

 Saurashtra University
 Re – Accredited Grade ‘B’ by NAAC
 (CGPA 2.93)

Anandkumar, , 2010, “Network design using genetic algorithm”, thesis PhD,

Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/328

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Saurashtra University Theses Service

http://etheses.saurashtrauniversity.edu

repository@sauuni.ernet.in

© The Author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Etheses - A Saurashtra University Library Service

https://core.ac.uk/display/11821690?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://etheses.saurashtrauniversity.edu/id/eprint/328
http://etheses.saurashtrauniversity.edu/

NETWORK DESIGN USING GENETIC
ALGORITHM

A Thesis submitted to

SAURASHTRA UNIVERSITY
RAJKOT, INDIA

For the award of the degree of

Doctor of Philosophy
 in

 Computer Science

In the Faculty of Science

Submitted by
ANAND KUMAR

(Registration No. 3893)

Under the Esteemed Guidance of
Dr. N. N. JANI

Ex. Prof. & Head, Department of Computer Science
SAURASHTRA UNIVERSITY

Director SKPIMCS (MCA)
Dean (Faculty of Computer Science & IT)

KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR

April - 2010

Dedicated to my
beloved parents

and
my Vikramaditya

CERTIFICATE

This is to certify that the thesis entitled “Network Design using Genetic
Algorithm” is a bonafide work done by Mr. Anand Kumar (Reg. No. 3893),
in partial fulfillment of the requirement for the award of the degree
“Doctor of Philosophy in Computer Science” at Department of Computer
Science, Faculty of Science Saurashtra University under my guidance and
supervision. This work is not submitted to any university for the award of
any degree.

Guide

Dr. N. N. JANI
Ex. Prof. & Head, Computer Science Department
Saurashtra University
Director SKPIMCS – MCA
Dean (Computer Science)
Kadi Sarva Vishwavidyalaya, Gandhinagar

DECLARATION

This is to declare that the thesis entitled “Network Design using

Genetic Algorithm” is a bonafide work done by me, in partial fulfillment

of the requirement for the award of the degree “Doctor of Philosophy in

Computer Science” at Department of Computer Science, Faculty of

Science, Saurashtra University. This work is not submitted to any

university for the award of any degree.

Anand Kumar
(Reg. No. 3893)
Ph.D. Scholar

Abstract

Network Design Problems are becoming increasingly critical & complex as

telecommunication networks (and others) are expanded & upgraded in response to

consumer’s information needs. Network design is used extensively in practice in an

ever expanding spectrum of applications. Network optimization models such as

shortest path, assignment, maxflow, transportation, transshipment, spanning tree,

matching, traveling salesman, generalized assignment, vehicle routing, and multi-

commodity flow constitute the most common class of practical network optimization

problems. In this research work, a generalized network design problems (NDPs) is

focused in the form of a large scale backbone network which belong to the family of

NP-hard combinatorial optimization problems. The purpose of the backbone is to

connect regional distribution networks and, in some instances, to provide connectivity

to other peer networks. The primary objective of this research work is to develop a

robust method based on genetic algorithm to solve NP-hard network design problem

with minimum cost subject to a reliability constraint which meets the customer

requirement. One fundamental problem in this area is the minimum spanning tree

(MST) problem where all nodes in a graph have to be linked together in a circle-free

structure in the cheapest possible way. The MST problem itself is easy to solve by

polynomial-time algorithms like those of Prim or Kruskal, but adding additional

constraints often make the corresponding optimization problem a hard one. One of

these related problems is the degree-constrained MST problem, in which degree of

each node is restricted with in a given range which is very important for the reliability

and priority of the connecting node. Other possible constraints are path failure, node

failure and connectivity which are requirement of the current network system. By

adding this constraint, this network design problem becomes one of the hardest

problems in NP-hard category. Due to the complexity of the problem these

approaches are limited to relatively small instances with clearly less than 100 nodes

when considering complete graphs. Therefore, in this research work methods have

been developed to solve instances with up to 1000 and are applicable for more than

1000 nodes. However, there are also other problems that can be expressed as network

design problems, such as traveling salesman problem (TSP), one has to find a round

trip (Hamiltonian cycle) through a set of cities (nodes) of minimal length and Shortest

Path problem. In this thesis these two problems are also considered and solved with

genetic algorithm approach. Since network design is NP-hard problem and traditional

heuristics have had only limited success in solving small to mid size problems. As a

result, standard, traditional, optimization techniques are often not able to solve these

problems of increased complexity with justifiable effort in an acceptable time period.

The conventional search and optimization methods working on the commercial

processors require hundreds of years to solve such a problem with limited number of

components. However, evolutionary computation including Genetic Algorithms (GA)

has shown promising performances to solve such problems Therefore, to overcome

these problems, and to develop systems that solve these complex problems,

researchers proposed using Genetic Algorithm. In this thesis it has been shown that,

by this nature-inspired search method it is possible to overcome some limitations of

traditional optimization methods, and to increase the number of solvable problem. In

this study, Genetic Algorithm is considered as a one of the possible solutions for such

kind of NP-hard problem where possible solutions are improved generation by

generation and then there is more probability to find the exact solution. The main

focus of this research is the consideration of up to1000 nodes and the proposed

method can be applied for any possible size of the network. In this thesis various

robust fitness functions have been developed. Twenty genetic operators are developed

including new approaches required by the problem. Five hundred forty six different

cases are considered for the fifteen different size of network. All the experimental

results are described with the help of table and graph. All the developed functions are

described with the help of figures and examples. Further new methods based on

Genetic Algorithm have been developed for Shortest Path Problem and Traveling

Salesman Problem.

All these functions and methods developed in this thesis are published in International

Journals and in the proceedings of International Conference.

 This research work shows that, genetic algorithm is an alternative solution for this

NP hard problem where conventional deterministic methods are not able to provide

the optimal solution.

Acknowledgement

First of all I am deeply grateful to my guide Prof. Dr N. N. Jani, who gave me the

opportunity to do my Ph. D at the Saurashtra University and for his great supervision,

support and encouragement during this work. I would also like to thank Prof. V. Leela,

for her support and for fruitful discussions during my work to complete this thesis. I

would like to express my special thanks to Mr. Vinod Kumar for his companionship

in traveling the bumpy road towards the Ph.D. degree. I express my thanks to Ms.

Aparna, for her kind support, indefatigable inspiration and continuous encouragement

throughout this work. My gratitude is extended to all members of the MCA

department for their help and kind support.

 Last but not least I would like to express the

warmest thank you to my parents, my brothers and my sister , for always backing me

up and encouraging me to struggle on.

Anand Kumar

Contents

1. Introduction 1

1.1 Overview of Thesis 5

2. Network Design 10
2.1 Graph Models 11
2.2 Basic Network Models 12

2.2.1 Spanning Tree Models 13
2.2.2 Shortest Path Model 13
2.2.3 Maximum Flow Model 15

2.3 Network Design Problems 15
2.3.1 Spanning Tree Problem 16

2.3.1.1 Minimum Spanning Tree Problem 16
2.3.1.2 DCMST 18

2.3.2 Shortest Path Problem 20
2.3.3 Traveling Salesman Problem 21
2.3.4 Considered Problems 23
2.3.5 Backbone Network Design Problem 24

3. Methodologies 29
3.1 Exact Algorithms 30

3.1.1 Linear Programming 31
3.1.1.1 Branch & Bound 33

3.1.2 Dynamic Programming 33
3.2 Heuristics 35

3.2.1 Kruskal Algorithm 35
3.2.2 Prim Algorithm 37
3.2.3 Breadth First Search Algorithm 38
3.2.4 Depth First Search Algorithm 40
3.2.5 Dijkstra Algorithm 41
3.2.6 Metaheuristics 43

3.2.6.1 Genetic Algorithm 44
3.2.6.2 Simulated Annealing 45
3.2.6.3 Local Search 46
3.2.6.4 Best First Search 49
3.2.6.5 Tabu Search 49
3.2.6.6 Ant Colony Optimization 50
3.2.6.7 GRASP 53
3.2.6.8 Artificial Bee Colony Algorithm 54
3.2.6.9 Hill Climbing 56
3.2.6.10 Greedy Algorithm 56
3.2.6.11 Memetic Algorithm 57

3.3 Previous Work To Solve Network Design Problem 58

4. Genetic Algorithm 63
4.1 General Structure of a Genetic Algorithm 63
4.2 Exploitation and Exploration 65

4.3 Population based Search 66
4.4 Major Advantages 67
4.5 Implementation of Genetic Algorithm 68

4.5.1 GA Vocabulary 68
4.5.2 Encoding Issue 69

4.5.2.1 Classification of Encoding 70
4.5.2.2 Infeasibility and Illegality 72
4.5.2.3 Properties of Encodings 73
4.5.2.4 Initialization 74

4.5.3 Fitness Evaluation 74
4.5.4 Genetic Operators 75

4.5.4.1 Crossover 76
4.5.4.2 Mutation 78
4.5.4.3 Selection 79

4.5.5 Handling Constraint 82
4.5.5.1 Rejecting Strategy 82
4.5.5.2 Repairing Strategy 83
4.5.5.3 Modifying Genetic Operators Strategy 83
4.5.5.4 Penalizing Strategy 84

4.6 Hybrid Genetic Algorithms 84

5. Genetic Algorithm approach to Network Design 86
5.1 Network Representation 87
5.2 Genetic Algorithm Approach 92

5.2.1 Population Initialization 92
5.2.2 Fitness Evaluation 100
5.2.3 Selection 114
5.2.4 Genetic Operators 125

5.2.4.1 Crossover 125
5.2.4.1.1 Variable Point Crossover 126
5.2.4.1.2 Fixed Two Point Crossover 127
5.2.4.1.3 Variable Two Point Crossover 129
5.2.4.1.4 Uniform Crossover 131
5.2.4.1.5 Hybrid Crossover I 133
5.2.4.1.6 Hybrid Crossover II 135

5.2.4.2 Mutation 138
5.2.4.2.1 Mutation-I 138
5.2.4.2.2 Mutation-II 139
5.2.4.2.3 Random Mutation 141
5.2.4.2.4 Swap Mutation 142
5.2.4.2.5 Mutation Inversion 143
5.2.4.2.6 Mutation Insertion 144

6. Experimental Design and Results 147
6.1 Experimental Design of the Backbone Network 149

6.1.1 Backbone Network Representation 149
6.1.2 Initialization of Parent Population 151
6.1.3 Evaluation based on Fitness Function 151

6.1.3.1 Cycle 151
6.1.3.2 Path Constraint 152
6.1.3.3 Self Loop 153
6.1.3.4 Isolation 154
6.1.3.5 Degree Constraint 154
6.1.3.6 Storage of Completely fit chromosome 155

6.1.4 Selection of the Chromosome 156

6.1.5 Genetic Operator Applications 157
6.1.5.1 Crossover 157
6.1.5.2 Mutation 158

6.1.6 Termination 160
6.2 Experimental Result 164

6.2.1 Experiment based on Crossover Operator for small Network 166
6.2.2 Experiment based on Selection Operator 173
6.2.3 Experiment based on Crossover for Large Network 175
6.2.4 Experiment based on Mutation Operator 177

6.3 Code developed in MATLAB 179

7. GA approach to solve Shortest Path and TSP Problem 217
7.1 Shortest Route Problem Presentation 218

7.1.1 Initialization of Parent Population 220
7.1.2 Evaluation 221
7.1.3 Fitness Function 221

7.1.3.1 Self Loop 221
7.1.3.2 Degree Constraint 222
7.1.3.3 Isolated Edge 223
7.1.3.4 Hamiltonian Cycle 224

7.1.4 Result of Fitness Function 225

8. Conclusion and Future Scope 229

Bibliography 232

Publications 237

\y \ {tw t

eÉuâáà axàãÉÜ~?
\ vÉâÄw ã|Ç à{|á ãÉÜÄw

‹axÑÉÄ|tÇ UÉÇtÑtÜà

CHAPTER 1

Introduction

Network Design is very common problem which contributes key role in many real life

applications which arose directly from everyday practice in engineering and

management: determining shortest or most reliable paths in traffic or communication

networks, maximal or compatible flows, or shortest tours; planning connections in

traffic networks; coordinating projects; and solving supply and demand problems,

electricity distribution, designing of digital circuit, designing of gas pipeline, layout

planning roads and railway track, transportation and many more.

Because of vast real life application, network design has become the crucial problem

in such real life applications. With the advancement of information technology our

society is rapidly converting as an information society. The conversion of a society to

information society means that extension of network. Each and every sector of our

daily need is in the process of computerized network. Day by day it has to be

extended. For developing country like India, where development is growing

multidimensional, network is the primary issue. Each and every field of our daily

need which is manual, has to be computerized and to materialize it, network is the key

factor. If we are talking about the overload of population like the country India and

China where the geographical extension is at the peak, again we need network to

connect or extend these locations first physically for transportation, communication

and management and then electronically in the form of computerized network,

Anand Kumar (Registration No: 3893)

2

network is required. By this discussion, the role of network is concluded in all our

daily life applications and in the overall growth of the society. This is the main

motivation behind this study Network Design. One fundamental problem in this area

is the minimum spanning tree (MST) problem where all nodes in a graph have to be

linked together in a circle-free structure in the cheapest possible way. However, there

are also other problems that can be expressed as network design problems, such as

various transportation and routing problems. For example shortest path problem, the

famous traveling sales- man problem (TSP), one has to find a round trip (Hamiltonian

cycle) through a set of cities (nodes) of minimal length[40,41]. A practical

correspondent appears in the automated manufacturing of printed circuits when one

wants to minimize the time required for drilling all holes by optimizing the path for

moving the drill. Already this short list of problems should give a rough idea of the

economical impact and therefore interest of solving such network design problems

properly in general. Furthermore, network design is also important for complexity

theory, an area in the common intersection of mathematics and theoretical computer

science which deals with the analysis of algorithms. The term network design is

involved in many contexts and there are several different aspects which deserve

attention. In this study, they are regarded from a more theoretical point of view as

graph theory problems, i.e. networks are modeled as graphs and optimization

algorithms are applied on them. There are mainly four broad categories of network

design- network topology design, network routing and flow control, network

performance and network reliability. Since these all are separate category but all these

categories are highly related.

In this research study, network design belongs to the category of network topology

design. Further designing the topology of a large scale network can be divided into

Network Design Using Genetic Algorithm

3

two problems, the backbone network design and the local network design. This

research work is mainly focused on large scale backbone network design which is in

the form of degree constraint minimum spanning tree with other constraints required

by the network. The main objective behind the network design is to find the best way

to connect the locations (nodes and arcs) to minimize the cost while meeting

performance criterion such as transmission delay, throughput, fault tolerance and

reliability. Exploring all the constraints for such a design problem, it becomes an NP-

hard problem [1]. There are many methods such as Prim [3] or Kruskal [4] which

solve minimum spanning tree problem in polynomial time but adding additional

constraints often make the corresponding optimization problem a hard one and one of

the hardest in NP category problems. There are other methods also like Breadth First

Search , Depth First Search and Branch and Bound but these entire have also their

limitations. These methods can only solve small networks because the number of arcs

increases, the number of possible layouts grows faster than exponentially. There are

other limitations also with these methods such as degree constraint for each node,

fault tolerance and reliability in the case of failure of node and other constraints as per

demand of the network.

Because of these complexities, these existing methods are not computationally

feasible for deserving large scale network. As a result, standard, traditional,

optimization techniques are often not able to solve these problems of increased

complexity with justifiable effort in an acceptable time period. Therefore, to

overcome these problems, and to develop systems that solve these complex problems,

researchers proposed using genetic and evolutionary algorithms. Using these nature-

inspired search methods it is possible to overcome some limitations of traditional

optimization methods, and to increase the number of solvable problems. Given such a

Anand Kumar (Registration No: 3893)

4

hard network optimization problem [2], it is often possible to find an efficient

algorithm whose solution is approximately optimal. Among such techniques, the

genetic algorithm (GA) is one of the most powerful and broadly applicable stochastic

search and optimization techniques based on principles from evolution theory.

Genetic Algorithm (GA) is a probabilistic search heuristic that replicates the defining

features of biological evolution: reproduction with variation, selection based on

fitness, and repetition. GA maintains a population of data structures, called

chromosomes that encode candidate solutions to its target problem. Attached to each

chromosome is its fitness, a numerical value that indicates the quality of the solution

the chromosome represents. The algorithm selects chromosomes to survive or

reproduce so that those with better fitness are more likely to be selected. Crossover,

also called recombination, combines genetic information from two parent

chromosomes. Mutation randomly modifies one parent chromosome. When the EA

has generated enough offspring, they replace their parents and the process continues.

As these generations succeed each other, chromosomes that represent better solutions

evolve. Therefore a heuristic search method based on genetic algorithm is developed

to design such network, which has minimum cost and satisfy the required constraint

demanded by the system.

This thesis is located in the area of combinatorial optimization, focusing on NP hard

network design problems that occur in real world where multiple local area networks

are interconnected by a backbone network. Depending on the demands of such a

network, the underlying problem can either be formulated as the Generalized

Minimum Spanning Tree problem or the even harder Degree Constrained Minimum

Spanning Tree Problem. Given a connected, undirected graph G with n nodes, a

spanning tree T is a subgraph of a G that connects all of G’s nodes and contains no

Network Design Using Genetic Algorithm

5

cycles. When every edge (i, j) is associated with a numerical costs cij , a minimum

spanning tree (MST) is a spanning tree of the smallest possible total edge cost

(,)

ij

i j T

C c
∈

= ∑ (1)

Figure 1. A Minimum Spanning Tree of Five Networks

1.1 Overview of Thesis

The further organization of this thesis is as follows: There are seven remaining

chapters:

Chapter 2. Network Design

This chapter explains that what is network design, what are the different types of

network with its mathematical formulation and what are the application where

network design is the backbone of the system. It also describes that what are the

different types of problem related with network design with its limitation.

Anand Kumar (Registration No: 3893)

6

Chapter 3. Methodologies

In this chapter various techniques to solve network design optimization problems are

presented with their limitation and literature survey with relevance of the research

work has been highlighted. This chapter is the motivation of this research work.

Chapter 4. Genetic Algorithm

This chapter explains the basic of genetic algorithm.

Chapter 5. Genetic Algorithm approach to Network Design

This chapter is the backbone of this research where redefined Genetic Algorithm

approach is explained to design network. This chapter contains all the methods and

algorithms developed for this study. This chapter starts with the explanation of

genetic algorithm and it describes that how genetic algorithm can helps to solve this

network design problem. It explains the improved genetic algorithm approach with

the developed fitness function and various types of genetic operators developed in this

thesis. All the functions developed in this chapter are published. Following papers are

published for this chapter...

1. Anand Kumar, Dr. N.N. Jani , “An algorithm to detect cycle in an undirected
graph” International Journal of Computational Intelligence Research ISSN
0973-1873, (Vol 6, No 2 (2010), pp 305-310)

2. Anand Kumar, Dr. N.N. Jani, “A Novel Genetic Algorithm Approach for

Network Design with Robust Fitness Function” Proceeding of International
Conference on Mathematics and Computer Science, 5-6 Feb 2010, Loyola
College, Chennai, ISBN: 978-81-908234-2-5.

3. Anand Kumar and N.N. Jani, “ Using A Genetic Algorithm approach to

Design Backbone Core Communication Network” Proceeding of
International Conference on Emerging Trends in Computing , 8-10 Jan 2009 ,
Kamaraj College of Engineering and technology, Virudhunagar, Tamilnadu.

Network Design Using Genetic Algorithm

7

Chapter 6. Experimental Design and Result

This chapter explains that how this experiment is carried out. The tools and data sets

with the result have been presented here. This chapter is the proof of this research

work. Various tables, graphs, diagrams and developed programs have been included

in this chapter. Following papers are published for the experimental result.

4. Anand Kumar, Dr. N.N. Jani, “Network Design Problem Using Genetic
Algorithm- An Empirical Study On Selection Operator” International Journal
of Computer Science and Applications (IJCSA) ISSN: 0974-1003
(April/May 2010 Vol 3, No 2, pp 48-52)

5. Anand Kumar and Dr. N.N. Jani, “Genetic Algorithm for Network Design

Problem- An Empirical Study of Crossover operator with Generation and
Population Variation” International Journal of Information Technology and
Knowledge Management, ISSN: 0973-4414, Vol III, Issue-I, June 2010.

Chapter 7. Genetic Algorithm approach to Solve Shortest Path and Traveling

Salesman Problem

This chapter explains a new approach based on genetic algorithm to solve these NP-

hard network design problems. To solve these problems various functions and

operators are developed. These works are published also.

6. Anand Kumar, “A Nature based Evolutionary approach to solve Network
Communication NP-Hard Traveling Salesman problem” International Journal
of Computational Intelligence Research and Applications (IJCIRA) ISSN:
0973-6794, Volume 3 Number 1, January-June 2009, Page. No. 27-32.

7. Anand Kumar, Dr. N.N. Jani, “An Evolutionary Approach for Shortest Path

Problem - Courier Delivery System” International Journal of Computational
Intelligence Research ISSN 0973-1873 Volume 6, Number 2 (2010), pp. 261–
273.

8. Anand Kumar, Dr. N.N. Jani, “Genetic Algorithm Approach to Solve

Hamiltonian Circuit Problem With Robust Fitness And Repair Function”
Proceeding of IEEE International Advance Computing Conference
2009.Thapar University, Patiyala. ISBN NO: 978-981-08-2465-5

Anand Kumar (Registration No: 3893)

8

Chapter 8. Conclusions and Future Scope

This chapter is devoted for the discussion with conclusion and the extension of this
research work.

Network Design Using Genetic Algorithm

9

Anand Kumar (Registration No: 3893)

10

CHAPTER 2

Network Design

Network design is one of the most important and most frequently encountered classes

of optimization problems. In this chapter, it is explained that “what network design

is?” The meaning of network design is a backbone network which is a connected

network with all locations in the form of a tree. In this research work, a generalized

network design problems (NDPs) is focused in the form of a large scale backbone

network which belong to the family of NP-hard [6] combinatorial optimization

problems[42,43]. The purpose of the backbone is to connect regional distribution

networks and, in some instances, to provide connectivity to other peer networks. To

connect the different locations, a minimum spanning tree (MST) [5] is required which

is responsible for connecting all the locations with minimum distance without the

formation of a circle. The MST problem itself is easy to solve by polynomial-time

algorithms like those of Prim or Kruskal, but adding additional constraints often make

the corresponding optimization problem a hard one. Additional constraint is important

for the effective network design and one of the most important constraints is degree of

each node. In the degree-constraint MST problem a bound on the degree, i.e., the

number of incident edges, is imposed on every node in the tree to model that in a

telecommunication network the used hardware (e.g., a router or switch) can only

handle a limited amount of links However, there are also other problems that can be

expressed as network design problems, such as various transportation and routing

problems. For example, in the famous traveling salesman problem (TSP), one has to

Network Design Using Genetic Algorithm

11

find a round trip (Hamiltonian cycle) through a set of cities (nodes) of minimal length,

similarly Shortest path problems arise in a wide variety of practical problem such as

transportation planning , salesperson routing, message routing in communication

systems.

2.1 Graph Models

In the context of this chapter, the word network means a physical problem that can be

modeled as a mathematical graph composed of nodes and links. The system is

represented by a mathematical graph composed of nodes representing the computers

and edges representing the communications links. The terms used to describe graphs

are not unique; oftentimes, notations used in the mathematical theory of graphs and

those common in the application fields are interchangeable. Thus a mathematics

textbook may talk of vertices and arcs; an electrical engineering book, of nodes and

branches; and a communications book, of sites and interconnections or links. In

general, these terms are synonymous and used interchangeably. In some situations,

communication can go only in one direction between a node pair; the link is

represented by a directed edge (an arrowhead is added to the edge), and one or more

directed edges in a graph result in a directed graph (digraph). If communication can

occur in both directions between two nodes, the edge is non directed, and a graph

without any directed nodes is an undirected graph. In this thesis undirected graph is

considered. Following Figure-2 is the graph representation of network in Figure-1. It

represents a complete graph where direct path exist to go from one node to any other

node.

Anand Kumar (Registration No: 3893)

12

Figure 2:1 A Complete Graph of Five Nodes

2.2 Basic Network Models

Network design is used extensively in practice in an ever expanding spectrum of

applications. Network optimization models such as shortest path, assignment, max-

flow, transportation, transshipment, spanning tree, matching, traveling salesman,

generalized assignment, vehicle routing, and multi-commodity flow constitute the

most common class of practical network optimization problems. Following are the

core models of network design.

Figure 2: 2 Core Models of Network Design

Network Design Models

Spanning Tree Model Shortest Path Model Maximum Flow Model

Network Design Using Genetic Algorithm

13

These network models are used most extensively in applications and differentiated by

their structural characteristics. This research work is based on spanning tree model.

The descriptions of these models are as follows.

2.2.1 Spanning Tree Model

Spanning tree models play a central role within the field of network design. It

generally arises in one of two ways, directly or indirectly. In some direct applications,

It connects a set of points using the least cost or least length collection of arcs.

Frequently, the points represent physical entities such as components of a computer

chip, or users of a system who need to be connected to each other or to a central

service such as a central processor in a computer system [2]. In indirect applications,

either (1) wish to connect some set of points using a measure of performance that on

the surface bears little resemblance to the minimum spanning tree objective (sum of

arc costs), or (2) the problem itself bears little resemblance to an “optimal tree”

problem – in these instances, it is often needed to be creative in modeling the problem

so that it becomes a minimum spanning tree problem.

Applications

1. Backbone Network Design

2. Designing of digital circuit,

3. Designing of gas pipeline,

4. Layout planning roads and railway track and many more

2.2.2 Shortest Path Model

The shortest path model is the heart of network design optimization. It has several

important reasons: (1) it arise frequently in practice since in a wide variety of

Anand Kumar (Registration No: 3893)

14

applications, materials are sent (e.g., a computer data packet, a telephone call, a

vehicle) between two specified points in a network as quickly, as cheaply, or as

reliably as possible; (2) as the simplest network models, they capture many of the

most salient core ingredients of network design problems and so they provide both a

benchmark and a point of departure for studying more complex network models; and

(3) they arise frequently as sub problems when solving many combinatorial and

network optimization problems [2]. Even though shortest path problems are relatively

easy to solve, the design and analysis of most efficient algorithms for solving them

requires considerable ingenuity. Consequently, the study of shortest path problems is

a natural starting point for introducing many key ideas from network design problems,

including the use of clever data structures and ideas such as data scaling to improve

the worst case algorithmic performance.

Applications

1. Transportation planning: How to determine the route road that has prohibitive

weight restriction so that the driver can reach the destination within the

shortest possible time.

2. Salesperson routing: Suppose that a sales person want to go to Delhi from

Patna and stop over in several cities to get some commission. How can he/she

determine the route? (Traveling Salesman Problem)

3. Investment planning: How to determine the invest strategy to get an optimal

investment plan.

4. Message routing in communication systems: The routing algorithm computes

the shortest (least cost) path between the router and all the networks of the

internet work It is one of the most important issues that has a significant

impact on the network’s performance.

Network Design Using Genetic Algorithm

15

2.2.3 Maximum Flow Model

The maximum flow model and the shortest path model are complementary. They are

similar because they are both pervasive in practice and because they both arise as sub

problems in algorithms for the minimum cost flow problem. The two problems differ

because they capture different aspects. Shortest path problems model arc costs but not

arc capacities; maximum flow problems model capacities but not costs. Taken

together, the shortest path problem and the maximum flow problem combine all the

basic ingredients of network design optimization. As such, they have become the

cores of network optimization [2].

Applications

The maximum flow problems arise in a wide variety of situations and in several forms.

For example, sometimes the maximum flow problem occurs as a sub problem in the

solution of more difficult network problems, such as the minimum cost flow problems

or the generalized flow problem. The problem also arises directly in problems as far

reaching as machine scheduling, the assignment of computer modules to computer

processors, the rounding of census data to retain the confidentiality of individual

households, and tanker scheduling.

2.3 Network Design Problems

The basic problem in network design is connectivity of the node which is very

important from the reliability point of view. Network Design problems can be

classified on the basis of basic network models. The network design problems can be

broadly classified as Spanning Tree problem and Shortest Path Problem.

Anand Kumar (Registration No: 3893)

16

2.3.1 Spanning Tree Problem

Given a connected, undirected graph, a spanning tree of that graph is a subgraph

which is a tree and connects all the nodes together. A single graph can have many

different spanning trees. It can also be assigned a weight to each edge, which is a

number representing how unfavorable it is, and use this to assign a weight to a

spanning tree by computing the sum of the weights of the edges in that spanning tree.

A minimum spanning tree (MST) is a spanning tree with weight less than or equal to

the weight of every other spanning tree

2.3.1.1 Minimum Spanning Tree problem.

A minimum spanning tree (MST) or minimum weight spanning tree is then a

spanning tree with weight less than or equal to the weight of every other spanning tree.

Figure 2: 3 Minimum Spanning Trees

Mathematical Formulation of Minimum Spanning Tree

The MST model attempts to find a minimum cost tree that connects all the nodes of

the network. The links or edges have associated costs that could be based on their

distance, capacity, and quality of line.

Network Design Using Genetic Algorithm

17

For an undirected connected graph (,)G V E= a subgraph (, ')T V E= of G is a
spanning tree of G if T is a tree.

 V : set of vertices
| |V : number of vertex
 E : set of possible edges between pair of vertices
 (,)u v E∈ : Each edge between pair of vertices ,u v belongs to set of
 possible edges

(,)w u v : Weight of each edge.

(,)
() (,)

u v T
w T w u v

∈

= ∑ (2.1)

A spanning tree always consists of | | 1V − edges and a complete graph G has

| |V | | 2v − spanning trees [8]. For example, for the four-node network of Figure.2.4

there are 4(4 - 2) = 16 spanning trees with (4 – 1) = 3 arcs

Figure. 2.4 A four-node graph representing a computer or communication network.

There will be possible 4(4 - 2) = 16 spanning trees with (4 – 1) = 3 arcs. In Figure 2.5 it

is shown.

Anand Kumar (Registration No: 3893)

18

Figure 2.5 The 16 spanning trees for the network of Figure 2.4

2.3.1.2 Degree Constrained Minimum Spanning Tree

Degree-constrained minimum spanning tree (DCMST) is a special case of MST. The

MST algorithm may occasionally generate a minimal spanning tree where all the links

connect to one or two nodes. This solution, although optimal, may be highly

vulnerable to failure due to over reliance on a few nodes. Furthermore, the technology

to connect many links to a node may not be available or may be too expensive. Hence,

it may be necessary to limit the number of links connecting to a node. Alternatively,

Network Design Using Genetic Algorithm

19

from reliability perspective it is desirable to have more than one link connect to a

node so that alternative routes can be selected in the case of a node or link failure [9],

[10].. DCMSTP was specifically developed as a special case of MST with additional

constraints to improve the reliability of the network and rerouting of traffic in the case

of node failures. This is the extended version of minimum spanning tree problem

where an extra constraint is added with each vertex. When this extra constraint is

added this problem becomes NP-hard [7]. This constraint is usually motivated by the

need to impose a limit on the number of ports in each node. In a shortest spanning tree

resulting from the preceding construction, a vertex iv can end up with any degree;

that is

) 11 (i nd v ≤ −≤

Where n is the total no of vertex and d is the degree denoted by ()id v of a

node (1,........)i i n= . The degree is the number of incident edges, and the degree of a

graph is the maximum degree of its nodes. The degree constrained MST problem is to

determine a spanning tree of the minimum total edge cost and degree no more than a

given value k .

Then each node of a network must not be connected with k other nodes

() 3id v ≤

So far, no efficient method of finding an arbitrarily degree constrained shortest

spanning tree has been found. In this research work an attempt has been made to find

the solution with more constraint which is required by the modern network.

Anand Kumar (Registration No: 3893)

20

2.3.2 Shortest Path Problem

Given a pair of nodes, the shortest path problem is to find a forward path that

connects these nodes and has minimum cost. An analogy here is made between arcs

and their costs, and roads in a transportation network and their lengths, respectively.

Within this transportation context, the problem becomes one of finding the shortest

route between two geographical points. Based on this analogy, the problem is referred

to as the shortest path problem, and the arc costs and path costs are commonly

referred to as the arc lengths and path lengths, respectively.

The shortest path problem is a classical and important combinatorial problem that

arises in many contexts. This path is said to be shortest if it has minimum length over

all forward paths with the same origin and destination nodes. The length of a shortest

path is also called the shortest distance. The shortest path problem deals with finding

shortest distances between selected pairs of nodes. The range of applications of the

shortest path problem is very broad. The shortest path problem can be posed in a

number of ways; for example, finding a shortest path from a single origin to a single

destination, or finding a shortest path from each of several origins to each of several

destinations.

Mathematical Formulation of Shortest Path Problem

Let (,)G N A= (,)G N A= be a directed network, which consists of a finite set of

nodes N = {1, 2,........ }n and a set of directed arcs {(,), (,),.....(,)}A i j k l s t=

connecting m pairs of nodes in N . Arc (,)i j is said to be incident with nodes i and

j , and is directed from node i to node j . Each arc (,)i j has been assigned to a

nonnegative value ijc , the cost of (,)i j . The Shortest Path Problem is to find the

Network Design Using Genetic Algorithm

21

minimum cost z from a specified source node 1 to another specified sink node n,

which can be formulated as follows

1 1

min
n n

ij ij

i j

z c x
= =

= ∑∑ (2.2)

1 1
.

n n

ij ki
j k

s t x x =

= =

−∑ ∑ { 1, (1)
0, (2,3...., 1)
1, ()

if i
if i n
if i n

=
= −

− =
 (2.3)

0 1 ,ijx or i j= ∀ (2.4)

Where ijx : the link on an arc (,)i j A∈

2.3.3 Traveling Salesman Problem(TSP)

Historically, the TSP problem deals with finding the shortest tour in n-city situations

where each city is visited exactly once. It is a prominent illustration of a class of

problems in computational complexity theory which are classified as NP-hard. The

problem is given a number of cities and the costs of traveling from any city to any

other city, what is the least-cost round-trip route that visits each city exactly once

and then returns to the home city. In the Traveling Salesman Problem, the goal is to

find the shortest distance between N different cities. The path that the salesman takes

is called a tour. Testing every possibility for an N city tour would be N! math

additions. A 30 city tour would have to measure the total distance of be 2.65 X 1032

different tours which will take unexpected time. Adding one more city would cause

the time to increase by a factor of 31. Obviously, this is an impossible solution.

Traveling Salesman Problem can be represented is in the form of Hamiltonian Circuit

which has the smallest sum of the distances.

Anand Kumar (Registration No: 3893)

22

Mathematical Formulation of Traveling Salesman Problem

The problem, in essence, is an assignment model that excludes subtours. Specifically,

in an n city situation, it is defined as

ijx = 1, if city j is reached from city i otherwise 0.

Given that ijd is the distance from city i to city j , the TSP model can be defined as

,

1 1

min
n n

ij ij

i j

z d x
= =

= ∑ ∑ (2.5)

ijd for all i j= ∞ =

Subject to

1,
1

1,2.....
n

ij
j

x i n=

=

=∑ (2.6)

1

1, 1,2......,
n

ij

i

x j n=

=

=∑ (2.7)

(0, 1)ijx = (2.8)

 In following figure 2.6, there are nine cities, which have to be visited by a traveling

salesman such that each city is to be visited exactly once. In figure 2.7, a Hamiltonian

tour is shown which a traveling salesman tour is.

Network Design Using Genetic Algorithm

23

Figure 2.6 A number of cities visited by Traveling Salesman

Figure 2.7 Path visited by Traveling Salesman

2.3.4 Considered Problems

In this research study, network design problem is mainly considered as backbone

network design belongs to the category of network topology design which is in the

form of degree constraint minimum spanning tree with other constraints required by

the network. The problem is an NP-hard problem and there is no optimal solution still

developed. Further other network design problem Traveling salesman and Shortest

Path Problem is also considered with the same approach genetic algorithm. Since the

Anand Kumar (Registration No: 3893)

24

first two problems have still not solved, a genetic algorithm approach is proposed in

this study. For Shortest Path Problem, extra constraints have been applied which is the

demand of current industry and then Genetic Algorithm approach is applied to solve

the problem. Shortest Path Problem and Traveling Salesman Problem are discussed in

section 2.6.2 and 2.6.3. There is no change in these two problems while backbone

network design problem is redefined with other constraints.

2.3.5 Backbone Network Design Problem

A simple model for a backbone network is an undirected graph G = (V, E) with node

set V and edge set E. In this model, the nodes represent the connection points where

LANs are hooked up to the backbone network via gateways. In addition to being

connection points, the nodes are the processing units that carry out traffic

management on the network by forwarding data packets to the nodes along their

destinations (i.e., known as routers). The edges represent the high capacity

multiplexed lines on which data packets are transmitted bi-directionally between the

node pairs. In designing of backbone network connectivity is an important factor. For

a reliable network, connectivity is an important constraint. If a node has degree one,

there is more chance of isolation of this node in case of path failure. Further according

to the importance of the node, degree can be extended which is in the form of more

connectivity means more reliability. So degree constraint is an important constraint

for backbone network design. In this backbone network design problem, degree of the

node is kept between lower bound and upper bound. Other important constraint is

existence of path between pair of nodes. If direct path exist from each node to each

other node then it is the case of complete graph, but it is always not possible that path

will be available from each node to each other node. So other important constraint is

Network Design Using Genetic Algorithm

25

path constraint. Since real world network systems are becoming larger and more

complex, the need of more sophisticated models arises. For example, with increasing

number of local networks, it makes sense to connect them to a new global network.

This involves choosing one computer from each local network to be used as an

entrance gate for the global backbone. Obviously, the old model of MSTP is not

sufficient anymore. This motivates the introduction of Backbone Network Design

Problems. Since Degree Constrained Minimum Spanning Tree Problem itself is a NP-

hard problem, including another constraint like path constraint makes it one of the

hardest problem in category of NP-hard.

Mathematical Formulation of Backbone Network Design Problem

The mathematical formulation of the DCMST problem is presented below. The
following notation is used in the research study.

Indices

,i j : Index of nodes , 1,2,.....,i j n=

V : Set of nodes in the spanning tree.

Parameters

ijC : Cost to link nodes i to j

iUd : Upper degree constraint on node i

iLd : Lower degree constraint on node i

| |N : Number of nodes in a subset N of nodes in V

| |V : Number of the nodes in V

Anand Kumar (Registration No: 3893)

26

Decision Variables

ijX : Equals one if the link between nodes i to j exists;

 : zero, otherwise.

Minimize

,

ij ij
i j V
i j

C X
<

<

∑ (2.9)

Subject to

 ij i
j V
i j

X Ud i V

∈
≠

≤ ∀ ∈∑ (2.10)

ij i
j V
i j

X Ld i V

∈
≠

≥ ∀ ∈∑ (2.11)

,
| | 1ij

i j N
i j

X N V
∈

<

≤ − ∀Ν ⊂ ∑ (2.12)

,
| | 1ij

i j V
i j

X V
∈

<

= − ∑ (2.13)

0 1 , .ijX or i j V= ∈ (2.14)

The objective function (2.9) seeks to minimize the total connecting cost between

nodes. The total cost could be distance cost, material cost, or customers’ requirement

cost. Constraint (2.10) and (2.11) specify the lower and upper bound constraints on

the number of edges connecting to a node. Constraint (2.12) is an anti cycle constraint

and constraint (2.13) indicates that the number of edges in a spanning tree is equal to

the number of nodes minus one. Constraint (2.14) expresses the binary requirements

Network Design Using Genetic Algorithm

27

of the decision variables. Constraint (2.12) increases exponentially with network node

size, thereby making it impractical to solve large size problems.

Anand Kumar (Registration No: 3893)

28

Network Design Using Genetic Algorithm

29

CHAPTER 3

Methodologies

There are various techniques to solve optimization problems like these presented

above. Roughly they can be classified into two main categories: Exact and, Heuristic.

Further heuristic is classified as Metaheuristic Algorithms. Exact algorithms are

guaranteed to always identify a provable optimal solution (if some exists), but often

the runtime behavior does not scale satisfyingly with instance size. As a consequence,

exact approaches often are only applied to small or moderately-sized instances while

larger instances are solved by heuristics. Heuristics sacrifice the guarantee to reach

the optimum for the sake of finding good solutions of acceptable quality within

reasonable time. Somewhere in-between is the approximation algorithms: Mainly

classified as heuristics they are able to give at least some provable bounds on the

quality of the computed solution in relation to the optimum.

Examples for successful exact algorithms are Dynamic Programming (DP) [11],

Branch&Bound, and especially the large family of (integer) linear programming (LP)

based approaches, including in particular Linear Programming based Branch&Bound,

Branch&Cut, Branch&Price, and Branch&Cut&Price [12, 13]. Concerning heuristics

there exist constructive methods like Greedy Heuristics and techniques such as Local

Search. Usually, these approaches are highly problem specific. More general solution

strategies are the so-called metaheuristic [14, 15], which control and manage

subordinate, often problem specific heuristics, using various strategies to escape local

optima simple heuristics are frequently trapped in. Usually, metaheuristics are more

Anand Kumar (Registration No: 3893)

30

reliable and robust in finding good solutions, making them an interesting choice to

solve difficult optimization problems. Prominent representatives for Metaheuristics

are Iterated Local Search [16] or Tabu Search (TS) [17]. Proven to sometimes be

very effective are also algorithms inspired by nature and biology population-based

approaches which are especially well suited for parallel processing like Evolutionary

Algorithms (EA) [18, 19]. In this study, Genetic Algorithm approach is applied to

solve the problem.

In this chapter first of all a brief description of Exact algorithms have been given then

Heuristics have been described and at last Metaheuristic have been described.

Figure 3.1 Core Methodology of Network design

3.1 Exact Algorithms

Many Combinatorial Optimization Problems (Cops) can be modeled as a (integer)

linear program. While Linear Programs (LPs) can be solved efficiently in practice via

the well known simplex algorithm and, from a theoretical point, even in polynomial

time. Whenever possible, the first attempt should be to solve a given problem to

proven optimality. Following are the main exact algorithms which are used to prove

the solution optimally.

Network Design Methodology

Exact Algorithm Heuristic

Network Design Using Genetic Algorithm

31

Figure 3.2 Exact Algorithms for Network design

3.1.1 Linear Programming

Linear programming (LP) is a mathematical method for determining a way to

achieve the best outcome (such as maximum profit or lowest cost) in a given

mathematical model for some list of requirements represented as linear equations.

More formally, linear programming is a technique for the optimization of a linear

objective function, subject to linear equality and linear inequality constraints. Given a

polyhedron and a real-valued affine function defined on this polyhedron, a linear

programming method will find a point on the polyhedron where this function has the

smallest (or largest) value if such point exists, by searching through the polyhedron

vertices. Linear programming is a considerable field of optimization for several

reasons. Many practical problems in operations research can be expressed as linear

programming problems. Certain special cases of linear programming, such as network

flow problems and multicommodity flow problems are considered important enough

to have generated much research on specialized algorithms for their solution. A

number of algorithms for other types of optimization problems work by solving LP

problems as sub-problems. Historically, ideas from linear programming have inspired

many of the central concepts of optimization theory, such as duality, decomposition,

and the importance of convexity and its generalizations. Likewise, linear

Exact Algorithm

Linear programming Dynamic Programming

Anand Kumar (Registration No: 3893)

32

programming is heavily used in microeconomics and company management, such as

planning, production, transportation, technology and other issues. Although the

modern management issues are ever-changing, most companies would like to

maximize profits or minimize costs with limited resources. Therefore, many issues

can boil down to linear programming problems.

Integer Linear Programming

If the unknown variables are all required to be integers, then the problem is called an

integer programming (IP) or integer linear programming (ILP) problem. In contrast to

linear programming, which can be solved efficiently in the worst case, integer

programming problems are in many practical situations (those with bounded

variables) NP-hard. 0-1 integer programming or binary integer programming (BIP) is

the special case of integer programming where variables are required to be 0 or 1

(rather than arbitrary integers). This problem is also classified as NP-hard, and in fact

the decision version was one of Karp's 21 NP-complete problems. If only some of the

unknown variables are required to be integers, then the problem is called a mixed

integer programming (MIP) problem. These are generally also NP-hard. There are

however some important subclasses of IP and MIP problems that are efficiently

solvable, most notably problems where the constraint matrix is totally unimodular and

the right-hand sides of the constraints are integers. Advanced algorithms for solving

integer linear programs include:

• cutting-plane method

• branch and bound

• branch and cut

• branch and price

Network Design Using Genetic Algorithm

33

• if the problem has some extra structure, it may be possible to apply delayed

column generation.

3.1.1.1 Branch and bound

Branch and bound (BB) is a general algorithm for finding optimal solutions of various

optimization problems, especially in discrete and combinatorial optimization. It

consists of a systematic enumeration of all candidate solutions, where large subsets of

fruitless candidates are discarded en masse, by using upper and lower estimated

bounds of the quantity being optimized.The method was first proposed by A. H. Land

and A. G. Doig in 1960 for linear programming.Branch-and-bound may also be a base

of various heuristics. For example, one may wish to stop branching when the gap

between the upper and lower bounds becomes smaller than a certain threshold. This is

used when the solution is "good enough for practical purposes" and can greatly reduce

the computations required. This type of solution is particularly applicable when the

cost function used is noisy or is the result of statistical estimates and so is not known

precisely but rather only known to lie within a range of values with a specific

probability. An example of its application here is in biology when performing

cladistic analysis to evaluate evolutionary relationships between organisms, where the

data sets are often impractically large without heuristics. For this reason, branch-and-

bound techniques are often used in game tree search algorithms, most notably through

the use of alpha-beta pruning.

3.1.2 Dynamic Programming

In mathematics and computer science, dynamic programming is a method of solving

complex problems by breaking them down into simpler steps. It is applicable to

Anand Kumar (Registration No: 3893)

34

problems that exhibit the properties of overlapping subproblems which are only

slightly smaller and optimal substructure. When applicable, the method takes much

less time than naive methods.

Top-down dynamic programming simply means storing the results of certain

calculations, which are then re-used later because the same calculation is a sub-

problem in a larger calculation. Bottom-up dynamic programming involves

formulating a complex calculation as a recursive series of simpler calculations.

There are two key attributes that a problem must have in order for dynamic

programming to be applicable: optimal substructure and overlapping subproblems

which are only slightly smaller. When the overlapping problems are, say, half the size

of the original problem the strategy is called "divide and conquer" rather than

"dynamic programming". This is why merge sort, and quick sort, and finding all

matches of a regular expression are not classified as dynamic programming problems.

Optimal substructure means that the solution to a given optimization problem can be

obtained by the combination of optimal solutions to its subproblems. Consequently,

the first step towards devising a dynamic programming solution is to check whether

the problem exhibits such optimal substructure. Such optimal substructures are

usually described by means of recursion. For example, given a graph G=(V,E), the

shortest path p from a vertex u to a vertex v exhibits optimal substructure: take any

intermediate vertex w on this shortest path p. If p is truly the shortest path, then the

path p1 from u to w and p2 from w to v are indeed the shortest paths between the

corresponding vertices. Hence, one can easily formulate the solution for finding

shortest paths in a recursive manner, which is what the Bellman-Ford algorithm does.

Network Design Using Genetic Algorithm

35

3.2 Heuristics

When confronted with NP-hard combinatorial optimization problems, exact

approaches often are only applicable to relatively small problem instances due to run

time and sometimes also memory restrictions. Heuristics and especially

metaheuristics can be seen as alternatives when large instances have to be solved in

reasonable time, whereas these approaches are not able to guarantee to reach the

optimum. Nevertheless, for real-world optimization problems they are often the only

opportunity to get high-quality solutions with limited resources. The term

metaheuristic has been introduced by Glover [20] and denotes a problem independent

high-level solution strategy managing and controlling subordinate heuristics, which

themselves are highly problem specific in general. This section starts with an

introduction to some basic heuristics, and afterwards, Genetic Algorithm

metaheuristics is explained

.

3.2.1 Kruskal’s Algorithm

Examines edges in nondecreasing order of their lengths and include them in MST if

the added edge does not form a cycle with the edges already chosen. The algorithm is

attractive if the edges are already sorted in increasing order of their lengths. The

procedure of Kruskal’s algorithm is shown below in procedure and figure 3.3(b) is

Kruskal based MST of graph shown in figure 3.3(a).

Anand Kumar (Registration No: 3893)

36

Procedure: Kruskal's Algorithm

Input: Graph (,), , (,)ijG V E weight w i j V= ∀ ∈

Output: Spanning Tree T

Begin

;
;

T
A E

φ←
←

/ / :A Eligible edges

 while | | | | 1T V < − do

 choose an edge (,)u v ← argmin { | (,) };ijw i j A∈

 \{(,)};A A u v←

 if u and v are yet not connected in T then

 {(,)};T T u v← ∪

 Output spanning tree T
 End

Figure 3.3 (a) A Graph (,)G V E= and weight , (,)ijw i j V∀ ∈

Network Design Using Genetic Algorithm

37

Figure 3.3 (b) MST

3.2.2 Prim’s Algorithm
According to Prim, the spanning tree starts from an arbitrary root vertex and grows

until the tree spans all the vertices inV . Prim’s algorithm has the property that the

edges in the set always form a single tree. The procedure of Prim’s algorithm is

shown in procedure and figure 3.4 is Prim based MST of graph shown in figure 3.3(a).

 __

Procedure: Prim's Algorithm

 __

Input: Graph (,), , (,)ijG V E weight w i j V= ∀ ∈

Output: Spanning Tree T

Begin

 ;T φ←

 Choose a random starting node ;s V∈

 { }; / / :C C s C← ∪ set of connected nodes

 {(,), }; / / :A A s v v V A← ∪ ∀ ∈ eligible edges

Anand Kumar (Registration No: 3893)

38

 While C V≠ do

 Choose an edge (,)u v ←argmin{ | (,) };ijw i j A∈

 \{(,)};A A u v←

 if v C≠ then

{(,)};
{ };
{(,) | (,) };

T T u v
C C v
A A v w v w w C

← ∪
← ∪
← ∪ ∧ ∉

 Out put spanning tree T
 End

Figure 3.4 Prim based MST

3.2.3 Breadth First Search Algorithm(BFS)

Breadth-first traversal of a graph is a level-by-level traversal of an ordered tree. Start

the traversal from an arbitrary vertex, visit all of its adjacent vertices; and then, visit

all unvisited adjacent vertices of those visited vertices in last level. Continue this

Network Design Using Genetic Algorithm

39

process, until all vertices have been visited. The procedure of BFS algorithm is shown

in procedure and figure 3.5(b) is BFS based MST of graph shown in figure 3.5(a).

 __

Procedure: Breadth First Search Algorithm

 __

 BFS(G,s)
 for each vertex u in V
 visited[u] = false

 Report(s)

 visited[s] = true

 initialize an empty Q

 Enqueue(Q,s)

 While Q is not empty
 do u = Dequeue(Q)

 for each v in Adj[u]

 do if visited[v] = false

 then Report(v)

 visited[v] = true

 Enqueue(Q,v)

Figure 3.5(a) an Undirected Graph

Anand Kumar (Registration No: 3893)

40

Figure 3.5(b) BFS based Spanning Tree

3.2.4 Depth First Search Algorithm(DFS)

It is based on depth of the graph. It starts from the given vertex, visit one of its

adjacent vertices and leave others; then visit one of the adjacent vertices of the

previous vertex; continue the process, visit the graph as deep as possible until: A

visited vertex is reached or an end vertex is reached.

__

Procedure: Depth First Search Algorithm

 __

 DepthFirst(Graph G)

 Vertex v;

 for (all v in G)

 visited[v] = FALSE;

 for (all v in G)

 if (!visited[v])

 Traverse(v);

 Traverse(Vertex v)

 visited[v] = TRUE;

 Visit(v);

 for (all w adjacent to v)

Network Design Using Genetic Algorithm

41

 if (!visited[w])

 Traverse(w);

 __

Figure 3.6 DFS based Spanning Tree

3.2.5 Dijkstra algorithm for Shortest Path

There are many algorithms for shortest path problem, but Dijkstra is the prominent

among all of them. Here Dijkstra is explained only. Other shortest path algorithms

are:

• Bellman-Ford Algorithm

• Floyd-Warshall Algorithm

• Incremental-shortest-path algorithms

Dijkstra algorithm provides a shortest route for weighted directed graph G = (V,E) for

the case in which all the edge weights are non negative. Therefore w(u, v) >0 for each

edge (u, v)∈E. This algorithm maintains a set S of vertices whose final shortest path

weights from the source s have already been determined. That is, for all vertices

Anand Kumar (Registration No: 3893)

42

v ∈S, d[v] = δ (s, v). The algorithm repeatedly selects the vertex u ∈V-S with the

minimum shortest path , insert u into S and relax all edges leaving u. A priority queue

Q is maintained that contains all the vertices in V-S, keyed by their d values. Graph G

is assumed as adjacency list. The procedure of Dijkstra algorithm is shown in

procedure and figure 3.7(b) is shortest path based on graph shown in figure 3.7(a).

__

Procedure: Dijkstra Algorithm

 ___._________________

Input : Graph (,), , (,)ijG V E weight w i j V= ∀ ∈

Output: Shortest Path

Begin

Initialize- Single-Source (G, s)

S φ←

[]Q V G←

while Q φ≠

 do u ←Extract-Min(Q)

 { }S S u← ∪

 for each vertex []v Adj u∈

 do Relax (, ,)u v w

 End
 __

Network Design Using Genetic Algorithm

43

Figure 3.7(a) Directed Weighted Graph

Figure 3.7(b) Shortest Path from s to t based on Dijkstra Algorithm

3.2.6 Metaheuristics

A metaheuristic is a heuristic method for solving a very general class of

computational problems by combining user-given black-box procedures usually

heuristics themselves in the hope of obtaining a more efficient or more robust

procedure. The name combines the Greek prefix "meta" ("beyond", here in the sense

of "higher level") and "heuristic" (from ευρισκειν, heuriskein, "to find").

Anand Kumar (Registration No: 3893)

44

Metaheuristics are generally applied to problems for which there is no satisfactory

problem-specific algorithm or heuristic; or when it is not practical to implement such

a method. Most commonly used metaheuristics are targeted to combinatorial

optimization problems, but of course can handle any problem that can be recast in that

form, such as solving boolean equations. For NP-hard optimization problems, it is

often impossible to apply exact methods to large instances in order to obtain optimal

solutions in acceptable time. In such cases, metaheuristics can be seen as alternatives,

which are often able to provide excellent, but not necessarily optimal solutions in

reasonable time. The term metaheuristic was first introduced by Glover and refers to a

number of high-level strategies or concepts of how to solve optimization problems. It

is somewhat difficult to specify the exact boundaries of this term. Voss gives the

following definition:

A metaheuristic is an iterative master process that guides and modifies the operations

of subordinate heuristics to efficiently produce high quality solutions. It may

manipulate a complete (or incomplete) single solution or a collection of solutions at

each iteration. The subordinate heuristics may be high (or low) level procedures, or a

simple local search, or just a construction method.

3.2.6.1 Genetic Algorithm

A Genetic Algorithm (GA) is a search technique used in computing to find exact or

approximate solutions to optimization and search problems. Genetic algorithms are

categorized as global search heuristics. Genetic algorithms are a particular class of

Evolutionary Algorithms (EA) that use techniques inspired by evolutionary biology

such as inheritance, mutation, selection, and crossover.

Network Design Using Genetic Algorithm

45

Simple generational genetic algorithm pseudocode:

1. Choose the initial population of individuals

2. Evaluate the fitness of each individual in that population

3. Repeat on this generation until termination: (time limit, sufficient fitness

achieved, etc.)

1. Select the best-fit individuals for reproduction

2. Breed new individuals through crossover and mutation operations to

give birth to offspring

3. Evaluate the individual fitness of new individuals

4. Replace least-fit population with new individuals

Since this research is based on Genetic Algorithm only, it is explained in great detail

in chapter 4.

3.2.6.2 Simulated Annealing

Simulated Annealing (SA) is a generic probabilistic metaheuristic for the global

optimization problem of applied mathematics, namely locating a good approximation

to the global minimum of a given function in a large search space. It is often used

when the search space is discrete (e.g., all tours that visit a given set of cities). For

certain problems, simulated annealing may be more effective than exhaustive

enumeration — provided that the goal is merely to find an acceptably good solution in

a fixed amount of time, rather than the best possible solution.

The name and inspiration come from annealing in metallurgy, a technique involving

heating and controlled cooling of a material to increase the size of its crystals and

Anand Kumar (Registration No: 3893)

46

reduce their defects. The heat causes the atoms to become unstuck from their initial

positions (a local minimum of the internal energy) and wander randomly through

states of higher energy; the slow cooling gives them more chances of finding

configurations with lower internal energy than the initial one.

By analogy with this physical process, each step of the SA algorithm replaces the

current solution by a random "nearby" solution, chosen with a probability that

depends on the difference between the corresponding function values and on a global

parameter T (called the temperature), that is gradually decreased during the process.

The dependency is such that the current solution changes almost randomly when T is

large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves

saves the method from becoming stuck at local minima which are the bane of greedier

methods.

In the simulated annealing (SA) method, each point s of the search space is analogous

to a state of some physical system, and the function E(s) to be minimized is analogous

to the internal energy of the system in that state. The goal is to bring the system, from

an arbitrary initial state, to a state with the minimum possible energy.

3.2.6.3 Local Search

In computer science, local search is a metaheuristic for solving computationally hard

optimization problems. Local search can be used on problems that can be formulated

as finding a solution maximizing a criterion among a number of candidate solutions.

Local search algorithms move from solution to solution in the space of candidate

solutions (the search space) until a solution deemed optimal is found or a time bound

is elapsed. Some problems where local search has been applied are:

Network Design Using Genetic Algorithm

47

1. The vertex cover problem, in which a solution is a vertex cover of a graph, and

the target is to find a solution with a minimal number of nodes;

2. The travelling salesman problem, in which a solution is a cycle containing all

nodes of the graph and the target is to minimize the total length of the cycle;

3. The boolean satisfiability problem, in which a candidate solution is a truth

assignment, and the target is to maximize the number of clauses satisfied by

the assignment; in this case, the final solution is of use only if it satisfies all

clauses.

4. The nurse scheduling problem where a solution is an assignment of nurses to

shifts which satisfies all established constraints.

5. The k-medoid clustering problem and other related facility location problems

for which local search offers the best known approximation ratios from a

worst-case perespective.

Most problems can be formulated in terms of search space and target in several

different manners. For example, for the travelling salesman problem a solution can be

a cycle and the criterion to maximize is a combination of the number of nodes and the

length of the cycle. But a solution can also be a path, and being a cycle is part of the

target.

A local search algorithm starts from a candidate solution and then iteratively moves to

a neighbor solution. This is only possible if a neighborhood relation is defined on the

search space. As an example, the neighborhood of a vertex cover is another vertex

cover only differing by one node. For boolean satisfiability, the neighbors of a truth

assignment are usually the truth assignments only differing from it by the evaluation

of a variable. The same problem may have multiple different neighborhoods defined

Anand Kumar (Registration No: 3893)

48

on it; local optimization with neighborhoods that involve changing up to k

components of the solution is often referred to as k-opt.

Typically, every candidate solution has more than one neighbor solution; the choice

of which one to move to is taken using only information about the solutions in the

neighborhood of the current one, hence the name local search. When the choice of the

neighbor solution is done by taking the one locally maximizing the criterion, the

metaheuristic takes the name hill climbing.

Termination of local search can be based on a time bound. Another common choice is

to terminate when the best solution found by the algorithm has not been improved in a

given number of steps. Local search algorithms are typically incomplete algorithms,

as the search may stop even if the best solution found by the algorithm is not optimal.

This can happen even if termination is due to the impossibility of improving the

solution, as the optimal solution can lie far from the neighborhood of the solutions

crossed by the algorithms.

Local search algorithms are widely applied to numerous hard computational problems,

including problems from computer science (particularly artificial intelligence),

mathematics, operations research, engineering, and bioinformatics. Examples of local

search algorithm are WalkSAT and the 2-opt algorithm for the TSP. For specific

problems it is possible to devise neighborhoods which are very large, possibly

exponentially sized. If the best solution within the neighborhood can be found

efficiently, such algorithms are referred to as very large-scale neighborhood search

algorithms.

Network Design Using Genetic Algorithm

49

3.2.6.4 Best-First Search

It is a search algorithm which explores a graph by expanding the most promising node

chosen according to a specified rule. Judea Pearl described best-first search as

estimating the promise of node n by a "heuristic evaluation function f(n) which, in

general, may depend on the description of n, the description of the goal, the

information gathered by the search up to that point, and most important, on any extra

knowledge about the problem domain.

Some authors have used "best-first search" to refer specifically to a search with a

heuristic that attempts to predict how close the end of a path is to a solution, so that

paths which are judged to be closer to a solution are extended first. This specific type

of search is called greedy best-first search. Efficient selection[44, 74] of the current

best candidate for extension is typically implemented using a priority queue. The A*

search algorithm is an example of best-first search. Best-first algorithms are often

used for path finding in combinatorial search.

3.2.6.5 Tabu Search

It is a metaheuristic algorithm that can be used for solving combinatorial optimization

problems, such as the traveling salesman problem (TSP). Tabu search uses a local or

neighbourhood search procedure to iteratively move from a solution x to a solution x'

in the neighbourhood of x, until some stopping criterion has been satisfied. To explore

regions of the search space that would be left unexplored by the local search

procedure (see local optimality), tabu search modifies the neighbourhood structure of

each solution as the search progresses. The solutions admitted to N * (x), the new

neighbourhood, are determined through the use of memory structures. The search then

Anand Kumar (Registration No: 3893)

50

progresses by iteratively moving from a solution x to a solution x' in N * (x). Perhaps

the most important type of memory structure used to determine the solutions admitted

to N * (x) is the tabu list. In its simplest form, a tabu list is a short-term memory which

contains the solutions that have been visited in the recent past (less than n iterations

ago, where n is the number of previous solutions to be stored (n is also called the tabu

tenure)). Tabu search excludes solutions in the tabu list from N * (x). A variation of a

tabu list prohibits solutions that have certain attributes (e.g., solutions to the traveling

salesman problem (TSP) which include undesirable arcs) or prevent certain moves

(e.g. an arc that was added to a TSP tour cannot be removed in the next n moves).

Selected attributes in solutions recently visited are labeled "tabu-active." Solutions

that contain tabu-active elements are “tabu”. This type of short-term memory is also

called "recency-based" memory. Tabu lists containing attributes can be more effective

for some domains, although they raise a new problem. When a single attribute is

marked as tabu, this typically results in more than one solution being tabu. Some of

these solutions that must now be avoided could be of excellent quality and might not

have been visited. To mitigate this problem, "aspiration criteria" are introduced: these

override a solution's tabu state, thereby including the otherwise-excluded solution in

the allowed set. A commonly used aspiration criterion is to allow solutions which are

better than the currently-known best solution.

3.2.6.6 Ant Colony Optimization

The Ant Colony Optimization algorithm (ACO), is a probabilistic technique for

solving computational problems which can be reduced to finding good paths through

graphs. This algorithm is a member of Ant Colony Algorithms family, in swarm

intelligence methods, and it constitutes some metaheuristic optimizations. Initially

proposed by Marco Dorigo in 1992 , the first algorithm was aiming to search for an

Network Design Using Genetic Algorithm

51

optimal path in a graph; based on the behavior of ants seeking a path between their

colony and a source of food. The original idea has since diversified to solve a wider

class of numerical problems, and as a result, several problems have emerged, drawing

on various aspects of the behavior of ants.

In the real world, ants (initially) wander randomly, and upon finding food return to

their colony while laying down pheromone trails. If other ants find such a path, they

are likely not to keep travelling at random, but to instead follow the trail, returning

and reinforcing it if they eventually find food (see Ant communication).

Over time, however, the pheromone trail starts to evaporate, thus reducing its

attractive strength. The more time it takes for an ant to travel down the path and back

again, the more time the pheromones have to evaporate. A short path, by comparison,

gets marched over faster, and thus the pheromone density remains high as it is laid on

the path as fast as it can evaporate. Pheromone evaporation has also the advantage of

avoiding the convergence to a locally optimal solution. If there were no evaporation at

all, the paths chosen by the first ants would tend to be excessively attractive to the

following ones. In that case, the exploration of the solution space would be

constrained.

Thus, when one ant finds a good (i.e., short) path from the colony to a food source,

other ants are more likely to follow that path, and positive feedback eventually leads

all the ants following a single path. The idea of the ant colony algorithm is to mimic

this behavior with "simulated ants" walking around the graph representing the

problem to solve. The original idea comes from observing the exploitation of food

resources among ants, in which ants’ individually limited cognitive abilities have

collectively been able to find the shortest path between a food source and the nest.

Anand Kumar (Registration No: 3893)

52

1. The first ant finds the food source (F), via any way (a), then returns to the nest

(N), leaving behind a trail pheromone (b)

2. Ants indiscriminately follow four possible ways, but the strengthening of the

runway makes it more attractive as the shortest route.

3. Ants take the shortest route, long portions of other ways lose their trail

pheromones.

In a series of experiments on a colony of ants with a choice between two unequal

length paths leading to a source of food, biologists have observed that ants tended to

use the shortest route. A model explaining this behaviour is as follows:

1. An ant (called "blitz") runs more or less at random around the colony;

2. If it discovers a food source, it returns more or less directly to the nest,

leaving in its path a trail of pheromone;

3. These pheromones are attractive, nearby ants will be inclined to follow, more

or less directly, the track;

4. Returning to the colony, these ants will strengthen the route;

5. If two routes are possible to reach the same food source, the shorter one will

be, in the same time, traveled by more ants than the long route will

6. The short route will be increasingly enhanced, and therefore become more

attractive;

7. The long route will eventually disappear, pheromones are volatile;

8. Eventually, all the ants have determined and therefore "chosen" the shortest

route.

Ants use the environment as a medium of communication. They exchange

information indirectly by depositing pheromones, all detailing the status of their

Network Design Using Genetic Algorithm

53

"work". The information exchanged has a local scope, only an ant located where the

pheromones were left has a notion of them. This system is called "Stigmergy" and

occurs in many social animal societies (it has been studied in the case of the

construction of pillars in the nests of termites). The mechanism to solve a problem too

complex to be addressed by single ants is a good example of a self-organized system.

This system is based on positive feedback (the deposit of pheromone attracts other

ants that will strengthen it themselves) and negative (dissipation of the route by

evaporation prevents the system from thrashing). Theoretically, if the quantity of

pheromone remained the same over time on all edges, no route would be chosen.

However, because of feedback, a slight variation on an edge will be amplified and

thus allow the choice of an edge. The algorithm will move from an unstable state in

which no edge is stronger than another, to a stable state where the route is composed

of strong edges.

3.2.6.7 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (also known as GRASP) is a

metaheuristic algorithm commonly applied to combinatorial optimization problems.

GRASP typically consists of iterations made up from successive constructions of a

greedy randomized solution and subsequent iterative improvements of it through a

local search. The greedy randomized solutions are generated by adding elements to

the problem's solution set from a list of elements ranked by a greedy function

according to the quality of the solution they will achieve. To obtain variability in the

candidate set of greedy solutions, well-ranked candidate elements are often placed in

a restricted candidate list (also known as RCL), and chosen at random when building

Anand Kumar (Registration No: 3893)

54

up the solution. This kind of greedy randomized construction method is also known as

a semi-greedy heuristic, first described in Hart and Shogan (1987).

3.2.6.8 Artificial Bee Colony Algorithm

 It is an optimization algorithm based on the intelligent foraging behaviour of honey

bee swarm, proposed by Karaboga in 2005

In ABC model, the colony consists of three groups of bees: employed bees, onlookers

and scouts. It is assumed that there is only one artificial employed bee for each food

source. In other words, the number of employed bees in the colony is equal to the

number of food sources around the hive. Employed bees go to their food source and

come back to hive and dance on this area. The employed bee whose food source has

been abandoned becomes a scout and starts to search for finding a new food source.

Onlookers watch the dances of employed bees and choose food sources depending on

dances. The main steps of the algorithm are given below:

• Initial food sources are produced for all employed bees

• REPEAT

o Each employed bee goes to a food source in her memory and

determines a neighbour source, then evaluates its nectar amount and

dances in the hive

o Each onlooker watches the dance of employed bees and chooses one of

their sources depending on the dances, and then goes to that source.

After choosing a neighbour around that, she evaluates its nectar

amount.

o Abandoned food sources are determined and are replaced with the new

food sources discovered by scouts.

Network Design Using Genetic Algorithm

55

o The best food source found so far is registered.

• UNTIL (requirements are met)

In ABC which is a population based algorithm, the position of a food source

represents a possible solution to the optimization problem and the nectar amount of a

food source corresponds to the quality (fitness) of the associated solution. The number

of the employed bees is equal to the number of solutions in the population. At the first

step, a randomly distributed initial population (food source positions) is generated.

After initialization, the population is subjected to repeat the cycles of the search

processes of the employed, onlooker, and scout bees, respectively. An employed bee

produces a modification on the source position in her memory and discovers a new

food source position. Provided that the nectar amount of the new one is higher than

that of the previous source, the bee memorizes the new source position and forgets the

old one. Otherwise she keeps the position of the one in her memory. After all

employed bees complete the search process, they share the position information of the

sources with the onlookers on the dance area. Each onlooker evaluates the nectar

information taken from all employed bees and then chooses a food source depending

on the nectar amounts of sources. As in the case of the employed bee, she produces a

modification on the source position in her memory and checks its nectar amount.

Providing that its nectar is higher than that of the previous one, the bee memorizes the

new position and forgets the old one. The sources abandoned are determined and new

sources are randomly produced to be replaced with the abandoned ones by artificial

scouts.

Anand Kumar (Registration No: 3893)

56

3.2.6.9 Hill Climbing

In computer science, hill climbing is a mathematical optimization technique which

belongs to the family of local search. It is relatively simple to implement, making it a

popular first choice. Although more advanced algorithms may give better results, in

some situations hill climbing works just as well.

Hill climbing can be used to solve problems that have many solutions, some of which

are better than others. It starts with a random (potentially poor) solution, and

iteratively makes small changes to the solution, each time improving it a little. When

the algorithm cannot see any improvement anymore, it terminates. Ideally, at that

point the current solution is close to optimal, but it is not guaranteed that hill climbing

will ever come close to the optimal solution.

For example, hill climbing can be applied to the traveling salesman problem. It is easy

to find a solution that visits all the cities but will be very poor compared to the

optimal solution. The algorithm starts with such a solution and makes small

improvements to it, such as switching the order in which two cities are visited.

Eventually, a much better route is obtained.

Hill climbing is used widely in artificial intelligence, for reaching a goal state from a

starting node. Choice of next node and starting node can be varied to give a list of

related algorithms.

3.2.6.10 Greedy Algorithm

A Greedy Algorithm is any algorithm that follows the problem solving metaheuristic

of making the locally optimal choice at each stage with the hope of finding the global

Network Design Using Genetic Algorithm

57

optimum. For example, applying the greedy strategy to the traveling salesman

problem yields the following algorithm: "At each stage visit the unvisited city nearest

to the current city".

In general, greedy algorithms have five pillars:

1. A candidate set, from which a solution is created

2. A selection function, which chooses the best candidate to be added to the

solution

3. A feasibility function, that is used to determine if a candidate can be used to

contribute to a solution

4. An objective function, which assigns a value to a solution, or a partial solution,

and

5. A solution function, which will indicate when it has discovered a complete

solution

Greedy algorithms produce good solutions on some mathematical problems, but not

on others.

3.2.6.11 Memetic Algorithms

A common drawback of EAs is that there is no guarantee for the global best solution

to be even local optimal. Though good diversification is present due to a large

population, recombination and mutation mechanisms, EAs lack intensification in

overall. Therefore, many successful EAs for complex combinatorial optimization

problems additionally use hybridization to improve solution quality and/or running

time. Pablo Moscato introduced the term Memetic Algorithm (MA) for local search

and problem specific knowledge enhanced EAs. The term \meme" corresponds to a

Anand Kumar (Registration No: 3893)

58

unit of imitation in cultural transmission. So while genetic algorithm is inspired by

biological evolution, MAs attempts to mimic cultural evolution. In MAs, While the

outer metaheuristic is an EA, individual solutions of the population are further

improved e.g. via local search heuristics. If each intermediate solution is always

turned into a local optimum, the EA would exclusively search the space of local

optima (w.r.t. the neighborhood structure(s) of the local improvement procedure). So

by adjusting how much effort is spent in the local improvement, it is possible to tune

the balance between intensification and diversification.

3.3 Previous Work to Solve Network Design Problem

With the current demand of the industry, the reliability and service quality

requirements of modern data communication networks and large investments in

communication infrastructure have made it critical to design optimized networks that

meet the performance parameters. Network means not only the simple connection of

the locations rather an optimized reliable network which meets the requirement of the

system. For designing the backbone network in the form of spanning tree, many

algorithms are available but when additional constraints [47] are added, all these

algorithms fail. The Network Design Problem is considered as Backbone Network

Design Problem in this research work. A backbone network is not only spanning tree,

it has some other constraints also like the connectivity of the node which is very

important for the reliability of the network. In graph theory, this reliability is

described as Degree Constrained Minimum Spanning Tree (DCMST). There is no any

optimal method for this DCMST problem. Many of the network topology design

problems start with the MST, which attempts to find a minimum cost tree that

connects all the nodes of the network. The links or edges have associated costs that

Network Design Using Genetic Algorithm

59

could be based on their distance, capacity, quality of line, etc. There might be other

constraints imposed on the design such as the number of nodes in a sub tree, degree

constraints on nodes, flow and capacity constraints on any edge or node, and type of

services available on the edge or node. The MST problem is found in communication

networks, circuit design, transportation, and logistics among others. The complexity

of the MST problem increases as the number of nodes increases. Many heuristics have

been developed to solve large problems, prominent among them being Kruskal [4]

and Prim [3] algorithms heuristics which have been discussed in the section 3.2. One

of the popular variations of the MST problem is the DCMST. The MST algorithm

may occasionally generate a minimal spanning tree where all the links connect to one

or two nodes. This solution, although optimal, may be highly vulnerable to failure due

to over reliance on a few nodes. Furthermore, the technology to connect many links to

a node may not be available or may be too expensive. Hence, it may be necessary to

limit the number of links connecting to a node. Alternatively, from a reliability

perspective it is desirable to have more than one link connect to a node so that

alternative routes can be selected in the case of a node or link failure [4]. Hence, in

practice, it may be added additional constraints[45, 46] that specify the upper and

lower bound of the number of links connecting to a node. DCMST was specifically

developed as a special case of MST with additional constraints[49, 50] to improve the

reliability of the network and rerouting of traffic in the case of node failures. The

problem of constrained trees has been studied for many years [25]. When additional

constraints are added to MST problem it becomes NP-Hard Problem [26]. Both

Prominent methods can’t deal with extra constraint[48] and there are no exact

methods to solve this problem. Similarly BFS and DFS have their own limitations.

These two methods even can’t deal with minimum spanning tree while they provide

Anand Kumar (Registration No: 3893)

60

only simple spanning tree. Kruskal [4] algorithm works for the unconstrained MST

[50, 51] by where in a first step the edges of the graph are sorted ascending according

to their costs. Afterwards, the edges are considered in this order and an edge is

accepted for the tree as long as it does not lead to a cycle. So this algorithm starts with

a forest of independent trees (the single nodes) and iteratively connects them until this

procedure results in a single spanning tree of minimum costs. This approach makes it

much more difficult to impose additional constraints like a diameter restriction to the

whole MST. However, on dense or even complete graphs Kruskal’s algorithm has a

higher run time complexity than Prim’s MST algorithm since it is dominated by

sorting all edges [21]. As a conclusion there is no method to deal with degree

constrained minimum spanning tree which is the form of backbone network design.

Adding extra constraints means one of the hardest problems in NP Hard category. To

solve this NP-hard problem metaheuristic Genetic Algorithm is proposed here and all

the experiments have been made here with genetic algorithm only.

Network Design Problem is categorized as NP-hard and exact methods and heuristics

are not efficient to solve this problem, researchers[64, 65] moved towards

metaheuristics. The earliest heuristic algorithm for DCMST was proposed by Obruca

[27] as a solution to TSP. Narula and Ho [25] proposed three heuristic algorithms to

solve the DCMST problem: primal, dual, and branch and bound. Savelsbergh and

Volgenant [28] introduced an “edge exchange” algorithm that provided better

performance. Although these methods solve experimental size problems, the

computation time increases dramatically when the problem size gets larger. In recent

years, researchers[66, 67] have attempted using meta-heuristics such as Tabu search

and genetic (evolutionary) algorithms to solve these problems. Lixia Hanr and Yuping

Wang [29] proposed a novel approach with the objective violation degree but it is

limited for maximum 200 nodes. Berna Dengiz, Fulya Altiparmak and Alice E. Smith

Network Design Using Genetic Algorithm

61

[30] proposed a method which is very effective for the reliability of the network

because they proposed that at least two different must exist between all pair of nodes.

This approach is not effective for the cost point of view. They have considered only

for three small size networks 5, 7 and 20. Rajeev Kumar and Nilanjan Banerjee [31]

worked for multicriteria network design using evolutionary [52,61] algorithm, but

only limited up to 36 nodes. In this research work network size is extended from 10 to

1000 which is attempted by few researchers with limited genetic operators. Other

important consideration is various types of constraints with the variation of genetic

operators.

Anand Kumar (Registration No: 3893)

62

Network Design Using Genetic Algorithm

63

CHAPTER 4

Genetic Algorithm

GAs are stochastic search algorithms based on the mechanism of natural selection and

natural genetics. GA, differing from conventional search techniques, start with an

initial set of random solutions called population satisfying boundary and/or system

constraints to the problem. Each individual in the population is called a chromosome

(or individual), representing a solution to the problem at hand. Chromosome is a

string of symbols usually, but not necessarily, a binary bit string. The chromosomes

evolve through successive iterations called generations. During each generation, the

chromosomes are evaluated, using some measures of fitness. To create the next

generation, new chromosomes, called offspring, are formed by either merging two

chromosomes from current generation using a crossover operator or modifying a

chromosome using a mutation operator. A new generation is formed by selection,

according to the fitness values, some of the parents and offspring, and rejecting others

so as to keep the population size constant. Fitter chromosomes have higher

probabilities of being selected. After several generations, the algorithms converge to

the best chromosome, which hopefully represents the optimum or suboptimal solution

to the problem.

4.1 General Structure of a Genetic Algorithm

In general, a GA has five basic components:

1. A genetic representation of potential solutions to the problem.

2. A way to create a population (an initial set of potential solutions).

Anand Kumar (Registration No: 3893)

64

3. An evaluation function rating solutions in terms of their fitness.

4. Genetic operators that alter the genetic composition of offspring

 (Crossover, mutation, selection, etc.).

5. Parameter values that genetic algorithm uses (population size, probabilities of

 applying genetic operators, etc.).

Figure 4.1 The general structure of genetic algorithms

Figure 4.1 shows a general structure of GA. Let P(t) and C(t) are parents and

offspring in current generation t, respectively and the general implementation

structure of GA is described as follows:

Network Design Using Genetic Algorithm

65

 __
Procedure: Basic Genetic Algorithm

 __

Input: problem data, GA parameters
Output: the best solution
Begin
 t ← 0;

initialize P(t) by encoding routine;

evaluate P(t) by decoding routine;

while (not terminating condition) do
create C(t) from P(t) by crossover

routine;

create C(t) from P(t) by mutation routine;

evaluate C(t) by decoding routine;

select P(t +1) from P(t) and C(t) by

selection routine;

t ← t +1;

end
output the best solution

 end

Figure 4.2 Pseudo Code of basic genetic algorithms

4.2 Exploitation and Exploration

Search is one of the more universal problem solving methods for such problems one

cannot determine a prior sequence of steps leading to a solution. Search can be

Anand Kumar (Registration No: 3893)

66

performed with either blind strategies or heuristic strategies. Blind search strategies

do not use information about the problem domain. Heuristic search strategies use

additional information to guide search move along with the best search directions.

There are two important issues in search strategies: exploiting the best solution and

exploring the search space. Michalewicz gave a comparison on hillclimbing search,

random search and genetic search [32]. Hillclimbing is an example of a strategy

which exploits the best solution for possible improvement, ignoring the exploration of

the search space. Random search is an example of a strategy which explores the

search space, ignoring the exploitation of the promising regions of the search space.

GA is a class of general purpose search methods combining elements of directed and

stochastic search which can produce a remarkable balance between exploration and

exploitation of the search space. At the beginning of genetic search, there is a widely

random and diverse population and crossover operator tends to perform wide-spread

search for exploring all solution space. As the high fitness solutions develop, the

crossover operator provides exploration in the neighborhood of each of them. In other

words, what kinds of searches (exploitation or exploration) a crossover performs

would be determined by the environment of genetic system (the diversity of

population) but not by the operator itself. In addition, simple genetic operators are

designed as general purpose search methods (the domain-independent search

methods) they perform essentially a blind search and could not guarantee to yield an

improved offspring.

4.3 Population-based Search

Generally, an algorithm for solving optimization problems is a sequence of

computational steps which asymptotically converge to optimal solution. Most

classical optimization methods generate a deterministic sequence of computation

Network Design Using Genetic Algorithm

67

based on the gradient or higher order derivatives of objective function. The methods

are applied to a single point in the search space. The point is then improved along the

deepest descending direction gradually through iterations as shown in Fig. 4.2. This

Point-to-point approach embraces the danger of failing in local optima. GA performs

a multi-directional search by maintaining a population of potential solutions. The

population-to-population approach is hopeful to make the search escape from local

optima. Population undergoes a simulated evolution: at each generation the relatively

good solutions are reproduced, while the relatively bad solutions die. GA uses

probabilistic transition rules to select someone to be reproduced and someone to die

so as to guide their search toward regions of the search space with likely improvement.

Figure 4.3 Comparison of conventional and genetic approaches

4.4 Major Advantages

GA has received considerable attention regarding their potential as a novel

optimization technique. There are three major advantages when applying GA to

optimization problems:

Anand Kumar (Registration No: 3893)

68

Adaptability: GA does not have much mathematical requirement regarding about the

optimization problems. Due to the evolutionary nature, GA will search for solutions

without regard to the specific inner workings of the problem. GA can handle any kind

of objective functions and any kind of constraints, i.e., linear or nonlinear, defined on

discrete, continuous or mixed search spaces.

2. Robustness: The use of evolution operators makes GA very effective in performing

a global search (in probability), while most conventional heuristics usually perform a

local search. It has been proved by many studies that GA is more efficient and more

robust in locating optimal solution and reducing computational effort than other

conventional heuristics.

3. Flexibility: GA provides us great flexibility to hybridize with domain-dependent

heuristics to make an efficient implementation for a specific problem.

4.5 Implementation of Genetic Algorithm

In the implementation of GA, several components should be considered. First, a

genetic representation of solutions should be decided (i.e., encoding); second, a

fitness function for evaluating solutions should be given. (i.e., decoding); third,

genetic operators such as crossover operator, mutation operator and selection methods

should be designed; last, a necessary component for applying GA to the constrained

optimization is how to handle constraints because genetic operators used to

manipulate the chromosomes often yield infeasible offspring.

4.5.1 GA Vocabulary

Because GA is rooted in both natural genetics and computer science, the

terminologies used in GA literatures are a mixture of the natural and the artificial. In a

biological organism, the structure that encodes the prescription that specifies how the

Network Design Using Genetic Algorithm

69

organism is to be constructed is called a chromosome. One or more chromosomes

may be required to specify the complete organism. The complete set of chromosomes

is called a genotype, and the resulting organism is called a phenotype. Each

chromosome comprises a number of individual structures called genes. Each gene

encodes a particular feature of the organism, and the location, or locus, of the gene

within the chromosome structure, determines what particular characteristic the gene

represents. At a particular locus, a gene may encode one of several different values of

the particular characteristic it represents. The different values of a gene are called

alleles. The correspondence of GA terms and optimization terms is summarized in

Table 1.1.

Table 4.1 Explanation of GA terms

Genetic algorithms Explanation

Chromosome (string, individual) Solution (coding)
Genes (bits) Part of solution
Locus Position of gene
Alleles Values of gene
Phenotype Decoded solution
Genotype Encoded solution

4.5.2 Encoding Issue

How to encode a solution of a given problem into a chromosome is a key issue for the

GA. This issue has been investigated from many aspects, such as mapping characters

from a genotype space to a phenotype space when individuals are decoded into

solutions and the metamorphosis properties when individuals are manipulated by

genetic operators

Anand Kumar (Registration No: 3893)

70

4.5.2.1 Classification of Encoding

In Holland’s work, encoding is carried out using binary strings [33]. The binary

encoding for function optimization problems is known to have severe drawbacks due

to the existence of Hamming cliffs, which describes the phenomenon that a pair of

encodings with a large Hamming distance belongs to points with minimal distances in

the phenotype space. For example, the pair 01111111111 and 10000000000 belongs

to neighboring points in the phenotype space (points of the minimal Euclidean

distances) but have the maximum Hamming distance in the genotype space. To cross

the Hamming cliff, all bits have to be changed at once. The probability that crossover

and mutation will occur to cross it can be very small. In this sense, the binary code

does not preserve locality of points in the phenotype space. For many real-world

applications, it is nearly impossible to represent their solutions with the binary

encoding. Various encoding methods have been created for particular problems in

order to have an effective implementation of the GA. According to what kind of

symbols is used as the alleles of a gene, the encoding methods can be classified as

follows:

• Binary encoding

• Real number encoding

• Integer/literal permutation encoding

• A general data structure encoding

The real number encoding is best for function optimization problems. It has been

widely confirmed that the real number encoding has higher performance than the

binary or Gray encoding for function optimizations and constrained optimizations.

Since the topological structure of the genotype space for the real number encoding

method is identical to that of the phenotype space, it is easy for us to create some

Network Design Using Genetic Algorithm

71

effective genetic operators by borrowing some useful techniques from conventional

methods. The integer or literal permutation encoding is suitable for combinatorial

optimization problems. Since the essence of combinatorial optimization problems is

to search for a best permutation or combination of some items subject to some

constraints, the literal permutation encoding may be the most reasonable way to deal

with this kind of issue. For more complex real-world problems, an appropriate data

structure is suggested as the allele of a gene in order to capture the nature of the

problem. In such cases, a gene may be an array or a more complex data structure.

According to the structure of encodings, the encoding methods also can be classified

into the following two types:

• One-dimensional encoding

• Multi-dimensional encoding

In most practices, the one-dimensional encoding method is adopted. However, many

real-world problems have solutions of multi-dimensional structures. It is natural to

adopt a multi-dimensional encoding method to represent those solutions. According to

what kinds of contents are encoded into the encodings, the encoding methods can also

be divided as follows:

• Solution only

• Solution + parameters

In the GA practice, the first way is widely adopted to conceive a suitable encoding to

a given problem. An individual consists of two parts: the first part is the solution to a

given problem and the second part, called strategy parameters, contains variances and

covariance of the normal distribution for mutation. The purpose for incorporating the

strategy parameters into the representation of individuals is to facilitate

Anand Kumar (Registration No: 3893)

72

the evolutionary self-adaptation of these parameters by applying evolutionary

operators to them. Then the search will be performed in the space of solutions and the

strategy parameters together. In this way a suitable adjustment and diversity of

mutation parameters should be provided under arbitrary circumstances.

4.5.2.2 Infeasibility and Illegality

The GA works on two kinds of spaces alternatively: the encoding space and the

solution space, or in the other words, the genotype space and the phenotype space.

The genetic operators work on the genotype space while evaluation and selection

work on the phenotype space. Natural selection is the link between chromosomes and

the performance of the decoded solutions. The mapping from the genotype space to

the phenotype space has a considerable influence on the performance of the GA. The

most prominent problem associated with mapping is that some individuals correspond

to infeasible solutions to a given problem. This problem may become very severe for

constrained optimization problems and combinatorial optimization problems The

infeasibility of chromosomes originates from the nature of the constrained

optimization problem. Whatever methods are used, conventional ones or genetic

algorithms, they must handle the constraints. For many optimization problems, the

feasible region can be represented as a system of equalities or inequalities. For such

cases, penalty methods can be used to handle infeasible chromosomes. In constrained

optimization problems, the optimum typically occurs at the boundary between

feasible and infeasible areas. The penalty approach will force the genetic search to

approach the optimum from both sides of the feasible and infeasible regions. The

illegality of chromosomes originates from the nature of encoding techniques. For

many combinatorial optimization problems, problem-specific encodings are used and

such encodings usually yield illegal offspring by a simple one-cut-point crossover

Network Design Using Genetic Algorithm

73

operation. Because an illegal chromosome cannot be decoded to a solution, the

penalty techniques are inapplicable to this situation. Repairing techniques are usually

adopted to convert an illegal chromosome to a legal one. For example, the well-

known PMX operator is essentially a kind of two-cut-point crossover for permutation

representation together with a repairing procedure to resolve the illegitimacy caused

by the simple two-cut-point crossover.

4.5.2.3 Properties of Encodings

Given a new encoding method, it is usually necessary to examine whether it can build

an effective genetic search with the encoding. Several principles have been proposed

to evaluate an encoding [34]:

Property 1 (Space): Chromosomes should not require extravagant amounts of

 memory.

Property 2 (Time): The time complexity of executing evaluation, recombination

 and mutation on chromosomes should not be a higher order.

Property 3 (Feasibility): A chromosome corresponds to a feasible solution.

Property 4 (Legality): Any permutation of a chromosome corresponds to a solution.

Property 5 (Completeness): Any solution has a corresponding chromosome.

Property 6 (Uniqueness): The mapping from chromosomes to solutions (decoding)

may belong to one of the following three cases

Property 7 (Heritability): Offspring of simple crossover (i.e., one-cut point crossover)

should correspond to solutions which combine the basic feature of their parents.

Property 8 (Locality): A small change in chromosome should imply a small change

in its corresponding solution.

Anand Kumar (Registration No: 3893)

74

4.5.2.4 Initialization

In general, there are two ways to generate the initial population, i.e., the heuristic

initialization and random initialization while satisfying the boundary and/or system

constraints to the problem. Although the mean fitness of the heuristic initialization is

relatively high so that it may help the GA to find solutions faster, in most large scale

problems, for example, network design problems, the heuristic approach may just

explore a small part of the solution space and it is difficult to find global optimal

solutions because of the lack of diversity in the population. Usually it is to design an

encoding procedure depending on the chromosome for generating the initial

population.

4.5.3 Fitness Evaluation

A fitness function is a particular type of objective function that prescribes the

optimality of a solution (that is, a chromosome) in a genetic algorithm so that that

particular chromosome may be ranked against all the other chromosomes. Optimal

chromosomes, or at least chromosomes which are more optimal, are allowed to breed

and mix their datasets by any of several techniques, producing a new generation that

will (hopefully) be even better. An ideal fitness function correlates closely with the

algorithm's goal, and yet may be computed quickly. Speed of execution is very

important, as a typical genetic algorithm[52, 55] must be iterated many, many times in

order to produce a usable result for a non-trivial problem. This is one of the main

drawbacks of GAs in real world applications and limits their applicability in some

industries. It is apparent that amalgamation of approximate models may be one of the

most promising approaches, especially in the following cases:

Network Design Using Genetic Algorithm

75

• Fitness computation time of a single solution is extremely high,

• Precise model for fitness computation is missing,

• The fitness function is uncertain or noisy.

Two main classes of fitness functions exist: one where the fitness function does not

change, as in optimizing a fixed function or testing with a fixed set of test cases; and

one where the fitness function is mutable, as in niche differentiation or co-evolving

the set of test cases. Another way of looking at fitness functions is in terms of a fitness

landscape, which shows the fitness for each possible chromosome. Definition of the

fitness function is not straightforward in many cases and often is performed iteratively

if the fittest solutions produced by GA are not what is desired. In some cases, it is

very hard or impossible to come up even with a guess of what fitness function

definition might be. Interactive genetic algorithms[53, 54] address this difficulty by

outsourcing evaluation to external agents (normally humans).

4.5.4 Genetic Operators

A Genetic Operator is an operator used in genetic algorithms to maintain genetic

diversity. Genetic variation is a necessity for the process of evolution. Genetic

operators used in genetic algorithms are analogous to those which occur in the natural

world: survival of the fittest, or selection; reproduction (crossover, also called

recombination); and mutation. Genetic diversity, the level of biodiversity, refers to the

total number of genetic characteristics in the genetic makeup of a species. It is

distinguished from genetic variability, which describes the tendency of genetic

characteristics to vary. The academic field of population genetics includes several

hypotheses and theories regarding genetic diversity. The neutral theory of evolution

proposes that diversity is the result of the accumulation of neutral substitutions.

Anand Kumar (Registration No: 3893)

76

Diversifying selection is the hypothesis that two subpopulations of a species live in

different environments that select for different alleles at a particular locus. This may

occur, for instance, if a species has a large range relative to the mobility of individuals

within it. Frequency-dependent selection is the hypothesis that as alleles become more

common, they become more vulnerable. This is often invoked in host-pathogen

interactions, where a high frequency of a defensive allele among the host means that it

is more likely that a pathogen will spread if it is able to overcome that allele. When

GA proceeds, both the search direction to optimal solution and the search speed

should be considered as important factors, in order to keep a balance between

exploration and exploitation in search space. In general, the exploitation of the

accumulated information resulting from GA search is done by the selection

mechanism, while the exploration to new regions of the search space is accounted for

by genetic operators. The genetic operators mimic the process of heredity of genes to

create new offspring at each generation. The operators are used to alter the genetic

composition of individuals during representation. In essence, the operators perform a

random search, and cannot guarantee to yield an improved offspring. There are three

common genetic operators: crossover, mutation and selection.

4.5.4.1 Crossover

Crossover is the main genetic operator. It operates on two chromosomes at a time and

generates offspring by combining both chromosomes’ features. A simple way to

achieve crossover would be to choose a random cut-point and generate the offspring

by combining the segment of one parent to the left of the cut-point with the segment

of the other parent to the right of the cut-point. This method works well with bit string

representation. The performance of GA depends to a great extent, on the performance

of the crossover operator used. The crossover probability (denoted by PC) is defined

Network Design Using Genetic Algorithm

77

as the probability of the number of offspring produced in each generation to the

population size (usually denoted by popSize). This probability controls the expected

number PC × pop Size of chromosomes to undergo the crossover operation. A higher

crossover probability allows exploration of more of the solution space, and reduces

the chances of settling for a false optimum; but if this probability is too high, it results

in the wastage of a lot of computation time in exploring unpromising regions of the

solution space. Up to now, several crossover operators have been proposed for the

real numbers encoding, which can roughly be put into four classes: conventional,

arithmetical, direction-based, and stochastic. The conventional operators are made by

extending the operators for binary representation into the real-coding case. The

conventional crossover operators can be broadly divided by two kinds of crossover:

• Simple crossover: one-cut point, two-cut point, multi-cut point or uniform

• Random crossover: flat crossover, blend crossover

The arithmetical operators are constructed by borrowing the concept of linear

combination of vectors from the area of convex set theory. Operated on the floating

point genetic representation, the arithmetical crossover operators, such as convex,

affine, linear, average, intermediate, extended intermediate crossover, are usually

adopted. The direction-based operators are formed by introducing the approximate

gradient direction into genetic operators. The direction-based crossover operator uses

the value of objective function in determining the direction of genetic search. The

stochastic operators give offspring by altering parents by random numbers with some

distribution.

Anand Kumar (Registration No: 3893)

78

Figure 4.4 Crossover.

4.5.4.2 Mutation

Mutation is a background operator which produces spontaneous random changes in

various chromosomes. A simple way to achieve mutation would be to alter one or

more genes. In GA, mutation serves the crucial role of either (a) replacing the genes

lost from the population during the selection process so that they can be tried in a new

context or (b) providing the genes that were not present in the initial population. The

mutation probability (denoted by Pm) is defined as the percentage of the total number

of genes in the population. The mutation probability controls the probability with

which new genes are introduced into the population for trial. If it is too low, many

genes that would have been useful are never tried out, while if it is too high, there will

be much random perturbation, the offspring will start losing their resemblance to the

parents, and the algorithm [58]will lose the ability to learn from the history of the

search. Up to now, several mutation operators have been proposed for real numbers

encoding, which can roughly be put into four classes as crossover can be classified.

Random mutation operators such as uniform mutation, boundary mutation, and plain

mutation, belong to the conventional mutation operators, which simply replace a gene

with a randomly selected real number with a specified range. Dynamic mutation (non

uniform mutation) is designed for fine-tuning capabilities aimed at achieving high

precision, which is classified as the arithmetical mutation operator. Directional

Network Design Using Genetic Algorithm

79

mutation operator is a kind of direction-based mutation, which uses the gradient

expansion of objective function. The direction can be given randomly as a free

direction to avoid the chromosomes jamming into a corner. If the chromosome is near

the boundary, the mutation direction given by some criteria might point toward the

close boundary, and then jamming could occur. Several mutation operators for integer

encoding have been proposed.

• Inversion mutation selects two positions within a chromosome at random and then

inverts the substring between these two positions.

• Insertion mutation selects a gene at random and inserts it in a random position.

• Displacement mutation selects a substring of genes at random and inserts it in a

random position. Therefore, insertion can be viewed as a special case of displacement.

Reciprocal exchange mutation selects two positions random and then swaps the genes

on the positions.

 Figure 4.5 Mutation

4.5.4.3 Selection

Selection is the stage of a genetic algorithm in which individual genomes are chosen

from a population for later breeding (recombination or crossover).

A generic selection procedure may be implemented as follows:

1. The fitness function is evaluated for each individual, providing fitness values,

which are then normalized. Normalization means dividing the fitness value of

Anand Kumar (Registration No: 3893)

80

each individual by the sum of all fitness values, so that the sum of all resulting

fitness values equals 1.

2. The population is sorted by descending fitness values.

3. Accumulated normalized fitness values are computed (the accumulated fitness

value of an individual is the sum of its own fitness value plus the fitness

values of all the previous individuals). The accumulated fitness of the last

individual should of course be 1 (otherwise something went wrong in the

normalization step!).

4. A random number R between 0 and 1 is chosen.

5. The selected individual is the first one whose accumulated normalized value is

greater than R.

If this procedure is repeated until there are enough selected individuals, this selection

method is called fitness proportionate selection or roulette-wheel selection. If instead

of a single pointer spun multiple times equally spaced pointers on a wheel that spin

once, is called stochastic universal sampling. Repeatedly selecting the best individual

of a randomly chosen subset is tournament selection. Taking the best half, third or

another proportion of the individuals is truncation selection.

There are other selection algorithms[59] that do not consider all individuals for

selection, but only those with a fitness value that is higher than a given (arbitrary)

constant. Other algorithms select from a restricted pool where only a certain

percentage of the individuals are allowed, based on fitness value. Retaining the best

individuals in a generation unchanged in the next generation, is called elitism or elitist

selection. It is a successful (slight) variant of the general process of constructing a

new population.

Network Design Using Genetic Algorithm

81

During the past two decades, many selection methods have been proposed, examined,

and compared. Common selection methods are as follows:

• Roulette wheel selection
• Tournament selection
• Truncation selection
• Elitist selection
• Ranking and scaling
• Sharing

Roulette wheel selection, proposed by Holland, is the best known selection type. The

basic idea is to determine selection probability or survival probability for each

chromosome proportional to the fitness value. Then a model roulette wheel can be

made displaying these probabilities. The selection process is based on spinning the

wheel the number of times equal to population size, each selecting a single

chromosome for the new procedure.

Tournament selection runs a tournament” among a few individuals chosen at random

from the population and selects the winner (the one with the best fitness). Selection

pressure can be easily adjusted by changing the tournament size. If the tournament

size is larger, weak individuals have a smaller chance to be selected.

Truncation selection is also a deterministic procedure that ranks all individuals

according to their fitness and selects the best as parents. Elitist selection is generally

used as supplementary to the proportional selection process.

Ranking and Scaling mechanisms are proposed to mitigate these problems. The

scaling method maps raw objective function values to positive real values, and the

survival probability for each chromosome is determined according to these values.

Fitness scaling has a twofold intention: (1) to maintain a reasonable differential

between relative fitness ratings of chromosomes, and (2) to prevent too-rapid takeover

Anand Kumar (Registration No: 3893)

82

by some super-chromosomes to meet the requirement to limit competition early but to

stimulate it later.

Sharing selection is used to maintain the diversity of population for multi-model

function optimization. A sharing function optimization is used to maintain the

diversity of population. A sharing function is a way of determining the degradation of

an individual’s fitness due to a neighbor at some distance. With the degradation, the

reproduction probability of individuals in a crowd peak is restrained while other

individuals are encouraged to give offspring.

4.5.5 Handling Constraints

A necessary component for applying GA to constrained optimization is how to handle

constraints because genetic operators used to manipulate the chromosomes often yield

infeasible offspring. There are several techniques proposed to handle constraints with

GA . The existing techniques can be roughly classified as follows:

• Rejecting strategy

• Repairing strategy

• Modifying genetic operators strategy

• Penalizing strategy

Each of these strategies have advantages and disadvantages.

4.5.5.1 Rejecting strategy

Rejecting strategy discards all infeasible chromosomes created throughout an

evolutionary process. This is a popular option in many GA. The method may work

reasonably well when the feasible search space is convex and it constitutes a

reasonable part of the whole search space. However, such an approach has serious

Network Design Using Genetic Algorithm

83

limitations. For example, for many constrained optimization problems where the

initial population consists of infeasible chromosomes only, it might be essential to

improve them. Moreover, quite often the system can reach the optimum easier if it is

possible to “cross” an infeasible region (especially in non-convex feasible search

spaces).

4.5.5.2 Repairing Strategy

Repairing a chromosome means to take an infeasible chromosome and generate a

feasible one through some repairing procedure. For many combinatorial optimization

problems, it is relatively easy to create a repairing procedure. Repairing strategy

depends on the existence of a deterministic repair procedure to converting an

infeasible offspring into a feasible one. The weakness of the method is in its problem

dependence. For each particular problem, a specific repair algorithm should be

designed. Also, for some problems, the process of repairing infeasible chromosomes

might be as complex as solving the original problem. The repaired chromosome can

be used either for evaluation only, or it can replace the original one in the population.

4.5.5.3 Modifying Genetic Operators Strategy

One reasonable approach for dealing with the issue of feasibility is to invent problem-

specific representation and specialized genetic operators to maintain the feasibility of

chromosomes. Michalewicz [35]. pointed out that often such systems are much more

reliable than any other genetic algorithms based on the penalty approach. This is a

quite popular trend: many practitioners use problem-specific representation and

specialized operators in building very successful genetic algorithms in many areas

[31]. However, the genetic search of this approach is confined within a feasible region.

Anand Kumar (Registration No: 3893)

84

4.5.5.4 Penalizing Strategy

These strategies above have the advantage that they never generate infeasible

solutions but have the disadvantage that they consider no points outside the feasible

regions. For highly constrained problem, infeasible solution may take a relatively big

portion in population. In such a case, feasible solutions may be difficult to be found if

it just confine genetic search within feasible regions.

4.6 Hybrid Genetic Algorithms

GA has proved to be a versatile and effective approach for solving optimization

problems. Nevertheless, there are many situations in which the simple GA does not

perform particularly well, and various methods of hybridization have been proposed.

One of most common forms of hybrid genetic algorithm (HGA) is to incorporate local

optimization as an add-on extra to the canonical GA loop of recombination and

selection. With the hybrid approach, local optimization is applied to each newly

generated offspring to move it to a local optimum before injecting it into the

population. GA is used to perform global exploration among a population while

heuristic methods are used to perform local exploitation around chromosomes.

Because of the complementary properties of GA and conventional heuristics, the

hybrid approach often outperforms either method operating alone. Another common

form is to incorporate GA parameters adaptation. The behaviors of GA are

characterized by the balance between exploitation and exploration in the search space.

The balance is strongly affected by the strategy parameters such as population size,

maximum generation, crossover probability, and mutation probability. How to choose

a value to each of the parameters and how to find the values efficiently are very

important and promising areas of research on the GA.

Network Design Using Genetic Algorithm

85

Anand Kumar (Registration No: 3893)

86

CHAPTER 5

Genetic Algorithm approach to
Network Design

Many real-world problems from operations research (OR) / management science

(MS) are very complex in nature and quite hard to solve by conventional optimization

techniques. One of them is Network Design which is used extensively in practice in

an ever expanding spectrum of applications. Network optimization models such as

shortest path, assignment, maxflow, transportation, transshipment, spanning tree,

matching, traveling salesman, generalized assignment, vehicle routing, and multi-

commodity flow constitute the most common class of practical network optimization

problems. However, there is a large class of network optimization problems for which

no reasonable fast algorithms have been developed. And many of these network

optimization problems arise frequently in applications. Given such a hard network

optimization problem, it is often possible to find an efficient algorithm whose solution

is approximately optimal. Among such techniques, the genetic algorithm (GA) is one

of the most powerful and broadly applicable stochastic search and optimization

techniques based on principles from evolution theory. Simulating natural evolutionary

processes of human beings results in stochastic optimization techniques called

evolutionary algorithms (EAs) that can often outperform conventional optimization

methods when applied to difficult real-world problems. EAs mostly involve

metaheuristic optimization algorithms such as genetic algorithms (GA) [33, 37],

evolutionary programming (EP), evolution strategys (ES), genetic programming [62,

Network Design Using Genetic Algorithm

87

63](GP) [38, 39]. Among them, genetic algorithms are perhaps the most widely

known type of evolutionary algorithms used today.

Before a genetic algorithm can be put to work on any problem, a method is needed to

encode potential solutions to that problem in a form that a computer can process. One

common approach is to encode solutions as binary strings: sequences of 1's and 0's,

where the digit at each position represents the value of some aspect of the solution.

Another, similar approach is to encode solutions as arrays of integers or decimal

numbers, with each position again representing some particular aspect of the solution.

This approach allows for greater precision and complexity[60]than the comparatively

restricted method of using binary numbers only and often "is intuitively closer to the

problem space". Before applying the genetic algorithm approach, it is important to

understand the representation of network. A network can be represented in different way

like adjacency matrix or adjacency list. In this research work network is represented as an

adjacency matrix.

5.1 Network Representation

The Network design problem can be considered as an undirected or directed graph,

and represented with the help of adjacency matrix.

A Graph with node set N ={1,2, · · · ,n} is specified by an (n×n)-matrix A=(ai j),

where ai j = 1 if and only if (i, j) is an arc of G, and ai j = 0 otherwise. A is called

the adjacency matrix of G.

The adjacency matrix stores the distance in the form of number between two nodes

and stores zero (0) in the case of diagonal of the matrix for same node to same node or

non availability of the path. Figure 5.1 shows the various independent networks at

different location where each location has one or more than one network. To connect

these independent networks a graph can be considered which may be in the form of

Anand Kumar (Registration No: 3893)

88

directed or undirected, depending on the availability of the path. In figure 5.2(a),

backbone network of figure 5.1 is shown. and figure 5.2(b) shows an undirected

graph of backbone network of figure 5.2(a), and it adjacency matrix is shown in

Table5.1. The diagonal of this Table5.1 shows only zero (0) means no path from same

node to same node. Similarly other zeros represent non availability of the path. From

figure 5.2, there is no path between node-1 to node-5, so in the adjacency matrix the

distance from node-1 to node-5 is shown zero(0). Since this is an undirected graph, so

from node-5 to node-1 will also be zero (0).

Figure 5.1 various independent networks

Network Design Using Genetic Algorithm

89

Figure 5.2(a) Backbone Network of fig 5.1

Figure 5.2(b) Undirected Graph of fig 5.2(a)

Anand Kumar (Registration No: 3893)

90

Table 5.1 Adjacency matrices of figure 5.1 graph

node 1 2 3 4 5 6 7 8 9 10

1 0 1 1 0 0 0 0 0 0 0
2 1 0 1 1 1 0 0 0 0 0
3 1 1 0 0 1 1 0 0 0 0
4 0 1 0 0 1 0 1 1 0 0
5 0 1 1 1 0 1 1 0 0 0
6 0 0 1 0 1 0 1 0 0 0
7 0 0 0 1 1 1 0 1 1 0
8 0 0 0 1 0 0 1 0 1 1
9 0 0 0 0 0 0 1 1 0 1

10 0 0 0 0 0 0 0 1 1 0

In figure 5.3, a directed graph is shown of the same figure 5.1 and it adjacency matrix

is shown in Table5.2. The diagonal of this Table5.2 shows only zero (0) means no

path from same node to same node. Similarly other zeros represent non availability of

the path.

Figure 5.3 Directed Graph of fig 5.1

Network Design Using Genetic Algorithm

91

Table 5.2 Adjacency matrices of figure 5.2 graph

node 1 2 3 4 5 6 7 8 9 10
1 0 1 1 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 0
3 0 1 0 0 1 1 0 0 0 0
4 0 0 0 0 0 0 1 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 0 0 1 0 1 0
7 0 0 0 0 0 0 0 1 1 0
8 0 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0

If the path between all the locations are available, then a complete graph will be used

to l represent the figure backbone network. Figure 5.4 shows the complete graph of

figure 5.1.

Figure 5.4 Complete Graph of fig 5.1

Anand Kumar (Registration No: 3893)

92

5.2 Genetic Algorithm Approach

In genetic algorithm, the first question is how to represent the problem? The same

problem can be represented in different way.

The basic genetic algorithm approach is started with the initialization of the

population. Afterward population is evaluated and selected. Selected population are

operated with the genetic operators and again evaluated. If the result is found, it is

stopped otherwise the same process is repeated. The basic genetic algorithm is:

1. Initialisation of parent population
2. Evaluation
3. Selection
4. Crossover/recombination
5. Mutation
6. Evaluate child and Go to step 3 until termination criteria satisfies

5.2.1 Population Initialization

The first phase of the genetic algorithm is to initialize the population. The population

means generation of chromosomes and it is also called parent population or parent

chromosome. Generation of chromosome is dependent upon the problem presentation.

There are two parameters to be decided for initialization: the initial population size

and the procedure to initialize the population. Initially, researchers thought that the

population size needed to increase exponentially with the length of the chromosome

string in order to generate good solutions. Recent studies have shown, however, that

satisfactory results can be obtained with a much smaller population size. There are

two ways to generate the initial population—random initialization and heuristic

initialization. Random method, where for each gene, randomly generate an integer

from a range of one to the number of nodes. The initial chromosomes need not

represent a legal or feasible tree. In this thesis random method is used.

Network Design Using Genetic Algorithm

93

Chromosome Description

 Table-5.3 shows ten (10) sets of randomly generated chromosomes. Each bit of the

chromosome shows the connectivity with the corresponding position node. The logic

behind association is that, the node [1] is connected with node 2; node [2] is

connected with 5 and so on.

Table 5.3 Randomly generated chromosomes

Node → 1 2 3 4 5 6 7 8 9 10
Chromosom-1 2 5 6 5 8 5 6 9 10 7
Chromosom-2 2 5 1 5 3 8 4 9 7 8
Chromosom-3 5 5 6 7 4 5 6 10 7 8
Chromosom-4 3 1 1 5 4 1 6 4 10 9
Chromosom-5 2 2 5 5 1 5 9 7 10 6
Chromosom-6 5 4 5 10 2 5 6 5 8 8
Chromosom-7 2 5 1 6 3 7 4 10 8 9
Chromosom-8 2 5 3 7 4 3 8 10 6 9
Chromosom-9 9 3 7 10 6 4 3 7 1 8

Chromosom-10 1 3 1 4 1 5 2 10 10 8

Figure 5.5 Illegal Spanning Tree based on chromosome-1.

Anand Kumar (Registration No: 3893)

94

Figure 5.6 Illegal Spanning Tree based on chromosome-2

Figure 5.7 Illegal Spanning Tree based on chromosome-3

Network Design Using Genetic Algorithm

95

Figure 5.8 Illegal Spanning Tree based on chromosome-4

Figure 5.9 Illegal Spanning Tree based on chromosome-5

Anand Kumar (Registration No: 3893)

96

Figure 5.10 Illegal Spanning Tree based on chromosome-6

Figure 5.11 Illegal Spanning Tree based on chromosome-7

Network Design Using Genetic Algorithm

97

Figure 5.12 Illegal Spanning Tree based on chromosome-8

Figure 5.13 Illegal Spanning Tree based on chromosome-9

Anand Kumar (Registration No: 3893)

98

Figure 5.14 Illegal Spanning Tree based on chromosome-10

After generating the chromosomes shown in Table 5.3, and drawing the tree based on these

chromosomes (Fig 5.5 to Fig 5.14), it has been found that no derived solutions are spanning

tree. These all chromosomes are applied with respect to complete graph shown in figure 5.4.

Following reasons have been found for being illegal tree-

• Figure 5.5 Illegal Spanning Tree based on chromosome-1, because a cycle has

been formed (5-8-9-10-7-6-5)

• Figure 5.6 Illegal Spanning Tree based on chromosome-2, because a cycle has

been formed (1-2-5-3-1)

• Figure 5.7 Illegal Spanning Tree based on chromosome-3, because of isolated

edge (8-10) and a cycle (5-4-7-6-5)

• Figure 5.8 Illegal Spanning Tree based on chromosome-4, because of multiple

isolation (9-10), (5-4-8) and (3-1-2……from 1-6-7)

• Figure 5.9 Illegal Spanning Tree based on chromosome-5, because of self

loop(2-2)

Network Design Using Genetic Algorithm

99

• Figure 5.10 Illegal Spanning Tree based on chromosome-6, because of cycle (5-2-

4-10-8-5) and degree violation if degree of node-5 is 3.

• Figure 5.11 Illegal Spanning Tree based on chromosome-7, because of multiple

cycles (1-2-5-3-1), (4-7-6-4) and (8-9-10-8).

• Figure 5.12 Illegal Spanning Tree based on chromosome-8, because of self

loop(3-3)

• Figure 5.13 Illegal Spanning Tree based on chromosome-9, because of isolated

edge(1-9), in this case there is no self loop and no cycle but isolation is found.

• Figure 5.14 Illegal Spanning Tree based on chromosome-10, because of multiple

self loop (1-1), (4-4) and an isolated edge (8-10-9)

All these reasons are found for complete graph where direct path is available between

any two nodes. Further directed graph (figure 5.3) is considered where all these

reasons are available for illegal tree, but there is one more reason because of path

constraint. Following chromosome shows the reason of being illegal.

Table 5.4 Randomly generated chromosome

Node → 1 2 3 4 5 6 7 8 9 10
Chromosom-11

Figure 5.15 Illegal Spanning Tree based on chromosome-11

Anand Kumar (Registration No: 3893)

100

• Figure 5.15 Illegal Spanning Tree based on chromosome-10 and directed simple

graph (figure 5.3), because of path constraint (1-5) and (10-7), and (2-1)(9-7)

for non directional.

5.2.2 Fitness Evaluation

Fitness evaluation is to check the solution value of the objective function subject to

the problem constraints. In general, the objective function provides the mechanism

evaluating each individual. However, its range of values varies from problem to

problem. To maintain uniformity over various problem domains, one may use the

fitness function to normalize the objective function to a range of 0 to 1. The

normalized value of the objective function is the fitness of the individual, and the

selection mechanism is used to evaluate the individuals of the population. When the

search of GA proceeds, the population undergoes evolution with fitness, forming thus

new a population. At that time, in each generation, relatively good solutions are

reproduced and relatively bad solutions die in order that the offspring composed of

the good solutions are reproduced. To distinguish between the solutions, an evaluation

function (also called fitness function) plays an important role in the environment, and

scaling mechanisms are also necessary to be applied in objective function for fitness

functions. When evaluating the fitness function of some chromosome, decoding

procedure is designed depending on the chromosome.

Evaluation is the most important phase of genetic algorithm where chromosomes are

evaluated. If the required result is achieved then the process is terminated otherwise

next generation is called. Evaluation is based on the fitness function and fitness

function is the back bone of evaluation. To apply the fitness function it is important to

know why chromosomes are unfit? In this previous section (5.2.1) it has been

Network Design Using Genetic Algorithm

101

observed the reason of illegal chromosomes. The following are the reasons of

unfitness of chromosomes which leads to illegal spanning tree.

1. Self loop

2. Cycle

3. Isolation

4. Degree Constraint

5. Path Constraint

For all these reasons chromosomes are evaluated. To evaluate the chromosomes, for

each of these reasons, fitness functions have been developed.

Notation of Functions

All these five functions accept the input in the form of a matrix (chromosomes) m

x n, then calculate the fitness in the form of 0 and 1. Chromosome has been passed

from the main function. All these functions calculate the fitness for each of the

chromosome.

 Last column of each chromosome has fitness value.

Chromosomes(m x n) :

m = No. of nodes = Row

 n = No. of chromosomes = Col

1. Self Loop

Self loop is formed when the position of node and the bit of chromosome, both are

equal (figure 5.12) .

For the connected graph

Anand Kumar (Registration No: 3893)

102

 G = (V, E)
Where V = {v1, v2……vn} , sets of vertices
E = {e1, e2…….en-1}, sets of edges where each edge ek is associated with vertices (vi ,

vj)

 (vi, vj) ∈ ek
If (i == j) then it is called self loop for vertex v.

Procedure: Self Loop

selfloop(chromosomes)

Begin
for i=1 to row do

 set 0 to fit;

 for j= 1 to (col – 1) do

 if(chromosomes(i, j) not equal to j)

 Add 1 to fit;

 end

 end

 Accumulate fit to chromosomes(i,s(2))

 {chromosomes(i,s(2))= chromosomes(i,s(2))+ fit;}

 end

return;

End

It returns 0 for each self loop and 1 for each non self loop occurrence. For 10 node
network, 10 is the maximum fitness point for each chromosome for self loop.

2. Cycle

This is one of the most important works of this research work. A function is

developed to detect the cycle in solution derived on the basis of randomly generated

Network Design Using Genetic Algorithm

103

chromosomes. When the solution is given by the chromosomes, it is completely

unknown that whether it is tree or graph. It is also not known that, if it is graph then

whether it is connected graph or unconnected graph. This function works in any of the

condition.

Procedure: Cycle

Cycle(chromosomes)

Begin
 Set k=0; t=(-1); b=1;e=5;

 for i = 1 to N(number of node) do

 new=0; s=i;

 for j = 1 to(N + 1) do

 if (new equal to 0)

 set check = s;

 else

 check = chromosomes(s);

 end

 set l=1;

 while(l<=k)do

 if (p(l) equal to check)

 if (new equal to 0)

 break;

 end

 if (l great than equal to b)

 if (k equal to (l+1))

 t=-1;

Anand Kumar (Registration No: 3893)

104

 b=k+1;

 come out from while loop ;

 end

 if (k greater than(l+1))

 e=0;

 come out from while loop

 end

 end

 if (l greater than b)

 t=-1;

 b=k+1;

 come out from while loop

 end

 end

 increment l by 1;

 end

 if (e == 0)

 come out from j for loop;

 end

 if (l greater thank)

 increment k by 1;

 p(k) = check;

 increment t by 1;

 end

 if (t equal to -1)

 come out from j for loop ;

Network Design Using Genetic Algorithm

105

 end

 if (new not equal to 0)

 s = chromosomes(s);

 end

 if (new equal to 0)

 new = 1;

 end

 end

 if (e equal to 0)

 come out from loop

 end

 end

if(e equal to 0)

 disp('cycle');

else

 disp('no cycle') ;

end

End

This function checks the existence of cycle for each chromosome. In the case of
existence of cycle it allocates 0 other wise 1. It returns 1 for non cycle and 0 for cycle
for each chromosome.

Cycle Description:

To explain the working of this function, following example is considered:

Table 5.5 Randomly generated chromosome
Node → 1 2 3 4 5 6 7 8 9 10

Chromosom-12 2 10 4 9 6 7 5 9 8 3

Anand Kumar (Registration No: 3893)

106

A solution is drawn with the chromosome-12 from the Table 5.5

Figure 5.16 Illegal Spanning Tree (Cycle) based on chromosome-12

If it is started from node-1, and visit the node-2 given by chromosome12, at the same

time a list is maintained to record the newly visited node. There must not be repeated

entry of visited node in the list.

Array

location
1 2 3 4 5 6 7 8 9 10

Stored

nodes
1 2 10 3 4 9 8

Figure 5.17(a) List to store visited nodes

Network Design Using Genetic Algorithm

107

After storing the node-8 at location 7 in the list, the next node to be stored is node-9

because as per the chromosome12 (Table 5.5), but it already visited node and the

location difference will be <=2, so a new search is started by finding the next not

visited node with maintaining the ascending order, in this regard node-5 is the next

node which has to be visited and this process continues until all the node are not

visited. After the completion the list will be (Figure 5.17(b)) and the result is

“CYCLE”.

Array

location
1 2 3 4 5 6 7 8 9 10

Stored

nodes
1 2 10 3 4 9 8 5 6 7

Figure 5.17(b) List to store visited nodes

Now another case is considered with little variation where cycle is dissolved.

Chromosome-13 (Table-5.6) and Figure 5.18.

Table 5.6 Randomly generated chromosome
Node → 1 2 3 4 5 6 7 8 9 10

Chromosom-13 2 10 4 9 6 7 5 9 8 3

Figure 5.18 Legal Spanning Tree based on chromosome-13

Anand Kumar (Registration No: 3893)

108

Result: NO CYCLE

3. Isolation

• This function checks the isolated edge. (Figure 5.13) Illegal Spanning Tree based

on chromosome-9, because of isolated edge (1-9), in this case there is no self loop

and no cycle but isolation is found.

Procedure: Isolation

Isolate_Check(chromosomes)

Begin
for i=1 to row do

 set 0 to count ;

 for j=1 to (col -1)

 if(j equal to chromosomes(i, chromosomes(i,j)))

 increment count by 1;

 end

 end

 if (count greater than 2)

 chromosomes(i, col) = chromosomes(i, col) + 0;

 else

 chromosomes(i,col) = chromosomes(i,col) + 1;

 end

 end

End

It returns 1 for non isolation and 0 for isolation for each chromosome.

Network Design Using Genetic Algorithm

109

4. Degree Constraint

Degree-constrained spanning tree is a spanning tree where the maximum vertex

degree is limited to a certain constant k.

For n-node undirected graph G(V,E); positive integer k ≤ n.

In this research work various network of various size have been studied and a

relationship is observed between degree of spanning tree and sum of degree of each of

the node.

For a spanning tree of N node

d(N) = 2*N-2 (5.1)

This relationship has been derived on the basis of experimental data.

Proof: To prove this relationship four spanning tree (all the spanning tree of this

study has been consdired) considered network of different size has been considered.

Figure 5.19(a) Legal Spanning Tree

Anand Kumar (Registration No: 3893)

110

 Figure 5.19(b) Legal Spanning Tree

Figure 5.19(c) Legal Spanning Tree

Network Design Using Genetic Algorithm

111

Figure 5.19(d) Legal Spanning Tree

Procedure: Degree Constraint

degree_constraint_check(chromosomes,degree)

Begin
N=size(degree);

 for i=1 to row do

 set p=0 and total_degree=0;

 for j=1 to (col-1) do

 set d to 1

 for k=1 to (col-1) do

 if(chromosomes(i, k) equal to j)

 if(chromosomes(i, k) equal to k)

 decrement d by -1;

 end

 if(chromosomes(i,chromosomes(i, k))not equal to k)

Anand Kumar (Registration No: 3893)

112

 increment d by 1;

 end

 end

 end

 if((d greater than equal to degree(1,j)) && (d less than equal to degree(2,j)))

 increment p by 1;

 total_degree = total_degree + d;

 else

 out from inner loop;

 end

 end

 if((p equal to (col-1))AND total_degree equal to (2*N(2)-2)))

 chromosomes(i,col) = chromosomes(i,col) + 1;

 end

 end

End

This function checks the degree of each node within defined degree constraint range

minimum and maximum and assigns 1 to those whose degree constraint is within

range and equal to (2*N-2) otherwise 0

5. Path Constraint

This function is developed to check the existence of path between two nodes. In the

case of complete graph , this function is of no use, but it is useful for the directed and

simple incomplete graph. Here dist_matrx is the cost matrix of the graph or network.

Network Design Using Genetic Algorithm

113

Procedure: Path Constraint

 path constraint(chromosomes, dist_matrx)

Begin
for i=1 to row do

 set t=0;

 for j=1 to col-1 do

 set k = chromosomes(i,j);

 if(dist_matrx(j, k) not to equal 0)

 increment t by 1;

 else

 if(j equal to k)

 increment t by 1;

 end

 if(j not equal to k)

 out of loop;

 end

 end

 end

 if(t equal to (col-1))

 chromosomes(i,col) = chromosomes(i,col) + 1;

 end

end

End

This function checks the path constraint for each chromosome according to

Anand Kumar (Registration No: 3893)

114

availability of path from dist_matrx. If path available for each gene of the

chromosome then it assigns 1 otherwise it assigns 0

5.2.3 Selection

Selection provides the driving force in a GA. During each successive generation, a

proportion of the existing population is selected to breed a new generation. Individual

solutions are selected through a fitness-based process, where fitter solutions (as

measured by a fitness function) are typically more likely to be selected. Certain

selection methods rate the fitness of each solution and preferentially select the best

solutions. Other methods rate only a random sample of the population, as this process

may be very time-consuming.

 In this research work seven selection functions have been designed.

1. Random Selection

This selection function simply selects the chromosome on the basis of randomly

generated number. Randomly generated number decide the location of the

chromosome to be selected. If the number is not in the range of the chromosome

location, then it replaces with the fittest chromosome.

Procedure: Random Selection

random_selection(chromosomes)

Begin
set k=1;

for i=1 to row do

 r=randomly generate a number

 if((r equal to 0) OR (r greater than row))

Network Design Using Genetic Algorithm

115

 for l=1 to row do

 if(chromosomes(l,col)) equal to col+3

 Set r=l;

 end

 end

 end

 if(r equal to 0)

 set r=1;

 end

 for j=1 to col do

 new_chromosomes(k, j) = chromosomes(r, j);

 end

 increment k by 1;

end

 End

 it stores the selected chromosomes in the new_chromosomes matrix.

2. Roulette wheel Selection I

It is based on the simple concept of roulette wheel.

s = sum of fitness of all the chromosomes in the generated population

r = random number generated from the range (0 to s)

following example shows the concept:

Anand Kumar (Registration No: 3893)

116

Table 5.7 Randomly generated chromosome with Fitness

Chromosomes Fitness s

1 11 11

2 10 21

3 11 32

4 8 40

5 10 50

6 10 60

7 10 70

8 11 81

9 12 93

10 11 104

Table 5.7 shows the 10 randomly generated chromosomes with its corresponding

fitness value. s is accumulated sum for roulette wheel procedure.

The value of r must be in the range of s such that.

11≤ r ≤104

if r is 29.8998

⇒ r < s(3), so 3rd chromosome will be selected and so on until n chromosomes are

not selected. Where n is total no. of chromosomes.

Network Design Using Genetic Algorithm

117

Procedure: Roulette wheel Selection I

Roulette_wheel_selectionI(chromosomes)

Begin
 r= randomly generated number

 set s(row,1)=0;

set temp=0;

for i=1 to row do

 temp = temp+chromosomes(i,col);

 s(i)= temp;

end

 set k=1;

 for i=1 to row do

 r= random generated number * temp;

 for j= 1 to row do

 if(r less than s(j))

 for t=1 to col do

 new_chromosomes(k,t)=chromosomes(j,t);

 end

 increment k by 1;

 out of loop;

 end

 end

 end

End

Anand Kumar (Registration No: 3893)

118

3. Roulette wheel Selection II

It is also based on the simple concept of roulette wheel but with change.

s = sum of fitness probability

fitness probability = fitness / avg

avg = sum of fitness / no of chromosome

r = random number generated from the range (0 to s)

Following example shows the concept:

avg = 109 / 10 = 10.900

Table 5.8 Randomly generated chromosome with Fitness
Chromosome Fitness Fitness

probability

s

1 12 1.1009 1.1009

2 10 .9174 2.0183

3 10 .9174 2.9358

4 11 1.0092 3.9450

5 13 1.1927 5.1376

6 11 1.0092 6.1468

7 13 1.1927 7.3394

8 9 0.8257 8.1651

9 10 0.9174 9.0826

10 10 0.9174 10.000

Network Design Using Genetic Algorithm

119

If r is 3.47 then

⇒ r < s(4), so 4th chromosome will be selected and so on until n chromosomes are

not selected. Where n is total no. of chromosomes.

Procedure: Roulette wheel Selection II

Roulette_wheel_selectionII (chromosomes)

Begin
r= randomly generated number

set s(row,1)=0;

set temp=0;

for i=1 to row do

 temp = temp+chromosomes(i,col);

 s(i)= temp;

end

avg = temp/row;

for i=1 to row do

 temp=(chromosomes(i, col)/avg);

end

set temp=0;

for i=1 to row do

 temp=temp+(chromosomes(i,col)/avg);

 s(i)=temp;

end

temp = s(i);

set k = 1;

Anand Kumar (Registration No: 3893)

120

for i =1 to row do

 r= random * temp;

 for j = 1 to row

 if(r less than s(j))

 for t=1 to col

 new_chromosomes(k, t)=chromosomes(j, t);

 end

 increment k by 1;

 out of loop ;

 end

 end

 end

End

4. Sort Selection

This function sorts the chromosome , then sorted chromosome is selected.

Procedure: Sort_Selection

Sort_selection(chromosomes)

Begin
Set k=1;

Set t=2;

while(k less than equal to row) do

 for i=1 to row do

Network Design Using Genetic Algorithm

121

 if(chromosomes(i, col) equal to (col+t))

 for j = 1 to col do

 new_chromosomes(k, j)= chromosomes(i, j);

 end

 increment k by 1;

 end

 end

 decrement t by 1

 end

End

5. Fittest Selection

This function selects only the fittest chromosome up to a fixed fitness level

Procedure: Fittest_Selection

Fittest_selection(chromosomes)

Begin
Set k=1;

Set t=2;

while(k less than equal to row)

 for i=1 to row do

 if(chromosomes((i, col) equal to (col+t))

 for j=1 to col do

 new_chromosomes(k, j)=chromosomes(i, j);

Anand Kumar (Registration No: 3893)

122

 end

 increment k by 1;

 end

 end

 if(k greater than row)

 out of loop;

 end

 decrement t by 1;

 if(t less than (-1))

 set t=2;

 end

end

End

6. Selection Sort SelectionI

This selection function is based on selection sort. It generates two random numbers

for two random positions. These two position chromosomes are selected, compared

and the greatest one is selected. It repeats n times where n are no of chromosome.

Procedure: Selection _Sort_SelectionI

Selection_Sort_Selection(chromosomes)

Begin
Set k=1;

Network Design Using Genetic Algorithm

123

Set t=2;

 for i=1 to row do

 p = randomly generated number;

 q = randomly generated number;

 if(p equal to 0)

 set p=1;

 end

 if(q equal to 0)

 set q=1;

 end

 if(chromosomes(p,col) greater than chromosomes(q,col))

 for j=1 to col do

 new_chromosomes(k,j)= chromosomes(p,j);

 end

 increment k by 1;

 else

 for j= 1 to col do

 new_chromosomes(k,j)=chromosomes(q,j);

 end

 increment k by 1;

 end

 end

End

Anand Kumar (Registration No: 3893)

124

7. Selection Sort SelectionII

This selection function is based on selection sort. It generates two random numbers

for two random positions. These two position chromosomes are selected, compared

and the smallest one is selected. It repeats n times where n are no of chromosome

Procedure: Selection_Sort_SelectionII

Selection_Sort_SelectionII(chromosomes)

Begin
Set k=1;

Set t=2;

 for i=1 to row do

 p = randomly generated number;

 q = randomly generated number;

 if(p equal to 0)

 set p=1;

 end

 if(q equal to 0)

 set q=1;

 end

if(chromosomes(p,col) smaller than chromosomes(q,col))

 for j=1 to col do

 new_chromosomes(k,j)= chromosomes(p,j);

 end

 increment k by 1;

Network Design Using Genetic Algorithm

125

 else

 for j= 1 to col do

 new_chromosomes(k,j)=chromosomes(q,j);

 end

 increment k by 1;

 end

 end

End

5.2.4 Genetic Operators

A genetic operator is an operator used in genetic algorithms to maintain genetic

diversity. Genetic variation is a necessity for the process of evolution. Genetic

operators used in genetic algorithms are analogous to those which occur in the natural

world: survival of the fittest, or selection; reproduction (crossover, also called

recombination); and mutation

5.2.4.1 Crossover

In genetic algorithms, crossover is a genetic operator used to vary the

programming[68,69] of a chromosome or chromosomes from one generation to the

next. It is analogous to reproduction and biological crossover, upon which genetic

algorithms are based. In this research work six different crossover function is

developed:

Anand Kumar (Registration No: 3893)

126

5.2.4.1.1 Variable Point Crossover

It is a single point crossover where point is changed with all pair of cromosome.

Following example explains the logic behind this crossover operator.

Cromosome1 1 4 6 9 8
Cromosome2 2 3 5 7 8
Cromosome3 4 3 2 1 8
Cromosome4 6 7 7 5 4

 Figure 5.20(a)

 ↓
Cromosome1 1 4 6 9 8
Cromosome2 2 3 5 7 8

Figure 5.20(b)

In figure 5.20(b) it has been shown that crossover will take place on first place(first

point) after the crossover it will become (figure 5.20(c)).

Cromosome1 2 4 6 9 8
Cromosome2 1 3 5 7 8

Figure 5.20(c)

Since it is variable point crossover, the next two crossover3 and crossover4 will be

exchange their bits on ssecond place(second point)

 ↓------↓

Cromosome3 4 3 2 1 8
Cromosome4 6 7 7 5 4

Figure 5.20(d)

Cromosome3 6 7 2 1 8
Cromosome4 4 3 7 5 4

Figure 5.20(e)

Network Design Using Genetic Algorithm

127

Procedure: Variable_point_crossover

Variable_point_crossover(chromosomes)

Begin
Set t=1 and i=1;

while(i less than row) do

 for j=1 to t do

 temp = chromosomes(i, j);

 shift chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 increment i by 2;

 increment t by 1;

 if(t greater than >col)

 set t=1;

 end

end

End

5.2.4.1.2 Fixed Two Point Crossover

It is a two point crossover where both the point begin and end, is fixed for all pair of

cromosome. these two points are randomly generated and fixed for all the

chromosomes Following example explains the logic behind this crossover operator.

Same figure 5.20(a) is considered here

Anand Kumar (Registration No: 3893)

128

 ↓-------------------↓

Cromosome1 1 4 6 9 8
Cromosome2 2 3 5 7 8
Cromosome3 4 3 2 1 8
Cromosome4 6 7 7 5 4

 Figure 5.20(f)

After fixed two point crossover—

Cromosome1 1 4 5 7 8
Cromosome2 2 3 6 9 8
Cromosome3 4 3 7 5 4
Cromosome4 6 7 2 1 8

Figure 5.20(g)

Procedure: Fixed_two_point_crossover

Fixed_two_point_crossover(chromosomes)

Begin
Set t=1 and i=1;

p= randomly generated number within the limit;

q= randomly generated number within the limit;;

if(p equal to 0)

 set p=1;

end

if(q equal to 0)

 set q=1;

end

if(p greater than q)

 p1=q;

 p2=p;

Network Design Using Genetic Algorithm

129

else

 p1=p;

 p2=q;

end

while(I less than row) do

 for j=p1 to p2 do

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 increment i by 2;

 increment t by 1;

 if(t greater than col)

 set t=1;

 end

end

End

5.2.4.1.3 Variable Two Point Crossover

It is a two point crossover where both the point begin and end, is different for each

pair of cromosome. These two points are randomly generated for each pair

chromosomes Following example explains the logic behind this crossover operator.

Same figure 5.20(a) is splitted here as 5.20(h) and 5.20(i).

Anand Kumar (Registration No: 3893)

130

 ↓----------------↓

Cromosome1 1 4 6 9 8
Cromosome2 2 3 5 7 8

 Figure 5.20(h)

 ↓-------------------------↓

Cromosome3 4 3 2 1 8
Cromosome4 6 7 7 5 4

Figure 5.20(i)

After Variable two point crossover—

Cromosome1 2 3 5 9 8
Cromosome2 1 4 6 7 8
Cromosome3 4 7 7 5 4
Cromosome4 6 3 2 1 8

Figure 5.20(j)

Procedure: Variable_two_point_crossover

Variable_two_point_crossover(chromosomes)

Begin
Set i=1;

while(i less than row)

 p= randomly generated number within the limit;

 if(p equal to 0)

 set p=1;

 end

Network Design Using Genetic Algorithm

131

q= randomly generated number within the limit;

if(q equal to 0)

 set q=1;

end

 if(p greater than q)

 p1=q;

 p2=p;

else

 p1=p;

 p2=q;

end

 for j=p1 to p2 do

 temp = chromosomes(i,j);

 shift chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 increment i by 2;

end

End

5.2.4.1.4 Uniform Crossover

It is a multi point crossover where multiple random points are generated and bits are

exchanged between these points only. These points are fixed for each pair of

cromosome. Following example explains the logic behind this crossover operator.

Anand Kumar (Registration No: 3893)

132

Randomly generated points are considered 2,5,8 and 9. so exchange of bits will occur

between 2-5 and 8-9, remaining bits will be unchanged.

 ↓------------↓ ↓---↓

Cromosome1 8 5 10 1 9 5 9 9 8 9
Cromosome2 4 4 3 4 9 8 9 3 4 7

 Figure 5.20(k)

After uniform crossover-

Cromosome1 8 4 3 4 9 5 9 3 4 9
Cromosome2 4 5 10 1 9 8 9 9 8 7

 Figure 5.20(l)

Procedure: Uniform_crossover

Uniform_crossover(chromosomes)

Begin

t=1;i=1;

p= randomly generated number within the limit;

q= randomly generated number within the limit;

r= randomly generated number within the limit;

s= randomly generated number within the limit;

sorted_pos =sort(p,q,r,s); { all these four numbers are

sorted}

Network Design Using Genetic Algorithm

133

while(i less than row) do

 for j = p to q do

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 for j = r to s do

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 incremetnt i by 2

end

End

5.2.4.1.5 Hybrid CrossoverI

It is a multi point , multi parent crossover where multiple random points are generated

and bits are exchanged between these points only. These points are fixed for each

pair of cromosome.exchanged are made in multiple parents at a time.since

multiparents have been used so it is called hybrid crossover. Following example

explains the logic behind this crossover operator.

Consider the randomly generated points are 2,5,8 and 9. so exchange of bits will

occur between 2-5 and 8-9, remaining bits will be unchanged.

Anand Kumar (Registration No: 3893)

134

 ↓------------↓ ↓---↓

Cromosome1 8 4 3 4 9 5 9 3 4 9
Cromosome2 4 5 10 1 9 8 9 9 8 7
Chromosome3 6 3 5 7 1 1 2 9 8 6

Figure 5.20(m)

After uniform crossover-

Cromosome1 8 5 10 1 9 5 9 9 8 9
Cromosome2 4 3 5 7 1 8 9 9 8 7
Chromosome3 6 4 3 4 9 1 2 3 4 6

Figure 5.20(n)

Procedure: Hybrid_crossoverI

Hybrid_crossover(chromosomes)

Begin
t=1;i=1;

p= randomly generated number within the limit;

q= randomly generated number within the limit;

r= randomly generated number within the limit;

s= randomly generated number within the limit;

sorted_pos =sort(p,q,r,s); { all these four numbers are

sorted}

while(i less than row) do

Network Design Using Genetic Algorithm

135

 for j = p to q do

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 for j = r to s do

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 increment i by 3; { it’s a 3 parent crossover }

end

End
__

5.2.4.1.6 Hybrid CrossoverII

It is a multi point , multi parent and variable crossover where multiple random points

are generated and bits are exchanged between these points only. These points are

randomly generated for each parent combination of cromosome. Exchange are made

in multiple parents at a time. since multiparents have been used so it is called hybrid

crossover. Following example explains the logic behind this crossover operator.

There are combination of three parent. For the first three parents randomly generated

points are 2,5,8 and 9. so exchange of bits will occur between 2-5 and 8-9, remaining

Anand Kumar (Registration No: 3893)

136

bits will be unchanged. For the next three parents randomly generated numbers are

1,4,7,10. so exchange will be made between 1-4 and 7-10, remaining bits will be

exchanged.

 ↓------------↓ ↓---↓

Cromosome1 8 5 10 1 9 5 9 9 8 9
Cromosome2 4 3 5 7 1 8 9 9 8 7
Chromosome3 6 4 3 4 9 1 2 3 4 6
Cromosome4 5 1 4 9 6 2 1 3 10 1
Cromosome5 4 2 5 8 7 3 4 5 10 3
Chromosom6 3 3 6 7 8 2 1 9 1 9

 ↑ ---------------------↑ ↑ ------------------↑

Figure 5.20(o)

After Crossover-

Cromosome1 8 3 5 7 1 5 9 9 8 9
Cromosome2 4 4 3 4 9 8 9 3 4 7
Chromosome3 6 5 10 1 9 1 2 9 8 6
Cromosome4 4 2 5 8 6 2 4 5 10 3
Cromosome5 3 3 6 7 7 3 1 9 1 9
Chromosom6 5 1 4 9 8 2 1 3 10 1

Figure 5.20(p)

Procedure: Hybrid_crossoverII

Hybrid_crossoverII(chromosomes)

Begin
t=1;i=1;

p= randomly generated number within the limit;

q= randomly generated number within the limit;

r= randomly generated number within the limit;

s= randomly generated number within the limit;

Network Design Using Genetic Algorithm

137

sorted_pos =sort(pos); { all these four numbers are

sorted}

while(i less than row) do

 for j = p to q do

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 for j = r to s do

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 increment I by 3;{ for 3 parent combination}

p= randomly generated number within the limit;

q= randomly generated number within the limit;

r= randomly generated number within the limit;

s= randomly generated number within the limit;

sorted_pos =sort(pos); {all these four numbers are

sorted}

end

End

Anand Kumar (Registration No: 3893)

138

5.2.4.2 Mutation

In genetic algorithms of computing, mutation is a genetic operator used to maintain

genetic diversity from one generation of a population of algorithm chromosomes to

the next. It is analogous to biological mutation.

The classic example of a mutation operator involves a probability that an arbitrary bit

in a genetic sequence will be changed from its original state. A common method of

implementing the mutation operator involves generating a random variable for each

bit in a sequence. This random variable tells whether or not a particular bit will be

modified. This mutation procedure, based on the biological point mutation, is called

single point mutation. Other types are inversion and floating point mutation. When the

gene encoding is restrictive as in permutation problems, mutations are swaps,

inversions and scrambles.

The purpose of mutation in GAs is preserving and introducing diversity. Mutation

should allow the algorithm to avoid local minima by preventing the population of

chromosomes from becoming too similar to each other, thus slowing or even stopping

evolution. This reasoning also explains the fact that most GA systems avoid only

taking the fitness of the population in generating the next but rather a random (or

semi-random) selection with a weighting toward those that are fitter.

In this research work six different mutation function is developed:

5.2.4.2.1 Mutation-I

This mutation operator mutates only those chromosomes which does not have the

maximum fitness. The logic applied behind this function is to simply find the

chromosome and change its value with its position.

Network Design Using Genetic Algorithm

139

 If first chromosome is selected then its first place will be replaced by maximum

number where maximum number is equal to number of node. Similarly if second

unfit chromosome is selected then its second position will be replaced by maximum

number-1 and so on.

Procedure: MutationI

Mutation1(chromosome)

Begin
Set k=1;

for i=1 to row do

 if(chromosome(i, col) not equal to maximum fitness)

 new_chromosome(i,i) = (col-i);

 end

end

for i=1 to row

 for j=1 to col-1 do

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

End

5.2.4.2.2 MutationII

This mutation operator mutates only those chromosomes which does not have the

maximum fitness value. Mutation is done to remove self loop. If the locus and allele

both have the same vlaue, than this value is replaced by (position + 1). This function

is also working as the repairing of chromosome.

Anand Kumar (Registration No: 3893)

140

Procedure: Mutation-II

mutationII(chromosome)

Begin
set k=1;

for i=1 to row do

 if(chromosome(i, col) not equal to maximum fitness)

 for j=1 to col-1 do

 if(chromosome(i,j) == j)

 if(j equal to col-1)

 new_chromosome(i,j) = j-1;

 else

 new_chromosome(i,j) = j+1;

 end

 end

 end

 end

end

for i=1 to row do

 for j=1 to col-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

End

Network Design Using Genetic Algorithm

141

5.2.4.2.3 Random Mutation

This mutation operator mutates only those chromosomes which does not have the

maximum fitness value.Mutation is done by selecting a random position and replace

its value with random number. It is considered that no self loop could form at the time

of replacement.

Procedure: Random_mutation

Random_mutation(chromosome)

Begin
set k=1;

for i=1 to row do

 if(chromosome(i, col) not equal to maximum fitness)

 posi = randomly generated number within limit;

 val = randomly generated number within limit;

 if(posi equal to 0)

 posi=1;

 end

 if(val equal to 0)

 val=1;

 end

 if((posi equal to val)AND (posi == col-1))

 chromosome(i,posi) = val-1;

 else

 chromosome(i,posi) = val;

 end

 end

Anand Kumar (Registration No: 3893)

142

 end

for i=1 to row do

 for j=1 to col-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

End

5.2.4.2.4 Swap Mutation

This mutation operator swaps two random position of each of the chromosomes .

If the randomly generated positions are 3 and 7.

 ↓ ↓

Chromosom 5 1 4 9 8 2 1 3 10 1

Figure 5.20(q)

After mutation-

Chromosom 5 1 1 9 8 2 4 3 10 1

Figure 5.20(r)

Procedure: Swap_mutation

Swap_mutation(new_chromosome)

Begin
Set k=1;

 for i=1 to row do

Network Design Using Genetic Algorithm

143

 p= randomly generated number within the limit;

 q= randomly generated number within the limit;

 temp = new_chromosome(i,p);

 new_chromosome(i,p) = new_chromosome(i,q);

 new_chromosome(i,q) = temp;

 end

End

5.2.4.2.5 Mutation Inversion

This mutation operator inverts the genes between two random position for each of the

chromosomes . For each chromosome there are different random position.

If the randomly generated positions are 2 and 8.

 ↓ ↓

Chromosom 5 1 4 9 8 2 1 3 10 1

Figure 5.20(s)

After mutation-

Chromosom 5 3 1 2 8 9 4 1 10 1

Figure 5.20(t)

Procedure: Mutation_Inversion

Mutation inversion(new_chromosome)

Begin
Set k=1;

 for i=1 to row do

Anand Kumar (Registration No: 3893)

144

 p= randomly generated number within the limit;

 q= randomly generated number within the limit;

 sort p,q

 for x = p to q do

 temp = new_chromosome(i,x);

 new_chromosome(i,x) = new_chromosome(i,q);

 new_chromosome(i,q) = temp;

 decrement q by - 1;

 if (x == q) || (x > q)

 break;

 end

 end

 end

End

5.2.4.2.6 Mutation Insertion

This mutation operator inserts one gene with another gene by displacing other genes.

Two random positions are generated to denote two gene, then one random place gene

is inserted with the another random place gene. Other inbetween genes are shifted.

For each chromosome there are different random position.

If the randomly generated positions are 2 and 8.

 ↓ ↓

Chromosom 5 1 4 9 8 2 1 3 10 1

Figure 5.20(u)

Network Design Using Genetic Algorithm

145

After mutation-

 ↓ →

Chromosom 5 1 3 4 9 8 2 1 10 1

Figure 5.20(v)

Procedure: Mutation_Insertion

mutation_insertion(new_chromosome)

Begin
 Set k=1;

 for i=1 to row do

 p= randomly generated number within the limit;

 q= randomly generated number within the limit;

 sort p,q

 temp = new_chromosome(i, q);

 if(p not equal to q)

 x = q-1;

 While (x greater than equal to p+1)

 new_chromosome(i,x+1) = new_chromosome(i,x);

 decrement x by -1;

 end

 new_chromosome(i,p+1) = temp;

 end

end

End

Anand Kumar (Registration No: 3893)

146

Network Design Using Genetic Algorithm

147

CHAPTER 6

Experimental Design and Results

In order to examine the proposed genetic algorithm, various different size of networks

are considered. The network is considered as a weighted graph which is further

represented with the adjacency matrix. The adjacency matrix contains the distance

between node. The network size varies from 10 to 1000 nodes. For the connectivity of

the node, a table is maintained for each graph which contains the details of degree of

each node of that graph.

All the experimenatal data is separately maintained because it is bulky and not

possible to include in thesis. In the experimenatal data, execution of all the 546 cases

are saved with step by step execution and the final result.

Genetic Algorithm is a step by step process where the process starts from population

generation and further evaluation, selection and genetic operation. The general

working of genetic algorithm is discussed in section 4.1 of chapter 4. In this proposed

genetic algorithm, the actual steps of genetic algorithm are kept as it is but evaluation

process is repeated because of the uncertain nature of this genetic algorithm. At the

same time the best result is preserved for the next generation also. The result is

replaced with the better result whenever it is derived from the next generation

otherwise previous better result is maintained. Keeping all this in consideration, the

proposed genetic algorithm is designed as following-

Anand Kumar (Registration No: 3893)

148

Procedure: Proposed Genetic Algorithm

1. Initialization of parent population.
2. Evaluation based on the following fitness functions

a) self loop()

b) cycle()

c) path constraint()

d) degree constraint()

e) isolation()

f) store the complete fit chromosome

3. Selection of the chromosome for the next generation.
Selection based on following function.

1. random selection

2. roulette wheel- I selection

3. roulette wheel- II selection

4. sort selection

5. fittest selection

6. selection sort selection-I

7. selection sort selection-II

4. Crossover/recombination based on following function
a) variable one point crossover

b) Fixed two point crossover

c) variable two point crossover

d) uniform crossover

e) hybrid crossover-1

f) hybrid crossover-2

Network Design Using Genetic Algorithm

149

5. Evaluation (same as step-2)
6. Mutation based on following function

1. mutation-1

2. mutation-2

3. random mutation

4. swap mutation

5. inversion mutation

6. hybrid (insertion) mutation

7. Evaluate child and Go to step 3 until termination
criteria satisfies

6.1 Experimental Design of the Backbone Network

The experimental design of this research work is based on the procedure “proposed

genetic algorithm”. The experiment is carried out in step by step manner as the steps

are mentioned in the above procedure. To show the experimental design a network is

considered of 10 nodes which is further represented by a complete graph. For the

experiment, this complete graph is considered as an adjacency matrix which consists

of the distance between each pair of node in the complete graph. First of all network

is represented then procedure “proposed genetic algorithm” is followed step by step.

6.1.1 Backbone Network Representation

The Figure 6.1 shows the different locations to be connected, all these locations have

direct path to reach to other locations. All these locations are connected with each

other and represented as a complete graph in Figure 6.1.

Anand Kumar (Registration No: 3893)

150

Figure 6.1 Ten different locations to be connected

A complete weighted graph is considered here which represents a backbone network

to connect different locations.

Table 6.1 Adjacency matrix of complete graph of Figure 6.1

Node 1 2 3 4 5 6 7 8 9 10

1 0 42 29 43 25 62 46 41 52 33

2 42 0 57 28 25 39 62 36 6 51

3 29 57 0 57 14 41 58 39 38 56

4 43 28 57 0 37 9 30 39 27 55

5 25 25 14 37 0 35 67 52 24 71

6 62 39 41 9 35 0 50 15 34 48

7 46 62 58 30 67 50 0 68 40 69

8 41 36 39 39 52 15 68 0 55 28

9 52 6 38 27 24 34 40 55 0 65

10 33 51 56 55 71 48 69 28 65 0

Network Design Using Genetic Algorithm

151

6.1.2 Initialization of parent population

This is the first step of genetic algorithm after the network presentation. In this

research work, parent population is generated randomly. Population means

chromosomes. For the simplicity, 10 sets of chromosomes have been generated here,

since this is the first population so it is called parent population. The length of each

chromosome is equal to the number of node present in graph to be connected as a

backbone network. Table 6.2 shows the 10 sets of randomly generated chromosomes.

Table 6.2 Randomly generated chromosomes
Chromosome1 8 3 6 2 2 6 3 10 1 9
Chromosome2 2 8 4 7 4 1 2 1 2 7
Chromosome3 1 8 10 4 1 9 5 9 2 10
Chromosome4 8 9 2 8 6 8 2 1 1 8
Chromosome5 7 5 7 7 2 7 8 7 1 3
Chromosom6 7 6 6 6 1 8 10 8 6 7
Chromosome7 6 10 4 2 7 4 1 5 9 2
Chromosome8 4 4 1 10 3 6 5 9 4 3
Chromosome9 4 1 1 3 7 6 1 9 4 7
Chromosome10 8 9 4 9 4 5 8 6 10 5

These randomly generated chromosomes represent 10 different networks. And now

these chromosomes will be evaluated by fitness functions.

6.1.3 Evaluation based on fitness functions

To evaluate these chromosomes, five different fitness functions have been developed

as it has been discussed in the section 5.2.2, the reason of being illegal chromosome.

6.1.3.1 Cycle

This function assigns 0 for cycle and 1 for NO-cycle to each chromosome. Table 6.3

presents the status of each of the chromosomes. The last column of this table shows

Anand Kumar (Registration No: 3893)

152

the fitness of each of the chromosome. Each 0 represent the presence of the cycle and

1 cycle free network.

Table 6.3 Fitness of chromosomes after cycle check

Cromosome1 8 3 6 2 2 6 3 10 1 9 0
Cromosome2 2 8 4 7 4 1 2 1 2 7 0

Chromosome3 1 8 10 4 1 9 5 9 2 10 0
Cromosome4 8 9 2 8 6 8 2 1 1 8 1
Cromosome5 7 5 7 7 2 7 8 7 1 3 1
Chromosom6 7 6 6 6 1 8 10 8 6 7 1
Chromosome7 6 10 4 2 7 4 1 5 9 2 1
Cromosome8 4 4 1 10 3 6 5 9 4 3 0
Cromosome9 4 1 1 3 7 6 1 9 4 7 0

Chromosom10 8 9 4 9 4 5 8 6 10 5 0

6.1.3.2 Path Constraint

This function is not applicable here because it is a complete graph and paths are

available from each node to each node. This function will be applicable for

incomplete or partial complete graph where paths are not available between certain

nodes. this function is very useful in the case of restricted path where specifically

paths have mentioned. This function plays a very important role for the shortest path

problem which is discussed in next chapter. So in this case each of the chromosome

will be assigned fitness 1 and it will be added with the existing fitness. Table 6.4

presents the fitness status of each of the chromosomes.

Network Design Using Genetic Algorithm

153

Table 6.4 Fitness of chromosomes after path constraint check

Cromosome1 8 3 6 2 2 6 3 10 1 9 1
Cromosome2 2 8 4 7 4 1 2 1 2 7 1

Chromosome3 1 8 10 4 1 9 5 9 2 10 1
Cromosome4 8 9 2 8 6 8 2 1 1 8 2
Cromosome5 7 5 7 7 2 7 8 7 1 3 2
Chromosom6 7 6 6 6 1 8 10 8 6 7 2
Chromosome7 6 10 4 2 7 4 1 5 9 2 2
Cromosome8 4 4 1 10 3 6 5 9 4 3 1
Cromosome9 4 1 1 3 7 6 1 9 4 7 1

Chromosom10 8 9 4 9 4 5 8 6 10 5 1

6.1.3.3 Self loop

This function assigns fitness 1 to each gene of the chromosome, it means if there is no

self loop in a chromosome, the total fitness for the chromosome will be 10. Table 6.5

presents the fitness status of each of the chromosomes.

Table 6.5 Fitness of chromosomes after self loop check

Cromosome1 8 3 6 2 2 6 3 10 1 9 10
Cromosome2 2 8 4 7 4 1 2 1 2 7 11

Chromosome3 1 8 10 4 1 9 5 9 2 10 8
Cromosome4 8 9 2 8 6 8 2 1 1 8 12
Cromosome5 7 5 7 7 2 7 8 7 1 3 12
Chromosom6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 6 10 4 2 7 4 1 5 9 2 11
Cromosome8 4 4 1 10 3 6 5 9 4 3 10
Cromosome9 4 1 1 3 7 6 1 9 4 7 10

Chromosom10 8 9 4 9 4 5 8 6 10 5 11

Anand Kumar (Registration No: 3893)

154

Table 6.5 shows that only chromosome 4 and chromosome 5 has full fitness after self
loop check.

6.1.3.4 Isolation

This function assigns 0 for isolation and 1 for NO-isolation to each chromosome.

Table 6.6 presents the status of each of the chromosomes.

Table 6.6 Fitness of chromosomes after isolation check

Cromosome1 8 3 6 2 2 6 3 10 1 9 11
Cromosome2 2 8 4 7 4 1 2 1 2 7 12

Chromosome3 1 8 10 4 1 9 5 9 2 10 8
Cromosome4 8 9 2 8 6 8 2 1 1 8 13
Cromosome5 7 5 7 7 2 7 8 7 1 3 12
Chromosom6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 6 10 4 2 7 4 1 5 9 2 11
Cromosome8 4 4 1 10 3 6 5 9 4 3 11
Cromosome9 4 1 1 3 7 6 1 9 4 7 11

Chromosom10 8 9 4 9 4 5 8 6 10 5 12

6.1.3.5 Degree constraint

This function is one of the important functions which converts this minimum

spanning tree to degree constrained minimum spanning tree. For each node, degree is

fixed which shows the connectivity of the node with other node. The degree varies

from minimum to maximum. For the fixed degree, minimum and maximum are equal.

Table 6.7 Degree of each node of the network

Nodes Degree 1 2 3 4 5 6 7 8 9 10
Minimum 1 1 1 1 1 2 1 1 1 1

maximum 4 4 4 4 4 2 4 4 4 4

Network Design Using Genetic Algorithm

155

Table 6.8 presents the status of each of the chromosomes

Table 6.8 Fitness of chromosomes after degree constraint check

Cromosome1 8 3 6 2 2 6 3 10 1 9 11
Cromosome2 2 8 4 7 4 1 2 1 2 7 12

Chromosome3 1 8 10 4 1 9 5 9 2 10 8
Cromosome4 8 9 2 8 6 8 2 1 1 8 14
Cromosome5 7 5 7 7 2 7 8 7 1 3 12
Chromosom6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 6 10 4 2 7 4 1 5 9 2 11
Cromosome8 4 4 1 10 3 6 5 9 4 3 11
Cromosome9 4 1 1 3 7 6 1 9 4 7 11

Chromosom10 8 9 4 9 4 5 8 6 10 5 12

Table 6.8 shows that only chromosome 4 has full fitness after degree constraint check.

6.1.3.6 Storage of completely fit chromosome

First of all distance is calculated for each of the chromosome and then on the basis of

fitness table 6.9, completely fit chromosome is stored. If more than one chromosome

are present, then the minimum distance completely fit chromosome is stored.

Table 6.9 Fitness T able for 10 Node network

Fitness function Fitness value
Cycle 1

Self loop 10
Path constraint 1

Degree constraint 1
Isolation 1

Total Fitness 14

Distance of each chromosome is calculated on the basis of adjacency matrix Table 6.1

Anand Kumar (Registration No: 3893)

156

Table 6.10 Distance of chromosomes

Chromosome1 395
Chromosome2 442
Chromosome3 279
Chromosome4 335
Chromosome5 385
Chromosome6 278
Chromosome7 372
Chromosome8 374
Chromosome9 435

Chromosome10 422

On the basis of Table 6.8 it is clear that only one chromosome, chromosome-4 is

completely fit, so this chromosome will be stored as a fittest chromosome. Table6.11

shows the fittest chromosome with the last as a distance of the chromosome.

Table 6.11 Fittest chromosome

FittestCromosome 8 9 2 8 6 8 2 1 1 8 335

6.1.4 Selection of the chromosome for the next generation.

Seven selection functions have been developed in this research work but only one can

be used at a time. Here Roulette wheel selection method is considered. Table 6.12

shows the new set of chromosomes (child population) after the selection based on

roulette wheel method for next generation.

Network Design Using Genetic Algorithm

157

Table 6.12 selected child population (chromosomes)

Chromosome1 6 10 4 2 7 4 1 5 9 2
Chromosome2 4 4 1 10 3 6 5 9 4 3
Chromosome3 7 6 6 6 1 8 10 8 6 7
Chromosome4 7 6 6 6 1 8 10 8 6 7
Chromosome5 7 6 6 6 1 8 10 8 6 7
Chromosom6 7 6 6 6 1 8 10 8 6 7
Chromosome7 8 3 6 2 2 6 3 10 1 9
Chromosome8 4 4 1 10 3 6 5 9 4 3
Chromosome9 8 9 4 9 4 5 8 6 10 5
Chromosome10 8 9 2 8 6 8 2 1 1 8

6.1.5 Genetic Operator Applications

There are mainly two types of genetic operator, discussed in section 5.2.4.

6.1.5.1 Crossover/Recombination

Six crossover functions have been developed here, but any one can be used at a time.

Here hybrid crossover method is considered. . Table 6.13 shows the status of

chromosome bits after hybrid crossover.

Table 6.13 Hybrid crossoverd chromosomes

Chromosome1 6 10 4 10 3 4 1 5 4 3
Chromosome2 4 4 1 6 1 6 5 9 6 7
Chromosome3 7 6 6 2 7 8 10 8 9 2
Chromosome4 7 6 6 6 1 8 10 8 6 7
Chromosome5 7 6 6 6 1 8 10 8 6 7
Chromosom6 7 6 6 6 1 8 10 8 6 7
Chromosome7 8 3 6 10 3 6 3 10 4 3
Chromosome8 4 4 1 9 4 6 5 9 10 5
Chromosome9 8 9 4 2 2 5 8 6 1 9
Chromosome10 8 9 2 8 6 8 2 1 1 8

According to the proposed genetic algorithm, these hybrid crossovered chromosomes

will be evaluated. For evaluation the same 5 functions will be applied. Table 6.14

shows the total evaluation of each of the chromosome.

Anand Kumar (Registration No: 3893)

158

Table 6.14 Hybrid crossoverd chromosomes ater evaluation

Chromosome1 6 10 4 10 3 4 1 5 4 3 12
Chromosome2 4 4 1 6 1 6 5 9 6 7 13
Chromosome3 7 6 6 2 7 8 10 8 9 2 11
Chromosome4 7 6 6 6 1 8 10 8 6 7 11
Chromosome5 7 6 6 6 1 8 10 8 6 7 11
Chromosome6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 8 3 6 10 3 6 3 10 4 3 12
Chromosome8 4 4 1 9 4 6 5 9 10 5 11
Chromosome9 8 9 4 2 2 5 8 6 1 9 12
Chromosome10 8 9 2 8 6 8 2 1 1 8 14

As it is seen that there is only one completely fit chromosome, chromosome-10 which

has the fitness 14 and the previously stored chromosome has the fitness14 also so this

new chromosome will replace the previous one. Since both the previous and new

chromosome have the same fitness value and same distance, so replacement does not

make any difference but here it is replaced because of the maintenance of new set of

value.

Table 6.15 shows the current fittest chromosome.

Table 6.15 Fittest chromosome

FittestCromosome 8 9 2 8 6 8 2 1 1 8 335

6.1.5.2 Mutation

Six mutation functions have been developed here, but any one can be used at a time.

Here inversion mutation is considered.

Table 6.16 shows the status of chromosome bits after inversion mutation.

Network Design Using Genetic Algorithm

159

Table 6.16 Inversion mutated chromosomes

Chromosome1 6 10 3 10 4 4 1 5 4 3
Chromosome2 4 6 1 4 1 6 5 9 6 7
Chromosome3 7 6 6 2 7 8 10 8 9 2
Chromosome4 10 8 1 6 6 6 7 8 6 7
Chromosome5 7 6 6 6 1 8 10 8 6 7
Chromosom6 8 10 8 1 6 6 6 7 6 7
Chromosome7 8 3 6 10 3 6 3 10 4 3
Chromosome8 4 4 9 5 6 4 9 1 10 5
Chromosome9 8 9 8 5 2 2 4 6 1 9
Chromosome10 8 9 2 8 2 8 6 1 1 8

According to the proposed genetic algorithm, these inversion mutated chromosomes

will be evaluated. For evaluation the same 5 functions will be applied. Table 6.17

shows the total evaluation of each of the chromosome.

Table 6.17 Inversion mutated chromosomes after evaluation

Chromosome1 6 10 3 10 4 4 1 5 4 3 13
Chromosome2 4 6 1 4 1 6 5 9 6 7 11
Chromosome3 7 6 6 2 7 8 10 8 9 2 11
Chromosome4 10 8 1 6 6 6 7 8 6 7 9
Chromosome5 7 6 6 6 1 8 10 8 6 7 12
Chromosome6 8 10 8 1 6 6 6 7 6 7 12
Chromosome7 8 3 6 10 3 6 3 10 4 3 12
Chromosome8 4 4 9 5 6 4 9 1 10 5 12
Chromosome9 8 9 8 5 2 2 4 6 1 9 12
Chromosome10 8 9 2 8 2 8 6 1 1 8 14

As it is seen that there is only one completely fit chromosome, chromosome-10 which

has the fitness 14, with less distance 313 and the previously stored chromosome has

the fitness14, with distance 335,

Anand Kumar (Registration No: 3893)

160

This is one of the objectives to apply the evaluation after each application of genetic

operator. It has been proposed in this study and here it is proved also.

Table 6.18 shows the current fittest chromosome.

Table 6.18 Fittest chromosome

FittestCromosome 8 9 2 8 2 8 6 1 1 8 313

6.1.6 Termination

There may be many termination criteria, here for simplicity four generations have

been considered. After first generation, a chromosome of distance 313 is found. All

the remaining three generation details are given here. For simplicity, status of

chromosome is presented here after the evaluation.

After Second Generation

Evaluation chromosomes after crossover

Table 6.19 Crossovered chromosomes after evaluation

Chromosome1 8 6 1 4 1 2 4 6 6 7 11
Chromosome2 4 9 8 5 2 4 9 1 1 9 12
Chromosome3 4 4 9 5 6 6 5 9 10 5 12
Chromosome4 6 9 2 8 2 4 1 5 1 8 12
Chromosome5 4 10 3 10 4 6 5 9 4 3 11
Chromosome6 8 6 1 4 1 8 6 1 6 7 11
Chromosome7 8 10 3 10 4 6 6 7 4 3 11
Chromosome8 4 10 8 1 6 6 5 9 6 7 11
Chromosome9 6 6 1 4 1 4 1 5 6 7 12
Chromosome10 8 9 2 8 2 8 6 1 1 8 14

Network Design Using Genetic Algorithm

161

Chromosome-10 which has the fitness 14 and the previously stored chromosome has

the fitness14 also so this new chromosome will replace the previous one. Since both

the previous and new chromosome have the same fitness value and same distance, so

replacement does not make any difference but here it is replaced replace because of

the maintenance of new set of value.

Evaluation after mutation

Table 6.20 Mutated chromosomes after evaluation

Chromosome1 8 4 1 6 1 2 4 6 6 7 12
Chromosome2 4 9 5 8 2 4 9 1 1 9 12
Chromosome3 4 4 9 5 6 5 10 9 5 6 14
Chromosome4 6 1 4 2 8 2 9 5 1 8 13
Chromosome5 10 3 10 4 4 6 5 9 4 3 10
Chromosome6 8 6 1 4 8 1 6 1 6 7 11
Chromosome7 8 10 3 10 4 6 6 7 3 4 10
Chromosome8 4 10 8 1 6 9 5 6 6 7 12
Chromosome9 6 4 1 6 1 4 1 5 6 7 13
Chromosome10 8 9 2 8 2 8 6 1 1 8 14

Here chromosome-3 (distance 377) and chromosome-10 (distance 313) both are

completely fit, but the minimum distance calculated for chromosome-10 is 313.

Further previously stored chromosome has the distance 313. So replacement does not

make any difference but here it is replaced because of the maintenance of new set of

value.

Table 6.21 Fittest chromosome

FittestCromosome 8 9 2 8 2 8 6 1 1 8 313

Anand Kumar (Registration No: 3893)

162

After Third Generation

Evaluation after crossover

Table 6.22 Crossovered chromosomes after evaluation

Chromosome1 8 10 3 2 8 8 9 5 1 8 11
Chromosome2 6 1 4 8 2 6 6 1 1 8 13
Chromosome3 8 9 2 10 4 2 6 7 3 4 13
Chromosome4 4 9 5 1 6 6 5 6 6 7 11
Chromosome5 4 10 8 10 4 4 6 7 3 4 14
Chromosome6 8 10 3 8 2 9 9 1 1 9 11
Chromosome7 6 4 1 2 8 9 9 5 1 8 11
Chromosome8 6 1 4 1 6 4 5 6 6 7 12
Chromosome9 4 10 8 6 1 2 1 5 6 7 12
Chromosome10 6 4 1 6 1 4 1 5 6 7 13

Here chromosome-5 (distance 390) is the completely fit, but its distance is greater

than previously stored chromosome (distance 313), so there will be no replacement of

the chromosome and the fittest chromosome will be as it is Table 6.21

Evaluation after mutation

Table 6.23 Mutated chromosomes after evaluation

Chromosome1 8 10 3 9 8 8 2 5 1 8 11
Chromosome2 6 1 4 1 6 6 2 8 1 8 11
Chromosome3 8 9 2 10 4 2 6 7 3 4 13
Chromosome4 4 9 5 1 6 6 7 6 6 5 10
Chromosome5 4 10 8 3 7 6 4 4 10 4 11
Chromosome6 8 10 3 8 2 9 9 9 1 1 11
Chromosome7 2 1 4 6 8 9 9 5 1 8 12
Chromosome8 6 1 5 4 6 1 4 6 6 7 11
Chromosome9 4 10 5 1 2 1 6 8 6 7 11
Chromosome10 6 4 1 6 1 1 4 5 6 7 13

Network Design Using Genetic Algorithm

163

As it is seen from Table 6.23, there is no fit chromosome, so there will be no

replacement with the previously stored chromosome.

After Fourth Generation

Evaluation after crossover

Table 6.24 Crossovered chromosomes after evaluation

Chromosome1 8 9 5 1 8 6 7 6 6 8 11
Chromosome2 4 10 8 3 6 6 4 4 10 5 11
Chromosome3 4 10 3 9 7 8 2 5 1 4 11
Chromosome4 8 1 5 4 4 1 4 6 6 4 11
Chromosome5 6 10 5 1 6 1 6 8 6 7 11
Chromosome6 4 9 2 10 2 2 6 7 3 7 12
Chromosome7 8 1 5 4 4 1 4 6 6 4 11
Chromosome8 6 1 4 1 6 6 2 8 1 7 11
Chromosome9 6 9 2 10 6 2 6 7 3 8 12
Chromosome10 4 10 5 1 2 1 6 8 6 7 11

Again as from Table 6.24, there is no fit chromosome, so there will be no replacement

with the previously stored chromosome.

Evaluation after mutation

Table 6.25 Mutated chromosomes after evaluation

Chromosome1 8 9 5 1 6 8 7 6 6 8 11
Chromosome2 4 10 8 10 4 4 6 6 3 5 12
Chromosome3 4 10 3 9 4 1 5 2 8 7 11
Chromosome4 4 6 6 4 1 4 4 5 1 8 12
Chromosome5 6 6 1 6 1 5 10 8 6 7 10
Chromosome6 4 9 2 10 2 6 2 7 3 7 11
Chromosome7 8 1 5 4 1 4 4 6 6 4 12
Chromosome8 1 8 2 6 6 1 4 1 6 7 12
Chromosome9 8 3 7 6 2 6 10 2 9 6 11
Chromosome10 4 10 6 1 2 1 5 8 6 7 10

Anand Kumar (Registration No: 3893)

164

Again from Table 6.25, there is no fit chromosome, so there will be no replacement

with the previously stored chromosome.

So after four generation the fittest chromosome has the minimum distance 313 to

connect 10 different locations of the Figure 6.1.

6.2 Experimental Results

There are several factors which affects the result of network design problem using

genetic algorithm. These factors can be broadly classified in to following categories:

1. Genetic Algorithm Operators and Methods

2. Types of network

3. Constraints imposed by the requirement of the network

Figure 6.2 (a) Factors affects the performance of Network Design

GeneticAlgorithm Types of network Constraint

Methods Operators Complete Partial Degree Path

Populationn

Generation

Selection

Crossover

Mutation

Network Design Using Genetic Algorithm

165

Figure 6.2 (b) GA Factors that affects the performance of Network Design

Networks

In this research work, 15 networks have been considered of the size

10,20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900 and 1000. All

these networks have been represented with the help adjacency matrix. Each network

has degree constraint table. Each degree constraint table represents the degree of each

node of that table.

Genetic Operators

Selection Crossover Mutation

random selection

roulette wheel- I selection

roulettewheel- II selection

sort selection

fittest selection

selection sort selection-I

selection sort selection-II

variable one point crossover

Fixed two point crossover

Variable two point crossover

uniform crossover

hybrid crossover-1

hybrid crossover-2

mutation-1

mutation-2

random mutation

swap mutation

inversion mutation

Anand Kumar (Registration No: 3893)

166

In Figure 6.1(a) it is shown that there are there are three main factors which affect the

performance of network design problem. Further these factors are classified at

specific level shown in Figure 6.1(b).

In this experiment 15 networks have been considered with 546 different cases. These

parameters are basically from genetic operators. The considered parameters are

Selection, Crossover, Mutation, Population size and Number of generation.

First of all experiment is made for a small size network upto100 nodes, dividing into

three groups of network size 10, 20, 60 with the variation of population and

generation for the different crossover function.

6.2.1 Experiment based on crossover operator with generation and

population variation in genetic algorithm for small network design

problem

Three different network of size 10, 60 and 100 have been used. The experiment is

done in MATLAB R2008a version 7.6.0.324. [56, 57]The entire crossover is

experimented with various sizes of network and population –generation combination.

In this case following parameters have been considered:

Population size : 10 to 100

No of Generations : 10 to 100

Selection : Roulette Wheel

Mutation : Mutation I

 Following tables and figures display the result:

Network Design Using Genetic Algorithm

167

TABLE -6.26

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS-

NETWORK SIZE -10

Population generation
Single
Point

crossover

Double_
fixed point
crossover

Double
vary-point
crossover

10 100 307 297 315
20 100 257 302 277
30 100 286 260 252
40 100 286 308 276
50 100 269 274 233
60 100 251 221 263
70 100 247 286 251
80 100 271 240 278
90 100 262 254 245
100 100 231 268 207
200 100 237 245 254
300 100 242 258 252
400 100 248 229 226
500 100 249 225 195
1000 100 210 197 237

Netw ork Cost Chart

0

50

100

150

200

250

300

350

Population

C
os

t o
f n

et
w

or
k

Single Point crossov er Double Fix ed Point crossov er
Double Fix ed Point Crossov er

Figure 6.3 (a)

Anand Kumar (Registration No: 3893)

168

TABLE -6.27

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS-
NETWORK SIZE -10

Population generation

Single

Point

crossover

Double_

fixed point

crossover

Double

vary-point

crossover

100 10 317 298 291

100 20 248 265 263

100 30 249 280 261

100 40 256 251 284

100 50 255 245 271

100 60 222 260 267

100 70 220 223 258

100 80 265 229 225

100 90 242 274 228

100 100 241 226 255

100 200 237 246 262

100 300 234 266 209

100 400 250 253 241

100 500 248 235 270

100 600 232 255 233

100 700 208 248 224

100 800 240 251 238

100 900 265 213 240

100 1000 254 272 256

Network Design Using Genetic Algorithm

169

Network Cost Chart

0

50

100

150

200

250

300

350

Generation

C
os

t o
f n

et
w

or
k

Single Point Crossover Double Fixed Point Crossover
Double Vary Point Crossover

Figure 6.3 (b)

TABLE -6.28

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS-
NETWORK SIZE -60

Population generation
Single
Point

crossover

Double_
fixed point
crossover

Double
vary-point
crossover

20 100 0 2233 0
40 100 2457 2425 0
60 100 0 2285 2211
80 100 2246 2253 2166
100 100 2169 2166 2273
200 100 2161 2091 2142
300 100 2014 2084 2010
400 100 2053 2130 1933
500 100 2047 2066 1954
600 100 2031 2177 2065
700 100 2041 2047 2040
800 100 2013 1905 1983
900 100 2004 1983 2105
1000 100 1962 2032 2041

Anand Kumar (Registration No: 3893)

170

Network Cost Chart

0
500

1000
1500
2000
2500
3000

Population

C
os

t o
f n

et
w

or
k

Single Point Crossover Double Fixed Point Crossover
Double Vary Point Crossover

Figure 6.4 (a)

TABLE -6.29

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS-
NETWORK SIZE -60

Population generation
Single
Point

crossover

Double_
fixed point
crossover

Double
vary-point
crossover

100 10 0 0 2161
100 20 2133 2364 2386
100 30 2179 2212 2190
100 40 2189 2178 2170
100 50 2203 2201 2284
100 60 2061 2074 2187
100 70 2276 2216 2209
100 80 2248 2256 2151
100 90 2084 2013 2059
100 100 2254 2145 2092
100 200 2226 2218 2184
100 300 2081 2111 2234
100 400 2212 2152 2381
100 500 2076 2083 2245
100 600 2228 2151 2121
100 700 2140 2106 2139
100 800 2123 2180 2107
100 900 2134 2154 2144
100 1000 0 2238 2064

Network Design Using Genetic Algorithm

171

Network Cost Chart

0

500

1000

1500

2000

2500

3000

Generation

C
os

t o
f n

et
w

or
k

Single Point Crossover Double Fixed Point Crossover
Double Vary Point Crossover

Figure 6.4 (b)

TABLE -6.30

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS-
NETWORK SIZE -100

Population generation
Single
Point

crossover

Double_
fixed point
crossover

Double
vary-point
crossover

100 10 0 0 0
100 20 0 0 0
100 30 0 0 0
100 40 0 3789 3256
100 50 0 0 0
100 60 0 0 0
100 70 0 0 0
100 80 0 0 0
100 90 3883 0 0
100 100 0 0 0
100 200 0 0 0
100 300 0 0 0
100 400 0 0 3456
100 500 0 0 0
100 600 0 0 0
100 700 0 0 0
100 800 4356 0 4123
100 900 0 0 0
100 1000 0 3245 0

Anand Kumar (Registration No: 3893)

172

Network Cost Chart

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Generation

C
os

t o
f n

et
w

or
k

Single Point Crossover Double Fixed Point Crossover
Double Vary Point Crossover

Figure 6.5 (a)

TABLE -6.31

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS-
NETWORK SIZE -100

Population Generation
Single
Point

crossover

Double_
fixed point
crossover

Double
vary-point
crossover

50 100 0 0 0

100 100 0 0 3768

200 100 0 0 3478

300 100 3877 3855 3659

400 100 3666 3543 3624

500 100 3767 3874 3693

600 100 4013 3669 3547

700 100 3886 3335 3699

800 100 3692 3998 3678

900 100 3673 3321 3378

1000 100 3819 3330 3221

Network Design Using Genetic Algorithm

173

Network Cost Chart

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Population

C
os

t o
f n

et
w

or
k

Single Point Crossover Double Fixed Point Crossover
Double Vary Point Crossover

Figure 6.5 (b)

6.2.2 Experiment based on Selection Operator for small to large size

network
In this case following parameters have been considered:
Population size : 100
No of Generations : 100
Crossover Methods : Fixed two point crossover
Mutation : Random mutation

 Table 6.32 Experimental Result based on different Selection function

Network
Size

Random
Selection

Roulette
wheel

selection
I

Roulette
wheel

selection
II

Sort
Selection

Fittest
Selection

Selection
Sort-

selectionI

Selection
Sort-

selectionII

10 301 219 232 253 239 303 296
20 703 587 654 601 633 657 788
40 1577 1333 1381 1351 1235 1330 0
60 2353 2039 2231 2046 2186 2236 0
80 3014 3054 2844 2964 2841 2830 0
100 3810 3533 3648 3500 3502 3521 3795
200 8033 7358 7462 7580 7351 8171 0
300 11928 11175 11172 11571 10978 12013 11627
400 15838 15015 15485 15234 14923 0 0
500 20402 19503 19501 19247 19158 0 0
600 0 23690 23486 23532 23191 24014 0
700 27929 27145 27377 26874 26712 0 0
800 0 31338 30633 30462 31187 32049 0
900 35423 35386 35519 35314 35044 0 35933
1000 40217 39660 39330 38477 35889 0 0

Anand Kumar (Registration No: 3893)

174

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

C
O
S
T

O
F

N
E
T
W
O
R
K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NETWORK

 NETWORK COST CHART BASED ON SELECTION FUNCTION

Random Selection Roulette whell selectionI Roulette whell selectionII
Sort Selection Fittest Selection Selection Sort-selectionI
Selection Sort-selectionII

 Figure 6.6

Network Design Using Genetic Algorithm

175

6.2.3 Experiment based on Crossover Operator for small to large

size network

In this case following parameters have been considered:

Population size : 100

No of Generations : 100

Selection : Roulette Wheel Selection

Mutation : Random mutation

Table 6.33 Experimental Result based on different Crossover function

Network

Size
Variable
two point
crossover

Fixed
two point
crossover

One
point

crossover

Uniform
Crossover

Hybrid
Crossover

Hybrid
CrossoverII

10 248 227 259 248 288 268
20 607 638 664 626 644 639
40 1358 1376 1333 1305 1324 1353
60 2061 2201 2070 2098 2145 2196
80 2874 3030 3131 2987 2828 3111
100 3615 3480 3291 3501 3524 3571
200 7569 7548 7657 7586 7629 7375
300 11609 11184 11532 11512 11222 11252
400 15363 15056 15350 15612 15342 15617
500 19275 19461 19044 18992 19418 19116
600 23778 23269 23602 22855 23918 23492
700 27317 26711 0 27245 27404 27340
800 31687 0 31624 30899 32083 31417
900 35107 0 0 35959 34856 34694
1000 40673 39228 39723 39945 40127 39896

Anand Kumar (Registration No: 3893)

176

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

C
O
S
T

O
F

N
E
T
W
O
R
K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NETOWRK

NETWORK COST CHART BASED ON CROSSOVER FUNCTION

Variable two point crossover Fixed two point crossover One point crossover
Uniform Crossover Hybrid Crossover Hybrid CrossoverII

 Figure 6.7

Network Design Using Genetic Algorithm

177

6.2.4 Experiment based on Mutation Operator for small to large size

network

In this case following parameters have been considered:

Population size : 100

No of Generations : 100

Selection : Roulette Wheel Selection

Crossover : Uniform

Table 6.34 Experimental Result based on different Mutation function

Network

Size
Random
Mutation

MutationI MutationII Swap
Mutation

Inversion
Mutation

Insertion
Mutation

10 226 281 247 241 266 234
20 624 682 646 567 652 680
40 1262 1293 1388 1281 1238 1306
60 2028 2026 2189 1977 2140 2203
80 2981 2944 3121 2999 2933 2813
100 3632 3555 3738 3464 3455 3368
200 7730 7390 7353 7561 7344 7407
300 11387 11305 11359 11559 11228 11300
400 15454 15401 15815 15066 15252 15337
500 19245 19296 19297 19256 19240 19295
600 23589 23315 22999 23440 23095 23246
700 27200 27421 28198 27626 26860 27234
800 32002 31335 31266 31251 30852 30833
900 35184 34643 35156 35383 35027 35294
1000 39172 39092 39315 39291 39100 39503

Anand Kumar (Registration No: 3893)

178

0

5000

10000

15000

20000

25000

30000

35000

40000

C
O
S
T

O
F

N
E
T
W
O
R
K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NETWORK

NETWORK COST CHART BASED ON MUTATION FUNCTION

Random Mutation MutationI MutationII Sw ap Mutation Inversion Mutation Insertion Mutation

Figure 6.8

Network Design Using Genetic Algorithm

179

6.3 Experimental Code developed in MATLAB,

Version7.6.0.324(R2008a)

Main Program

disp('***')

;

disp('BACKBONE NETWORK DESIGN PROGRAM USING GENETIC

ALGORITHM ');

disp(' WRITTEN BY MR. ANAND KUMAR Ph.D Scholar

Registration N0. 3893)');

disp('DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF SCIENCE,

SAURASHTRA UNIVERSITY,RAJKOT INDIA');

disp(' Not to be used without permission of Anand

Kumar, Reproduction is not permitted.');

disp('**'

);

clear all;

% INITIALISATION OF PARENT POPULATION-(GENERATE

CHROMOSOME)

no_node = input ('ENTER THE NUMBER OF NODE :');

no_chromos = input ('ENTER THE NUMBER OF CHROMOSOME (even

number only) :');

chromosomes = round(rand(no_chromos,no_node)* no_node);

for i=1:no_chromos

 for j=1:no_node

 if(chromosomes(i,j) == 0)

 chromosomes(i,j)=1;

 end

 end

end

Anand Kumar (Registration No: 3893)

180

%disp('randomly generated chromosomes are ');

%disp(chromosomes);

%DISTANCE MATRIX%

%distance matrix generation is previously generate and

%stored such that all the diagonals are zero.

%here fixed .mat file is used for the matrix size

%10,20,26,40......100,150,200......1000.

size_matrix = input('ENTER THE SIZE OF MATRIX

10,20,26,40,60,80,100,150,200,250......1000 :','s');

load (size_matrix);

dist_matrx = d;

%disp('DISTANCE AMONG NODES');

%disp(dist_matrx);

%pause;

%EVALUATE CHROMOSOME

%THIS FUNCTION CALCULATES FITNESS FOR cycles

 chromosomes=cycle_calculatetry(chromosomes);

%disp('CHROMOSOMES AFTER CYCLE FITNESS');

%disp(chromosomes);

%%%

%THIS FUNCTION CALCULATES FITNESS FOR path constraint

chromosomes=path_constraint(chromosomes,dist_matrx);

%disp('CHROMOSOMES AFTER PATH CONSTRAINT FITNESS');

%disp(chromosomes);

%%%

 %THIS FUNCTION CALCULATES FITNESS FOR SELF LOOP

 chromosomes=selfloop_calculate6(chromosomes);

 %disp('CHROMOSOMES AFTER SELF LOOP FITNESS');

Network Design Using Genetic Algorithm

181

 %disp(chromosomes);

%%%

%THIS FUNCTION CALCULATES FITNESS FOR ISOLATED EDGE OR

ISOLATED TREE

chromosomes=isolate_calculate6(chromosomes);

%disp('CHROMOSOMES AFTER ISOLATION FITNESS');

%disp(chromosomes);

%%%

%THIS FUNCTION CALCULATES FITNESS FOR DEGREE CONSTRAINT

FOR

%EACH NODE

for i=1:10

degree(i) = input('degree?');

end

degree_matrix = input('ENTER THE OF DEGREE constraint of

MATRIX EXAMPLE ddegree10,

ddegree20,ddegree26.........sequence to size ;','s');

load (degree_matrix);

disp('DEGREE FOR EACH NODE');

disp(degree);

pause;

chromosomes=degree_constraint_calculate11(chromosomes,deg

ree);

disp('CHROMOSOMES AFTER DEGREE CONSTRAINT FITNESS');

disp(chromosomes);

%%%

%calculation of distance for each randomly generated

chromosomes%%

%%%

total_distance =

distance_calculate6(chromosomes,dist_matrx);

disp('DISTANCE FOR EACH CHROMOSOME');

%disp(total_distance);

Anand Kumar (Registration No: 3893)

182

%%%

%FIND THE FITTEST CHROMOSOME WITH MINIMUM DISANCE%%%%%%%

%%%

fittest_chromosome =

fittest_calculate_pc(chromosomes,total_distance);

disp('FITTEST CHROMOSOME WITH DISTANCE');

disp(fittest_chromosome);

PAUSE = input('PRESS 1 TO CONTINUE....');

%%%

%NEW GENERATION FOR CHILD POPULATION%%%%%%%%%%%%%%%%%%%%

%%%

%%%%%%%%% selection%%%%%%%%%%%%%%%%%%%%

no_of_generation = input('ENTER THE NUMBER OF REQUIRED

GENERATION');

for LOOP = 1 : no_of_generation

disp('#########################GENERATION#############');

disp(LOOP);

pause;

%new_chromosome = simple_selection9(chromosomes);

%new_chromosome = selection11(chromosomes);

%new_chromosome = selection12(chromosomes);

%new_chromosome = selection13(chromosomes);

new_chromosome = selection14(chromosomes);

%new_chromosome = selection15(chromosomes);

%new_chromosome = selection16(chromosomes);

%disp('NEW CHROMOSOME AFTER SELECTION');

%disp(new_chromosome);

%%%%%%%%%%%%%%%%% crossover%%%%%%%%%%%%%%%%%%%%%%%%

%new_chromosome = hybrid_crossoverII(new_chromosome);

%new_chromosome = hybrid_crossover(new_chromosome);

%new_chromosome = uniform_crossover(new_chromosome);

Network Design Using Genetic Algorithm

183

%new_chromosome = one_point_crossover6(new_chromosome);

new_chromosome = two_point_crossover12(new_chromosome);

%new_chromosome = two_point_crossover13(new_chromosome);

%disp('NEW CHROMOSOME AFTER CROSSOVER');

%disp(new_chromosome);

%%%%%%%%%%%%%%%%%evaluation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

new_chromosome=cycle_calculatetry(new_chromosome);

new_chromosome=path_constraint(new_chromosome,dist_matrx)

;

new_chromosome=selfloop_calculate6(new_chromosome);

new_chromosome=isolate_calculate6(new_chromosome);

new_chromosome=degree_constraint_calculate11(new_chromoso

me,degree);

%disp('EVALUATED CHROMOSOME AFTER CROSSOVER');

%disp(new_chromosome);

%%%%%%%%%%%%%%%%finding fittest chromosome%%%%%%%%%%%%%%%

%%% first it calculates distance for each chromosome%%%%%

%%%%then if found minimum than previous generation it

%%%%replaces the previous one%%%%%%%%%%%%%%%%%%%%%%%%%%%%

total_distance =

distance_calculate6(new_chromosome,dist_matrx);

%disp('DISTANCE FOR EACH CHROMOSOME');

%disp(total_distance);

%disp('OLD FITTEST CHROMOSOME');

%disp(fittest_chromosome);

fittest_chromosome =

main_fittest_calculate_pc(new_chromosome,total_distance,f

ittest_chromosome);

%disp('NEW FITTEST CHROMOSOME WITH DISTANCE ');

%disp(fittest_chromosome);

Anand Kumar (Registration No: 3893)

184

%%%%%%%%%%%%%%%%%%%%%%%%%%%%Mutation%%%%%%%%%%%%%%%%%%%%%

%mutated_chromosome = mutation_insertion(new_chromosome);

%mutated_chromosome = mutation_inversion(new_chromosome);

%mutated_chromosome = mutation_swap(new_chromosome);

%mutated_chromosome = mutation_simple9(new_chromosome);

%mutated_chromosome = mutation_13(new_chromosome);

mutated_chromosome = mutation_14(new_chromosome);

%disp('NEW CHROMOSOME AFTER MUTATION ');

%disp(mutated_chromosome);

%%%%%%%%%%%%%%%%%evaluation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mutated_chromosome=cycle_calculatetry(mutated_chromosome);

mutated_chromosome=path_constraint(mutated_chromosome,dist_mat

rx);

mutated_chromosome=selfloop_calculate6(mutated_chromosome);

mutated_chromosome=isolate_calculate6(mutated_chromosome);

mutated_chromosome=degree_constraint_calculate11(mutated_chrom

osome,degree);

 %disp('EVALUATED CHROMOSOME AFTER MUTATION');

%disp(mutated_chromosome);

%%%%%%%%%%%%%%%%%finding fittest chromosome%%%%%%%%%%%%%%

%%%first it calculates distance for each chromosome%%%%%

%%%then if found minimum than previous generation it

%%%replaces the previous one%%%%%%%%%%%%%%%%%%%%%%%%%%

total_distance =

distance_calculate6(mutated_chromosome,dist_matrx);

%disp('DISTANCE FOR EACH CHROMOSOME');

%disp(total_distance);

%disp('OLD FITTEST CHROMOSOME');

%disp(fittest_chromosome);

Network Design Using Genetic Algorithm

185

fittest_chromosome =

main_fittest_calculate_pc(mutated_chromosome,total_distan

ce,fittest_chromosome);

%disp('NEW FITTEST CHROMOSOME WITH DISTANCE ');

%disp(fittest_chromosome);

chromosomes=mutated_chromosome;

%PAUSE = input('PRESS 1 TO CONTINUE....')

end

disp('FITTEST CHROMOSOME WITH DISTANCE ');

disp(fittest_chromosome);

disp('************************END*********************');

SELECTION OPERATORS

%******************RANDOM SELECTION**********************

% this function simply select the chromosome on the basis

%of their fitness function.

% if r is out of the range of the no. of chromosome then

it

%finds the position of the fittest chromosome and

replaces

%with that chromosome.

function [new_chromosomes] =

simple_selection9(chromosomes)

a=size(chromosomes);

row = a(1);

col = a(2)-1;

k=1;

for i=1:row

 r=row*round(rand());

 if((r == 0) || (r > row))

 for l=1:row

 if(chromosomes(l,a(2)) == col+3)

Anand Kumar (Registration No: 3893)

186

 r=l;

 end

 end

 end

 if(r == 0)

 r=1;

 end

 for j=1:col

 new_chromosomes(k,j) = chromosomes(r,j);

 end

 k=k+1;

end

disp(new_chromosomes);

return;

end

%******ROULETTE WHEEL SELECTION I************************

% BASED ON SIMPLE ROULETTE WHELL ALGORITHM%%

function [new_chromosomes] = selection11(chromosomes)

a=size(chromosomes);

%disp(chromosomes);

row = a(1);

col = a(2)-1;

r=row*round(rand());

s(row,1)=0;

temp=0;

for i=1:row

 temp=temp+chromosomes(i,a(2));

 s(i)=temp;

end

disp('DISP');

disp(s);

Network Design Using Genetic Algorithm

187

 k=1;

 for i=1:row

 r=rand*temp;

 disp('r');

 disp(r);

 for j=1:row

 if(r<s(j))

 for t=1:col

 new_chromosomes(k,t)=chromosomes(j,t);

 end

 k=k+1;

 break;

 end

 end

 end

%disp('***NEW SELECTED CHROMOSOMES*******************');

%disp(new_chromosomes);

%disp('***');

return;

end

%%%

%%%%%%%%%%%%%%%%%%ROULETTE_WHEEL_SELECTIONII %%%%%%%%%%%%

function [new_chromosomes] = selection12(chromosomes)

a=size(chromosomes);

disp('********inside selection11 Function*************');

disp(chromosomes);

disp('**');

row = a(1);

col = a(2)-1;

r=row*round(rand());

s(row,1)=0;

temp=0;

Anand Kumar (Registration No: 3893)

188

for i=1:row

 temp=temp+chromosomes(i,a(2));

end

avg=temp/row;

disp('avg');

disp(avg);

disp('**temp**');

for i=1:row

 temp=(chromosomes(i,a(2))/avg);

 disp(temp);

end

temp=0;

for i=1:row

 temp=temp+(chromosomes(i,a(2))/avg);

 s(i)=temp;

end

temp=s(i);

disp('s');

disp(s);

 k=1;

 for i=1:row

 r=rand*temp;

 disp('r');

 disp(r);

 for j=1:row

 if(r<s(j))

 for t=1:col

 new_chromosomes(k,t)=chromosomes(j,t);

 end

 k=k+1;

 break;

 end

 end

end

disp('***NEW SELECTED CHROMOSOMES*********************');

disp(new_chromosomes);

disp('**');

return;

Network Design Using Genetic Algorithm

189

end

%%%

 %%%%% SELECTION BASED ON SORTING %%%%%%

%%%

function [new_chromosomes] = selection13(chromosomes)

a=size(chromosomes);

%disp(chromosomes);

row = a(1);

col = a(2)-1;

k=1;

 t=3;

while(k<=row)

 for i=1:row

 if(chromosomes(i,a(2)) == (a(2)+t))

 for j=1:col

 new_chromosomes(k,j)=chromosomes(i,j);

 end

 k=k+1;

 end

 end

 t=t-1;

end

disp('***************NEW SELECTEDD CHROMOSOMES********');

%disp(new_chromosomes);

%disp('**');

pause;

return;

end

Anand Kumar (Registration No: 3893)

190

%%%

%SELECTION METHOD to select only fittest chromosome of A

%FIXED LEVEL OF FITNESS VALUE

%%%

function [new_chromosomes] = selection14(chromosomes)

a=size(chromosomes);

disp(chromosomes);

%disp('***');

row = a(1);

col = a(2)-1;

k=1;

 t=3;

 n=1;

while(k<=row)

 for i=1:row

 if(chromosomes(i,a(2)) == (a(2)+t))

 for j=1:col

 new_chromosomes(n,j)=chromosomes(i,j);

 end

 n=n+1;

 end

 end

 if(n>row)

 break;

 end

 k=k+1;

 t=t-1;

 if(t< (-8))

 t=3;

 end

end

disp('****NEW SELECTED CHROMOSOMES********************');

disp(new_chromosomes);

disp('**');

Network Design Using Genetic Algorithm

191

pause;

return;

end

__

%%%

%SELECTION METHOD SELECTION SORT based on two random

%position and select the best one this procedure is

%repeated times

function [new_chromosomes] = selection15(chromosomes)

a=size(chromosomes);

disp(chromosomes);

disp('**');

pause;

row = a(1);

col = a(2)-1;

k=1;

 t=2;

 for i=1:row

 p = round(rand()* (a(2)-1));

 q = round(rand()* (a(2)-1));

 if(p == 0)

 p=1;

 end

 if(q == 0)

 q=1;

 end

 disp('P');

 disp(p);

 disp('Q');

 disp(q);

 if(p > row)

 p = row;

 end

Anand Kumar (Registration No: 3893)

192

 if(q > row)

 q = row;

 end

 if(chromosomes(p,a(2)) >= chromosomes(q,a(2)))

 for j=1:col

 new_chromosomes(k,j)=chromosomes(p,j);

 end

 k=k+1;

 else

 for j=1:col

 new_chromosomes(k,j)=chromosomes(q,j);

 end

 k=k+1;

 end

 end

disp('*NEW SELECTED CHROMOSOMES***********************');

disp(new_chromosomes);

disp('**');

return;

end

%%%

%SELECTION METHOD SELECTION SORT based on two random

%position and select the smallest one

%This procedure is repeated n times

function [new_chromosomes] = selection16(chromosomes)

a=size(chromosomes);

disp(chromosomes);

disp('**');

row = a(1);

col = a(2)-1;

k=1;

 t=2;

Network Design Using Genetic Algorithm

193

 for i=1:row

 p = round(rand()* (a(2)-1));

 q = round(rand()* (a(2)-1));

 if(p == 0)

 p=1;

 end

 if(q == 0)

 q=1;

 end

 if(p > row)

 p = row;

 end

 if(q > row)

 q = row;

 end

 if(chromosomes(p,a(2)) < chromosomes(q,a(2)))

 for j=1:col

 new_chromosomes(k,j)=chromosomes(p,j);

 end

 k=k+1;

 else

 for j=1:col

 new_chromosomes(k,j)=chromosomes(q,j);

 end

 k=k+1;

 end

 end

disp('****NEW SELECTED CHROMOSOMES*******************');

disp(new_chromosomes);

disp('**');

return;

end

Anand Kumar (Registration No: 3893)

194

CROSSOVER OPERATORS

%*****************HYBRID CROSSOVER-II*******************%

function [chromosomes] = hybrid_crossoverII(chromosomes)

disp(chromosomes);

a=size(chromosomes);

row = a(1);

col = a(2);

t=1;i=1;

p=ceil(col.*rand());

q=ceil(col.*rand());

r=ceil(col.*rand());

s=ceil(col.*rand());

pos = [p,q,r,s];

disp (pos);

sorted_pos =sort(pos);

disp('SORTED POSITION');

disp(sorted_pos);

p=sorted_pos(1);

q=sorted_pos(2);

r=sorted_pos(3);

s=sorted_pos(4);

disp(p);

disp(q);

disp(r);

disp(s);

pause;

disp('begin point');

disp(p);

if(p==0)

 p=1;

end

Network Design Using Genetic Algorithm

195

if(q==0)

 q=1;

end

disp('end point');

disp(q);

if(p>q)

 p1=q;

 p2=p;

else

 p1=p;

 p2=q;

end

while(i<row)

 for j=p:q

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 for j=r:s

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 i=i+3;

p=ceil(col.*rand());

q=ceil(col.*rand());

r=ceil(col.*rand());

s=ceil(col.*rand());

pos = [p,q,r,s];

disp (pos);

sorted_pos =sort(pos);

Anand Kumar (Registration No: 3893)

196

disp('SORTED POSITION');

disp(sorted_pos);

p=sorted_pos(1);

q=sorted_pos(2);

r=sorted_pos(3);

s=sorted_pos(4);

disp(p);

disp(q);

disp(r);

disp(s);

pause;

end

%disp('%begin%%%%%%% After uniform crossover function ');

%disp(chromosomes);

%disp('%end%%%');

return;

end

%***************HYBRID CROSSOVER*************************

function [chromosomes] = hybrid_crossover(chromosomes)

disp(chromosomes);

a=size(chromosomes);

row = a(1);

col = a(2);

t=1;i=1;

p=ceil(col.*rand());

q=ceil(col.*rand());

r=ceil(col.*rand());

s=ceil(col.*rand());

pos = [p,q,r,s];

disp (pos);

sorted_pos =sort(pos);

disp('SORTED POSITION');

disp(sorted_pos);

Network Design Using Genetic Algorithm

197

p=sorted_pos(1);

q=sorted_pos(2);

r=sorted_pos(3);

s=sorted_pos(4);

while(i<row)

 for j=p:q

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 for j=r:s

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes(i+1,j) = chromosomes((i+2),j);

 chromosomes((i+2),j)=temp;

 end

 i=i+3;

end

disp(chromosomes);

disp('%end%%');

 return;

end

% ***********UNIFORM CROSSOVER**************************

function [chromosomes] = uniform_crossover(chromosomes)

a=size(chromosomes);

row = a(1);

col = a(2);

t=1;i=1;

p=ceil(col.*rand());

q=ceil(col.*rand());

r=ceil(col.*rand());

s=ceil(col.*rand());

Anand Kumar (Registration No: 3893)

198

pos = [p,q,r,s];

disp (pos);

sorted_pos =sort(pos);

disp('SORTED POSITION');

disp(sorted_pos);

p=sorted_pos(1);

q=sorted_pos(2);

r=sorted_pos(3);

s=sorted_pos(4);

while(i<row)

 for j=p:q

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 for j=r:s

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 i=i+2;

end

return;

end

%***VARIABLE ONE POINT CROSSOVER************************

function [chromosomes] =

one_point_crossover6(chromosomes)

a=size(chromosomes);

row = a(1);

col = a(2);

t=1;i=1;

while(i<row)

Network Design Using Genetic Algorithm

199

 for j=1:t

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 i=i+2;

 t=t+1;

 if(t>col)

 t=1;

 end

end

return;

end

%****FIXED TWO POINT CROSSOVER***************************

function [chromosomes] =

two_point_crossover12(chromosomes)

a=size(chromosomes);

row = a(1);

col = a(2);

t=1;i=1;

p=round(rand()*col);

q=round(rand()*col);

disp('begin point');

disp(p);

if(p==0)

 p=1;

end

if(q==0)

 q=1;

 end

disp('end point');

disp(q);

if(p>q)

 p1=q;

Anand Kumar (Registration No: 3893)

200

 p2=p;

else

 p1=p;

 p2=q;

end

while(i<row)

 for j=p1:p2

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 i=i+2;

 t=t+1;

 if(t>col)

 t=1;

 end

end

return;

end

%*****VARIABLE TWO POINT CROSSOVER***********************

function [chromosomes] =

two_point_crossover13(chromosomes)

a=size(chromosomes);

row = a(1);

col = a(2);

i=1;

 while(i<row)

 p=round(rand()*col);

 if(p==0)

 p=1;

 end

q=round(rand()*col);

 if(q==0)

Network Design Using Genetic Algorithm

201

 q=1;

 end

 if(p>q)

 p1=q;

 p2=p;

else

 p1=p;

 p2=q;

end

disp('begin point');

disp(p1);

disp('end point');

disp(p2);

 for j=p1:p2

 temp = chromosomes(i,j);

 chromosomes(i,j) = chromosomes((i+1),j);

 chromosomes((i+1),j)=temp;

 end

 i=i+2;

end

return;

end

MUTATION OPERATORS

%**********MUTATION INSERTION****************************

function [mutated_chromosome] =

mutation_insertion(new_chromosome)

a=size(new_chromosome);

row = a(1);

col = a(2)-1;

Anand Kumar (Registration No: 3893)

202

k=1;

for i=1:row

 p=ceil(col.*rand());

 q=ceil(col.*rand());

 pos = [p,q];

 sorted_pos =sort(pos);

 p=sorted_pos(1);

 q=sorted_pos(2);

 disp('random position for swap');

 disp(p);

 disp(q);

 temp = new_chromosome(i,q);

 if(p ~= q)

 x = q-1;

 while (x >= p+1)

 new_chromosome(i,x+1) =

new_chromosome(i,x);

 x = x-1;

 end

 new_chromosome(i,p+1) = temp;

 end

end

for i=1:row

 for j=1:a(2)-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

return;

end

Network Design Using Genetic Algorithm

203

%**************** MUTATION INVERSION*********************

function [mutated_chromosome] =

mutation_inversion(new_chromosome)

a=size(new_chromosome);

row = a(1);

col = a(2)-1;

k=1;

for i=1:row

 p=ceil(col.*rand());

 q=ceil(col.*rand());

 pos = [p,q];

 sorted_pos =sort(pos);

 p=sorted_pos(1);

 q=sorted_pos(2);

 disp('random position for swap');

 disp(p);

 disp(q);

 for x = p : q

 temp = new_chromosome(i,x);

 new_chromosome(i,x) = new_chromosome(i,q);

 new_chromosome(i,q) = temp;

 q = q - 1;

 if (x == q) || (x > q)

 break;

 end

 end

end

for i=1:row

 for j=1:a(2)-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

Anand Kumar (Registration No: 3893)

204

return;

end

% ****************MUTATION SWAP*************************

function [mutated_chromosome] =

mutation_swap(new_chromosome)

a=size(new_chromosome);

row = a(1);

col = a(2)-1;

k=1;

for i=1:row

 p=ceil(col.*rand());

 q=ceil(col.*rand());

 pos = [p,q];

 sorted_pos =sort(pos);

 p=sorted_pos(1);

 q=sorted_pos(2);

 disp('random position for swap');

 disp(p);

 disp(q);

 temp = new_chromosome(i,p);

 new_chromosome(i,p) = new_chromosome(i,q);

 new_chromosome(i,q) = temp;

end

 for i=1:row

 for j=1:a(2)-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

return;

end

Network Design Using Genetic Algorithm

205

%MUTATIONI

function [mutated_chromosome] =

mutation_simple9(new_chromosome)

a=size(new_chromosome);

row = a(1);

k=1;

for i=1:row

 if(new_chromosome(i,a(2)) ~= (a(2)+3))

 new_chromosome(i,i) = (a(2)-i);

 end

end

for i=1:row

 for j=1:a(2)-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

return;

end

% MUTATION II

function [mutated_chromosome] =

mutation_13(new_chromosome)

a=size(new_chromosome);

row = a(1);

k=1;

for i=1:row

 if(new_chromosome(i,a(2)) ~= (a(2)+2))

 for j=1:a(2)-1

 if(new_chromosome(i,j) == j)

 if(j == a(2)-1)

 new_chromosome(i,j) = j-1;

 else

 new_chromosome(i,j) = j+1;

Anand Kumar (Registration No: 3893)

206

 end

 end

 end

 end

end

for i=1:row

 for j=1:a(2)-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

return;

end

%%%%%%%%%%%%%%RANDOM_MUTATION%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [mutated_chromosome] =

mutation_14(new_chromosome)

a=size(new_chromosome);

row = a(1);

k=1;

for i=1:row

 if(new_chromosome(i,a(2)) ~= (a(2)+3))

 posi = round(rand()* (a(2)-1));

 val = round(rand()* (a(2)-1));

 if(posi == 0)

 posi=1;

 end

 if(val == 0)

 val=1;

 end

 if((posi == val) && (posi == a(2)-1))

 new_chromosome(i,posi) = val-1;

Network Design Using Genetic Algorithm

207

 else

 new_chromosome(i,posi) = val;

 end

 end

end

for i=1:row

 for j=1:a(2)-1

 mutated_chromosome(i,j) = new_chromosome(i,j);

 end

end

return;

end

FITNESS FUNCTIONS

%******************CYCLE CHECK FUNCTION******************

% This function checks the existence of cycle for each

%chromosome. In the case of existence of cycle it

allocate

%0 other wise 1.

function [chromosomes] = cycle_calculatetry(chromosomes)

a=size(chromosomes);

disp('INSIDE cycle');

disp(chromosomes);

 for m = 1 : a(1)

 k=0; t=(-1); b=1;e=5;

 for i = 1:a(2)

 new=0; s=i;

 for j=1:(a(2) + 1)

 if (new == 0)

 check = s;

 else

Anand Kumar (Registration No: 3893)

208

 check = chromosomes(m,s);

 end

 l=1;

 while(l <=k)

 if (p(l) == check)

 if (new == 0)

 break;

 end

 if (l>=b)

 if (k == (l+1))

 t=-1;

 b=k+1;

 break;

 end

 if (k >(l+1))

 e=0;

 break;

 end

 end

 if (l<b)

 t=-1;

 b=k+1;

 break;

 end

 end

 l = l + 1;

 end

 if (e == 0)

 break;

 end

 if (l>k)

 k=k+1;

 p(k) = check;

 t = t + 1;

 end

 if (t == -1)

 break;

 end

Network Design Using Genetic Algorithm

209

 if (new ~= 0)

 s = chromosomes(m,s);

 end

 if (new == 0)

 new = 1;

 end

 end

 if (e == 0)

 break;

 end

 end

if(e == 0)

 chromosomes(m,(a(2)+1))= 0;

else

 chromosomes(m,(a(2)+1)) =1;

end

 end

disp('INSIDE cycle');

disp(chromosomes);

return;

end

%%%

%THIS FUNCTION CHECKS THE PATH CONSTRAINT FOR EACH

%CHROMOSOME ACCORDING TO AVAILABILTIY OF PATH FROM

%DIST_MATRX IF PATH AVAILABLE FOR EACH GENE OF THE

%CHROMOSOME THEN IT ASSIGNS 1 OTHERWISE IT ASSIGNS 0

%%%

function [chromosomes] =

path_constraint(chromosomes,dist_matrx)

a=size(chromosomes);

disp(chromosomes);

row=a(1);

col=a(2);

Anand Kumar (Registration No: 3893)

210

for i=1:row

 t=0;

 for j=1:col-1

 k=chromosomes(i,j);

 if(dist_matrx(j,k) ~= 0)

 t=t+1;

 else

 if(j==k)

 t = t+1;

 end

 if(j~=k)

 break;

 end

 end

 end

 disp('t');

 disp(t);

 if(t== (col-1))

 chromosomes(i,col) = chromosomes(i,col) + 1;

 end

end

return;

end

% THIS FUNCTION CALCULATES FITNESS FOR SELF LOOP SUCH

THAT IF COLUMN

% POSITION NOT EQUALS TO ALLELE OF CHROMOSOME THAN IT

ASSIGN 1 AND THEN

% CALCULATE TOTAL NO OF 1 FOR EACH CHROMOSOME

function [chromosomes] = selfloop_calculate6(chromosomes)

s=size(chromosomes);

for i=1:s(1)

 fit = 0;

 for j=1:(s(2)-1)

 if(chromosomes(i,j) ~= j)

 fit = fit + 1;

Network Design Using Genetic Algorithm

211

 end

 end

 chromosomes(i,s(2))= chromosomes(i,s(2))+ fit;

end

return;

end

% THIS FUNCTION CALCULATES FITNESS FOR ISOLATED EDGE OR

%ISOLATED PART OF

% IT ASSIGNS 1 IF NO ISOLATION OR OTHERWISE 0

% one problem for 10 node network

function [chromosomes] = isolate_calculate6(chromosomes)

s=size(chromosomes);

for i=1:s(1)

 count = 0;

 for j=1:(s(2) -1)

 if(j == chromosomes(i,chromosomes(i,j)))

 count = count + 1;

 end

 end

 if (count > 2)

 chromosomes(i,s(2)) = chromosomes(i,s(2)) + 0;

 else

 chromosomes(i,s(2)) = chromosomes(i,s(2)) + 1;

 end

 end

return;

end

%THIS FUNCTION DEGREE CONSTRIANT FOR EACH NODE

% DEGREE CONSTRAINT RANGE, DEGREE IS BETWEEN MINIMUM AND

%MAXIMMUM IT ASSIGNS 1 TO THOSE WHO’S DEGREE CONSTRAINT

IS

Anand Kumar (Registration No: 3893)

212

%EQUAL TO (2*N-2) SATISFIES OTHERWISE 0

function [chromosomes] =

degree_constraint_calculate11(chromosomes,degree)

s=size(chromosomes);

N=size(degree);

 for i=1:s(1)

 p=0;total_degree=0;

 for j=1:(s(2)-1)

 d=1;

 for k=1:(s(2)-1)

 if(chromosomes(i,k) == j)

 if(chromosomes(i,k) == k)

 d=d-1;

 end

 if(chromosomes(i,chromosomes(i,k))~= k)

 d=d+1;

 end

 end

 end

 if((d >=degree(1,j)) && (d<=degree(2,j)))

 p=p+1;

 total_degree = total_degree + d;

 else

 break;

 end

 end

 if((p==(s(2)-1)) && (total_degree == (2*N(2)-2)))

 chromosomes(i,s(2)) = chromosomes(i,s(2)) + 1;

 end

 end

return;

end

Network Design Using Genetic Algorithm

213

%THIS FUNCTION CALCULATES TOTAL DISTANCE FOR

EACHCHROMOSOME

function [total_distance] =

distance_calculate6(chromosomes,dist_matrx)

s=size(chromosomes);

 for i=1:s(1)

 sum=0;

 for j=1:(s(2)-1)

 k=chromosomes(i,j);

 if(j ~= chromosomes(i,k))

 sum = sum + dist_matrx(j, (chromosomes(i,j)));

 end

 if(j == chromosomes(i,k))

 if(j > chromosomes(i,j))

 sum = sum + dist_matrx(j,

(chromosomes(i,j)));

 end

 end

 end

 total_distance(i) = sum;

 end

return;

end

% THIS FUNCTION finds the fittest chromosome with least

%distance

function [fittest_chromosome] =

fittest_calculate_pc(chromosomes,total_distance)

s=size(chromosomes);

N = s(2)-1;

t=0;

posi=0;

for i=1:s(1)

 if(chromosomes(i,s(2)) == (N+4))

Anand Kumar (Registration No: 3893)

214

 if (t==0)

 posi = i;

 distance1 = total_distance(i);

 t=1;

 end

 if(t==1)

 if(total_distance(i)<distance1)

 posi = i;

 distance1 = total_distance(i);

 end

 end

 end

end

if (posi ~= 0)

 for j=1:N

 fittest_chromosome(j) = chromosomes(posi,j);

 end

fittest_chromosome(N+1) = distance1;

end

if(posi == 0)

 fittest_chromosome = 0;

end

return;

end

% THIS FUNCTION CALCULATES TOTAL DISTANCE FOR EACH

%CHROMOSOME

function [fittest_chromosome] =

main_fittest_calculate_pc(chromosomes,total_distance,fitt

est_chromosome)

s=size(chromosomes);

N = s(2)-1;

t=0;

Network Design Using Genetic Algorithm

215

posi=0;

distance = 0;

for i=1:s(1)

 if(chromosomes(i,s(2)) == (N+4))

 if (t==0)

 posi = i;

 distance = total_distance(i);

 t=1;

 end

 if(t==1)

 if(total_distance(i)<distance)

 posi = i;

 distance = total_distance(i);

 end

 end

 end

end

if(distance ~= 0)

 if(fittest_chromosome == 0)

 fittest_chromosome = chromosomes(posi,:);

 fittest_chromosome(N+1) = distance;

 pause;

 end

 if(distance<fittest_chromosome(N+1))

 for j=1:N

 fittest_chromosome(j) = chromosomes(posi,j);

 end

fittest_chromosome(N+1) = distance;

disp('found');

pause;

 end

end

return;

end

Anand Kumar (Registration No: 3893)

216

Network Design Using Genetic Algorithm

217

CHAPTER 7

Genetic Algorithm approach to
Solve Shortest Path and Travelling

Salesman Problem

Shortest Path, Traveling Salesman and Hamiltonian Cycle are the other network

design problem. These problems are very common to back bone network design

problem. In all these three problems, the main difference is the degree of the node

which is strictly two. Further, these three problems are very similar with each other.

In the case of Shortest Path and Traveling salesman problem, a Hamiltonian Cycle is

checked in the possible solution. Due to this similarity, these three problems are also

considered in this research work. Shortest Path is considered in the terms of decision

making.

This research work considers the problem for selecting a shortest route to deliver

couriers to their destination address. The shortest route is defined as a route starts

from the courier office to visit a number of destinations and at last returns to its source

address. It has been explored the use of genetic algorithm where possible solutions are

improved generation by generation and then there is more probability to find the exact

solution. Fitness function is the backbone of the concept of genetic algorithm which

directly affects the performance; since this is NP problem and traditional heuristics

have had only limited success in solving small to mid size problems.

Anand Kumar (Registration No: 3893)

218

7.1 Shortest Route Problem Presentation

Given a connected, undirected graph G with n nodes, a least cost Hamiltonian circuit

H is a sub graph of a G that connects all of G’s nodes and contains one cycle. In this

graph every edge (We, j) is associated with a numerical costs (distance) cij. A shortest

route Hamiltonian circuit is the graph of the smallest possible total distance traveled

C = Σ cij

Where (i, j). ∈ H

The Shortest route Courier delivery problem is represented with the help of Fig 1.

Where each small circles represents a location and the magnified circles are those

location where the couriers are to deliver. The locations are 13, 20, 34, 49, 57, 63, 73,

84, 92 and 10. The distance and type of route between two locations has been shown

in Table-1 and Table-2 respectively.

Figure 7.1. Locations to deliver courier

These locations are represented as a node of an undirected graph and it is represented

in the form of an adjacency matrix in Table –7.1.This table contains the distance

between two locations.

Network Design Using Genetic Algorithm

219

TABLE -7.1

ADJACENCY MATRIX OF THE GRAPH

In this table, non zero numbers represent the distance between two locations. Zero (0)

represents no path between two locations and strikethrough numbers represent the

path constraint between two locations due to sudden change in route or due to

emergency or heavy traffic load. Table-7.2 is used here to show the type of route

between two locations.

TABLE -7.2

 TYPES OF ROUTE

 13 20 34 49 57 63 73 84 92 10

13 * D 0 S D S D D S H

20 D * H S S 0 0 S H D

34 0 H * 0 S 0 S D D 0

49 S S 0 * H D H S D 0

57 D S S H * 0 S 0 S D

63 S 0 0 D 0 * S S S D

73 D 0 S H S S * H H S

84 D S D S 0 S H * D S

92 S H D D S S H D * D

10 H D 0 0 D D S S D *

 13 20 34 49 57 63 73 84 92 10
13 * 5 0 8 17 12 6 21 30 25
20 5 * 4 7 15 0 0 23 31 24
34 0 4 * 0 7 0 12 15 17 0
49 8 7 0 * 6 4 9 13 15 0
57 17 15 7 6 * 0 13 0 7 4
63 12 0 0 4 0 * 5 5 7 4
73 6 0 12 9 13 5 * 8 12 10
84 21 23 15 13 0 5 8 * 7 6
92 30 31 17 15 7 7 12 7 * 3
10 25 24 0 0 4 4 10 6 3 *

Anand Kumar (Registration No: 3893)

220

This table contains three types of route: Heavy, Smooth and Difficult. These three

types represent three speed ranges which are used to calculate the time between two

locations. Table -7.3 represents the behaviour of three types of route-

TABLE -7.3

 BEHAVIOUR OF EACH TYPES OF ROUTE

Type Description Speed
Range
(KM/H)

Average
Speed
(KM/H)

H Heavy
Traffic

10-30 20

D Difficult 30-50 35
S Smooth 50-70 60

7.1.1 Initialisation of parent population

Parent solutions are generated randomly with the help of a function. The function has

the constraint that an allele of each chromosome must not be repeated in that

chromosome. It is called parent population. Each chromosome is the combination of

ten numbers (allele). Each chromosome represents a Courier delivery tour

(Hamiltonian cycle) [3] where an each allele represents itself as a location and a path

between location and its fixed position. All these Locations are numbered in a

sequence. 1, 2, 3…..10.where 1 represent location 13, 2 represents 20 and so on.

TABLE -7.4

 LOCATION CONNECTION

Location 1 2 3 4 5 6 7 8 9 10

chromosome 2 3 5 7 10 1 6 4 8 9

Network Design Using Genetic Algorithm

221

7.1.2 Evaluation

Evaluation is based on fitness function and total minimum distance travelled in each

tour. All these tours are evaluated with fitness functions. The tour represented by each

chromosome, may be illegal due to four reasons-

1) Self Loop

2) Violation of degree constraint or missing node

3) Hamiltonian Cycle

4) Isolated edge or path.

7.1.3 Fitness function

There are four reasons for the Illegality of the tour; therefore four Fitness functions

have been developed here to check the fitness. 1 mark is assigned to pass each fitness

function, while 0 marks are assigned in the case of failure. Chromosome is

implemented in the form of array of size [10], where array index shows the fixed

position and its value is an allele of generated chromosome. The representation of

chromosome is as following

Chromo [1] = 2;Chromo [2] = 3;Chromo [3] = 5;

Chromo [4] = 7;Chromo [5] = 10;Chromo [6] = 1;

Chromo [7] = 6;Chromo [8] = 4;Chromo [9] = 8;

Chromo [10] = 9;

7.1.3.1 Self Loop

For the undirected connected graph
 G = (V, E)
Where V = {v1, v2……vn}
E = {e1, e2…….en-1}, each edge ek is associated with vertices (vi , vj)

Anand Kumar (Registration No: 3893)

222

 (vi, vj) ∈ ek
If (We == j) then it is called self loop for vertex v.

Function self_loop()
Begin

 Set WE = 1 and N = 10 (where N is total no of location)

 for WE = 1 to N by 1 do

 If chromo[WE] == WE

 Print: “ self loop”, Terminate fr

 endif

 endfor

 End.

7.1.3.2 Degree Constraint (missing node or repeated node)

Since each location has to be visited once, the location will be connected with two

other cities. In-degree and out-degree for each location will be 1. If an allele of a

chromosome is not repeated then it ensures that there each location is connected with

two other locations.

 d(vi) == 2; where d denotes the degree of vertex We.

Function degree_constraint()
Begin

 Set WE = 1 and N = 10 (where N is total no of location)

 for WE = 1 to N by 1 do

 Set C = 0

 for J = 1 to N by 1 do

 If chromo[WE] == WE

 Increment C by 1

 terminate the inner loop

 endif

 endfor

Network Design Using Genetic Algorithm

223

 if (C = 0)

 print: “missing node”

 terminate the outer loop

 endif

 endfor

 End.

7.1.3.3 Isolated edge

If the pair of locus (array index) and allele (value) is same with other locus and allele

in the same chromosome, then the edge will be isolated.

For any generated chromosome, pair of its locus and allele is defined as

 Chromo(We ← v)

Where We is locus and v is the allele at this locus and its value vary from

 1>= We <= N and 1>= v <= N

where N is the total no of node.

Chromo(We ← v) = Chromo(j ← z)

If (We = z) and (v = j) then edge eiv or ejz is isolated.

Function isolated_edge()
Begin

 Set WE = 1 and N = 10 (where N is total no of location)

 for WE = 1 to N by 1 do

 Set v = chromo [WE]

 If chromo[v] == WE

 Print : “ isolated edge”

 Terminate from the loop

 endif

 endfor

 End.

Anand Kumar (Registration No: 3893)

224

7.1.3.4 Hamiltonian Cycle

For each chromosome Chromo[N] there must be a Hamiltonian cycle. , Two vectors

Chromo and A of size N are considered and initialized with value null.

 For a chromosome Chromo [N]

Function Hamiltonian_cycle()

Begin

Set j =1, p = 1 , t = 1 and N = 10

 (where N is total no of location)

 for WE = 1 to N-1 by 1 do

 If (chromo[j] == 1)

 Terminate the loop

 Endif

 Set j = chromo[j]

 If (p > 1)

 For l = 1 to p-1 by 1 do

 If (a[l] == j)

 Set t = 0

 Terminate the loop

 Endif

 Endfor

 Endif

 If(t == 0)

 Terminate the loop

 endif

 Set A[p] = j

Network Design Using Genetic Algorithm

225

 Increment p by 1

 Endfor

 If (We < 10)

 Print : NO Hamiltonian Cycle

 Else

 Print : Hamiltonian Cycle exist

End

7.1.4 Result of fitness function.

After applying the fitness function it is found that all these tours are legal and have

some cost which is in the form of total distance traveled. For passing each fitness

function, 1 point will be given and in the case of failure 0. Following fitness point and

distance earned by each chromosome (TABLE -7.5)

TABLE -7.5

FITNESS OF PARENT POPULATION

Chromosome Fitness Distance
a 4 69
b 4 87
c 4 70
d 4 62
e 4 157

Selection

In genetic algorithm fit solution are likely to survive and bad solution are likely to die

off. So some of the best fit chromosomes are selected from parent population

according to some selection criteria (e.g. Roulette wheel selection). Simply

maximum point and minimum distance criteria is considered here. Selected

chromosomes are a, b, c, and d.

Anand Kumar (Registration No: 3893)

226

Crossover/Recombination

Selected solutions are used for crossover. One point cross over is considered.

Mutation

It is the process to change the value of an allele of solution with some small

probability value e.g. 1% Motivation is to explore new point in the solution space. A

new concept is approached to mutate all those allele which are repeated a

chromosome and it will be mutated (replaced) with the missing value in low to high

order of the missing value.

Missing values (a1, a2, a3……..an)

 Where a1<a2<a3…………<an

Repeated allele (x1, y1, z1……x1…..y1……..N)

Replace x1 with a1 and y1 with a2, where x1<y1.

 Since there are no repetition of an allele in chromosome x and y, no

any allele will be replaced while chromosome p and q will be mutated with their

missing values.

For chromosome p, missing values are 4 and 10 and repeated alleles are 7 and 9

which will be replaced with 4 and 10 respectively. Similarly chromosome q will be

mutated.

Evaluation of child population

After applying the fitness function, it is found the following fitness value for each of

the child population

TABLE -7.6

FITNESS OF CHILD POPULATION

Chromosome Fitness Distance
x 4 54
y 4 102
p 2 --
q 0 --

Network Design Using Genetic Algorithm

227

TABLE -7.7

POSSIBLE PATH

Type(km) Path
No. Distance(km) Time(hour) H D S

1. 69 1.8 13 19 37
2. 87 2.85 35 20 32
3. 70 1.7 04 34 32
4. 62 1.6 12 15 35
5. 157 3.55 00 79 78
6. 54 1.67 13 29 12
7. 102 3.78 35 10 57

On the basis of Table-6, if the selection criteria of the path is minimum time and
driver’s comfort, Path No. 2 is the best recommended option. If this Path No 2 is
selected, its detail is shown in Figure-7.2 Table-7.8.

TABLE -7.8

SELECTED PATH DESCRIPTION

Distance
Type

Distance
(km)

Average
speed(km/h)

Time
(hour)

Total
time

Difficult 15 35 0.42
Heavy
Traffic 12 20 0.6

Smooth 35 60 0.58

1.60
hr

Figure 7.2. Selected Path No 2.

So selected path is number 2 with the total distance covered is 62 Km.

Anand Kumar (Registration No: 3893)

228

Network Design Using Genetic Algorithm

229

CHAPTER 8

Conclusion and Future Scope

Network Design Problem is an NP-hard combinatorial optimization problem. This

thesis proposes Genetic Algorithm approach to solve this network design problem. It

has been shown that, traditional methods are not capable to design the network

required by the time. Traditional heuristics have the limitations with the possible

constraints. The proposed genetic algorithm approach can provide the good results

with the required constraints. For the network design problems, the aim of this thesis

was to develop tools that find feasible high quality solutions of practical relevance

within reasonable cost. To solve this problem all the possible genetic operators are

developed. The size of network is considered from 10 to 1000 nodes. Researchers

have tried to solve this problem but only up to mid size of network usually 200-300

nodes. In this research work network, up to 1000 node is considered and solution is

derived which shows the robustness of this proposed genetic algorithm method.

Various required constraints are imposed on the network which is the requirement of

the current network. Degree constraint is one of major constraint and so far, no

efficient method of finding an arbitrary degree constraint network has been developed.

This thesis proposes a robust network design method which can derive the good

solution for bigger size of network with the possible degree constraint. For the degree

constraint an empirical relationship is derived on the basis of experimental data. In

this research work various fitness functions have been developed. One of the fitness

function is cycle check which checks the existence of the cycle in any undirected

Anand Kumar (Registration No: 3893)

230

graph of any size. Various selection functions (7), crossover operators (6) and

mutation operators (6) are developed and experimented with various size of network.

In this research work total 546 different cases are considered for 15 different size of

network from 10 to 1000 size of nodes. Further traveling salesman problem and

shortest path problem are considered which are the special case of degree constrained

spanning tree problem. For the shortest path problem various functions have been

developed and experimented, and it has been shown that how does it help in decision

making. For the traveling sales man problem, Hamiltonian cycle function is

developed.

These all are the network design problems which belong to the NP-hard category. One

of the objective of this research work is to show that genetic algorithm is an

alternative solution for this NP hard problem where conventional deterministic

methods are not able to provide the optimal solution. The proposed method is a robust

method which finds the solution for almost any size of network (1000 node) for any

possible network constraint. Any new constraint required by the network can be easily

added with out changing the other functions. The proposed method also provides

multiple parallel solutions which helps in decision making. Last but not least, the

proposed network design method based on genetic algorithm has potential to achieve

better results for any size of network. Altogether, these are some interesting research

challenges for the near future.

The research work can be extended for different hybrid selection, crossover and

mutation operators. The same problem can be considered for the reliable network

where each node must have at least to connection. The same research work can be

applied for directed graphs also. The proposed approach can be applied for various

advanced network models like logistic network, task scheduling models, container

Network Design Using Genetic Algorithm

231

terminal network model, vehicle navigation routing models etc. The same approach

can also be used for allocation of frequencies in cells of cellular network.

Anand Kumar (Registration No: 3893)

232

Bibliography

[1]. M. Gerla and L. Klensock, on the topological design of distributed computer

networks IEEE trans. Communication 25(1): 48-60, 1977.
[2]. Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993). Network Flows, New Jersey:

Prentice Hall.
[3]. R. C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389.1401, 1957.
[4]. J. B. Kruskal. On the shortest spanning sub tree of a graph and the travelling salesman

problem. Proc. of the American Mathematics Society, 7(1):48.50, 1956.
[5]. Narsingh Deo, 2000. Graph Theory with Applications to Engineering and Computer

science: (PHI)
[6]. Ellis Horwitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer algorithms,

University Press,2007
[7]. Cunha, A. and A. Lucena, “Algorithms for the degree-constrained minimum spanning

tree problem,” Electronic Notes in Discrete Mathematics, volume 19, pages 403-409,
and 2005.

[8]. A. Cayley. A theorem on trees. Quarterly Journal of Mathematics, vol. 23, pp. 376–
378, 1889.

[9]. F. Harary and J. P. Hayes, “Node fault tolerance in graphs,” Networks, vol. 27, no. 1,
pp. 19–23, 1996.

[10]. H. K. Ku and J. P. Hayes, “Optimally edge fault-tolerant trees,” Networks, vol. 27, no.
3, pp. 203–214, 1996.

[11]. R. E. Bellman. Dynamic Programming. Dover Publications Inc., 1957/2003.
[12]. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-

Interscience, 1988.
[13]. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, 1982.
[14]. F. Glover and G. Kochenberger. Handbook of Metaheuristics, volume 57 of

International Series in Operations Research & Management Science. Kluwer
Academic Publishers, Norwell, MA, 2003.

Network Design Using Genetic Algorithm

233

[15]. H. Hoos and T. St¨utzle. Stochastic Local Search – Foundations and Applications.
Morgan Kaufmann, San Francisco, CA, 2004.

[16]. H. R. Louren¸co, O. Martin, and T. St¨utzle. Iterated local search. In Handbook of

Metaheuristics [53], pages 321.353.
[17]. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, MA,

1997.
[18]. Melanie M. (1998). An Introduction to genetic Algorithm (PHI) ISBN 81-203-

1385-5
[19]. Michael D. Vose. 1999. The simple genetic algorithm : (PHI) ISBN 61-203-2459-5
[20]. F. Glover. Future paths for integer programming and links to arti.cial intelligence.

Decision Sciences, 8:156.166, 1977.

[21]. B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms for
constructing a minimum spanning tree. In DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 400.411. Springer, 1991.

[22]. M. Ruthmair and G. R. Raidl. A Kruskal-based heuristic for the rooted delay-

constrained minimum spanning tree problem. In A. Quesada-Arencibia et al.,editors,
Twelfth International Conference on Computer Aided Systems Theory(EUROCAST
2009), Gran Canaria, Spain, to appear 2009. Springer LNCS.

[23]. F. Harary and J. P. Hayes, “Node fault tolerance in graphs,” Networks, vol. 27, no. 1,

pp. 19–23, 1996.
[24]. H. K. Ku and J. P. Hayes, “Optimally edge fault-tolerant trees,” Networks, vol. 27, no.

3, pp. 203–214, 1996.
[25]. S. C. Narula and C. A. Ho, “Degree-constrained minimum spanning tree,” Comput.

Oper. Res., vol. 7, no. 4, pp. 239–249, 1980.
[26]. D. S. Johnson, “The NP-completeness column: An ongoing guide,” J. Algorithms, vol.

6, no. 1, pp. 145–159, 1985.
[27]. A. K. Obruca, “Spanning tree manipulation and the travelling-salesman problem,”

Comput. J., vol. 10, no. 4, pp. 374–377, 1968.
[28]. M. Savelsbergh and T. Volgenant, “Edge exchanges in the degree-constrained

spanning tree problem,” Comput. Oper. Res., vol. 12, no. 4, pp. 341–348, 1985.
[29]. Lixia Hanr† and Yuping Wang, A Novel Genetic Algorithm for Degree-Constrained

Minimum Spanning Tree Problem, IJCSNS International Journal of Computer
Science and Network Security, VOL.6 No.7A, July 2006

[30]. Berna Dengiz and Fulya Altiparmak, Department of Industrial Engineering Gazi
University, Ankara, turkey 06570 alice e. Smith1, “A Genetic Algorithm approach to

optimal topological design of all terminal networks”

Anand Kumar (Registration No: 3893)

234

[31]. Rajeev Kumar and Nilanjan Banerjee, Multicriteria Network Design Using

Evolutionary Algorithm, GECCO 2003, LNCS 2724, pp. 2179–2190, 2003.Springer-
Verlag Berlin Heidelberg 2003

[32]. Michalewicz, Z. (1994). Genetic Algorithm + Data Structures = Evolution Programs.
New York: Springer-Verlag.

[33]. Holland, J. (1992). Adaptation in Natural and Artificial System, Ann Arbor:
University o Michigan Press; 1975, MA: MIT Press.

[34]. Raidl, G. R. & Julstrom, B. A. (2003). Edge Sets: An Effective Evolutionary Coding
of Spanning Trees, IEEE Transactions on Evolutionary Computation, 7(3), 225–239.

[35]. Michalewicz, Z. (1995). A survey of constraint handling techniques in evolutionary
computation methods, in McDonnell et al. eds. Evolutionary Programming IV, MA:
MIT Press.

[36]. Michalewicz, Z., Dasgupta, D., Riche, R. G. L. & Schoenauer, M. (1996).

Evolutionary algorithms for constrained engineering problems, Computers and
Industrial Engineering, 30(4), 851–870.

[37]. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning, Reading, MA: Addison-Wesley.

[38]. Koza, J. R. (1992). Genetic Programming, Cambridge: MIT Press.
[39]. Koza, J. R. (1994). Genetic Programming II, Cambridge: MIT Press
[40]. S.K. Basu, 2005. Design Methods and Analysis of algorithms (PHI)

ISBN : 81-203-2637-7

[41]. Behrouz A Forouzan. 2006. Data Communications and Networking. The McGraw-
Hill Company. ISBN-13: 978-0-07-06341-5

[42]. Hamdy A. Taha. 2007. Operation Research An Introduction
[43]. Kalyanmoy Deb, 1995. Optimization for engineering design (PHI)

[44]. Genetic Algorithms Computer programs that "evolve" in ways that resemble natural
selection can solve complex problems even their creators do not fully understand by
John H. Holland

[45]. Bryant a. Julstrom, codings and operators in two genetic algorithms for the leaf-

constrained minimum spanning tree problem, int. J. Appl. Math. Comput. Sci., 2004,
vol. 14, no. 3, 385–396

[46]. G¨unther R. Raidl and Bryant A. Julstrom, A Weighted Coding in a Genetic
Algorithm for the Degree-Constrained Minimum Spanning Tree Problem, SAC ’2000

Como, Italy
[47]. A.T. Haghighat1, K. Faez2, M. Dehghan3, A. Mowlaei2, and Y. Ghahremani2, A

Genetic Algorithm for Steiner Tree Optimization with Multiple Constraint Using
Prüfer Number, EurAsia-ICT 2002, LNCS 2510, pp. 272–280, 2002. © Springer-

Verlag Berlin Heidelberg 2002.

Network Design Using Genetic Algorithm

235

[48]. Tanenbaum, A.S. (1981) Computer Networks, Prentice- Hall, Englewood Cliffs, New

Jersey

[49]. N. Deo and A. Abdalla. Computing a diameter-constrained minimum spanning tree
in parallel. In G. Bongiovanni, G. Gambosi, and R. Petreschi, editors, Algorithms and
Complexity, number 1767 in LNCS, pages 17.31, Berlin, 2000. Springer-Verlag.

[50]. M. Gruber and G. Raidl. A new 0.1 ILP approach for the bounded diameter

minimum spanning tree problem. In L. Gouveia and C. Mour.ao, editors, Proc. of the
Int. Network Optimization Conference, volume 1, pages 178.185, Lisbon, Portugal,
2005.

[51]. G. R. Raidl and B. A. Julstrom. Greedy heuristics and an evolutionary algorithm for

the bounded-diameter minimum spanning tree problem. In G. Lam-ont et al., editors,
Proc. of the ACM Symposium on Applied Computing, pages747.752. ACM Press,
2003.

[52]. Kenneth A. De Jong, Evolutionary Computation, A Unified Approach, PHI, 2006.

[53]. A. Kershenbaum, “When genetic algorithms work best,” INFORMS J. Comput, vol. 9,
no. 3, pp. 254–255, 1997.

[54]. L. Davis, Ed., Genetic Algorithm and Simulated Annealing. San Mateo, CA: Morgan
Kaufmann, 1987.

[55]. L. Davis, “Adapting operator probabilities in genetic algorithms,” in Proceedings of
the Third International Conference on Genetic Algorithms,

[56]. K. A. DeJong, “Analysis of the behavior of a class of genetic adaptive systems,” Ph.D.
dissertation, Univ. Michigan, Ann Arbor, MI, 1975.

[57]. Brian R. Hunt, Ronald L. Lipsman, Jonathan M., A Guide to Matlab, Cambridge
University Press.

[58]. Donald Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89683-4. Section

1.2.11: Asymptotic Representations, pp.107–123.
[59]. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill,
2001. ISBN 0262032937. Section 3.1: Asymptotic notation, pp.41–50.

[60]. Michael Sipser (1997). Introduction to the Theory of Computation, PWS
Publishing. ISBN 0-534-94728-X. Pages 226–228 of section 7.1: Measuring
complexity.

[61]. Srinivas, N. and Kalyanmoy Deb. "Multiobjective optimization using nondominated

sorting in genetic algorithms." Evolutionary Computation, vol.2, no.3, p.221-248
(Fall 1994).

Anand Kumar (Registration No: 3893)

236

[62]. Koza, John, Forest Bennett, David Andre and Martin Keane. Genetic Programming

III: Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, 1999.
[63]. Koza, John, Martin Keane, Matthew Streeter, William Mydlowec, Jessen Yu and

Guido Lanza. Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers, 2003.

[64]. www.galeb.etf.bg.ac.yu/~vm Option:Tutorials
[65]. www.hao.ucar.edu/public/research/si/pikaia/tutorial.html
[66]. www.epcc.ed.ac.uk/overview/publications/training_material/tech_watch
[67]. http://samizdat.mines.edu/ga_tutorial

[68]. http://www.genetic-programming.com/gpanimatedtutorial.html
[69]. http://www.geneticprogramming.com/Tutorial/tutorial.html
[70]. http://online.engr.uiuc.edu/shortcourses/innovation/index.html
[71]. http://www.aic.nrl.navy.mil/galist/

[72]. http://www.geatbx.com/index.html.
[73]. http://www.wired.com/wired/archive/10.03/everywhere.html?pg=2.
[74]. http://www.natural-selection.com/NSIPublicationsOnline.htm.
[75]. http://www.trnmag.com/Stories/062800/Genetically_Enhanced_Engine_062800.

[76]. http://spaceflightnow.com/news/n0110/18orbits/.
[77]. http://www.space.com/news/darwin_satellites_011016.html.
[78]. http://www.salon.com/tech/feature/1999/08/10/genetic_programming/.

Network Design Using Genetic Algorithm

237

Publications

1. Anand Kumar, Dr. N.N. Jani , “An algorithm to detect cycle in an undirected

graph” International Journal of Computational Intelligence Research ISSN 0973-
1873, (Vol 6, No 2 (2010), pp 305-310)

2. Anand Kumar, Dr. N.N. Jani, “Network Design Problem Using Genetic
Algorithm- An Empirical Study On Selection Operator” International Journal of
Computer Science and Applications (IJCSA) ISSN: 0974-1003, April/May 2010,
Vol 3, No 2, pp 48-52.

3. Anand Kumar, Dr. N.N. Jani, “An Evolutionary Approach for Shortest Path

Problem - Courier Delivery System” International Journal of Computational
Intelligence Research ISSN 0973-1873 Volume 6, Number 2 (2010), pp. 261–273.

4. Anand Kumar, Dr. N.N. Jani, and “An Evolutionary Approach to Allocate

Frequency in Cellular Telephone System” International Journal on Futuristic
Computer Applications (IJFCA) 25-Feb, 2010 Bangalore, ISSN: 0975 - 8887. The
manuscript is published in International Journal of Computer Applications. URI:
http://www.ijcaonline.org/archives/number7/157-280

5. Anand Kumar, “A Nature based Evolutionary approach to solve Network

Communication NP-Hard Traveling Salesman problem” International Journal of
Computational Intelligence Research and Applications (IJCIRA) ISSN: 0973-
6794, Volume 3 Number 1, January-June 2009, Page. No. 27-32.

6. Anand Kumar, Dr. N.N. Jani, “Genetic Algorithm Approach to Solve Hamiltonian

Circuit Problem With Robust Fitness And Repair Function” Proceeding of IEEE
International Advance Computing Conference 2009.Thapar University, Patiyala.
ISBN NO: 978-981-08-2465-5

Anand Kumar (Registration No: 3893)

238

7. Anand Kumar, Dr. N.N. Jani, “A Novel Genetic Algorithm Approach for Network
Design with Robust Fitness Function” Proceeding of International Conference on
Mathematics and Computer Science, 5-6 Feb 2010, Loyola College, Chennai,
ISBN: 978-81-908234-2-5.

8. Anand Kumar and N.N. Jani, “ Using A Genetic Algorithm approach to Design

Backbone Core Communication Network” Proceeding of International
Conference on Emerging Trends in Computing , 8-10 Jan 2009 , Kamaraj College
of Engineering and technology, Virudhunagar, Tamilnadu.

9. Anand Kumar and Dr. N.N. Jani, “Genetic Algorithm for Network Design

Problem- An Empirical Study of Crossover operator with Generation and
Population Variation” International Journal of Information Technology and
Knowledge Management, ISSN: 0973-4414, Vol-III, Issue-I, June 2010

	Title page
	CERTIFICATE
	DECLARATION
	Abstract
	Acknowledgement
	Contents
	CHAPTER 1 Introduction
	1.1 Overview of Thesis

	CHAPTER 2 Network Design
	2.1 Graph Models
	2.2 Basic Network Models
	2.2.1 Spanning Tree Model
	2.2.2 Shortest Path Model
	2.2.3 Maximum Flow Model

	2.3 Network Design Problems
	2.3.1 Spanning Tree Problem
	2.3.1.1 Minimum Spanning Tree problem.
	2.3.1.2 Degree Constrained Minimum Spanning Tree

	2.3.2 Shortest Path Problem
	2.3.3 Traveling Salesman Problem(TSP)
	2.3.4 Considered Problems
	2.3.5 Backbone Network Design Problem

	Bibliography
	Publications

	CHAPTER 3 Methodologies
	3.1 Exact Algorithms
	3.1.1 Linear Programming
	3.1.1.1 Branch and bound

	3.1.2 Dynamic Programming

	3.2 Heuristics
	3.2.1 Kruskal’s Algorithm
	3.2.2 Prim’s Algorithm
	3.2.3 Breadth First Search Algorithm(BFS)
	3.2.4 Depth First Search Algorithm(DFS)
	3.2.5 Dijkstra algorithm for Shortest Path
	3.2.6 Metaheuristics
	3.2.6.1 Genetic Algorithm
	3.2.6.2 Simulated Annealing
	3.2.6.3 Local Search
	3.2.6.4 Best-First Search
	3.2.6.5 Tabu Search
	3.2.6.6 Ant Colony Optimization
	3.2.6.7 Greedy Randomized Adaptive Search Procedure
	3.2.6.8 Artificial Bee Colony Algorithm
	3.2.6.9 Hill Climbing
	3.2.6.10 Greedy Algorithm
	3.2.6.11 Memetic Algorithms

	3.3 Previous Work to Solve Network Design Problem

	CHAPTER 4 Genetic Algorithm
	4.1 General Structure of a Genetic Algorithm
	4.2 Exploitation and Exploration
	4.3 Population-based Search
	4.4 Major Advantages
	4.5 Implementation of Genetic Algorithm
	4.5.1 GA Vocabulary
	4.5.2 Encoding Issue
	4.5.2.1 Classification of Encoding
	4.5.2.2 Infeasibility and Illegality
	4.5.2.3 Properties of Encodings
	4.5.2.4 Initialization

	4.5.3 Fitness Evaluation
	4.5.4 Genetic Operators
	4.5.4.1 Crossover
	4.5.4.2 Mutation
	4.5.4.3 Selection

	4.5.5 Handling Constraints
	4.5.5.1 Rejecting strategy
	4.5.5.2 Repairing Strategy
	4.5.5.3 Modifying Genetic Operators Strategy
	4.5.5.4 Penalizing Strategy

	4.6 Hybrid Genetic Algorithms

	CHAPTER 5 Genetic Algorithm approach to Network Design
	5.1 Network Representation
	5.2 Genetic Algorithm Approach
	5.2.1 Population Initialization
	5.2.2 Fitness Evaluation
	5.2.3 Selection
	5.2.4 Genetic Operators
	5.2.4.1 Crossover
	5.2.4.1.1 Variable Point Crossover
	5.2.4.1.2 Fixed Two Point Crossover
	5.2.4.1.3 Variable Two Point Crossover
	5.2.4.1.4 Uniform Crossover
	5.2.4.1.5 Hybrid Crossover I
	5.2.4.1.6 Hybrid Crossover II

	5.2.4.2 Mutation
	5.2.4.2.1 Mutation-I
	5.2.4.2.2 Mutation II
	5.2.4.2.3 Random Mutation
	5.2.4.2.4 Swap Mutation
	5.2.4.2.5 Mutation Inversion
	5.2.4.2.6 Mutation Insertion

	CHAPTER 6 Experimental Design and Results
	6.1 Experimental Design of the Backbone Network
	6.1.1 Backbone Network Representation
	6.1.2 Initialization of parent population
	6.1.3 Evaluation based on fitness functions
	6.1.4 Selection of the chromosome for the next generation.
	6.1.5 Genetic Operator Applications
	6.1.6 Termination

	6.2 Experimental Results
	6.2.1 Experiment based on crossover operator with generation andpopulation variation in genetic algorithm for small network designproblem
	6.2.2 Experiment based on Selection Operator for small to large sizenetwork
	6.2.3 Experiment based on Crossover Operator for small to largesize network
	6.2.4 Experiment based on Mutation Operator for small to large sizenetwork

	6.3 Experimental Code developed in MATLAB,Version7.6.0.324(R2008a)
	Main Program
	SELECTION OPERATORS
	CROSSOVER OPERATORS
	MUTATION OPERATORS
	FITNESS FUNCTIONS

	CHAPTER 7 Genetic Algorithm approach toSolve Shortest Path and TravellingSalesman Problem
	7.1 Shortest Route Problem Presentation
	7.1.1 Initialisation of parent population
	7.1.2 Evaluation
	7.1.3 Fitness function
	7.1.4 Result of fitness function.

	CHAPTER 8 Conclusion and Future Scope

