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Abstract 
 
 

 

Network Design Problems are becoming increasingly critical & complex as 

telecommunication networks (and others) are expanded & upgraded in response to 

consumer’s information needs. Network design is used extensively in practice in an 

ever expanding spectrum of applications. Network optimization models such as 

shortest path, assignment, maxflow, transportation, transshipment, spanning tree, 

matching, traveling salesman, generalized assignment, vehicle routing, and multi-

commodity flow constitute the most common class of practical network optimization 

problems. In this research work, a generalized network design problems (NDPs) is 

focused in the form of a large scale backbone network which belong to the family of 

NP-hard combinatorial optimization problems. The purpose of the backbone is to 

connect regional distribution networks and, in some instances, to provide connectivity 

to other peer networks. The primary objective of this research work is to develop a 

robust method based on genetic algorithm to solve NP-hard network design problem 

with minimum cost subject to a reliability constraint which meets the customer 

requirement. One fundamental problem in this area is the minimum spanning tree 

(MST) problem where all nodes in a graph have to be linked together in a circle-free 

structure in the cheapest possible way.  The MST problem itself is easy to solve by 

polynomial-time algorithms like those of Prim or Kruskal, but adding additional 

constraints often make the corresponding optimization problem a hard one.  One of 

these related problems is the degree-constrained MST problem, in which degree of 

each node is restricted with in a given range which is very important for the reliability 

and priority of the connecting node. Other possible constraints are path failure, node 

failure and connectivity which are requirement of the current network system. By 

adding this constraint, this network design problem becomes one of the hardest 

problems in NP-hard category. Due to the complexity of the problem these 

approaches are limited to relatively small instances with clearly less than 100 nodes 

when considering complete graphs. Therefore, in this research work methods have 

been developed to solve instances with up to 1000 and are applicable for more than 



1000 nodes. However, there are also other problems that can be expressed as network 

design problems, such as traveling salesman problem (TSP), one has to find a round 

trip (Hamiltonian cycle) through a set of cities (nodes) of minimal length and Shortest 

Path problem. In this thesis these two problems are also considered and solved with 

genetic algorithm approach. Since network design is NP-hard problem and traditional 

heuristics have had only limited success in solving small to mid size problems. As a 

result, standard, traditional, optimization techniques are often not able to solve these 

problems of increased complexity with justifiable effort in an acceptable time period. 

The conventional search and optimization methods working on the commercial 

processors require hundreds of years to solve such a problem with limited number of 

components. However, evolutionary computation including Genetic Algorithms (GA) 

has shown promising performances to solve such problems Therefore, to overcome 

these problems, and to develop systems that solve these complex problems, 

researchers proposed using Genetic Algorithm. In this thesis it has been shown that, 

by this nature-inspired search method it is possible to overcome some limitations of 

traditional optimization methods, and to increase the number of solvable problem. In 

this study, Genetic Algorithm is considered as a one of the possible solutions for such 

kind of NP-hard problem where possible solutions are improved generation by 

generation and then there is more probability to find the exact solution. The main 

focus of this research is the consideration of up to1000 nodes and the proposed 

method can be applied for any possible size of the network. In this thesis various   

robust fitness functions have been developed. Twenty genetic operators are developed 

including new approaches required by the problem. Five hundred forty six different 

cases are considered for the fifteen different size of network. All the experimental 

results are described with the help of table and graph. All the developed functions are 

described with the help of figures and examples. Further new methods based on 

Genetic Algorithm have been developed for Shortest Path Problem and Traveling 

Salesman Problem.  

All these functions and methods developed in this thesis are published in International 

Journals and in the proceedings of International Conference. 

 

 This research work shows that, genetic algorithm is an alternative solution for this 

NP hard problem where conventional deterministic methods are not able to provide 

the optimal solution. 
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CHAPTER 1 

Introduction 
 
 
 

Network Design is very common problem which contributes key role in many real life 

applications which arose directly from everyday practice in engineering and 

management: determining shortest or most reliable paths in traffic or communication 

networks, maximal or compatible flows, or shortest tours; planning connections in 

traffic networks; coordinating projects; and solving supply and demand problems,  

electricity distribution, designing of digital circuit, designing of gas pipeline, layout 

planning roads and railway track, transportation and many more. 

 

Because of vast real life application, network design has become the crucial problem 

in such real life applications. With the advancement of information technology our 

society is rapidly converting as an information society. The conversion of a society to 

information society means that extension of network. Each and every sector of our 

daily need is in the process of computerized network. Day by day it has to be 

extended. For developing country like India, where development is growing 

multidimensional, network is the primary issue. Each and every field of our daily 

need which is manual, has to be computerized and to materialize it, network is the key 

factor. If we are talking about the overload of population like the country India and 

China where the geographical extension is at the peak, again we need network to 

connect or extend these locations first physically for transportation, communication 

and management and then electronically  in the form of computerized network, 
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network is required. By this discussion, the role of network is concluded in all our 

daily life applications and in the overall growth of the society. This is the main 

motivation behind this study Network Design. One fundamental problem in this area 

is the minimum spanning tree (MST) problem where all nodes in a graph have to be 

linked together in a circle-free structure in the cheapest possible way. However, there 

are also other problems that can be expressed as network design problems, such as 

various transportation and routing problems. For example shortest path problem, the 

famous traveling sales- man problem (TSP), one has to find a round trip (Hamiltonian 

cycle) through a set of cities (nodes) of minimal length[40,41]. A practical 

correspondent appears in the automated manufacturing of printed circuits when one 

wants to minimize the time required for drilling all holes by optimizing the path for 

moving the drill. Already this short list of problems should give a rough idea of the 

economical impact and therefore interest of solving such network design problems 

properly in general. Furthermore, network design is also important for complexity 

theory, an area in the common intersection of mathematics and theoretical computer 

science which deals with the analysis of algorithms. The term network design is 

involved in many contexts and there are several different aspects which deserve 

attention. In this study, they are regarded from a more theoretical point of view as 

graph theory problems, i.e. networks are modeled as graphs and optimization 

algorithms are applied on them. There are mainly four broad categories of network 

design- network topology design, network routing and flow control, network 

performance and network reliability. Since these all are separate category but all these 

categories are highly related. 

 

In this research study, network design belongs to the category of network topology 

design. Further designing the topology of a large scale network can be divided into 
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two problems, the backbone network design and the local network design. This 

research work is mainly focused on large scale backbone network design which is in 

the form of degree constraint minimum spanning tree with other constraints required 

by the network. The main objective behind the network design is to find the best way 

to connect the locations (nodes and arcs) to minimize the cost while meeting 

performance criterion such as transmission delay, throughput, fault tolerance and 

reliability. Exploring all the constraints for such a design problem, it becomes an NP-

hard problem [1]. There are many methods such as Prim [3] or Kruskal [4] which 

solve minimum spanning tree problem in polynomial time but adding additional 

constraints often make the corresponding optimization problem a hard one and one of 

the hardest in NP category problems. There are other methods also like Breadth First 

Search , Depth First Search and Branch and Bound but these entire have also their 

limitations. These methods can only solve small networks because the number of arcs 

increases, the number of possible layouts grows faster than exponentially. There are 

other limitations also with these methods such as degree constraint for each node, 

fault tolerance and reliability in the case of failure of node and other constraints as per 

demand of the network. 

Because of these complexities, these existing methods are not computationally 

feasible for deserving large scale network. As a result, standard, traditional, 

optimization techniques are often not able to solve these problems of increased 

complexity with justifiable effort in an acceptable time period. Therefore, to 

overcome these problems, and to develop systems that solve these complex problems, 

researchers proposed using genetic and evolutionary algorithms. Using these nature-

inspired search methods it is possible to overcome some limitations of traditional 

optimization methods, and to increase the number of solvable problems. Given such a 
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hard network optimization problem [2], it is often possible to find an efficient 

algorithm whose solution is approximately optimal. Among such techniques, the 

genetic algorithm (GA) is one of the most powerful and broadly applicable stochastic 

search and optimization techniques based on principles from evolution theory. 

Genetic Algorithm (GA) is a probabilistic search heuristic that replicates the defining 

features of biological evolution: reproduction with variation, selection based on 

fitness, and repetition. GA maintains a population of data structures, called 

chromosomes that encode candidate solutions to its target problem. Attached to each 

chromosome is its fitness, a numerical value that indicates the quality of the solution 

the chromosome represents. The algorithm selects chromosomes to survive or 

reproduce so that those with better fitness are more likely to be selected. Crossover, 

also called recombination, combines genetic information from two parent 

chromosomes. Mutation randomly modifies one parent chromosome. When the EA 

has generated enough offspring, they replace their parents and the process continues. 

As these generations succeed each other, chromosomes that represent better solutions 

evolve. Therefore a heuristic search method based on genetic algorithm is developed 

to design such network, which has minimum cost and satisfy the required constraint 

demanded by the system. 

 

This thesis is located in the area of combinatorial optimization, focusing on NP hard 

network design problems that occur in real world where multiple local area networks 

are interconnected by a backbone network. Depending on the demands of such a 

network, the underlying problem can either be formulated as the Generalized 

Minimum Spanning Tree problem or the even harder Degree Constrained Minimum 

Spanning Tree Problem. Given a connected, undirected graph G with n nodes, a 

spanning tree T is a subgraph of a G that connects all of G’s nodes and contains no 
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cycles. When every edge  ( i, j) is associated with a numerical costs cij , a minimum 

spanning tree (MST) is a spanning tree of the smallest possible total edge cost 

                                       
( , )

ij

i j T

C c
∈

= ∑      (1) 

 

 
Figure 1.  A Minimum Spanning Tree of Five Networks 

 

1.1 Overview of Thesis 

The further organization of this thesis is as follows: There are seven remaining 

chapters: 

 

Chapter 2. Network Design  

This chapter explains that what is network design, what are the different types of 

network with its mathematical formulation and what are the application where 

network design is the backbone of the system. It also describes that what are the 

different types of problem related with network design with its limitation. 
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Chapter 3. Methodologies  

In this chapter various techniques to solve network design optimization problems are 

presented with their limitation and literature survey with relevance of the research 

work has been highlighted. This chapter is the motivation of this research work. 

 

Chapter 4. Genetic Algorithm  

This chapter explains the basic of genetic algorithm. 

 
Chapter 5. Genetic Algorithm approach to Network Design 
 

This chapter is the backbone of this research where redefined Genetic Algorithm 

approach is explained to design network. This chapter contains all the methods and 

algorithms developed for this study. This chapter starts with the explanation of 

genetic algorithm and it describes that how genetic algorithm can helps to solve this 

network design problem. It explains the improved genetic algorithm approach with 

the developed fitness function and various types of genetic operators developed in this 

thesis. All the functions developed in this chapter are published. Following papers are 

published for this chapter... 

1. Anand Kumar, Dr. N.N. Jani , “An algorithm to detect cycle in an undirected 
graph” International Journal of Computational Intelligence Research ISSN 
0973-1873, (Vol 6, No 2 (2010), pp 305-310) 

 
2. Anand Kumar, Dr. N.N. Jani, “A Novel Genetic Algorithm Approach for 

Network Design with Robust Fitness Function” Proceeding of   International 
Conference on Mathematics and Computer Science, 5-6 Feb 2010, Loyola 
College, Chennai,  ISBN: 978-81-908234-2-5. 

 
3. Anand Kumar and  N.N. Jani, “ Using A Genetic Algorithm approach to 

Design Backbone Core Communication Network” Proceeding of   
International Conference on Emerging Trends in Computing , 8-10 Jan 2009 , 
Kamaraj College of Engineering and technology, Virudhunagar, Tamilnadu. 
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Chapter 6. Experimental Design and Result  

This chapter explains that how this experiment is carried out. The tools and data sets 

with the result have been presented here. This chapter is the proof of this research 

work. Various tables, graphs, diagrams and developed programs have been included 

in this chapter. Following papers are published for the experimental result. 

4. Anand Kumar, Dr. N.N. Jani, “Network Design Problem Using  Genetic 
Algorithm- An Empirical Study On  Selection Operator”  International Journal 
of Computer Science and Applications (IJCSA)      ISSN: 0974-1003 
(April/May 2010 Vol 3, No 2, pp 48-52) 

 
5. Anand Kumar and  Dr. N.N. Jani, “Genetic Algorithm for Network Design 

Problem- An Empirical Study of Crossover operator with Generation and 
Population Variation” International Journal of Information Technology and 
Knowledge Management, ISSN: 0973-4414, Vol III, Issue-I, June 2010.   

 
Chapter 7. Genetic Algorithm approach to Solve Shortest Path and Traveling 

Salesman Problem  

This chapter explains a new approach based on genetic algorithm to solve these NP-

hard network design problems. To solve these problems various functions and 

operators are developed. These works are published also. 

6. Anand Kumar, “A Nature based Evolutionary approach to solve Network 
Communication NP-Hard Traveling Salesman problem” International Journal 
of Computational Intelligence Research and Applications (IJCIRA) ISSN: 
0973-6794, Volume 3 Number 1, January-June 2009, Page. No. 27-32. 

 
7. Anand Kumar, Dr. N.N. Jani, “An Evolutionary Approach for Shortest Path 

Problem - Courier Delivery System” International Journal of Computational 
Intelligence Research ISSN 0973-1873 Volume 6, Number 2 (2010), pp. 261–
273. 

 
8. Anand Kumar, Dr. N.N. Jani, “Genetic Algorithm Approach to Solve 

Hamiltonian Circuit Problem With Robust Fitness And Repair Function” 
Proceeding of   IEEE International Advance Computing Conference 
2009.Thapar University, Patiyala.  ISBN NO:  978-981-08-2465-5  
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Chapter 8. Conclusions and Future Scope 
 
This chapter is devoted for the discussion with conclusion and the extension of this 
research work. 
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CHAPTER 2 

Network Design 
 
 
 

Network design is one of the most important and most frequently encountered classes 

of optimization problems. In this chapter, it is explained that “what network design 

is?” The meaning of network design is a backbone network which is a connected 

network with all locations in the form of a tree.  In this research work, a generalized 

network design problems (NDPs) is focused in the form of a large scale backbone 

network which belong to the family of NP-hard [6] combinatorial optimization 

problems[42,43]. The purpose of the backbone is to connect regional distribution 

networks and, in some instances, to provide connectivity to other peer networks. To 

connect the different locations, a minimum spanning tree (MST) [5] is required which 

is responsible for connecting all the locations with minimum distance without the 

formation of a circle. The MST problem itself is easy to solve by polynomial-time 

algorithms like those of Prim or Kruskal, but adding additional constraints often make 

the corresponding optimization problem a hard one. Additional constraint is important 

for the effective network design and one of the most important constraints is degree of 

each node.  In the degree-constraint MST problem a bound on the degree, i.e., the 

number of incident edges, is imposed on every node in the tree to model that in a 

telecommunication network the used hardware (e.g., a router or switch) can only 

handle a limited amount of links However, there are also other problems that can be 

expressed as network design problems, such as various transportation and routing 

problems. For example, in the famous traveling salesman problem (TSP), one has to 
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find a round trip (Hamiltonian cycle) through a set of cities (nodes) of minimal length, 

similarly Shortest path problems arise in a wide variety of practical problem such as 

transportation planning , salesperson routing, message routing in communication 

systems. 

 

2.1 Graph Models 

In the context of this chapter, the word network means a physical problem that can be 

modeled as a mathematical graph composed of nodes and links. The system is 

represented by a mathematical graph composed of nodes representing the computers 

and edges representing the communications links. The terms used to describe graphs 

are not unique; oftentimes, notations used in the mathematical theory of graphs and 

those common in the application fields are interchangeable. Thus a mathematics 

textbook may talk of vertices and arcs; an electrical engineering book, of nodes and 

branches; and a communications book, of sites and interconnections or links. In 

general, these terms are synonymous and used interchangeably. In some situations, 

communication can go only in one direction between a node pair; the link is 

represented by a directed edge (an arrowhead is added to the edge), and one or more 

directed edges in a graph result in a directed graph (digraph). If communication can 

occur in both directions between two nodes, the edge is non directed, and a graph 

without any directed nodes is an undirected graph. In this thesis undirected graph is 

considered. Following Figure-2 is the graph representation of network in Figure-1. It 

represents a complete graph where direct path exist to go from one node to any other 

node. 
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Figure 2:1 A Complete Graph of Five Nodes 

 

2.2 Basic Network Models 

Network design is used extensively in practice in an ever expanding spectrum of 

applications. Network optimization models such as shortest path, assignment, max- 

flow, transportation, transshipment, spanning tree, matching, traveling salesman, 

generalized assignment, vehicle routing, and multi-commodity flow constitute the 

most common class of practical network optimization problems. Following are the 

core models of network design.  

 
 

Figure 2: 2 Core Models of Network Design 
 
 

Network Design Models

Spanning Tree Model Shortest Path Model Maximum Flow Model 
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These network models are used most extensively in applications and differentiated by 

their structural characteristics. This research work is based on spanning tree model. 

The descriptions of these models are as follows. 

 

2.2.1 Spanning Tree Model 

Spanning tree models play a central role within the field of network design. It 

generally arises in one of two ways, directly or indirectly. In some direct applications, 

It connects a set of points using the least cost or least length collection of arcs. 

Frequently, the points represent physical entities such as components of a computer 

chip, or users of a system who need to be connected to each other or to a central 

service such as a central processor in a computer system [2]. In indirect applications, 

either (1) wish to connect some set of points using a measure of performance that on 

the surface bears little resemblance to the minimum spanning tree objective (sum of 

arc costs), or (2) the problem itself bears little resemblance to an “optimal tree” 

problem – in these instances, it is often needed to be creative in modeling the problem 

so that it becomes a minimum spanning tree problem. 

Applications 

1. Backbone Network Design 

2. Designing of digital circuit,  

3. Designing of gas pipeline, 

4. Layout planning roads and railway track and many more 

 

2.2.2 Shortest Path Model 

The shortest path model is the heart of network design optimization. It has several 

important reasons: (1) it arise frequently in practice since in a wide variety of 
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applications, materials are sent (e.g., a computer data packet, a telephone call, a 

vehicle) between two specified points in a network as quickly, as cheaply, or as 

reliably as possible; (2) as the simplest network models, they capture many of the 

most salient core ingredients of network design problems and so they provide both a 

benchmark and a point of departure for studying more complex network models; and 

(3) they arise frequently as sub problems when solving many combinatorial and 

network optimization problems [2]. Even though shortest path problems are relatively 

easy to solve, the design and analysis of most efficient algorithms for solving them 

requires considerable ingenuity. Consequently, the study of shortest path problems is 

a natural starting point for introducing many key ideas from network design problems, 

including the use of clever data structures and ideas such as data scaling to improve 

the worst case algorithmic performance.  

 

Applications 

1. Transportation planning: How to determine the route road that has prohibitive 

weight restriction so that the driver can reach the destination within the 

shortest possible time. 

2. Salesperson routing: Suppose that a sales person want to go to Delhi from 

Patna and stop over in several cities to get some commission. How can he/she 

determine the route? (Traveling Salesman Problem) 

3. Investment planning: How to determine the invest strategy to get an optimal 

investment plan. 

4. Message routing in communication systems: The routing algorithm computes 

the shortest (least cost) path between the router and all the networks of the 

internet work It is one of the most important issues that has a significant 

impact on the network’s performance. 
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2.2.3 Maximum Flow Model 

The maximum flow model and the shortest path model are complementary. They are 

similar because they are both pervasive in practice and because they both arise as sub 

problems in algorithms for the minimum cost flow problem. The two problems differ 

because they capture different aspects. Shortest path problems model arc costs but not 

arc capacities; maximum flow problems model capacities but not costs. Taken 

together, the shortest path problem and the maximum flow problem combine all the 

basic ingredients of network design optimization. As such, they have become the 

cores of network optimization [2]. 

 

Applications 

The maximum flow problems arise in a wide variety of situations and in several forms. 

For example, sometimes the maximum flow problem occurs as a sub problem in the 

solution of more difficult network problems, such as the minimum cost flow problems 

or the generalized flow problem. The problem also arises directly in problems as far 

reaching as machine scheduling, the assignment of computer modules to computer 

processors, the rounding of census data to retain the confidentiality of individual 

households, and tanker scheduling. 

 

2.3 Network Design Problems 

The basic problem in network design is connectivity of the node which is very 

important from the reliability point of view. Network Design problems can be 

classified on the basis of basic network models. The network design problems can be 

broadly classified as Spanning Tree problem and Shortest Path Problem. 
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2.3.1 Spanning Tree Problem 

Given a connected, undirected graph, a spanning tree of that graph is a subgraph 

which is a tree and connects all the nodes together. A single graph can have many 

different spanning trees. It  can also be assigned a weight to each edge, which is a 

number representing how unfavorable it is, and use this to assign a weight to a 

spanning tree by computing the sum of the weights of the edges in that spanning tree. 

A minimum spanning tree (MST) is a spanning tree with weight less than or equal to 

the weight of every other spanning tree  

2.3.1.1 Minimum Spanning Tree problem. 

A minimum spanning tree (MST) or minimum weight spanning tree is then a 

spanning tree with weight less than or equal to the weight of every other spanning tree. 

 

 
Figure 2: 3 Minimum Spanning Trees 

 

Mathematical Formulation of Minimum Spanning Tree 

The MST model attempts to find a minimum cost tree that connects all the nodes of 

the network. The links or edges have associated costs that could be based on their 

distance, capacity, and quality of line. 
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For an undirected connected graph ( , )G V E=  a subgraph ( , ')T V E=  of G  is a 
spanning tree of G  if T  is a tree.  
                                               
 V    :  set of vertices 
| |V    :  number of vertex 
 E    :  set of possible edges between pair of vertices 
 ( , )u v E∈   :   Each edge between pair of vertices ,u v belongs to set of 
                             possible edges 

( , )w u v   :  Weight of each edge. 
  

( , )
( ) ( , )

u v T
w T w u v

∈

= ∑     (2.1) 

 

A spanning tree always consists of | | 1V −  edges and a complete graph G has 

| |V | | 2v −   spanning trees [8]. For example, for the four-node network of Figure.2.4 

there are 4(4 - 2) = 16 spanning trees with (4 – 1) = 3 arcs 

 

 

Figure. 2.4    A four-node graph representing a computer or communication network. 

 

 

There will be possible  4(4 - 2) = 16 spanning trees with (4 – 1) = 3 arcs. In Figure 2.5 it 

is shown. 
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Figure 2.5 The 16 spanning trees for the network of Figure 2.4 

 

2.3.1.2 Degree Constrained Minimum Spanning Tree 

Degree-constrained minimum spanning tree (DCMST) is a special case of MST. The 

MST algorithm may occasionally generate a minimal spanning tree where all the links 

connect to one or two nodes. This solution, although optimal, may be highly 

vulnerable to failure due to over reliance on a few nodes. Furthermore, the technology 

to connect many links to a node may not be available or may be too expensive. Hence, 

it may be necessary to limit the number of links connecting to a node. Alternatively, 
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from reliability perspective it is desirable to have more than one link connect to a 

node so that alternative routes can be selected in the case of a node or link failure [9], 

[10].. DCMSTP was specifically developed as a special case of MST with additional 

constraints to improve the reliability of the network and rerouting of traffic in the case 

of node failures. This is the extended version of minimum spanning tree problem 

where an extra constraint is added with each vertex. When this extra constraint is 

added this problem becomes NP-hard [7]. This constraint is usually motivated by the 

need to impose a limit on the number of ports in each node. In a shortest spanning tree 

resulting from the preceding construction, a vertex  iv  can end up with any degree; 

that is    

 

) 11 ( i nd v ≤ −≤                                   

Where n  is the total no of vertex and d is the degree denoted by ( )id v of a 

node ( 1,........ )i i n= . The degree is the number of incident edges, and the degree of a 

graph is the maximum degree of its nodes. The degree constrained MST problem is to 

determine a spanning tree of the minimum total edge cost and degree no more than a 

given value k .      

Then each node of a network must not be connected with k  other nodes  

 

( ) 3id v ≤                                          

 

So far, no efficient method of finding an arbitrarily degree constrained shortest 

spanning tree has been found. In this research work an attempt has been made to find 

the solution with more constraint which is required by the modern network.   
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2.3.2 Shortest Path Problem 

Given a pair of nodes, the shortest path problem is to find a forward path that 

connects these nodes and has minimum cost. An analogy here is made between arcs 

and their costs, and roads in a transportation network and their lengths, respectively. 

Within this transportation context, the problem becomes one of finding the shortest 

route between two geographical points. Based on this analogy, the problem is referred 

to as the shortest path problem, and the arc costs and path costs are commonly 

referred to as the arc lengths and path lengths, respectively. 

 

The shortest path problem is a classical and important combinatorial problem that 

arises in many contexts. This path is said to be shortest if it has minimum length over 

all forward paths with the same origin and destination nodes. The length of a shortest 

path is also called the shortest distance. The shortest path problem deals with finding 

shortest distances between selected pairs of nodes. The range of applications of the 

shortest path problem is very broad. The shortest path problem can be posed in a 

number of ways; for example, finding a shortest path from a single origin to a single 

destination, or finding a shortest path from each of several origins to each of several 

destinations.  

 

Mathematical Formulation of Shortest Path Problem 

Let ( , )G N A= ( , )G N A=  be a directed network, which consists of a finite set of 

nodes N  = {1, 2,........ }n  and a set of directed arcs {( , ), ( , ),.....( , )}A i j k l s t=  

connecting m  pairs of nodes in N . Arc ( , )i j  is said to be incident with nodes i  and 

j , and is directed from node  i  to node j . Each arc ( , )i j   has been assigned to a 

nonnegative value ijc , the cost of ( , )i j . The Shortest Path Problem is to find the 
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minimum cost z from a specified source node 1 to another specified sink node n, 

which can be formulated as follows 

1 1

min
n n

ij ij

i j

z c x
= =

= ∑∑      (2.2) 

1 1
.

n n

ij ki
j k

s t x x =

= =

−∑ ∑   { 1, ( 1)
0, ( 2,3...., 1)
1, ( )

if i
if i n
if i n

=
= −

− =
 (2.3) 

0 1 ,ijx or i j= ∀      (2.4) 

Where   ijx   : the link on an arc ( , )i j A∈   

 

2.3.3 Traveling Salesman Problem(TSP) 

Historically, the TSP problem deals with finding the shortest tour in n-city situations 

where each city is visited exactly once.  It is a prominent illustration of a class of 

problems in computational complexity theory which are classified as NP-hard. The 

problem is given a number of cities and the costs of traveling from any city to any 

other  city, what  is the least-cost round-trip route    that visits each city exactly once 

and then returns to the home city. In the Traveling Salesman Problem, the goal is to 

find the shortest distance between N different cities. The path that the salesman takes 

is called a tour. Testing every possibility for an N city tour would be N! math 

additions. A 30 city tour would have to measure the total distance of be 2.65 X 1032 

different tours which will take unexpected time. Adding one more city would cause 

the time to increase by a factor of 31. Obviously, this is an impossible solution. 

Traveling Salesman Problem can be represented is in the form of Hamiltonian Circuit 

which has the smallest sum of the distances.  
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Mathematical Formulation of Traveling Salesman Problem 

The problem, in essence, is an assignment model that excludes subtours. Specifically, 

in an n city situation, it is defined as 

 

ijx = 1, if city j is reached from city i otherwise 0. 

 

Given that ijd  is the distance from city i to city j , the TSP model can be defined as  

,

1 1

min
n n

ij ij

i j

z d x
= =

=  ∑ ∑     (2.5) 

ijd for all i j= ∞   =  

Subject to  

1,
1

1,2.....
n

ij
j

x i n=

=

=∑     (2.6) 

 

1

1, 1,2......,
n

ij

i

x j n=

=

=∑     (2.7) 

 

(0, 1)ijx =        (2.8) 

 

 In following figure 2.6, there are nine cities, which have to be visited by a traveling 

salesman such that each city is to be visited exactly once. In figure 2.7, a Hamiltonian 

tour is shown which a traveling salesman tour is. 
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Figure 2.6 A number of cities visited by Traveling Salesman 

 

 
Figure 2.7 Path visited by Traveling Salesman 

 

2.3.4 Considered Problems 

In this research study, network design problem is mainly considered as backbone 

network design belongs to the category of network topology design which is in the 

form of degree constraint minimum spanning tree with other constraints required by 

the network. The problem is an NP-hard problem and there is no optimal solution still 

developed. Further other network design problem Traveling salesman and Shortest 

Path Problem is also considered with the same approach genetic algorithm. Since the 
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first two problems have still not solved, a genetic algorithm approach is proposed in 

this study. For Shortest Path Problem, extra constraints have been applied which is the 

demand of current industry and then Genetic Algorithm approach is applied to solve 

the problem. Shortest Path Problem and Traveling Salesman Problem are discussed in 

section 2.6.2 and 2.6.3. There is no change in these two problems while backbone 

network design problem is redefined with other constraints.  

 

2.3.5 Backbone Network Design Problem 

A simple model for a backbone network is an undirected graph G = (V, E) with node 

set V and edge set E. In this model, the nodes represent the connection points where 

LANs are hooked up to the backbone network via gateways. In addition to being 

connection points, the nodes are the processing units that carry out traffic 

management on the network by forwarding data packets to the nodes along their 

destinations (i.e., known as routers). The edges represent the high capacity 

multiplexed lines on which data packets are transmitted bi-directionally between the 

node pairs. In designing of backbone network connectivity is an important factor. For 

a reliable network, connectivity is an important constraint. If a node has degree one, 

there is more chance of isolation of this node in case of path failure. Further according 

to the importance of the node, degree can be extended which is in the form of more 

connectivity means more reliability. So degree constraint is an important constraint 

for backbone network design. In this backbone network design problem, degree of the 

node is kept between lower bound and upper bound.  Other important constraint is 

existence of path between pair of nodes. If direct path exist from each node to each 

other node then it is the case of complete graph, but it is always not possible that path 

will be available from each node to each other node. So other important constraint is 
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path constraint. Since real world network systems are becoming larger and more 

complex, the need of more sophisticated models arises. For example, with increasing 

number of local networks, it makes sense to connect them to a new global network. 

This involves choosing one computer from each local network to be used as an 

entrance gate for the global backbone. Obviously, the old model of MSTP is not 

sufficient anymore. This motivates the introduction of Backbone Network Design 

Problems. Since Degree Constrained Minimum Spanning Tree Problem itself is a NP-

hard problem, including another constraint like path constraint makes it one of the 

hardest problem in category of NP-hard.  

 

Mathematical Formulation of Backbone Network Design Problem 

The mathematical formulation of the DCMST problem is presented below. The 
following notation is used in the research study. 
 
Indices 

,i j   : Index of nodes       , 1,2,.....,i j n=  

V   : Set of nodes in the spanning tree. 
 
Parameters 

ijC   : Cost to link nodes i  to j  

iUd  : Upper degree constraint on node i  

iLd    : Lower degree constraint on node i  

| |N   : Number of nodes in a subset N of nodes in V  

| |V   : Number of the nodes in V  
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Decision Variables  
 

ijX   : Equals one if the link between nodes i  to j  exists; 

  :  zero, otherwise. 
 
Minimize   

               
,

ij ij
i j V
i j

C X
<

<

∑     (2.9) 

 
Subject to 

                 ij i
j V
i j

X Ud i V    

∈
≠

≤ ∀ ∈∑   (2.10) 

ij i
j V
i j

X Ld i V   

∈
≠

≥ ∀ ∈∑    (2.11) 

 

,
| | 1ij

i j N
i j

X N V
∈

<

≤ −    ∀Ν ⊂  ∑   (2.12) 

 

,
| | 1ij

i j V
i j

X V
∈

<

=  −  ∑     (2.13) 

 

0 1 , .ijX or i j V=       ∈    (2.14) 

 

The objective function (2.9) seeks to minimize the total connecting cost between 

nodes. The total cost could be distance cost, material cost, or customers’ requirement 

cost. Constraint (2.10) and (2.11) specify the lower and upper bound constraints on 

the number of edges connecting to a node. Constraint (2.12) is an anti cycle constraint 

and constraint (2.13) indicates that the number of edges in a spanning tree is equal to 

the number of nodes minus one. Constraint (2.14) expresses the binary requirements 



Network Design Using Genetic Algorithm 
 
 

 
 

27

of the decision variables. Constraint (2.12) increases exponentially with network node 

size, thereby making it impractical to solve large size problems. 
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CHAPTER 3 

Methodologies 
 
 
 

There are various techniques to solve optimization problems like these presented 

above. Roughly they can be classified into two main categories: Exact and, Heuristic. 

Further heuristic is classified as Metaheuristic Algorithms. Exact algorithms are 

guaranteed to always identify a provable optimal solution (if some exists), but often 

the runtime behavior does not scale satisfyingly with instance size. As a consequence, 

exact approaches often are only applied to small or moderately-sized instances while 

larger instances are solved by heuristics. Heuristics sacrifice the guarantee to reach 

the optimum for the sake of finding good solutions of acceptable quality within 

reasonable time. Somewhere in-between is the approximation algorithms: Mainly 

classified as heuristics they are able to give at least some provable bounds on the 

quality of the computed solution in relation to the optimum. 

Examples for successful exact algorithms are Dynamic Programming (DP) [11], 

Branch&Bound, and especially the large family of (integer) linear programming (LP) 

based approaches, including in particular Linear Programming based Branch&Bound, 

Branch&Cut, Branch&Price, and Branch&Cut&Price [12, 13]. Concerning heuristics 

there exist constructive methods like Greedy Heuristics and techniques such as Local 

Search. Usually, these approaches are highly problem specific. More general solution 

strategies are the so-called metaheuristic [14, 15], which control and manage 

subordinate, often problem specific heuristics, using various strategies to escape local 

optima simple heuristics are frequently trapped in. Usually, metaheuristics are more 
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reliable and robust in finding good solutions, making them an interesting choice to 

solve difficult optimization problems. Prominent representatives for Metaheuristics 

are Iterated Local Search [16] or Tabu Search (TS) [17].  Proven to sometimes be 

very effective are also algorithms inspired by nature and biology population-based 

approaches which are especially well suited for parallel processing like Evolutionary 

Algorithms (EA) [18, 19]. In this study, Genetic Algorithm approach is applied to 

solve the problem. 

In this chapter first of all a brief description of Exact algorithms have been given then 

Heuristics have been described and at last Metaheuristic have been described. 

 

 

Figure 3.1 Core Methodology of Network design 

 

3.1 Exact Algorithms 

Many Combinatorial Optimization Problems (Cops) can be modeled as a (integer) 

linear program. While Linear Programs (LPs) can be solved efficiently in practice via 

the well known simplex algorithm and, from a theoretical point, even in polynomial 

time. Whenever possible, the first attempt should be to solve a given problem to 

proven optimality.  Following are the main exact algorithms which are used to prove 

the solution optimally. 

 

Network Design Methodology

Exact Algorithm Heuristic 
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Figure 3.2 Exact Algorithms for Network design 

 

3.1.1 Linear Programming  

Linear programming (LP) is a mathematical method for determining a way to 

achieve the best outcome (such as maximum profit or lowest cost) in a given 

mathematical model for some list of requirements represented as linear equations. 

More formally, linear programming is a technique for the optimization of a linear 

objective function, subject to linear equality and linear inequality constraints. Given a 

polyhedron and a real-valued affine function defined on this polyhedron, a linear 

programming method will find a point on the polyhedron where this function has the 

smallest (or largest) value if such point exists, by searching through the polyhedron 

vertices. Linear programming is a considerable field of optimization for several 

reasons. Many practical problems in operations research can be expressed as linear 

programming problems. Certain special cases of linear programming, such as network 

flow problems and multicommodity flow problems are considered important enough 

to have generated much research on specialized algorithms for their solution. A 

number of algorithms for other types of optimization problems work by solving LP 

problems as sub-problems. Historically, ideas from linear programming have inspired 

many of the central concepts of optimization theory, such as duality, decomposition, 

and the importance of convexity and its generalizations. Likewise, linear 

Exact Algorithm 

Linear programming Dynamic Programming 
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programming is heavily used in microeconomics and company management, such as 

planning, production, transportation, technology and other issues. Although the 

modern management issues are ever-changing, most companies would like to 

maximize profits or minimize costs with limited resources. Therefore, many issues 

can boil down to linear programming problems. 

Integer Linear Programming 

If the unknown variables are all required to be integers, then the problem is called an 

integer programming (IP) or integer linear programming (ILP) problem. In contrast to 

linear programming, which can be solved efficiently in the worst case, integer 

programming problems are in many practical situations (those with bounded 

variables) NP-hard. 0-1 integer programming or binary integer programming (BIP) is 

the special case of integer programming where variables are required to be 0 or 1 

(rather than arbitrary integers). This problem is also classified as NP-hard, and in fact 

the decision version was one of Karp's 21 NP-complete problems. If only some of the 

unknown variables are required to be integers, then the problem is called a mixed 

integer programming (MIP) problem. These are generally also NP-hard. There are 

however some important subclasses of IP and MIP problems that are efficiently 

solvable, most notably problems where the constraint matrix is totally unimodular and 

the right-hand sides of the constraints are integers. Advanced algorithms for solving 

integer linear programs include: 

• cutting-plane method  

• branch and bound  

• branch and cut  

• branch and price  
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• if the problem has some extra structure, it may be possible to apply delayed 

column generation.  

3.1.1.1 Branch and bound 

Branch and bound (BB) is a general algorithm for finding optimal solutions of various 

optimization problems, especially in discrete and combinatorial optimization. It 

consists of a systematic enumeration of all candidate solutions, where large subsets of 

fruitless candidates are discarded en masse, by using upper and lower estimated 

bounds of the quantity being optimized.The method was first proposed by A. H. Land 

and A. G. Doig in 1960 for linear programming.Branch-and-bound may also be a base 

of various heuristics. For example, one may wish to stop branching when the gap 

between the upper and lower bounds becomes smaller than a certain threshold. This is 

used when the solution is "good enough for practical purposes" and can greatly reduce 

the computations required. This type of solution is particularly applicable when the 

cost function used is noisy or is the result of statistical estimates and so is not known 

precisely but rather only known to lie within a range of values with a specific 

probability. An example of its application here is in biology when performing 

cladistic analysis to evaluate evolutionary relationships between organisms, where the 

data sets are often impractically large without heuristics. For this reason, branch-and-

bound techniques are often used in game tree search algorithms, most notably through 

the use of alpha-beta pruning. 

3.1.2 Dynamic Programming 

In mathematics and computer science, dynamic programming is a method of solving 

complex problems by breaking them down into simpler steps. It is applicable to 
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problems that exhibit the properties of overlapping subproblems which are only 

slightly smaller and optimal substructure. When applicable, the method takes much 

less time than naive methods. 

Top-down dynamic programming simply means storing the results of certain 

calculations, which are then re-used later because the same calculation is a sub-

problem in a larger calculation. Bottom-up dynamic programming involves 

formulating a complex calculation as a recursive series of simpler calculations. 

There are two key attributes that a problem must have in order for dynamic 

programming to be applicable: optimal substructure and overlapping subproblems 

which are only slightly smaller. When the overlapping problems are, say, half the size 

of the original problem the strategy is called "divide and conquer" rather than 

"dynamic programming". This is why merge sort, and quick sort, and finding all 

matches of a regular expression are not classified as dynamic programming problems. 

Optimal substructure means that the solution to a given optimization problem can be 

obtained by the combination of optimal solutions to its subproblems. Consequently, 

the first step towards devising a dynamic programming solution is to check whether 

the problem exhibits such optimal substructure. Such optimal substructures are 

usually described by means of recursion. For example, given a graph G=(V,E), the 

shortest path p from a vertex u to a vertex v exhibits optimal substructure: take any 

intermediate vertex w on this shortest path p. If p is truly the shortest path, then the 

path p1 from u to w and p2 from w to v are indeed the shortest paths between the 

corresponding vertices. Hence, one can easily formulate the solution for finding 

shortest paths in a recursive manner, which is what the Bellman-Ford algorithm does. 
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3.2  Heuristics 

When confronted with NP-hard combinatorial optimization problems, exact 

approaches often are only applicable to relatively small problem instances due to run 

time and sometimes also memory restrictions. Heuristics and especially 

metaheuristics can be seen as alternatives when large instances have to be solved in 

reasonable time, whereas these approaches are not able to guarantee to reach the 

optimum. Nevertheless, for real-world optimization problems they are often the only 

opportunity to get high-quality solutions with limited resources. The term 

metaheuristic has been introduced by Glover [20] and denotes a problem independent 

high-level solution strategy managing and controlling subordinate heuristics, which 

themselves are highly problem specific in general. This section starts with an 

introduction to some basic heuristics, and afterwards, Genetic Algorithm 

metaheuristics is explained 

. 

3.2.1 Kruskal’s Algorithm 
 
Examines edges in nondecreasing order of their lengths and include them in MST if 

the added edge does not form a cycle with the edges already chosen. The algorithm is 

attractive if the edges are already sorted in increasing order of their lengths. The 

procedure of Kruskal’s algorithm is shown below in procedure and figure 3.3(b) is 

Kruskal based MST of graph shown in figure 3.3(a). 
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_____________________________________________________________ 

Procedure: Kruskal's Algorithm 

_____________________________________________________________ 

Input: Graph ( , ), , ( , )ijG V E weight w i j V=     ∀ ∈  

Output: Spanning Tree T  

Begin 

        
;
;

T
A E

φ←
←       

/ / :A Eligible edges 

       while | | | | 1T V  <  −  do 

              choose an edge ( , )u v ←  argmin  { | ( , ) };ijw i j A∈  

              \{( , )};A A u v←  

              if u and v  are yet not connected in T then 

                         {( , )};T T u v← ∪  

               Output  spanning tree T  
   End 

_____________________________________________________________ 

 
 

 

Figure 3.3 (a) A Graph ( , )G V E=  and weight , ( , )ijw i j V∀ ∈  
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Figure 3.3 (b) MST 
 
 

3.2.2 Prim’s Algorithm 
According to Prim, the spanning tree starts from an arbitrary root vertex and grows 

until the tree spans all the vertices inV . Prim’s algorithm has the property that the 

edges in the set always form a single tree. The procedure of Prim’s algorithm is 

shown in procedure and figure 3.4 is Prim based MST of graph shown in figure 3.3(a). 

  ____________________________________________________________ 

Procedure: Prim's Algorithm 

  ____________________________________________________________ 

Input: Graph ( , ), , ( , )ijG V E weight w i j V=     ∀ ∈  

Output: Spanning Tree T  

Begin 

        ;T φ←  

         Choose a random starting node ;s V∈  

          { }; / / :C C s C← ∪ set of connected nodes 

           {( , ), }; / / :A A s v v V A← ∪ ∀ ∈  eligible edges 
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            While   C V≠  do 

                      Choose an edge ( , )u v ←argmin{ | ( , ) };ijw i j A∈  

                       \{( , )};A A u v←  

                     if v C≠ then 

                                  
{( , )};
{ };
{( , ) | ( , ) };

T T u v
C C v
A A v w v w w C

← ∪
← ∪
← ∪ ∧ ∉

 

               Out put  spanning tree T  
   End      

_____________________________________________________________ 

 

 

 
Figure 3.4 Prim based  MST 

 

 

3.2.3 Breadth First Search Algorithm(BFS) 
 
Breadth-first traversal of a graph is a level-by-level traversal of an ordered tree.  Start 

the traversal from an arbitrary vertex, visit all of its adjacent vertices; and then, visit 

all unvisited adjacent vertices of those visited vertices in last level. Continue this 
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process, until all vertices have been visited. The procedure of BFS algorithm is shown 

in procedure and figure 3.5(b) is BFS based MST of graph shown in figure 3.5(a). 

 ____________________________________________________________ 

Procedure: Breadth First Search Algorithm 

  ____________________________________________________________ 

   BFS(G,s)  
   for each vertex u in V 
         visited[u] = false 

      Report(s) 

      visited[s] = true 

 

     initialize an empty Q 

     Enqueue(Q,s) 

    While Q is not empty 
       do u = Dequeue(Q) 

            for each v in Adj[u] 

                  do if visited[v] = false 

                       then Report(v) 

                               visited[v] = true 

                               Enqueue(Q,v)             

_____________________________________________________________ 

 

 

 
Figure 3.5(a) an Undirected Graph 
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Figure 3.5(b) BFS based Spanning Tree 

 
3.2.4 Depth First Search Algorithm(DFS) 
 
It is based on depth of the graph. It starts from the given vertex, visit one of its 

adjacent vertices and leave others; then visit one of the adjacent vertices of the 

previous vertex; continue the process, visit the graph as deep as possible until: A 

visited vertex is reached or an end vertex is reached. 

____________________________________________________________ 

Procedure: Depth First Search Algorithm 

  ____________________________________________________________ 

         DepthFirst(Graph G) 

     Vertex v; 

     for (all v in G) 

      visited[v] = FALSE; 

     for (all v in G) 

         if (!visited[v]) 

       Traverse(v); 

 

        Traverse(Vertex v) 

      visited[v] = TRUE; 

      Visit(v); 

    for (all w adjacent to v) 
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        if (!visited[w]) 

        Traverse(w); 

   ____________________________________________________________ 

 

 

 
Figure 3.6 DFS based Spanning Tree 

 
 
3.2.5 Dijkstra algorithm for Shortest Path 
 
There are many algorithms for shortest path problem, but Dijkstra is the  prominent 

among all of them. Here Dijkstra is explained only. Other shortest path algorithms 

are:  

 

• Bellman-Ford Algorithm 

• Floyd-Warshall Algorithm 

• Incremental-shortest-path algorithms 

 

Dijkstra algorithm provides a shortest route for weighted directed graph G = (V,E) for 

the case in which all the edge weights are non negative. Therefore w(u, v) >0 for each 

edge (u, v)∈E. This algorithm maintains a  set S of vertices whose final shortest path 

weights from the source s have already been determined. That is, for all vertices                         
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v ∈S, d[v] = δ (s, v). The algorithm repeatedly selects the vertex  u ∈V-S with the 

minimum shortest path , insert u into S and relax all edges leaving u. A priority queue 

Q is maintained that contains all the vertices in V-S, keyed by their d values. Graph G 

is assumed as adjacency list. The procedure of Dijkstra algorithm is shown in 

procedure and figure 3.7(b) is shortest path  based on  graph shown in figure 3.7(a). 

 

____________________________________________________________ 

Procedure: Dijkstra Algorithm 

  ___________________________________________._________________ 

Input : Graph ( , ), , ( , )ijG V E weight w i j V=     ∀ ∈  

Output: Shortest Path 

Begin 
 
Initialize- Single-Source (G, s) 

S φ←  

[ ]Q V G←  

while Q φ≠  

       do  u ←Extract-Min(Q ) 

             { }S S u← ∪  

                   for each vertex [ ]v Adj u∈  

                         do  Relax ( , , )u v w  

    End 
   ____________________________________________________________ 
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Figure 3.7(a) Directed Weighted Graph 

 

 
 

Figure 3.7(b) Shortest Path from s to t based on Dijkstra Algorithm 

 
3.2.6 Metaheuristics 

A metaheuristic is a heuristic method for solving a very general class of 

computational problems by combining user-given black-box procedures usually 

heuristics themselves in the hope of obtaining a more efficient or more robust 

procedure. The name combines the Greek prefix "meta" ("beyond", here in the sense 

of "higher level") and "heuristic" (from ευρισκειν, heuriskein, "to find"). 
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Metaheuristics are generally applied to problems for which there is no satisfactory 

problem-specific algorithm or heuristic; or when it is not practical to implement such 

a method. Most commonly used metaheuristics are targeted to combinatorial 

optimization problems, but of course can handle any problem that can be recast in that 

form, such as solving boolean equations. For NP-hard optimization problems, it is 

often impossible to apply exact methods to large instances in order to obtain optimal 

solutions in acceptable time. In such cases, metaheuristics can be seen as alternatives, 

which are often able to provide excellent, but not necessarily optimal solutions in 

reasonable time. The term metaheuristic was first introduced by Glover and refers to a 

number of high-level strategies or concepts of how to solve optimization problems. It 

is somewhat difficult to specify the exact boundaries of this term. Voss  gives the 

following definition: 

A metaheuristic is an iterative master process that guides and modifies the operations 

of subordinate heuristics to efficiently produce high quality solutions. It may 

manipulate a complete (or incomplete) single solution or a collection of solutions at 

each iteration. The subordinate heuristics may be high (or low) level procedures, or a 

simple local search, or just a construction method. 

3.2.6.1 Genetic Algorithm 

A Genetic Algorithm (GA) is a search technique used in computing to find exact or 

approximate solutions to optimization and search problems. Genetic algorithms are 

categorized as global search heuristics. Genetic algorithms are a particular class of 

Evolutionary Algorithms (EA) that use techniques inspired by evolutionary biology 

such as inheritance, mutation, selection, and crossover.  
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Simple generational genetic algorithm pseudocode: 

1. Choose the initial population of individuals  

2. Evaluate the fitness of each individual in that population  

3. Repeat on this generation until termination: (time limit, sufficient fitness 

achieved, etc.)  

1. Select the best-fit individuals for reproduction  

2. Breed new individuals through crossover and mutation operations to 

give birth to offspring  

3. Evaluate the individual fitness of new individuals  

4. Replace least-fit population with new individuals  

Since this research is based on Genetic Algorithm only, it is explained in great detail 

in chapter 4. 

 

3.2.6.2 Simulated Annealing 

Simulated Annealing (SA) is a generic probabilistic metaheuristic for the global 

optimization problem of applied mathematics, namely locating a good approximation 

to the global minimum of a given function in a large search space. It is often used 

when the search space is discrete (e.g., all tours that visit a given set of cities). For 

certain problems, simulated annealing may be more effective than exhaustive 

enumeration — provided that the goal is merely to find an acceptably good solution in 

a fixed amount of time, rather than the best possible solution. 

The name and inspiration come from annealing in metallurgy, a technique involving 

heating and controlled cooling of a material to increase the size of its crystals and 
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reduce their defects. The heat causes the atoms to become unstuck from their initial 

positions (a local minimum of the internal energy) and wander randomly through 

states of higher energy; the slow cooling gives them more chances of finding 

configurations with lower internal energy than the initial one. 

By analogy with this physical process, each step of the SA algorithm replaces the 

current solution by a random "nearby" solution, chosen with a probability that 

depends on the difference between the corresponding function values and on a global 

parameter T (called the temperature), that is gradually decreased during the process. 

The dependency is such that the current solution changes almost randomly when T is 

large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves 

saves the method from becoming stuck at local minima which are the bane of greedier 

methods. 

In the simulated annealing (SA) method, each point s of the search space is analogous 

to a state of some physical system, and the function E(s) to be minimized is analogous 

to the internal energy of the system in that state. The goal is to bring the system, from 

an arbitrary initial state, to a state with the minimum possible energy. 

3.2.6.3 Local Search 

In computer science, local search is a metaheuristic for solving computationally hard 

optimization problems. Local search can be used on problems that can be formulated 

as finding a solution maximizing a criterion among a number of candidate solutions. 

Local search algorithms move from solution to solution in the space of candidate 

solutions (the search space) until a solution deemed optimal is found or a time bound 

is elapsed. Some problems where local search has been applied are: 
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1. The vertex cover problem, in which a solution is a vertex cover of a graph, and 

the target is to find a solution with a minimal number of nodes;  

2. The travelling salesman problem, in which a solution is a cycle containing all 

nodes of the graph and the target is to minimize the total length of the cycle;  

3. The boolean satisfiability problem, in which a candidate solution is a truth 

assignment, and the target is to maximize the number of clauses satisfied by 

the assignment; in this case, the final solution is of use only if it satisfies all 

clauses.  

4. The nurse scheduling problem where a solution is an assignment of nurses to 

shifts which satisfies all established constraints.  

5. The k-medoid clustering problem and other related facility location problems 

for which local search offers the best known approximation ratios from a 

worst-case perespective.  

Most problems can be formulated in terms of search space and target in several 

different manners. For example, for the travelling salesman problem a solution can be 

a cycle and the criterion to maximize is a combination of the number of nodes and the 

length of the cycle. But a solution can also be a path, and being a cycle is part of the 

target. 

A local search algorithm starts from a candidate solution and then iteratively moves to 

a neighbor solution. This is only possible if a neighborhood relation is defined on the 

search space. As an example, the neighborhood of a vertex cover is another vertex 

cover only differing by one node. For boolean satisfiability, the neighbors of a truth 

assignment are usually the truth assignments only differing from it by the evaluation 

of a variable. The same problem may have multiple different neighborhoods defined 
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on it; local optimization with neighborhoods that involve changing up to k 

components of the solution is often referred to as k-opt. 

Typically, every candidate solution has more than one neighbor solution; the choice 

of which one to move to is taken using only information about the solutions in the 

neighborhood of the current one, hence the name local search. When the choice of the 

neighbor solution is done by taking the one locally maximizing the criterion, the 

metaheuristic takes the name hill climbing. 

Termination of local search can be based on a time bound. Another common choice is 

to terminate when the best solution found by the algorithm has not been improved in a 

given number of steps. Local search algorithms are typically incomplete algorithms, 

as the search may stop even if the best solution found by the algorithm is not optimal. 

This can happen even if termination is due to the impossibility of improving the 

solution, as the optimal solution can lie far from the neighborhood of the solutions 

crossed by the algorithms. 

Local search algorithms are widely applied to numerous hard computational problems, 

including problems from computer science (particularly artificial intelligence), 

mathematics, operations research, engineering, and bioinformatics. Examples of local 

search algorithm are WalkSAT and the 2-opt algorithm for the TSP. For specific 

problems it is possible to devise neighborhoods which are very large, possibly 

exponentially sized. If the best solution within the neighborhood can be found 

efficiently, such algorithms are referred to as very large-scale neighborhood search 

algorithms. 
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3.2.6.4 Best-First Search 

It is a search algorithm which explores a graph by expanding the most promising node 

chosen according to a specified rule. Judea Pearl described best-first search as 

estimating the promise of node n by a "heuristic evaluation function f(n) which, in 

general, may depend on the description of n, the description of the goal, the 

information gathered by the search up to that point, and most important, on any extra 

knowledge about the problem domain.  

Some authors have used "best-first search" to refer specifically to a search with a 

heuristic that attempts to predict how close the end of a path is to a solution, so that 

paths which are judged to be closer to a solution are extended first. This specific type 

of search is called greedy best-first search.  Efficient selection[44, 74] of the current 

best candidate for extension is typically implemented using a priority queue. The A* 

search algorithm is an example of best-first search. Best-first algorithms are often 

used for path finding in combinatorial search. 

3.2.6.5 Tabu Search  

It is a metaheuristic algorithm that can be used for solving combinatorial optimization 

problems, such as the traveling salesman problem (TSP). Tabu search uses a local or 

neighbourhood search procedure to iteratively move from a solution x to a solution x' 

in the neighbourhood of x, until some stopping criterion has been satisfied. To explore 

regions of the search space that would be left unexplored by the local search 

procedure (see local optimality), tabu search modifies the neighbourhood structure of 

each solution as the search progresses. The solutions admitted to N * (x), the new 

neighbourhood, are determined through the use of memory structures. The search then 
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progresses by iteratively moving from a solution x to a solution x' in N * (x). Perhaps 

the most important type of memory structure used to determine the solutions admitted 

to N * (x) is the tabu list. In its simplest form, a tabu list is a short-term memory which 

contains the solutions that have been visited in the recent past (less than n iterations 

ago, where n is the number of previous solutions to be stored (n is also called the tabu 

tenure)). Tabu search excludes solutions in the tabu list from N * (x). A variation of a 

tabu list prohibits solutions that have certain attributes (e.g., solutions to the traveling 

salesman problem (TSP) which include undesirable arcs) or prevent certain moves 

(e.g. an arc that was added to a TSP tour cannot be removed in the next n moves). 

Selected attributes in solutions recently visited are labeled "tabu-active." Solutions 

that contain tabu-active elements are “tabu”. This type of short-term memory is also 

called "recency-based" memory. Tabu lists containing attributes can be more effective 

for some domains, although they raise a new problem. When a single attribute is 

marked as tabu, this typically results in more than one solution being tabu. Some of 

these solutions that must now be avoided could be of excellent quality and might not 

have been visited. To mitigate this problem, "aspiration criteria" are introduced: these 

override a solution's tabu state, thereby including the otherwise-excluded solution in 

the allowed set. A commonly used aspiration criterion is to allow solutions which are 

better than the currently-known best solution. 

3.2.6.6 Ant Colony Optimization 

The Ant Colony Optimization algorithm (ACO), is a probabilistic technique for 

solving computational problems which can be reduced to finding good paths through 

graphs. This algorithm is a member of Ant Colony Algorithms family, in swarm 

intelligence methods, and it constitutes some metaheuristic optimizations. Initially 

proposed by Marco Dorigo in 1992 , the first algorithm was aiming to search for an 
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optimal path in a graph; based on the behavior of ants seeking a path between their 

colony and a source of food. The original idea has since diversified to solve a wider 

class of numerical problems, and as a result, several problems have emerged, drawing 

on various aspects of the behavior of ants. 

In the real world, ants (initially) wander randomly, and upon finding food return to 

their colony while laying down pheromone trails. If other ants find such a path, they 

are likely not to keep travelling at random, but to instead follow the trail, returning 

and reinforcing it if they eventually find food (see Ant communication). 

Over time, however, the pheromone trail starts to evaporate, thus reducing its 

attractive strength. The more time it takes for an ant to travel down the path and back 

again, the more time the pheromones have to evaporate. A short path, by comparison, 

gets marched over faster, and thus the pheromone density remains high as it is laid on 

the path as fast as it can evaporate. Pheromone evaporation has also the advantage of 

avoiding the convergence to a locally optimal solution. If there were no evaporation at 

all, the paths chosen by the first ants would tend to be excessively attractive to the 

following ones. In that case, the exploration of the solution space would be 

constrained. 

Thus, when one ant finds a good (i.e., short) path from the colony to a food source, 

other ants are more likely to follow that path, and positive feedback eventually leads 

all the ants following a single path. The idea of the ant colony algorithm is to mimic 

this behavior with "simulated ants" walking around the graph representing the 

problem to solve. The original idea comes from observing the exploitation of food 

resources among ants, in which ants’ individually limited cognitive abilities have 

collectively been able to find the shortest path between a food source and the nest. 
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1. The first ant finds the food source (F), via any way (a), then returns to the nest 

(N), leaving behind a trail pheromone (b)  

2. Ants indiscriminately follow four possible ways, but the strengthening of the 

runway makes it more attractive as the shortest route.  

3. Ants take the shortest route, long portions of other ways lose their trail 

pheromones.  

In a series of experiments on a colony of ants with a choice between two unequal 

length paths leading to a source of food, biologists have observed that ants tended to 

use the shortest route. A model explaining this behaviour is as follows: 

1. An ant (called "blitz") runs more or less at random around the colony;  

2. If it discovers a food source, it returns more or less directly to the nest, 

leaving in its path a trail of pheromone;  

3. These pheromones are attractive, nearby ants will be inclined to follow, more 

or less directly, the track;  

4. Returning to the colony, these ants will strengthen the route;  

5. If two routes are possible to reach the same food source, the shorter one will 

be, in the same time, traveled by more ants than the long route will  

6. The short route will be increasingly enhanced, and therefore become more 

attractive;  

7. The long route will eventually disappear, pheromones are volatile; 

8. Eventually, all the ants have determined and therefore "chosen" the shortest 

route.  

Ants use the environment as a medium of communication. They exchange 

information indirectly by depositing pheromones, all detailing the status of their 
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"work". The information exchanged has a local scope, only an ant located where the 

pheromones were left has a notion of them. This system is called "Stigmergy" and 

occurs in many social animal societies (it has been studied in the case of the 

construction of pillars in the nests of termites). The mechanism to solve a problem too 

complex to be addressed by single ants is a good example of a self-organized system. 

This system is based on positive feedback (the deposit of pheromone attracts other 

ants that will strengthen it themselves) and negative (dissipation of the route by 

evaporation prevents the system from thrashing). Theoretically, if the quantity of 

pheromone remained the same over time on all edges, no route would be chosen. 

However, because of feedback, a slight variation on an edge will be amplified and 

thus allow the choice of an edge. The algorithm will move from an unstable state in 

which no edge is stronger than another, to a stable state where the route is composed 

of strong edges. 

3.2.6.7 Greedy Randomized Adaptive Search Procedure 

The Greedy Randomized Adaptive Search Procedure (also known as GRASP) is a 

metaheuristic algorithm commonly applied to combinatorial optimization problems. 

GRASP typically consists of iterations made up from successive constructions of a 

greedy randomized solution and subsequent iterative improvements of it through a 

local search. The greedy randomized solutions are generated by adding elements to 

the problem's solution set from a list of elements ranked by a greedy function 

according to the quality of the solution they will achieve. To obtain variability in the 

candidate set of greedy solutions, well-ranked candidate elements are often placed in 

a restricted candidate list (also known as RCL), and chosen at random when building 
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up the solution. This kind of greedy randomized construction method is also known as 

a semi-greedy heuristic, first described in Hart and Shogan (1987). 

3.2.6.8 Artificial Bee Colony Algorithm 

 It is an optimization algorithm based on the intelligent foraging behaviour of honey 

bee swarm, proposed by Karaboga in 2005 

In ABC model, the colony consists of three groups of bees: employed bees, onlookers 

and scouts. It is assumed that there is only one artificial employed bee for each food 

source. In other words, the number of employed bees in the colony is equal to the 

number of food sources around the hive. Employed bees go to their food source and 

come back to hive and dance on this area. The employed bee whose food source has 

been abandoned becomes a scout and starts to search for finding a new food source. 

Onlookers watch the dances of employed bees and choose food sources depending on 

dances. The main steps of the algorithm are given below: 

• Initial food sources are produced for all employed bees  

• REPEAT  

o Each employed bee goes to a food source in her memory and 

determines a neighbour source, then evaluates its nectar amount and 

dances in the hive  

o Each onlooker watches the dance of employed bees and chooses one of 

their sources depending on the dances, and then goes to that source. 

After choosing a neighbour around that, she evaluates its nectar 

amount.  

o Abandoned food sources are determined and are replaced with the new 

food sources discovered by scouts.  
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o The best food source found so far is registered.  

• UNTIL (requirements are met)  

In ABC which is a population based algorithm, the position of a food source 

represents a possible solution to the optimization problem and the nectar amount of a 

food source corresponds to the quality (fitness) of the associated solution. The number 

of the employed bees is equal to the number of solutions in the population. At the first 

step, a randomly distributed initial population (food source positions) is generated. 

After initialization, the population is subjected to repeat the cycles of the search 

processes of the employed, onlooker, and scout bees, respectively. An employed bee 

produces a modification on the source position in her memory and discovers a new 

food source position. Provided that the nectar amount of the new one is higher than 

that of the previous source, the bee memorizes the new source position and forgets the 

old one. Otherwise she keeps the position of the one in her memory. After all 

employed bees complete the search process, they share the position information of the 

sources with the onlookers on the dance area. Each onlooker evaluates the nectar 

information taken from all employed bees and then chooses a food source depending 

on the nectar amounts of sources. As in the case of the employed bee, she produces a 

modification on the source position in her memory and checks its nectar amount. 

Providing that its nectar is higher than that of the previous one, the bee memorizes the 

new position and forgets the old one. The sources abandoned are determined and new 

sources are randomly produced to be replaced with the abandoned ones by artificial 

scouts.  
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3.2.6.9 Hill Climbing 

In computer science, hill climbing is a mathematical optimization technique which 

belongs to the family of local search. It is relatively simple to implement, making it a 

popular first choice. Although more advanced algorithms may give better results, in 

some situations hill climbing works just as well. 

Hill climbing can be used to solve problems that have many solutions, some of which 

are better than others. It starts with a random (potentially poor) solution, and 

iteratively makes small changes to the solution, each time improving it a little. When 

the algorithm cannot see any improvement anymore, it terminates. Ideally, at that 

point the current solution is close to optimal, but it is not guaranteed that hill climbing 

will ever come close to the optimal solution. 

For example, hill climbing can be applied to the traveling salesman problem. It is easy 

to find a solution that visits all the cities but will be very poor compared to the 

optimal solution. The algorithm starts with such a solution and makes small 

improvements to it, such as switching the order in which two cities are visited. 

Eventually, a much better route is obtained. 

Hill climbing is used widely in artificial intelligence, for reaching a goal state from a 

starting node. Choice of next node and starting node can be varied to give a list of 

related algorithms. 

3.2.6.10 Greedy Algorithm 

A Greedy Algorithm is any algorithm that follows the problem solving metaheuristic 

of making the locally optimal choice at each stage with the hope of finding the global 
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optimum. For example, applying the greedy strategy to the traveling salesman 

problem yields the following algorithm: "At each stage visit the unvisited city nearest 

to the current city". 

In general, greedy algorithms have five pillars: 

1. A candidate set, from which a solution is created  

2. A selection function, which chooses the best candidate to be added to the 

solution  

3. A feasibility function, that is used to determine if a candidate can be used to 

contribute to a solution  

4. An objective function, which assigns a value to a solution, or a partial solution, 

and  

5. A solution function, which will indicate when it  has discovered a complete 

solution  

Greedy algorithms produce good solutions on some mathematical problems, but not 

on others.  

3.2.6.11 Memetic Algorithms 

A common drawback of EAs is that there is no guarantee for the global best solution 

to be even local optimal. Though good diversification is present due to a large 

population, recombination and mutation mechanisms, EAs lack intensification in 

overall. Therefore, many successful EAs for complex combinatorial optimization 

problems additionally use hybridization to improve solution quality and/or running 

time. Pablo Moscato  introduced the term Memetic Algorithm (MA) for local search 

and problem specific knowledge enhanced EAs. The term \meme" corresponds to a 
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unit of imitation in cultural transmission. So while genetic algorithm is inspired by 

biological evolution, MAs attempts to mimic cultural evolution. In MAs, While the 

outer metaheuristic is an EA, individual solutions of the population are further 

improved e.g. via local search heuristics. If each intermediate solution is always 

turned into a local optimum, the EA would exclusively search the space of local 

optima (w.r.t. the neighborhood structure(s) of the local improvement procedure). So 

by adjusting how much effort is spent in the local improvement, it is possible to tune 

the balance between intensification and diversification. 

 

3.3 Previous Work  to Solve Network Design Problem 

With the current demand of the industry, the reliability and service quality 

requirements of modern data communication networks and large investments in 

communication infrastructure have made it critical to design optimized networks that 

meet the performance parameters. Network means not only the simple connection of 

the locations rather an optimized reliable network which meets the requirement of the 

system. For designing the backbone network in the form of spanning tree, many 

algorithms are available but when additional constraints [47] are added, all these 

algorithms fail. The Network Design Problem is considered as Backbone Network 

Design Problem in this research work. A backbone network is not only spanning tree, 

it has some other constraints also like the connectivity of the node which is very 

important for the reliability of the network. In graph theory, this reliability is 

described as Degree Constrained Minimum Spanning Tree (DCMST). There is no any 

optimal method for this DCMST problem.  Many of the network topology design 

problems start with the MST, which attempts to find a minimum cost tree that 

connects all the nodes of the network. The links or edges have associated costs that 
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could be based on their distance, capacity, quality of  line, etc. There might be other 

constraints imposed on the design such as the number of nodes in a sub tree, degree 

constraints on nodes, flow and capacity constraints on any edge or node, and type of 

services available on the edge or node. The MST problem is found in communication 

networks, circuit design, transportation, and logistics among others. The complexity 

of the MST problem increases as the number of nodes increases. Many heuristics have 

been developed to solve large problems, prominent among them being Kruskal [4] 

and Prim [3] algorithms heuristics which have been discussed in the section 3.2.  One 

of the popular variations of the MST problem is the DCMST. The MST algorithm 

may occasionally generate a minimal spanning tree where all the links connect to one 

or two nodes. This solution, although optimal, may be highly vulnerable to failure due 

to over reliance on a few nodes. Furthermore, the technology to connect many links to 

a node may not be available or may be too expensive. Hence, it may be necessary to 

limit the number of links connecting to a node. Alternatively, from a reliability 

perspective it is desirable to have more than one link connect to a node so that 

alternative routes can be selected in the case of a node or link failure [4]. Hence, in 

practice, it may be added additional constraints[45, 46] that specify the upper and 

lower bound of the number of links connecting to a node. DCMST was specifically 

developed as a special case of MST with additional constraints[49, 50] to improve the 

reliability of the network and rerouting of traffic in the case of node failures. The 

problem of constrained trees has been studied for many years [25].  When additional  

constraints are added to MST problem it becomes NP-Hard Problem [26]. Both 

Prominent methods can’t deal with extra constraint[48] and there are no exact 

methods to solve this problem. Similarly BFS and DFS have their own limitations. 

These two methods even can’t deal with minimum spanning tree while they provide 
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only simple spanning tree. Kruskal [4] algorithm works for the unconstrained MST 

[50, 51] by where in a first step the edges of the graph are sorted ascending according 

to their costs. Afterwards, the edges are considered in this order and an edge is 

accepted for the tree as long as it does not lead to a cycle. So this algorithm starts with 

a forest of independent trees (the single nodes) and iteratively connects them until this 

procedure results in a single spanning tree of minimum costs. This approach makes it 

much more difficult to impose additional constraints like a diameter restriction to the 

whole MST. However, on dense or even complete graphs Kruskal’s algorithm has a 

higher run time complexity than Prim’s MST algorithm since it is dominated by 

sorting all edges [21]. As a conclusion there is no method to deal with degree 

constrained minimum spanning tree which is the form of backbone network design. 

Adding extra constraints means one of the hardest problems in NP Hard category. To 

solve this NP-hard problem metaheuristic Genetic Algorithm is proposed here and all 

the experiments have been made here with genetic algorithm only. 

Network Design Problem is categorized as NP-hard and exact methods and heuristics 

are not efficient to solve this problem, researchers[64, 65] moved towards 

metaheuristics.  The earliest heuristic algorithm for DCMST was proposed by Obruca 

[27] as a solution to TSP. Narula and Ho [25] proposed three heuristic algorithms to 

solve the DCMST problem: primal, dual, and branch and bound. Savelsbergh and 

Volgenant [28] introduced an “edge exchange” algorithm that provided better 

performance. Although these methods solve experimental size problems, the 

computation time increases dramatically when the problem size gets larger. In recent 

years, researchers[66, 67] have attempted using meta-heuristics such as Tabu search 

and genetic (evolutionary) algorithms to solve these problems. Lixia Hanr and Yuping 

Wang [29] proposed a novel approach with the objective violation degree but it is 

limited for maximum 200 nodes. Berna Dengiz, Fulya Altiparmak and Alice E. Smith 
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[30] proposed a method which is very effective for the reliability of the network 

because they proposed that at least two different must exist between all pair of nodes. 

This approach is not effective for the cost point of view. They have considered only 

for three small size networks 5, 7 and 20. Rajeev Kumar and Nilanjan Banerjee [31] 

worked for multicriteria network design using evolutionary [52,61] algorithm, but 

only limited up to 36 nodes. In this research work network size is extended from 10 to 

1000 which is attempted by few   researchers with limited genetic operators. Other 

important consideration is various types of constraints with the variation of genetic 

operators. 
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CHAPTER 4 

Genetic Algorithm 
 
 
 

GAs are stochastic search algorithms based on the mechanism of natural selection and 

natural genetics. GA, differing from conventional search techniques, start with an 

initial set of random solutions called population satisfying boundary and/or system 

constraints to the problem. Each individual in the population is called a chromosome 

(or individual), representing a solution to the problem at hand. Chromosome is a 

string of symbols usually, but not necessarily, a binary bit string. The chromosomes 

evolve through successive iterations called generations. During each generation, the 

chromosomes are evaluated, using some measures of fitness. To create the next 

generation, new chromosomes, called offspring, are formed by either merging two 

chromosomes from current generation using a crossover operator or modifying a 

chromosome using a mutation operator. A new generation is formed by selection, 

according to the fitness values, some of the parents and offspring, and rejecting others 

so as to keep the population size constant. Fitter chromosomes have higher 

probabilities of being selected. After several generations, the algorithms converge to 

the best chromosome, which hopefully represents the optimum or suboptimal solution 

to the problem. 

4.1 General Structure of a Genetic Algorithm 

In general, a GA has five basic components: 

1. A genetic representation of potential solutions to the problem. 

2. A way to create a population (an initial set of potential solutions). 
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3. An evaluation function rating solutions in terms of their fitness. 

4. Genetic operators that alter the genetic composition of offspring 

     (Crossover,   mutation, selection, etc.). 

5. Parameter values that genetic algorithm uses (population size, probabilities of 

   applying genetic operators, etc.). 

 

 

 
Figure 4.1 The general structure of genetic algorithms 

 

 

Figure 4.1 shows a general structure of GA. Let P(t) and C(t) are parents and 

offspring in current generation t, respectively and the general implementation 

structure of GA is described as follows: 
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          ____________________________________________________________ 
Procedure: Basic Genetic Algorithm 

  ____________________________________________________________ 

Input: problem data, GA parameters 
Output: the best solution 
Begin 
    t ← 0; 

initialize P(t) by encoding routine; 

evaluate P(t) by decoding routine; 

while (not terminating condition) do 
create C(t) from P(t) by crossover 

routine; 

create C(t) from P(t) by mutation routine; 

evaluate C(t) by decoding routine; 

select P(t +1) from P(t) and C(t) by 

selection routine; 

t ← t +1; 

end 
output the best solution 

  end 
  

Figure 4.2 Pseudo Code of basic  genetic algorithms 
 

4.2 Exploitation and Exploration 

Search is one of the more universal problem solving methods for such problems one 

cannot determine a prior sequence of steps leading to a solution. Search can be 
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performed with either blind strategies or heuristic strategies. Blind search strategies 

do not use information about the problem domain. Heuristic search strategies use 

additional information to guide search move along with the best search directions. 

There are two important issues in search strategies: exploiting the best solution and 

exploring the search space. Michalewicz gave a comparison on hillclimbing search, 

random search and genetic search [32]. Hillclimbing is an example of a strategy 

which exploits the best solution for possible improvement, ignoring the exploration of 

the search space. Random search is an example of a strategy which explores the 

search space, ignoring the exploitation of the promising regions of the search space. 

GA is a class of general purpose search methods combining elements of directed and 

stochastic search which can produce a remarkable balance between exploration and 

exploitation of the search space. At the beginning of genetic search, there is a widely 

random and diverse population and crossover operator tends to perform wide-spread 

search for exploring all solution space. As the high fitness solutions develop, the 

crossover operator provides exploration in the neighborhood of each of them. In other 

words, what kinds of searches (exploitation or exploration) a crossover performs 

would be determined by the environment of genetic system (the diversity of 

population) but not by the operator itself. In addition, simple genetic operators are 

designed as general purpose search methods (the domain-independent search 

methods) they perform essentially a blind search and could not guarantee to yield an 

improved offspring. 

4.3 Population-based Search 

Generally, an algorithm for solving optimization problems is a sequence of 

computational steps which asymptotically converge to optimal solution. Most 

classical optimization methods generate a deterministic sequence of computation 
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based on the gradient or higher order derivatives of objective function. The methods 

are applied to a single point in the search space. The point is then improved along the 

deepest descending direction gradually through iterations as shown in Fig. 4.2. This 

Point-to-point approach embraces the danger of failing in local optima. GA performs 

a multi-directional search by maintaining a population of potential solutions. The 

population-to-population approach is hopeful to make the search escape from local 

optima. Population undergoes a simulated evolution: at each generation the relatively 

good solutions are reproduced, while the relatively bad solutions die. GA uses 

probabilistic transition rules to select someone to be reproduced and someone to die 

so as to guide their search toward regions of the search space with likely improvement. 

 
Figure 4.3 Comparison of conventional and genetic approaches 

 

4.4 Major Advantages 

GA has received considerable attention regarding their potential as a novel 

optimization technique. There are three major advantages when applying GA to 

optimization problems:  
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Adaptability: GA does not have much mathematical requirement regarding about the 

optimization problems. Due to the evolutionary nature, GA will search for solutions 

without regard to the specific inner workings of the problem. GA can handle any kind 

of objective functions and any kind of constraints, i.e., linear or nonlinear, defined on 

discrete, continuous or mixed search spaces. 

2. Robustness: The use of evolution operators makes GA very effective in performing 

a global search (in probability), while most conventional heuristics usually perform a 

local search. It has been proved by many studies that GA is more efficient and more 

robust in locating optimal solution and reducing computational effort than other 

conventional heuristics. 

3. Flexibility: GA provides us great flexibility to hybridize with domain-dependent 

heuristics to make an efficient implementation for a specific problem. 

 

4.5 Implementation of Genetic Algorithm 

In the implementation of GA, several components should be considered. First, a 

genetic representation of solutions should be decided (i.e., encoding); second, a 

fitness function for evaluating solutions should be given. (i.e., decoding); third, 

genetic operators such as crossover operator, mutation operator and selection methods 

should be designed; last, a necessary component for applying GA to the constrained 

optimization is how to handle constraints because genetic operators used to 

manipulate the chromosomes often yield infeasible offspring. 

 

4.5.1 GA Vocabulary 
 

Because GA is rooted in both natural genetics and computer science, the 

terminologies used in GA literatures are a mixture of the natural and the artificial. In a 

biological organism, the structure that encodes the prescription that specifies how the 
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organism is to be constructed is called a chromosome. One or more chromosomes 

may be required to specify the complete organism. The complete set of chromosomes 

is called a genotype, and the resulting organism is called a phenotype. Each 

chromosome comprises a number of individual structures called genes. Each gene 

encodes a particular feature of the organism, and the location, or locus, of the gene 

within the chromosome structure, determines what particular characteristic the gene 

represents. At a particular locus, a gene may encode one of several different values of 

the particular characteristic it represents. The different values of a gene are called 

alleles. The correspondence of GA terms and optimization terms is summarized in 

Table 1.1. 

 
Table 4.1 Explanation of GA terms 
------------------------------------------------------------------------------------------------------- 

Genetic algorithms    Explanation 
------------------------------------------------------------------------- 
Chromosome (string, individual) Solution (coding) 
Genes (bits)     Part of solution 
Locus      Position of gene 
Alleles     Values of gene 
Phenotype    Decoded solution 
Genotype     Encoded solution 
--------------------------------------------------------------- 
 
4.5.2  Encoding Issue 
  

How to encode a solution of a given problem into a chromosome is a key issue for the 

GA. This issue has been investigated from many aspects, such as mapping characters 

from a genotype space to a phenotype space when individuals are decoded into 

solutions and the metamorphosis properties when individuals are manipulated by 

genetic operators 
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4.5.2.1 Classification of Encoding 
 

In Holland’s work, encoding is carried out using binary strings [33]. The binary 

encoding for function optimization problems is known to have severe drawbacks due 

to the existence of Hamming cliffs, which describes the phenomenon that a pair of 

encodings with a large Hamming distance belongs to points with minimal distances in 

the phenotype space. For example, the pair 01111111111 and 10000000000 belongs 

to neighboring points in the phenotype space (points of the minimal Euclidean 

distances) but have the maximum Hamming distance in the genotype space. To cross 

the Hamming cliff, all bits have to be changed at once. The probability that crossover 

and mutation will occur to cross it can be very small. In this sense, the binary code 

does not preserve locality of points in the phenotype space. For many real-world 

applications, it is nearly impossible to represent their solutions with the binary 

encoding. Various encoding methods have been created for particular problems in 

order to have an effective implementation of the GA. According to what kind of 

symbols is used as the alleles of a gene, the encoding methods can be classified as 

follows: 

• Binary encoding 

• Real number encoding 

• Integer/literal permutation encoding 

• A general data structure encoding 

The real number encoding is best for function optimization problems. It has been 

widely confirmed that the real number encoding has higher performance than the 

binary or Gray encoding for function optimizations and constrained optimizations. 

Since the topological structure of the genotype space for the real number encoding 

method is identical to that of the phenotype space, it is easy for us to create some 
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effective genetic operators by borrowing some useful techniques from conventional 

methods. The integer or literal permutation encoding is suitable for combinatorial 

optimization problems. Since the essence of combinatorial optimization problems is 

to search for a best permutation or combination of some items subject to some 

constraints, the literal permutation encoding may be the most reasonable way to deal 

with this kind of issue. For more complex real-world problems, an appropriate data 

structure is suggested as the allele of a gene in order to capture the nature of the 

problem. In such cases, a gene may be an array or a more complex data structure. 

According to the structure of encodings, the encoding methods also can be classified 

into the following two types: 

• One-dimensional encoding 

• Multi-dimensional encoding 

In most practices, the one-dimensional encoding method is adopted. However, many 

real-world problems have solutions of multi-dimensional structures. It is natural to 

adopt a multi-dimensional encoding method to represent those solutions. According to 

what kinds of contents are encoded into the encodings, the encoding methods can also 

be divided as follows: 

• Solution only 

• Solution + parameters 

In the GA practice, the first way is widely adopted to conceive a suitable encoding to 

a given problem. An individual consists of two parts: the first part is the solution to a 

given problem and the second part, called strategy parameters, contains variances and 

covariance of the normal distribution for mutation. The purpose for incorporating the 

strategy parameters into the representation of individuals is to facilitate 
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the evolutionary self-adaptation of these parameters by applying evolutionary 

operators to them. Then the search will be performed in the space of solutions and the 

strategy parameters together. In this way a suitable adjustment and diversity of 

mutation parameters should be provided under arbitrary circumstances. 

 

4.5.2.2 Infeasibility and Illegality 

The GA works on two kinds of spaces alternatively: the encoding space and the 

solution space, or in the other words, the genotype space and the phenotype space. 

The genetic operators work on the genotype space while evaluation and selection 

work on the phenotype space. Natural selection is the link between chromosomes and 

the performance of the decoded solutions. The mapping from the genotype space to 

the phenotype space has a considerable influence on the performance of the GA. The 

most prominent problem associated with mapping is that some individuals correspond 

to infeasible solutions to a given problem. This problem may become very severe for 

constrained optimization problems and combinatorial optimization problems The 

infeasibility of chromosomes originates from the nature of the constrained 

optimization problem. Whatever methods are used, conventional ones or genetic 

algorithms, they must handle the constraints. For many optimization problems, the 

feasible region can be represented as a system of equalities or inequalities. For such 

cases, penalty methods can be used to handle infeasible chromosomes. In constrained 

optimization problems, the optimum typically occurs at the boundary between 

feasible and infeasible areas. The penalty approach will force the genetic search to 

approach the optimum from both sides of the feasible and infeasible regions. The 

illegality of chromosomes originates from the nature of encoding techniques. For 

many combinatorial optimization problems, problem-specific encodings are used and 

such encodings usually yield illegal offspring by a simple one-cut-point crossover 
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operation. Because an illegal chromosome cannot be decoded to a solution, the 

penalty techniques are inapplicable to this situation. Repairing techniques are usually 

adopted to convert an illegal chromosome to a legal one. For example, the well-

known PMX operator is essentially a kind of two-cut-point crossover for permutation 

representation together with a repairing procedure to resolve the illegitimacy caused 

by the simple two-cut-point crossover.  

 

4.5.2.3 Properties of Encodings 
 

Given a new encoding method, it is usually necessary to examine whether it can build 

an effective genetic search with the encoding. Several principles have been proposed 

to evaluate an encoding [34]: 

Property 1 (Space): Chromosomes should not require extravagant amounts of 

                                 memory. 

Property 2 (Time): The time complexity of executing evaluation, recombination 

                               and mutation on chromosomes should not be a higher order. 

Property 3 (Feasibility): A chromosome corresponds to a feasible solution. 

Property 4 (Legality): Any permutation of a chromosome corresponds to a solution. 

Property 5 (Completeness): Any solution has a corresponding chromosome. 

Property 6 (Uniqueness): The mapping from chromosomes to solutions (decoding) 

may belong to one of the following three cases  

Property 7 (Heritability): Offspring of simple crossover (i.e., one-cut point crossover) 

should correspond to solutions which combine the basic feature of their parents. 

Property 8 (Locality): A small change in chromosome should imply a small change 

in its corresponding solution. 
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4.5.2.4 Initialization 

 

In general, there are two ways to generate the initial population, i.e., the heuristic 

initialization and random initialization while satisfying the boundary and/or system 

constraints to the problem. Although the mean fitness of the heuristic initialization is 

relatively high so that it may help the GA to find solutions faster, in most large scale 

problems, for example, network design problems, the heuristic approach may just 

explore a small part of the solution space and it is difficult to find global optimal 

solutions because of the lack of diversity in the population. Usually it is to design an 

encoding procedure depending on the chromosome for generating the initial 

population. 

 
4.5.3 Fitness Evaluation 

A fitness function is a particular type of objective function that prescribes the 

optimality of a solution (that is, a chromosome) in a genetic algorithm so that that 

particular chromosome may be ranked against all the other chromosomes. Optimal 

chromosomes, or at least chromosomes which are more optimal, are allowed to breed 

and mix their datasets by any of several techniques, producing a new generation that 

will (hopefully) be even better. An ideal fitness function correlates closely with the 

algorithm's goal, and yet may be computed quickly. Speed of execution is very 

important, as a typical genetic algorithm[52, 55] must be iterated many, many times in 

order to produce a usable result for a non-trivial problem. This is one of the main 

drawbacks of GAs in real world applications and limits their applicability in some 

industries. It is apparent that amalgamation of approximate models may be one of the 

most promising approaches, especially in the following cases: 
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• Fitness computation time of a single solution is extremely high,  

• Precise model for fitness computation is missing,  

• The fitness function is uncertain or noisy.  

Two main classes of fitness functions exist: one where the fitness function does not 

change, as in optimizing a fixed function or testing with a fixed set of test cases; and 

one where the fitness function is mutable, as in niche differentiation or co-evolving 

the set of test cases. Another way of looking at fitness functions is in terms of a fitness 

landscape, which shows the fitness for each possible chromosome. Definition of the 

fitness function is not straightforward in many cases and often is performed iteratively 

if the fittest solutions produced by GA are not what is desired. In some cases, it is 

very hard or impossible to come up even with a guess of what fitness function 

definition might be. Interactive genetic algorithms[53, 54] address this difficulty by 

outsourcing evaluation to external agents (normally humans). 

4.5.4 Genetic Operators 

A Genetic Operator is an operator used in genetic algorithms to maintain genetic 

diversity. Genetic variation is a necessity for the process of evolution. Genetic 

operators used in genetic algorithms are analogous to those which occur in the natural 

world: survival of the fittest, or selection; reproduction (crossover, also called 

recombination); and mutation. Genetic diversity, the level of biodiversity, refers to the 

total number of genetic characteristics in the genetic makeup of a species. It is 

distinguished from genetic variability, which describes the tendency of genetic 

characteristics to vary. The academic field of population genetics includes several 

hypotheses and theories regarding genetic diversity. The neutral theory of evolution 

proposes that diversity is the result of the accumulation of neutral substitutions. 
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Diversifying selection is the hypothesis that two subpopulations of a species live in 

different environments that select for different alleles at a particular locus. This may 

occur, for instance, if a species has a large range relative to the mobility of individuals 

within it. Frequency-dependent selection is the hypothesis that as alleles become more 

common, they become more vulnerable. This is often invoked in host-pathogen 

interactions, where a high frequency of a defensive allele among the host means that it 

is more likely that a pathogen will spread if it is able to overcome that allele. When 

GA proceeds, both the search direction to optimal solution and the search speed 

should be considered as important factors, in order to keep a balance between 

exploration and exploitation in search space. In general, the exploitation of the 

accumulated information resulting from GA search is done by the selection 

mechanism, while the exploration to new regions of the search space is accounted for 

by genetic operators. The genetic operators mimic the process of heredity of genes to 

create new offspring at each generation. The operators are used to alter the genetic 

composition of individuals during representation. In essence, the operators perform a 

random search, and cannot guarantee to yield an improved offspring. There are three 

common genetic operators: crossover, mutation and selection. 

4.5.4.1 Crossover 
 

Crossover is the main genetic operator. It operates on two chromosomes at a time and 

generates offspring by combining both chromosomes’ features. A simple way to 

achieve crossover would be to choose a random cut-point and generate the offspring 

by combining the segment of one parent to the left of the cut-point with the segment 

of the other parent to the right of the cut-point. This method works well with bit string 

representation. The performance of GA depends to a great extent, on the performance 

of the crossover operator used. The crossover probability (denoted by PC) is defined 
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as the probability of the number of offspring produced in each generation to the 

population size (usually denoted by popSize). This probability controls the expected 

number PC × pop Size of chromosomes to undergo the crossover operation. A higher 

crossover probability allows exploration of more of the solution space, and reduces 

the chances of settling for a false optimum; but if this probability is too high, it results 

in the wastage of a lot of computation time in exploring unpromising regions of the 

solution space. Up to now, several crossover operators have been proposed for the 

real numbers encoding, which can roughly be put into four classes: conventional, 

arithmetical, direction-based, and stochastic. The conventional operators are made by 

extending the operators for binary representation into the real-coding case. The 

conventional crossover operators can be broadly divided by two kinds of crossover: 

 

• Simple crossover: one-cut point, two-cut point, multi-cut point or uniform 

• Random crossover: flat crossover, blend crossover 

 

The arithmetical operators are constructed by borrowing the concept of linear 

combination of vectors from the area of convex set theory. Operated on the floating 

point genetic representation, the arithmetical crossover operators, such as convex, 

affine, linear, average, intermediate, extended intermediate crossover, are usually 

adopted. The direction-based operators are formed by introducing the approximate 

gradient direction into genetic operators. The direction-based crossover operator uses 

the value of objective function in determining the direction of genetic search. The 

stochastic operators give offspring by altering parents by random numbers with some 

distribution. 
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Figure 4.4 Crossover. 

 
4.5.4.2 Mutation 
 

Mutation is a background operator which produces spontaneous random changes in 

various chromosomes. A simple way to achieve mutation would be to alter one or 

more genes. In GA, mutation serves the crucial role of either (a) replacing the genes 

lost from the population during the selection process so that they can be tried in a new 

context or (b) providing the genes that were not present in the initial population. The 

mutation probability (denoted by Pm) is defined as the percentage of the total number 

of genes in the population. The mutation probability controls the probability with 

which new genes are introduced into the population for trial. If it is too low, many 

genes that would have been useful are never tried out, while if it is too high, there will 

be much random perturbation, the offspring will start losing their resemblance to the 

parents, and the algorithm [58]will lose the ability to learn from the history of the 

search. Up to now, several mutation operators have been proposed for real numbers 

encoding, which can roughly be put into four classes as crossover can be classified. 

Random mutation operators such as uniform mutation, boundary mutation, and plain 

mutation, belong to the conventional mutation operators, which simply replace a gene 

with a randomly selected real number with a specified range. Dynamic mutation (non 

uniform mutation) is designed for fine-tuning capabilities aimed at achieving high 

precision, which is classified as the arithmetical mutation operator. Directional 
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mutation operator is a kind of direction-based mutation, which uses the gradient 

expansion of objective function. The direction can be given randomly as a free 

direction to avoid the chromosomes jamming into a corner. If the chromosome is near 

the boundary, the mutation direction given by some criteria might point toward the 

close boundary, and then jamming could occur. Several mutation operators for integer 

encoding have been proposed. 

• Inversion mutation selects two positions within a chromosome at random and then  

inverts the substring between these two positions. 

•  Insertion mutation selects a gene at random and inserts it in a random position. 

• Displacement mutation selects a substring of genes at random and inserts it in a 

random position. Therefore, insertion can be viewed as a special case of displacement. 

Reciprocal exchange mutation selects two positions random and then swaps the genes 

on the positions. 

 
 Figure 4.5 Mutation 
 
4.5.4.3 Selection 

Selection is the stage of a genetic algorithm in which individual genomes are chosen 

from a population for later breeding (recombination or crossover). 

A generic selection procedure may be implemented as follows: 

1. The fitness function is evaluated for each individual, providing fitness values, 

which are then normalized. Normalization means dividing the fitness value of 
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each individual by the sum of all fitness values, so that the sum of all resulting 

fitness values equals 1.  

2. The population is sorted by descending fitness values.  

3. Accumulated normalized fitness values are computed (the accumulated fitness 

value of an individual is the sum of its own fitness value plus the fitness 

values of all the previous individuals). The accumulated fitness of the last 

individual should of course be 1 (otherwise something went wrong in the 

normalization step!).  

4. A random number R between 0 and 1 is chosen.  

5. The selected individual is the first one whose accumulated normalized value is 

greater than R.  

If this procedure is repeated until there are enough selected individuals, this selection 

method is called fitness proportionate selection or roulette-wheel selection. If instead 

of a single pointer spun multiple times  equally spaced pointers on a wheel that spin 

once,  is called stochastic universal sampling. Repeatedly selecting the best individual 

of a randomly chosen subset is tournament selection. Taking the best half, third or 

another proportion of the individuals is truncation selection. 

There are other selection algorithms[59] that do not consider all individuals for 

selection, but only those with a fitness value that is higher than a given (arbitrary) 

constant. Other algorithms select from a restricted pool where only a certain 

percentage of the individuals are allowed, based on fitness value. Retaining the best 

individuals in a generation unchanged in the next generation, is called elitism or elitist 

selection. It is a successful (slight) variant of the general process of constructing a 

new population. 



Network Design Using Genetic Algorithm 
 
 

 
 

81

During the past two decades, many selection methods have been proposed, examined, 

and compared. Common selection methods are as follows:  

• Roulette wheel selection 
• Tournament selection 
• Truncation selection 
• Elitist selection 
• Ranking and scaling 
• Sharing 

 

Roulette wheel selection, proposed by Holland, is the best known selection type. The 

basic idea is to determine selection probability or survival probability for each 

chromosome proportional to the fitness value. Then a model roulette wheel can be 

made displaying these probabilities. The selection process is based on spinning the 

wheel the number of times equal to population size, each selecting a single 

chromosome for the new procedure. 

Tournament selection runs a tournament” among a few individuals chosen at random 

from the population and selects the winner (the one with the best fitness). Selection 

pressure can be easily adjusted by changing the tournament size. If the tournament 

size is larger, weak individuals have a smaller chance to be selected. 

Truncation selection is also a deterministic procedure that ranks all individuals 

according to their fitness and selects the best as parents. Elitist selection is generally 

used as supplementary to the proportional selection process. 

Ranking and Scaling mechanisms are proposed to mitigate these problems. The 

scaling method maps raw objective function values to positive real values, and the 

survival probability for each chromosome is determined according to these values. 

Fitness scaling has a twofold intention: (1) to maintain a reasonable differential 

between relative fitness ratings of chromosomes, and (2) to prevent too-rapid takeover 
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by some super-chromosomes to meet the requirement to limit competition early but to 

stimulate it later. 

Sharing selection is used to maintain the diversity of population for multi-model 

function optimization. A sharing function optimization is used to maintain the 

diversity of population. A sharing function is a way of determining the degradation of 

an individual’s fitness due to a neighbor at some distance. With the degradation, the 

reproduction probability of individuals in a crowd peak is restrained while other 

individuals are encouraged to give offspring. 

 
4.5.5 Handling Constraints 
 
A necessary component for applying GA to constrained optimization is how to handle 

constraints because genetic operators used to manipulate the chromosomes often yield 

infeasible offspring. There are several techniques proposed to handle constraints with 

GA . The existing techniques can be roughly classified as follows: 

• Rejecting strategy 

• Repairing strategy 

• Modifying genetic operators strategy 

• Penalizing strategy 

 

Each of these strategies have advantages and disadvantages. 

 
4.5.5.1 Rejecting strategy 
 

Rejecting strategy discards all infeasible chromosomes created throughout an 

evolutionary process. This is a popular option in many GA. The method may work 

reasonably well when the feasible search space is convex and it constitutes a 

reasonable part of the whole search space. However, such an approach has serious 



Network Design Using Genetic Algorithm 
 
 

 
 

83

limitations. For example, for many constrained optimization problems where the 

initial population consists of infeasible chromosomes only, it might be essential to 

improve them. Moreover, quite often the system can reach the optimum easier if it is 

possible to “cross” an infeasible region (especially in non-convex feasible search 

spaces). 

 
4.5.5.2 Repairing Strategy 
 

Repairing a chromosome means to take an infeasible chromosome and generate a 

feasible one through some repairing procedure. For many combinatorial optimization 

problems, it is relatively easy to create a repairing procedure. Repairing strategy 

depends on the existence of a deterministic repair procedure to converting an 

infeasible offspring into a feasible one. The weakness of the method is in its problem 

dependence. For each particular problem, a specific repair algorithm should be 

designed. Also, for some problems, the process of repairing infeasible chromosomes 

might be as complex as solving the original problem. The repaired chromosome can 

be used either for evaluation only, or it can replace the original one in the population.  

 

4.5.5.3 Modifying Genetic Operators Strategy 
 

One reasonable approach for dealing with the issue of feasibility is to invent problem-

specific representation and specialized genetic operators to maintain the feasibility of 

chromosomes. Michalewicz [35]. pointed out that often such systems are much more 

reliable than any other genetic algorithms based on the penalty approach. This is a 

quite popular trend: many practitioners use problem-specific representation and 

specialized operators in building very successful genetic algorithms in many areas 

[31]. However, the genetic search of this approach is confined within a feasible region. 
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4.5.5.4 Penalizing Strategy 
 
These strategies above have the advantage that they never generate infeasible 

solutions but have the disadvantage that they consider no points outside the feasible 

regions. For highly constrained problem, infeasible solution may take a relatively big 

portion in population. In such a case, feasible solutions may be difficult to be found if 

it just confine genetic search within feasible regions.  

4.6 Hybrid Genetic Algorithms 

GA has proved to be a versatile and effective approach for solving optimization 

problems. Nevertheless, there are many situations in which the simple GA does not 

perform particularly well, and various methods of hybridization have been proposed. 

One of most common forms of hybrid genetic algorithm (HGA) is to incorporate local 

optimization as an add-on extra to the canonical GA loop of recombination and 

selection. With the hybrid approach, local optimization is applied to each newly 

generated offspring to move it to a local optimum before injecting it into the 

population. GA is used to perform global exploration among a population while 

heuristic methods are used to perform local exploitation around chromosomes. 

Because of the complementary properties of GA and conventional heuristics, the 

hybrid approach often outperforms either method operating alone. Another common 

form is to incorporate GA parameters adaptation. The behaviors of GA are 

characterized by the balance between exploitation and exploration in the search space. 

The balance is strongly affected by the strategy parameters such as population size, 

maximum generation, crossover probability, and mutation probability. How to choose 

a value to each of the parameters and how to find the values efficiently are very 

important and promising areas of research on the GA. 
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CHAPTER 5 

Genetic Algorithm approach to 
Network Design 

 
 
 

Many real-world problems from operations research (OR) / management science 

(MS) are very complex in nature and quite hard to solve by conventional optimization 

techniques. One of them is Network Design which is used extensively in practice in 

an ever expanding spectrum of applications. Network optimization models such as 

shortest path, assignment, maxflow, transportation, transshipment, spanning tree, 

matching, traveling salesman, generalized assignment, vehicle routing, and multi-

commodity flow constitute the most common class of practical network optimization 

problems. However, there is a large class of network optimization problems for which 

no reasonable fast algorithms have been developed. And many of these network 

optimization problems arise frequently in applications. Given such a hard network 

optimization problem, it is often possible to find an efficient algorithm whose solution 

is approximately optimal. Among such techniques, the genetic algorithm (GA) is one 

of the most powerful and broadly applicable stochastic search and optimization 

techniques based on principles from evolution theory. Simulating natural evolutionary 

processes of human beings results in stochastic optimization techniques called 

evolutionary algorithms (EAs) that can often outperform conventional optimization 

methods when applied to difficult real-world problems. EAs mostly involve 

metaheuristic optimization algorithms such as genetic algorithms (GA) [33, 37], 

evolutionary programming (EP), evolution strategys (ES), genetic programming [62, 
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63](GP) [38, 39]. Among them, genetic algorithms are perhaps the most widely 

known type of evolutionary algorithms used today. 

Before a genetic algorithm can be put to work on any problem, a method is needed to 

encode potential solutions to that problem in a form that a computer can process. One 

common approach is to encode solutions as binary strings: sequences of 1's and 0's, 

where the digit at each position represents the value of some aspect of the solution. 

Another, similar approach is to encode solutions as arrays of integers or decimal 

numbers, with each position again representing some particular aspect of the solution. 

This approach allows for greater precision and complexity[60]than the comparatively 

restricted method of using binary numbers only and often "is intuitively closer to the 

problem space". Before applying the genetic algorithm approach, it is important to 

understand the representation of network. A network can be represented in different way 

like adjacency matrix or adjacency list. In this research work network is represented as an 

adjacency matrix. 

5.1 Network Representation   

The Network design problem can be considered as an undirected or directed graph, 

and represented with the help of adjacency matrix.  

A Graph with node set N ={1,2, · · · ,n} is specified by an (n×n)-matrix A=(ai j), 

where ai j = 1 if and only if (i, j) is an arc of G, and ai j = 0 otherwise.  A is called 

the adjacency matrix of G. 

The adjacency matrix stores the distance in the form of number between two nodes 

and stores zero (0) in the case of diagonal of the matrix for same node to same node or 

non availability of the path. Figure 5.1 shows the various independent networks at 

different location where each location has one or more than one network. To connect 

these independent networks a graph can be considered which may be in the form of 
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directed or undirected, depending on the availability of the path.  In figure 5.2(a), 

backbone network of figure 5.1 is shown.  and figure 5.2(b) shows an undirected 

graph of backbone network of figure 5.2(a), and it adjacency matrix is shown in 

Table5.1. The diagonal of this Table5.1 shows only zero (0) means no path from same 

node to same node. Similarly other zeros represent non availability of the path. From 

figure 5.2, there is no path between node-1 to node-5, so in the adjacency matrix the 

distance from node-1 to node-5 is shown zero(0). Since this is an undirected graph, so 

from node-5 to node-1 will also be zero (0). 

 

 

 
Figure 5.1 various independent networks 
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Figure 5.2(a) Backbone Network of fig 5.1 

 
 

 
Figure 5.2(b) Undirected Graph of fig 5.2(a) 
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Table 5.1 Adjacency matrices of figure 5.1 graph 

 
node 1 2 3 4 5 6 7 8 9 10 

1 0 1 1 0 0 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 0 0 
3 1 1 0 0 1 1 0 0 0 0 
4 0 1 0 0 1 0 1 1 0 0 
5 0 1 1 1 0 1 1 0 0 0 
6 0 0 1 0 1 0 1 0 0 0 
7 0 0 0 1 1 1 0 1 1 0 
8 0 0 0 1 0 0 1 0 1 1 
9 0 0 0 0 0 0 1 1 0 1 

10 0 0 0 0 0 0 0 1 1 0 
 
 

In figure 5.3, a directed graph is shown of the same figure 5.1 and it adjacency matrix 

is shown in Table5.2. The diagonal of this Table5.2 shows only zero (0) means no 

path from same node to same node. Similarly other zeros represent non availability of 

the path. 

 

 

Figure 5.3 Directed Graph of fig 5.1 
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Table 5.2 Adjacency matrices of figure 5.2 graph 
 

node 1 2 3 4 5 6 7 8 9 10 
1 0 1 1 0 0 0 0 0 0 0 
2 0 0 0 1 1 0 0 0 0 0 
3 0 1 0 0 1 1 0 0 0 0 
4 0 0 0 0 0 0 1 1 0 0 
5 0 0 0 1 0 1 1 0 0 0 
6 0 0 0 0 0 0 1 0 1 0 
7 0 0 0 0 0 0 0 1 1 0 
8 0 0 0 0 0 0 0 0 1 1 
9 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 
 
 

If the path between all the locations are available, then a complete graph will be used 

to l represent the figure backbone network.  Figure 5.4 shows the complete graph of 

figure 5.1. 

 

 

 
Figure 5.4 Complete Graph of fig 5.1 
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5.2 Genetic Algorithm Approach 

In genetic algorithm, the first question is how to represent the problem? The same 

problem can be represented in different way.  

The basic genetic algorithm approach is started with the initialization of the 

population. Afterward population is evaluated and selected. Selected population are 

operated with the genetic operators and again evaluated. If the result is found, it is 

stopped otherwise the same process is repeated. The basic genetic algorithm is: 

1. Initialisation of parent population 
2. Evaluation 
3. Selection 
4. Crossover/recombination 
5. Mutation 
6. Evaluate child and Go to step 3 until termination criteria satisfies 

 
5.2.1 Population Initialization  
 
The first phase of the genetic algorithm is to initialize the population. The population 

means generation of chromosomes and it is also called parent population or parent 

chromosome. Generation of chromosome is dependent upon the problem presentation.  

There are two parameters to be decided for initialization: the initial population size 

and the procedure to initialize the population. Initially, researchers thought that the 

population size needed to increase exponentially with the length of the chromosome 

string in order to generate good solutions. Recent studies have shown, however, that 

satisfactory results can be obtained with a much smaller population size. There are 

two ways to generate the initial population—random initialization and heuristic 

initialization. Random method, where for each gene, randomly generate an integer 

from a range of one to the number of nodes. The initial chromosomes need not 

represent a legal or feasible tree. In this thesis random method is used. 
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Chromosome Description 

 Table-5.3 shows ten (10) sets of randomly generated chromosomes. Each bit of the 

chromosome shows the connectivity with the corresponding position node.  The logic 

behind association is that, the node [1] is connected with node 2; node [2] is 

connected with 5 and so on.  

Table 5.3 Randomly generated chromosomes 
 

Node   → 1 2 3 4 5 6 7 8 9 10 
Chromosom-1 2 5 6 5 8 5 6 9 10 7 
Chromosom-2 2 5 1 5 3 8 4 9 7 8 
Chromosom-3 5 5 6 7 4 5 6 10 7 8 
Chromosom-4 3 1 1 5 4 1 6 4 10 9 
Chromosom-5 2 2 5 5 1 5 9 7 10 6 
Chromosom-6 5 4 5 10 2 5 6 5 8 8 
Chromosom-7 2 5 1 6 3 7 4 10 8 9 
Chromosom-8 2 5 3 7 4 3 8 10 6 9 
Chromosom-9 9 3 7 10 6 4 3 7 1 8 

Chromosom-10 1 3 1 4 1 5 2 10 10 8 
 
 
 

 
 

Figure 5.5 Illegal Spanning Tree based on chromosome-1. 



Anand Kumar (Registration No: 3893) 

 
 

94

 

Figure 5.6 Illegal Spanning Tree based on chromosome-2 
 
 
 
 
 

 

 
Figure 5.7 Illegal Spanning Tree based on chromosome-3 



Network Design Using Genetic Algorithm 
 
 

 
 

95

 
Figure 5.8 Illegal Spanning Tree based on chromosome-4 

 
 
 

 
 

Figure 5.9 Illegal Spanning Tree based on chromosome-5 
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Figure 5.10 Illegal Spanning Tree based on chromosome-6 
 
 

 
 

Figure 5.11 Illegal Spanning Tree based on chromosome-7 
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Figure 5.12 Illegal Spanning Tree based on chromosome-8 

 
 
 
 
 

 

Figure 5.13 Illegal Spanning Tree based on chromosome-9 
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Figure 5.14 Illegal Spanning Tree based on chromosome-10 

 

After generating the chromosomes shown in Table 5.3, and drawing the tree based on these 

chromosomes (Fig 5.5 to Fig 5.14), it has been found that no derived solutions are spanning 

tree. These all chromosomes are applied with respect to complete graph shown in figure 5.4. 

Following reasons have been found for being illegal tree-   

• Figure 5.5 Illegal Spanning Tree based on chromosome-1, because a cycle has 

been formed (5-8-9-10-7-6-5) 

• Figure 5.6 Illegal Spanning Tree based on chromosome-2, because a cycle has 

been formed (1-2-5-3-1) 

• Figure 5.7 Illegal Spanning Tree based on chromosome-3, because of isolated 

edge (8-10) and a cycle (5-4-7-6-5) 

• Figure 5.8 Illegal Spanning Tree based on chromosome-4, because of multiple 

isolation (9-10), (5-4-8) and (3-1-2……from 1-6-7) 

• Figure 5.9 Illegal Spanning Tree based on chromosome-5, because of   self 

loop(2-2) 
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• Figure 5.10 Illegal Spanning Tree based on chromosome-6, because of cycle (5-2-

4-10-8-5) and degree violation if degree of node-5 is 3. 

• Figure 5.11 Illegal Spanning Tree based on chromosome-7, because of multiple 

cycles (1-2-5-3-1), (4-7-6-4) and (8-9-10-8). 

• Figure 5.12 Illegal Spanning Tree based on chromosome-8, because of self 

loop(3-3) 

• Figure 5.13 Illegal Spanning Tree based on chromosome-9, because of isolated 

edge(1-9), in this case there is no self loop and no cycle but isolation is found. 

• Figure 5.14 Illegal Spanning Tree based on chromosome-10, because of multiple 

self loop (1-1), (4-4) and an isolated edge (8-10-9) 

All these reasons are found for complete graph where direct path is available between 

any two nodes. Further directed graph (figure 5.3) is considered where all these 

reasons are available for illegal tree, but there is one more reason because of path 

constraint. Following chromosome shows the reason of being illegal. 

 
Table 5.4 Randomly generated chromosome 

Node   → 1 2 3 4 5 6 7 8 9 10 
Chromosom-11           

 
Figure 5.15 Illegal Spanning Tree based on chromosome-11 
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• Figure 5.15 Illegal Spanning Tree based on chromosome-10 and directed simple 

graph (figure 5.3), because of path constraint (1-5) and (10-7),  and (2-1)(9-7) 

for  non directional. 

 

5.2.2 Fitness Evaluation 
 
Fitness evaluation is to check the solution value of the objective function subject to 

the problem constraints. In general, the objective function provides the mechanism 

evaluating each individual. However, its range of values varies from problem to 

problem. To maintain uniformity over various problem domains, one may use the 

fitness function to normalize the objective function to a range of 0 to 1. The 

normalized value of the objective function is the fitness of the individual, and the 

selection mechanism is used to evaluate the individuals of the population. When the 

search of GA proceeds, the population undergoes evolution with fitness, forming thus 

new a population. At that time, in each generation, relatively good solutions are 

reproduced and relatively bad solutions die in order that the offspring composed of 

the good solutions are reproduced. To distinguish between the solutions, an evaluation 

function (also called fitness function) plays an important role in the environment, and 

scaling mechanisms are also necessary to be applied in objective function for fitness 

functions. When evaluating the fitness function of some chromosome, decoding 

procedure is designed depending on the chromosome. 

Evaluation is the most important phase of genetic algorithm where chromosomes are 

evaluated. If the required result is achieved then the process is terminated otherwise 

next generation is called. Evaluation is based on the fitness function and fitness 

function is the back bone of evaluation. To apply the fitness function it is important to 

know why chromosomes are unfit? In this previous section (5.2.1) it has been 
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observed the reason of illegal chromosomes. The following are the reasons of 

unfitness of chromosomes which leads to illegal spanning tree. 

1. Self loop 

2. Cycle 

3. Isolation 

4. Degree Constraint 

5. Path Constraint 

For all these reasons chromosomes are evaluated. To evaluate the chromosomes, for 

each of these reasons, fitness functions have been developed. 

Notation of Functions 

All these five functions accept the input in the form of a matrix (chromosomes)       m 

x n, then calculate the fitness in the form of 0 and  1. Chromosome has been passed 

from the main function. All these functions calculate the fitness for each of the 

chromosome. 

 Last column of each chromosome has fitness value.  

Chromosomes(m x n)    :  

m = No. of nodes = Row 

 n = No. of chromosomes = Col 

1. Self Loop 

Self loop is formed when the position of node and the bit of chromosome, both are  

equal  (figure 5.12) .  

For the  connected graph                      
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                            G = (V, E) 
Where V = {v1, v2……vn} ,  sets of vertices 
E = {e1, e2…….en-1}, sets of edges where each edge ek is associated with vertices   (vi ,  

vj)   

                                        (vi,  vj)      ∈  ek   
If ( i == j) then it is called self loop for vertex v. 
 

Procedure: Self Loop 

selfloop(chromosomes) 

Begin  
for i=1 to row do 

    set 0 to fit; 

    for j= 1 to (col – 1) do 

        if(chromosomes(i, j) not equal to  j) 

            Add 1 to fit; 

        end 

    end 

    Accumulate  fit to chromosomes(i,s(2)) 

    {chromosomes(i,s(2))= chromosomes(i,s(2))+ fit;} 

 end 

return; 

End 
_____________________________________________________________________ 

 
It returns 0 for each self loop and 1 for each non self loop occurrence. For 10 node 
network, 10 is the maximum fitness point for each chromosome for self loop.  

2. Cycle 

This is one of the most important works of this research work. A function is 

developed to detect the cycle in solution derived on the basis of randomly generated 
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chromosomes. When the solution is given by the chromosomes, it is completely 

unknown that whether it is tree or graph. It is also not known that, if it is graph then 

whether it is connected graph or unconnected graph. This function works in any of the 

condition.   

Procedure: Cycle 

Cycle(chromosomes) 

Begin 
     Set k=0; t=(-1); b=1;e=5;     

    for i = 1 to N(number of node) do 

        new=0; s=i; 

        for j = 1 to(N + 1) do 

           if (new equal to 0) 

               set check = s; 

           else 

                check = chromosomes(s);           

           end 

              set l=1; 

             while(l<=k)do 

                  if (p(l) equal to  check) 

                     if (new equal to  0) 

                         break; 

                     end 

                     if (l great than equal to b) 

                         if (k equal to  (l+1)) 

                             t=-1;  
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                             b=k+1; 

                           come out from while loop ; 

                         end 

                         if (k greater than(l+1)) 

                             e=0; 

                             come out from while loop 

                         end 

                     end 

                     if (l greater than b) 

                         t=-1;  

                         b=k+1; 

                         come out from while loop 

                     end             

                  end 

              increment l by 1; 

              end 

               if (e == 0) 

                   come out from j for loop; 

               end 

               if (l greater thank) 

                   increment k by 1; 

                   p(k) = check; 

                   increment t by 1; 

               end 

               if (t equal to  -1) 

                   come out from j for loop ; 
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               end 

               if (new not equal to  0) 

                   s = chromosomes(s); 

               end 

               if (new equal to  0) 

                   new = 1; 

               end 

        end 

         if ( e equal to  0) 

             come out from loop 

         end 

    end 

if( e equal to  0) 

    disp('cycle'); 

else 

    disp('no cycle') ; 

end 

End 
_________________________________________________________ 

This function checks the existence of cycle for each chromosome. In the case of 
existence of cycle it allocates 0 other wise 1. It returns 1 for non cycle and 0 for cycle 
for each chromosome. 
 
Cycle Description: 

To explain the working of this function, following example is considered:  

Table 5.5 Randomly generated chromosome 
Node   → 1 2 3 4 5 6 7 8 9 10 

Chromosom-12 2 10 4 9 6 7 5 9 8 3 
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A solution is drawn with the chromosome-12 from the Table 5.5 

 

Figure 5.16 Illegal Spanning Tree (Cycle) based on chromosome-12 

 

 

 

If it is started from node-1, and visit the node-2 given by chromosome12, at the same 

time a list is maintained to record the newly visited node. There must not be repeated 

entry of visited node in the list. 

Array 

location 
1 2 3 4 5 6 7 8 9 10 

Stored 

nodes  
1 2 10 3 4 9 8    

Figure 5.17(a) List to store visited nodes 
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After storing the node-8 at location 7 in the list, the next node to be stored is   node-9 

because as per the chromosome12 (Table 5.5), but it already visited node and the 

location difference will be <=2, so a new search is started by finding the next not 

visited node with maintaining the ascending order, in this regard node-5 is the next 

node which has to be visited and this process continues until all the node are not 

visited. After the completion the list will be (Figure 5.17(b)) and the result is 

“CYCLE”. 

Array 

location 
1 2 3 4 5 6 7 8 9 10 

Stored 

nodes  
1 2 10 3 4 9 8 5 6 7 

 
Figure 5.17(b)  List to store visited nodes 

 

Now another case is considered with little variation where cycle is dissolved. 

Chromosome-13 (Table-5.6) and Figure 5.18.  

Table 5.6 Randomly generated chromosome 
Node   → 1 2 3 4 5 6 7 8 9 10 

Chromosom-13 2 10 4 9 6 7 5 9 8 3 
 
 

 

Figure 5.18 Legal Spanning Tree based on chromosome-13 
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Result: NO CYCLE 

3. Isolation 

• This function checks the isolated edge. (Figure 5.13) Illegal Spanning Tree based 

on chromosome-9, because of isolated edge (1-9), in this case there is no self loop 

and no cycle but isolation is found. 

 

Procedure: Isolation 

Isolate_Check(chromosomes) 

Begin 
for i=1 to row do 

    set 0 to count ; 

    for j=1 to (col -1) 

        if(j equal to chromosomes(i, chromosomes(i,j))) 

            increment count by 1; 

        end 

    end 

    if ( count greater than 2) 

       chromosomes(i, col) = chromosomes(i, col) + 0; 

    else 

        chromosomes(i,col) = chromosomes(i,col) + 1; 

    end 

 end 

End 
_____________________________________________________________________ 
It returns 1 for non isolation and 0 for isolation for each chromosome. 
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4. Degree Constraint 

Degree-constrained spanning tree is a spanning tree where the maximum vertex 

degree is limited to a certain constant k.  

For n-node undirected graph G(V,E); positive integer k ≤ n.  

In this research work various network of various size have been studied and a 

relationship is observed between degree of spanning tree and sum of degree of each of 

the node. 

For  a spanning tree of N node 

d(N) = 2*N-2                                                                       (5.1) 

This relationship has been derived on the basis of experimental data.  

Proof:  To prove this relationship four spanning tree (all the spanning tree of  this 

study has been consdired) considered network of different size has been considered. 

 

 

Figure 5.19(a) Legal Spanning Tree   
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 Figure 5.19(b) Legal Spanning Tree   
 
 
 
 

 

 

Figure 5.19(c) Legal Spanning Tree   
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Figure 5.19(d) Legal Spanning Tree   

 

 

Procedure: Degree Constraint 

degree_constraint_check(chromosomes,degree) 

Begin 
N=size(degree); 

  for i=1 to row do 

    set p=0 and total_degree=0; 

    for j=1 to (col-1) do 

        set d to 1 

        for k=1 to (col-1) do 

            if(chromosomes(i, k) equal to j) 

                if(chromosomes(i, k) equal to  k) 

                    decrement d by -1; 

                end 

                if(chromosomes(i,chromosomes(i, k))not equal to k) 
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                    increment d  by 1; 

                end 

            end 

        end 

    if((d greater than equal to degree(1,j)) && (d less than equal to degree(2,j))) 

            increment p by 1; 

            total_degree = total_degree + d; 

        else 

            out from inner loop; 

        end   

    end   

     if((p equal to (col-1))AND total_degree equal to (2*N(2)-2))) 

         chromosomes(i,col) = chromosomes(i,col) + 1; 

     end        

  end 

End 
_____________________________________________________________________ 

 

This function checks the degree of each node within defined degree constraint range 

minimum and maximum and assigns 1 to those whose degree constraint is within 

range and equal to (2*N-2) otherwise 0  

5. Path Constraint 

This function is developed to check the existence of path between two nodes. In the 

case of complete graph , this function  is of no use, but it is useful for the directed and 

simple incomplete graph. Here dist_matrx   is the cost matrix of the graph or network. 
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Procedure: Path Constraint 

 path constraint(chromosomes, dist_matrx) 

Begin 
for i=1 to row do 

    set t=0; 

    for j=1 to col-1 do 

        set k = chromosomes(i,j); 

        if(dist_matrx(j, k) not to equal  0) 

            increment t by 1; 

        else 

            if(j equal to k) 

                increment t by 1; 

            end 

            if(j not equal to k) 

               out of loop; 

            end 

        end 

    end 

    if(t equal to (col-1)) 

        chromosomes(i,col) = chromosomes(i,col) + 1; 

    end 

end     

End 
_________________________________________________________
This function checks the path constraint for each chromosome according to 
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availability of path from dist_matrx. If path available for each gene of the 

chromosome then it assigns 1 otherwise it assigns 0 
   

5.2.3 Selection 

Selection provides the driving force in a GA.  During each successive generation, a 

proportion of the existing population is selected to breed a new generation. Individual 

solutions are selected through a fitness-based process, where fitter solutions (as 

measured by a fitness function) are typically more likely to be selected. Certain 

selection methods rate the fitness of each solution and preferentially select the best 

solutions. Other methods rate only a random sample of the population, as this process 

may be very time-consuming. 

 In this research work seven selection functions have been designed. 

1. Random Selection 

This selection function simply selects the chromosome on the basis of randomly 

generated number. Randomly generated number decide the location of the 

chromosome to be selected. If the number is not in the range of the chromosome 

location, then it replaces with the fittest chromosome. 

Procedure: Random Selection 

random_selection(chromosomes) 

Begin 
set k=1; 

for i=1 to row do 

    r=randomly generate a number 

    if((r equal to  0) OR (r greater than row)) 
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        for l=1 to row do 

            if(chromosomes(l,col)) equal to  col+3 

                Set r=l; 

            end     

         end 

    end 

    if(r equal to  0) 

        set r=1; 

    end 

    for j=1 to col do 

        new_chromosomes(k, j) = chromosomes(r, j); 

    end 

    increment k by 1; 

end 

 End 
_____________________________________________________________________ 

 it stores the selected chromosomes in the new_chromosomes matrix. 
 
 

2. Roulette wheel Selection I  

It is based on the simple concept of roulette wheel. 

s = sum of fitness of all the chromosomes in the generated population 

r = random number generated from the range (0 to s) 

following example shows the concept: 
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Table 5.7 Randomly generated chromosome with Fitness   
 

Chromosomes Fitness s 

1 11 11 

2 10 21 

3 11 32 

4 8 40 

5 10 50 

6 10 60 

7 10 70 

8 11 81 

9 12 93 

10 11 104 

 

 

 

Table 5.7 shows the 10 randomly generated chromosomes with its corresponding 

fitness value. s is accumulated sum for roulette wheel procedure. 

The value of r must be in the range of s such that. 

11≤ r ≤104 

if r is 29.8998 

⇒   r  < s(3), so 3rd chromosome will be selected and so on until n chromosomes are 

not selected. Where n is total no. of chromosomes. 
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Procedure: Roulette wheel Selection I 

Roulette_wheel_selectionI(chromosomes) 

Begin 
    r= randomly generated number 

 set s(row,1)=0; 

set temp=0; 

for i=1 to row do 

    temp = temp+chromosomes(i,col); 

    s(i)= temp; 

end 

 set k=1;    

 for i=1 to row do 

     r= random generated number * temp; 

         for j= 1 to row do 

         if(r less than s(j)) 

             for t=1 to col do 

                 new_chromosomes(k,t)=chromosomes(j,t); 

             end 

             increment k by 1; 

             out of loop; 

         end  

     end 

 end 

End 
_____________________________________________________________________ 
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3. Roulette wheel Selection II 

It is also based on the simple concept of roulette wheel but with change. 

s = sum of fitness probability  

fitness probability = fitness / avg 

avg = sum of fitness / no of chromosome 

r =  random number generated from the range (0 to s) 

Following example shows the concept: 

avg = 109 / 10  = 10.900 

 

 

Table 5.8 Randomly generated chromosome with Fitness   
Chromosome Fitness Fitness 

probability 

s 

1 12 1.1009 1.1009 

2 10 .9174 2.0183 

3 10 .9174 2.9358 

4 11 1.0092 3.9450 

5 13 1.1927 5.1376 

6 11 1.0092 6.1468 

7 13 1.1927 7.3394 

8 9 0.8257 8.1651 

9 10 0.9174 9.0826 

10 10 0.9174 10.000 
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If r is 3.47 then  

⇒   r  < s(4), so 4th  chromosome will be selected and so on until n chromosomes are 

not selected. Where n is total no. of chromosomes. 

 

Procedure: Roulette wheel Selection II 

Roulette_wheel_selectionII (chromosomes) 

Begin 
r= randomly generated number 

set s(row,1)=0; 

set temp=0; 

for i=1 to row do 

    temp = temp+chromosomes(i,col); 

    s(i)= temp; 

end 

avg = temp/row; 

for i=1 to row  do 

    temp=(chromosomes(i, col)/avg); 

end 

set temp=0; 

for i=1 to row do 

    temp=temp+(chromosomes(i,col)/avg); 

    s(i)=temp; 

end 

temp = s(i); 

set k = 1;    
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for i =1 to row do 

     r= random * temp; 

      for j = 1 to row 

         if(r less than s(j)) 

             for t=1 to col 

                 new_chromosomes(k, t)=chromosomes(j, t); 

             end 

             increment k by 1; 

             out of loop ; 

         end 

     end 

   end 

End 
_____________________________________________________________________ 

  

4. Sort Selection 

This function sorts the chromosome , then sorted chromosome is selected. 

Procedure: Sort_Selection 

Sort_selection(chromosomes) 

Begin 
Set k=1;    

Set t=2; 

while(k less than equal to row) do 

   for i=1 to row do 
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       if(chromosomes(i, col) equal to (col+t))  

          for j  = 1 to col do 

           new_chromosomes(k, j)= chromosomes(i, j); 

          end 

          increment k by 1; 

       end 

    end 

   decrement t by 1 

  end 

End 
_____________________________________________________________________ 

  

5. Fittest Selection 

This function selects only the fittest chromosome up to a fixed fitness level 

Procedure: Fittest_Selection 
  

Fittest_selection(chromosomes) 

Begin 
Set k=1;    

Set t=2; 

while(k less than equal to row) 

   for i=1 to row do 

    if(chromosomes((i, col) equal to  (col+t))  

          for j=1 to col do 

           new_chromosomes(k, j)=chromosomes(i, j); 
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          end 

          increment k by 1; 

       end 

     end  

   if(k greater than row) 

      out of loop; 

   end 

   decrement t by 1; 

   if(t less than (-1)) 

       set t=2; 

   end 

end 

End 
_________________________________________________________ 

  

6. Selection Sort SelectionI 

This selection function is based on selection  sort. It generates two random numbers 

for two random positions. These two position chromosomes are selected, compared 

and the greatest one is selected. It repeats n times where n are no of chromosome. 

 

Procedure: Selection _Sort_SelectionI 
  

Selection_Sort_Selection(chromosomes) 

Begin 
Set k=1;    
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Set t=2; 

   for i=1 to row do 

            p  = randomly generated number; 

            q  = randomly generated number; 

             if(p equal to 0) 

                 set p=1; 

             end 

             if(q equal to  0) 

                 set q=1; 

             end 

   if(chromosomes(p,col) greater than chromosomes(q,col))  

          for j=1 to col do 

           new_chromosomes(k,j)= chromosomes(p,j); 

          end 

          increment k by 1; 

       else 

           for j= 1 to col do 

           new_chromosomes(k,j)=chromosomes(q,j); 

          end 

          increment k by 1; 

       end 

        

   end 

End 
_____________________________________________________________________ 
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7. Selection Sort SelectionII 

This selection function is based on selection  sort. It generates two random numbers 

for two random positions. These two position chromosomes are selected, compared 

and the smallest one is selected. It repeats n times where n are no of chromosome 

 

Procedure: Selection_Sort_SelectionII 
 

Selection_Sort_SelectionII(chromosomes) 

Begin 
Set k=1;    

Set t=2; 

   for i=1 to row do 

            p  = randomly generated number; 

            q  = randomly generated number; 

             if(p equal to 0) 

                 set p=1; 

             end 

             if(q equal to  0) 

                 set q=1; 

             end 

if(chromosomes(p,col) smaller than chromosomes(q,col))  

          for j=1 to col do 

           new_chromosomes(k,j)= chromosomes(p,j); 

          end 

          increment k by 1; 
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       else 

           for j= 1 to col do 

           new_chromosomes(k,j)=chromosomes(q,j); 

          end 

          increment k by 1; 

       end 

     end 

End 
_____________________________________________________________________    

  

5.2.4 Genetic Operators 

A genetic operator is an operator used in genetic algorithms to maintain genetic 

diversity. Genetic variation is a necessity for the process of evolution. Genetic 

operators used in genetic algorithms are analogous to those which occur in the natural 

world: survival of the fittest, or selection; reproduction (crossover, also called 

recombination); and mutation 

 

5.2.4.1 Crossover 

In genetic algorithms, crossover is a genetic operator used to vary the 

programming[68,69] of a chromosome or chromosomes from one generation to the 

next. It is analogous to reproduction and biological crossover, upon which genetic 

algorithms are based. In this research work six different crossover function is 

developed: 
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5.2.4.1.1 Variable Point Crossover 

It is a single point crossover where point is changed with all pair of cromosome. 

Following  example explains the logic behind  this crossover operator. 

Cromosome1 1 4 6 9 8 
Cromosome2 2 3 5 7 8 
Cromosome3 4 3 2 1 8 
Cromosome4 6 7 7 5 4 

 Figure 5.20(a)    

          ↓ 
Cromosome1 1 4 6 9 8 
Cromosome2 2 3 5 7 8 

Figure 5.20(b)    

In figure 5.20(b) it has been shown that crossover will take place on first place(first 

point) after the crossover it will become ( figure 5.20(c)). 

Cromosome1 2 4 6 9 8 
Cromosome2 1 3 5 7 8 

Figure 5.20(c)    

Since it is variable point crossover, the next two crossover3 and crossover4 will be 

exchange their bits on ssecond place(second point) 

   ↓------↓ 

Cromosome3 4 3 2 1 8 
Cromosome4 6 7 7 5 4 

Figure 5.20(d)    
 
 

Cromosome3 6 7 2 1 8 
Cromosome4 4 3 7 5 4 

Figure 5.20(e)    
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Procedure: Variable_point_crossover 

 

Variable_point_crossover(chromosomes) 

Begin 
Set t=1 and i=1; 

while( i less than row) do 

    for j=1 to t do 

        temp = chromosomes(i, j); 

        shift chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

    increment i by 2; 

    increment t by 1; 

    if(t greater than >col) 

        set t=1; 

    end 

end 

End 

_____________________________________________________________________ 

5.2.4.1.2 Fixed Two Point Crossover 

It is a two point crossover where both the point begin and end, is fixed for all pair of 

cromosome. these two points are randomly generated and fixed for all the 

chromosomes Following  example explains the logic behind  this crossover operator. 

Same figure 5.20(a) is considered here 
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         ↓-------------------↓ 

Cromosome1 1 4 6 9 8 
Cromosome2 2 3 5 7 8 
Cromosome3 4 3 2 1 8 
Cromosome4 6 7 7 5 4 

 Figure 5.20(f)    

After fixed two point crossover— 

Cromosome1 1 4 5 7 8 
Cromosome2 2 3 6 9 8 
Cromosome3 4 3 7 5 4 
Cromosome4 6 7 2 1 8 

Figure 5.20(g)    
 

Procedure: Fixed_two_point_crossover 

 

Fixed_two_point_crossover(chromosomes) 

Begin 
Set t=1 and i=1; 

p= randomly generated number within the limit; 

q= randomly generated number within the limit;; 

if(p equal to 0) 

      set p=1; 

end 

if(q equal to 0) 

      set q=1; 

end 

if(p greater than q) 

    p1=q; 

    p2=p; 



Network Design Using Genetic Algorithm 
 
 

 
 

129

else 

    p1=p; 

    p2=q; 

end 

while( I less than row) do 

    for j=p1 to  p2 do 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

    increment i by 2; 

    increment t by 1; 

    if(t greater than col) 

        set t=1; 

    end 

end 

End 

_____________________________________________________________________ 

5.2.4.1.3 Variable Two Point Crossover 

It is a two point crossover where both the point begin and end, is different  for each  

pair of cromosome. These two points are randomly generated for each pair  

chromosomes Following  example explains the logic behind  this crossover operator. 

Same figure 5.20(a) is splitted here as 5.20(h) and 5.20(i). 

 

 



Anand Kumar (Registration No: 3893) 

 
 

130

          ↓----------------↓ 

Cromosome1 1 4 6 9 8 
Cromosome2 2 3 5 7 8 

 Figure 5.20(h)    

 

                                                         ↓-------------------------↓ 

Cromosome3 4 3 2 1 8 
Cromosome4 6 7 7 5 4 

Figure 5.20(i) 

After Variable two point crossover— 

Cromosome1 2 3 5 9 8 
Cromosome2 1 4 6 7 8 
Cromosome3 4 7 7 5 4 
Cromosome4 6 3 2 1 8 

Figure 5.20(j) 

Procedure: Variable_two_point_crossover 

 

Variable_two_point_crossover(chromosomes) 

Begin 
Set i=1; 

while( i less than row) 

     

    p= randomly generated number within the limit; 

    if(p equal to 0) 

        set p=1; 

    end 
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q= randomly generated number within the limit;                 

if(q equal to 0) 

    set q=1; 

end 

 if(p greater than q) 

    p1=q; 

    p2=p; 

else 

    p1=p; 

    p2=q; 

end 

    for j=p1 to p2 do 

        temp = chromosomes(i,j); 

        shift chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

    increment i by 2;  

end 

End 
_________________________________________________________  

  

5.2.4.1.4 Uniform Crossover 

It is a multi point crossover where multiple random points are generated and bits are 

exchanged between these points only. These points are fixed for each  pair of 

cromosome. Following  example explains the logic behind  this crossover operator. 
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Randomly generated points are considered 2,5,8 and 9. so exchange of bits will occur 

between 2-5 and 8-9, remaining bits will be unchanged. 

 

                                      ↓------------↓                ↓---↓ 

Cromosome1 8 5 10 1 9 5 9 9 8 9 
Cromosome2 4 4 3 4 9 8 9 3 4 7 

 Figure 5.20(k)    

 

After uniform crossover- 

Cromosome1 8 4 3 4 9 5 9 3 4 9 
Cromosome2 4 5 10 1 9 8 9 9 8 7 

 Figure 5.20(l)    

 

Procedure: Uniform_crossover 

 

Uniform_crossover(chromosomes) 

Begin 

t=1;i=1; 

p= randomly generated number within the limit; 

q= randomly generated number within the limit; 

r= randomly generated number within the limit; 

s= randomly generated number within the limit; 

  

sorted_pos =sort(p,q,r,s); { all these four numbers are 

sorted} 
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while( i less than row) do 

    for j = p to q do 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

  for j = r to s do 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

    incremetnt i by 2  

end 

End 
_____________________________________________________________________ 

5.2.4.1.5 Hybrid CrossoverI 

It is a multi point , multi parent crossover where multiple random points are generated 

and bits are exchanged between these points only. These points are fixed for each  

pair of cromosome.exchanged are made in multiple parents at a time.since 

multiparents have been used so it is called hybrid crossover. Following  example 

explains the logic behind  this crossover operator. 

Consider the randomly generated points are 2,5,8 and 9. so exchange of bits will 

occur between 2-5 and 8-9, remaining bits will be unchanged. 
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                                         ↓------------↓              ↓---↓ 

Cromosome1 8 4 3 4 9 5 9 3 4 9 
Cromosome2 4 5 10 1 9 8 9 9 8 7 
Chromosome3 6 3 5 7 1 1 2 9 8 6 

Figure 5.20(m) 

After uniform crossover-  

 

Cromosome1 8 5 10 1 9 5 9 9 8 9 
Cromosome2 4 3 5 7 1 8 9 9 8 7 
Chromosome3 6 4 3 4 9 1 2 3 4 6 

Figure 5.20(n) 

 

Procedure: Hybrid_crossoverI 
 

Hybrid_crossover(chromosomes) 

Begin 
t=1;i=1; 

p= randomly generated number within the limit; 

q= randomly generated number within the limit; 

r= randomly generated number within the limit; 

s= randomly generated number within the limit; 

  

sorted_pos =sort(p,q,r,s); { all these four numbers are 

sorted} 

 

while( i less than row) do 
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    for j = p to q do 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

    end 

   for j = r to s do 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

    end 

    increment i by 3; { it’s a 3 parent crossover } 

end 

End 
____________________________________________________________________    

5.2.4.1.6 Hybrid CrossoverII 

It is a multi point , multi parent and variable  crossover where multiple random points 

are generated and bits are exchanged between these points only. These points are 

randomly generated for each  parent combination  of cromosome. Exchange are made 

in multiple parents at a time. since multiparents have been used so it is called hybrid 

crossover. Following  example explains the logic behind  this crossover operator. 

There are combination of three parent. For the first three parents randomly generated 

points are 2,5,8 and 9. so exchange of bits will occur between 2-5 and 8-9, remaining 
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bits will be unchanged. For the next three parents randomly generated numbers are 

1,4,7,10. so exchange will be made between 1-4 and 7-10, remaining bits will be 

exchanged. 

  ↓------------↓               ↓---↓   

Cromosome1 8 5 10 1 9 5 9 9 8 9 
Cromosome2 4 3 5 7 1 8 9 9 8 7 
Chromosome3 6 4 3 4 9 1 2 3 4 6 
Cromosome4 5 1 4 9 6 2 1 3 10 1 
Cromosome5 4 2 5 8 7 3 4 5 10 3 
Chromosom6 3 3 6 7 8 2 1 9 1 9 

                             ↑ ---------------------↑                           ↑ ------------------↑  

Figure 5.20(o) 

After Crossover- 

Cromosome1 8 3 5 7 1 5 9 9 8 9 
Cromosome2 4 4 3 4 9 8 9 3 4 7 
Chromosome3 6 5 10 1 9 1 2 9 8 6 
Cromosome4 4 2 5 8 6 2 4 5 10 3 
Cromosome5 3 3 6 7 7 3 1 9 1 9 
Chromosom6 5 1 4 9 8 2 1 3 10 1 

Figure 5.20(p) 

Procedure: Hybrid_crossoverII 

Hybrid_crossoverII(chromosomes) 

Begin 
t=1;i=1; 

p= randomly generated number within the limit; 

q= randomly generated number within the limit; 

r= randomly generated number within the limit; 

s= randomly generated number within the limit; 
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sorted_pos =sort(pos); { all these four numbers are 

sorted} 

while( i less than row) do 

    for j = p to q do 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

    end 

    for j = r to s do 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

    end 

    increment I by 3;{ for 3 parent combination} 

p= randomly generated number within the limit; 

q= randomly generated number within the limit; 

r= randomly generated number within the limit; 

s= randomly generated number within the limit; 

sorted_pos =sort(pos); {all these four numbers are 

sorted} 

end 

End 
_____________________________________________________________________  
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5.2.4.2 Mutation 

In genetic algorithms of computing, mutation is a genetic operator used to maintain 

genetic diversity from one generation of a population of algorithm chromosomes to 

the next. It is analogous to biological mutation. 

The classic example of a mutation operator involves a probability that an arbitrary bit 

in a genetic sequence will be changed from its original state. A common method of 

implementing the mutation operator involves generating a random variable for each 

bit in a sequence. This random variable tells whether or not a particular bit will be 

modified. This mutation procedure, based on the biological point mutation, is called 

single point mutation. Other types are inversion and floating point mutation. When the 

gene encoding is restrictive as in permutation problems, mutations are swaps, 

inversions and scrambles. 

The purpose of mutation in GAs is preserving and introducing diversity. Mutation 

should allow the algorithm to avoid local minima by preventing the population of 

chromosomes from becoming too similar to each other, thus slowing or even stopping 

evolution. This reasoning also explains the fact that most GA systems avoid only 

taking the fitness of the population in generating the next but rather a random (or 

semi-random) selection with a weighting toward those that are fitter. 

In this research work six different mutation function is developed: 

5.2.4.2.1 Mutation-I 

This mutation operator mutates only those chromosomes which does not have the 

maximum fitness. The logic applied behind this function is to simply find the 

chromosome and change its value with its position. 
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 If first chromosome is selected then its first place will be replaced by maximum 

number  where maximum number is equal to number of node. Similarly if second  

unfit chromosome is selected then its second position  will be replaced by maximum 

number-1 and so on. 

Procedure: MutationI 

Mutation1(chromosome) 

Begin 
Set k=1; 

for i=1 to row do 

     if(chromosome(i, col) not equal to maximum fitness) 

         new_chromosome(i,i) = (col-i); 

     end 

end 

for i=1 to row 

    for j=1 to col-1 do 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

End 
_____________________________________________________________________ 

5.2.4.2.2 MutationII 

This mutation operator mutates only those chromosomes which does not have the 

maximum fitness value. Mutation is done to remove self loop. If the locus and allele 

both have the same vlaue, than this value is replaced by (position + 1). This function 

is also working as the repairing of chromosome. 
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Procedure: Mutation-II 

mutationII(chromosome) 

Begin 
set k=1; 

for i=1 to row do 

     if(chromosome(i, col) not equal to maximum fitness) 

         for j=1 to col-1 do 

             if(chromosome(i,j) == j) 

                 if(j equal to col-1) 

                      new_chromosome(i,j) = j-1; 

                 else 

                   new_chromosome(i,j) = j+1; 

                 end 

              end 

         end 

     end 

end 

for i=1 to row do 

    for j=1 to col-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

End 
_____________________________________________________________________ 
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5.2.4.2.3 Random Mutation 

This mutation operator mutates only those chromosomes which does not have the 

maximum fitness value.Mutation is done by selecting a random position and replace 

its value with random number. It is considered that no self loop could form at the time 

of replacement. 

Procedure: Random_mutation 

Random_mutation(chromosome) 

Begin 
set k=1; 

for i=1 to row do 

     if(chromosome(i, col) not equal to maximum fitness) 

           posi = randomly generated number within limit; 

           val =  randomly generated number within limit; 

             if(posi equal to 0) 

                 posi=1; 

             end 

             if(val equal to  0) 

                 val=1; 

             end 

             if((posi equal to val)AND (posi == col-1)) 

                  chromosome(i,posi) = val-1; 

             else 

                  chromosome(i,posi) = val; 

             end 

        end 
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     end 

for i=1 to row do 

    for j=1 to col-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

End 
_________________________________________________________  

   

5.2.4.2.4 Swap Mutation 

This mutation operator swaps two random position of each of the  chromosomes . 

If the randomly generated positions are 3 and 7. 

                                                   ↓                     ↓                 

Chromosom 5 1 4 9 8 2 1 3 10 1 

Figure 5.20(q) 

After mutation-   

Chromosom 5 1 1 9 8 2 4 3 10 1 

Figure 5.20(r) 

Procedure: Swap_mutation 

Swap_mutation(new_chromosome) 

Begin 
Set k=1; 

   for i=1 to row do 
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    p= randomly generated number within the limit; 

    q= randomly generated number within the limit; 

         temp = new_chromosome(i,p); 

         new_chromosome(i,p) = new_chromosome(i,q); 

         new_chromosome(i,q) = temp; 

   end 

End 
_____________________________________________________________________ 

5.2.4.2.5 Mutation Inversion 

This mutation operator inverts the genes between  two random position for each of the  

chromosomes . For each chromosome there are different random position. 

If the randomly generated positions are 2 and 8. 

                                         ↓                                ↓                 

Chromosom 5 1 4 9 8 2 1 3 10 1 

Figure 5.20(s) 

After mutation- 

Chromosom 5 3 1 2 8 9 4 1 10 1 

Figure 5.20(t) 

Procedure: Mutation_Inversion 

Mutation inversion(new_chromosome) 

Begin 
Set k=1; 

   for i=1 to row do 
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    p= randomly generated number within the limit; 

    q= randomly generated number within the limit; 

    sort p,q 

      for x = p to  q do  

         temp = new_chromosome(i,x); 

         new_chromosome(i,x) = new_chromosome(i,q); 

         new_chromosome(i,q) = temp; 

         decrement q by - 1; 

         if (x == q) || (x > q) 

             break; 

         end 

        end 

  end 

End 
_____________________________________________________________________ 

5.2.4.2.6 Mutation Insertion 

This mutation operator inserts  one gene with another gene by displacing other genes.  

Two random positions are generated to denote two gene, then one random place gene 

is inserted with the another random place gene. Other inbetween genes are shifted. 

For each chromosome there are different random position. 

If the randomly generated positions are 2 and 8. 

                                         ↓                                ↓                 

Chromosom 5 1 4 9 8 2 1 3 10 1 

Figure 5.20(u) 
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After mutation- 

                                                    ↓     → 

Chromosom 5 1 3 4 9 8 2 1 10 1 

Figure 5.20(v) 

Procedure: Mutation_Insertion 

mutation_insertion(new_chromosome) 

Begin 
 Set k=1; 

   for i=1 to row do 

    p= randomly generated number within the limit; 

    q= randomly generated number within the limit; 

    sort p,q 

        temp =  new_chromosome(i,  q);    

        if(p not equal to  q) 

            x = q-1; 

          While (x greater than equal to p+1)  

             new_chromosome(i,x+1) = new_chromosome(i,x); 

              decrement x by -1; 

          end 

           new_chromosome(i,p+1) = temp; 

        end 

end 

End 
_____________________________________________________________________ 
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CHAPTER 6 

Experimental Design and Results 
 
 
 

In order to examine the proposed genetic algorithm, various different size of networks 

are considered. The network is considered as a weighted graph which is further 

represented with the adjacency matrix. The adjacency matrix contains the distance 

between node. The network size varies from 10 to 1000 nodes. For the connectivity of 

the node, a table is maintained for each graph which contains the details of degree of 

each node of that graph. 

 

All the experimenatal data is separately maintained because it is bulky and not 

possible to include in thesis. In the experimenatal data, execution of all the 546 cases 

are saved with step by step execution and the final result.  

 

Genetic Algorithm is a step by step process where the process starts from population 

generation and further evaluation, selection and genetic operation. The general 

working of genetic algorithm is discussed in section 4.1 of chapter 4. In this proposed 

genetic algorithm, the actual steps of genetic algorithm are kept as it is but evaluation 

process is repeated because of the uncertain nature of this genetic algorithm. At the 

same time the best result is preserved for the next generation also. The result is 

replaced with the better result whenever it is derived from the next generation 

otherwise previous better result is maintained. Keeping all this in consideration, the 

proposed genetic algorithm is designed as following-   
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Procedure: Proposed Genetic Algorithm 

1. Initialization of parent population.  
2. Evaluation based on the following fitness functions 

a) self loop() 

b) cycle() 

c) path constraint() 

d) degree constraint() 

e) isolation() 

f) store the complete fit chromosome 

3. Selection of the chromosome for the next generation. 
Selection based on following function. 

1. random selection 

2. roulette wheel- I selection 

3. roulette wheel- II selection 

4. sort selection 

5. fittest selection 

6. selection sort selection-I 

7. selection sort selection-II 

4. Crossover/recombination based on following function 
a) variable one  point crossover  

b) Fixed two point crossover 

c) variable two point crossover 

d) uniform crossover 

e) hybrid crossover-1 

f) hybrid crossover-2 
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5. Evaluation (same as step-2) 
6. Mutation based on following function 

1. mutation-1  

2. mutation-2 

3. random mutation 

4. swap mutation 

5. inversion mutation 

6. hybrid (insertion) mutation 

7. Evaluate child and Go to step 3 until termination 
criteria satisfies 

_________________________________________________________ 

6.1 Experimental Design of the Backbone Network 

The experimental design of this research work is based on the procedure “proposed 

genetic algorithm”. The experiment is carried out in step by step manner as the steps 

are mentioned in the above procedure. To show the experimental design a network is 

considered of 10 nodes which is further represented by a complete graph. For the 

experiment, this complete graph is considered as an adjacency matrix which consists 

of the distance between each pair of node in the complete graph. First of all network 

is represented then procedure “proposed genetic algorithm” is followed step by step. 

 

6.1.1 Backbone Network Representation 

The Figure 6.1 shows the different locations to be connected, all these locations have 

direct path to reach to other locations. All these locations are connected with each 

other and represented as a complete graph in Figure 6.1. 
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Figure 6.1 Ten different locations to be connected 

A complete weighted graph is considered here which represents a backbone network 

to connect different locations.  

Table 6.1 Adjacency matrix of complete graph of Figure 6.1   

Node 1 2 3 4 5 6 7 8 9 10 

1 0 42 29 43 25 62 46 41 52 33 

2 42 0 57 28 25 39 62 36 6 51 

3 29 57 0 57 14 41 58 39 38 56 

4 43 28 57 0 37 9 30 39 27 55 

5 25 25 14 37 0 35 67 52 24 71 

6 62 39 41 9 35 0 50 15 34 48 

7 46 62 58 30 67 50 0 68 40 69 

8 41 36 39 39 52 15 68 0 55 28 

9 52 6 38 27 24 34 40 55 0 65 

10 33 51 56 55 71 48 69 28 65 0 
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6.1.2 Initialization of parent population 

This is the first step of genetic algorithm after the network presentation. In this 

research work, parent population is generated randomly. Population means 

chromosomes. For the simplicity, 10 sets of chromosomes have been generated here, 

since this is the first population so it is called parent population. The length of each 

chromosome is equal to the number of node present in graph to be connected as a 

backbone network. Table 6.2 shows  the 10 sets of randomly generated chromosomes. 

 

Table 6.2 Randomly generated chromosomes   
Chromosome1 8 3 6 2 2 6 3 10 1 9 
Chromosome2 2 8 4 7 4 1 2 1 2 7 
Chromosome3 1 8 10 4 1 9 5 9 2 10 
Chromosome4 8 9 2 8 6 8 2 1 1 8 
Chromosome5 7 5 7 7 2 7 8 7 1 3 
Chromosom6 7 6 6 6 1 8 10 8 6 7 
Chromosome7 6 10 4 2 7 4 1 5 9 2 
Chromosome8 4 4 1 10 3 6 5 9 4 3 
Chromosome9 4 1 1 3 7 6 1 9 4 7 
Chromosome10 8 9 4 9 4 5 8 6 10 5 

 

These randomly generated chromosomes represent 10 different networks. And now 

these chromosomes will be evaluated by fitness functions. 

 

6.1.3 Evaluation based on fitness functions 

To evaluate these chromosomes, five different fitness functions have been developed 

as it has been discussed in the section 5.2.2, the reason of being illegal chromosome. 

 

6.1.3.1 Cycle 
 

This function assigns 0 for cycle and 1 for NO-cycle to each chromosome. Table 6.3 

presents the status of each of the chromosomes. The last column of this table shows 



Anand Kumar (Registration No: 3893) 

 
 

152

the fitness of each of the chromosome. Each 0 represent the presence of the cycle and 

1 cycle free network.  

 
Table 6.3 Fitness of chromosomes after cycle check   

Cromosome1 8 3 6 2 2 6 3 10 1 9 0 
Cromosome2 2 8 4 7 4 1 2 1 2 7 0 

Chromosome3 1 8 10 4 1 9 5 9 2 10 0 
Cromosome4 8 9 2 8 6 8 2 1 1 8 1 
Cromosome5 7 5 7 7 2 7 8 7 1 3 1 
Chromosom6 7 6 6 6 1 8 10 8 6 7 1 
Chromosome7 6 10 4 2 7 4 1 5 9 2 1 
Cromosome8 4 4 1 10 3 6 5 9 4 3 0 
Cromosome9 4 1 1 3 7 6 1 9 4 7 0 

Chromosom10 8 9 4 9 4 5 8 6 10 5 0 
 
 
6.1.3.2 Path Constraint 
 

This function is not applicable here because it is a complete graph and paths are 

available from each node to each node. This function will be applicable for 

incomplete or partial complete graph where paths are not available between certain 

nodes. this function is very useful in the case of restricted path where specifically 

paths have mentioned. This function plays a very important role for the shortest path 

problem which is discussed in next chapter. So in this case each of the chromosome 

will be assigned fitness 1 and it will be added with the existing fitness. Table 6.4 

presents the fitness status of each of the chromosomes.  
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Table 6.4 Fitness of chromosomes after path constraint check   
 

Cromosome1 8 3 6 2 2 6 3 10 1 9 1 
Cromosome2 2 8 4 7 4 1 2 1 2 7 1 

Chromosome3 1 8 10 4 1 9 5 9 2 10 1 
Cromosome4 8 9 2 8 6 8 2 1 1 8 2 
Cromosome5 7 5 7 7 2 7 8 7 1 3 2 
Chromosom6 7 6 6 6 1 8 10 8 6 7 2 
Chromosome7 6 10 4 2 7 4 1 5 9 2 2 
Cromosome8 4 4 1 10 3 6 5 9 4 3 1 
Cromosome9 4 1 1 3 7 6 1 9 4 7 1 

Chromosom10 8 9 4 9 4 5 8 6 10 5 1 
 

6.1.3.3 Self loop 
 

This function assigns fitness 1 to each gene of the chromosome, it means if there is no 

self loop in a chromosome, the total fitness for the chromosome will be 10. Table 6.5 

presents the fitness status of each of the chromosomes.  

 
Table 6.5 Fitness of chromosomes after self loop check   

 
Cromosome1 8 3 6 2 2 6 3 10 1 9 10
Cromosome2 2 8 4 7 4 1 2 1 2 7 11

Chromosome3 1 8 10 4 1 9 5 9 2 10 8 
Cromosome4 8 9 2 8 6 8 2 1 1 8 12
Cromosome5 7 5 7 7 2 7 8 7 1 3 12
Chromosom6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 6 10 4 2 7 4 1 5 9 2 11
Cromosome8 4 4 1 10 3 6 5 9 4 3 10
Cromosome9 4 1 1 3 7 6 1 9 4 7 10

Chromosom10 8 9 4 9 4 5 8 6 10 5 11
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Table 6.5 shows that only chromosome 4 and chromosome 5 has full fitness after self 
loop check. 
 
6.1.3.4 Isolation 
 

This function assigns 0 for isolation and 1 for NO-isolation to each chromosome. 

Table 6.6 presents the status of each of the chromosomes. 

 
Table 6.6 Fitness of chromosomes after isolation check  

  
Cromosome1 8 3 6 2 2 6 3 10 1 9 11
Cromosome2 2 8 4 7 4 1 2 1 2 7 12

Chromosome3 1 8 10 4 1 9 5 9 2 10 8 
Cromosome4 8 9 2 8 6 8 2 1 1 8 13
Cromosome5 7 5 7 7 2 7 8 7 1 3 12
Chromosom6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 6 10 4 2 7 4 1 5 9 2 11
Cromosome8 4 4 1 10 3 6 5 9 4 3 11
Cromosome9 4 1 1 3 7 6 1 9 4 7 11

Chromosom10 8 9 4 9 4 5 8 6 10 5 12
 
6.1.3.5 Degree constraint 
 

This function is one of the important functions which converts this minimum 

spanning tree to degree constrained minimum spanning tree. For each node, degree is 

fixed which shows the connectivity of the node with other node. The degree varies 

from minimum to maximum. For the fixed degree, minimum and maximum are equal. 

 
Table 6.7 Degree of each node of the network 

Nodes Degree 1 2 3 4 5 6 7 8 9 10 
Minimum 1 1 1 1 1 2 1 1 1 1 

maximum 4 4 4 4 4 2 4 4 4 4 
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Table 6.8 presents the status of each of the chromosomes 
 

Table 6.8 Fitness of chromosomes after degree constraint check   
 

Cromosome1 8 3 6 2 2 6 3 10 1 9 11
Cromosome2 2 8 4 7 4 1 2 1 2 7 12

Chromosome3 1 8 10 4 1 9 5 9 2 10 8 
Cromosome4 8 9 2 8 6 8 2 1 1 8 14
Cromosome5 7 5 7 7 2 7 8 7 1 3 12
Chromosom6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 6 10 4 2 7 4 1 5 9 2 11
Cromosome8 4 4 1 10 3 6 5 9 4 3 11
Cromosome9 4 1 1 3 7 6 1 9 4 7 11

Chromosom10 8 9 4 9 4 5 8 6 10 5 12
 
Table 6.8 shows that only chromosome 4 has full fitness after degree constraint check. 
 
6.1.3.6 Storage of completely fit chromosome 
 

First of all distance is calculated for each of the chromosome and then on the basis of 

fitness table 6.9, completely fit chromosome is stored. If more than one chromosome 

are present, then the minimum distance completely fit chromosome is stored. 

  

Table 6.9 Fitness T able for 10 Node network  
 

Fitness function Fitness value 
Cycle 1 

Self loop 10 
Path constraint 1 

Degree constraint 1 
Isolation 1 

Total Fitness 14 

 
Distance of each chromosome is calculated on the basis of adjacency matrix Table 6.1 
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Table 6.10 Distance of chromosomes  
 

Chromosome1 395
Chromosome2 442
Chromosome3 279
Chromosome4 335
Chromosome5 385
Chromosome6 278
Chromosome7 372
Chromosome8 374
Chromosome9 435

Chromosome10 422
 

 

On the basis of Table 6.8 it is clear that only one chromosome, chromosome-4 is 

completely fit, so this chromosome will be stored as a fittest chromosome. Table6.11 

shows the fittest chromosome with the last as a distance of the chromosome. 

 

 

Table 6.11 Fittest chromosome  
 

FittestCromosome 8 9 2 8 6 8 2 1 1 8 335
 
 
 

6.1.4 Selection of the chromosome for the next generation. 

Seven selection functions have been developed in this research work but only one can 

be used at a time. Here Roulette wheel selection method is considered. Table 6.12 

shows the new set of chromosomes (child population) after the selection based on 

roulette wheel method for next generation. 
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Table 6.12 selected child population (chromosomes) 
 

Chromosome1 6 10 4 2 7 4 1 5 9 2 
Chromosome2 4 4 1 10 3 6 5 9 4 3 
Chromosome3 7 6 6 6 1 8 10 8 6 7 
Chromosome4 7 6 6 6 1 8 10 8 6 7 
Chromosome5 7 6 6 6 1 8 10 8 6 7 
Chromosom6 7 6 6 6 1 8 10 8 6 7 
Chromosome7 8 3 6 2 2 6 3 10 1 9 
Chromosome8 4 4 1 10 3 6 5 9 4 3 
Chromosome9 8 9 4 9 4 5 8 6 10 5 
Chromosome10 8 9 2 8 6 8 2 1 1 8 

 

6.1.5 Genetic Operator Applications 

There are mainly two types of genetic operator, discussed in section 5.2.4. 

6.1.5.1 Crossover/Recombination 

Six crossover functions have been developed here, but any one can be used at a time. 

Here hybrid crossover method is considered. . Table 6.13 shows the status of 

chromosome bits after hybrid crossover. 

 

Table 6.13   Hybrid crossoverd chromosomes 
 

Chromosome1 6 10 4 10 3 4 1 5 4 3 
Chromosome2 4 4 1 6 1 6 5 9 6 7 
Chromosome3 7 6 6 2 7 8 10 8 9 2 
Chromosome4 7 6 6 6 1 8 10 8 6 7 
Chromosome5 7 6 6 6 1 8 10 8 6 7 
Chromosom6 7 6 6 6 1 8 10 8 6 7 
Chromosome7 8 3 6 10 3 6 3 10 4 3 
Chromosome8 4 4 1 9 4 6 5 9 10 5 
Chromosome9 8 9 4 2 2 5 8 6 1 9 
Chromosome10 8 9 2 8 6 8 2 1 1 8 

According to the proposed genetic algorithm, these hybrid crossovered chromosomes 

will be evaluated. For evaluation the same 5 functions will be applied. Table 6.14 

shows the total evaluation of each of the chromosome. 
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Table 6.14   Hybrid crossoverd chromosomes ater evaluation 
 

Chromosome1 6 10 4 10 3 4 1 5 4 3 12
Chromosome2 4 4 1 6 1 6 5 9 6 7 13
Chromosome3 7 6 6 2 7 8 10 8 9 2 11
Chromosome4 7 6 6 6 1 8 10 8 6 7 11
Chromosome5 7 6 6 6 1 8 10 8 6 7 11
Chromosome6 7 6 6 6 1 8 10 8 6 7 11
Chromosome7 8 3 6 10 3 6 3 10 4 3 12
Chromosome8 4 4 1 9 4 6 5 9 10 5 11
Chromosome9 8 9 4 2 2 5 8 6 1 9 12
Chromosome10 8 9 2 8 6 8 2 1 1 8 14
 

As it is seen that there is only one completely fit chromosome, chromosome-10 which 

has the fitness 14 and the previously stored chromosome has the fitness14 also so this 

new chromosome will replace the previous one. Since both the previous and new 

chromosome have the same fitness value and same distance, so replacement does not 

make any difference but here it is replaced because of the maintenance of new set of 

value. 

 

Table 6.15 shows the current fittest chromosome. 

 

Table 6.15 Fittest chromosome  
 

FittestCromosome 8 9 2 8 6 8 2 1 1 8 335
 

6.1.5.2 Mutation 

Six mutation functions have been developed here, but any one can be used at a time. 

Here inversion mutation is considered. 

Table 6.16 shows the status of chromosome bits after inversion mutation. 
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Table 6.16   Inversion mutated chromosomes 
 

Chromosome1 6 10 3 10 4 4 1 5 4 3 
Chromosome2 4 6 1 4 1 6 5 9 6 7 
Chromosome3 7 6 6 2 7 8 10 8 9 2 
Chromosome4 10 8 1 6 6 6 7 8 6 7 
Chromosome5 7 6 6 6 1 8 10 8 6 7 
Chromosom6 8 10 8 1 6 6 6 7 6 7 
Chromosome7 8 3 6 10 3 6 3 10 4 3 
Chromosome8 4 4 9 5 6 4 9 1 10 5 
Chromosome9 8 9 8 5 2 2 4 6 1 9 
Chromosome10 8 9 2 8 2 8 6 1 1 8 

 

According to the proposed genetic algorithm, these inversion mutated chromosomes 

will be evaluated. For evaluation the same 5 functions will be applied. Table 6.17 

shows the total evaluation of each of the chromosome. 

 

Table 6.17   Inversion mutated chromosomes after evaluation 
 

Chromosome1 6 10 3 10 4 4 1 5 4 3 13
Chromosome2 4 6 1 4 1 6 5 9 6 7 11
Chromosome3 7 6 6 2 7 8 10 8 9 2 11
Chromosome4 10 8 1 6 6 6 7 8 6 7 9 
Chromosome5 7 6 6 6 1 8 10 8 6 7 12
Chromosome6 8 10 8 1 6 6 6 7 6 7 12
Chromosome7 8 3 6 10 3 6 3 10 4 3 12
Chromosome8 4 4 9 5 6 4 9 1 10 5 12
Chromosome9 8 9 8 5 2 2 4 6 1 9 12
Chromosome10 8 9 2 8 2 8 6 1 1 8 14
 

As it is seen that there is only one completely fit chromosome, chromosome-10 which 

has the fitness 14, with less distance 313 and the previously stored chromosome has 

the fitness14, with distance 335,  
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This is one of the objectives to apply the evaluation after each application of genetic 

operator. It has been proposed in this study and here it is proved also. 

Table 6.18 shows the current fittest chromosome. 

 

Table 6.18 Fittest chromosome  
 

FittestCromosome 8 9 2 8 2 8 6 1 1 8 313
 

6.1.6 Termination 

There may be many termination criteria, here for simplicity four generations have 

been considered. After first generation, a chromosome of distance 313 is found.  All 

the remaining three generation details are given here. For simplicity, status of 

chromosome is presented here after the evaluation. 

After Second Generation 

Evaluation chromosomes after crossover 

 

Table 6.19   Crossovered chromosomes after evaluation 
 

Chromosome1 8 6 1 4 1 2 4 6 6 7 11
Chromosome2 4 9 8 5 2 4 9 1 1 9 12
Chromosome3 4 4 9 5 6 6 5 9 10 5 12
Chromosome4 6 9 2 8 2 4 1 5 1 8 12
Chromosome5 4 10 3 10 4 6 5 9 4 3 11
Chromosome6 8 6 1 4 1 8 6 1 6 7 11
Chromosome7 8 10 3 10 4 6 6 7 4 3 11
Chromosome8 4 10 8 1 6 6 5 9 6 7 11
Chromosome9 6 6 1 4 1 4 1 5 6 7 12
Chromosome10 8 9 2 8 2 8 6 1 1 8 14
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Chromosome-10 which has the fitness 14 and the previously stored chromosome has 

the fitness14 also so this new chromosome will replace the previous one. Since both 

the previous and new chromosome have the same fitness value and same distance, so 

replacement does not make any difference but here it is replaced replace because of 

the maintenance of new set of value. 

Evaluation after mutation 

 

Table 6.20   Mutated chromosomes after evaluation 
 
 

Chromosome1 8 4 1 6 1 2 4 6 6 7 12
Chromosome2 4 9 5 8 2 4 9 1 1 9 12
Chromosome3 4 4 9 5 6 5 10 9 5 6 14
Chromosome4 6 1 4 2 8 2 9 5 1 8 13
Chromosome5 10 3 10 4 4 6 5 9 4 3 10
Chromosome6 8 6 1 4 8 1 6 1 6 7 11
Chromosome7 8 10 3 10 4 6 6 7 3 4 10
Chromosome8 4 10 8 1 6 9 5 6 6 7 12
Chromosome9 6 4 1 6 1 4 1 5 6 7 13
Chromosome10 8 9 2 8 2 8 6 1 1 8 14
 

Here chromosome-3 (distance 377) and chromosome-10 (distance 313) both are 

completely fit, but the minimum distance calculated for chromosome-10 is 313. 

Further previously stored chromosome has the distance 313. So replacement does not 

make any difference but here it is replaced because of the maintenance of new set of 

value. 

 

Table 6.21 Fittest chromosome  
 

FittestCromosome 8 9 2 8 2 8 6 1 1 8 313
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After Third Generation 

Evaluation after crossover 

 

Table 6.22   Crossovered chromosomes after evaluation 
 

Chromosome1 8 10 3 2 8 8 9 5 1 8 11
Chromosome2 6 1 4 8 2 6 6 1 1 8 13
Chromosome3 8 9 2 10 4 2 6 7 3 4 13
Chromosome4 4 9 5 1 6 6 5 6 6 7 11
Chromosome5 4 10 8 10 4 4 6 7 3 4 14
Chromosome6 8 10 3 8 2 9 9 1 1 9 11
Chromosome7 6 4 1 2 8 9 9 5 1 8 11
Chromosome8 6 1 4 1 6 4 5 6 6 7 12
Chromosome9 4 10 8 6 1 2 1 5 6 7 12
Chromosome10 6 4 1 6 1 4 1 5 6 7 13
 

Here chromosome-5 (distance 390) is the completely fit, but its distance is greater 

than previously stored chromosome (distance 313), so there will be no replacement of 

the chromosome and the fittest chromosome will be as it is Table 6.21  

Evaluation after mutation 

 

Table 6.23   Mutated chromosomes after evaluation 
 

Chromosome1 8 10 3 9 8 8 2 5 1 8 11
Chromosome2 6 1 4 1 6 6 2 8 1 8 11
Chromosome3 8 9 2 10 4 2 6 7 3 4 13
Chromosome4 4 9 5 1 6 6 7 6 6 5 10
Chromosome5 4 10 8 3 7 6 4 4 10 4 11
Chromosome6 8 10 3 8 2 9 9 9 1 1 11
Chromosome7 2 1 4 6 8 9 9 5 1 8 12
Chromosome8 6 1 5 4 6 1 4 6 6 7 11
Chromosome9 4 10 5 1 2 1 6 8 6 7 11
Chromosome10 6 4 1 6 1 1 4 5 6 7 13
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As it is seen from Table 6.23, there is no fit chromosome, so there will be no 

replacement with the previously stored chromosome. 

After Fourth Generation 

Evaluation after crossover 

Table 6.24   Crossovered chromosomes after evaluation 
 

Chromosome1 8 9 5 1 8 6 7 6 6 8 11
Chromosome2 4 10 8 3 6 6 4 4 10 5 11
Chromosome3 4 10 3 9 7 8 2 5 1 4 11
Chromosome4 8 1 5 4 4 1 4 6 6 4 11
Chromosome5 6 10 5 1 6 1 6 8 6 7 11
Chromosome6 4 9 2 10 2 2 6 7 3 7 12
Chromosome7 8 1 5 4 4 1 4 6 6 4 11
Chromosome8 6 1 4 1 6 6 2 8 1 7 11
Chromosome9 6 9 2 10 6 2 6 7 3 8 12
Chromosome10 4 10 5 1 2 1 6 8 6 7 11
 

Again as from Table 6.24, there is no fit chromosome, so there will be no replacement 

with the previously stored chromosome. 

Evaluation after mutation 

Table 6.25   Mutated chromosomes after evaluation 
 

Chromosome1 8 9 5 1 6 8 7 6 6 8 11
Chromosome2 4 10 8 10 4 4 6 6 3 5 12
Chromosome3 4 10 3 9 4 1 5 2 8 7 11
Chromosome4 4 6 6 4 1 4 4 5 1 8 12
Chromosome5 6 6 1 6 1 5 10 8 6 7 10
Chromosome6 4 9 2 10 2 6 2 7 3 7 11
Chromosome7 8 1 5 4 1 4 4 6 6 4 12
Chromosome8 1 8 2 6 6 1 4 1 6 7 12
Chromosome9 8 3 7 6 2 6 10 2 9 6 11
Chromosome10 4 10 6 1 2 1 5 8 6 7 10
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Again from Table 6.25, there is no fit chromosome, so there will be no replacement 

with the previously stored chromosome. 

So after four generation the fittest chromosome has the minimum distance 313 to 

connect 10 different locations of the Figure 6.1. 

6.2 Experimental Results 

There are several factors which affects the result of network design problem using 

genetic algorithm. These factors can be broadly classified in to following categories: 

 

1. Genetic Algorithm Operators and Methods 

2. Types of network 

3. Constraints imposed by the requirement of the network 

 

 

 

Figure 6.2 (a) Factors affects the performance of Network Design 

 

GeneticAlgorithm Types of network Constraint 

Methods Operators Complete Partial Degree Path 

Populationn

Generation

Selection

Crossover

Mutation
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Figure 6.2 (b) GA Factors that affects the performance of Network Design 

 
Networks 
 
In this research work, 15 networks have been considered of the size 

10,20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900 and 1000. All 

these networks have been represented with the help adjacency matrix. Each network 

has degree constraint table. Each degree constraint table represents the degree of each 

node of that table. 

 

Genetic  Operators 

Selection Crossover Mutation

random selection 

roulette wheel- I selection 

roulettewheel- II selection 

sort selection 

fittest selection 

selection sort selection-I 

selection sort selection-II 

variable one point crossover 

Fixed two point crossover 

Variable two point crossover 

uniform crossover 

hybrid crossover-1 

hybrid crossover-2 

mutation-1  

mutation-2 

random mutation 

swap mutation 

inversion mutation 
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In Figure 6.1(a) it is shown that there are there are three main factors which affect the 

performance of network design problem. Further these factors are classified at 

specific level shown in Figure 6.1(b).  

In this experiment 15 networks have been considered with 546 different cases. These 

parameters are basically from genetic operators. The considered parameters are 

Selection, Crossover, Mutation, Population size and Number of generation. 

First of all experiment is made for a small size network upto100 nodes, dividing into 

three groups of network size 10, 20, 60 with the variation of population and  

generation for the different crossover function. 

 

6.2.1 Experiment based on crossover operator with generation and 

population variation in genetic algorithm for small network design 

problem 
 
Three different network of size 10, 60 and 100 have been used. The experiment is 

done in MATLAB R2008a version 7.6.0.324. [56, 57]The entire crossover is 

experimented with various sizes of network and population –generation combination. 

In this case following parameters have been considered: 

 

Population size  : 10 to 100 

No of Generations : 10 to 100 

Selection  :  Roulette Wheel 

Mutation   : Mutation I 

 

 Following tables and figures display the result: 
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TABLE -6.26 

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS-

NETWORK SIZE -10 

Population generation 
Single 
Point 

crossover 

Double_ 
fixed point 
crossover 

 

Double 
vary-point 
crossover 

10 100 307 297 315 
20 100 257 302 277 
30 100 286 260 252 
40 100 286 308 276 
50 100 269 274 233 
60 100 251 221 263 
70 100 247 286 251 
80 100 271 240 278 
90 100 262 254 245 
100 100 231 268 207 
200 100 237 245 254 
300 100 242 258 252 
400 100 248 229 226 
500 100 249 225 195 
1000 100 210 197 237 
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Figure 6.3 (a)  
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TABLE -6.27 

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS- 
NETWORK SIZE -10 

 

Population generation 

Single 

Point 

crossover 

Double_ 

fixed point 

crossover 

 

Double 

vary-point 

crossover 

100 10 317 298 291 

100 20 248 265 263 

100 30 249 280 261 

100 40 256 251 284 

100 50 255 245 271 

100 60 222 260 267 

100 70 220 223 258 

100 80 265 229 225 

100 90 242 274 228 

100 100 241 226 255 

100 200 237 246 262 

100 300 234 266 209 

100 400 250 253 241 

100 500 248 235 270 

100 600 232 255 233 

100 700 208 248 224 

100 800 240 251 238 

100 900 265 213 240 

100 1000 254 272 256 
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Network Cost Chart
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Figure 6.3 (b)  

 

TABLE -6.28 

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS- 
NETWORK SIZE -60 

 

Population generation 
Single 
Point 

crossover 

Double_ 
fixed point 
crossover 

 

Double 
vary-point 
crossover 

20 100 0 2233 0 
40 100 2457 2425 0 
60 100 0 2285 2211 
80 100 2246 2253 2166 
100 100 2169 2166 2273 
200 100 2161 2091 2142 
300 100 2014 2084 2010 
400 100 2053 2130 1933 
500 100 2047 2066 1954 
600 100 2031 2177 2065 
700 100 2041 2047 2040 
800 100 2013 1905 1983 
900 100 2004 1983 2105 
1000 100 1962 2032 2041 
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Network Cost Chart
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Figure 6.4 (a)  

TABLE -6.29 

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS- 
NETWORK SIZE -60 

Population generation 
Single 
Point 

crossover 

Double_ 
fixed point 
crossover 

 

Double 
vary-point 
crossover 

100 10 0 0 2161 
100 20 2133 2364 2386 
100 30 2179 2212 2190 
100 40 2189 2178 2170 
100 50 2203 2201 2284 
100 60 2061 2074 2187 
100 70 2276 2216 2209 
100 80 2248 2256 2151 
100 90 2084 2013 2059 
100 100 2254 2145 2092 
100 200 2226 2218 2184 
100 300 2081 2111 2234 
100 400 2212 2152 2381 
100 500 2076 2083 2245 
100 600 2228 2151 2121 
100 700 2140 2106 2139 
100 800 2123 2180 2107 
100 900 2134 2154 2144 
100 1000 0 2238 2064 
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Network Cost Chart
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Figure 6.4 (b)  

TABLE -6.30 

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS- 
NETWORK SIZE -100 

Population generation 
Single 
Point 

crossover 

Double_ 
fixed point 
crossover 

 

Double 
vary-point 
crossover 

100 10 0 0 0 
100 20 0 0 0 
100 30 0 0 0 
100 40 0 3789 3256 
100 50 0 0 0 
100 60 0 0 0 
100 70 0 0 0 
100 80 0 0 0 
100 90 3883 0 0 
100 100 0 0 0 
100 200 0 0 0 
100 300 0 0 0 
100 400 0 0 3456 
100 500 0 0 0 
100 600 0 0 0 
100 700 0 0 0 
100 800 4356 0 4123 
100 900 0 0 0 
100 1000 0 3245 0 
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Figure 6.5 (a)  

TABLE -6.31 

 MINIMUM COST OF NETWORK FOR VARIOUS CROSSOVER OPERATORS- 
NETWORK SIZE -100 

Population Generation 
Single 
Point 

crossover 

Double_ 
fixed point 
crossover 

 

Double 
vary-point 
crossover 

50 100 0 0 0 

100 100 0 0 3768 

200 100 0 0 3478 

300 100 3877 3855 3659 

400 100 3666 3543 3624 

500 100 3767 3874 3693 

600 100 4013 3669 3547 

700 100 3886 3335 3699 

800 100 3692 3998 3678 

900 100 3673 3321 3378 

1000 100 3819 3330 3221 
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Figure 6.5 (b)  

 
6.2.2 Experiment based on Selection Operator for small to large size 

network 
In this case following parameters have been considered: 
Population size  : 100 
No of Generations : 100 
Crossover Methods : Fixed two point crossover 
Mutation   : Random mutation 

   Table 6.32 Experimental Result based on different Selection function   

Network 
Size 

Random 
Selection 

Roulette 
wheel 

selection 
I 

Roulette 
wheel 

selection 
II 

Sort 
Selection

Fittest 
Selection 

Selection 
Sort-

selectionI

Selection 
Sort-

selectionII

10 301 219 232 253 239 303 296 
20 703 587 654 601 633 657 788 
40 1577 1333 1381 1351 1235 1330 0 
60 2353 2039 2231 2046 2186 2236 0 
80 3014 3054 2844 2964 2841 2830 0 
100 3810 3533 3648 3500 3502 3521 3795 
200 8033 7358 7462 7580 7351 8171 0 
300 11928 11175 11172 11571 10978 12013 11627 
400 15838 15015 15485 15234 14923 0 0 
500 20402 19503 19501 19247 19158 0 0 
600 0 23690 23486 23532 23191 24014 0 
700 27929 27145 27377 26874 26712 0 0 
800 0 31338 30633 30462 31187 32049 0 
900 35423 35386 35519 35314 35044 0 35933 
1000 40217 39660 39330 38477 35889 0 0 
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6.2.3  Experiment based on Crossover Operator for small to large 

size network 

 

In this case following parameters have been considered: 

Population size  : 100 

No of Generations : 100 

Selection  : Roulette Wheel Selection 

Mutation   : Random mutation 

 

 

Table 6.33 Experimental Result based on different Crossover function   
 
Network 

Size 
Variable 
two point 
crossover 

Fixed 
two point 
crossover

One 
point 

crossover

Uniform 
Crossover

Hybrid 
Crossover 

Hybrid 
CrossoverII

10 248 227 259 248 288 268 
20 607 638 664 626 644 639 
40 1358 1376 1333 1305 1324 1353 
60 2061 2201 2070 2098 2145 2196 
80 2874 3030 3131 2987 2828 3111 
100 3615 3480 3291 3501 3524 3571 
200 7569 7548 7657 7586 7629 7375 
300 11609 11184 11532 11512 11222 11252 
400 15363 15056 15350 15612 15342 15617 
500 19275 19461 19044 18992 19418 19116 
600 23778 23269 23602 22855 23918 23492 
700 27317 26711 0 27245 27404 27340 
800 31687 0 31624 30899 32083 31417 
900 35107 0 0 35959 34856 34694 
1000 40673 39228 39723 39945 40127 39896 
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6.2.4 Experiment based on Mutation Operator for small to large size 

network 

 

In this case following parameters have been considered: 

Population size  : 100 

No of Generations : 100 

Selection  : Roulette Wheel Selection 

Crossover   : Uniform 

 
 
 

Table 6.34 Experimental Result based on different Mutation function   
 
Network 

Size 
Random 
Mutation 

MutationI MutationII Swap 
Mutation

Inversion 
Mutation 

Insertion 
Mutation 

10 226 281 247 241 266 234 
20 624 682 646 567 652 680 
40 1262 1293 1388 1281 1238 1306 
60 2028 2026 2189 1977 2140 2203 
80 2981 2944 3121 2999 2933 2813 
100 3632 3555 3738 3464 3455 3368 
200 7730 7390 7353 7561 7344 7407 
300 11387 11305 11359 11559 11228 11300 
400 15454 15401 15815 15066 15252 15337 
500 19245 19296 19297 19256 19240 19295 
600 23589 23315 22999 23440 23095 23246 
700 27200 27421 28198 27626 26860 27234 
800 32002 31335 31266 31251 30852 30833 
900 35184 34643 35156 35383 35027 35294 
1000 39172 39092 39315 39291 39100 39503 
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Figure 6.8 
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6.3 Experimental Code developed in MATLAB, 

Version7.6.0.324(R2008a) 
 

Main Program 
 
 
disp('*************************************************')

; 

disp('BACKBONE NETWORK DESIGN PROGRAM USING GENETIC 

ALGORITHM '); 

disp('  WRITTEN BY MR. ANAND KUMAR Ph.D Scholar 

Registration N0. 3893)'); 

disp('DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF SCIENCE,  

SAURASHTRA UNIVERSITY,RAJKOT INDIA');   

disp('    Not to be used without permission of Anand 

Kumar, Reproduction is not permitted.'); 

  

disp('**************************************************'

); 

clear all; 

 

% INITIALISATION OF PARENT POPULATION-(GENERATE 

CHROMOSOME) 

 

no_node = input ('ENTER THE NUMBER OF NODE   :'); 

no_chromos = input ('ENTER THE NUMBER OF CHROMOSOME (even 

number only)  :'); 

chromosomes = round(rand(no_chromos,no_node)* no_node); 

for i=1:no_chromos 

   for j=1:no_node 

        if(chromosomes(i,j) == 0) 

            chromosomes(i,j)=1; 

        end 

    end 

end 
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%disp('randomly generated chromosomes are   '); 

%disp(chromosomes); 

  

%DISTANCE MATRIX% 

%distance matrix generation is previously generate and  

%stored such that all the diagonals are zero.  

%here fixed .mat file is used for the matrix size 

%10,20,26,40......100,150,200......1000. 

  

size_matrix = input('ENTER THE SIZE OF MATRIX 

10,20,26,40,60,80,100,150,200,250......1000     :','s'); 

 

load (size_matrix); 

dist_matrx = d; 

%disp('DISTANCE AMONG NODES'); 

%disp(dist_matrx); 

%pause; 

  

%EVALUATE CHROMOSOME 

%THIS FUNCTION CALCULATES FITNESS FOR cycles 

      chromosomes=cycle_calculatetry(chromosomes); 

%disp('CHROMOSOMES AFTER CYCLE FITNESS'); 

%disp(chromosomes); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

%THIS FUNCTION CALCULATES FITNESS FOR path constraint 

 

chromosomes=path_constraint(chromosomes,dist_matrx); 

%disp('CHROMOSOMES AFTER PATH CONSTRAINT FITNESS'); 

%disp(chromosomes); 

      

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

       %THIS FUNCTION CALCULATES FITNESS FOR SELF LOOP 

       chromosomes=selfloop_calculate6(chromosomes); 

       %disp('CHROMOSOMES AFTER SELF LOOP FITNESS'); 
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       %disp(chromosomes); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%THIS FUNCTION CALCULATES FITNESS FOR ISOLATED EDGE OR 

ISOLATED TREE 

chromosomes=isolate_calculate6(chromosomes); 

%disp('CHROMOSOMES AFTER ISOLATION FITNESS'); 

%disp(chromosomes); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%THIS FUNCTION CALCULATES FITNESS FOR DEGREE CONSTRAINT 

FOR  

%EACH NODE 

for i=1:10 

degree(i) = input('degree?'); 

end 

degree_matrix = input('ENTER THE OF DEGREE constraint of  

MATRIX EXAMPLE ddegree10, 

ddegree20,ddegree26.........sequence to size    ;','s'); 

load (degree_matrix); 

disp('DEGREE FOR EACH NODE'); 

disp(degree); 

pause; 

chromosomes=degree_constraint_calculate11(chromosomes,deg

ree); 

disp('CHROMOSOMES AFTER DEGREE CONSTRAINT FITNESS'); 

disp(chromosomes); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%calculation of distance for each randomly generated 

chromosomes%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

total_distance = 

distance_calculate6(chromosomes,dist_matrx); 

disp('DISTANCE FOR EACH CHROMOSOME'); 

%disp(total_distance); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%FIND THE FITTEST CHROMOSOME WITH MINIMUM DISANCE%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

fittest_chromosome = 

fittest_calculate_pc(chromosomes,total_distance); 

disp('FITTEST CHROMOSOME WITH DISTANCE'); 

disp(fittest_chromosome); 

PAUSE = input('PRESS 1 TO CONTINUE....'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%NEW GENERATION FOR CHILD POPULATION%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   

%%%%%%%%% selection%%%%%%%%%%%%%%%%%%%% 

no_of_generation = input('ENTER THE NUMBER OF REQUIRED 

GENERATION'); 

for LOOP = 1 :  no_of_generation 

    

disp('#########################GENERATION#############'); 

disp(LOOP); 

pause; 

     

%new_chromosome = simple_selection9(chromosomes); 

%new_chromosome = selection11(chromosomes); 

%new_chromosome = selection12(chromosomes); 

%new_chromosome = selection13(chromosomes); 

new_chromosome = selection14(chromosomes); 

%new_chromosome = selection15(chromosomes); 

%new_chromosome = selection16(chromosomes); 

%disp('NEW CHROMOSOME AFTER SELECTION'); 

%disp(new_chromosome); 

  

%%%%%%%%%%%%%%%%% crossover%%%%%%%%%%%%%%%%%%%%%%%% 

 

%new_chromosome = hybrid_crossoverII(new_chromosome);               

%new_chromosome = hybrid_crossover(new_chromosome);                 

%new_chromosome = uniform_crossover(new_chromosome);                
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%new_chromosome = one_point_crossover6(new_chromosome); 

new_chromosome = two_point_crossover12(new_chromosome); 

%new_chromosome = two_point_crossover13(new_chromosome); 

%disp('NEW CHROMOSOME AFTER   CROSSOVER'); 

%disp(new_chromosome); 

  

%%%%%%%%%%%%%%%%%evaluation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

new_chromosome=cycle_calculatetry(new_chromosome); 

new_chromosome=path_constraint(new_chromosome,dist_matrx)

; 

new_chromosome=selfloop_calculate6(new_chromosome); 

new_chromosome=isolate_calculate6(new_chromosome); 

new_chromosome=degree_constraint_calculate11(new_chromoso

me,degree); 

%disp('EVALUATED CHROMOSOME AFTER  CROSSOVER');  

%disp(new_chromosome); 

  

%%%%%%%%%%%%%%%%finding fittest chromosome%%%%%%%%%%%%%%% 

%%% first it calculates distance for each chromosome%%%%% 

%%%%then if found minimum than previous generation it 

%%%%replaces the previous one%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                

    

total_distance = 

distance_calculate6(new_chromosome,dist_matrx); 

%disp('DISTANCE FOR EACH CHROMOSOME'); 

%disp(total_distance); 

%disp('OLD FITTEST CHROMOSOME'); 

%disp(fittest_chromosome); 

fittest_chromosome = 

main_fittest_calculate_pc(new_chromosome,total_distance,f

ittest_chromosome); 

%disp('NEW FITTEST CHROMOSOME WITH DISTANCE '); 

%disp(fittest_chromosome); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%Mutation%%%%%%%%%%%%%%%%%%%%% 

             

%mutated_chromosome = mutation_insertion(new_chromosome); 

%mutated_chromosome = mutation_inversion(new_chromosome); 

%mutated_chromosome = mutation_swap(new_chromosome);                

%mutated_chromosome = mutation_simple9(new_chromosome); 

%mutated_chromosome = mutation_13(new_chromosome); 

mutated_chromosome = mutation_14(new_chromosome); 

%disp('NEW CHROMOSOME AFTER MUTATION '); 

%disp(mutated_chromosome); 

 

%%%%%%%%%%%%%%%%%evaluation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             

mutated_chromosome=cycle_calculatetry(mutated_chromosome); 

mutated_chromosome=path_constraint(mutated_chromosome,dist_mat

rx); 

mutated_chromosome=selfloop_calculate6(mutated_chromosome); 

mutated_chromosome=isolate_calculate6(mutated_chromosome); 

mutated_chromosome=degree_constraint_calculate11(mutated_chrom

osome,degree); 

 %disp('EVALUATED CHROMOSOME AFTER MUTATION'); 

%disp(mutated_chromosome); 

                

%%%%%%%%%%%%%%%%%finding fittest chromosome%%%%%%%%%%%%%% 

%%%first it calculates distance for each chromosome%%%%% 

%%%then if found minimum than previous generation it  

%%%replaces the previous one%%%%%%%%%%%%%%%%%%%%%%%%%% 

                

 

total_distance = 

distance_calculate6(mutated_chromosome,dist_matrx); 

%disp('DISTANCE FOR EACH CHROMOSOME'); 

%disp(total_distance); 

%disp('OLD FITTEST CHROMOSOME'); 

%disp(fittest_chromosome); 
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fittest_chromosome = 

main_fittest_calculate_pc(mutated_chromosome,total_distan

ce,fittest_chromosome); 

%disp('NEW FITTEST CHROMOSOME WITH DISTANCE '); 

%disp(fittest_chromosome); 

chromosomes=mutated_chromosome; 

%PAUSE = input('PRESS 1 TO CONTINUE....') 

end 

 

disp('FITTEST CHROMOSOME WITH DISTANCE '); 

disp(fittest_chromosome); 

  

disp('************************END*********************'); 

 

SELECTION OPERATORS 
 

%******************RANDOM SELECTION********************** 

% this function simply select the chromosome on the basis  

%of their fitness function. 

% if r is out of the range of the no. of chromosome then 

it  

%finds the position of the fittest chromosome and 

replaces  

%with that chromosome. 

 

function [new_chromosomes] = 

simple_selection9(chromosomes) 

a=size(chromosomes); 

row = a(1); 

col = a(2)-1; 

k=1; 

for i=1:row 

    r=row*round(rand()); 

    if((r == 0) || (r > row)) 

         

        for l=1:row 

            if(chromosomes(l,a(2)) == col+3) 
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                r=l; 

            end 

  

         end 

    end 

    if(r == 0) 

        r=1; 

    end 

    for j=1:col 

        new_chromosomes(k,j) = chromosomes(r,j); 

    end 

    k=k+1; 

end 

disp(new_chromosomes); 

 

return; 

end 

_________________________________________________________ 

 

%******ROULETTE WHEEL SELECTION I************************ 

% BASED ON SIMPLE ROULETTE WHELL ALGORITHM%% 

 

function [new_chromosomes] = selection11(chromosomes) 

a=size(chromosomes); 

  

%disp(chromosomes); 

 

row = a(1); 

col = a(2)-1; 

r=row*round(rand()); 

s(row,1)=0; 

temp=0; 

for i=1:row 

    temp=temp+chromosomes(i,a(2)); 

    s(i)=temp; 

end 

disp('DISP'); 

disp(s); 
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 k=1;    

 for i=1:row 

     r=rand*temp; 

     disp('r'); 

     disp(r); 

     for j=1:row 

         if(r<s(j)) 

             for t=1:col 

                 new_chromosomes(k,t)=chromosomes(j,t); 

             end 

             k=k+1; 

             break; 

         end 

     end 

      

 end 

%disp('***NEW SELECTED CHROMOSOMES*******************'); 

%disp(new_chromosomes); 

%disp('***********************************************'); 

  

return; 

end 

_________________________________________________________ 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%ROULETTE_WHEEL_SELECTIONII %%%%%%%%%%%% 

 

function [new_chromosomes] = selection12(chromosomes) 

a=size(chromosomes); 

disp('********inside selection11 Function*************'); 

disp(chromosomes); 

disp('************************************************'); 

  

row = a(1); 

col = a(2)-1; 

r=row*round(rand()); 

s(row,1)=0; 

temp=0; 



Anand Kumar (Registration No: 3893) 

 
 

188

for i=1:row 

    temp=temp+chromosomes(i,a(2)); 

end 

avg=temp/row; 

disp('avg'); 

disp(avg); 

disp('**temp**'); 

for i=1:row 

    temp=(chromosomes(i,a(2))/avg); 

    disp(temp); 

end 

temp=0; 

for i=1:row 

    temp=temp+(chromosomes(i,a(2))/avg); 

    s(i)=temp; 

end 

temp=s(i); 

disp('s'); 

disp(s); 

 k=1;    

 for i=1:row 

     r=rand*temp; 

     disp('r'); 

     disp(r); 

     for j=1:row 

         if(r<s(j)) 

             for t=1:col 

                 new_chromosomes(k,t)=chromosomes(j,t); 

             end 

             k=k+1; 

             break; 

         end 

     end 

end 

disp('***NEW SELECTED CHROMOSOMES*********************'); 

disp(new_chromosomes); 

disp('************************************************'); 

return; 
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end 

_________________________________________________________ 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

          %%%%% SELECTION BASED ON SORTING %%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

function [new_chromosomes] = selection13(chromosomes) 

a=size(chromosomes); 

  

%disp(chromosomes); 

row = a(1); 

col = a(2)-1; 

k=1;    

 t=3; 

while(k<=row) 

   for i=1:row 

     

       if(chromosomes(i,a(2)) == (a(2)+t))  

          for j=1:col 

           new_chromosomes(k,j)=chromosomes(i,j); 

          end 

          k=k+1; 

       end 

   end 

   t=t-1; 

   

end 

disp('***************NEW SELECTEDD CHROMOSOMES********'); 

%disp(new_chromosomes); 

%disp('**********************************************'); 

pause; 

return; 

end 

 

_________________________________________________________ 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%SELECTION METHOD  to select only fittest chromosome of A  

%FIXED LEVEL OF FITNESS VALUE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [new_chromosomes] = selection14(chromosomes) 

a=size(chromosomes); 

  

disp(chromosomes); 

%disp('***********************************************'); 

 

row = a(1); 

col = a(2)-1; 

k=1;    

 t=3; 

 n=1; 

while(k<=row) 

   for i=1:row 

     

       if(chromosomes(i,a(2)) == (a(2)+t))  

          for j=1:col 

           new_chromosomes(n,j)=chromosomes(i,j); 

          end 

          n=n+1; 

       end 

   end 

   if(n>row) 

      break; 

   end 

  k=k+1; 

   t=t-1; 

   if(t< (-8)) 

       t=3; 

   end 

end 

disp('****NEW SELECTED CHROMOSOMES********************'); 

disp(new_chromosomes); 

disp('************************************************'); 
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pause; 

return; 

end 

________________________________________________________ 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%SELECTION METHOD SELECTION SORT based on two random  

%position and select the best one this procedure is  

%repeated times  

  

function [new_chromosomes] = selection15(chromosomes) 

a=size(chromosomes); 

  

disp(chromosomes); 

disp('************************************************'); 

pause; 

row = a(1); 

col = a(2)-1; 

k=1;    

 t=2; 

   for i=1:row 

             

            p  = round(rand()* (a(2)-1)); 

            q  =  round(rand()* (a(2)-1)); 

             if(p == 0) 

                 p=1; 

             end 

              

             if(q == 0) 

                 q=1; 

             end 

             disp('P'); 

             disp(p); 

             disp('Q'); 

             disp(q); 

       if(p > row) 

           p = row; 

       end 
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       if(q > row) 

           q = row; 

       end 

        

       if(chromosomes(p,a(2)) >= chromosomes(q,a(2)))  

          for j=1:col 

           new_chromosomes(k,j)=chromosomes(p,j); 

          end 

          k=k+1; 

       else 

           for j=1:col 

           new_chromosomes(k,j)=chromosomes(q,j); 

          end 

          k=k+1; 

       end 

   end 

disp('*NEW SELECTED CHROMOSOMES***********************'); 

disp(new_chromosomes); 

disp('************************************************'); 

return; 

end 

 

_________________________________________________________ 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%SELECTION METHOD SELECTION SORT based on two random  

%position and select the smallest one 

%This procedure is repeated n times 

  

function [new_chromosomes] = selection16(chromosomes) 

a=size(chromosomes); 

  

disp(chromosomes); 

disp('************************************************'); 

row = a(1); 

col = a(2)-1; 

k=1;    

 t=2; 
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   for i=1:row 

             

            p  = round(rand()* (a(2)-1)); 

            q =  round(rand()* (a(2)-1)); 

             if(p == 0) 

                 p=1; 

             end 

              

             if(q == 0) 

                 q=1; 

             end 

       if(p > row) 

           p = row; 

       end 

       if(q > row) 

           q = row; 

       end 

       if(chromosomes(p,a(2)) < chromosomes(q,a(2)))  

          for j=1:col 

           new_chromosomes(k,j)=chromosomes(p,j); 

          end 

          k=k+1; 

       else 

           for j=1:col 

           new_chromosomes(k,j)=chromosomes(q,j); 

          end 

          k=k+1; 

       end 

        

   end 

    

disp('****NEW SELECTED CHROMOSOMES*******************'); 

disp(new_chromosomes); 

disp('************************************************'); 

return; 

end 

_________________________________________________________ 
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CROSSOVER OPERATORS 
 

%*****************HYBRID CROSSOVER-II*******************% 

  

  

function [chromosomes] = hybrid_crossoverII(chromosomes) 

disp(chromosomes); 

 

a=size(chromosomes); 

row = a(1); 

col = a(2); 

t=1;i=1; 

p=ceil(col.*rand()); 

q=ceil(col.*rand()); 

r=ceil(col.*rand()); 

s=ceil(col.*rand()); 

  

pos = [p,q,r,s]; 

disp (pos); 

sorted_pos =sort(pos); 

disp('SORTED POSITION'); 

disp(sorted_pos); 

p=sorted_pos(1); 

q=sorted_pos(2); 

r=sorted_pos(3); 

s=sorted_pos(4); 

disp(p); 

disp(q); 

disp(r); 

disp(s); 

pause; 

disp('begin point'); 

disp(p); 

if(p==0) 

        p=1; 

end 
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if(q==0) 

       q=1; 

end 

disp('end point'); 

disp(q); 

if(p>q) 

   p1=q; 

   p2=p; 

else 

   p1=p; 

   p2=q; 

end 

while( i<row) 

    for j=p:q 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

         

    end 

     

    for j=r:s 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

    end 

    i=i+3; 

     

     

p=ceil(col.*rand()); 

q=ceil(col.*rand()); 

r=ceil(col.*rand()); 

s=ceil(col.*rand()); 

  

pos = [p,q,r,s]; 

disp (pos); 

sorted_pos =sort(pos); 
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disp('SORTED POSITION'); 

disp(sorted_pos); 

p=sorted_pos(1); 

q=sorted_pos(2); 

r=sorted_pos(3); 

s=sorted_pos(4); 

disp(p); 

disp(q); 

disp(r); 

disp(s); 

pause; 

end 

  

%disp('%begin%%%%%%% After uniform crossover function '); 

%disp(chromosomes); 

%disp('%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'); 

  

return; 

end 

_________________________________________________________ 

 

%***************HYBRID CROSSOVER************************* 

 

function [chromosomes] = hybrid_crossover(chromosomes) 

disp(chromosomes); 

a=size(chromosomes); 

row = a(1); 

col = a(2); 

t=1;i=1; 

p=ceil(col.*rand()); 

q=ceil(col.*rand()); 

r=ceil(col.*rand()); 

s=ceil(col.*rand()); 

pos = [p,q,r,s]; 

disp (pos); 

sorted_pos =sort(pos); 

disp('SORTED POSITION'); 

disp(sorted_pos); 
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p=sorted_pos(1); 

q=sorted_pos(2); 

r=sorted_pos(3); 

s=sorted_pos(4); 

while( i<row) 

    for j=p:q 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

    

    end 

        for j=r:s 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes(i+1,j) = chromosomes((i+2),j); 

        chromosomes((i+2),j)=temp; 

    end 

    i=i+3; 

end 

disp(chromosomes); 

disp('%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'); 

 return; 

end 

_________________________________________________________  

    

% ***********UNIFORM CROSSOVER************************** 

 

function [chromosomes] = uniform_crossover(chromosomes) 

 

a=size(chromosomes); 

row = a(1); 

col = a(2); 

t=1;i=1; 

p=ceil(col.*rand()); 

q=ceil(col.*rand()); 

r=ceil(col.*rand()); 

s=ceil(col.*rand()); 
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pos = [p,q,r,s]; 

disp (pos); 

sorted_pos =sort(pos); 

disp('SORTED POSITION'); 

disp(sorted_pos); 

p=sorted_pos(1); 

q=sorted_pos(2); 

r=sorted_pos(3); 

s=sorted_pos(4); 

while( i<row) 

    for j=p:q 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

     

    for j=r:s 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

    i=i+2; 

     

end 

return; 

end 

_________________________________________________________ 

 

%***VARIABLE ONE POINT CROSSOVER************************ 

 

function [chromosomes] = 

one_point_crossover6(chromosomes) 

a=size(chromosomes); 

row = a(1); 

col = a(2); 

t=1;i=1; 

while( i<row) 
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  for j=1:t 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

    i=i+2; 

    t=t+1; 

    if(t>col) 

        t=1; 

    end 

end 

return; 

end 

_________________________________________________________ 

 

%****FIXED TWO POINT CROSSOVER*************************** 

 

function [chromosomes] = 

two_point_crossover12(chromosomes) 

a=size(chromosomes); 

row = a(1); 

col = a(2); 

t=1;i=1; 

p=round(rand()*col); 

q=round(rand()*col); 

disp('begin point'); 

disp(p); 

if(p==0) 

        p=1; 

end 

  

if(q==0) 

        q=1; 

 end 

disp('end point'); 

disp(q); 

if(p>q) 

    p1=q; 
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    p2=p; 

else 

    p1=p; 

    p2=q; 

end 

while( i<row) 

    for j=p1:p2 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

    i=i+2; 

    t=t+1; 

    if(t>col) 

        t=1; 

    end 

end 

  

return; 

end 

_________________________________________________________ 

 

%*****VARIABLE TWO POINT CROSSOVER*********************** 

 

function [chromosomes] = 

two_point_crossover13(chromosomes) 

 

a=size(chromosomes); 

row = a(1); 

col = a(2); 

i=1; 

 while( i<row) 

    p=round(rand()*col); 

    if(p==0) 

        p=1; 

    end 

q=round(rand()*col); 

 if(q==0) 
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        q=1; 

 end 

 if(p>q) 

    p1=q; 

    p2=p; 

else 

    p1=p; 

    p2=q; 

end 

disp('begin point'); 

disp(p1); 

disp('end point'); 

disp(p2); 

    for j=p1:p2 

        temp = chromosomes(i,j); 

        chromosomes(i,j) = chromosomes((i+1),j); 

        chromosomes((i+1),j)=temp; 

    end 

  

    i=i+2; 

     

end 

  

return; 

end 

_________________________________________________________ 

  

MUTATION OPERATORS 
 

%**********MUTATION INSERTION**************************** 

  

function [mutated_chromosome] = 

mutation_insertion(new_chromosome) 

a=size(new_chromosome); 

  

row = a(1); 

col = a(2)-1; 
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k=1; 

for i=1:row 

     

    p=ceil(col.*rand()); 

    q=ceil(col.*rand()); 

    pos = [p,q]; 

    sorted_pos =sort(pos); 

    p=sorted_pos(1); 

    q=sorted_pos(2); 

 disp('random position for swap'); 

 disp(p); 

 disp(q); 

     

        temp =  new_chromosome(i,q);    

        if(p ~= q) 

            x = q-1; 

          while (x >= p+1)  

          

              new_chromosome(i,x+1) = 

new_chromosome(i,x); 

              x = x-1; 

                

          end 

           new_chromosome(i,p+1) = temp; 

        end 

end 

  

for i=1:row 

    for j=1:a(2)-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

 

return; 

end 

_________________________________________________________ 
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%**************** MUTATION INVERSION********************* 

  

function [mutated_chromosome] = 

mutation_inversion(new_chromosome) 

a=size(new_chromosome); 

row = a(1); 

col = a(2)-1; 

  

k=1; 

for i=1:row 

     

    p=ceil(col.*rand()); 

    q=ceil(col.*rand()); 

    pos = [p,q]; 

    sorted_pos =sort(pos); 

    p=sorted_pos(1); 

    q=sorted_pos(2); 

 disp('random position for swap'); 

 disp(p); 

 disp(q); 

     

        for x = p : q 

         temp = new_chromosome(i,x); 

         new_chromosome(i,x) = new_chromosome(i,q); 

         new_chromosome(i,q) = temp; 

         q = q - 1; 

         if (x == q) || (x > q) 

             break; 

         end 

        end 

end 

  

for i=1:row 

    for j=1:a(2)-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 
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return; 

end 

_________________________________________________________ 

 

% ****************MUTATION SWAP*************************  

 

function [mutated_chromosome] = 

mutation_swap(new_chromosome) 

a=size(new_chromosome); 

row = a(1); 

col = a(2)-1; 

  

k=1; 

for i=1:row 

     

    p=ceil(col.*rand()); 

    q=ceil(col.*rand()); 

    pos = [p,q]; 

    sorted_pos =sort(pos); 

    p=sorted_pos(1); 

    q=sorted_pos(2); 

 disp('random position for swap'); 

 disp(p); 

 disp(q); 

         temp = new_chromosome(i,p); 

         new_chromosome(i,p) = new_chromosome(i,q); 

         new_chromosome(i,q) = temp; 

      

end 

 for i=1:row 

    for j=1:a(2)-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

return; 

end 

_________________________________________________________ 
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%MUTATIONI 

function [mutated_chromosome] = 

mutation_simple9(new_chromosome) 

a=size(new_chromosome); 

row = a(1); 

  

k=1; 

for i=1:row 

     if(new_chromosome(i,a(2)) ~= (a(2)+3)) 

         new_chromosome(i,i) = (a(2)-i); 

     end 

end 

  

for i=1:row 

    for j=1:a(2)-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

  

return; 

end 

_________________________________________________________ 

% MUTATION II  

  

function [mutated_chromosome] = 

mutation_13(new_chromosome) 

 

a=size(new_chromosome); 

row = a(1); 

k=1; 

for i=1:row 

     if(new_chromosome(i,a(2)) ~= (a(2)+2)) 

         for j=1:a(2)-1 

             if(new_chromosome(i,j) == j) 

                 if(j == a(2)-1) 

                      new_chromosome(i,j) = j-1; 

                 else 

                   new_chromosome(i,j) = j+1; 
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                 end 

                  

             end 

         end 

          

     end 

end 

  

for i=1:row 

    for j=1:a(2)-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

return; 

end 

_________________________________________________________ 

 

%%%%%%%%%%%%%%RANDOM_MUTATION%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [mutated_chromosome] = 

mutation_14(new_chromosome) 

a=size(new_chromosome); 

row = a(1); 

k=1; 

for i=1:row 

     if(new_chromosome(i,a(2)) ~= (a(2)+3)) 

          

             posi = round(rand()* (a(2)-1)); 

             val =  round(rand()* (a(2)-1)); 

             if(posi == 0) 

                 posi=1; 

             end 

              

             if(val == 0) 

                 val=1; 

             end 

              

             if((posi == val) && (posi == a(2)-1)) 

                  new_chromosome(i,posi) = val-1; 
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             else 

                  new_chromosome(i,posi) = val; 

             end            

    end 

end 

  

for i=1:row 

    for j=1:a(2)-1 

        mutated_chromosome(i,j) = new_chromosome(i,j); 

    end 

end 

return; 

end 

_________________________________________________________  

 

FITNESS FUNCTIONS 
 

%******************CYCLE CHECK FUNCTION****************** 

% This function checks the existence of cycle for each  

%chromosome. In the case of existence of cycle it 

allocate  

%0 other wise 1. 

 

function [chromosomes] = cycle_calculatetry(chromosomes) 

a=size(chromosomes); 

  

disp('INSIDE cycle'); 

disp(chromosomes); 

  

  for m = 1 : a(1) 

    k=0; t=(-1); b=1;e=5;     

    for i = 1:a(2) 

        new=0; s=i; 

        for j=1:(a(2) + 1)  

           if (new == 0) 

               check = s; 

           else 
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                check = chromosomes(m,s);           

           end 

              l=1; 

              while(l <=k ) 

                  if (p(l) == check) 

                     if (new == 0) 

                         break; 

                     end 

                     if (l>=b) 

                         if (k == (l+1)) 

                             t=-1;  

                             b=k+1; 

                             break; 

                         end 

                         if (k >(l+1)) 

                             e=0; 

                             break; 

                         end 

                     end 

                     if (l<b) 

                         t=-1;  

                         b=k+1; 

                         break; 

                     end             

                  end 

               l = l + 1; 

              end 

               if (e == 0) 

                   break; 

               end 

               if (l>k) 

                   k=k+1; 

                   p(k) = check; 

                   t = t + 1; 

               end 

               if (t == -1) 

                   break; 

               end 
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               if (new ~= 0) 

                   s = chromosomes(m,s); 

               end 

               if (new == 0) 

                   new = 1; 

               end 

        end 

         if ( e == 0) 

             break; 

         end 

    end 

if( e == 0) 

    chromosomes(m,(a(2)+1))= 0; 

else 

    chromosomes(m,(a(2)+1)) =1; 

end 

  

  end 

disp('INSIDE cycle'); 

disp(chromosomes); 

return; 

end 

_________________________________________________________ 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%THIS FUNCTION CHECKS THE PATH CONSTRAINT FOR EACH  

%CHROMOSOME ACCORDING TO AVAILABILTIY OF PATH FROM  

%DIST_MATRX IF PATH AVAILABLE FOR EACH GENE OF THE  

%CHROMOSOME THEN IT ASSIGNS 1 OTHERWISE IT ASSIGNS 0 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [chromosomes] = 

path_constraint(chromosomes,dist_matrx) 

a=size(chromosomes); 

  

disp(chromosomes); 

row=a(1); 

col=a(2); 
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for i=1:row 

    t=0; 

    for j=1:col-1 

        k=chromosomes(i,j); 

        if(dist_matrx(j,k) ~= 0) 

            t=t+1; 

        else 

            if(j==k) 

                t = t+1; 

            end 

            if(j~=k) 

               break; 

            end 

        end 

    end 

 disp('t'); 

 disp(t); 

    if(t== (col-1)) 

        chromosomes(i,col) = chromosomes(i,col) + 1; 

    end 

end 

return; 

end 

_________________________________________________________ 

 

% THIS FUNCTION CALCULATES FITNESS FOR SELF LOOP SUCH 

THAT IF COLUMN 

% POSITION NOT EQUALS TO ALLELE OF CHROMOSOME THAN IT 

ASSIGN 1 AND THEN 

% CALCULATE TOTAL NO OF 1 FOR EACH CHROMOSOME 

function [chromosomes] = selfloop_calculate6(chromosomes) 

s=size(chromosomes); 

  

for i=1:s(1) 

    fit = 0; 

    for j=1:(s(2)-1) 

        if(chromosomes(i,j) ~= j) 

            fit = fit + 1; 
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        end 

    end 

    chromosomes(i,s(2))= chromosomes(i,s(2))+ fit; 

end 

return; 

end 

_________________________________________________________ 

 

% THIS FUNCTION CALCULATES FITNESS FOR ISOLATED EDGE OR  

%ISOLATED PART OF 

% IT  ASSIGNS 1 IF NO ISOLATION OR OTHERWISE 0  

% one problem for 10 node network 

 

function [chromosomes] = isolate_calculate6(chromosomes) 

s=size(chromosomes); 

  

for i=1:s(1) 

    count = 0; 

    for j=1:(s(2) -1) 

        if(j == chromosomes(i,chromosomes(i,j))) 

            count = count + 1; 

        end 

    end 

    if ( count > 2) 

       chromosomes(i,s(2)) = chromosomes(i,s(2)) + 0; 

    else 

        chromosomes(i,s(2)) = chromosomes(i,s(2)) + 1; 

    end 

 end 

return; 

  

end 

_________________________________________________________ 

 

%THIS FUNCTION DEGREE CONSTRIANT FOR EACH NODE 

% DEGREE CONSTRAINT RANGE, DEGREE IS BETWEEN MINIMUM AND  

%MAXIMMUM IT ASSIGNS 1 TO THOSE WHO’S DEGREE CONSTRAINT 

IS  
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%EQUAL TO (2*N-2) SATISFIES OTHERWISE 0  

function [chromosomes] = 

degree_constraint_calculate11(chromosomes,degree) 

s=size(chromosomes); 

N=size(degree); 

  for i=1:s(1) 

    p=0;total_degree=0; 

    for j=1:(s(2)-1) 

         

        d=1; 

        for k=1:(s(2)-1) 

            if(chromosomes(i,k) == j) 

                 

                if(chromosomes(i,k) == k) 

                    d=d-1; 

                end 

                if(chromosomes(i,chromosomes(i,k))~= k) 

                    d=d+1; 

                end 

            end 

        end 

        if((d >=degree(1,j)) && (d<=degree(2,j))) 

            p=p+1; 

            total_degree = total_degree + d; 

        else 

            break; 

        end 

                 

    end 

     if((p==(s(2)-1)) && (total_degree == (2*N(2)-2 ))) 

         chromosomes(i,s(2)) = chromosomes(i,s(2)) + 1; 

     end 

        

  end 

return; 

end 

_________________________________________________________ 
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%THIS FUNCTION CALCULATES TOTAL DISTANCE FOR 

EACHCHROMOSOME 

function [total_distance] = 

distance_calculate6(chromosomes,dist_matrx) 

s=size(chromosomes); 

 for i=1:s(1) 

    sum=0;  

    for j=1:(s(2)-1) 

          

        k=chromosomes(i,j); 

        if(j ~= chromosomes(i,k)) 

        sum = sum + dist_matrx(j, (chromosomes(i,j))); 

        end 

         

        if(j == chromosomes(i,k)) 

            if(j > chromosomes(i,j)) 

             sum = sum + dist_matrx(j, 

(chromosomes(i,j))); 

            end 

        end 

      end 

    total_distance(i) = sum; 

 end 

return; 

end 

_________________________________________________________ 

 

% THIS FUNCTION finds the fittest chromosome with least 

%distance 

function [fittest_chromosome] = 

fittest_calculate_pc(chromosomes,total_distance) 

s=size(chromosomes); 

N = s(2)-1; 

t=0; 

posi=0; 

for i=1:s(1) 

     

    if(chromosomes(i,s(2)) == (N+4)) 
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       if (t==0) 

           posi = i; 

           distance1 = total_distance(i); 

           t=1; 

       end 

       if(t==1) 

           if(total_distance(i)<distance1) 

              posi = i; 

              distance1 = total_distance(i); 

           end 

       end 

    end 

end 

  

if (posi ~= 0) 

    for j=1:N 

         fittest_chromosome(j) = chromosomes(posi,j); 

    end 

  

fittest_chromosome(N+1) = distance1; 

end 

  

if(posi == 0) 

    fittest_chromosome = 0; 

end 

return; 

  

end 

_________________________________________________________ 

 

% THIS FUNCTION CALCULATES TOTAL DISTANCE FOR EACH  

%CHROMOSOME 

function [fittest_chromosome] = 

main_fittest_calculate_pc(chromosomes,total_distance,fitt

est_chromosome) 

s=size(chromosomes); 

N = s(2)-1; 

t=0; 
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posi=0; 

distance = 0; 

for i=1:s(1) 

     

    if(chromosomes(i,s(2)) == (N+4)) 

       if (t==0) 

           posi = i; 

           distance = total_distance(i); 

           t=1; 

       end 

       if(t==1) 

           if(total_distance(i)<distance) 

              posi = i; 

              distance = total_distance(i); 

           end 

       end 

    end 

end 

if(distance ~= 0) 

    if(fittest_chromosome == 0) 

        fittest_chromosome = chromosomes(posi,:); 

        fittest_chromosome(N+1) = distance; 

        pause; 

    end 

   if(distance<fittest_chromosome(N+1)) 

   for j=1:N 

        fittest_chromosome(j) = chromosomes(posi,j); 

   end 

fittest_chromosome(N+1) = distance;  

disp('found'); 

pause; 

   end 

end 

return; 

end 

  

_________________________________________________________ 
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CHAPTER 7 

Genetic Algorithm approach to 
Solve Shortest Path and Travelling 

Salesman Problem 
 
  
 

Shortest Path, Traveling Salesman and Hamiltonian Cycle are the other network 

design problem. These problems are very common to back bone network design 

problem. In all these three problems, the main difference is the degree of the node 

which is strictly two. Further, these three problems are very similar with each other. 

In the case of Shortest Path and Traveling salesman problem, a Hamiltonian Cycle is 

checked in the possible solution. Due to this similarity, these three problems are also 

considered in this research work. Shortest Path is considered in the terms of decision 

making.   

This research work considers the problem for selecting a shortest route to deliver 

couriers to their destination address. The shortest route is defined as a route starts 

from the courier office to visit a number of destinations and at last returns to its source 

address. It has been explored the use of genetic algorithm where possible solutions are 

improved generation by generation and then there is more probability to find the exact 

solution. Fitness function is the backbone of the concept of genetic algorithm which 

directly affects the performance; since this is NP problem and traditional heuristics 

have had only limited success in solving small to mid size problems.  
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7.1 Shortest Route Problem Presentation 

Given a connected, undirected graph G with n nodes, a least cost Hamiltonian circuit 

H is a sub graph of a G that connects all of G’s nodes and contains one cycle. In this 

graph every edge (We, j) is associated with a numerical costs (distance) cij.  A shortest 

route Hamiltonian circuit is the graph of the smallest possible total distance traveled  

C = Σ cij  

Where (i, j). ∈  H 

The Shortest route Courier delivery problem is represented with the help of Fig 1. 

Where each small circles represents a location and the magnified circles are those 

location where the couriers are to deliver. The locations are 13, 20, 34, 49, 57, 63, 73, 

84, 92 and 10.  The distance and type of route between two locations has been shown 

in Table-1 and Table-2 respectively.  

 

 
 

Figure 7.1. Locations to deliver courier 
 

These locations are represented as a node of an undirected graph and it is represented 

in the form of an adjacency matrix in Table –7.1.This table contains the distance 

between two locations.  
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TABLE -7.1 

ADJACENCY MATRIX OF THE GRAPH 

 

 

 

 

 

 

 

 

In this table, non zero numbers represent the distance between two locations. Zero (0) 

represents no path between two locations and strikethrough numbers represent the 

path constraint between two locations due to sudden change in route or due to 

emergency or heavy traffic load.  Table-7.2 is used here to show the type of route 

between two locations.  

TABLE -7.2 

 TYPES OF ROUTE 

 13 20 34 49 57 63 73 84 92 10 

13 * D 0 S D S D D S H 

20 D * H S S 0 0 S H D 

34 0 H * 0 S 0 S D D 0 

49 S S 0 * H D H S D 0 

57 D S S H * 0 S 0 S D 

63 S 0 0 D 0 * S S S D 

73 D 0 S H S S * H H S 

84 D S D S 0 S H * D S 

92 S H D D S S H D * D 

10 H D 0 0 D D S S D * 

 

 13 20 34 49 57 63 73 84 92 10 
13 * 5 0 8 17 12 6 21 30 25 
20 5 * 4 7 15 0 0 23 31 24 
34 0 4 * 0 7 0 12 15 17 0 
49 8 7 0 * 6 4 9 13 15 0 
57 17 15 7 6 * 0 13 0 7 4 
63 12 0 0 4 0 * 5 5 7 4 
73 6 0 12 9 13 5 * 8 12 10 
84 21 23 15 13 0 5 8 * 7 6 
92 30 31 17 15 7 7 12 7 * 3 
10 25 24 0 0 4 4 10 6 3 * 
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This table contains three types of route:  Heavy, Smooth and Difficult. These three 

types represent three speed ranges which are used to calculate the time between two 

locations. Table -7.3 represents the behaviour of three types of route- 

 
TABLE -7.3 

 BEHAVIOUR OF EACH TYPES OF ROUTE 

Type Description Speed 
Range 
(KM/H) 

Average 
Speed 
(KM/H) 

H Heavy 
Traffic 

10-30 20 

D Difficult 30-50 35 
S Smooth 50-70 60 

 
7.1.1 Initialisation of parent population 

 

Parent solutions are generated randomly with the help of a function. The function has 

the constraint that an allele of each chromosome must not be repeated in that 

chromosome. It is called parent population. Each chromosome is the combination of 

ten numbers (allele). Each chromosome represents a Courier delivery tour 

(Hamiltonian cycle)   [3] where an each allele represents itself as a location and a path 

between location and its fixed position. All these Locations are numbered in a 

sequence. 1, 2, 3…..10.where 1 represent location 13, 2 represents 20 and so on.  

 

TABLE -7.4 

 LOCATION CONNECTION 

Location 1 2 3 4 5 6 7 8 9 10 

chromosome    2 3 5     7 10 1 6 4 8 9 
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7.1.2 Evaluation 
 
Evaluation is based on fitness function and total minimum distance travelled in each 

tour. All these tours are evaluated with fitness functions. The tour represented by each 

chromosome, may be illegal due to four reasons- 

1) Self Loop 

2) Violation of degree constraint or missing node 

3) Hamiltonian Cycle  

4) Isolated edge or path. 

 

7.1.3 Fitness function 
 

There are four reasons for the Illegality of the tour; therefore four Fitness functions 

have been developed here to check the fitness. 1 mark is assigned to pass each fitness 

function, while 0 marks are assigned in the case of failure. Chromosome is 

implemented in the form of array of size [10], where array index shows the fixed 

position and its value is an allele of generated chromosome. The representation of 

chromosome is as following 

Chromo [1] = 2;Chromo [2] = 3;Chromo [3] = 5; 

Chromo [4] = 7;Chromo [5] = 10;Chromo [6] = 1; 

Chromo [7] = 6;Chromo [8] = 4;Chromo [9] = 8; 

Chromo [10] = 9; 

 

7.1.3.1 Self Loop 
 
For the undirected connected graph                      
                            G = (V, E) 
Where V = {v1, v2……vn}  
E = {e1, e2…….en-1}, each edge ek is associated with vertices (vi ,  vj)   
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                                        (vi,  vj)      ∈  ek  
If ( We == j) then it is called self loop for vertex v. 
 
Function self_loop() 
Begin 

 Set WE = 1 and N = 10 (where N is total no of location) 

      for WE = 1 to N by 1 do 

                   If chromo[WE] == WE 

                   Print:  “ self loop”, Terminate fr 

           endif  

      endfor 

 End.         

 
 
7.1.3.2 Degree Constraint (missing node or repeated node) 
 

Since each location has to be visited once, the location will be connected with two 

other cities. In-degree and out-degree for each location will be 1. If an allele of a 

chromosome is not repeated then it ensures that there each location is connected with 

two other locations. 

                           d(vi) == 2;  where d denotes the degree of vertex We. 

 

Function degree_constraint() 
Begin 

 Set WE = 1 and N = 10 (where N is total no of location) 

      for WE = 1 to N by 1 do 

          

            Set C = 0 

               for J = 1 to N by 1 do 

                  If chromo[WE] == WE 

                   Increment C by 1 

                    terminate the inner loop 

                  endif 

               endfor 
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                   if (C = 0) 

                        print: “missing node” 

                        terminate the outer loop 

                   endif                        

       endfor 

   End. 

 
7.1.3.3  Isolated edge 
 

If the pair of locus (array index) and allele (value) is same with other locus and allele 

in the same chromosome, then the edge will be isolated. 

For any generated chromosome, pair of its locus and allele is defined as  

                                  Chromo( We ← v)  

Where We is locus and v is the allele at this locus and its value vary from 

                   1>= We <= N   and 1>= v <= N 

where N is the total no of node. 

Chromo( We ← v) = Chromo( j ← z) 

If ( We = z) and (v = j) then edge eiv  or  ejz   is isolated. 

 

Function isolated_edge() 
Begin 

  Set WE = 1 and N = 10 (where N is total no of location) 

      for WE = 1 to N by 1 do 

           Set  v = chromo [WE] 

                

              If chromo[v] == WE 

                        Print :  “ isolated edge” 

                       Terminate from the loop 

               endif  

        endfor 

 End.   

_________________________________________________________ 
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7.1.3.4 Hamiltonian Cycle 
 

For each chromosome Chromo[N] there must be a Hamiltonian cycle. , Two vectors 

Chromo and A of size N are considered and initialized with value null. 

 For a chromosome Chromo [N]  

   

Function Hamiltonian_cycle() 
 
Begin 

Set   j =1, p = 1 , t = 1 and N = 10 

 (where N is total no of location) 

    for WE = 1 to N-1 by 1 do 

                If (chromo[j] == 1) 

                   Terminate the loop 

             Endif 

                       Set j = chromo[j] 

             If ( p > 1) 

                   For l = 1 to p-1 by 1 do 

                          If (a[l] == j) 

                                Set t = 0 

                                 Terminate the loop 

                           Endif 

                    Endfor 

             Endif 

    

           If( t == 0) 

             Terminate the loop 

          endif  

          Set A[p] = j 
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          Increment p by 1 

   Endfor 

 

   If ( We < 10) 

       Print : NO Hamiltonian Cycle 

  Else 

       Print : Hamiltonian Cycle exist 

End 

_________________________________________________________ 

7.1.4 Result of fitness function. 
 
After applying the fitness function it is found that all these tours are legal and have 

some cost which is in the form of total distance traveled. For passing each fitness 

function, 1 point will be given and in the case of failure 0. Following fitness point and 

distance earned by each chromosome (TABLE -7.5) 

   
TABLE -7.5 

FITNESS OF PARENT POPULATION 

Chromosome Fitness Distance 
a 4 69 
b 4 87 
c 4 70 
d 4 62 
e 4 157 

 
Selection 

In genetic algorithm fit solution are likely to survive and bad solution are likely to die 

off.  So some of the best fit chromosomes are selected from parent population 

according to some selection criteria (e.g. Roulette wheel selection). Simply   

maximum point and minimum distance criteria is considered here. Selected 

chromosomes are a, b, c, and d. 
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Crossover/Recombination 

Selected solutions are used for crossover. One point cross over is considered. 

Mutation 

It is the process to change the value of an allele of solution with some small 

probability value e.g. 1% Motivation is to explore new point in the solution space.   A 

new concept is approached to mutate all those allele which are repeated a 

chromosome and it will be mutated (replaced) with the missing value in low to high 

order of the missing value.                       

Missing values (a1, a2, a3……..an) 

                 Where a1<a2<a3…………<an 

Repeated allele (x1, y1, z1……x1…..y1……..N) 

Replace x1 with a1 and y1 with a2, where x1<y1. 

                           Since there are no repetition of an allele in chromosome x and y, no 

any allele will be replaced while chromosome p and q will be mutated with their 

missing values.  

For chromosome p, missing values are 4 and 10 and repeated alleles are 7 and 9 

which will be replaced with 4 and 10 respectively. Similarly chromosome q will be 

mutated. 

 
Evaluation of child population 

After applying the fitness function, it is found the following fitness value for each of 

the child population 

TABLE -7.6 

FITNESS OF CHILD POPULATION  

Chromosome Fitness Distance 
x 4 54 
y 4 102 
p 2 -- 
q 0 -- 

 



Network Design Using Genetic Algorithm 
 
 

 
 

227

TABLE -7.7 

POSSIBLE PATH  

Type(km) Path 
No. Distance(km) Time(hour) H D S 

1.  69 1.8 13 19 37 
2.  87 2.85 35 20 32 
3.  70 1.7 04 34 32 
4.  62 1.6 12 15 35 
5.  157 3.55 00 79 78 
6.  54 1.67 13 29 12 
7.  102 3.78 35 10 57 

 
On the basis of Table-6, if the selection criteria of the path is minimum time and 
driver’s comfort, Path No. 2 is the best recommended option. If this Path No 2 is 
selected, its detail is shown in Figure-7.2 Table-7.8.   
 

TABLE -7.8 

SELECTED PATH DESCRIPTION  

Distance 
Type 

Distance 
(km) 

Average 
speed(km/h)

Time 
(hour)

Total 
time 

Difficult 15 35 0.42 
Heavy 
Traffic 12 20 0.6 

Smooth 35 60 0.58 

1.60 
hr 

 
 

 
Figure 7.2. Selected Path No 2. 

So selected path is number 2 with the total distance covered is 62 Km.  
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CHAPTER 8 

Conclusion and Future Scope 
 
 

 

Network Design Problem is an NP-hard combinatorial optimization problem. This 

thesis proposes Genetic Algorithm approach to solve this network design problem. It 

has been shown that, traditional methods are not capable to design the network 

required by the time. Traditional heuristics have the limitations with the possible 

constraints. The proposed genetic algorithm approach can provide the good results 

with the required constraints. For the network design problems, the aim of this thesis 

was to develop tools that find feasible high quality solutions of practical relevance 

within reasonable cost. To solve this problem all the possible genetic operators are 

developed. The size of network is considered from 10 to 1000 nodes. Researchers 

have tried to solve this problem but only up to mid size of network usually 200-300 

nodes. In this research work network, up to 1000 node is considered and solution is 

derived which shows the robustness of this proposed genetic algorithm method. 

Various required constraints are imposed on the network which is the requirement of 

the current network. Degree constraint is one of major constraint and so far, no 

efficient method of finding an arbitrary degree constraint network has been developed. 

This thesis proposes a robust network design method which can derive the good 

solution for bigger size of network with the possible degree constraint. For the degree 

constraint an empirical relationship is derived on the basis of experimental data. In 

this research work various fitness functions have been developed. One of the fitness 

function is cycle check which checks the existence of the cycle in any undirected 
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graph of any size. Various selection functions (7), crossover operators (6) and 

mutation operators (6) are developed and experimented with various size of network. 

In this research work total 546 different cases are considered for 15 different size of 

network from 10 to 1000 size of nodes. Further traveling salesman problem and 

shortest path problem are considered which are the special case of degree constrained 

spanning tree problem. For the shortest path problem various functions have been 

developed and experimented, and it has been shown that how does it help in decision 

making. For the traveling sales man problem, Hamiltonian cycle function is 

developed.  

These all are the network design problems which belong to the NP-hard category. One 

of the objective of this research work is to show that genetic algorithm is an 

alternative solution for this NP hard problem where conventional deterministic 

methods are not able to provide the optimal solution. The proposed method is a robust 

method which finds the solution for almost any size of network (1000 node) for any 

possible network constraint. Any new constraint required by the network can be easily 

added with out changing the other functions. The proposed method also provides 

multiple parallel solutions which helps in decision making. Last but not least, the 

proposed network design method based on genetic algorithm has potential to achieve 

better results for any size of network. Altogether, these are some interesting research 

challenges for the near future. 

The research work can be extended for different hybrid selection, crossover and 

mutation operators. The same problem can be considered for the reliable network 

where each node must have at least to connection. The same research work can be 

applied for directed graphs also. The proposed approach can be applied for various 

advanced network models like logistic network, task scheduling models, container 
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terminal network model, vehicle navigation routing models etc. The same approach 

can also be used for allocation of frequencies in cells of cellular network. 
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