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Technology scaling has enabled the number of cores within a System on Chip (SoC) to 

increase significantly. Globally Asynchronous Locally Synchronous (GALS) systems using Dynamic 

Voltage and Frequency Scaling (DVFS) operate each of these cores on distinct and dynamic clock 

domains. The main communication method between these cores is increasingly more likely to 

be a Network-on-Chip (NoC). Typically, the interfaces between these clock domains experience 

multi-cycle synchronization latencies due to their use of “brute-force” synchronizers. This thesis 

aims to improve the performance of NoCs and thereby SoCs as a whole by reducing this 

synchronization latency. 

First, a survey of NoC improvement techniques is presented. One such improvement 

technique: a multi-layer NoC, has been successfully simulated. Given how one of the most 

commonly used techniques is DVFS, a thorough analysis and simulation of brute-force 

synchronizer circuits in both current and future process technologies is presented. 

Unfortunately, a multi-cycle latency is unavoidable when using brute-force synchronizers, so 

predictive synchronizers which require only a single cycle of latency have been proposed.  
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To demonstrate the impact of these predictive synchronizer circuits at a high level, 

multi-core system simulations incorporating these circuits have been completed. Multiple forms 

of GALS NoC configurations have been simulated, including multi-synchronous, NoC-

synchronous, and single-synchronizer. Speedup on the SPLASH benchmark suite was measured 

to directly quantify the performance benefit of predictive synchronizers in a full system. 

Additionally, Mean Time Between Failures (MTBF) has been calculated for each NoC 

synchronizer configuration to determine the reliability benefit possible when using predictive 

synchronizers.  
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CHAPTER 1 

BACKGROUND 

Designers of modern computing devices are constantly challenged to create new 

systems with higher performance and lower power. The demand for power reduction has 

contributed to a plateau in clock rates, but Moore’s Law has ensured that every year will offer 

more transistors on-chip than the last. So, designers have chosen to use these extra transistors 

for additional processors on-chip, relying on parallelism for increased performance. This has 

resulted in the need for more complex on-chip communication. Networks-on-Chip (NoCs) 

offered the ability to route packets instead of wires, allowing them to scale better than the bus 

structures previously used for on-chip communication. When cores and NoCs use DVFS to save 

power, cores and routers operate with different frequency clocks, requiring synchronizers to 

reduce the chance of metastability. Brute-force synchronizers present a tradeoff between 

communication latency and reliability, resulting in additional NoC latency. Delayed NoC 

communication hurts overall system performance which is dependent upon these global 

communications. 

 Dynamic Voltage and Frequency Scaling (DVFS) is an effective and commonly used 

method of saving power by tuning individual processor cores to optimal operating conditions. 

Since each core is tuned independently, Systems-on-Chip (SoCs) typically have cores operating 

at many different voltages and frequencies at one time. Level shifters are an effective and low-

impact method of communicating between voltage domains, but clock domain interfaces 

containing synchronizers are needed for communication between frequency domains. 

 During synthesis of a design, much care is taken to ensure that data will always be 

aligned with the system’s clock. If the data comes well before the clock, then the clock speed 
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could be increased, and if the data comes after the clock then the data is missed entirely. If the 

data comes at the same time as the clock (within the flip-flop’s sensitive region) then the flip-

flop can be thrown into a state that is neither high nor low: metastable. When communications 

flow between systems with entirely different clocks, there is significant risk for metastability to 

occur.  

1.1 Networks-on-Chip 

Before the concept of a network-on-chip (NoC) was proposed, systems-on-chips (SoCs) 

relied on complex bus structures to connect processors to memory and I/O. Moore's Law has 

continued since that time; however, clock rates have stagnated due to power issues. The need 

for more processing power (without clock speed increases) and the ability to add more 

transistors has led to an increase in the number of processors on chip. The old bus structures 

were improved to account for these multi-processor system-on-chips, but eventually the bus 

designs could not sustain the scaling and complexity of the necessary on-chip interconnect. The 

NoC emerged as a solution to this problem by "routing packets instead of wires" and has 

increased in popularity since then [1]. This trend has led to companies such as Arteris, Sonics, 

Blendics, and iNoCs who provide NoC designs and IP for other SoC companies. Many companies 

are beginning to choose pre-designed NoC IP solutions over their own designs. 

NoC research is primarily on traffic management, low-power interconnect, and clock 

management. NoC traffic management involves research into topics like cache coherence and 

compression. Low-power interconnect includes low-swing, three dimensional, nanophotonic, 

and wireless interconnect. Clock management schemes include asynchronous communication as 

well as dynamic voltage and frequency scaling. 
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Figure 1: Mesh Network-on-Chip 

1.1.1 Traffic Management 

In most SoCs the bulk of NoC traffic is for cache coherence. For this reason, design and 

management of the cache is critical and must be considered when distributing the cache among 

CPU and GPU cores [2]. Methods have been developed to reduce the power used in cache 

hierarchy management using both data locality and knowledge of the NoC's physical structure 

[3, 4]. Coherence-free systems have been proposed to avoid coherence protocols, but industry 

largely favors cache-coherent systems [5]. One successfully demonstrated method to decrease 

cache coherency power usage combined bus based snooping coherency and NoC based 

directory coherency [6]. 

Power reduction has also been achieved through efficient use of data compression [7], 

error detection/correction encoding [8], and heterogeneous interconnect [9]. Other techniques 

achieved power reduction by differentiating among different kinds of traffic (such as 1-to-

many/many-to-1 [10] or request/response [11]) and optimizing for each type. Hardware 
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techniques focus on router designs and microarchitecture [12]. Although buffer-less NoC 

designs have been proposed, their benefits are minimal (1.5% savings) [13]. 

Not all traffic has the same effect on application completion time however. If packets 

can be prioritized based on their application level criticality, then high priority packets can be 

sent on low latency interconnect and low priority packets can be sent on low energy 

interconnect [9]. When identified, high priority data can use a circuit switching protocol over a 

lower performing packet based protocol [14]. Data can also be classified as bandwidth or 

latency sensitive, allowing for bandwidth and latency optimization of two individual networks. 

Once established, traffic can be assigned within each network based on the given priority of 

each packet [15]. Ring based systems [16] and non-uniform cache architectures [17] have also 

been integrated with packet prioritization protocols.  

1.1.2 Low-Swing Interconnect 

Low-swing signaling attempts to save energy by reducing the voltage potential between 

high and low states (lowering the swing) on long on-chip connections. New low-swing 

techniques have proven to reduce clock power by 66% [18]. With reduced swing comes 

increased sensitivity to noise, however, requiring special care to ensure reliability [19]. Due to 

the analog nature of this technique, work has primarily focused on differential signaling, and 

both voltage- and current-mode transceiver circuit designs [18][20]. Unfortunately, highly 

custom circuits pose a problem for modern SoCs, which are often designed using synthesized 

circuits. For this reason, focus also has been given to creating low-swing solutions that can be 

easily implemented using mainstream SoC design techniques [21]. 
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1.1.3 Three Dimensional Interconnect 

The long-awaited emergence of 3D VLSI and die-stacking technology has motivated 

additional work in the corresponding NoCs. 3D promises shorter interconnect and reduced 

capacitance, as well as excellent inter-layer connections with the use of through-silicon vias 

(TSVs) [22]. TSVs also make the circuit design of 3D routers and 3D routing schemes significantly 

different [14]. Unfortunately, the state of technology today prevents more than two logic layers 

to be stacked in one package due to thermal concerns. Designs have been proposed with more 

than two layers, suggesting that one layer could be dedicated to the NoC [23]. These thermal 

concerns have caused researchers to explore the possibility of thermal-aware 3D NoC 

architectures that can help mitigate thermal issues [24]. 

1.1.4 Nanophotonic Interconnect 

Although a nanophotonics-based NoC has not yet been developed due to technology 

limitations, silicon photonics have now been demonstrated in a 90-nm process [25]. This kind of 

progress has increased interest in nanophotonics as a way to replace traditional metal wires for 

long-haul connections in NoCs. Full analysis of planned nanophotonic networks has shown 

significant promise for both increased performance and decreased power consumption using 

athermal ring resonators and on-chip lasers that enable quick power-gating [26]. Nanophotonics 

promises bit rates almost independent of distance, higher bandwidth from frequency-division 

multiplexing (FDM), and lower power due to dissipation at the endpoint only. These promised 

benefits allow for the potential to improve performance by 60% and decrease power by 80% 

[27]. NoC laser energy also can be reduced by 49% using busses controlled by distributed on-

chip lasers [28]. While these pure photonic designs are very attractive the first practical 

photonic NoC likely will be some combination of photonics and traditional metal wires [29]. 
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Although recent nanophotonics research is very promising, there is more work to be done on 

the process side before nanophotonic NoCs can be fully realized. 

1.1.5 Wireless Interconnect 

Both photonics and wireless NoC designs are part of a trend to integrate formerly off-

chip communication techniques into the on-chip network to increase performance and reduce 

power. Miniature on-chip antennas could be used to transmit and receive information, and the 

technology already exists to create them on silicon. A wireless NoC would save power and area 

because small transmitters do not need large capacitive transmission lines and do not require 

multi-hop connections. Hybrid designs have been proposed with wireless used for long-distance 

on-chip transmissions [30, 31]. 

Wireless NoCs can use FDM (similar to the concept's use in nanophotonics) and time-

division multiplexing (TDM) along with low-power transceivers to achieve 34% power reduction 

compared to leading NoCs [32]. Another wireless NoC design uses a sub-divided mesh topology 

to improve the performance of other wireless NoC designs [33]. Wireless systems face unique 

challenges however. For now, designers are limited to using existing millimeter-wave antennas 

using CMOS technology, but future carbon nanotube antennas will significantly reduce the 

overhead [34]. Use of these carbon nanotube antennas is not possible yet due to the need for 

process scaling that has not yet been achieved. 

1.1.6 Asynchronous Communication 

Distributing a global clock across an entire NoC continues to be difficult and very power-

hungry as technology scaling continues while die area remains the same. For this reason, the 

globally asynchronous/locally synchronous (GALS) NoC was proposed. Studies have verified that 
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GALS NoCs save both energy and latency by removing the global clock but require overhead in 

the form of synchronizer circuits and extra router wires for flow control [35]. These extra router 

wires manifest as a requirement for more space for the NoC, sometimes as high as 25% 

increased switch area (while still maintaining 21% power reduction, given certain factors) [36]. 

Those numbers were improved to an impressive 57% power reduction when using the butterfly 

fat tree (BFT) network topology [37]. 

Area overhead can be reduced with specialized circuitry for routers and other 

asynchronous components [38]. Even without using the full GALS approach, gains can be 

achieved with asynchronous circuitry. One recent paper uses router crossbars with built-in 

asynchronous repeated link circuits. This technique has achieved single-clock-cycle latency along 

with a 2.2X power savings [39]. Source-synchronous communication using bundled data also has 

been proposed. This technique routes the clock (as a pulse) along with the data. Source-

synchronous systems reduce power through their removal of the global clock [40]. 

1.1.7 Dynamic Voltage and Frequency Scaling 

Similar to other parts of the SoC, the NoC does not always need to operate at its 

maximum possible level of performance. For this reason, dynamic voltage and frequency scaling 

(DVFS) can optimize dynamic power. NoCs consider how these DVFS changes affect incoming 

and outgoing data rates at the node level. Recent work has shown that savings as high as 33% 

can be seen when applying DVFS to the NoC and low-level cache (LLC) when sharing a 

voltage/frequency domain [41]. Another proposed design includes dynamic reconfigurable NoC 

interconnect in addition to DVFS, allowing for energy savings and latency reduction [42]. A 

simplified binary DVFS control using only a high and a low voltage state also has been proposed 

to be sufficient for NoC switches [43]. 
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1.1.8 Multiple NoC Structures 

While much work has been done to increase performance and decrease energy of single 

NoC systems, the research community has also considered the possibility of a multi-NoC system. 

Multi-NoC systems have proven to significantly improve overall system performance while 

minimally affecting the area-delay and energy-delay products with their hardware overhead 

[44]. Even naive homogenous network sharing protocols can achieve this benefit due to the 

inherent increase in both bandwidth and path diversity. Even greater benefit can be achieved 

with heterogeneous networks however. If specific types of traffic are allocated to specific 

networks, each network can be optimized for that form of traffic.  This has been demonstrated 

for many forms of traffic including on chip monitoring data [45], cache access 

requests/responses [11], and main memory access as well as IO [46]. 

 
1.2 Synchronizers 

Global clocks have been proven to be un-scalable for today’s large dies, leading to the 

increase of GALS systems. Fine-grained DVFS is now used to achieve power savings by 

dynamically tuning each portion of the system to its current load. This results in each of the 

cores operating on different frequencies, but still needing to communicate.  The goal is to have 

low-latency, high-throughput, and high reliability inter-clock-domain communication. Even 

Systems on Chip (SoCs) with a relatively low number of cores depend on high performance 

communication between clock domains for last-level cache access. Examples include AMD’s 

Bulldozer core systems and Intel’s Core i7.  

Communicating across clock domains requires a system with flow control to prevent 

under-running or over-running the receiver, as well as synchronizer circuits to mitigate the risk 

of metastability (thereby increasing reliability). This thesis defines any system performing both 
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of these functions as a Clock Domain Interface (CDI). The most common kind of CDI is an 

asynchronous FIFO [47]. The full and empty signals generated by the FIFO inform the two 

domains when it is possible to transmit or receive, while brute force synchronizers pass pointers 

between the domains.  

1.2.1 Metastability 

Synchronizer circuits are used in many applications to transition data between elements 

in a MCD (Multiple Clock Domain) device. A common example is in GALS SoCs where multiple 

parts of a chip operate at different frequencies, yet need to communicate with each other. 

Another example is high clock rate processor cores that need to talk to other slower cores, or 

even slower memory. Many designs have been created to solve this problem and all of them 

aim to remove metastability.  

Metastability is a problem caused when unmatched clocks are used to transfer data 

without any guiding structure. When the clock of a receiving domain rises while the data line is 

transitioning, a metastable state can be generated within the sampling flip-flop. This metastable 

state is neither at Vdd or GND, but half way in between (Vdd/2).  Generally this occurs within 

the sampling flip-flop: at the output of the master latch. The reason why this occurs is because 

when the data and clock change at the same time, the latch does not have enough time to 

change state by charging or discharging its output. Instead, partial charge exists, balanced like a 

ball on the peak of a steep hill.  

Due to the properties of CMOS circuits, Vdd/2 does not propagate through to the slave 

latch of the flip-flop. This means that the flip-flop effectively waits for the master latch to settle 

into a high or low state. There is no guarantee when the latch will settle, introducing 

randomness into a system that must be designed to be perfectly logically predictable. If the 
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master latch transitions while the slave latch samples, the same problem will also occur on the 

slave latch, allowing metastability to exist on the output of the flip-flop as well.  

In addition to delay, there is no guarantee that the eventual output value will have been 

sampled correctly. See the image below for a visual representation of a metastable waveform. 

In this example the data and clock edges are too close together, causing a metastable output. 

Since exactly half of the charge is left, the circuit could settle either high or low with an equal 

probability. So, either the data will successfully make its way to the new logic value (metastable 

output A) or it will fall back to its original value (metastable output B).  

 

Figure 2: Metastable Waveforms 

 

1.2.2 Brute-Force Synchronizers 

All synchronizers are designed to reduce the possibility of a metastability failure, 

defined as when the output of a sampling circuit exhibits a metastable value. The most common 

form of a synchronizer is the brute-force synchronizer, which is a chain of flip-flops connected in 

series. Since metastability can only propagate from one synchronizer to the other if it resolves to 
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a stable value during a rising clock edge, each additional flip-flop reduces the possibility of 

metastability. The synchronizer will always retain a finite chance of failure however since 

settling time is random. Since additional flip-flops also result in an increased latency through the 

synchronizer, a trade-off between performance and reliability exists. 

 

Figure 3: Three Stage Brute-Force Synchronizer Circuit 

To quantify the frequency of these failures, brute force synchronizer performance is 

commonly expressed as the Mean Time Between Failures (MTBF). The expression in Equation 1 

shows dependence on the receiver clock frequency FC and incoming data frequency FD. These 

factors are independent of the flip-flops within the synchronizer, and so these factors do not 

change with CMOS scaling. The factor S, defined as the settling time, is also circuit independent 

since it is often simplified as the period of the receiver clock period. 

𝑀𝑇𝐵𝐹 =  
𝑒

𝑆
𝜏

𝑇𝑤 ∗ 𝐹𝐷 ∗ 𝐹𝐶
 

Equation 1: MTBF of Brute-Force Synchronizer 

Tw (the sensitive region) and τ (evaluation time constant) are both dependent on the 

circuit, and are therefore affected by changes in process technology. Although some papers 

have considered the effects of Tw [48], Tw only affects MTBF linearly while τ is exponential. For 

this reason, much of the past work has chosen to focus on τ rather than Tw [49, 50]. More 

complex expressions have been proposed for accurately calculating MTBF for multi-stage 

synchronizers; however these expressions still show that τ has an exponential effect on MTBF 
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[51]. For this reason, the evaluation of τ is just as important when considering multi-stage 

synchronizers. 

The value of τ can be affected by many environmental factors, but circuit structure plays 

a central role. Two circuit parameters of particular importance are transistor strength and node 

capacitance. A number of circuit topologies have been designed to minimize the necessary node 

capacitance, while also improving the gain of the flip-flop feedback loop [50, 52-56]. Device 

sizing is also important however, and so a multitude of techniques have been proposed to 

effectively manage the tradeoff between device strength and size [56][57][54]. Some techniques 

have also considered adding supplementary devices with mixed success [55, 58]. 

1.2.3 The Effect of Technology Scaling 

As technology scales both transistor strength and node capacitance change. One key 

parameter used to compare technology nodes is the fan out of four delay (commonly referred 

to as FO4). Since the early days of CMOS, designers have tracked both FO4and τ, finding them to 

be scale at the same rate [59]. As planar technology has continue to scale, some researchers 

claim that this trend has continued [56, 60] while others claim that after 65nm this is no longer 

the case [61, 62].  

FinFET devices offer a number of significant benefits in addition to allowing the 

continuation of Moore's Law. Two of the most well-known benefits of FinFET technology are 

decreased leakage current and less variation in Vt between process corners [63, 64]. While all 

circuits will certainly benefit from a decrease in leakage current, this is not a key factor in 

synchronizers, which focus much more on dynamic behavior. The effect of tighter process 

corners will have an impact of synchronizers due to the need to design for the worst case. The 

end result of this is expected to be an overall improvement in synchronizer performance, but 
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would not affect design trade-offs. Process corners are also heavily defined by laboratory 

experimentation, and therefore future technology simulation models do not consider them [65]. 

1.2.4 Predictive Synchronizers 

Predictive synchronizers transcend the latency-reliability tradeoff which limits brute-

force synchronizers. This means that they can offer near perfect MTBF while still maintaining 

less than a cycle of latency. This is achieved by exploiting certain relationships between the two 

clocks to predict their behavior. Each predictive synchronizer has limitations of its own however. 

Some designs rely on rationally-related clocks and cannot be used with other frequency 

combinations [66, 67].  Others depend on large delay lines which are continuously matched to 

the clock period [68]. One system proposed by Dally called the Even Odd Predictive Synchronizer 

(EOPS) overcomes these problems, but introduces limitations of its own [69].  

To accomplish a single cycle of latency, the EOPS leverages the periodic nature of the 

receive and transmit clocks to estimate the transmit phase from the perspective of the receive 

domain. These phase estimates are used to choose from one of two flip-flops (Even or Odd) to 

sample in the receive domain. Figure 4 shows a high level view of the EOPS.  
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Figure 4: High Level EOPS Structure [69] 

 

Figure 5: EOPS Flip-Flop Selector [69] 

The EOPS needs certain parameters to be measured before it can operate. When clock 

frequencies change, the system needs to stop data flow while it re-measures. Unfortunately, 

measurement relies on the overflow of large counters, resulting in a measurement time of over 

a thousand cycles. For systems that apply DVFS frequently, this long stall in data flow is 
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unacceptable.  This prevents the use of this otherwise robust low-latency synchronizer in 

practice. 

Phase estimation is achieved by first taking a digital measurement of both the ratio 

between the two clocks, and the size of a “detection interval”. The detection interval represents 

the size of a delay line within a “phase detector” circuit.  This alerts the system when two rising 

edges are within the detection region, meaning they are of the same phase at that time. Since 

this information needs to be sent through a brute force synchronizer, it is delayed by a certain 

number of receiver clock cycles. 

The system needs current phase estimates however.  This can be calculated by 

multiplying the ratio of the two clock frequencies by the number of delayed receiver clock 

cycles. This calculation determines how many transmit clock cycles (and fractions of cycles) have 

occurred since the system detected that the two domains were of the same phase. This in turn 

gives a phase estimate for the current receiver clock phase, noting that whereas they were 

within the range of the detection interval, they were not exactly of the same phase. This results 

in a level of built-in uncertainty in the phase estimate. To define this possible range of phases, 

upper bound and lower bound estimates are calculated by adding or subtracting the detection 

interval from the previous calculation [69]. 
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CHAPTER 2 

A MULTI-NOC SYSTEM 

After analyzing the many techniques for NoC power reduction and performance 

improvement, one such technique was simulated. An experiment was performed on a simulated 

multilayer NoC. This does not change the synchronization structure, but it does serve as an 

introduction to the many possibilities for NoC structure improvements. Implementation of this 

this system was accomplished in the Graphite multicore simulator [70]. 

 

 

Figure 6: Multi-NoC Architecture 

The case shown in Figure 6 contains four cores. Each core has access to two routers, one 

for each network. Each router is in communication with a single NoC, resulting in each NoC 

being separate. Thus each NoC occupies a “layer”, although this does not necessarily mean that 

each network is in a separate physical layer. When a packet needs to be sent, the NoC selector is 

used to determine which NoC will be used. For the purposes of this experiment, a NoC is 

selected at random. More sophisticated selection methods could be used in conjunction with a 

more complex heterogeneous multi-NoC structure. This would allow individual networks to be 
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optimized for traffic of a certain classification, which the NoC selector would allocate to the 

appropriate NoC layer. 

 

Figure 7: NoC Selection Scheme 

The emesh_hop_by_hop model has been selected within the Graphite simulator. This 

model was chosen since it includes contention delay tracking. Two main files were modified to 

include the additional NoC: network_model_emesh_hop_by_hop.cc and its associated h file. An 

additional mesh router, injection router, and network link list were added to each of the router 

models. To evenly distribute the traffic across the NoCs, a random number is generated and 

checked to allocate traffic.  

Both a single NoC and a double NoC system were simulated with three benchmarks: 

Spawn_joint_unit_test, Ping_pong_app_test, and Pthread_copy_test. These benchmarks are 

synthetic, purposefully creating and destroying threads but not necessarily due to a real 

application. The ping pong app test sends data back and forth between cores, and in simulation 

proved to inject the most data. It follows that this benchmark also saw the most performance 

improvement and power reduction. Spawn creates multiple threads of random sizes and 

locations, creating traffic by requesting data for individual threads. Pthread copy creates 

multiple threads of the same kind in various locations.  
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Figure 8: Multi-NoC System Simulation Results 

The metrics used to evaluate the performance of these structures on each of these 

benchmarks are completion time, total dynamic energy (including the second network in cases 

where it exists), average packet latency, and average contention delay. The results shown in 

Figure 8 are normalized to the results for the one network baseline. For all three benchmarks, 

completion time was reduced around 10%. This is significant since the reduction of completion 

time directly translates to a performance improvement.  

The dynamic energy is also significantly reduced by an impressive 40% by the two 

network system. It should be noted that this improvement is on the dynamic energy of just the 

network structure (routers and links) and so the percentage improvement on the entire system 

would be less. The reasons for reduction in both power and completion time are due to the 

reduction in congestion. A 30% reduction in contention delay can be seen for the pthread test, 

and the other tests average to around 15% reduction. The delay is not the only benefit, because 

congestion also causes issues when packets are dropped due to overfilled routers. This requires 

re-transmission of data, further increasing the necessary power. With the reduction in 

congestion, the number of dropped packets have been reduced, hence the reduction in dynamic 

energy. 
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CHAPTER 3 

SIMULATION OF BRUTE-FORCE SYNCHRONIZER FLIP-FLOPS 

Although more sophisticated circuits have been proposed, communication across clock 

domains in most modern devices requires the use of brute-force synchronizers. Even predictive 

synchronizers contain brute-force synchronizers out of the critical path. Brute-force 

synchronizers are made up of highly optimized flip-flops connected in series. Synchronizer flip-

flop circuit designers must re-evaluate design trade-offs as process technologies change. Now 

that semiconductor manufacturers are moving from planar CMOS to FinFET CMOS, designers 

must prepare for changes of an even larger scale.  

Previous work has focused on the effect of technology scaling on synchronizers in planar 

technology [56, 59-62], but here we aim to demonstrate the effects of FinFET devices. To 

evaluate their effects, HSPICE simulations using predictive technology models developed at ASU 

[65] were performed and compared with theoretical analysis. While on-chip synchronizer 

evaluation techniques have been developed [48], building test chips for multiple technology 

nodes would be both prohibitively expensive and impossible for nodes not yet developed (such 

as 10nm and 7nm). Here we present simulation results and theoretical analysis on three high-

performance synchronizer flip-flops. The simulation results presented here demonstrate the 

continual relationship between tau and FO4 delay even in FinFET devices. It was also found that 

body biasing synchronizer feedback loops is still effective in FinFET devices, but not as significant 

as with planar devices. FinFET synchronizers were also observed to be more sensitive to 

temperature variations.  
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3.1 Simulating Tau 

The HSPICE simulation strategy used to generate the results found in this paper was 

modeled on a hardware testing methodology developed by Dike and Burton [50]. A similar 

adaption of this technique has recently been used in other synchronizer design research [49]. In 

the original hardware technique, memory cell nodes are first forced into metastable levels. This 

is accomplished with initial conditions in simulation. Once forced into metastability, 

measurements are taken as the circuit begins to self-correct back to a stable value (a logical high 

or low value). The speed at which the circuit can self-correct is recorded, and used to calculate 

the value of τ. This gives an accurate value without needing to rely on simulation methods 

requiring data vs. clock time sweeps, which have proven to be unreasonable given HSPICE's 

sensitivity [50].  

 

 

Figure 9: Synchronizer Bi-stable Element Circuit Response 

Bi-stable devices within synchronizer flip-flops generally have two sides. This is most 

easily understood when considering an inverter loop. The loop can be forced into one of two 

states, but when stable the voltage of one side of the loop is at Vdd while the other is GND. 
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When both sides are forced to be Vdd/2, the voltage difference between the two nodes is zero. 

Figure 9 shows how as the bi-stable element begins to settle, the voltage difference begins to 

increase (or decrease depending on polarity). The properties of this change are used to calculate 

τ, as shown in Equation 2. 

 

Equation 2: Calculation of Simulated τ 

3.2 Flip-Flop Initialization 

As described, the first step in simulation is forcing the flip-flop under test into 

metastability. This paper considers three different synchronizer flip-flops which each utilize 

somewhat different bi-stable element structures. Because of these differences, each flip-flop 

needed to be initialized in a different fashion. To ensure consistency across the different circuits, 

all flip-flops were initialized to a standardized Vdd/2. 

 

Figure 10: Dynamic Latch Flip-Flop 

The first flip-flop considered was the Dynamic Latch Flip-Flop (DLFF), sometimes 

referred to as a jamb latch flip-flop [50]. The DLFF is so named due to the dynamic nature its 
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circuit, which requires a separate Reset signal before the device can be re-evaluated (refer to 

Figure 10). While this modification enables the circuit to outperform standard synchronizer flip-

flops, it also limits the usability of the circuit in modern devices (which very rarely contain a 

dynamic reset signal). Since the DLFF utilizes a simple cross-coupled inverter pair, initializing the 

circuit into metastability is straightforward. 

 

Figure 11: PowerPC Flip-Flop 

The second device simulated was the PowerPC flip-flop, recently considered as a 

suitable sub-threshold voltage synchronizer flip-flop [52]. The PowerPC flip-flop, as shown in 

Figure 11, is initialized by setting the pass gate transistor switch and all Wp2 and Wn2 in the on 

state. The data input is then set to Vdd/2. The voltage difference is then considered between 

node X and output of the inverter consisting of Wp1 and Wn1.  

The Pseudo-NMOS flip-flop is the third to be simulated, as shown in Figure 12 [56]. This 

flip-flop was initialized by setting the q and q bar nodes at Vdd/2, and then setting the clock low 

such that that mm and mm bar are in the same state. The voltage difference is taken between q 

and q bar. 
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Figure 12: Pseudo-NMOS Flip-Flop 

3.3 Tau and FO4 Delay 

The link between synchronizer flip flop τ values and FO4 delay has been used in the past 

to predict synchronizer performance in new technologies. Both factors rely on the device 

size/strength tradeoff defined by the technology node. As mentioned before however, the 

research community has disagreed about whether or not this trend continues. Ginosar has 

proposed that after 65nm, each technology node will see higher τ while FO4 delay will continue 

to decrease [61]. He justifies this claim by first creating a mathematical relationship between 

FO4 delay and τ in Equation 3. 

 



 

24 

Equation 3: τ as Function of FO4 

Equation 3 represents τ as a function of FO4 delay, A (inverter gain), and η (derived 

from a combination of Vdd, Vt, and λ).  It was proposed that while FO4 will continue to scale, 

the inverter gain will not, creating a degradation in τ [61]. Other researchers disagree, and have 

released results demonstrating τ values which continue to track FO4 delay [56]. Until now 

however, the effect of FinFETs has not yet been considered. Analysis from UC Berkeley has 

found that propagation delay in FinFET circuits is independent of electrical width [71]. This 

serves to maintain the gain of inverter built with FinFET devices, even as they are scaled. The 

primary factor of consideration relating τ and FO4 delay is inverter gain, and so it stands to 

reason that τ will continue to track FO4 delay even when FinFET devices are used. 

 

Figure 13: τ/FO4 Results 

This analysis is validated by the simulation results shown in Figure 13. Using the 

technique described in the previous section, these simulations were taken for each of the three 

synchronizer flip flops at nominal Vdd of 0.7V and room temperature of 22○C. The expected 

range for τ delay has been cited as between 0.2 and 1.5 times the given technology node's FO4 
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delay [61], and each of the three flip-flops tested fall within this range. While there is some 

variation between technology nodes, the results still match physically measured results by other 

researchers for planar technology nodes [56]. The FinFET nodes (7nm, 10nm, and 20nm) stay 

within the same τ/FO4 range as the values found for planar nodes (22nm, 50nm). 

3.4 Performance and Temperature 

Most CMOS circuits decrease in effectiveness with an increase in temperature. This is 

due to the reduced carrier mobility that comes with an increase in particle scattering. However, 

an additional effect of increased temperature is a decrease in threshold voltage, making devices 

less effective for a given supply voltage. This is important since synchronizers are especially 

reliant on threshold voltage. Previous work has verified that the temperature sensitivity for 

threshold voltage is more important than that of mobility, resulting in synchronizer performance 

being reduced (an increase in τ) with lower temperatures [48, 72]. FinFET devices are not 

effected by temperature in the same way as planar devices however. Recent work has found 

that the previously weaker voltage threshold effect is actually dominant in general logic gates 

FinFET devices, which led to an increase in logic gate performance at higher temperatures [73]. 

Unfortunately, this would suggest an especially strong decrease in performance at lower 

temperatures for synchronizers built with FinFET devices.  

This behavior is validated in simulation results, shown in Figure 14 and Figure 15. There 

is a much more stark degradation of synchronizer performance at lower temperatures when 

circuits are built with FinFET devices (20nm). When built with planar devices in 22nm 

technology, the DLFF and Pseudo-NMOS are generally stable over temperature, even with low 

supply voltages. In fact, the Pseudo-NMOS flip-flop is more dominated by the carrier mobility 
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effect, resulting in a decrease in τ for lower voltages. A general increase in temperature 

dependence with scaling can also be observed.  

 

Figure 14: 22nm Planar Technology, Temp vs. Vdd (FSFF left, Pseudo-NMOS right) 

 

Figure 15: 20nm FinFET Technology, Temp vs. Vdd (FSFF left, Pseudo-NMOS right) 

These results also show that increases in τ due to lower temperatures can be prevented 

with a higher supply voltage. This further demonstrates that the dominant factor in synchronizer 

dependence on temperature is the change in threshold voltage. In modern SoCs, maximum 

restrictions on the supply voltage are generally enforced to prevent an increase in power 

consumption which leads to heat. Thankfully this means that raising supply voltage in a low 

temperature state to prevent synchronizer performance degradation is not unreasonable. Data 

for the PowerPC flip-flop was found to be very similar to the DLFF, and so is not displayed here 

to conserve space. 
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3.5 Forward Biasing 

Designers must also consider how FinFET devices will affect the trade-offs between 

various synchronizing flip-flop types. When all circuits were implemented with FinFET devices, 

the Power-PC flip-flop continued to be out-performed by both the DLFF and Pseudo-NMOS. 

However, the choice between the DLFF and Pseudo-NMOS becomes more complex when FinFET 

devices are used.  

The DLFF was one of the first synchronizing flip-flops to be proposed, and relies on 

inverter feedback loops to settle metastability [50]. When near-threshold operation became 

more common as a design practice to reduce power, it was shown that inverter loops provided 

very poor performance at low voltages. For this reason, the Pseudo-NMOS flip-flop was 

proposed as a synchronizing flip flop without the need for an inverter feedback loop [56]. 

Around the same time, another solution was proposed which applied forward body bias to 

increase DLFF performance at low voltages. It was demonstrated that forward body biasing 

increases the transconductance of the bi-stable inverter pair, resulting in improved performance 

[49]. While the Pseudo-NMOS has been compared to the unbiased DLFF, it has not been 

compared when using this technique. It is important to determine which design outperforms the 

other at low voltages as well as if the benefit of biasing still exists when using FinFET devices.  

For 22nm planar technology, Figure 16 shows that in low voltages, the DLFF is 

outperformed by the Psuedo-NMOS flip-flop. When forward body biasing is applied however, 

the DLFF τ is significantly decreased, surpassing the biased Pseudo-NMOS flip-flop which only 

decreases slightly. This demonstrates that when designing in planar technology, forward biasing 

a DLFF is the best solution for near-threshold operation.  
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Figure 16: Voltage Sweep of Non-Biased and Forward Biased DLFF and Pseudo-NMOS 

However, FinFET technology presents an interesting challenge for body biasing 

techniques. Since FinFET devices sit on top of the bulk, rather than being deposited inside the 

bulk (as in planar technologies), the increase in the transconductance can no longer be 

achieved. As can be seen in Figure 16 showing simulation data for 20nm FinFET, both the DLFF 

and Pseudo-NMOS receive an increase in τ rather than a decrease in τ when forward biasing is 

applied. This effectively removes biasing as a suitable technique for near threshold operation.  

It can also be seen however that DLFF maintains a significant advantage over the 

Pseudo-NMOS at nominal supply voltages. This presents a switching point (around 0.45V for 

20nm) when above that voltage the DLFF is superior, and below that voltage the Pseudo-NMOS 

is superior. This is because inverter feedback loops offer a significant advantage at higher 

voltages. If voltage must decrease, this advantage wears off and the Pseudo-NMOS achieves the 

lowest τ for near threshold operation. 
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CHAPTER 4 

DESIGN OF DVFS TECHNIQUES FOR PREDICTIVE SYNCHRONIZATION  

As described in the background section of this thesis, each predictive synchronizer 

requires certain assumptions. For example, the phase estimation system within the Even Odd 

Predictive Synchronizer (EOPS) assumes that the value of the measured frequency ratio and 

detection interval remain constant. When DVFS is applied, these values need to be re-measured 

for each change in clock frequency. Naturally, this measurement delays communication for 

every change in frequency, and is particularly detrimental for systems that apply DVFS 

aggressively at a fine-grain. The following two sections present solutions for two DVFS scenarios: 

gradual frequency change, and fast (instant) frequency change. 

4.1 Gradual Frequency Change 

There are a number of reasons why gradual frequency might occur. For example, 

changing certain parameters in phase locked loops will result in a slow change in output from 

the previous frequency to the target frequency. Also, increasing the speed of a clock with a large 

distribution tree (such as in a large scale GPU) must be done slowly to avoid voltage drop in the 

power supply. Therefore, when gradual frequency change does occur, special care must be 

taken. We propose that instead of waiting until clocks have settled on their final values to re-

measure, the system will measure continuously. 

Both the measured frequency ratio and detection interval needed for the EOPS are 

represented as digital fractions. The most significant bit is to the left of the decimal point, while 

the remaining bits are to the right of the decimal point. These digital fractions have a finite 

number of bits, meaning that their accuracy is limited. This accuracy limitation is accounted for 
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in the design by being included when calculating the upper and lower bound phase estimations 

[69]. For example if 10 bits are used, then the measured values can vary by 2^-9 without any 

harm in functionality. Because the system is built to handle this inaccuracy, another perspective 

would be that there is a certain range (the range of inaccuracy) in which the actual values of 

these factors can vary without causing failure in the system. If periodic measurement updates 

were sent to the phase estimator, and the actual values of the measured variables did not 

change so much as to go outside of this acceptable range in between updates, then the whole 

system can continue communication through clock frequency change. 

To realize this idea, it is first necessary to generate periodic measurement updates. 

Basic measurement updates can be achieved by restarting both the frequency ratio and 

detection interval measurement circuits (same circuits in the Even Odd Synchronizer) each time 

they finish a measurement. Each time these circuits finish, they will provide updated 

measurements to the system, allowing it to adapt as clocks change. Unfortunately, the 

frequency of these updates is limited by the number of cycles the circuits need to finish the 

measurement. 

To assess the adequacy of this design, the maximum speed that a clock can change in 

frequency in between updates may be calculated. This is the limiting factor that might prevent 

this design from practical application. If the measured fractions have b bits, then the range of 

inaccuracy is ±2-(b+1). A typical system might have a b of 10, therefore allowing for a variation of ± 

0.000488. If we assume that both clocks are 1GHz, for the sake of illustration, then this means 

that one of these two clocks may change its frequency ±488 kHz and still stay within the 

measured range. 
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The time between updates is also determined based on the number of bits used to 

represent the measured fractions. This is because the number of bits determines the size of the 

counters that must overflow in the measurement blocks. Time between measurements is equal 

to 2b receiver clock cycles, i.e. we must wait 210 = 1024 cycles in between each update for our 

typical system. This may also be called the cold start time, since this time must be spent on start 

up to begin estimating phases. When N measurement blocks are used the time between 

updates is (cold start time / N) as shown in Figure 17. 

It is important to note that the measured values in each update will be based on the 

1024 cycles before the update (the period which the system was measuring).  As a result, these 

updates do not represent the frequency ratio and detection interval value at the exact time of 

the update. If we assume that the clock frequency is changing at a constant speed between 

updates, each measured update will represent the frequency ratio and detection interval exactly 

half way between the start and stop of measurement. This measured value is used by the 

system until the next update.  The time that the frequency needs to stay in the acceptable range 

is (time between updates) + (time between updates/2). For our typical system, we know that 

the receiver frequency needs to stay in the acceptable range for 1536 cycles. While this may be 

acceptable for some applications, others require faster frequency change.  This necessitates 

faster measurement updates.  
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Figure 17: Continuous Measurement Strategy at Doubled Rate 

Faster measurement updates may be achieved by including multiple measurement 

circuits in the design. These circuits are started in a staggered fashion and run in parallel, 

effectively hiding measurement latency as shown in Figure 17. Both the frequency ratio and 

detection interval can be measured in this manner. 

 

Figure 18: Continuous Frequency Measurement Circuit 

 

Figure 19: Continuous Frequency Measurement Timing 
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The circuit used to achieve this technique is shown in Figure 18 while the timing 

diagram in Figure 19 shows its behavior. The circuit is started with a StartSystem pulse, which 

initiates Measurement Circuit 0. This start pulse also enters a delay counter which delays the 

start signal by half of the measurement completion time (Interval 1). After this delay, 

Measurement Circuit 1 is started. Eventually, Measurement Circuit 0 finishes (measurement 

time is shown by   Interval 2) and its output value is posted to Update as the most recent line is 

pulled low. This completion causes start0 to be asserted, beginning the process all over again. 

After time interval 3, Measurement Circuit 1 finishes. This parallel circuit allows for updates to 

occur twice as fast as a single measurement structure, doubling the maximum frequency ramp 

speed. This method could be used for any number of additional measurement circuits, 

eventually allowing for an updated measurement every clock cycle if so desired. 

4.2 Instant Frequency Change 

In systems where clocks may change frequency very quickly, such as when digital 

frequency dividers are used,   even parallel measurement circuits may not be fast enough. In this 

section, we present a solution which directly informs the predictive CDI when frequencies 

change and what they are changing to. When a frequency transition takes place the CDI pauses 

communication, reads in the new frequency value, calculates the new frequency ratio and 

detection interval directly (instead of measuring), and then waits for both domains to track 

before resuming communication. 
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Figure 20: High Level Diagram of Fast DVFS Strategy 

The system shown in Figure 20 uses a number of control signals to communicate the 

status during the process of a fast frequency change. Each DVFS controller supplies a clock 

(generated from the controller’s clock source) and information about the clock to the Prediction 

Based CDI. This information could either be the specific frequency of the supplied clock or a 

code representing which frequency the clock currently is.  

Each DVFS controller also has an output for requesting a frequency transition (rclktran, 

tclktran) and an input so that the controller knows when the opposite clock domain has 

acknowledged the frequency transition (tdomacktclktran, rdomackrclktran). These signals cross 

the clock domain boundary by using brute force synchronizers since the predictive CDI is off-line 

during frequency transitions. There are also signals for rtracking representing when the receive 

domain is ready. The two domains’ clocks, data, and flow control signals (shown in bold at the 
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bottom of the figure)   are the signals used during normal operation when communication is 

resumed. 

 

Figure 21: Fast Change in Receiver Clock Frequency Timing 

Granted, this technique does require the CDI to pause communication for a certain 

period of time unlike the continuous measurement technique. To understand how long 

communication would need to be paused, we consider the timing behavior of the system. As 

seen in Figure 21, the receive domain informs the system of its need to  change its frequency by 

asserting rclktran at time 1 as well as updating its rclkinfo to inform the CDI of the needed 

running frequency.  

The rclktran signal propagates through the brute force synchronizer to the transmit 

domain by time 2. At this time the transmit domain acknowledges the change via a direct 

connection to the synchronized transition request signal and de-asserts its tracking flag 

(ttracking). Naturally this implies that both domains are no longer tracking and communication 

is paused. During this period transmitready is set low and tdata is kept at a “null” value which 

the receive domain will ignore. 

For the system to resume, the following steps are taken. First, when the transmit 

domain acknowledges the change in frequency (time 2), it samples the new rclk info. This data is 

known to be constant since it has been a number of synchronizer cycles since the last change 
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(the tdomrclktran signal acts as a data ready signal). The data is then used to calculate both the 

frequency ratio and detection interval necessary for phase prediction in the transmit domain. 

The edge detector in the transmit domain is also disabled to prevent the system from re-

tracking before the receiver’s clock is actually changed.  

When the asserted ackrclktran signal is successfully synchronized to the receiver domain 

at time 3, the receiver DVFS controller completes the sequence by changing the receiver clock’s 

frequency. This acknowledgement also triggers the receive domain to calculate its frequency 

ratio and detection interval which has been updated based on the new rclk information. With a 

new rclk, the phase estimator needs to re-track, so the rtracking flag is also de-asserted. Having 

completed its transition, the receiver clock’s rclktran signal is de-asserted. At time 4 the de-

assertion of both the rclktran and rtracking signals are received in the transmit domain. By this 

time instant, transmit domain knows that the receiver clock has been changed which prompts 

the transmit side phase detector to be re-enabled. 

Once the receiver clock has been changed and the phase estimators are enabled in both 

domains, it is   necessary to wait for the two domains to begin tracking. At time 5 the transmit 

domain begins tracking and at time 6 the receive domain begins tracking. When at time 7 the 

rtracking signal is synchronized to the transmit domain, the transmitter can resume 

communication.  

The obvious question is how much time is necessary between stopping and starting of 

communication after a frequency change. The time range where communication is stopped 

starts at time 2 and restarts at time 7. During this time, control signals are passed between clock 

domains and the system waits for both domains to start tracking. Although different frequencies 

change the exact delay, the delay from two synchronizers comprise 8 cycles if 4 cycle 

synchronizers are assumed. Our experiments have shown that waiting for tracking rarely 
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exceeds 12 cycles. This means that the system can re-start communication after only 20 cycles. 

This is a considerable improvement relative to the thousand cycles necessary for full re-

measurement. 

4.3 The Locally Controlled CDI 

It is important to note that the usefulness of these DVFS enabled phase prediction 

techniques is not limited to the EOPS. Here, we describe an alternative Clock Domain Interface 

(CDI) which uses these DVFS enabled predictive phase estimator circuits. In this CDI, flow control 

is managed locally with no need for a FIFO.  

 

Figure 22: The Locally Controlled CDI 

As seen in Figure 22, the Locally Controlled CDI uses a phase estimator for each domain. 

The phase estimates are then sent to the flow management logic which in turn controls the flow 

of data out of the transmit domain and into the receive domain. The clouds represent the entire 

transmit and receive domains respectively. The counter in the transmit domain and shift register 

in the receive domain are only used for testing the system. 
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The Locally Controlled CDI has two different modes of operation. One protocol is used 

when the receiver clock is faster while another protocol is used when the transmit clock is 

faster. The system decides which of these two protocols should be active by checking the ratio 

between the two frequencies provided by the phase estimator (this is one of the necessary 

values provided by the DVFS techniques shown in previous sections).  

 

Figure 23: CDI protocol when the receive clock is fastest 

Flow control and metastability avoidance is all contained within the receive domain 

when the receive clock is fastest. This protocol generates three control signals: Meta Possible, 

Double Data, and Renable. The signal Meta Possible informs the system when sampling on a 

particular edge has the risk of resulting in metastability. To avoid metastability the system needs 

to avoid sampling data when that data is changing. This is defined as the case when the rising 

edge of the transmit clock violates the receive domain’s setup time or hold time. This situation 

can be avoided by checking the calculated phase estimates while preparing to sample.  

As described in previous sections, the prediction circuits give upper bound and lower 

bound phase estimates as binary fractions of the transmit clock period. This binary fraction 

includes bits to the left and to the right of the decimal point. The bits to the right of the decimal 

point represent where the rising edge of the receive clock falls, within a single transmit clock 
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cycle. The flow control logic checks these bits to see if the phase estimate overlaps the 

predefined keep out region around the rising edge. Figure 24 shows examples of safe sampling 

(a) and unsafe sampling (b) on transmit domain phase circles. The X and 1-X terms here are 

predefined as the keep out region (the setup and hold time). When there is overlap, the Meta 

Possible signal is asserted since the edges may be too close. This can be seen in Figure 23 where 

the ovals point out the transmit clock and receive clock are too close. Each of these edges is 

accompanied by a high Meta Possible signal. 

 

Figure 24: Phase Estimation for Safety Detection 

Of course, flow control is also important for a CDI. In the case where the receive clock is 

fastest the flow control logic must prevent the receiver from sampling data that it has already 

sampled. This is accomplished with the Double Data signal. For this the bits to the left of the 

decimal point of the phase estimate are utilized. These bits represent which transmit clock cycle 

the possibly sampled data belongs to. To generate the Double Data signal, the phase from the 

current receive clock rising edge and the phase from the previous receive clock rising edge are 

compared. If the two phases are in the same transmit clock cycle, then the data was already 

sampled on the previous edge and there is no need to sample again. If both the Meta Possible 

and Double Data signals are low, then Renable is high and the receive domain knows that it is 

the right time to sample. 
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Figure 25: CDI Protocol when the transmit clock is fastest 

A different protocol is used if the transmit clock is faster than the receive domain (see 

Figure 25). For this protocol flow control signals are used in both domains. In the receive 

domain, metastability is predicted in the same way as previously described. Flow control is 

managed in the transmit domain for this protocol, setting Renable high as long as Meta Possible 

is low. 

In the transmit domain, both an enable signal as well as a Tnull signal are used. The 

tenable signal represents when the receive domain is ready for new data. This is managed in a 

similar manner to the Double Data signal in the receive clock faster protocol. If the phase 

estimates of the current transmit clock edge and the previous transmit clock edge are in the 

same receive clock cycle, then the receive domain has not yet had the chance to sample the 

data.  

Metastability management in the transmit domain is handled differently for this 

protocol. Data would be lost if the transmit and receive domains disagreed about if a given 

receive edge would cause metastability. Disagreement is possible since the domains do not send 

control signals between domains during operation and manage their own phase estimators with 
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slightly different properties. To prevent this problem from occurring, the transmit domain nulls 

out data before and after an edge that it detects may possibly cause metastability. The transmit 

domain also increases its keep-out region slightly to make sure that the transmit domain will 

always be more protective of possible metastability than the receive domain. This way the only 

case for a disagreement is when the transmit domain expects metastability but the receive 

domain does not. In this situation the receive domain only sees the null value and knows to 

ignore this data which is guaranteed to be safe.  

It is also important to note one of the weaknesses of this CDI. This CDI cannot be used 

when the transmitter and receiver clocks are rationally related as tracking is impossible when 

clocks are out of phase since rising edges will never occur close to each other. With no rising 

edges close to each other the system can never calibrate. This limitation restricts the range of 

frequencies that the CDI can be used with. Also, for the purposes of simplification, the 

implemented CDI is limited to working with clocks that are no more than twice the other or less 

than half the other. This could be changed however by including more bits to the left of the 

decimal point when calculating phase estimates and making few changes to the logic. 

4.4 RTL Implementation 

These designs have been implemented and verified in Verilog RTL. Synthesis was 

performed using TSMC 28nm technology standard cells. The test setup consisted of a 5 bit 

counter in the transmit domain to generate sample data and a shift register in the receive 

domain to hold the incoming data (as shown in Figure 8). The transmit clock’s frequency was set 

at 1GHz while the receive frequency was swept from 500MHz to 2GHz at 1GHz intervals. This 

was repeated twice, once with gradual changes in frequency using the circuit shown in Figure 4, 

and then once with instant changes in frequency using the circuit shown in Figure 6. 
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Setup and hold time checks were used to verify no risk of metastability during all of 

operation. The contents of the shift register were monitored to verify that the data was passed 

without doubles or misses. Transfer of data was successful with the notable exception of 

rationally-related frequencies. Completion time was also measured to determine the 

throughput of the system.  

Metric Brute Force  EOPS  Locally Controlled 

Latency 4 cycles 1 cycle 1 cycle 

MTBF Limited ~Infinite ~Infinite 

Layout Size 6606 µm2 4473 µm2 3122 µm2 

Throughput Maximum Maximum ~15% Reduction 

Table 1: CDI Comparison 

As shown in Table 1, when compared to the Brute force CDI (an asynchronous FIFO 

using brute force synchronizers) and the EOPS CDI (an asynchronous FIFO using the EOPS), the 

Locally Controlled CDI has the best latency, Mean Time Between Failures (MTBF) and layout size. 

Both the EOPS CDI and the Locally Controlled CDI have the same latency and MTBF since they 

both use the same phase prediction circuits. Latency values shown in this table represent the 

maximum possible latency. All latencies could vary by a single cycle, since absolute latency 

depends on when the receiving domain samples within the transmit domains clock period.  

The MTBF for the EOPS CDI and the Locally Controlled CDI is near perfect since the only 

brute force synchronizers (the source for a possible metastability failure) in these CDIs are in the 

measurement circuits. These brute force synchronizers are out of the critical path and therefore 

can be made arbitrarily long to achieve almost infinite MTBF. Since the critical path for the brute 

force CDI goes directly through its brute force synchronizer it must make a compromise 

between reliability and latency resulting in a sub-optimal MTBF. In terms of layout area, the 

EOPS CDI is smaller than the brute force CDI since its reduced latency allows it to have a smaller 
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FIFO, while the Locally Controlled CDI has no need for a FIFO and is therefore even smaller. The 

one disadvantage to the Locally Controlled CDI is its reduction in throughput, which was verified 

experimentally. This reduction in throughput is due to the system not sampling data when 

metastability is possible, effectively missing a cycle. 

It should also be mentioned that while the Brute force CDI demonstrates poor latency, 

MTBF, and area, it does not require any extra circuitry for changes in frequency. Area estimates 

shown in Table 1 do not include area for extra measurement circuits for gradual frequency 

changes. Each additional measurement circuit (including both frequency ratio and detection 

interval) adds 306 µm2 to the layout size.  

The effect of jitter in each domain on the system must also be considered. If precautions 

are not taken, it is possible for phase predictions to exceed tolerance. If the nature of the jitter is 

known however, then this can be prevented by artificially increasing the size of the measured 

detection interval [69]. This technique applies for all uses of the phase prediction circuits (EOPS, 

Locally Controlled CDI, etc.). 

The Locally Controlled CDI’s inability to operate with clocks that are rationally related 

might also be mitigated. To allow for operation over a wider range of frequencies, the Locally 

Controlled CDI could be augmented with a CDI specifically design for rationally related 

frequencies [66, 67]. Also, the work presented in this paper manages changes in clock 

frequencies, not changes in voltage. For this, level shifters must be applied to incoming and 

outgoing signals. 
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CHAPTER 5 

SYSTEM LEVEL IMPACT OF PREDICTIVE SYNCHRONIZERS  

Most synchronizer work focuses on designing synchronizers with an improved latency-

reliability tradeoff at the circuit level. Of course, the reason why designers are concerned with 

the latency and reliability of individual synchronizers is because of the effect that they have on 

the latency and reliability of the system as a whole. Despite this, the high level impact of 

synchronizers is rarely studied. In fact, most high level designers ignore the effects of 

synchronizer circuits in an effort to simplify their simulations. This largely a holdover from when 

chips contained only a single core, and synchronization was primarily limited to between the 

core and the cache. Others make the unreasonable assumption that core level DVFS will not be 

used, allowing the entire SoC to operate on a single clock. As discussed before, a NoC connected 

many-core SoC must synchronize at many places on-chip. Thus, synchronizer latency and 

reliability has a greater effect on the overall system. The work shown here quantifies the system 

level improvement in both latency (via simulated benchmark speedup) and reliability (via MTBF 

calculations) that can be achieved with the use of predictive synchronizers. 

5.1 NoC Organization 

 When considering synchronizer impact at the system level, it is first necessary to 

identify which kind of system is being studied. There are many different kinds of NoC as 

described in the background section describes. For the purposes of this study, only mesh 

networks will be considered. Clock domains can be organized in a number of different ways 

within a mesh network however. Naturally, more clock domain interfaces means more 

synchronizers, and so the NoC organization is crucial to overall system performance. In fact, 

some NoC structures have been proposed with the purpose of reducing the necessary 
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synchronizations per message transmission. Figure 26 circles where the clock domain crossings 

would be if using one of the three different NoC structures considered. To demonstrate this, an 

example packet is sent from the bottom left core to the top center core. 

Multi-Synchronous NoC-Synchronous Single-Synchronizer  

Figure 26: NoC Structures Considered 

Routers in the most naïve mesh NoC would operate using the clock of their local core. 

This would mean that communication between each of the routers would require 

synchronization. In the example shown in Figure 26, 3 synchronizer delays can be observed. In 

this document we will call this organization method Multi-Synchronous. 

Another possible NoC organization would be to operate the NoC with a single clock [30]. 

We will refer to this organization as NoC-Synchronous. The benefit of this design is that it only 

requires synchronization when entering the first router, and when exiting the last router (as 

shown in Figure 26). This organization method is not common or even practical however since it 

requires global clock distribution. 

Recent work has taken the reduction of synchronization steps even further. Source 

synchronous designs [40], and designs which implement custom high-speed global interconnect 

[39], only require that synchronization take place at the output of the destination router. These 

kinds of NoC’s are referred to as Single-Synchronizer, and an example communication is also 

shown in Figure 26.  
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Significant work has also been done on asynchronous NoCs [35, 37, 38], but predictive 

synchronizers require periodic clock domains to operate. Since this work is interested in the 

benefit of predictive synchronizers, asynchronous NoCs are not considered here. 

5.2 Performance Simulation 

 To quantify the performance improvement granted by the use of predictive 

synchronizers, high level simulations were completed by modifying the Graphite simulator [70]. 

The Graphite simulator was chosen as it is an efficient open source cycle-accurate multi-core 

simulator. In addition to core models, Graphite also offers various mesh NoC models which can 

be used to acquire realistic performance data. It was important to have a simulator with both 

realistic core and network models since it was necessary to test NoC configurations with real 

core generated traffic.  

5.2.1 Synchronizer Latency vs CDI Latency 

 To understand how synchronizer latency was added to the simulator, it is first important 

to understand latency in the context of a CDI. We have chosen asynchronous FIFOs as our CDI 

since they are the most common [47]. As shown in Figure 27, asynchronous FIFOs contain more 

than just a table of values. The logic shown in blue is for flow control (preventing under or 

overflow of the FIFO), which is managed by updating Full and Empty signals within the Transmit 

and Receive domains respectively. To determine if the FIFO is full or empty, the Head and Tail 

pointers must be compared. Because the Head Pointer is in the Transmit domain, and the Tail 

Pointer is in the Receive domain, these pointers must always be updated in the opposite clock 

domain. So, synchronizers are used to send the Head Pointer to the Receive domain and the Tail 

Pointer to the Transmit domain. This design allows the Transmit domain to transmit data 
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whenever it sees that the FIFO is not full, and the Receive domain to receive data whenever it 

sees that the FIFO is not empty. 

D Q D Q

DQDQ
Full?

Empty?

FIFO

Head Pointer Tail Pointer

Data Input Data Output

Empty Signal

Full Signal

Transmit
Domain

Receive 
Domain

 

Figure 27: Interior Structure of Asynchronous FIFO 

 So, we can see that an increase in synchronizer latency does not necessarily mean an 

increase to CDI latency. First, let us consider the case where the FIFO is empty, and the Transmit 

domain inserts data into the FIFO. In this example, the Receive domain doesn’t know that there 

is data in the FIFO until the Head Pointer is updated in its domain. So for the empty FIFO case, 

the CDI latency is the same latency of a single synchronizer. However, what if we already have 4 

pieces of data within the FIFO, and our synchronizer latency is only 2 cycles? Just as before, the 

Transmit domain inserts the data into the FIFO and updates the Head Pointer. In this case 

however, by the time the Receive domain reaches the piece of data in question 4 cycles have 

passed, two cycles after the Head Pointer was updated to represent the new data. So, the 

synchronization latency has effectively been hidden by the longer queuing latency. This means 

that synchronizer latency actually enforces a minimum CDI latency, rather than being a direct 

increase to latency regardless of FIFO content. 
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5.2.2 Graphite Simulator Changes 

  Within the simulator code, core models were kept the same while the NoC models 

were changed to include synchronization latency. The Graphite electronic mesh hop-by-hop 

network model was chosen as a starting point, as this model already included queuing latency. It 

is important to note however, that Graphite does not actually implement router queues. 

Instead, latency is calculated by using a link contention history table. Thankfully our 

understanding of FIFO behavior allows synchronizer latency to be injected simply by enforcing a 

minimum delay per CDI. So for each CDI within the network, a statement was added which 

replaced the contention latency with the synchronizer latency if it was smaller than the 

synchronizer latency (thereby enforcing the minimum). 

 The number and location of CDIs depends on the structure of the NoC in question. As 

described in the section on NoC Organization, the three NoCs considered here are Multi-

Synchronous, NoC-Synchronous, and Single-Synchronizer. For Multi-Synchronous, CDI latency 

was added within every router. Thankfully this was relatively simple due to Graphite’s object 

oriented nature. A single router model is instantiated for every node within the NoC, so CDI 

latency was injected into this router model. Graphite also distinguishes between injection 

routers (where the data starts) and standard node routers, so this portion of the code was used 

for NoC-Synchronous and Single-Synchronizer. Instead of adding CDI latency for every router, 

either one (for single synchronizer) or two (for NoC-Synchronous) synchronizer latency stages 

were added at the injection router. Although Graphite does allow for DVFS to be implemented, 

all cores were set to 1GHz and CDIs were implemented as if all cores were in separate clock 

domains. This was done to ensure that all variation in execution time was due to 

synchronization, not changes in DVFS protocol. 



 

49 

5.2.3 Simulation Results 

 To ensure realistic network traffic, core models were used to execute the SPLASH 

benchmark suite. Five different executions were run for each benchmark: No synchronization 

latency, Multi-Synchronous with Brute-Force Synchronizers, NoC-Synchronous with Brute-Force 

Synchronizers, Single-Synchronizer with Brute-Force Synchronizers, Multi-Synchronous with 

Predictive Synchronizers, NoC-Synchronous with Predictive Synchronizers, and Single-

Synchronizer with Predictive Synchronizers. 64 cores were used for all simulations, brute-force 

synchronizers were assumed to be 4 cycles of latency, and predictive synchronizers were 

assumed to be 1 cycle of latency. The predictive synchronizer of choice is a DVFS enabled EOPS. 

 As could be expected, we observed a significant execution time reduction when using 

predictive synchronizers. This benchmark directly translates to a system wide performance 

improvement. For per-benchmark speedup achieved by predictive synchronizers, see Figure 28. 

Speedup numbers are calculated by comparing execution times of systems using brute-force 

synchronizers and predictive synchronizers. Geometric means were calculated for each of the 

three NoC types using the zero synchronizer latency results as a base. The ocean benchmarks 

demonstrated a significantly larger speedup due to their frequent long distance inter-core 

communications. Water spatial and volrend relied significantly more on local and intra-core 

communication however.  
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Figure 28: 64 Core Benchmark Speedup When Using Predictive Synchronizers 

 As can be seen in Table 2, the Multi-Synchronous NoC has the highest speedup of 

roughly 12%. This is to be expected, as we have seen that there is simply more synchronization 

latency to improve within the Multi-Synchronous NoC. The NoC-Synchronous and Single-

Synchronizer NoCs have also been improved, but to a lesser extent. This is acceptable however, 

as we will see that significant reliability improvements can also be achieved in addition to the 

small performance improvement.  

 Average 
Predictive 
Speedup 

Geometric Standard 
Deviation of Brute-Force 

Geometric Standard 
Deviation of Predictive 

Multi-Synchronous 12.310 % 1.111 1.030 

NoC-Synchronous 3.248 % 1.035 1.010 

Single-Synchronizer 1.684 % 1.019 1.006 

Table 2: Average Speedup Due to Predictive Synchronizers 
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5.3 Reliability Calculations 

Predictive synchronizers transcend the previously unavoidable tradeoff between 

synchronizer latency and reliability by moving brute force synchronization off the critical path. 

For this reason, there is a significant reliability benefit when using predictive synchronizers. As 

discussed in the introductory section on synchronizers, the MTBF of a single brute-force 

synchronizer is a factor of the physical synchronizer flip-flop properties (τ and Tw), the number of 

flip-flop stages (which determines S), and the frequencies of both clock domains (FD and FC). If 

we define a SoC as failing if even one of its many synchronizers fails, then basic probability tells 

us that the MTBF of a full SoC is the MTBF of a single synchronizer divided by the number of 

synchronizers on-chip (K). 

𝑀𝑇𝐵𝐹(𝐾𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟𝑠) =  
𝑒

𝑆
𝜏

𝑇𝑤 ∗ 𝐹𝐷 ∗ 𝐹𝐶 ∗ 𝐾
=  

𝑀𝑇𝐵𝐹(1)

𝐾
 

Equation 4: MTBF of Multi-Synchronizer SoC 

So, when considering the reliability of a full system, it is necessary to know how many 

synchronizers there are in the full system. Firstly, both commonly used asynchronous FIFO CDIs 

and predictive CDIs use brute force synchronizers. Standard asynchronous FIFO CDI’s contain 

two synchronizers per CDI. These synchronizers are used to pass the head and tail of the 

asynchronous FIFO between clock domains. Meanwhile, the predictive circuits used in the EOPS 

and Locally Controlled CDI contain 16 brute-force synchronizers.  

Given that a high MTBF is desirable for the SoC, and that MTBF can be increased by 

reducing the number of synchronizers on chip, it might seem that the asynchronous FIFO (with 

less synchronizers per CDI) would always beat the predictive CDI. This is not the case however, 

since MTBF is also a factor of the number of stages used in the brute-force synchronizers. Not 

only does the number of stages affect MTBF exponentially rather than linearly, it can be set 
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arbitrarily high in predictive CDI’s since they are off the critical path (and therefore the 

additional latency is irrelevant to the latency of the CDI). 

CDI Type NoC Type 
One Synch 
MTBF in years 

Total Synchs 
in System 

System MTBF 
in years 

Brute Force Multi-Synchronous 1,492 448 3.33 E 0 

Brute Force NoC-Synchronous 1,492 256 5.83 E 0 

Brute Force Single-Synchronizer 1,492 128 1.17 E 1 

Predictive Multi-Synchronous 32,858,305 3584 9.17 E 3 

Predictive NoC-Synchronous 32,858,305 2048 1.60 E 4 

Predictive Single-Synchronizer 32,858,305 1024 3.21 E 4 

Table 3: 64 Core System Level MTBF 

A quantitative study on SoC MTBF has been completed, and the results are shown in 

Table 3. Tau and Tw values taken from on-chip measurements by Salomon Beer and Ran Ginosar 

[58]. The system considered contained 64 cores, frequency values were set to 1GHz, and the 

number of stages for brute forces synchronizers was 4, and for predictive synchronizers 5 stages 

were used. 5 stages were simply chosen by adding an arbitrary additional stage, since predictive 

synchronizers need not limit their number of stages due to latency constraints. It can clearly be 

seen that the exponential impact of more stages allows the NoCs containing predictive 

synchronizers to have an MTBF many orders of magnitude higher than that of brute-force FIFO 

systems. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 This thesis has covered significant material in the areas of NoCs and synchronization. 

Preparation in the form of synchronizer flip-flop and NoC simulation has provided a strong 

platform for the novel work. After thorough analysis it was concluded that predictive 

synchronization was necessary to bypass the latency-reliability tradeoff required by brute-force 

synchronizers. Since the Even Odd Predictive Synchronizer was incompatible with DVFS, novel 

predictive circuits were created and implemented in Verilog RTL to solve this problem. A novel 

CDI was also created which could take advantage of these new DVFS capable circuits as well. To 

see what performance and reliability impact could be achieved by switching to predictive 

synchronizers, Graphite simulations and reliability calculations were completed.  

 The results of this study show that it is well worth adding predictive synchronization to 

modern SoCs. Roughly 12% performance improvement can be achieved if using a Multi-

Synchronous NoC, and other NoCs also show some small improvement. Regardless of what type 

of NoC is used, the reliability improvements are many orders of magnitude, making predictive 

synchronizers particularly helpful in large scale designs. With all of these benefits it is important 

to take predictive synchronizers seriously, even if they have a reputation for being too exotic. 

The next step to allowing predictive synchronizers to go main-stream is to address weaknesses 

associated with clock jitter and skew. With this last piece in place, predictive synchronization will 

be able to help processors become significantly faster and more reliable. 
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