484 research outputs found

    MPSoCBench : um framework para avaliação de ferramentas e metodologias para sistemas multiprocessados em chip

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip (MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em simuladores, antes de definir os últimos detalhes da arquitetura. No entanto, a simulação só é eficiente quando utiliza ferramentas de modelagem que suportem a descrição do comportamento do sistema em um elevado nível de abstração. A escassez de plataformas virtuais de MPSoCs que integrem hardware e software escaláveis nos motivou a desenvolver o MPSoCBench, que consiste de um conjunto escalável de MPSoCs incluindo quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em plataformas com 1, 2, 4, 8, 16, 32 e 64 núcleos, cross-compiladores, IPs, interconexões, 17 aplicações paralelas e estimativa de consumo de energia para os principais componentes (processadores, roteadores, memória principal e caches). Uma importante demanda em projetos MPSoC é atender às restrições de consumo de energia o mais cedo possível. Considerando que o desempenho do processador está diretamente relacionado ao consumo, há um crescente interesse em explorar o trade-off entre consumo de energia e desempenho, tendo em conta o domínio da aplicação alvo. Técnicas de escalabilidade dinâmica de freqüência e voltagem fundamentam-se em gerenciar o nível de tensão e frequência da CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a eficiência energética e desempenho, foram adicionados recursos ao MPSoCBench, visando explorar escalabilidade dinâmica de voltaegem e frequência (DVFS) e foram validados três mecanismos com base na estimativa dinâmica de energia e taxa de uso de CPUAbstract: Recent design methodologies and tools aim at enhancing the design productivity by providing a software development platform before the definition of the final Multiprocessor System on Chip (MPSoC) architecture details. However, simulation can only be efficiently performed when using a modeling and simulation engine that supports system behavior description at a high abstraction level. The lack of MPSoC virtual platform prototyping integrating both scalable hardware and software in order to create and evaluate new methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MPSoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17 parallel version of software from well-known benchmarks, and power consumption estimation for main components (processors, routers, memory, and caches). An important demand in MPSoC designs is the addressing of energy consumption constraints as early as possible. Whereas processor performance comes with a high power cost, there is an increasing interest in exploring the trade-off between power and performance, taking into account the target application domain. Dynamic Voltage and Frequency Scaling techniques adaptively scale the voltage and frequency levels of the CPU allowing it to reach just enough performance to process the system workload while meeting throughput constraints, and thereby, reducing the energy consumption. To explore this wide design space for energy efficiency and performance, both for hardware and software components, we provided MPSoCBench features to explore dynamic voltage and frequency scalability (DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rateDoutoradoCiência da ComputaçãoDoutora em Ciência da Computaçã

    Simulating Execution Time and Power Consumption of Real-Time Tasks on Embedded Platforms

    Get PDF
    In this paper, we present PARTSim, an open-source power/thermal-aware simulator for embedded real-time systems. This tool is a fork of the well-known RTSim simulator, which can simulate the timing behavior of a set of real-time tasks with various characteristics when running on a multi-processor platform in presence of a number of real-time scheduling policies. PARTSim extends the functionality of RTSim by introducing support for power-aware embedded platforms exhibiting frequency scaling and specific architectural patterns like the ARM big.LITTLE and DynamIQ ones. Experimental results that compare simulated data against execution profiles collected on real platforms show a simulation error under 10 % for both execution time and power consumption at 90th percentile when simulating the effects of DVFS

    On energy consumption of switch-centric data center networks

    Get PDF
    Data center network (DCN) is the core of cloud computing and accounts for 40% energy spend when compared to cooling system, power distribution and conversion of the whole data center (DC) facility. It is essential to reduce the energy consumption of DCN to esnure energy-efficient (green) data center can be achieved. An analysis of DC performance and efficiency emphasizing the effect of bandwidth provisioning and throughput on energy proportionality of two most common switch-centric DCN topologies: three-tier (3T) and fat tree (FT) based on the amount of actual energy that is turned into computing power are presented. Energy consumption of switch-centric DCNs by realistic simulations is analyzed using GreenCloud simulator. Power related metrics were derived and adapted for the information technology equipment (ITE) processes within the DCN. These metrics are acknowledged as subset of the major metrics of power usage effectiveness (PUE) and data center infrastructure efficiency (DCIE), known to DCs. This study suggests that despite in overall FT consumes more energy, it spends less energy for transmission of a single bit of information, outperforming 3T

    Energy Saving and Virtualization Technologies in Switching

    Get PDF
    Switching is the key functionality for many devices like electronic Router and Switch, optical Router, Network on Chips (NoCs) and so on. Basically, switching is responsible for moving data unit from one port/location to another (or multiple) port(s)/location(s). In past years, the high capacity, low delay were the main concerns when designing high-end switching unit. As new demands, requests and technologies emerge, flexibility and low power cost switching design become to weight the same as throughput and delay. On one hand, highly flexible (i.e, programming ability) switching can cope with variable needs stem from new applications (i.e, VoIP) and popular user behavior (i.e, p2p downloading); on the other hand, reduce the energy and power dissipation for switching could not only save bills and build echo system but also expand components life time. Many research efforts have been devoted to increase switching flexibility and reduce its power cost. In this thesis work, we consider to exploit virtualization as the main technique to build flexible software router in the first part, then in the second part we draw our attention on energy saving in NoC (i.e, a switching fabric designed to handle the on chip data transmission) and software router. In the first part of the thesis, we consider the virtualization inside Software Routers (SRs). SR, i.e, routers running in commodity Personal Computers (PCs), become an appealing solution compared to traditional Proprietary Routing Devices (PRD) for various reasons such as cost (the multi-vendor hardware used by SRs can be cheap, while the equipment needed by PRDs is more expensive and their training cost is higher), openness (SRs can make use of a large number of open source networking applications, while PRDs are more closed) and flexibility. The forwarding performance provided by SRs has been an obstacle to their deployment in real networks. For this reason, we proposed to aggregate multiple routing units that form an powerful SR known as the Multistage Software Router (MSR) to overcome the performance limitation for a single SR. Our results show that the throughput can increase almost linearly as the number of the internal routing devices. But some other features related to flexibility (such as power saving, programmability, router migration or easy management) have been investigated less than performance previously. We noticed that virtualization techniques become reality thanks to the quick development of the PC architectures, which are now able to easily support several logical PCs running in parallel on the same hardware. Virtualization could provide many flexible features like hardware and software decoupling, encapsulation of virtual machine state, failure recovery and security, to name a few. Virtualization permits to build multiple SRs inside one physical host and a multistage architecture exploiting only logical devices. By doing so, physical resources can be used in a more efficient way, energy savings features (switching on and off device when needed) can be introduced and logical resources could be rented on-demand instead of being owned. Since virtualization techniques are still difficult to deploy, several challenges need to be faced when trying to integrate them into routers. The main aim of the first part in this thesis is to find out the feasibility of the virtualization approach, to build and test virtualized SR (VSR), to implement the MSR exploiting logical, i.e. virtualized, resources, to analyze virtualized routing performance and to propose improvement techniques to VSR and virtual MSR (VMSR). More specifically, we considered different virtualization solutions like VMware, XEN, KVM to build VSR and VMSR, being VMware a closed source solution but with higher performance and XEN/KVM open source solutions. Firstly we built and tested each single component of our multistage architecture (i.e, back-end router, load balancer )inside the virtual infrastructure, then and we extended the performance experiments with more complex scenarios like multiple Back-end Router (BR) or Load Balancer (LB) which cooperate to route packets. Our results show that virtualization could introduce 40~\% performance penalty compare with the hardware only solution. Keep the performance limitation in mind, we developed the whole VMSR and we obtained low throughput with 64B packet flow as expected. To increase the VMSR throughput, two directions could be considered, the first one is to improve the single component ( i.e, VSR) performance and the other is to work from the topology (i.e, best allocation of the VMs into the hardware ) point of view. For the first method, we considered to tune the VSR inside the KVM and we studied closely such as Linux driver, scheduler, interconnect methodology which could impact the performance significantly with proper configuration; then we proposed two ways for the VMs allocation into physical servers to enhance the VMSR performance. Our results show that with good tuning and allocation of VMs, we could minimize the virtualization penalty and get reasonable throughput for running SRs inside virtual infrastructure and add flexibility functionalities into SRs easily. In the second part of the thesis, we consider the energy efficient switching design problem and we focus on two main architecture, the NoC and MSR. As many research works suggest, the energy cost in the Communication Technologies ( ICT ) is constantly increasing. Among the main ICT sectors, a large portion of the energy consumption is contributed by the telecommunication infrastructure and their devices, i.e, router, switch, cell phone, ip TV settle box, storage home gateway etc. More in detail, the linecards, links, System on Chip (SoC) including the transmitter/receiver on these variate devices are the main power consuming units. We firstly present the work on the power reduction of the data transmission in SoC, which is carried out by the NoC. NoC is an approach to design the communication subsystem between different Processing Units (PEs) in a SoC. PEs could be different elements such as CPU, memory, digital signal/analog signal processor etc. Different PEs performs specific tasks depending on the applications running on the chip. Different tasks need to exchange data information among each other, thus flits ( chopped packet with limited header information ) are generated by PEs. The flits are injected into the NoC by the proper interface and routed until reach the destination PEs. For the whole procedure, the NoC behaves as a packet switch network. Studies show that in general the information processing in the PEs only consume 60~\% energy while the remaining 40~\% are consumed by the NoC. More importantly, as the current network designing principle, the NoC capacity is devised to handle the peak load. This is a clear sign for energy saving when the network load is low. In our work, we considered to exploit Dynamic Voltage and Frequency Scaling (DVFS) technique, which can jointly decrease or increase the system voltage and frequency when necessary, i.e, decrease the voltage and frequency at low load scenario to save energy and reduce power dissipation. More precisely, we studied two different NoC architectures for energy saving, namely single plane chip and multi-plane chip architecture. In both cases we have a very strict constraint to be that all the links and transmitter/receivers on the same plane work at the same frequency/voltage to avoid synchronization problem. This is the main difference with many existing works in the literature which usually assume different links can work at different frequency, that is hard to be implemented in reality. For the single plane NoC, we exploited different routing schemas combined with DVFS to reduce the power for the whole chip. Our results haven been compared with the optimal value obtained by modeling the power saving formally as a quadratic programming problem. Results suggest that just by using simple load balancing routing algorithm, we can save considerable energy for the single chip NoC architecture. Furthermore, we noticed that in the single plane NoC architecture, the bottleneck link could limit the DVFS effectiveness. Then we discovered that multiplane NoC architecture is fairly easy to be implemented and it could help with the energy saving. Thus we focus on the multiplane architecture and we found out that DVFS could be more efficient when we concentrate more traffic into one plane and send the remaining flows to other planes. We compared load concentration and load balancing with different power modeling and all simulation results show that load concentration is better compared with load balancing for multiplan NoC architecture. Finally, we also present one of the the energy efficient MSR design technique, which permits the MSR to follow the day-night traffic pattern more efficiently with our on-line energy saving algorithm

    Approaches to multiprocessor error recovery using an on-chip interconnect subsystem

    Get PDF
    For future multicores, a dedicated interconnect subsystem for on-chip monitors was found to be highly beneficial in terms of scalability, performance and area. In this thesis, such a monitor network (MNoC) is used for multicores to support selective error identification and recovery and maintain target chip reliability in the context of dynamic voltage and frequency scaling (DVFS). A selective shared memory multiprocessor recovery is performed using MNoC in which, when an error is detected, only the group of processors sharing an application with the affected processors are recovered. Although the use of DVFS in contemporary multicores provides significant protection from unpredictable thermal events, a potential side effect can be an increased processor exposure to soft errors. To address this issue, a flexible fault prevention and recovery mechanism has been developed to selectively enable a small amount of per-core dual modular redundancy (DMR) in response to increased vulnerability, as measured by the processor architectural vulnerability factor (AVF). Our new algorithm for DMR deployment aims to provide a stable effective soft error rate (SER) by using DMR in response to DVFS caused by thermal events. The algorithm is implemented in real-time on the multicore using MNoC and controller which evaluates thermal information and multicore performance statistics in addition to error information. DVFS experiments with a multicore simulator using standard benchmarks show an average 6% improvement in overall power consumption and a stable SER by using selective DMR versus continuous DMR deployment

    Dynamic Lifetime Reliability and Energy Management for Network-on-Chip based Chip Multiprocessors

    Get PDF
    In this dissertation, we study dynamic reliability management (DRM) and dynamic energy management (DEM) techniques for network-on-chip (NoC) based chip multiprocessors (CMPs). In the first part, the proposed DRM algorithm takes both the computational and the communication components of the CMP into consideration and combines thread migration and dynamic voltage and frequency scaling (DVFS) as the two primary techniques to change the CMP operation. The goal is to increase the lifetime reliability of the overall system to the desired target with minimal performance degradation. The simulation results on a variety of benchmarks on 16 and 64 core NoC based CMP architectures demonstrate that lifetime reliability can be improved by 100% for an average performance penalty of 7.7% and 8.7% for the two CMP architectures. In the second part of this dissertation, we first propose novel algorithms that employ Kalman filtering and long short term memory (LSTM) for workload prediction. These predictions are then used as the basis on which voltage/frequency (V/F) pairs are selected for each core by an effective dynamic voltage and frequency scaling algorithm whose objective is to reduce energy consumption but without degrading performance beyond the user set threshold. Secondly, we investigate the use of deep neural network (DNN) models for energy optimization under performance constraints in CMPs. The proposed algorithm is implemented in three phases. The first phase collects the training data by employing Kalman filtering for workload prediction and an efficient heuristic algorithm based on DVFS. The second phase represents the training process of the DNN model and in the last phase, the DNN model is used to directly identify V/F pairs that can achieve lower energy consumption without performance degradation beyond the acceptable threshold set by the user. Simulation results on 16 and 64 core NoC based architectures demonstrate that the proposed approach can achieve up to 55% energy reduction for 10% performance degradation constraints. Simulation experiments compare the proposed algorithm against existing approaches based on reinforcement learning and Kalman filtering and show that the proposed DNN technique provides average improvements in energy-delay-product (EDP) of 6.3% and 6% for the 16 core architecture and of 7.4% and 5.5% for the 64 core architecture
    corecore