prediction of Contagion from Russia to Ukraine 

 
Figure 6-13: Pre-crisis period optimisation-simulation for Russia and Ukraine 

 

The author optimize in the pre-crisis period using data from the domestic market 

(Ukraine) and the crisis-origin foreign market (Russia), and predict in the crisis period 



 

142 

 

using data from the foreign market and predicting the affected domestic market.  

 

 
Figure 6-14: Crisis period predictive-simulation for Russia and Ukraine 

 

Using the model parameters optimised during the pre-crisis period, the author 

simulate the post-crisis period, and as Figure 6-14 above shows, the simulated result 

captures the pattern of the real contagion behaviour relatively well. 

6.8. Conclusion 

In this chapter, an overall mechanism is proposed of propagating crisis through 

contagion. Within that scope, a new co-evolutionary market model is discussed, where 

some of the technical traders change their behaviour during crisis and rather make 

their decisions based on market sentiment than on underlying strategies and factors. 

Thus psychological elements are contributed to the model. After analyzing the 

interactive behaviour of agents, the author observes that the herd mentality intensifies 
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during crisis. 

This chapter is focused on the transformation of market interdependence into 

contagion, and on the contagion effects. The author first build a multi-national 

platform to allow different type of players to trade implementing their own rules and 

considering information from the domestic and a foreign market. Traders’ strategies 

and the performance of the simulated domestic market is trained using historical 

prices on both markets, and optimizing artificial market’s parameters through 

immune-PSO techniques. The author also introduces psychological elements 

contributing to the transformation of technical into herd traders. A GARCH-copula is 

further applied to calculate the tail dependence between the affected market and the 

origin of the crisis, and that parameter is used in the fitness function for selecting the 

best solutions within the evolving population of possible model parameters, and 

therefore in the optimization criteria for contagion simulation. 

Our results show that the proportion of herd traders and their decisions increases 

in the net market order, for optimum contagion simulations. While technical traders 

‘trading behaviour corresponds to propagating a crisis through interdependence, herd 

behaviour corresponds to propagating through contagion. If contagion could be 

avoided or transformed back to interdependence with the effort of national 

governments and international bodies, a crisis would be more manageable. In that 

respect, a future focus of research would be to introduce a recovery mechanism into 

the model and modelling government and international intervention, so that the 

overall effect is either avoiding the transformation of interdependence into contagion 

or a recovery from contagion within a manageable time.  
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Chapter 7 : Conclusions and Outlook 

7.1 Summary of Work 

The objective of this thesis is to develop a co-evolutionary artificial market, with the 

purpose of simulating financial contagion between markets, occurring during financial 

crises. Our work focuses on understanding the characteristics and warning signs of 

contagion, which will facilitate developing early warning systems. Such warning 

systems for contagion will help the authorities to implement appropriate management 

actions faster and therefore more effectively.  

The author develops an agent-based model for predictive simulation of financial 

contagion, and applies to two crisis cases. This approach can be next applied to 

current data rather than historic data, optimising the model up to the current time and 

then exploring different scenarios forward for the market the author consider as 

potential crisis origin, which will produce responding predictive simulation of the 

domestic market(s) that the author are concerned about being affected through 

contagion. Scenarios leading to contagion can be identified, as part of continuous 

monitoring for contagion. Therefore, our model acts as the first step in developing an 

early warning system for financial contagion.  

The way that different types of traders change their behaviour in the model in 

response to a crisis, allows us to gain an insight into the way contagion develops. The 
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author aims to simulate the spread of financial difficulties from the original market 

experiencing a crisis, to other markets outside the original crisis zone.  The author 

also aim to optimize the parameters in our model, so that characteristics of markets 

interactive behaviour are better captured. 

The contribution of the work has several aspects, both at level of developing the 

methodology and at level of empirical implementation. The author develop an 

artificial co-evolutionary international, instead of national, financial market. The 

author also suggests how the transfer mechanism operates to propagate the crisis 

through the market. The author introduces qualitatively different types of traders: 

technical-GP, technical-Game, herd and noise traders. Each technical-GP trader’s 

decision tree is evolved based on a technical analysis of market data. Each technical-

Game player has a distinct set of strategies, and re-evaluates their score according to 

their success on the market. Both types of technical traders may select to make a 

particular decision based on the information from the domestic or the foreign markets. 

Technical traders may further transform into herd traders. Each herd trader in a 

particular market has a propensity to follow the last market change in the interlinked 

markets. Each noise trader makes buy, hold or sell decisions randomly, without 

factoring in any market information  

The author also explores a more general mechanism to measure the 

interdependence between two markets and choose the Clayton copula function and 

tail-dependence coefficient. The author investigates the relation between the Claton 

copula’s tail-dependence coefficient and Kendal’s tau coefficient. Then the author use 

a GARCH model to map the index return time-series into a distribution allowing the 
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calculation of tau and thus of tail-dependence. Thus the author successfully captures 

dependence between markets and its changes from stable towards crisis periods.  

Next the author evaluates the artificial evolutionary international market to study 

the characteristics of financial contagion empirically. The model is estimated on real 

data for Thailand, where the Asian crisis of 1997 originated, and for South Korea, one 

of the most affected countries where the crisis transferred to. The objective is to 

simulate the movements of the South Korean market, in relation to the Thailand’s 

market. Before evaluating and running the simulation, the author begins by examining 

the available parameters. The dependence coefficient from the Clayton copula is 

further included in the formulation of the optimization criteria, i.e. the fitness function 

of the evolutionary optimisation technique. The author also applies the overall 

approach to the Russian crisis of 1998 and to modelling the contagion between the 

Russian and Ukrainian markets. 

The author developed a new hybrid optimization technique, namely immune 

particle swarm optimization (Immune-PSO), which maintains the good characteristics 

of both Immune clonal optimization and Particle Swarm Optimization while 

overcoming their drawbacks, and is capable of approaching the complexity of the 

model,. The author first benchmarks the Immune-PSO and then successfully applies it 

to optimise our model. The simulations reveal, however, that the results could be 

improved from that point on by modifying the model itself rather than by improving 

further the optimisation algorithm. A changing behaviour of traders during the crisis 

period is introduced, in order to reflect real market observations. Thus the overall 

mechanism of the co-evolutionary international market enables us to gain an insight to 
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the phenomenon of financial contagion. 

7.2 Contribution 

7.2.1 A GARCH-tau Approach to Clayton Tail Dependence 

The author briefly discusses the correlation coefficient as a measure of dependence 

between two random variables, and the limitations of this measure. Then, the author 

discusses different copula types and how their parameters are estimated. Finally, the 

author developed an approach to calculating the tail-dependence coefficient, as related 

to the Clayton copula function. The approach is based on estimating a GARCH model 

and then using it to map the time-series of the stock indices into distributions allowing 

the calculation of Kendal’s tau coefficient. Tau is then uniquely related to the left tail-

dependence coefficient of the Clayton copula function. Thus the author is able to 

better measure the interdependence between two markets. Tail-interdependence is also 

used in the formulation of the fitness function for our Immune-PSO optimization 

algorithm.  

7.2.2Immune Particle Swarm Optimization Algorithm 

The author developed a new optimization technique, an Immune-PSO algorithm, 

which maintains the good characteristics of immune clonal optimization and particle 

swarm optimization. The author benchmarks the Immune-PSO algorithm against 

genetic algorithms, and then applies the Immune-PSO to estimate the artificial 

international market parameters based on empirical data for real markets. The Asian 

financial crisis of 1997 and the Russian crisis of 1998are selected as case studies. The 
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artificial international market is optimised and simulated, based on the data for 

Thailand as origin of a crisis and South Korea as an affected market. The results of the 

experiments indicate that the Immune-PSO is capable of optimising the model. They 

also indicate that the model can be further improved. 

7.2.3A Co-Evolutionary Artificial Financial Market Modelling Financial 
Contagion 

The author have already implemented in the model, a three-option mixed-game as an 

extension of the two option mixed-game for the technical-Game traders, as well 

technical-GP traders as a new type of traders evolving decision trees based on market 

performance. Next the author give a tentative explanation of factors contributing to 

the phenomenon of financial contagion allowing for changing traders’ behaviour from 

technical to herd traders. Thus the price is pushed even lower, leading to all traders 

being worse off. As the herd traders follow the downward trend in the market 

originating the crisis, the weighted sum of the price change in both that market and 

the trader’s domestic market conditions their trading in the domestic market. 

Gradually, the downward trend in the price series will spread to the domestic market 

and it will become affected by the crisis in the origin market, leading to a significant 

increase in the dependence between the two markets. This behaviour meets the 

definition given in Forbes (2002), and contributes to the circle that causes financial 

contagion. The author now optimises the model for two case studies, the Asian crisis 

of 1997 and then the Russian crisis. In the latter, Russia is the origin market in the 

contagion process and Ukraine is the affected market. 
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7.3 Risk Management Implications 

The financial crisis is a long-standing theme in the economic literature. The 

development of the world economy has been accompanied by financial crises, and 

they leave economists with unresolved questions.  

Financial contagion, as an extension of a financial crisis, has attracted more 

attention, ever since the global economic crisis, including the Asian financial crisis 

and its impact on many emerging markets (Claessens, 2000). Claessens and Forbes 

(2004) recommend improving national policies, market/investor strategies and the 

global financial regulatory framework to deal with possible future financial contagion. 

One motive for this thesis on contagion is to better understand how to reduce the 

impact of herding traders, particularly in a time of crisis. 

Despite there being a number of sophisticated methods for predicting future 

crises that have been developed in the recent literature, they focus on predicting the 

outbreak of a crisis rather than contagion, and a non-contagious crisis can be 

contained without the need for international intervention to mitigate risk. Secondly, 

whilst those models are based on factors which have been observed historically, more 

and more crises are now caused by factors which have not been significant in the past 

(Claessens and Forbes, 2004). Our co-evolutionary agent based model can be helpful, 

as part of an early warning system for financial contagion, in detecting contagion at 

an early stage, which will make crisis management more effective. 

In this thesis, the author develops a model capable of simulating financial 

contagion, and identifies its characteristics and parameters. The analysis of the results 
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of our model indicates that herding behaviour is a contributing factor to crisis 

transitions. Investors should improve their investment strategies through applying 

newly developed risk assessment models. It is also worth mentioning, however, as 

pointed out by Claessens and Forbes (2004), that when a number of institutions use 

similar models, the risk of contagion will be increased if these institutions all initiate 

similar behaviour after a crisis shock.   

Governments can also take effectives measure to halt a crisis. For example, the 

Financial Services Authority (FSA) in the UK acted to ban short-selling during the 

financial crisis of 2008. During the recent crisis, Pakistan has also imposed 

emergency stock limits to halt the slide, through narrowing the limit on losses from 5% 

to 1% and doubling the cap on gains to 10%, as of June 2008. These emergency 

policies limit the herding traders’ movements during the crisis period, and have 

appeared to be effective.  

In the model, the large price change factors as well as a sensitivity factor 

controlling to what extent herd traders are allowed to follow large price changes in 

foreign markets. One of the conclusions is that the focus should be on improving 

domestic policy first. Countries with effective macro-economic management, such as 

appropriate debt management, controllable exchange rates and strong financial 

systems are less affected by the knock-on effects from neighbouring countries’ trading, 

Claessens and Forbes (2004). A timely bailout plan by the government can also help 

improve the investor confidence in domestic markets, thus reducing the effects of the 

shock from other markets. For example, the Federal Reserve of the U.S. cut its 

benchmark interest rate from 5.25% to 1%, from 2006 to 2008, in an effort to halt the 
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worst crisis of the last decade.  

7.4 Outlook 

In this thesis the author has developed a co-evolutionary agent-based model with the 

purpose of simulating contagion occurring during financial crises. Although the 

author have investigated and simulated financial contagion, the author considers 

further directions of research. The technical-GP traders evolve their strategies, the 

technical-Game traders work with fixed decision tables -modelling an evolution of 

their strategies will further improve the realism of our artificial financial markets. 

Modelling agents with different levels of learning ability and memory window will 

also be more realistic. Introducing further game theory formally, with cooperative and 

non-cooperative games as different stages in crisis propagation can be another 

development. One more direction can be improving the optimization criterion used to 

measure the interdependence between two markets, rather than using a single-

parameter Clayton-copula. Finally, as our model is now focused on financial 

contagion, future work could go further and focus on the recovery mechanism that is 

to transform the contagion back into interdependence.  

The author believes that this work has contributed value to the analysis of the 

financial contagion phenomenon using agent-based simulation techniques. The 

investigation of market characteristics leading to financial contagion will contribute in 

future research to enabling regulators and other market analysts to recognise at an 

earlier stage an emerging financial crisis of the type that is only manageable through 

co-ordinated international effort. This information will be valuable for managers and 



 

152 

 

governments to launch effective risk management strategies.  
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Appendix 

A. Pseudo code for PSO 

 
A) For each particle  
     Initialize particle 
   End 
B) Do 
   a) For each particle  
        Calculate fitness value 
        If the fitness value is better than the 
           best fitness value pBest in history 
        Set the current value as the new pBest 
      End 
   b) For each particle  
        v[]=v[]+c1*rand()*(pbest[]-present[])+ 
                  +c2*rand()*(gbest[]-present[]) 
        present[]=present[]+v[] 
      End  
While the maximum iterations or minimum  
                  error criteria is not attained 
 
 
B. Pseudo code for an example decision tree 

1 If ((𝑀𝑀𝑀𝑀_𝐿𝐿𝑀𝑀𝑀𝑀 = 𝑚𝑚) AND (NOT (𝑇𝑇𝑅𝑅𝐵𝐵_𝐿𝐿𝑇𝑇𝑅𝑅𝐵𝐵<b))) Then 

   2 Buy 

3 Else 

   4 If (𝑉𝑉𝑂𝑂𝐿𝐿_𝐿𝐿𝑉𝑉𝑂𝑂𝐿𝐿 = 𝑐𝑐) Then 

      5 Sell 

   6 Else 

      7 Hold 

   8 End if 

9 End if 

C. Pseudo code for the agent based model. 

/////////////////////////////////////////////////////////////////////////////////////////// Initialize technical-game trader 
For i=1:num_technical_game 
[Decision_ table_game, score_table_game] =Initialize technical-game trader; 
End 
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/////////////////////////////////////////////////////////////////////////////////////////// Initialize technical-GP trader 
For i=1:n_technical 
[decision_tree_GP,score_table_GP] =Initialize technical GP trader; 
End 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
For t=start: 222 /////////////////////////////////////////////////////////////////////////////////////////////// 
 
//////////////////////////////////////////////////////////////////////////////////////////////////Noise trader’s decision making 
/////////////////////////////////////////////////// prob_sell_noise, prob_hold_noise, prob_sell_noise are predefined 
For i=1:num_noise 

Probability=rand () 
If   0<probability <prob_buy_noise 
       Noise_deci(i)=1; 
  Else if prob_buy_noise<probability<prob_sell_noise+prob_hold_noise 
     Noise_deci(i)=0; 
  Else  
      Noise_deci(i)=-1; 
End 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////Herd trader’s decision making 
 
For i=1:num_herd 

Delta _A (t) =price_A (t)-price_A (t-1); 
    Delta _B (t) =price_B (t)-price_B (t-1); 
   Zeta (t) =sensitivity_factor_Herd*(Delta _A (t) +Delta _B (t)); 

Prob_hold_herd=1/ (1+d*zeta (t-1)); 
Prob_buy_herd=(1-prob_hold)*exp(zeta(t-1))/( exp(zeta(t-1))+ exp(-zeta(t-1))); 
Prob_sell_herd=1-prob_hold-prob_buy; 
Probability=rand () 
If   0<probability <prob_buy_herd 
       Herd_deci(i)=1; 
  Else if prob_buy_herd<probability<prob_sell_herd+prob_hold_herd 
  Herd_deci(i)=0; 
  Else  
      Herd_deci(i)=-1; 
End 

End  
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 
 
///////////////////////////////////////////////////////////////////////////////////Technical Game traders decision making 
For i=1:num_tech_Game 
   For j=start: t-1 
   game_Deci_ A(j)=decode_game(decision_table_A(i)); 
   game_Deci__B(j)=decode_game(decision_table_B(i)); 
   End  

Num_right_deci_A=count (find (deci_Game_A(i)==win));  // number of right decision using  A 
Num_right_deci_B=count (find (deci_Game_B(i)==win));  // number of right decision using  B 
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score_game_A=update_score_table(num_right_deci); 
score_game_B=update_score_table(num_right_deci); 
Best_ strategy_A =selection_Game(score _game_A); 
Best_ strategy_B =selection_Game(score_game_B)); 
(Market,Best_strategy)=market_selection_Game(score_market_A, score_market_B); ///select market 
Game_Deci (i) =decode (Best_ strategy) /////best strategy is of the selected market 
 End 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
////////////////////////////////////////////////////////////////////////////////////////////technical GP traders decision making 
For i=1:num_tech_GP  
    If wealth_GP (i) <average_wealth //////red queen principal, re-initialize half of the population 
when////////////////////////////////////////////////////////////wealth fall below average 
       Population_GP (1:population_size_GP/2) =initiate_population_GP (population_size_GP/2); 
    End 
   Population_GP=crossover (population_GP); 

Population_GP=mutation (population_GP); 
For j=1: t-1 
     GP_deci(j)=decode_GP(population_GP);  
End 
Num_right_deci=count (find (GP_ deci (i)==win));  //calculate the number of right 

decision////////////////////////////////////////////////                       /for each decision tree  of player i up to time t; 
Fitness=num_right_deci/ (t-start);  
Best_tree=selection_GP (fitness); 
Market=market_selection_GP(score_GP_market_A, score_GP_market_B); ///select market 
GP_deci(i)=decode_GP(Best_tree, market_info(market)); ////////////decision of GP trader i at time t 
End 
///////////////////////////////////////////////////////////////////// 

 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////// price formation 
Total_decision= [noise_deci,herd_deci,game_deci,GP_deci];  
 
      [num_Buy (t), num_Sell (t), num_Hold (t)]=classification (noise_deci,herd_deci,game_deci,GP_deci); 
      D (t) =sum (decision); 
      Price (t) =Price (t-1) +D (t)/lamna; 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////// Update wealth 
Num_Buy_new(t)=num_Buy(t)*Price(t-1)/Price(t); 
  tou_plus=min(1,O(t)/num_Buy_new(t)); 
  tou_minus=min(1,num_Buy_new(t)/O(t)); 
 
 
for i=1:total_players 
       if  total_decision(i)==1 
         rou(i,t)=g*tou_plus*cash(i,t)/Price(t); 
else if  
        total_decision(i)==-1 
         rou(i,t)=-g*tou_minus*num_shareholding(i,t); 
else  
         rou(i,t)=0; 
end  
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num_shareholding(i,t)= num_shareholding(i,t-1)+rou(i,t);  //////////// new number of  share holding 
cash(i,t)= cash(i,t-1)+ rou(i,t)*P(t);  ///////////////////////////////////////////////////////new cash holding 
end  
 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
///////////////////////////////////////////////////////////////////////////////////////////////////// Update technical game traders 
Score _game_A =Update_game_score(score _game_A); 
Score _game_B =Update_game_score(score _game_B); 
Score _market_game_ A =Update_game_market_score(score_market _game_A); 
Score _market_game_ B =Update_game_market_score(score_market _game_B); 
 
/////////////////////////////////////////////////////////////////////////////////////////////////////////Update technical GP traders 
Score _market_GP_ A =Update_GP_market_score(score_market _GP_A); 
Score _market_GP_ B =Update_GP_market_score(score_market _GP_B); 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
End  
 
 

D. Pseudo code for the Immune-PSO Algorithm 

%------experiment setup---------------------------------------------- 

c1=1.4962;             %learning factor 1 

c2=1.4962;             %learning factor 2 

w=0.7298;              %inertia coefficient 

MaxDT=200;            %maximum iteration time 

D=14;                  %dimension 

N=10;                  %size of population 

eps=10^(-20);          %stopping criteria 

replaceP=0.6;          %replacement probability 

 

%------initialize individuals ------------ 

fori=1:N 

position (i)=Initialize_ position()   %%%% position(i) is a set of parameters to be optimized 

velocity(i)=Initialize_velocity() 

End 

 

%------calculate the fitness of each particle and initialize local_best(i)andpg (global best) - -- 

 

Fori=1:N 

fitness (i)=Fitness_function(position(i))%%%%%% see the pseudo code for artificial 

financial market 

local_best(i)=position(i); 
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End 

 

pg=position (1);             %set an initial value for pg 

 

Fori=2: N% find global best (pg) before iteration 

If Fitness_function(position(i))<Fitness_function(pg)    

pg=position (i); 

End 

End 

 

%------iterating till the stopping criteria met-------------------------------------------------------------

----- 

For t=1:MaxDT 

Fori=1:N 

Velocity (i) =update_velocity(position(i),local_best(i),pg) 

position (i)=position(i)+velocity (i); 

 

If Fitness_function(position(i))<fitness(i) 

fitness(i)=fitness_function(position(i)) 

local_best(i)=position(i); 

End 

 

If position (i)<Fitness_function(pg) 

pg=local_best(i); 

End 

Pbest(t)=Fitness_function(pg);    

 

  %-----------proceed immune process－－－－－－－－－－－－－－－－ 

affinity=calc_affinicty(position,pg); 

position=clone_copy(affinity,N); 

position=hyper_mutaion(position); 

pg=selection (position); 

end 
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Stochastic Universal Selection 1 
   Gaussian Mutation 

     Stall Generation Limit:30 
    Population Size:1000 
    Singlepoint Crossover 
    

  Function Name Real Value Experiment Value Average Running Time Error 
 Branin 0.3979 0.4094 13.5018 0.0115 
 Foxhole 0.998 0.998 10.2794 0 
 GoldsteinPrice 3 3.991 7.0003 0.991 
 Rosenbrock 0 0.1247 6.0908 0.1247 
 Schwefel 0 0.0637 7.1027 0.0637 
 SixHump -1.0316 -1.0284 7.2782 0.0032 
 

   
51.2532 1.1941 

 
      Stochastic Universal Selection 2 

   Gaussian Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Two point Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.4206 4.5658 0.0227 
 Foxhole 0.998 0.9989 4.3474 0.0009 
 GoldsteinPrice 3 24.3153 3.3358 21.3153 
 Rosenbrock 0 0.0362 3.7151 0.0362 
 Schwefel 0 0.274 4.2414 0.274 
 SixHump -1.0316 -1.0085 3.2197 0.0231 
 

   
23.4252 21.6722 

 
      
      
      Stochastic Universal Selection 3 

   Gaussian Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
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Intermediate Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 6.869 0 
 Foxhole 0.998 0.998 7.7103 0 
 GoldsteinPrice 3 3 6.1596 0 
 Rosenbrock 0 0 6.052 0 
 Schwefel 0 0 5.9968 0 
 SixHump -1.0316 -1.0316 6.175 0 
 

   
38.9627 0 

 
      
      
      Stochastic Universal Selection 4 

   Uniform Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Single point Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.4251 6.1832 0.0272 
 Foxhole 0.998 0.998 7.7954 0 
 GoldsteinPrice 3 31.2417 6.1035 28.2417 
 Rosenbrock 0 0.2564 5.8863 0.2564 
 Schwefel 0 0.0843 5.9127 0.0843 
 SixHump -1.0316 -0.9446 6.0055 0.087 
 

   
37.8866 28.6966 

 
      Stochastic Universal Selection 5 

   Uniform Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Two point Crossover 
    

      Function Name Real Value Experiment Value Average Running Time Error 
 Branin 0.3979 1.1818 5.7984 0.7839 
 Foxhole 0.998 0.9981 7.879 1E-04 
 GoldsteinPrice 3 159.8011 6.2036 156.8011 
 Rosenbrock 0 0.5681 6.0293 0.5681 
 Schwefel 0 0.0345 6.3845 0.0345 
 SixHump -1.0316 -1.0002 7.1258 0.0314 
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39.4206 158.2191 

 
      
      
      Stochastic Universal Selection 6 

   Uniform Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Intermediate Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 5.9438 0 
 Foxhole 0.998 0.998 9.2044 0 
 GoldsteinPrice 3 3 6.2838 0 
 Rosenbrock 0 0 6.0184 0 
 Schwefel 0 0 6.174 0 
 SixHump -1.0316 -1.0316 6.1273 0 
 

   
39.7517 0 

 
      
      Stochastic Universal Selection 7 

   Adaptfeasible Mutation 
    Stall Generation Limit:30 
    Population Size:1000 
    Singlepoint Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 7.6899 0 
 Foxhole 0.998 0.998 8.355 0 
 GoldsteinPrice 3 3 6.7631 0 
 Rosenbrock 0 0 6.6196 0 
 Schwefel 0 0.0002 7.7884 0.0002 
 SixHump -1.0316 -1.0316 6.7483 0 
 

   
43.9643 0.0002 

 
      Stochastic Universal Selection 8 

   Adaptfeasible Mutation 
    Stall Generation Limit:30 
    Population Size:1000 
    Two point Crossover 
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Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 7.9577 0 
 Foxhole 0.998 0.998 8.6542 0 
 GoldsteinPrice 3 3.0001 8.1191 0.0001 
 Rosenbrock 0 0 7.4651 0 
 Schwefel 0 0 7.4425 0 
 SixHump -1.0316 -1.0316 7.3704 0 
 

   
47.009 0.0001 

 
      
      
      Stochastic Universal Selection 9 

   Adaptfeasible Mutation 
    Stall Generation Limit:30 
    Population Size:1000 
    Intermediate Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 7.8308 0 
 Foxhole 0.998 0.998 8.6518 0 
 GoldsteinPrice 3 3 6.9837 0 
 Rosenbrock 0 0 7.3039 0 
 Schwefel 0 0 7.0849 0 
 SixHump -1.0316 -1.0316 6.9936 0 
 

   
44.8487 0 

 
      
      
      Roulette wheel selection 10 

   Gaussian Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Singlepoint Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.4074 5.7874 0.0095 
 Foxhole 0.998 0.998 7.7744 0 
 GoldsteinPrice 3 3.1854 8.209 0.1854 
 Rosenbrock 0 0.8147 8.5425 0.8147 
 Schwefel 0 0.0717 7.2959 0.0717 
 SixHump -1.0316 -1.0315 7.3345 1E-04 
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44.9437 1.0814 

 
      Roulette wheel selection 11 

   Gaussian Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Two point Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.4179 6.9516 0.02 
 Foxhole 0.998 0.998 8.4479 0 
 GoldsteinPrice 3 32.0737 7.644 29.0737 
 Rosenbrock 0 0.1582 6.7657 0.1582 
 Schwefel 0 0.0798 6.3911 0.0798 
 SixHump -1.0316 -1.0155 6.5289 0.0161 
 

   
42.7292 29.3478 

 
      
      
      Roulette wheel selection 12 

   Gaussian Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Intermediate Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 7.8637 0 
 Foxhole 0.998 0.998 7.7567 0 
 GoldsteinPrice 3 3.0001 6.8385 0.0001 
 Rosenbrock 0 0 6.3034 0 
 Schwefel 0 0 6.3741 0 
 SixHump -1.0316 -1.0316 6.4623 0 
 

   
41.5987 0.0001 

 
      
      
      
      
      
      Roulette wheel selection 13 

   Uniform Mutation 
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Stall Generation Limit:30 
    Population Size:1000 
    Singlepoint Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.4003 15.8717 0.0024 
 Foxhole 0.998 0.998 8.8605 0 
 GoldsteinPrice 3 35.916 6.55 32.916 
 Rosenbrock 0 1.4017 6.6019 1.4017 
 Schwefel 0 0.3211 6.2275 0.3211 
 SixHump -1.0316 -0.6054 6.326 0.4262 
 

   
50.4376 35.0674 

 
      Roulette wheel selection 14 

   Uniform Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Two point Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.5749 7.763 0.177 
 Foxhole 0.998 0.999 7.8761 0.001 
 GoldsteinPrice 3 27.3964 6.1809 24.3964 
 Rosenbrock 0 0.3451 6.1584 0.3451 
 Schwefel 0 0.3202 6.061 0.3202 
 SixHump -1.0316 -1.0307 6.2889 0.0009 
 

   
40.3283 25.2406 

 
      
      
      Roulette wheel selection 15 

   Uniform Mutation 
     Stall Generation Limit:30 

    Population Size:1000 
    Intermediate Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 6.6773 0 
 Foxhole 0.998 0.998 9.3039 0 
 GoldsteinPrice 3 3 6.9817 0 
 Rosenbrock 0 0.0001 6.7345 0.0001 
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Schwefel 0 0 6.8726 0 
 SixHump -1.0316 -1.0316 6.7507 0 
 

   
43.3207 0.0001 

 
      
      
      
      
      Roulette wheel selection 16 

   Adaptfeasible Mutation 
    Stall Generation Limit:30 
    Population Size:1000 
    Singlepoint Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 8.5209 0 
 Foxhole 0.998 0.998 8.9883 0 
 GoldsteinPrice 3 3 7.5996 0 
 Rosenbrock 0 0.0001 8.5714 0.0001 
 Schwefel 0 0.0004 7.277 0.0004 
 SixHump -1.0316 -1.0316 7.0769 0 
 

   
48.0341 0.0005 

 
      Roulette wheel selection 17 

   Adaptfeasible Mutation 
    Stall Generation Limit:30 
    Population Size:1000 
    Two point Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 7.8842 0 
 Foxhole 0.998 0.998 8.6778 0 
 GoldsteinPrice 3 3 7.2064 0 
 Rosenbrock 0 0 7.3806 0 
 Schwefel 0 0 8.6659 0 
 SixHump -1.0316 -1.0315 7.7646 1E-04 
 

   
47.5795 1E-04 

 
      
      
      Roulette wheel selection 18 
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Adaptfeasible Mutation 
    Stall Generation Limit:30 
    Population Size:1000 
    Intermediate Crossover 
    

      Function Name Real Value Experiment  Value Average Running  Time Error 
 Branin 0.3979 0.3979 7.8381 0 
 Foxhole 0.998 0.998 8.747 0 
 GoldsteinPrice 3 3 7.4614 0 
 Rosenbrock 0 0 7.2425 0 
 Schwefel 0 0 7.2607 0 
 SixHump -1.0316 -1.0316 7.3388 0 
 

   
45.8885 0 

  
 

 
Branin 

 Group Number Running Time Error 

3 6.869 0 
6 5.9438 0 

7 7.6899 0 
8 7.9577 0 

9 7.8308 0 
12 7.8637 0 

15 6.6773 0 
16 8.5209 0 

17 7.8842 0 
18 7.8381 0 

13 15.8717 0.0024 
10 5.7874 0.0095 

1 13.5018 0.0115 
11 6.9516 0.02 

2 4.5658 0.0227 
4 6.1832 0.0272 

14 7.763 0.177 
5 5.7984 0.7839 

 
 

 
Foxhole 

 Group Number Running Time Error 

2 4.5658 0.0227 

3 7.7103 0 
12 7.7567 0 
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10 7.7744 0 
4 7.7954 0 

14 7.8761 0.001 
5 7.879 1.00E-04 

7 8.355 0 
11 8.4479 0 

9 8.6518 0 
8 8.6542 0 

17 8.6778 0 
18 8.747 0 

13 8.8605 0 
16 8.9883 0 

6 9.2044 0 
15 9.3039 0 

1 10.2794 0 
 
 
 
 

 
Goldstein Price 

 Group Number Running Time Error 

3 6.1596 0 

6 6.2838 0 
7 6.7631 0 

9 6.9837 0 
15 6.9817 0 

16 7.5996 0 
17 7.2064 0 

18 7.4614 0 
8 8.1191 0.0001 

12 6.8385 0.0001 
10 8.209 0.1854 

1 7.0003 0.991 
2 3.3358 21.3153 

14 6.1809 24.3964 
4 6.1035 28.2417 

11 7.644 29.0737 
13 6.55 32.916 

5 6.2036 156.8011 
 
 

 
Rosenbrock 

 Group Number Running Time Error 
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3 6.052 0 
6 6.0184 0 

7 6.6196 0 
8 7.4651 0 

9 7.3039 0 
12 6.3034 0 

17 7.3806 0 
18 7.2425 0 

15 6.7345 0.0001 
16 8.5714 0.0001 

2 3.7151 0.0362 
1 6.0908 0.1247 

11 6.7657 0.1582 
4 5.8863 0.2564 

14 6.1584 0.3451 
5 6.0293 0.5681 

10 8.5425 0.8147 
13 6.6019 1.4017 

 
 

 
Schwefel 

 Group Number Running Time Error 

3 5.9968 0 

6 6.174 0 
8 7.4425 0 

9 7.0849 0 
12 6.3741 0 

15 6.8726 0 
17 8.6659 0 

18 7.2607 0 
7 7.7884 0.0002 

16 7.277 0.0004 
5 6.3845 0.0345 

1 7.1027 0.0637 
10 7.2959 0.0717 

11 6.3911 0.0798 
4 5.9127 0.0843 

2 4.2414 0.274 
14 6.061 0.3202 

13 6.2275 0.3211 
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SixHump 

 Group Number Running Time Error 

3 6.175 0 

6 6.1273 0 
7 6.7483 0 

8 7.3704 0 
9 6.9936 0 

12 6.4623 0 
15 6.7507 0 

16 7.0769 0 
18 7.3388 0 

10 7.3345 1.00E-04 
17 7.7646 1.00E-04 

14 6.2889 0.0009 
1 7.2782 0.0032 

11 6.5289 0.0161 
2 3.2197 0.0231 

5 7.1258 0.0314 
4 6.0055 0.087 

13 6.326 0.4262 
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