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1. Introduction

In the minimum labelling spanning tree (MLST) problem, we are given an undirected
graph with labelled edges as input. Each edge has a single label and different edges can
have the same label. We can think of each label as a unique colour. The goal is to find a
spanning tree with the minimum number of labels.

Such a model can represent many real-world problems. For example, in telecommu-
nications networks, there are many different types of communications media, such as
optical fibre, coaxial cable, microwave, and telephone line [1]. A communications node
may communicate with different nodes by choosing different types of communications
media. Given a set of communications network nodes, the problem is to find a spanning
tree (a connected communications network) that uses as few communications types as
possible. This spanning tree may reduce the construction cost and the complexity of the
network. Another example is given by multimodal transportation networks [2]. In such
problems, it may be desirable to provide a complete service using the minimum number
of companies. A multimodal transportation network can be represented by a graph where
each edge is assigned a label, denoting a different company managing that link. The aim
is to find a spanning tree of the graph using the minimum number of labels. The inter-
pretation is that all terminal nodes are connected without cycles, using the minimum
number of companies.

The MLST problem can be formulated as a network or graph problem. We are given
a labelled connected undirected graph G = (V,E, L), where V is the set of nodes, E is
the set of edges, and L is the set of labels. The purpose is to find a spanning tree T of G
such that |LT | is minimized, where LT is the set of labels used in T .

Although a solution to the MLST problem is a spanning tree, it is easier to work firstly
in terms of feasible solutions. A feasible solution is defined as a set of labels C ⊆ L, such
that all the edges with labels in C represent a connected subgraph of G and span all
the nodes in G. If C is a feasible solution, then any spanning tree of C has at most |C|
labels. Moreover, if C is an optimal solution, then any spanning tree of C is a minimum
labelling spanning tree. Thus, in order to solve the MLST problem we first seek a feasible
solution with the least number of labels [3].

The upper left graph of Figure 1 is an example of an input graph with the optimal
solution shown on the upper right. The lower part of Figure 1 shows examples of feasible
solutions.

- INSERT FIGURE 1 -
The MLST problem was first introduced by Chang and Leu [4]. They also proved

that it is an NP-hard problem and provided a polynomial time heuristic, the Maximum
Vertex Covering Algorithm (MVCA), for the problem. This heuristic was successively
improved by Krumke and Wirth [5] as defined in Algorithm 1. The procedure starts
with an empty graph. Successively, it adds at random one label from those labels that
minimize the number of connected components. The procedure continues until only one
connected component is left, i.e. when only a connected subgraph is obtained.

- INSERT FIGURE 2 -
Figure 2 shows how the MVCA by Krumke and Wirth [5] works on the graph of

Figure 1. In the initial step, it adds label 1 because it gives the least number of connected
components (3 components). In the second step, all the three remaining labels (2, 3 and
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Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,
and Q ⊆ V basic nodes;

Output: A spanning tree T ;
Initialization:
- Let C ← 0 be the initially empty set of used labels;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where
E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of connected components of H = (V, E(C));
begin

while Comp(C) > 1 do
Select the unused label c ∈ (L− C) that minimizes Comp(C ∪ {c});
Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end
⇒ Take any arbitrary spanning tree T of H = (V, E(C)).

end

Algorithm 1: Maximum Vertex Covering Algorithm [5]

4) produce the same number of components (2). In this case, the algorithm selects at
random and, for example, adds label 3. At this time, all the nodes of the graph are visited,
but the subgraph is still disconnected. Thus, label 2 is added and only one connected
component is obtained (equivalently, label 4 could have been added instead of label 2).
Summarizing, the final solution is {1; 2; 3}, which is worse than the optimal solution {2;
3} of Figure 1.

Krumke and Wirth [5] also proved that MVCA can yield a solution with a value no
greater than (1+2 log n) times optimal, where n is the total number of nodes. Later, Wan
et al. [6] obtained a better bound for the greedy algorithm introduced by Krumke and
Wirth [5]. The algorithm was shown to be a (1+log(n−1))-approximation for any graph
with n nodes (n > 1).

Brüggemann et al. [7] used a different approach; they applied local search techniques
based on the concept of j-switch neighbourhoods to a restricted version of the MLST
problem. In addition, they proved a number of complexity results and showed that if
each label appears at most twice in the input graph, the MLST problem is solvable in
polynomial time.

Xiong et al. [8] derived tighter bounds than those proposed by Wan et al. [6]. For
any graph with label frequency bounded by b, they showed that the worst-case bound of
MVCA is the bth-harmonic number Hb that is: Hb =

∑b
i=1

1
i = 1 + 1

2 + 1
3 + . . . + 1

b .
Subsequently, they constructed a worst-case family of graphs such that the MVCA

solution is Hb times the optimal solution. Since Hb < (1 + log(n − 1)) and b ≤ (n − 1)
(since otherwise the subgraph induced by the labels of maximum frequency contains a
cycle and one can safely remove edges from the cycle), the tight bound Hb obtained is,
therefore, an improvement on the previously known performance bound of (1+log(n−1))
given by Wan et al. [6].

The usual rule of Krumke and Wirth [5] to select the label that minimizes the total
number of connected components at each step, results in fast and high-quality solutions.
However, a difficulty arises when more than one label with same resulting minimum
number of connected components is detected, in a specific step. Since, frequently, there
are many labels with this minimum number of connected components, the results mainly
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depend on the rule chosen to select a candidate from this set of ties. If the initial label
from this set is chosen, the results are affected by the sorting of the labels. Therefore,
different executions of the algorithm may result in different solutions, with a slightly
different number of labels.

Other heuristic approaches to the MLST problem are proposed in the literature. For
example, Xiong et al. [3] presented a Genetic Algorithm (GA) to solve the MLST problem,
outperforming MVCA in most cases.

Subsequently, Cerulli et al. [9] applied the Pilot Method, greedy heuristic developed
by Duin and Voß [10] and subsequently extended by Voß et al. [11], to the MLST problem.
Considering different sets of instances of the MLST problem, Cerulli et al. [9] compared
this method with other metaheuristics (Reactive Tabu Search, Simulated Annealing, and
Variable Neighbourhood Search). Their Pilot Method obtained the best results in most
of the cases. It generates high-quality solutions to the MLST problem, but running times
are quite large (especially if the number of labels is high).

Xiong et al. [12] implemented modified versions of MVCA focusing on the initial label
added. For example, after the labels have been sorted according to their frequencies, from
highest to lowest, the modified version tries only the most promising 10% of the labels
at the initial step. Afterwards, it runs MVCA to determine the remaining labels and
then it selects the best of the |L|/10 resulting solutions (where L is the set of possible
labels for all edges). Compared with the Pilot Method of Cerulli et al. [9], this version
can potentially reduce the computational running time by about 90%. However, since a
higher frequency label may not always be the best place to start, it may not perform
as well as the Pilot Method. Another modified version by Xiong et al. [12] is similar to
the previous one, except that it tries the most promising 30% of the labels at the initial
step. Then it runs MVCA to determine the remaining labels. Moreover, Xiong et al.
[12] proposed another way to modify MVCA. They consider at each step the three most
promising labels, and assign a different probability of selection that is proportional to
their frequencies. Then, they randomly select one of these candidates, and add it to the
incomplete solution. In addition, Xiong et al. [12] presented a Modified Genetic Algorithm
(MGA) that was shown to have the best performance for the MLST problem in terms of
solution quality and running time.

The structure of the paper is as follows. In the next section, we present the details
of the algorithms considered in this paper. Section 3 contains a computational analysis
and evaluation. Finally, conclusions are described in Section 4. For a survey on the
basic concepts of metaheuristics and combinatorial optimization, the reader is referred
to [13, 14].

2. Description of the algorithms

In this section, the details of the algorithms considered in this paper are specified.
First, an exact method for the MLST problem is introduced and described. Then, the
details of the heuristics, that are reported in the literature to be the best performing for
the MLST problem, are considered: the Modified Genetic Algorithm (MGA) by Xiong
et al. [12] and the Pilot Method by Cerulli et al. [9]. We then present a new approach to
the problem, obtained by combining two classic metaheuristics: Variable Neighbourhood
Search (VNS) [15, 16, 17] and Simulated Annealing (SA) [18, 19, 20]. We call this hybrid
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local search as Group-Swap Variable Neighbourhood Search (GS-VNS).

2.1. Exact Method

This exact approach to the MLST problem is based on an A* or backtracking procedure
to test the subsets of L. It performs a branch and prune procedure in the partial solution
space based on a recursive procedure Test that attempts to find a better solution from
the current incomplete solution. The main program that solves the MLST problem calls
the Test procedure with an empty set of labels. The details are specified in Algorithm 2.

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,
and Q ⊆ V basic nodes;

Output: A spanning tree T ;
Initialization:
- Let C ← 0 be the initially empty set of used labels;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where
E(C) = {e ∈ E : L(e) ∈ C};
- Let C∗ ← L be the global set of used labels;
- Let H∗ = (V, E(C∗)) be the subgraph of G restricted to V and edges with labels in C∗, where
E(C∗) = {e ∈ E : L(e) ∈ C∗};
- Let Comp(C) be the number of connected components of H = (V, E(C));
begin

Call Test(C);
⇒ Take any arbitrary spanning tree T of H∗ = (V, E(C∗)).

end

Procedure Test(C):
if |C| < |C∗| then

Update Comp(C);
if Comp(C) = 1 then

Move C∗ ← C;
else if |C| < |C∗| − 1 then

foreach c ∈ (L− C) do
Try to add label c : Test(C ∪ {c});

end

end

end

Algorithm 2: Exact Method for the MLST problem

In order to reduce the number of test sets, it is more convenient to use a good approx-
imate solution for C∗ in the initial step, instead of considering all the labels. Another
improvement that avoids the examination of a large number of incomplete solutions
consists of rejecting every incomplete solution that cannot result in a single connected
component. Note that if we are evaluating an incomplete solution C ′ with a number of
labels |C ′| = |C∗|−2, we should try to add the labels one by one to check if it is possible
to find a better solution for C∗ with a smaller dimension, that is |C ′| = |C∗| − 1. To
complete this solution C ′, we need to add a label with a frequency at least equal to the
actual number of connected components minus 1. If this requirement is not satisfied, the
incomplete solution can be rejected, speeding up the search process.
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The running time of this Exact Method grows exponentially, but if either the problem
size is small or the optimal objective function value is small, the running time is “ac-
ceptable” and the method obtains the exact solution. The complexity of the instances
increases with the dimension of the graph (number of nodes and labels), and the reduc-
tion in the density of the graph. In our tests, the optimal solution is reported unless a
single instance requires more than 3 hours of CPU time. In such a case, we report not
found (NF).

2.2. Modified Genetic Algorithm [12]

Genetic Algorithms are based on the principle of evolution, operations such as crossover
and mutation, and the concept of fitness [21]. In the MLST problem, fitness is defined as
the number of distinct labels in the candidate solution. After a number of generations,
the algorithm converges and the best individual, hopefully, represents a near-optimal
solution.

An individual (or a chromosome) in a population is a feasible solution. Each label
in a feasible solution can be viewed as a gene. The initial population is generated by
adding labels randomly to empty sets, until feasible solutions emerge. Crossover and
mutation operations are then applied in order to build one generation from the previous
one. Crossover and mutation probability values are set to 100%. The overall number of
generations is chosen to be half of the initial population value. Therefore, in the Genetic
Algorithm of Xiong et al. [12] the only parameter to tune is the population size.

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,
and Q ⊆ V basic nodes;

Output: A spanning tree T ;
Initialization:
- Let C ← 0 be the initially empty set of used labels for each iteration;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where
E(C) = {e ∈ E : L(e) ∈ C};
- Set the size Pn of the population;
begin

(s[0], s[1], . . . , s[Pn − 1]) ←Initialize-Population(G, Pn);
repeat

for i = 1 to Pn/2 do
for j = 1 to Pn/2 do

t[1] ← s[j];
t[2] ← s[mod((j + i), Pn)];
tcrossovered ←Crossover(t[1], t[2]);
tmutated ←Mutation(tcrossovered);
if tmutated < t[1] then t[1] ← tmutated;

end

end
until termination conditions ;
C= Extract-the-Best (s[0], s[1], . . . , s[Pn − 1]);
Update H = (V, E(C));
⇒ Take any arbitrary spanning tree T of H = (V, E(C)).

end

Algorithm 3: The Modified Genetic Algorithm for the MLST problem [12]
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The crossover operation builds one offspring from two parents, which are feasible solu-
tions. Given the parents P1 ⊂ L and P2 ⊂ L, it begins by forming their union P = P1∪P2.
Then it adds labels from the subgraph P to the initially empty offspring until a feasible
solution is obtained, by applying the revised MVCA of Krumke and Wirth [5] to the
subgraph with labels in P , node set V , and the edge set associated with P . On the other
hand, the mutation operation consists of adding a new label at random, and next trying
to remove the labels (i.e., the associated edges), from the least frequently occurring la-
bel to the most frequently occurring one, whilst retaining feasibility. The details of the
Modified Genetic Algorithm for the MLST problem are specified in Algorithm 3.

2.3. Pilot Method [9]

The Pilot Method is a metaheuristic proposed by Duin and Voß [10] and Voß et al. [11].
It uses a basic heuristic as a building block or application process, and then it tentatively
performs iterations of the application process with respect to a so-called master solution.
The iterations of the basic heuristic are performed until all the possible local choices (or
moves) with respect to the master solution are evaluated. At the end of all the iterations,
the new master solution is obtained by extending the current master solution with the
move that corresponds to the best result produced.

Considering a master solution M , for each element i /∈ M , the Pilot Method extends
tentatively a copy of M to a (fully grown) solution including i, built through the appli-
cation of the basic heuristic. Let f(i) denote the objective function value of the solution
obtained by including each element i /∈ M , and let i∗ be the most promising of such
elements, i.e. f(i∗) < f(i), ∀i /∈ M . The element i∗, representing the best local move
with respect to M , is included in the master solution by changing it in a minimal fash-
ion, leading to a new master solution M = M ∪ {i∗}. On the basis of this new master
solution M , new iterations of the Pilot Method are started ∀i /∈ M , providing a new
solution element i∗, and so on. This look-ahead mechanism is repeated for all the succes-
sive stages of the Pilot Method, until no further moves need to be added to the master
solution. Alternatively, some user termination conditions, such as the maximum allowed
CPU time or the maximum number of iterations, may be imposed in order to stop the
algorithm when these conditions are satisfied. The last master solution corresponds to
the best solution to date and forms the output of the procedure.

For the MLST problem, the Pilot Method proposed by Cerulli et al. [9] starts from
the null solution (an empty set of labels) as master solution, uses the revised MVCA
of Krumke and Wirth [5] as the application process, and evaluates the quality of a
feasible solution by choosing the number of labels included in the solution as the objective
function. The details are specified in Algorithm 4.

The method computes all the possible local choices from the master solution, perform-
ing a series of iterations of the application process to the master solution. This means
that, at each step, it alternatively tries to add to the master solution each label not yet
included, and then applies MVCA in a greedy fashion from then on (i.e. by adding at
each successive step the label that minimizes the total number of connected components),
stopping when the resulting subgraph is connected (note that, when the MVCA heuris-
tic is applied to complete a partial solution, in case of ties in the minimum number of
connected components, a label is selected at random within the set of labels producing
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the minimum number of components). The Pilot Method successively chooses the best
local move, that is the label that, if included to the current master solution, produces
the feasible solution with the minimum objective function value (number of labels). In
case of ties, it selects one label at random within the set of labels with the minimum
objective function value. This label is then included in the master solution, leading to
a new master solution. If the new master solution is still infeasible, the Pilot Method
proceeds with the same strategy in this new step, by alternatively adding to the master
solution each label not yet included, and then applying the MVCA heuristic to produce
feasible solutions for each of these candidate labels. Again, the best move is selected to

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,
and Q ⊆ V basic nodes;

Output: A spanning tree T ;
Initialization:
- Let M ← 0 be the master solution, and H = (V, E(M)) the subgraph of G restricted to V and
edges with labels in M , where E(M) = {e ∈ E : L(e) ∈ M};
- Let Comp(M) be the number of connected components of H = (V, E(M));
- Let M∗ ← L be a set of labels, and H∗ = (V, E(M∗)) the subgraph of G restricted to V and
edges with labels in M∗, where E(M∗) = {e ∈ E : L(e) ∈ M∗};
- Let i∗ be the best candidate move;
begin

while (termination conditions) OR (Comp(M) > 1) do
foreach i ∈ (L−M) do

Add label i to the master solution: M ← M ∪ {i};
Update H = (V, E(M)) and Comp(M);
while Comp(M) > 1 do

Let S = {e ∈ (L−M) : min Comp(M ∪ {e})} be the set of unused labels with the
minimum number of connected components;
Select at random a label u ∈ S;
Add label u to the solution: M ← M ∪ {u};
Update M = (V, E(M)) and Comp(M);

end
Local Search(M);
if |M | < |M∗| then

Update the best candidate move i∗ ← i;
Keep the solution produced by the best move: M∗ ← M ;

end
Delete label i from the master solution: M ← M ∪ {i};
Update H = (V, E(M)) and Comp(M);

end
Update the master solution with the best move: M ← M ∪ {i∗};

end
while Comp(M) > 1 do

Let S = {e ∈ (L−M) : min Comp(M ∪ {e})} be the set of unused labels with the
minimum number of connected components;
Select at random a label u ∈ S;
Add label u to the solution: M ← M ∪ {u};
Update M = (V, E(M)) and Comp(M);

end
⇒ Take any arbitrary spanning tree T of H = (V, E(M)).

end

Algorithm 4: The Pilot Method for the MLST problem [9]
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Procedure Local Search(M):
for j = 1 to |M | do

Delete label j from the set M , i.e. M ← M − {j};
Update H = (V, E(M)) and Comp(M);
if Comp(M) > 1 then

Add label j to the set M , i.e. M ← M ∪ {j};
Update H = (V, E(M)) and Comp(M);

end

end

Algorithm 5: Procedure Local Search(·)

be added to the master solution, producing a new master solution, and so on. The pro-
cedure continues with the same mechanism until a feasible master solution is produced,
that is one representing a connected subgraph, or until the user termination conditions
are satisfied. The last master solution represents the output of the method. A local search
mechanism is further included at the end of the computation in order to try to greedily
drop labels whilst retaining feasibility (see Algorithm 5).

Since up to ` master solutions can be considered by this procedure, and up to ` local
choices can be evaluated for each master solution, the overall computational running time
of the Pilot Method is O(`2) times the computational time of the application process (i.e.
the MVCA heuristic), leading to an overall complexity O(`3).

2.4. Hybrid local search

A current trend in the area of combinatorial optimization is the integration of good
characteristics from one or more metaheuristics within the implementation of another
“pure” one, in order to improve its performance. Often, this produces new methods
that cannot be classified within a defined heuristic class, but are referred to as hybrid
metaheuristics [14, 22].

For example, a current trend is the integration of trajectory methods within population-
based ones. The strength of population-based methods is the concept of recombining
solutions. It allows the population-based methods to perform “big” guided steps in the
search space, usually larger than the ones performed by trajectory methods. The strength
of trajectory methods is based on a local search procedure which is able to strictly ex-
plore a promising region in the search space. In this way, the danger of being close to
good solutions but “missing” them is not as high as in population-based methods. Sum-
marizing, population-based methods tend to be better at identifying promising areas in
the search space, whereas trajectory methods tend to be superior in exploring specific
zones of the domain. Thus, hybrid local search methods, combining the advantages of
population-based methods with the power of trajectory methods, are often very success-
ful [14].

In many cases, hybrid algorithms are more complex to implement compared to a pure
one. Thus, the application of hybrid local search to a combinatorial optimization problem
must be justified by establishing its effective performance with respect to that problem.

In this section we introduce a hybrid local search method for the MLST problem,
obtained by combining Variable Neighbourhood Search (VNS) [15, 16, 17] and Simulated
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Annealing (SA) [18, 19, 20]. We call this hybrid metaheuristic Group-Swap Variable
Neighbourhood Search (GS-VNS).

2.4.1. Variable Neighbourhood Search [15, 16, 17]
Variable Neighbourhood Search is a relatively new and widely applicable metaheuristic

based on dynamically changing neighbourhood structures during the search process [15,
16, 17]. VNS doesn’t follow a trajectory, but it searches for new solutions in increasingly
distant neighbourhoods of the current solution, jumping only if a better solution than the
current best solution is found. The basic VNS procedure, is specified in Algorithm 6. At
the starting point, it is required to define a suitable neighbourhood structure of size kmax

(user parameter to be set). The simplest and most common choice is a structure in which
the neighbourhoods have increasing cardinality: |N1(·)| < |N2(·)| < ... < |Nkmax

(·)|. The
process of changing neighbourhoods when no improvement occurs diversifies the search.
In particular, the choice of neighbourhoods of increasing cardinality yields a progressive
diversification.

VNS starts from an initial solution C (e.g. generated at random) with k increasing
from 1 up to kmax during the progressive execution. The basic idea of VNS to change the
neighbourhood structure, when the search is trapped at a local minimum, is implemented
by the Shaking phase (Shaking phase(Nk(C)) procedure). It consists of the random selec-
tion of a point C ′ in the neighbourhood Nk(C) of the current solution C. It may provide
a better starting point for the successive local search phase (Local Search((C ′))), which
tries to improve, if possible, the current solution (C ′). Afterwards, if no improvements
are obtained (|C ′| ≥ |C|) in the move phase, the neighbourhood structure is increased
(k = k + 1) giving a progressive diversification (|N1(C)| < |N2(C)| < ... < |Nkmax(C)|).
Otherwise, if an improved solution C ′ is obtained (|C ′| < |C|), it becomes the best solu-

Initialization:
- Define the neighbourhood structure Nk(·), with k = 1, 2, ..., kmax. and where kmax represents the
size of the neighbourhood structure (e.g. increasingly distant neighbourhoods:
|N1(·)| < ... < |Nkmax (·)|);
- Let C be the best solution to date;
- Let C′ be a generic solution;
begin

C = Generate-Initial-Solution();
repeat

Set k = 1;
while k < kmax do

C′ = Shaking phase(Nk(C));
Local Search(C′);
if |C′| < |C| then

Move C ← C′;
Set k = 1;

else
Increase the size of the neighbourhood structure: k = k + 1;

end

end
until termination conditions ;

end

Algorithm 6: Variable Neighbourhood Search [15, 16, 17]
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tion to date (C ← C ′) and the algorithm restarts from the first neighbourhood (k = 1)
of the best solution to date (N1(C)). The algorithm proceeds until the user termination
conditions (maximum allowed CPU time, maximum number of iterations, or maximum
number of iterations between two successive improvements) are satisfied.

2.4.2. Simulated Annealing [18, 19, 20]
Simulated Annealing (SA) is possibly the oldest probabilistic local search method for

global optimization problems, and surely one of the first to clearly provide a way to
escape from local traps. It was independently invented by Kirkpatrick et al. [18], and
by Cerny [19]. The SA metaheuristic performs a stochastic search of the neighbourhood
space. In the case of a minimization problem, modifications to the current solution that
increase the value of the objective function are allowed in SA, in contrast to classical
descent methods where only modifications that decrease the objective value are possible.

The name and inspiration of this method come from the process of annealing in met-
allurgy, a technique involving heating and controlled cooling of a material to increase
the size of its crystals and reduce their defects. The heat causes the atoms to become
unstuck from their initial positions (a local minimum of the internal energy) and wander
randomly through states of higher energy; the slow cooling provides an opportunity to
find configurations with lower internal energy than the initial one.

By analogy with this physical process, each step of the SA algorithm replaces the
current solution by a random “nearby” solution, chosen with a probability that depends
on the difference between the corresponding function values and on a global parameter
T (called temperature), that is gradually decreased during the process (cooling process).

The dependency is such that the current solution changes arbitrarily in the search
domain when T is large, i.e. at the beginning of the algorithm, through uphill moves
(or random walks) that saves the method from becoming trapped at a local minimum.
Afterwards, the temperature T is gradually decreased, intensifying the search process in
the specific promising-zone of the domain (downhill moves).

More precisely, the current solution is always replaced by a new one if this modification
reduces the objective value, while a modification increasing the objective value by ∆ is
only accepted with a probability exp(−∆/T ) (Boltzmann function). At a high tempera-
ture, the probability of accepting an increase to the objective value is high (uphill moves:
high diversification and low intensification). Instead, this probability gets lower as the
temperature is decreased (downhill moves: high intensification and low diversification).

The process described is memory-less because it follows a trajectory in the state space
in which the successor state is chosen depending only on the incumbent one, without
taking into account the history of the search process.

The initial temperature value (T0), the number of iterations to be performed (kmax),
the temperature value at each step (Tk), the cooling (reduction) rate of T , and the stop-
ping criterion are determined by a so-called cooling schedule (or cooling law), generally
specified by the following rule:

Tk+1 = func(Tk, k), (1)

where, given an iteration k (with k = 1, ..., kmax), Tk+1 represents the temperature value
in the successive step k + 1. Different cooling schedules may be considered, such as a
logarithmic cooling law :
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Tk+1 =
cost

lg(k + k0)
, (2)

where cost and k0 are arbitrary constant values that must be set experimentally by the
user. Sometimes, the logarithmic cooling law is too slow for practical purposes. Therefore,
faster cooling schedule techniques may be adopted, such as a geometric cooling law, which
is a cooling rule with an exponential decay of the temperature:

Tk+1 = α · Tk, (3)

where α ∈ [0, 1].
Other complex cooling techniques can be used in order to improve the performance

of the SA algorithm. For example, to have an optimal balance between diversification
and intensification, the cooling rule may be updated during the search process. At the
beginning, T can be constant or linearly decreasing to have a high diversification factor
for a larger exploration of the domain; after that, T can follow a fast rule, such as the
geometric one, to converge quickly to a local optimum.

Simulated Annealing has been applied to several combinatorial problems with success,
such as the Quadratic Assignment problem and the Job Shop Scheduling problem [14].
Rather than as a stand-alone algorithm, it is nowadays used as a component in hybrid
metaheuristics to improve performance in specific applications, as is our case with the
MLST problem.

2.4.3. Group-Swap Variable Neighbourhood Search
Variable Neighbourhood Search provides a general framework and many variants have

been proposed in the literature to try to improve its performance in some circum-
stances [17]. For example, Pérez et al. [23] proposed a hybridization between VNS and
a path-relinking metaheuristic to solve the p-hub median problem, while Pacheco et al.
[24] mixed VNS and Tabu search for the variable selection and the determination of the
coefficients for these variables that provide the best linear discrimination function, with
the objective of obtaining a high classification success rate.

Although hybridizing a metaheuristic may increase the complexity of the implementa-
tion, we consider a more advanced VNS version, with some new features, for the MLST
problem, with a view to obtaining improved results.

For our implementation, given a labelled graph G = (V,E, L), with n vertices, m edges,
and ` labels, each solution is encoded by a binary string, i.e. C = (c1, c2, . . . , c`) where

ci =





1 if label i is in solution C

0 otherwise
(∀i = 1, . . . , |L|). (4)

In order to impose a neighbourhood structure on the solution space S, comprising all
possible solutions, we define the distance between any two such solutions C1, C2 ∈ S, as
the Hamming distance:

ρ(C1, C2) = |C1 − C2| =
∑̀

i=1

λi (5)

where λi = 1 if label i is included in one of the solutions but not in the other, and 0
otherwise, ∀i = 1, ..., `.
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Then, given a solution C, we consider its kth neighbourhood, Nk(C), as all the different
sets having a Hamming distance from C equal to k labels, where k = 1, 2, . . . , kmax,
and where kmax represents the size of the Shaking phase. In order to construct the
neighbourhood of a solution C, the algorithm first proceeds with the deletion of labels
from C. In other words, given a solution C, its kth neighbourhood, Nk(C), consists of
all the different sets obtained from C by removing k labels, where k = 1, 2, ..., kmax. In
a more formal way, given a solution C, its kth neighbourhood is defined as Nk(C) =
{S ⊂ L : (|C| − |S|) = k}, where k = 1, 2, ..., kmax. In particular, we start from an initial
feasible solution generated at random and let parameter kmax vary during the execution.
At each iteration of the Shaking phase, kmax is set to the number of labels of the current
feasible solution whose neighbourhood is being explored (kmax = |C|). Since deletion
of labels often gives an infeasible solution, additional labels may be added in order to
restore feasibility.

The first variant with respect to the basic VNS that we propose consists of introducing
a Group-Swap operation, which extracts a feasible solution from the complementary space
of the current solution. The complementary space of a solution C is defined as the set
of all the labels that are not contained in C, that is (L − C). To yield the solution, the
Group-Swap applies a constructive heuristic, such as the MVCA, to the subgraph of G
with labels in the complementary space of the current solution. Then, the Shaking phase
is applied to this solution, according to the basic VNS.

In order to illustrate the Group-Swap procedure, consider the example shown in Fig-
ure 3. Given an initial random solution X0, the algorithm searches for new solutions
in increasingly distant neighbourhoods of X0. In this example, no better solutions are
detected, and the current solution is still X0. Now, the Group-Swap procedure is applied
to X0. It consists of extracting a feasible solution from the complementary space of X0,
defined as (L − X0). Let the new solution be Xswap

0 . Then, the algorithm searches for
new solutions in the neighbourhoods of Xswap

0 . In this example, a better solution X1 is
found. The algorithm continues with this procedure until the termination conditions are
satisfied. In the example, the final solution is denoted by X2.

- INSERT FIGURE 3 -
We propose this variant in order to improve the diversification of the search pro-

cess. A VNS implementation with the Group-Swap feature has been compared with the
previous algorithms, resulting in good performance. However, in order to seek further
improvements, we have introduced another variation. We propose another heuristic to
yield solutions from the complementary space of the current solution, in order to further
improve the diversification by allowing worse components to be added to incomplete so-
lutions. We call this heuristic Probabilistic MVCA. The introduction of a probabilistic
element within the Probabilistic MVCA heuristic is inspired by Simulated Annealing
(SA). However, the Probabilistic MVCA does not work with complete solutions but with
partial solutions created with components added at each step. The resulting algorithm
that combines the basic VNS and the Probabilistic MVCA, represents a hybridization
between VNS and SA metaheuristics.

The Probabilistic MVCA heuristic could be classified as another version of MVCA,
but with a probabilistic choice of the next label. It extends basic local search by allow-
ing moves to worse solutions. Starting from an initial solution, successively a candidate
move is randomly selected; this move is accepted if it leads to a solution with a better
objective function value than the current solution, otherwise the move is accepted with
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a probability that depends on the deterioration ∆ of the objective function value.
Following the SA criterion, the acceptance probability is computed according to the

Boltzmann function as exp(−∆/T ), using the temperature (T ) as control parameter.
The value of T is initially high, which allows many worse moves to be accepted, and
is gradually reduced following a specific cooling schedule. The aim is to allow, with a
specified probability, worse components with a higher number of connected components
to be added to incomplete solutions.

Probability values assigned to each colour are inversely proportional to the number of
components they give. So the colours with a lower number of connected components will
have a higher probability of being chosen. Conversely, colours with a higher number of
connected components will have a lower probability of being chosen. Thus, the possibility
of choosing less promising labels is allowed.

Summarizing, at each step the probabilities of selecting colours giving a smaller number
of components will be higher than the probabilities of selecting colours with a higher
number of components. Moreover, these differences in probabilities increase step by step
as a result of the reduction of the temperature for the cooling schedule. It means that the
difference between the probabilities of two colours giving different numbers of components
is higher as the algorithm proceeds. The probability of a colour with a high number of
components will decrease as the algorithm proceeds and will tend to zero. In this sense,
the search becomes MVCA-like.

As an example, consider a graph with four colours a, b, c, and d. Starting from an empty
incomplete solution, the first label is added. The numbers of connected components the
colours give are evaluated. Suppose they give a ⇒ 8, b ⇒ 4, c ⇒ 6, d ⇒ 2 components.
The smaller number of components is 2 given by d. Call this colour s. To select the next
label to add, it is necessary to compute the probabilities for each colour. For a generic
candidate colour k, to evaluate the probability of it being added to the current solution
C, we need to compute the Boltzmann function exp(−∆/T ), that is:

exp
(
−Comp(C ∪ k)− Comp(C ∪ s)

T

)
, (6)

where Comp(C ∪ k) is the number of connected components given by adding the colour
k, while Comp(C∪s) is the minimum number of connected components, given by adding
the colour s.

For simplicity, consider a linear cooling law for the temperature T , that is T|C| = 1
|C|+1 ,

where C is the current incomplete solution. The temperature T will have value 1/1 = 1
in the initial step (that is when we need to add the initial colour), 1/2 = 0.5 in the
second step, 1/3 = 0.33 in the third step, and so on. Therefore, in the initial step the
Boltzmann values for each colour are: a ⇒ 0.0024, b ⇒, c ⇒ 0.018, d ⇒ 1. After having
evaluated the Boltzmann values, they are normalized to lie in the interval [0, 1], giving
the probabilities for each colour to be selected. Thus, the probabilities (expressed as
percentages) are: a ⇒ 0.2%, b ⇒ 11.7%, c ⇒ 1.6%, d ⇒ 86.5%. We select at random one
colour according to these probabilities. Suppose colour c is selected.

As the current solution is not a single connected component, we need to add a second
colour. In this second step we need to compute again the probabilities, but with a tem-
perature equal to 0.5. Suppose the numbers of connected components that the remaining
colours give are: a ⇒ 3, b ⇒ 2, d ⇒ 2. The smaller number of components is 2 given by
both b and d. Thus, in this second step (T = 0.5), the Boltzmann function for a generic
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candidate colour k to add is given by exp(−∆/T ) = exp (−Comp(C∪k)−2)
0.5 ), resulting in

the following values: a ⇒ 0.135, b ⇒ 1, d ⇒ 1. They are normalized to lie in the interval
[0, 1], and resulting in the probabilities (expressed as percentages): a ⇒ 6.3%, b ⇒ 46.8%,
d ⇒ 46.8%. We select at random one colour according to these probabilities, and so on.
The algorithm proceeds until we have only one single connected component.

Obviously, in a complex problem such as the MLST problem, the linear cooling law
T|C| = 1

|C|+1 for the temperature is not satisfactory. After having tested different cooling
laws, the best performance was obtained by using a geometric cooling schedule: Tk+1 = α·
Tk = αk ·T0, where α ∈ [0, 1]. This cooling law is very fast for the MLST problem, yielding
a good balance between intensification and diversification. The initial temperature value
T0 and the value of α need to be evaluated experimentally.

A VNS implementation using the Probabilistic MVCA as a constructive heuristic has
been tested. However, the best results were obtained by combining the Group-Swap oper-
ation with the Probabilistic MVCA constructive heuristic within the VNS, obtaining the
hybrid metaheuristic that we call Group-Swap VNS. The Probabilistic MVCA is applied
both to the Group-Swap operation (in order to obtain a solution from the complementary

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,
and Q ⊆ V basic nodes;

Output: A spanning tree T ;
Initialization:
- Let BestC ← 0 be the global set of colours, and HBEST = (V, E(BestC)) be the subgraph of G
restricted to V and edges with labels in BestC , where E(BestC) = {e ∈ E : L(e) ∈ BestC};
- Let C ← 0 be the set of used colours, and H = (V, E(C)) the subgraph of G restricted to V and
edges with labels in C, where E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of connected components of of H = (V, E(C));
- Let C′ be a set of colours, and H′ = (V, E(C′)) the subgraph of G restricted to V and edges with
labels in C′, where E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C′) be the number of connected components of H′ = (V, E(C′));
- Let COMPL ← (L−BestC) the complementary space of the best solution BestC ;
begin

BestC = Generate-Initial-Solution-At-Random();
Local-Search(BestC);
repeat

Perform the swapping of the best solution: C = Group-Swap(BestC);
while |C| < |BestC | do Continue to swap: C = Group-Swap(BestC);
Set k = 1 and kmax = |C|;
while k < kmax do

C′ = Shaking phase(Nk(C));
Local-Search(C′);
if |C′| < |C| then

Move C ← C′;
Set k = 1 and kmax = |C|;

else Increase the size of the neighbourhood structure: k = k + 1;
end
if |C| < |BestC | then Move BestC ← C;

until termination conditions ;
Update HBEST = (V, E(BestC));
⇒ Take any arbitrary spanning tree T of HBEST = (V, E(BestC)).

end

Algorithm 7: Group-Swap Variable Neighbourhood Search for the MLST problem
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Procedure Group-Swap(BestC):
Set C ← 0;
while Comp(C) > 1 do

foreach c ∈ COMPL do
Geometric Group-Swap cooling schedule for the temperature:

T GroupSwap(|C|+ 1) =
T GroupSwap(0)

α|C| where

{
T GroupSwap(0) = |BestC |
α = |BestC |

;

Calculate the probabilities P (c) for each colour, normalizing the values given by the

Boltzmann function: exp

(
− (Comp(C∪{c})−Comp(C∪{s}))

T GroupSwap(|C|+1)

)
where s ∈ COMPL is the

colour which minimizes Comp(C ∪ {s});
end
Select at random an unused colour u ∈ COMPL following the probabilities P (·);
Add label u to the set of used colours: C ← C ∪ {u};
Update H = (V, E(C)) and Comp(C);

end

Algorithm 8: Procedure Group-Swap(·)

space of the current solution) and in the Shaking phase (to restore feasibility by adding
colours to incomplete solutions).

The details of the implementation of the GS-VNS are specified in Algorithm 7. We
start from an initial feasible solution generated at random, denoted by BestC . Then
the Group-Swap operation is applied to BestC , as shown in Algorithm 8, obtaining a
solution C from the complementary space of BestC by means the Probabilistic MVCA
constructive heuristic. For the geometric schedule in the Group-Swap procedure, com-
putational experiments have shown that T0 = |BestC | and α = |BestC |, where BestC is

Procedure Shaking phase(Nk(C)):
for i = 1 to k do

Select at random a colour c′ ∈ C′;
Delete label c′ from the set of used colours: C′ ← C′ − {c′};
Update H′ = (V, E(C′)) and Comp(C′);

end
Let s ∈ (L− C′) be the colour that minimizes Comp(C′ ∪ {s});
while Comp(C′) > 1 do

foreach c ∈ (L− C′) do
Geometric Shaking cooling schedule for the temperature:

T Shaking
(|C′|+1)

=
T

Shaking

(0)

α|C′|
where

{
T Shaking(0) = |BestC |2

α = |BestC |
;

Calculate the probabilities P (c) for each colour, normalizing the values given by the

Boltzmann function: exp

(
− (Comp(C′∪{c})−Comp(C′∪{s}))

T Shaking(|C|+1)

)
where s ∈ (L− C′) is the

colour which minimizes Comp(C′ ∪ {s});
end
Select at random an unused colour u ∈ (L− C′) following the probabilities P (·);
Add label u to the set of used colours: C′ ← C′ ∪ {u};
Update H′ = (V, E(C′)) and Comp(C′);

end

Algorithm 9: Procedure Shaking phase(·)
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the current best solution, are values that performed well. So, the resulting cooling law
for the Group-Swap procedure is

TGroupSwap
(|C|+1) =

TGroupSwap
(0)

α|C|
=

1
|BestC |(|C|−1)

. (7)

Subsequently, the Shaking phase is applied to the resulting solution C (see Algo-
rithm 9). The Shaking phase consists of the random selection of a point C ′ in the neigh-
bourhood Nk(C) of the current solution C (Nk(C) = {S ⊂ L : (|C| − |S|) = k}, where
k = 1, 2, ..., kmax). At each iteration of the Shaking phase, kmax is set to the num-
ber of colours of the current feasible solution whose neighbourhood is being explored
(kmax = |C|). In order to restore feasibility, the addition of colours at this step is ac-
cording to the Probabilistic MVCA constructive heuristic. For the geometric schedule
in the Shaking phase, computational experiments have shown that T0 = |BestC |2 and
α = |BestC |, where BestC is the current best solution, are values that performed well.
The corresponding geometric cooling law is

TShaking
(|C′|+1) =

TShaking
(0)

α|C′|
=

1
|BestC |(|C′|−2)

. (8)

The successive local search is the same as that used in the Pilot Method (see Al-
gorithm 5) which tries to delete colours one by one from the specific solution (C ′),
whilst maintaining feasibility. Afterwards, if no improvements are obtained (|C ′| > |C|),
the neighbourhood structure is changed (k = k + 1) giving a progressive diversification
(|N1(C)| < |N2(C)| < ... < |Nkmax(C)|). Otherwise (i.e. if |C ′| < |C|), the algorithm
moves to the solution C ′ (C ← C ′) restarting the search with the smallest neighbour-
hood (k = 1). The algorithm proceeds with the same procedure until the user termination
conditions (maximum allowed CPU time, maximum number of iterations, or maximum
number of iterations between two successive improvements) are satisfied.

3. Computational results

To test the performance and the efficiency of the algorithms presented in this paper,
we randomly generate instances of the MLST problem based on the number of nodes
(n), the density of the graph (d), and the number of labels (`). In our experiments, we
consider 48 different datasets, each one containing 10 instances of the problem (yielding
a total of 480 instances), including instances with number of vertices, n, and number of
labels, `, from 20 up to 500. The number of edges, m, is obtained indirectly from the
density d, whose values are chosen to be 0.8, 0.5, and 0.2. The complexity of the instances
increases with the dimension of the graph (i.e. increasing n and/or `), and the reduction
in the density of the graph. All the considered data are available from the authors in [25].

For each dataset, solution quality is evaluated as the average objective value among
the 10 problem instances. A maximum allowed CPU time, that we call max-CPU-time,
is chosen as the stopping condition for all the metaheuristics, determined with respect
to the dimension of the problem instance. For MGA, we set the number of generations
for each instance such that the computations take approximately max-CPU-time for the
specific dataset. Selection of the maximum allowed CPU time as the stopping criterion
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is made in order to have a direct comparison of the metaheuristics with respect to the
quality of their solutions.

Our results are reported in Tables 1 - 4. All the computations have been made on a
Pentium Centrino microprocessor at 2.0 GHz with 512 MB RAM. In each table, the first
three columns show the parameters characterizing the different datasets (n, `, d), while
the remaining columns give the computational results of the considered algorithms, which
are identified with the abbreviations: EXACT (Exact Method), PILOT (Pilot Method),
MGA (Modified Genetic Algorithm), GS-VNS (Group-Swap Variable Neighbourhood
Search).

- INSERT TABLE 1, TABLE 2, TABLE 3, TABLE 4 -
All the metaheuristics run for the max-CPU-time specified in each table and, in each

case, the best solution is recorded. The computational times reported in the tables are the
times at which the best solutions are obtained, except in the case of the exact method,
where the exact solution is reported unless a single instance computes for more than 3
hours of CPU time. In the case that no solution is obtained in max-CPU-time by the
metaheuristics (in 3 hours by the exact method) a not found status (NF) is reported in the
tables. All the reported times have precision of ±5 ms. The performance of an algorithm
can be considered better than another one if either it obtains a smaller average objective
value, or an equal average objective value but in a shorter computational running time.

The motivation for a high diversification capability in GS-VNS is to obtain a better
performance in large problem instances. Inspection of the tables shows that this aim is
achieved. GS-VNS is the best performing algorithm for all the considered datasets. It is
interesting to note that in all the problem instances for which the exact method obtains
the solution, GS-VNS also yielded the exact solution.

To confirm this evaluation, the ranks of the algorithms for each dataset are evaluated,
with a rank of 1 assigned to the best performing algorithm, a rank of 2 to the second best
one, and so on. Obviously, if an algorithm records a NF for a dataset, the worst rank is
assigned to that method in the specified dataset. The average ranks of the algorithms,
among the considered datasets, are shown in Table 5, in which the algorithms are ordered
from the best one to the worst one with respect to the average ranks.

- INSERT TABLE 5 -
According to the ranking, GS-VNS is the best performing algorithm, followed respec-

tively by PILOT, MGA, and EXACT. Thus, this evaluation further indicates the supe-
riority of GS-VNS with respect to the other approaches.

To analyse the statistical significance of differences between the evaluated ranks, we
make use of the Friedman Test [26] and its corresponding Nemenyi Post-hoc Test [27].
For more details on the issue of statistical tests for comparison of algorithms over multiple
datasets see [28, 29].

According to the Friedman Test, a significant difference between the performance of
the metaheuristics, with respect to the evaluated ranks, exists (at the 1% of significance
level). Since the equivalence of the algorithms is rejected, the Nemenyi post-hoc test is
applied in order to perform pairwise comparisons. It considers the performance of two
algorithms significantly different if their corresponding average ranks differ by at least a
specific threshold critical difference (CD). In our case, considering a significance level of
the Nemenyi test of 1%, this critical difference (CD) is 0.82. The differences between the
average ranks of the algorithms are reported in Table 6.

- INSERT TABLE 6 -
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From this table, it is possible to identify two groups of algorithms with different per-
formance. The best performing group consists of just GS-VNS, because it obtains the
smallest rank which is significantly different from all the other ranks. The remaining
group consists of PILOT, MGA, and EXACT, which have comparable performance ac-
cording to the Nemenyi test (since, in each case, the value of the test statistic is less than
the critical difference 0.82), but worse than that of GS-VNS.

Furthermore, some exact solutions reached by the metaheuristics require a greater
computational time than required by the Exact Method. (note that the Exact Method
obtains the exact solution for all problem instances of 32 datasets out of a total of
48 datasets; for the remaining sets NF is reported). Again, the best performances are
obtained by GS-VNS, which requires less computational time than the Exact Method
among the 32 datasets. In contrast, PILOT and MGA obtain the optimal solution but in a
time that exceeds that of the Exact Method in 14 and 16 datasets, respectively. Although
PILOT and MGA reach most of the exact solutions, they require high computational
effort.

The results demonstrate that GS-VNS is an effective metaheuristic for the MLST
problem, producing high quality solutions in short computational running times.

4. Conclusions

In this paper, we have studied algorithms to solve the minimum labelling spanning
tree (MLST) problem. An exact method has been proposed (EXACT), along with the
best heuristics recommended in the literature: the Modified Genetic Algorithm (MGA)
by Xiong et al. [12] and the Pilot Method (PILOT) by Cerulli et al. [9]. A new hy-
brid metaheuristic for the MLST problem has been proposed. It has been obtained by
combining Variable Neighbourhood Search (VNS) and Simulated Annealing (SA) meta-
heuristics. We call this hybrid approach as Group-Swap Variable Neighbourhood Search
(GS-VNS).

Computational experiments were performed using different instances of the MLST
problem to evaluate how the algorithms are influenced by the parameters and the struc-
ture of the network. Applying the nonparametric statistical tests of Friedman [26] and Ne-
menyi [27], we concluded that the proposed GS-VNS has significantly better performance
than the other algorithms presented with respect to solution quality and computational
running time. GS-VNS obtains a large number of optimal or near-optimal solutions,
showing an extremely high diversification capability.
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Figure 1. The top two graphs show a sample graph and its optimal solution. The bottom three graphs
show some feasible solutions.

22



Figure 2. Example illustrating the steps of the Maximum Vertex Covering Algorithm by Krumke and
Wirth [5].
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Figure 3. Example illustrating the steps of Group-Swap Variable Neighbourhood Search.
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Table 1
Computational results for n = ` = 20, 30, 40, 50 (max-CPU-time for heuristics = 1000 ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GS-VNS

0.8 2.4 2.4 2.4 2.4

20 20 0.5 3.1 3.2 3.1 3.1

0.2 6.7 6.7 6.7 6.7

0.8 2.8 2.8 2.8 2.8

30 30 0.5 3.7 3.7 3.7 3.7

0.2 7.4 7.4 7.4 7.4

0.8 2.9 2.9 2.9 2.9

40 40 0.5 3.7 3.7 3.7 3.7

0.2 7.4 7.6 7.4 7.4

0.8 3 3 3 3

50 50 0.5 4 4 4.1 4

0.2 8.6 8.6 8.6 8.6

TOTAL: 55.7 56 55.8 55.7

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GS-VNS

0.8 0 0 15.6 0

20 20 0.5 0 1.6 22 0

0.2 11 3.1 23.4 0

0.8 0 3 9.4 1.5

30 30 0.5 0 3.1 26.5 0

0.2 138 4.7 45.4 3.1

0.8 2 6.3 12.5 1.5

40 40 0.5 3.2 7.9 28.2 3.1

0.2 100.2∗103 10.8 120.3 6.2

0.8 3.1 17.1 21.8 3.1

50 50 0.5 21.9 20.2 531.3 6.2

0.2 66.3∗103 17.2 93.6 8

TOTAL: 166.7∗103 95 950 32.7
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Table 2
Computational results for n = 100, ` = 0.25n, 0.5n, n, 1.25n (max-CPU-time for heuristics = 20∗103

ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GS-VNS

0.8 1.8 1.8 1.8 1.8

25 0.5 2 2 2 2

0.2 4.5 4.5 4.5 4.5

0.8 2 2 2 2

50 0.5 3 3.1 3 3

100 0.2 6.7 6.9 6.7 6.7

0.8 3 3 3 3

100 0.5 4.7 4.7 4.7 4.7

0.2 NF 10.1 9.9 9.7

0.8 4 4 4 4

125 0.5 5.2 5.4 5.2 5.2

0.2 NF 11.2 11.1 11

TOTAL: - 58.7 57.9 57.6

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GS-VNS

0.8 9.4 4.7 26.5 0

25 0.5 14 12.6 29.7 4.5

0.2 34.3 23.2 45.3 4.8

0.8 17.8 67.3 23.5 12.6

50 0.5 23.5 90.7 106.2 21.7

100 0.2 10.2∗103 103.2 148.3 26.5

0.8 142.8 378.1 254.7 146.9

100 0.5 2.4∗103 376.2 300 75.9

0.2 NF 399.9 9.4∗103 514

0.8 496.9 565.7 68.7 20.2

125 0.5 179.6∗103 576.3 759.4 345.4

0.2 NF 634.5 2∗103 1.2∗103

TOTAL: - 3.2∗103 13.2∗103 2.4∗103
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Table 3
Computational results for n = 200, ` = 0.25n, 0.5n, n, 1.25n (max-CPU-time for heuristics = 60∗103

ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GS-VNS

0.8 2 2 2 2

50 0.5 2.2 2.2 2.2 2.2

0.2 5.2 5.2 5.2 5.2

0.8 2.6 2.6 2.6 2.6

100 0.5 3.4 3.4 3.4 3.4

200 0.2 NF 8.3 8.3 7.9

0.8 4 4 4 4

200 0.5 NF 5.5 5.4 5.4

0.2 NF 12.4 12.4 12

0.8 4 4 4 4

250 0.5 NF 6.3 6.3 6.3

0.2 NF 13.9 14 13.9

TOTAL: - 69.8 69.8 68.9

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GS-VNS

0.8 29.7 90.7 26.5 0

50 0.5 32.7 164.1 68.8 34.4

0.2 5.4∗103 320.4 326.6 232.8

0.8 138.6 876.5 139.3 140.8

100 0.5 807.8 1.2∗103 1.6∗103 159.4

200 0.2 NF 1.3∗103 2.2∗103 2.9∗103

0.8 22.5∗103 5.9∗103 204.6 79.7

200 0.5 NF 5.6∗103 16.1∗103 876.1

0.2 NF 5∗103 12.7∗103 33.7∗103

0.8 20.6∗103 9.1∗103 2.2∗103 1.5∗103

250 0.5 NF 8.4∗103 17.6∗103 2.3∗103

0.2 NF 8∗103 26.4∗103 1.5∗103

TOTAL: - 45.9∗103 79.6∗103 43.4∗103
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Table 4
Computational results for n = 500, ` = 0.25n, 0.5n, n, 1.25n (max-CPU-time for heuristics = 300∗103

ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GS-VNS

0.8 2 2 2 2

125 0.5 2.6 2.6 2.6 2.6

0.2 NF 6.3 6.2 6.2

0.8 3 3 3 3

250 0.5 NF 4.2 4.3 4.1

500 0.2 NF 9.9 10.1 9.9

0.8 NF 4.8 4.7 4.7

500 0.5 NF 6.7 7.1 6.5

0.2 NF 15.9 16.6 15.8

0.8 NF 5.1 5.4 5.1

625 0.5 NF 8.1 8.3 7.9

0.2 NF 18.5 19.1 18.3

TOTAL: - 87.1 89.4 86.1

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GS-VNS

0.8 370 3.4∗103 18 45

125 0.5 597 6.6∗103 2.6∗103 560

0.2 NF 11.9∗103 57.1∗103 3.7∗103

0.8 5.3∗103 35.4∗103 516 490

250 0.5 NF 65.3∗103 28∗103 26.9∗103

500 0.2 NF 156.4∗103 181.2∗103 10.2∗103

0.8 NF 200.5∗103 117.5∗103 8.6∗103

500 0.5 NF 190.1∗103 170.9∗103 110.2∗103

0.2 NF 300.6∗103 241.8∗103 50.3∗103

0.8 NF 184.3∗103 51.9∗103 970

625 0.5 NF 200.9∗103 222.2∗103 33.9∗103

0.2 NF 289.9∗103 297.8∗103 60∗103

TOTAL: - 1645.3∗103 1371.5∗103 395.9∗103
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Table 5
Average ranks of the algorithms among all the considered datasets

ALGORITHM GS-VNS PILOT MGA EXACT

average rank 1.24 2.80 2.92 3.04
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Table 6
Pairwise differences of the average ranks of the algorithms (Critical difference = 0.82 for a significance
level of 1% for the Nemenyi test)

ALGORITHM (rank) GS-VNS (1.24) PILOT (2.80) MGA (2.92) EXACT (3.04)

GS-VNS (1.24) - 1.56 1.68 1.8

PILOT (2.80) - - 0.12 0.24

MGA (2.92) - - - 0.12

EXACT (3.04) - - - -
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