
Marquette University
e-Publications@Marquette

Dissertations (2009 -) Dissertations, Theses, and Professional Projects

Dynamic Lifetime Reliability and Energy
Management for Network-on-Chip based Chip
Multiprocessors
Milad Ghorbani Moghaddam
Marquette University

Recommended Citation
Ghorbani Moghaddam, Milad, "Dynamic Lifetime Reliability and Energy Management for Network-on-Chip based Chip
Multiprocessors" (2018). Dissertations (2009 -). 834.
https://epublications.marquette.edu/dissertations_mu/834

https://epublications.marquette.edu
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses

DYNAMIC LIFETIME RELIABILITY AND ENERGY MANAGEMENT

FOR NETWORK-ON-CHIP BASED CHIP MULTIPROCESSORS

by

Milad Ghorbani Moghaddam, B.S., M.S.

A Dissertation Submitted to the Faculty of the

Graduate School, Marquette University,

in Partial Ful�llment of the Requirements for

the Doctor of Philosophy

Milwaukee, Wisconsin

December 2018

ABSTRACT

DYNAMIC LIFETIME RELIABILITY AND ENERGY MANAGEMENT
FOR NETWORK-ON-CHIP BASED CHIP MULTIPROCESSORS

Milad Ghorbani Moghaddam, B.S., M.S.
Marquette University

In this dissertation, we study dynamic reliability management (DRM) and dynamic
energy management (DEM) techniques for network-on-chip (NoC) based chip mul-
tiprocessors (CMPs). In the �rst part, the proposed DRM algorithm takes both
the computational and the communication components of the CMP into consider-
ation and combines thread migration and dynamic voltage and frequency scaling
(DVFS) as the two primary techniques to change the CMP operation. The goal is
to increase the lifetime reliability of the overall system to the desired target with
minimal performance degradation. The simulation results on a variety of bench-
marks on 16 and 64 core NoC based CMP architectures demonstrate that lifetime
reliability can be improved by 100% for an average performance penalty of 7.7%
and 8.7% for the two CMP architectures. In the second part of this dissertation,
we �rst propose novel algorithms that employ Kalman �ltering and long short
term memory (LSTM) for workload prediction. These predictions are then used as
the basis on which voltage/frequency (V/F) pairs are selected for each core by an
e�ective dynamic voltage and frequency scaling algorithm whose objective is to re-
duce energy consumption but without degrading performance beyond the user set
threshold. Secondly, we investigate the use of deep neural network (DNN) models
for energy optimization under performance constraints in CMPs. The proposed
algorithm is implemented in three phases. The �rst phase collects the training data
by employing Kalman �ltering for workload prediction and an e�cient heuristic
algorithm based on DVFS. The second phase represents the training process of the
DNN model and in the last phase, the DNN model is used to directly identify V/F
pairs that can achieve lower energy consumption without performance degradation
beyond the acceptable threshold set by the user. Simulation results on 16 and 64
core NoC based architectures demonstrate that the proposed approach can achieve
up to 55% energy reduction for 10% performance degradation constraints. Sim-
ulation experiments compare the proposed algorithm against existing approaches
based on reinforcement learning and Kalman �ltering and show that the proposed
DNN technique provides average improvements in energy-delay-product (EDP) of
6.3% and 6% for the 16 core architecture and of 7.4% and 5.5% for the 64 core
architecture.

i

ACKNOWLEDGEMENTS

Milad Ghorbani Moghaddam, B.S., M.S.

I would like to sincerely thank my advisor Dr. Cristinel Ababei who was the
most impactful person throughout my Ph.D. study at Marquette University. I will
always be grateful for his advice and encouragement, which were essential to the
completion of this dissertation. I would like to thank him not only for helping
me with his tremendous academic support, knowledge, trust and encouragement,
but also for sharing his compassionate advice and experience that motivated me
to take more professional steps in my future life. I cannot thank him enough for
all his support and devotion throughout my study.

I would also like to thank Dr. Richard Povinelli, Dr. Henry Medeiros and
Dr. Iqbal Ahmed for serving on my committee, reviewing my dissertation and
providing very helpful suggestions that enriched the quality of my dissertation.

My gratitude expands to Dr. Fabian Josse, Dr. Edwin Yaz, Dr. Ma-
jeed Hayat, Dr. James Richie, Dr. Susan Schneider, Mrs. Katie Tarara and all
the members of the department of Electrical and Computer Engineering for their
guidance and support during my study at Marquette University.

I would like to express my gratitude to all my friends at Marquette Uni-
versity, specially my colleagues at Marquette Embedded Systems Lab (MESSLab):
Wenkai Guan, Nathan Zimmerman, Kellen Carey, Ian Barge, Shaun Duerr and
Alim Ahsan for all their help and possitive feedback.

I would also like to thank Dr. Kiarash Bazargan, in the department of
Electrical and Computer Engineering of University of Minnesota, whose support,
guidance and recommendations opened a new window to my future.

Most importantly, I'm grateful beyond words to my mother and father
and my brothers, Mehrad and Masoud, who are the most important people in my
world and I cannot thank them enough for all their support, positive thoughts,
patience and understanding in each moments of my life. I sincerely dedicate my
dissertation to them.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . i

TABLE OF CONTENTS . ii

LIST OF TABLES . iv

LIST OF FIGURES . v

LIST OF NOMENCLATURE AND ACRONYMS x

CHAPTER 1 Problem Statement, Objective and Contributions . 1

1.1 Problem statement . 1

1.2 Objectives . 3

1.3 Related Work . 3

1.3.1 Reliability Management Techniques 4

1.3.2 Energy Management Techniques 8

1.4 Contributions . 13

1.4.1 Dynamic Reliability Management 13

1.4.2 Dynamic Energy Management 14

1.5 Dissertation Organization . 16

1.6 Related Publications . 17

CHAPTER 2 Background . 19

2.1 Aging Mechanisms . 19

2.1.1 Time Dependant Dielectric Breakdown 19

2.1.2 Negative bias temperature instability 21

2.2 Reliability Estimation Tool . 23

2.3 Kalman Filtering . 26

2.4 Neural Networks . 29

2.4.1 Feed-Forward Neural Networks 30

2.4.2 Recurrent Neural Networks 32

2.4.3 Long Short Term Memory 33

2.4.4 Deep Neural Networks . 33

iii

CHAPTER 3 Proposed Dynamic Reliability Management 36

3.1 Introduction . 36

3.2 DVFS based Technique . 36

3.3 Hybrid DVFS and Thread Migration based Technique 40

3.4 Simulation Results . 46

3.4.1 Simulation Setup . 47

3.4.2 DVFS based Technique . 50

3.4.3 Hybrid DVFS and Thread Migration based Technique . . . 53

3.5 Discussion . 56

CHAPTER 4 Proposed Dynamic Energy Management 62

4.1 Introduction . 62

4.2 Delayed Instruction Count Performance Estimation 62

4.3 Kalman Filtering based Technique 68

4.4 LSTM based Technique . 71

4.5 Dynamic Energy Management using DNN 73

4.5.1 Phase 1: Collection of Training Data 77

4.5.2 Phase 2: Training of the DNN Model 80

4.5.3 Phase 3: Prediction Using the DNN Model 81

4.6 Simulation Results . 81

4.6.1 Simulation Setup . 82

4.6.2 Kalman Filtering based Technique 83

4.6.3 LSTM based Technique . 93

4.6.4 Dynamic Energy Management using DNN 94

4.7 Discussion . 104

CHAPTER 5 Conclusion and Future Work 112

REFERENCES . 115

iv

LIST OF TABLES

3.1 Architectural con�guration parameters. 50

3.2 Summary of simulations shown in Fig. 3.9 − Fig. 3.11 53

4.1 Architectural con�guration parameters. 82

4.2 Average EDP improvement of data from Fig. 4.15.c and Fig. 4.16.c . . 94

4.3 Average EDP improvement of data from Fig. 4.17.c and Fig. 4.18.c . . 97

4.4 Average improvement in terms of EDP values. 106

v

LIST OF FIGURES

1.1 A taxonomy of approaches employed in energy and reliability manage-
ment techniques. 4

2.1 Time dependent dielectric breakdown process. 21

2.2 Negative bias temperature instability process. 22

2.3 Block diagram of the Monte Carlo simulation based time to failure
evaluation methodology for CMPs. 24

2.4 Pseudocode description of the Monte Carlo simulation implemented by
the reliability estimation, REST tool. 26

2.5 Kalman �lter predict phase and update phase procedure. 29

2.6 Typical neural network architecture. 31

2.7 Simpli�ed diagram of a recurrent neural network. 32

2.8 Simpli�ed diagrams of three di�erent cells (a) feedforward NN cell, (b)
RNN ell, and (c) LSTM cell. 34

2.9 A deep neural network is a neural network with many hidden layers. . . 35

3.1 (a) Block diagram of complete �ow to statically estimate lifetime re-
liability (measured as MTTF) of the whole system as combination of
cores plus network-on-chip, (b) The proposed dynamic reliability man-
agement scheme uses DVFS controller to set voltages and frequencies
of individual tiles in the next control period such that current MTTF
approaches target MTTF. The CMP systems is composed of a number
of tiles. A tile is the combination of one core and one NoC router. . . . 38

3.2 Pseudocode of the DVFS based DRM scheme. This control algorithm
is implemented as a callable routine inside the Gem5 simulation frame-
work. Parameters δ and γ can be set by user to allow for calibration of
how aggressive the DRM policy is. 40

3.3 The proposed dynamic reliability management algorithm has two com-
ponents, the MTTF online estimator and the DRM controller. The
CMP is composed of a number of tiles and each tile contains a core and
a NoC router. 41

vi

3.4 Plot showing the amount of MTTF improvement using a thread migra-
tion based DRM scheme over the reference case when no DRM scheme
is used at all. A tile is denoted as cold if its temperature T < 40◦C, as
mild if 40◦C ≤ T ≤ 60◦C, and hot if T > 60◦C. 44

3.5 Pseudocode of the proposed DRM algorithm. In our experiments, this
algorithm is implemented as a callable routine inside the Gem5 simu-
lation framework. Parameters δ, γ, and K can be set by the user to
allow for calibration of how aggressive the DRM strategy is. The thread
migration and DVFS techniques are described in Fig. 3.6 and Fig. 3.7.
The values 0.8 and 1.2 were found empirically to provide good results. . 45

3.6 Pseudocode of routine describing the thread migration technique called
by the proposed DRM algorithm from Fig. 3.5 47

3.7 Pseudocode of routine describing the DVFS technique called by the
proposed DRM algorithm from Fig. 3.5 47

3.8 Block diagram of the complete simulation framework to simulate a given
application benchmark and to estimate lifetime reliability, measured
as MTTF, of the entire system as combination of cores plus network-
on-chip. Note that when the REST tool is replaced by the neural
network MTTF estimator, supply voltages are also provided together
with temperatures as inputs to the estimator. 48

3.9 Gem5 with DVFS based DRM simulation of blackscholes benchmark. . 51

3.10 Gem5 with DVFS based DRM simulation of canneal benchmark. 52

3.11 Gem5 with DVFS based DRM simulation of bodytrack benchmark. . . . 52

3.12 Gem5 with DVFS based DRM simulation of dedup benchmark. 53

3.13 Simulation results for blackscholes benchmark on an architecture with
4 × 4 tiles (i.e., 16 cores). Similar results were obtained for the other
benchmarks. 55

3.14 Simulation results for cholesky benchmark on an architecture with 8×8
tiles (i.e., 64 cores). The MTTF of the reference case improves in the
second part of the ROI because the actual workload decreases (some
threads �nish much earlier) for this particular benchmark. 56

3.15 (a) Thermal pro�le of the 4× 4 CMP architecture running blackscholes
benchmark with no DRM algorithm, (b) Thermal pro�le of the same
architecture when the proposed DRM algorithm is used. The color-
coded temperature range is 20◦C (blue) to 120◦C. 57

vii

3.16 (a) Thermal pro�le of the 8 × 8 CMP architecture running cholesky
benchmark with no DRM algorithm, (b) Thermal pro�le when the pro-
posed DRM algorithm is used. 58

3.17 Summary of simulations results for 4×4 CMP architecture for a target
MTTF improvement of 100% (i.e., double lifetime). Each data point
is the average of all values obtained during the hold times or sampling
points illustrated in Fig. 3.13 for a given benchmark. 59

3.18 Summary of simulations results for 8×8 CMP architecture for a target
MTTF improvement of 100%. 59

4.1 Example utilized to illustrate the two di�erent average cycles per in-
struction, CPI and CPI ′, which are used to estimate the total execu-
tion time. 64

4.2 Example utilized to illustrate the estimation of total performance loss
(PL) so far, up to and including the currently completed control period
and just before the start of a new control period for a given core. . . . 65

4.3 Block diagram of the proposed DVFS based dynamic energy manage-
ment (DEM) scheme as implemented inside our custom Sniper simulator. 69

4.4 Pseudocode of the DVFS algorithm. This control algorithm is imple-
mented as a callable routine inside our modi�ed Sniper CMP simulator.
It corresponds to the block at the bottom in Fig. 4.3. The parameter
α is set by the user. 70

4.5 Block diagram of the DVFS based dynamic energy management scheme
as implemented inside our custom Sniper simulator. 72

4.6 Pseudocode of theLSTM based algorithm. This algorithm is imple-
mented as a callable routine inside our modi�ed Sniper CMP simulator.
The parameter γ is set by the user. 74

4.7 The proposed dynamic energy optimization algorithm switches to DNN
based prediction once the DNN model has been constructed. The
Kalman �ltering based controller block operates similarly to that in
Fig. 4.3. 75

4.8 Illustration of the three phases of the implementation and usage of the
DNN model. 77

4.9 Steps of the procedure to generate one training data point during one
control period in Phase 1. 78

viii

4.10 Plots that show the comparison between the predicted values of the CPI
and the instruction count for the next control period and the actual
values that occurred and were observed at the end of the next control
period. These traces are for a sample core (out of 64 cores) during the
execution of radiosity benchmark. 84

4.11 Simulation results for a sample run of the barnes benchmark. The x
axis represents the index of the control periods. Note that when the
frequency is higher, the total execution time, measured as walltime, is
shorter and therefore the total number of control periods is smaller. . . 87

4.12 Energy reduction percentages. (a) 16 core architecture with 4x4 mesh
NoC. (b) 64 core architecture with 8x8 mesh NoC. 88

4.13 Performance loss percentages. (a) 16 core architecture with 4x4 mesh
NoC. (b) 64 core architecture with 8x8 mesh NoC. 89

4.14 Energy Delay Area Product (EDAP) percentages. (a) 16 core archi-
tecture with 4x4 mesh NoC. (b) 64 core architecture with 8x8 mesh
NoC. 90

4.15 Simulation results for the 16 core CMP: (a) energy reduction percent-
ages, (b) performance degradation percentages, and (c) EDP improve-
ment percentages. Comparison is done versus the case when no DEM
is used. 91

4.16 Simulation results for the 64 core CMP: (a) energy reduction percent-
ages, (b) performance degradation percentages, and (c) EDP improve-
ment percentages. Comparison is done versus the case when no DEM
is used. 92

4.17 Simulation results for the 16 core CMP: (a) energy reduction percent-
ages, (b) performance degradation percentages, and (c) EDP improve-
ment percentages. Comparison is done versus the DEM algorithm that
uses Kalman �ltering for prediction from Sec. 4.3. 95

4.18 Simulation results for the 64 core CMP: (a) energy reduction percent-
ages, (b) performance degradation percentages, and (c) EDP improve-
ment percentages. Comparison is done versus the DEM algorithm that
uses Kalman �ltering for prediction from Sec. 4.3. 96

4.19 CPI and instruction count values collected during step 1. 100

4.20 Frequency values calculated in step 2 from Fig. 4.9. 101

4.21 Topologies of the DNN models for a) 16 core CMP architecture and b)
64 core CMP architecture. 102

ix

4.22 Comparison of the predicted frequencies by the DNN model to those
calculated by the Kalman �ltering technique. 104

4.23 Comparison of the proposed DNN model based energy optimization
algorithm vs. no optimization at all for 16 core CMP. (a) percentage of
energy reduction, (b) percentage of performance degradation, and (c)
percentage of EDP improvement. 108

4.24 Comparison of the proposed DNN model based energy optimization
algorithm vs. no optimization at all for 64 core CMP. (a) percentage of
energy reduction, (b) percentage of performance degradation, and (c)
percentage of EDP improvement. 109

4.25 Comparison of the proposed DNN model based energy optimization
algorithm against the RL and the Kalman �ltering based approaches
for 16 core CMP. (a) percentage of energy reduction, (b) percentage of
performance degradation, and (c) percentage of EDP improvement. . . 110

4.26 Comparison of the proposed DNN model based energy optimization
algorithm against the RL and the Kalman �ltering based approaches
for 64 core CMP. (a) percentage of energy reduction, (b) percentage of
performance degradation, and (c) percentage of EDP improvement. . . 111

x

LIST OF NOMENCLATURE AND ACRONYMS

Acronym De�nition

ANN: Arti�cial Neural Network.

CMP: Chip Multiprocessor.

CPI: Cycles per Instruction.

DBN: Deep Belief Network.

DEM: Dynamic Energy Management.

DIC: Delayed Instructions Count.

DNN: Deep Neural Network.

DRM: Dynamic Reliability Management.

DVFS: Dynamic Voltage and Frequency Scaling.

EDAP: Energy Delay Area Product.

EDP: Energy Delay Product.

KNN: K-Nearest Neighbor.

LSTM: Long Short Term Memory.

MC: Monte Carlo.

MTTF: Mean Time To Failure.

NBTI: Negative Bias Temperature Instability.

NN: Neural Network.

NoC: Network-on-Chip.

PUE: Power Usage E�ectiveness.

RBM: Restricted Bultzman Machine.

REST: Reliability Estimation Tool.

xi

RNN: Recurrent Neural Network.

ROI: Region of Interest.

SVM: Support Vector Machine.

TDDB: Time Dependent Dielectric Breakdown.

V/F: Voltage/Frequency.

WSC: Warehouse Scale Computer.

1

CHAPTER 1

Problem Statement, Objective and Contributions

This dissertation addresses new challenges in designing chip multiprocessors which

include lifetime reliability and energy consumption. It proposes e�ective solutions

based on novel ideas to address these challenges. In this chapter, the problem

statement and the main objectives are described in Sec. 1.1 and Sec. 1.2 re-

spectively. Sec. 1.3 brie�y discusses related work in area of lifetime reliability

and energy management for CMPs. The contributions to be drawn from this re-

search are then presented in Sec. 1.4. This chapter concludes with an outline and

organization of the remainder of the dissertation in Sec. 1.5.

1.1 Problem statement

Chip multiprocessors have become popular in most computing systems, including

desktop computers, portable devices, servers and datacenters also called warehouse

scale computers (WSCs). While adopting CMPs provides better computational

capability, there are new challenges and concerns for the designers as well.

A primary challenge that the designers face in this context is lifetime re-

liability which worsens with technology downscaling. Two of the most adverse

wearout or aging mechanisms in deep submicron technologies include time de-

pendent dielectric breakdown (TDDB) and negative bias temperature instability

(NBTI). The impact of these failure mechanisms has become increasingly adverse

due to the increased power densities and system complexity. Faster aging leads

2

to earlier performance degradation with eventual device breakdown and thus sys-

tem failure due to errors. The shift from singlecore to multicore processors has

somewhat alleviated the issue of increasingly large power densities. However, this

issue persists especially with the advent of chip multiprocessors that integrate tens

and hundreds of cores1 on the same chip; some cores must be shut o� to keep

power densities under control, thereby not utilizing fully the available computa-

tional power of chip multiprocessors. This is commonly referred to as dark silicon

problem. Consequently, researchers from both industry and academia recognize

that lifetime reliability is becoming a primary design concern and have been inves-

tigating methods to mitigate the negative impact of these aging e�ects in order to

increase the mean-time-to-failure (MTTF) of the devices and circuits. Moreover,

given that the most important factor through which these aging mechanisms a�ect

chips is the temperature, it is the chip multiprocessors' lifetime reliability that is

especially a�ected − because their operation temperatures have been increasing

due to the increased power densities.

On the other hand, also a big concern in CMPs is energy consumption,

which is desired to be minimized without a�ecting the achievable performance.

This is increasingly important due to the advent and wide spread of mobile devices

but also due to the increasingly large energy consumption footprint of datacenters.

Thus, we are interested in reducing energy consumption in mobile devices in order

to prolong battery life. Reducing energy consumption in datacenters reduces costs

and can have a bene�cial impact of the environment. For example, in 2013, U.S.

datacenters consumed an estimated 91 billion kilowatt-hours of electricity, enough

1It is predicted that actually future CMPs will integrate thousands of cores.

3

to power twice the households in New York City. By 2020, estimated consumption

will increase to 140 billion kilowatt-hours, costing American businesses $13 billion

per year in electricity bills and causing the emission of nearly 150 million metric

tons of carbon pollution annually [1]. According to the U.S. Energy Information

Administration, that is about 7% of total commercial electric energy consumption

and it is projected that this number will increase [2]. Therefore, improving energy

e�ciency is not only important for the cost to companies, but for the environmental

footprint of these WSCs as this computing domain rapidly expands [3]. Reducing

energy consumption in CMPs has the additional bene�t of reducing power dissi-

pation, which in turn lowers chip temperatures that have a bene�cial impact on

the lifetime reliability of these devices and systems.

1.2 Objectives

The main objective of this work is to provide more e�cient techniques to improve

the lifetime reliability and energy consumption of the future network-on-chip based

chip multiprocessors in order to have more reliable and cost e�cient servers, data

centers and portable devices.

1.3 Related Work

In this section, the previous work is discussed and classi�ed into two major cat-

egories. The techniques that focus on improving the reliability of the chip mul-

tiprocessors and the techniques developed to manage the energy consumption of

4

11/6/2018

1

55

Approaches

Static Dynamic

Guardbanding

Fault tolerance techniques

History prediction

Convex optimization

Game theory

Bayesian classification

K-nearest neighbor algorithm

Support vector machine

Multinomial Logistic regression

classifier

Neural Networks

Reinforcement learning

Kalman filtering

LSTM

DNN

Heuristic

This work

Figure 1.1: A taxonomy of approaches employed in energy and reliability man-
agement techniques.

the CMPs. Fig. 1.1 illustrates the main approaches and techniques that are em-

plyed in energy and reliability management in computation and communication

components of a processor. These techniques are described next.

1.3.1 Reliability Management Techniques

Generally, we can classify reliability oriented design methods into two categories.

The �rst category is that of static approaches, which address the problem of reliabil-

ity at design time. Static design methods include guardbanding and fault tolerance

techniques. For example, supply voltages are selected high enough to guarantee

5

correct functionality despite variation in threshold voltage or in temperature and

supply noise. In this way energy gained from downscaling is sacri�ced to com-

bat reliability problems. However, if this sacri�ce becomes too large, downscaling

may become detrimental [4]. Fault tolerance techniques are based on fault detec-

tion and recovery mechanisms, which require energy and area overheads. Previous

work employed fault tolerant techniques based on 1) error detection implemented

through coarse grained replication or redundancy [5�7], 2) failure prediction used

to take preventative measures to avoid, or at least mitigate the e�ects of device

failures [8�10], and 3) error masking [11]. Simulated annealing is used to optimize

both energy and reliability in [12]. A sequential quadratic programming based

approach is proposed in [13] to maximize the lifetime of a multiprocessor system

considering the electromigration e�ects in communication links. A wearout aware

schedulability analysis technique is introduced in [14] for real-time independent

tasks mapped to processor with dynamic voltage and frequency scaling capabili-

ties. A convex optimization based approach is proposed in [15] to maximize the

lifetime reliability of the cores of a multiprocessor system subject to electromi-

gration wearout. The study in [16] uses genetic algorithms to identify voltages

and frequencies of the cores of a multiprocessor system to maximize the lifetime

and minimize the soft-error susceptibility. The main challenge of this category

of methods is to reduce the energy and area overheads while reliability is still

improved.

The second category of reliability oriented design methods is that of dy-

namic approaches. The main idea of this class of approaches is to dynamically

6

monitor the system during runtime and by using either reactive or proactive tech-

niques to change the operation of the system such that reliability is improved.

Note that these approaches may use support from the �rst category of static ap-

proaches discussed in the previous paragraph. A two phase dynamic reliability

management algorithm to address various aging mechanisms is introduced in [17].

In the �rst phase, an application is pro�led to �nd the maximum performance

at which each hardware con�guration can run while still maintaining the desired

mean time to failure. In the second phase, the con�guration with the highest

performance and satisfying MTTF is selected for the remaining application's run.

Dynamic reliability banking is proposed in [18] to address aging due to electro-

migration. Reliability slack is introduced in [19] and used for dynamic reliability

management during periods of high processing demand. The authors of [20] ex-

ploit the natural variation in workloads to assign jobs to cores in a manner that

minimizes the impact of NBTI and TDDB on lifetime reliability. The authors

of [21] introduce Facelift, a technique to hide aging through aging-driven applica-

tion scheduling and to slow it down by applying voltage changes at key times. A

dynamic voltage and frequency scaling (DVFS) control and look-up table reliabil-

ity estimation based DRM scheme is introduced in [22] for singlecore processors to

address process variation aware oxide breakdown. The impact of job scheduling

based power management on reliability is investigated in [23]. A dynamic tile par-

tition algorithm is introduced in [24] to balance workload among active cores while

relaxing stressed ones. A system level HW/SW reliability management scheme

where a chip dynamically adjusts its own operating frequency and supply voltage

over time as the devices age due to NBTI is introduced in [25]. The authors of [26]

7

study a control theoretic approach that uses data from aging sensors to compute

the wearout degradation and to maximize the lifetime of homogeneous multicore

systems. The same authors introduce a complete software implementation, work-

ing on a real mobile hardware platform, of a workload-aware dynamic reliability

management technique to address TDDB wearout [27]. A reinforcement learning

algorithm is proposed in [28] to optimize the lifetime of a multicore system by

controlling the average temperature and thermal cycling. While the majority of

previous work focus with their reliability oriented design methods only either on

the computational portion of the system (i.e., singlecore or multicores) or on the

communication component (i.e., buses or networks-on-chip), the authors of [29]

concentrate on the combination of both. They use a neural network based relia-

bility estimator and thread migration for dynamic reliability management of chip

multiprocessors. The study in [30] introduces a wearout-decelerating scheme to

mitigate the impact of NBTI and hot-carrier injection (HCI) in NoCs. Online

adaptive aging-aware routing algorithm to avoid highly aged routers in NoCs was

studied in [31]. The study in [32] presents a reliability management solution for

dark silicon chips. The solution considers soft errors, process variations, and the

thermal design power constraint. Simulation results were reported for 80x80 grid

cells chips of LEON3 processors. This work is further extended in [33]. The same

research group proposed in [34] a run-time approach that harnesses dark silicon to

decelerate and balance temperature-dependent aging. Their solution also consid-

ered variability to improve the system performance for a given lifetime. They focus

on NBTI and did not report if the communication among cores is via the NoC.

8

Furthermore, the study in [35] proposed a process variation- and aging-aware dy-

namic hierarchical mapping solution to maximize lifetime reliability of manycore

systems while satisfying performance, power, and thermal constraints. The au-

thors reported improved system lifetime reliability by up to 2 years for 64-core and

256-core systems. For discussion of additional reliability studies, we kindly refer

the reader to the recent survey in [36].

1.3.2 Energy Management Techniques

Energy optimization in single and multicore processors received a lot of attention

in the previous literature. The most popular techniques utilized by previous opti-

mization solutions include DVFS, job scheduling and task migration. Among all

these methods, DVFS has been the most e�ective one, since power consumption

is related to the clock frequency and the square of the voltage supply, and energy

consumption is the product of power consumption in time. Lowering only the

clock frequency of a core helps to reduce the average power consumption for a

given application while the total energy consumption remains the same to execute

the application. Reducing the average power consumption in turn lowers the chip

temperature, however, at the expense of longer execution times for the application.

Lowering the supply voltage helps to reduce the total power consumption and this

helps in turn to reduce the total energy consumption that is needed for the execu-

tion of a given application. DVFS changes both voltage and frequency dynamically

and can be used to exploit both above bene�ts. However, it usually comes at the

price of performance degradation due to frequency throttling. In the case of mul-

ticore processors, per-core DVFS is not yet widely supported (Intel Haswell-EP

9

and Samsung Exynos processors are said to support it). However, many recent

studies have shown the bene�ts of per-core or per-cluser-of-cores DVFS capabili-

ties [37�42]. Our work is under the assumption that such per-core DVFS may be

possible in the future multicore processors and it is under this assumption that

we implement and test the proposed ideas using the Sniper system simulator. All

these techniques are used as primary control mechanisms to drive the operation

of processors toward low energy consumption and such that performance is not

signi�cantly degraded. The control decisions are made based on estimations or

predictions of the energy or other related variables in a reactive or proactive man-

ner as part of the algorithm or strategy that implements the optimization solution.

System monitoring and decision making are usually done periodically, at intervals

called control periods or epochs. It is the prediction mechanism that di�erentiates

the impact of a given energy optimization solution.

Previous work has employed a variety of methods including machine learn-

ing [43�45], game theory [46], and convex optimization [47] to �nd the optimal

voltage-frequency pairs to manage the energy consumption of homogeneous (i.e.,

formed by identical cores) processors. More recently, heterogeneous processors

are exploited towards additional optimization opportunities [48�50]. For exam-

ple, the study in [49] proposed a joint temperature and energy management solu-

tion for heterogeneous multicore processors. Their heuristic uses both DVFS and

temperature- and performance-aware task assignment strategy that maximizes the

energy savings, while maintaining the temperature at safe levels.

10

Some of the previous studies focused on developing performance estima-

tion techniques for DVFS enabled devices and then used them as heuristics inside

the control mechanism to �nd the best voltage-frequency pairs to achieve energy

optimization, considering the performance constraints. For example, the study

in [51] presented a DVFS that automatically adapted the voltage and frequency

for energy savings at runtime in high performance computing clusters formed by

four Athlon64-based compute nodes connected via Gigabit Ethernet and another

four-node quad-CPU cluster based on the Celestica A8440 server. Similarly, the

study in [52] presented a performance-prediction model that is used by a per-CPU

DVFS algorithm that makes DVFS decisions based on the index of CPU inten-

siveness. They veri�ed the algorithm in a 9-node power-aware cluster formed by

dual core processors. Other DVFS algorithms applied at the cluster of CPU nodes

level include [53,54]. Some recent work also took a more holistic approach and ap-

plied DVFS to both CPU and the DRAM subsystem to achieve additional energy

savings [55, 56]. They reported for a server platform with an Intel i5-4590 quad-

core processor and 8 GB of main memory as much as 22% energy savings with a

low performance loss of only 4.8%. While the above previous performance-aware

studies focused mainly on the cores inside a CMP, recent studies focused also on

the interconnects and the shared last level caches (collectively called the uncore)

to estimate the performance of the CMP and use that in DVFS based energy op-

timization algorithms. For example, the study in [57] uses the number of cache

misses while the study in [58] uses the number of non-speculative reads that result

in last-level cache misses (called leading loads), and the study in [59] extends that

11

for variable memory access latencies. Similarly, the authors in [60] take into con-

sideration the o�-chip (L2) I-cache misses and o�-chip (L2) D-cache load misses

in their estimation processes. The study in [61] proposed a DVFS policy for the

uncore. The policy uses a technique similar to the TCP Vegas congestion control

and was shown to result in signi�cant energy savings.

Developing DVFS algorithm based on the future predicted workload has

been another strategy for energy reduction in some studies. Previous work em-

ployed di�erent types of predictors to periodically predict the next control period

workload for the device and then select a lower voltage/frequency (V/F) pair, if

the workload is lower than a threshold, to assure reducing energy consumption

while not exceeding the performance limitations. One of the simplest prediction

techniques is history prediction. Such predictions can be used to trigger frequency

throttling early on in upstream NoC routers in order to lower the rate at which

data is sent to downstream routers [62,63]. The study in [64] proposes a multino-

mial logistic regression-based classi�cation technique, that classi�es the workload

at runtime, into a �xed set of classes, which are then utilized to design a DVFS

algorithm. In [65], a multinominal logistic regression classi�er is built using a large

volume of performance counters for o�ine workload characterization. This classi-

�er is queried at run-time for a given application to predict the workload, and then

selection of the frequency and thread packing are done to maximize performance

under a given power budget. The techniques in [43,66,67] use online learning to se-

lect the most appropriate frequency for the processing cores based on the workload

characteristic of a given application. Another approach for the data classi�cation

or regression problems is the k-nearest neighbor algorithm (KNN) [68]. The study

12

in [69] uses supervised learning in the form of a Bayesian classi�er for processor

energy management. This framework learns to predict the system performance

from the occupancy state of the global service queue. The predicted performance

is then used to select the frequency from a pre-computed policy table. Reinforce-

ment learning (RL) based optimization algorithms are proposed in [28,70�72]. For

example, the study in [28] used RL to learn the relationship between the mapping

of threads to cores, clock frequencies, and temperatures, and employed that map-

ping information to develop better task mapping and DVFS solutions. The work

in [70] used RL to learn the optimal control policy of the V/F levels in manycores

and then exploited that to develop an e�cient global power budget reallocation

algorithm. The authors of [72] proposed an online DVFS control strategy based

on core-level modular reinforcement learning to adaptively select appropriate op-

erating frequencies for each individual core. Q-learning was used by the work

in [73] to develop an algorithm that identi�es V/F pairs for predicted workloads

and given application performance requirements. In the context of dynamic VFI

control in manycore systems with di�erent applications running concurrently, the

study in [74] investigated imitation learning and reported higher quality policies.

The authors of [75] develop an arti�cial neural network (ANN) based mech-

anism for network-on-chip power management. The o�ine training of the ANN

is augmented with a simple proportional integral (PI) controller as a second clas-

si�er. The ANN is used to predict the NoC utility, which is then used to make

DVFS decisions that lead to improvements in the energy-delay product. A neural

network (NN) based model with eight outputs for di�erent interface con�gurations

of a mobile device was presented in [68] to do classi�cation. Such classi�cation

13

is used as the basis for setting the mobile device into the con�guration state that

reduces energy consumption. It was reported that NN and support vector machine

(SVM) models provided the best prediction accuracy. The study in [76] proposed

a deep neural network (DNN) model to model plant performance and to predict

power usage e�ectiveness (PUE) in datacenters. Testing and validation at Google's

datacenters showed that the DNN model can be an e�ective approach to exploit

existing sensor data to model datacenter performance and to identify operational

parameters that improve energy e�ciency and reduce the PUE [76].

1.4 Contributions

The main contributions of this dissertation is to provide novel and e�cient tech-

niques for dynamic reliability and energy management that are described here in

more details.

1.4.1 Dynamic Reliability Management

The majority of the previous work su�ers from two limiting characteristics. On one

hand, previous studies focus separately on either the computational component of

a processor (i.e., single core or multicore) or the communication component, typi-

cally the network-on-chip. Not considering either of these components introduces

signi�cant errors, because both computational and communication units of mul-

ticore processors may become a reliability bottleneck. Such errors can mislead

any lifetime reliability optimization method and result into suboptimal solutions.

To address this issue, in [29, 83], we considered the study of CMPs in a uni�ed

14

manner, as the combination of both computational and communication units. We

found that when we do not consider for example the NoC unit in the reliability

optimization, the errors in MTTF values, as the most popular way to measure

lifetime reliability, may be o� by as much as 60%. On the other hand, usually only

one technique, such as DVFS, scheduling or thread migration, is used as the main

optimization technique. Indeed, employing only one technique can miss further

optimization opportunities that can be o�ered by hybrid approaches that typically

combine multiple cross-layer techniques, to construct algorithms that are more ver-

satile and applicable to a wider variety of benchmark applications and workloads.

It is our intent with this dissertation to address this issue. Speci�cally, we propose

and study a hybrid dynamic lifetime reliability management algorithm for CMPs

that combines thread migration and dynamic voltage and frequency scaling tech-

niques. The proposed algorithm uses a simple yet e�ective approach in order to

seamlessly use the two techniques to adaptively change the CMP operation such

that the lifetime reliability of the overall system is increased to the desired target

with minimal performance degradation.

1.4.2 Dynamic Energy Management

The majority of the previous approaches rely on the performance estimation and

workload prediction/classi�cation based techniques. The e�ectiveness of all these

methods is signi�cantly a�ected by the estimation, prediction or classi�cation ac-

curacy. In most cases, complex relationships exist across long histories of processor

usage that may not be detected by current techniques, which increases the num-

ber of mispredictions when using current prediction based solutions. While there

15

has been signi�cant work, it is not clear how far the existing DVFS based energy

optimization techniques are from the optimal solutions. We believe there is still

room for improvement, and generally, we see this as the main limitation of previous

work. As such, our main motivation is to investigate whether DNN models can be

of any help in pushing the frontier of energy optimization in chip multiprocessors.

This idea in turn is motivated by the immense success that DNN models have

had in the last decade in many application domains including speech and pattern

recognition, image processing, and datacenter operation.

First of all, we present a new heuristic algorithm for dynamic energy man-

agement of chip multi-processors that proposes a performance estimation based

technique called delayed instruction count (DIC) which increases the estimation

accuracy by eliminating the issues related to counting the misses and stalls. It also

employs the DVFS technique to identify the best V/F pairs for all cores of the

CMP. This is done using accurate and e�cient estimations of the average cycles

per instruction and the instruction count, which are done using a Kalman �ltering

as well as long short-term memory (LSTM) techniques. Then, we propose DNN

models and develop related self-adaptive supervised learning methods to identify

optimal V/F pairs in chip multiprocessors. Since the supervised learning needs

labeled data for the training process, the Kalman �ltering based DEM that we

developed earlier is used to collect workload characteristics and their correspond-

ing corrected V/F pairs as the labels for the training data. Using DNN models

o�ers the advantages of being able to handle heterogeneity and to capture deep

and complex relationships across long histories of processor usage. We see deep

16

learning techniques, such as the one we propose in this dissertation, as a new en-

abler in pushing the frontier of energy optimization in computing systems because

they have the ability to model and predict complex behavior and relations between

workload and hardware that otherwise currently is not possible.

1.5 Dissertation Organization

Chapter 2 presents background information on system failure mechanisms and

then describes a technique to estimate the reliability of a network-on-chip based

chip multiprocessor. In addition, the prediction/classi�cation methods including

Kalman �ltering, long short term memory and deep neural network that we later

use in the proposed dynamic energy management techniques are discussed next.

Chapter 3 describes the proposed techniques to dynamically manage the

reliability of the network-on-chip based chip multiprocessors. These techniques em-

ploy DVFS and thread migration wisely to achieve reliability improvement without

imposing signi�cant penalty on the performance. The e�ectiveness of these tech-

niques are then evaluated on various benchmarks via full-system simulations.

The proposed dynamic energy management techniques for CMPs are dis-

cussed in Chapter 4. The discussion starts with a mechanism to predict the perfor-

mance loss when using various V/F pairs instead of executing with the maximum

V/F pair all the time and then proposes e�ective techniques with the help of

Kalman �ltering, LSTM and DNN to �nd energy saving opportunities during the

execution time without degrading performance beyond the user set threshold. The

simulation results for each technique on di�erent benchmarks are then presented

17

in the rest of the chapter.

Finally, Chapter 5 overviews the �ndings of this dissertation and discusses

future work.

1.6 Related Publications

The topics discussed in this dissertation have been published in several conference

and journal papers as follows:

[77] M.G. Moghaddam and C. Ababei, �Dynamic lifetime reliability management

for chip multiprocessors,� IEEE Trans. on Multiscale Computing Systems, 2018.

[78] M.G Moghaddam, W. Guan and C. Ababei, �Dynamic energy minimization

in chip multiprocessors using deep neural networks,� IEEE Trans. on Multiscale

Computing Systems, 2018.

[79] C. Ababei, and M.G. Moghaddam, �A Survey of Prediction and Classi�ca-

tion Techniques in Multicore Processor Systems,� IEEE Trans. on Parallel and

Distributed Systems, 2018.

[80] M.G. Moghaddam, C. Ababei, "Dynamic energy management for chip mul-

tiprocessors under performance constraints", Microprocessors and Microsystems,

vol. 54, pp. 1-13, Oct. 2017.

[81] M.G Moghaddam, W. Guan and C. Ababei, �Investigation of LSTM based

prediction for dynamic energy management in chip multiprocessors,�IEEE Int.

Green and Sustainable Computing Conference (IGSC), 2017.

18

[82] M.G Moghaddam, �Dynamic energy and reliability management for NoC-

based chip multiprocessors, � IEEE Int. Green and Sustainable Computing Con-

ference (IGSC), 2017.

[83] M.G. Moghaddam, A. Yamamoto, and C. Ababei, �Investigation of DVFS

based dynamic reliability management for chip multiprocessors,� IEEE Int. Con-

ference on High Performance Computing & Simulation (HPCS), 2015.

19

CHAPTER 2

Background

In this chapter, we discuss the foundational concepts and materials used later in

this dissertation. In Sec. 2.1, we talk about the main mechanisms that lead to

device breakdown and system failure. Sec. 2.2 explains the reliability estimation

technique that we employ in our work. An e�ective prediction technique using the

Kalman �ltering is described in Sec. 2.3. In addition, in Sec. 2.4, neural networks

related concepts including feedforward neural network, recurrent neural network

(RNN), long short term memory and deep neural network are described that we

use later for accurate and fast prediction/classi�cation purposes.

2.1 Aging Mechanisms

Aging mechanisms including time dependent dielectric breakdown and negative

bias temperature instability are among the most increasingly adverse factors that

can lead to delay errors and device breakdowns. In this section, we brie�y describe

these mechanisms.

2.1.1 Time Dependant Dielectric Breakdown

The growth in demand for faster devices has lead to technology downscaling in

CMOS transistors. As a drawback, over the last years, the thickness of the gate

oxide in CMOS transistors has been decreased dramatically, consequently having

smaller threshold to electric �eld, which can cause dielectric breakdown in transis-

tors. The reason is that the oxide can no longer properly insulate the gate terminal

20

and causes the charges to tunnel through in it and eventually become trapped in

it, as shown in Fig. 2.1. The number of trapped charges in the oxide increases in

time and after getting to a certain amount, the oxide breaks down and conducts

the current from gate to substrate. Transferring current heats up the oxide and

causes it to conduct even more current and consequently this feedback loop will

eventually destroy the dielectric. Thus, due to having this characteristics, a de-

vice can su�er various soft breakdowns or a hard breakdown before the �nal hard

breakdown occurs [84].

So, by the increase in temperature, the tunneling current will increase and

consequently, the number of the trapped charges will increase as well. Therefore,

it can be deduced that as the device gets hotter, the MTTF of a device decreases

due to the TDDB mechanism.

As described in [17], the MTTFTDDB can be modeled by the following

expression:

MTTFTDDB ∝ ((
1

V
)a−bT × e

X+Y
T

+ZT

KT) (2.1)

where V is the Voltage supply, T is the temperature in Kelvin, k is the Boltzmann's

constant and a,b,X,Y , Z are model parameters that are determined experimentally.

These values are set in this model as a = 78, b = −0.81, X = 0, 759eV , Y =

−66.8eV , and Z = −8.37e−4eV based on the experimental data from [85].

21

6/21/2018

1

Time

Si

Si

Si

Gate

Gate

Gate

Oxide

Oxide

Oxide

Source Drain

Source Drain

Source Drain

Micro

leakage

current

Initial

Breakdown

Defect

Figure 2.1: Time dependent dielectric breakdown process.

2.1.2 Negative bias temperature instability

When negative voltages have applied to the gate in MOSFET devices (especially

in PMOS), it gradually degrades the performance in time. That is due to in-

creasing the threshold voltage of the transistor, degrading the drain current and

consequently degrading the speed [86, 87]. Experimental analysis shows that this

problem, which is known as negative bias temperature instability, increases expo-

nentially with rise in temperature [88, 89]. In other words, as described in [90],

22

10/11/2018

1

Gate

Si

Gate

Oxide

Source Drain

H
H H

H

SiSiSiSi

+

+

-Vg

p+ p+

n-

Hole in the channel

Figure 2.2: Negative bias temperature instability process.

this mechanism is characterized by a positive shift in the absolute value of the

PMOS, which occurs when a device is biased in strong inversion, but with a small,

or no lateral electric �eld. The shift is generally attributed to hole trapping in the

dielectric bulk, and/or to the breaking of Si-H bonds at the gate dielectric interface

by holes in the inversion layer, which generates positively charged interface traps

as shown in Fig. 2.2.

MTTF due to the NBTI mechanism is modeled as shown in 2.2, where A =

1.6328, B = 0.07377, C = 0.01, D = 0.06852, β = 0.3 and T is the temperature in

Kelvin as in [29], and K is Bultzman's cost.

MTTFNBTI ∝ ([ln(
A

1 + 2e
B
kT

)− ln(
A

1 + 2e
B
kT

− C)]
T

e
D
kT

)
1
β (2.2)

23

2.2 Reliability Estimation Tool

According to Sec. 2.1.1 and 2.1.2, the temperature of the silicon has a signi�cant

impact on the MTTF of the system. Since in a CMP, the temperature of the com-

ponents changes based on the assigned workload, we need a mechanism to estimate

the MTTF of a CMP with the given components' temperature. In this section we

brie�y introduce the lifetime reliability estimation tool (REST) described in [29],

which we use it later in section 3.

The REST tool is based on a Monte Carlo (MC) algorithm that works

with failure times for TDDB and NBTI aging mechanisms modeled as Weibull

distributions. What distinguishes Rest from the previous work is that both the

computational and communication components of the studied chip multiprocessor

system are considered in a uni�ed manner to compute the lifetime reliability (as

MTTF) of the CMP. The �ow chart of the MC algorithm is shown in Fig. 2.3.

The input to the REST tool is a list of temperatures for all routers and

blocks of each processor core as computed by HotSpot [105]. These temperatures

are utilized during each iteration of the MC algorithm to generate samples (or

instances) from the probability distributions associated with each router and core

block forming the CMP system. The generation of these samples is based on

equations in described in Sec. 2.1.1 and 2.1.2 that model the mean time to failure

for each type of wearout or aging mechanism and which have been derived by the

materials science and reliability engineering communities.

The pseudocode description of the MC algorithm is shown in Fig. 2.4. It

24

6/21/2018

1

ALU

Temp.

Cache

Temp.

Router

Temp.…

ALU tf

samples

Cache tf

samples

Router tf

samples
…

Whole CMP MTTF

calculator

MIN-MAX

Generate time to failure instances from distributions

with MTTF given by eq. 2.1, 2.2

MTTF of CMP

Repeat

REST

Figure 2.3: Block diagram of the Monte Carlo simulation based time to failure
evaluation methodology for CMPs.

consists of the following steps 1) for each failure mechanism run N = 105 simula-

tions: (a) for each block, generate failure time instances from the corresponding

distribution, and (b) use MIN-MAX analysis of these times according to the sys-

tem's con�guration to calculate the time to failure tf jmin during simulation iteration

j = 1, ..., N . 2) calculate the time to failure for the current failure mechanism as

tfl = (
∑N

j=1 tf
j
min)/N . 3) calculate the value of the overall MTTF or time to failure

of the CMP as the minimum among the failure times due to each failure mecha-

nism. We selected N = 105 because in our experiments we found that this number

is a good tradeo� between computational runtime and statistical signi�cance of

results.

25

During each MC simulation iteration, we need to generate ran-

dom instances of failure times for each subblock. This is realized by the

generate_instance(MTTFl) procedure called in line number 8 in Fig 2.4, which

draws samples fromWeibull distributions whose means are given by equations (2.3)

and (2.4). Because the Weibull cumulative distribution function is given by:

F (x) = 1− e−(x
α

)β (2.3)

xsample = α.[−ln(1− u)]
1
β (2.4)

where u = rand(0, 1) is a random number generated uniformly from the interval

[0, 1]. α and β are the scale and the shape factors characterizing the Weibull

distribution. In our implementation of generate_instance(MTTFl), we utilize a

value of β = 1.64 as in [91] while α is derived from the expression of the mean of

the Weibull distribution:

α =
MTTFl
Γ(1 + 1

β
)

(2.5)

where Γ(.) is the Gamma function.

26

Algorithm: Monte Carlo algorithm of REST tool
1: In: CMP �oorplan and temperature of all blocks
2: Out: Estimate of MTTF of whole CMP
3: for l← 1 to F do // F: number of failure wearout types
4: Calculate MTTFl using equations that model wearout mechanisms
5: for j ← 1 to N do // N = 105 Monte Carlo iterations
6: tf jmin ← INF // Initialize
7: for k ← 1 to S do // S: number of blocks
8: tfk ← generate_instance(MTTFl)
9: if tfk < tf jmin then // Generalization: MIN_MAX
10: tf jmin = tfk
11: end if
12: end for
13: end for

14: tfl =
∑N
j tfjmin
N

15: end for
16: return tf = MIN{tfl} // Estimate of MTTF of whole CMP

Figure 2.4: Pseudocode description of the Monte Carlo simulation implemented
by the reliability estimation, REST tool.

2.3 Kalman Filtering

In this section, we present a description of Kalman �ltering, which we use later in

this work as an estimation technique to estimate the future workload on the cores

of the CMP. The Kalman �lter uses a set of recursive equations and employs a

feedback control mechanism in a way that minimizes the variance of the estimation

error [92]. It is an adaptive �lter applied to predict the state x of a discrete-time

controlled process. Using the notation from [93], the process can be described by

the following state and output equations.

xn = Axn−1 +Bun−1 + wn−1 (2.6)

zn = Hxn + vn (2.7)

27

where A, B, and H are matrices. A is the state transition model applied to the

previous state xn−1. It relates the states at time steps n− 1 and n, in the absence

of process noise or control input. B relates the optional control input u to the state

x, and the matrix H relates the state x to the measurement or observation z. The

random variable wn−1 models the process noise assumed to be a white Gaussian

noise with zero mean and covariance Q, w ∼ N(0, Q). Similarly, the random

variable vn is the measurement noise also assumed to have a Gaussian distribution

with zero mean and covariance R, that is independent from Q, v ∼ N(0, R).

Then, we de�ne the a priori and a posteriori estimate errors as en̄ =

xn − x̂−n and en = xn − x̂n, where x̂
−
n is our a priori state estimate given the

knowledge on the process prior to step n and x̂n is our a posteriori state estimate

after measurement zn has been made. Based upon these estimates, the a priori

and a posteriori estimate error covariances are given by the following expressions:

P−n = E[e−n e
−T
n] (2.8)

Pn = E[ene
T
n] (2.9)

To estimate the states of a process with measurements, the Kalman �lter

employs a feedback control technique in which the state at some time is estimated

�rst and feedback is then provided in the form of noisy measurements. Thus, a

Kalman �lter is constructed in two phases. The �rst phase is called the predict

phase (also called the time update phase), and here the state x is predicted a priori

28

as x̂−n . The second phase is called the update phase (also called the measurement

update phase). This is where the predicted x̂−n is updated a posteriori as x̂n.

In the predict phase, the �lter �rst projects the state ahead from the

previous state x̂n−1 and certain input matrix Bun−1. The �lter then projects the

error covariance ahead with process noise covariance Q. The two equations that

accomplish that are:

x̂−n = Ax̂n−1 +Bun−1 (2.10)

P−n = APn−1A
T +Q (2.11)

Where P−n and Pn represent the estimated error covariance for a priori and a

posteriori errors, respectively, at time n. They are calculated as shown in equations

(2.8) and (2.9).

The update phase starts right after the predict phase with the measure-

ment of the actual state value at time n. The three equations utilized in this phase

are:

Kn = P−n H
T (HP−n H

T +R)−1 (2.12)

x̂n = x̂−n +Kn(zn −Hx̂−n) (2.13)

29

11/5/2018

1

෡𝑿ഥ𝒏෡𝑿ഥ𝒏=𝑨෡𝑿𝒏−𝟏 + 𝑩𝑼𝒏−𝟏
a priori

𝑷ഥ𝒏=𝑨𝑷𝒏−𝟏𝑨
𝑻 + 𝑸

a priori error covariance

෡𝑿𝒏=෡𝑿ഥ𝒏 + 𝑲𝒏 𝒁𝒏 −𝑯෡𝑿ഥ𝒏
a posteriori

𝑷𝒏= 𝑰 − 𝑲𝒏𝑯 𝑷ഥ𝒏
a posteriori error covariance

෡𝑿𝒏

𝑷𝒏

𝑲𝒏=𝑷ഥ𝒏𝑯
𝑻(𝑯𝑷ഥ𝒏𝑯

𝑻 + 𝑹)−𝟏

Gain

𝑷ഥ𝒏

෡𝑿𝒏−𝟏

𝑷𝒏−𝟏

Predict Phase Update Phase

𝑸
Process noise

covariance

𝑹
Measurement

noise covariance

Figure 2.5: Kalman �lter predict phase and update phase procedure.

Pn = (1−KnH)P−n (2.14)

The Kalman gain, Kn, is �rst computed by using the a priori estimate error

covariance P−n and measurement noise covariance R. It is chosen to maximize the

a posteriori error covariance Pn. The �lter then updates the current state vector

x̂n and a posteriori estimate error covariance Pn, using the Kalman gain. Fig. 2.5

summarizes how Kalman �lter works.

2.4 Neural Networks

Among di�erent machine learning models, the NN model is one of the most popular

ones. The idea behind NN is to model the human brain architecture to mimic the

learning process of the brain, but on computers. The human brain is modeled

30

as a network of millions of neurons connected to each other. The input signals

provided by the body sensors are given to some of the neurons. These neurons

process the signals and then pass their decisions to other connected neurons. It

is assumed that �nal decisions are made by the last connected neurons. The NN

model simpli�es this process by proposing an architecture composed of connected

layers of nodes and transfer functions as neurons. The nodes communicate with

each other through weighted signals whose weights are adjusted via a repetitive

computational process called learning.

2.4.1 Feed-Forward Neural Networks

The simplest and most popular NN architecture is the feed-forward neural network,

which is illustrated in Fig. 2.6. The information in this network is transferred from

one layer to the next in the forward direction only and no cyclic connections exist

between layers. Each node represents a neuron that receives its weighted inputs

from the nodes on the previous layer and calculates the output (i.e., decision) that

is passed to the next layer. The transfer function of the node sums together all the

decisions from the nodes in the previous layer and adds them to a bias value. The

result then is passed through an activation function to generate the output. This

process takes place in the forward direction through all layers up to the output

layer, which produces the �nal output decisions. The values of the weights and

biases are crucial as they a�ect the accuracy of the �nal decision. These values are

determined during the training process of the network.

In supervised training, for a set of known features and labels (i.e., inputs

31

6/22/2018

1

Input layer Hidden layer Output layer

𝑥1

𝑥2

…

ℎ2

ℎ𝑛𝑥𝑚

𝑦1

𝑦2

𝑦𝑘

ℎ1

… … …

𝑤11

𝑤22

𝑤𝑚𝑛

𝑤11

𝑤22

𝑤𝑛𝑘

+𝑏

Transfer function

Activation

function

…

…

Input Output෍

𝑗=1,𝑖=𝑛

𝑚

𝑤𝑗𝑖𝑥𝑖

Figure 2.6: Typical neural network architecture.

and their corresponding output decisions), the �nal decisions produced by the NN

model are compared to the labels by means of a cost function. Then, an optimizer

is employed to minimize the generated cost by updating the weights through the

network going in the backward direction as a backpropagation process. Usually,

the optimizer uses a gradient descent optimization approach [94]. The training

process is repeated on di�erent sets of features and labels, thereby determining

the optimized weights and biases. Once trained, the NN model can be utilized to

provide estimations on new data of interest. That is, the outputs of the �nal layer

can be used directly for classi�cation purposes.

32

6/22/2018

1

Input layer Hidden layer Output layer

𝑥1

𝑥2 ℎ2

ℎ𝑛𝑥𝑚

𝑦1

𝑦2

𝑦𝑘

ℎ1

… … …

Figure 2.7: Simpli�ed diagram of a recurrent neural network.

2.4.2 Recurrent Neural Networks

Because feedforward NNs do not have any cycles or loops, their temporal modeling

capability is rather limited. Therefore, in situations where the prediction of the

output must depend on long histories of the input feature sequence, the recurrent

neural networks can represent a better model. The RNN model includes cyclic

connections between di�erent layers as illustrated in the simpli�ed diagram from

Fig. 2.7. The challenge that the RNN model faces though is that it can be

di�cult to train standard RNNs to solve problems that require learning long-term

temporal dependencies. This is because the gradient of the loss function decays

exponentially with time; this is known as the vanishing gradient problem.

33

2.4.3 Long Short Term Memory

To address the issues that standard RNN models face, the long short-term memory

was proposed [96]. The LSTM network is an RNN that uses special units in

addition to the standard units. LSTM units include memory cells that can store

information for long periods of time in addition to special units called gates that

control the �ow of information. In other words, these gates are used to determine

what to store as well as when to allow reads, writes and erasures of information

into/from cells.

Fig. 2.8 shows a simpli�ed diagrams of the three di�erent cells used by

feedforward NNs, RNNs, and LSTM networks. It can be observed that the LSTM

cell is more complex. The added complexity is due to the input, forget and output

gates that decide whether to let new inputs in, erase the present cell state, and

let the state impact the output at a given time step. These gates are activated

through weighted signals connected to an activation function. These weighted

signals are adjusted during the learning process. That is, the cells learn when to

allow data to enter, leave or be deleted through the iterative process of making

guesses, backpropagation of errors, and adjustment of weights via the gradient

descent technique [97].

2.4.4 Deep Neural Networks

Structurally, a DNN model is just a feed-forward neural network with many hidden

layers [98], as illustrated in Fig. 2.9. The main di�erence compared to traditional

NNs is that DNNs have more hidden layers. That helps DNNs to capture more

34

11/7/2018

1

+ h(t)
𝒘

X(t)

+

Summation, (σ+ 𝑏𝑖𝑎𝑠)

Activation Function

𝒘: Input weight

Input Output

FFN Cell

(a)

11/7/2018

1

h(t)+
h(t-1)

X(t)
𝒘

Input
Output

Simple RNN Cell

+

Summation, (σ+ 𝑏𝑖𝑎𝑠)

Activation Function

𝒘: Input weight

(b)

+

+

+

+ +
In

p
u

t g
a

te

O
u

tp
u

t g
a

te

F
o

r
g

et g
a
te

LSTM Output
LSTM Input

Cell

X(t)

h(t-1)

h(t)

𝒘𝒐𝒘𝒇𝒘𝒊

𝒘

𝑪(𝒕) 𝑪(𝒕 − 𝟏)

+ Multiplication

Summation, (+ 𝑏𝑖𝑎𝑠)

Activation Function

𝒘: Input weight

𝒘𝒊: Input gate weight

𝒘𝒇: Forget gate weight

𝒘𝒐: Output gate weight

𝑪: Cell state

LSTM Cell

(c)

Figure 2.8: Simpli�ed diagrams of three di�erent cells (a) feedforward NN cell, (b)
RNN ell, and (c) LSTM cell.

complex nonlinear relationships [99].

An important development in the world of machine learning was when

Hinton and colleagues [100,101] showed that deep belief networks (DBNs) can serve

35

11/7/2018

1

… … …

Input

layer

Output

layer

Hidden

layer 1

… …

Hidden

layer 2

Hidden

layer N

…

𝑥1

𝑥𝑚

𝑥2

ℎ1
1

𝑦𝑘

𝑦2

𝑦1

ℎ 𝑛1
1 ℎ 𝑛𝑁

𝑁ℎ 𝑛2
2

ℎ2
1 ℎ2

2

ℎ1
2

ℎ2
𝑁

ℎ1
𝑁

Figure 2.9: A deep neural network is a neural network with many hidden layers.

as the basis for DNN pretraining. They showed that one can e�ectively pretrain

a DNN one layer at a time. That can be done by handling individual layers as

unsupervised restricted Boltzmann machines (RBM) separately. Then, the entire

stack of layers can be �ne-tuned using supervised backpropagation. Moreover,

the pretraining can also be followed by other discriminative learning techniques

to further �ne-tune the weights. During this process, a �nal layer is added to

the DNN [102]. The variables on this �nal layer are the desired outputs from the

training data. These outputs of the �nal layer can be used directly for classi�cation

purposes.

36

CHAPTER 3

Proposed Dynamic Reliability Management

3.1 Introduction

The idea of dynamic reliability management is to continuously monitor the CMP

system and then periodically make decisions to update or tune di�erent control

knobs with the goal of shifting the system's operation to a mode where lifetime

reliability is as close as possible to a desired value that is usually set by the user.

Such a target lifetime reliability is usually reached after several control periods

because of the inertia or delay it takes for di�erent portions of the CMP chip

to heat-up or cool-o�. The challenging aspect of any DRM scheme is to achieve

the above goal with minimal performance penalty and hardware overheads. In

this chapter, we propose e�ective dynamic reliability management algorithms that

employ dynamic voltage and frequency scaling and thread migration.

3.2 DVFS based Technique

In this section, our objective is to investigate the use of DVFS as a control knob

to dynamically control lifetime reliability of CMPs seen as the uni�ed combination

of both cores and networks-on-chip.

There are two important aspects regarding the construction of the DRM

scheme that need to be emphasized. First, in order to be able to use it in real time,

37

the DRM scheme must be very e�cient such that its runtime overhead is very small

and therefore performance is not signi�cantly a�ected by the time it takes 1) to

estimate current lifetime reliability and 2) to make decisions to update voltages

and frequencies. To estimate reliability statically, we adopt the lifetime reliability

estimation approach proposed in [29] because, as illustrated in Fig. 3.1.a, it treats

the CMP system as the combination of both cores and network-on-chip. In other

words, this approach does not rule out major components that can become lifetime

reliability bottlenecks, thereby minimizing estimation errors of MTTF of the whole

CMP system1. According to the reliability estimation approach, illustrated in Fig.

3.1.a, Gem5 full system simulator provides the core activity counters as well as the

router powers. These activity counters are then used by McPAT power calculator

[104] to calculate the cores' powers. HotSpot temperature calculator [105] takes the

cores' powers as well as the routers' powers and provides the temperatures. Having

the temperatures and the CMP �oorplan, REST lifetime reliability calculator tool

[106] estimates the MTTF of the CMP. Obviously, using a reliability estimation

approach as illustrated in Fig. 3.1.a dynamically is not practical due to the rather

long computational runtimes of the components in the �ow. But it is good to be

noted that in real systems, the temperatures would be directly collected by sensors

placed on the CMP chip. Thus, the only bottleneck in the �ow is the REST tool

which similar to [29]. Hence, we replace it with a neural network based estimator

as shown in Fig. 3.1.b. The NN based lifetime reliability estimator is very e�cient

because it translates to only the evaluation of a function that takes as input the

cores' temperatures (as indicated in Fig. 3.1.a) as well as speci�c weights that are

1Note that the vast majority of previous work focused on either cores as the computational
component or on network-on-chip or bus as the communication component.

38

10/8/2018

1

CMP Full

System

Simulation

Ruby

Garnet

NoC

Benchmark

CMP Arch,

Cores + NoC

McPAT

Cores Power

Estimation
HotSpot

Temperature

Estimation

Reliability

Estimation

Tool

Floorplan

Activity

counters

Routers

power

Cores

power

Temperatures MTTF

Replaced with neural network based MTTF estimator for DRM scheme

Gem5

(a)

10/9/2018

1

Neural

Network

Reliability

Estimator

DVFS

Controller

V2/f2

V1/f1 V3/f3

Temperatures
Next Voltages

and Frequencies

DRM

Current

MTTF

User set target MTTF

CMP= Cores + NoC

(b)

Figure 3.1: (a) Block diagram of complete �ow to statically estimate lifetime re-
liability (measured as MTTF) of the whole system as combination of cores plus
network-on-chip, (b) The proposed dynamic reliability management scheme uses
DVFS controller to set voltages and frequencies of individual tiles in the next con-
trol period such that current MTTF approaches target MTTF. The CMP systems
is composed of a number of tiles. A tile is the combination of one core and one
NoC router.

computed statically during the training process.

The second important aspect regarding the construction of the DRM

scheme is to ensure that lifetime reliability estimations are accurate (and therefore

39

the entire scheme to ultimately be accurate), we must include in such estimations

both cores and network-on-chip, because they are interdependent components of

the same system. This is precisely what we do in our DRM implementation. This

is very important because, as reported in [29], disregarding any of the two compo-

nents during lifetime reliability estimation is prone to errors that can be as high

as 60%, thereby signi�cantly misleading any technique that attempts to optimize

lifetime reliability.

The block diagram of the DRM scheme, represented in Fig. 3.1.b, is es-

sentially implemented as a control algorithm inside our customized Gem5 based

full system simulation framework. During a regular simulation of a given bench-

mark, for a given architecture of the CMP, information about the temperatures of

all the core components and routers of the network-on-chip is used as input into

the neural network based MTTF estimator. The projected or estimated MTTF is

compared to the desired target MTTF by the DVFS controller, which then decides

for each core whether the clock frequency must be throttled, increased, or left un-

changed. The logic behind the DVFS controller is simple: if the estimated current

MTTF is less than the target MTTF, then, throttle the frequency of the core to

the next lower frequency from the set of frequencies we work with (and lower its

supply voltage too); otherwise, raise the frequency to the next higher frequency

(and raise its supply voltage too); if the estimated current MTTF is within the

vicinity (dictated though a user set parameter δ) of the target MTTF, then keep

the same frequency for the core. The pseudocode of this control algorithm is shown

in Fig. 3.2.

40

Algorithm: DRM Scheme
1: In: Desired MTTFtarget; δ hysteresis bandwidth; γ maximum percentage of updated tiles in

a control period; core activity counters and routers power
2: Out: Frequencies and supply voltages for all tiles for next control period
3: Use neural network based MTTF estimator to �nd current MTTF of each tile and of whole

CMP
4: if MTTFCMP < MTTFtarget − δ then
5: Sort all tiles in increasing order of their MTTF
6: for i← 1 to γn do // n: number of tiles
7: if MTTFi < MTTFtarget − δ then
8: Switch down frequency and voltage of this tile
9: end if
10: end for
11: else if MTTFCMP > MTTFtarget + δ then
12: Sort all tiles in decreasing order of their MTTF
13: for i← 1 to γn do
14: if MTTFi > MTTFtarget + δ then
15: Switch up frequency and voltage of this tile
16: end if
17: end for
18: end if

Figure 3.2: Pseudocode of the DVFS based DRM scheme. This control algorithm
is implemented as a callable routine inside the Gem5 simulation framework. Pa-
rameters δ and γ can be set by user to allow for calibration of how aggressive the
DRM policy is.

3.3 Hybrid DVFS and Thread Migration based Technique

In this section we propose a novel algorithm to enhance the e�ciency of the pro-

posed DVFS based dynamic reliability management technique explained in 3.2 by

combining it e�ciently with the thread migration based DRM technique.

The block diagram of the proposed DRM approach is shown in Fig. 3.3.

Similar to the previous approach, the idea is to implement a control algorithm,

which continuously monitors the temperatures of all components of both compu-

tational and communication units of the CMP hardware platform. This algorithm

operates periodically according to a pre-de�ned control period and uses the input

41

12/26/2015

1

User set

target MTTF

CMP =

Cores + NoC

Temperatures Neural

Network

MTTF

Estimator

DRM

Controller

Current MTTF

Control commands for

DVFS and thread migration

DRM Algorithm (software)

Figure 3.3: The proposed dynamic reliability management algorithm has two com-
ponents, the MTTF online estimator and the DRM controller. The CMP is com-
posed of a number of tiles and each tile contains a core and a NoC router.

temperatures as well as the user set desired lifetime reliability target to gener-

ate output control commands that dictate how thread migration among tiles and

DVFS of individual tiles is done during the next control period. These commands

are generated such that lifetime reliability converges toward the desired target.

The algorithm is implemented in software and has two main components. The

�rst component estimates the current lifetime reliability and is implemented with

a neural network model. Its role is to produce an estimate of the MTTF of the

entire CMP as a way to quantify or measure the lifetime reliability.

The second component shown in Fig. 3.3 is the DRM controller. Its role is

to compare the currently estimated or projected MTTF to the desired target and

then decide for each tile (core + NoC router) whether the clock frequency must

be throttled, increased, or left unchanged or whether threads should be migrated

from hot to colder tiles. The control loop from Fig. 3.3 shares in philosophy with

42

any other closed-loop control theory algorithm. However, the context in which we

use elements of control theory is speci�c in this case to the optimization of lifetime

reliability for chip multiprocessors, which we handle in a uni�ed manner, as the

combination of both cores and network-on-chip. The neural network based estima-

tion is another speci�c element. The most challenging aspect of the proposed DRM

algorithm is to �gure out a way to make these decisions such that performance is

not a�ected too much. The next section elaborates on how that is done.

Here, we describe how we arrived to the implementation of the logic behind

the DRM controller from Fig. 3.3. First, based on our experience from Sec. 3.2

and previous study [29], we present several design insights.

We found that lifetime reliability can be more e�ectively improved using

DVFS based techniques, but at the expense of larger performance penalties when

compared to thread migration based techniques. This suggests that, for applica-

tions where performance degradation can be tolerated, DVFS based DRM schemes

can be used to trade performance for larger MTTF improvements. In contrast, for

applications where performance degradation is not acceptable, thread migration

based DRM schemes may be a better choice. However, thread migration is lim-

ited in its ability to signi�cantly improve MTTF even if it would be acceptable

to degrade performance. That is because no matter how much one would shu�e

jobs among tiles, if the application benchmark is computationally intensive and all

cores are heavily utilized, temperature pro�le will be always high anyways. The

problem is that we do not know at design time what kind of application bench-

marks will be run on a given instance of a chip multiprocessor. A subtle design

43

insight here is that the above statements about thread migration techniques are

true only when the application benchmark has a number of active threads that

is comparable to the total number of tiles of the CMP. That was the case in our

study from [29], where the used Parsec benchmarks were speci�cally compiled for

the duration of the region of interest to run a number of threads equal to the

number of cores. In such situations, a thread migration technique has little abil-

ity to improve the thermal pro�le via shu�ing threads between tiles because all

cores are already busy. However, if the application benchmark is compiled such

that the number of active threads is smaller than the number of available cores,

at any given time, then, thread migration can e�ectively be used to achieve sig-

ni�cant reliability improvements. While this may not seem realistic or desirable

because we would like all cores to do useful work at all times, applications that

are programmed to be running parallel on multicore platforms may have situations

when some of the tasks running on some cores �nish early compared to other tasks

running on other cores. Situations like that o�er the opportunity to be exploited

for example for thread migration. Moreover, with the increasing power dissipation

on multicore platforms, researchers are already talking about the new era of dark-

silicon [32,34,35]. That is, in dark-silicon, many cores would be shut-down or not

be utilized in order to keep the total number of cores executing at the same time

small enough and thus keep the temperatures low. These situations are examples

when the number of threads can be less than the number of cores.

To further understand the relation between the number of available free

cores (i.e., currently not having any running threads on them), which usually

have colder temperatures, and the amount of MTTF improvement when thread

44
Sketch

0

20

40

60

80

100

120

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15

M
T

T
F

 i
m

p
ro

v
em

en
t

(%
)

N
u
m

b
er

 o
f

co
re

s

Number of threads

Num of hot cores

Num of mild cores

Num of cold cores

MTTF improvement (%)

Page 1

Figure 3.4: Plot showing the amount of MTTF improvement using a thread migra-
tion based DRM scheme over the reference case when no DRM scheme is used at all.
A tile is denoted as cold if its temperature T < 40◦C, as mild if 40◦C ≤ T ≤ 60◦C,
and hot if T > 60◦C.

migration is used as the main technique for lifetime reliability management, we

conducted the following experiment using our modi�ed Gem5 based simulation

framework. This simulation framework will be described in more details later on.

We use an NoC based CMP with 16 cores to run several benchmarks that are

compiled to run during the ROI using a number of threads varied between 1 and

16. Thus we conduct 16 di�erent full system simulations for the given benchmark.

We use our own thread migration based DRM scheme [29] and the objective is to

see with how much MTTF of the whole CMP system can be improved. The results

of this experiment for the blacksholes benchmark are shown in Fig. 3.4.

The plot from Fig. 3.4 con�rms the intuition that more cold tiles avail-

able provide more opportunities to the thread migration DRM scheme to migrate

threads in the attempt to keep tile temperatures within a power pro�le that im-

proves the MTTF. In our simulations, we found that when the number of hot

cores is less than half of the total number of cores, the MTTF can be improved

45

Algorithm: DRM Controller
1: In: Desired MTTFtarget; δ hysteresis bandwidth; γ maximum percentage of updated tiles in

a control period; K repetition number
2: Out: Frequencies and supply voltages for all tiles and thread id running on each tile during

next control period
3: Read in temperatures of all tiles of the CMP
4: Use neural network based MTTF estimator to calculate MTTF of each tile and of the entire

CMP
5: if NumberColdT iles ≥ NumberHotT iles then
6: for next K control periods do
7: Use thread migration technique
8: end for
9: else
10: if 0.8 ·MTTFtarget < MTTFCMP < 1.2 ·MTTFtarget then
11: for next K control periods do
12: Use thread migration technique
13: end for
14: else
15: for next K control periods do
16: Use DVFS technique
17: end for
18: end if
19: end if

Figure 3.5: Pseudocode of the proposed DRM algorithm. In our experiments, this
algorithm is implemented as a callable routine inside the Gem5 simulation frame-
work. Parameters δ, γ, and K can be set by the user to allow for calibration of how
aggressive the DRM strategy is. The thread migration and DVFS techniques are
described in Fig. 3.6 and Fig. 3.7. The values 0.8 and 1.2 were found empirically
to provide good results.

via thread migration to larger extents than when most of the cores are hot. This

observation motivates us to implement the DRM controller as described in Fig.

3.5. The main idea of the controller is to 1) use as much as possible the thread

migration technique because it is the cheapest to implement and provides good

enough MTTF improvements with minimal performance penalty when there are

enough cold tiles available and 2) use the DVFS technique when thread migration

cannot be used.

The input into the DRM algorithm includes temperatures of all the major

modules of the tiles formed by cores (i.e., integer execution unit, caches, etc.) and

46

NoC routers of the assumed regular mesh NoC as well as individual tile supply

voltages. Temperatures and tile supply voltages are used by the neural network

estimator to estimate lifetime reliabilities (as MTTF) of each tile containing a core

and a router as well as of the overall CMP. Then, depending on the current number

of cold tiles and on the comparison between the currently estimated MTTF with

the desired target MTTF, the algorithm uses either the thread migration technique

or the DVFS technique.

The logic behind the thread migration technique (see Fig. 3.6) is that if

the currently estimated MTTF is less than the target MTTF, it moves threads

from hot to cold cores to more uniformly balance the overall temperature pro�le,

thereby increasing the current MTTF. In case that the estimated MTTF is higher

than the target, no thread is migrated. The logic behind the DVFS technique (see

Fig. 3.7) is that if the estimated current MTTF is less than the target MTTF,

then, throttle the frequency of the core to the next lower frequency from the set

of frequencies we work with (and lower its supply voltage too); otherwise, raise

the frequency to the next higher frequency (and raise its supply voltage too); if

the estimated current MTTF is within the vicinity (dictated though a user set

parameter δ) of the target MTTF, then keep the same frequency for the core.

3.4 Simulation Results

This section contains the simulation results for the proposed DRM techniques

discussed in Sec. 3.2 and 3.3.

47

Routine: Thread migration technique
1: if MTTFCMP < MTTFtarget − δ then
2: Sort all tiles in increasing order of their MTTF
3: for i← 1 to γn/2 do // n: number of tiles
4: if MTTFi < MTTFtarget − δ then
5: Migrate the thread in ith tile to the (n− i)th tile and vice versa
6: end if
7: end for
8: end if

Figure 3.6: Pseudocode of routine describing the thread migration technique called
by the proposed DRM algorithm from Fig. 3.5

Routine: DVFS technique
1: if MTTFCMP < MTTFtarget − δ then
2: Sort all tiles in increasing order of their MTTF
3: for i← 1 to γn do // n: number of tiles
4: if MTTFi < MTTFtarget − δ then
5: Switch down frequency and voltage of this tile
6: end if
7: end for
8: else if MTTFCMP > MTTFtarget + δ then
9: Sort all tiles in decreasing order of their MTTF
10: for i← 1 to γn do
11: if MTTFi > MTTFtarget + δ then
12: Switch up frequency and voltage of this tile
13: end if
14: end for
15: end if

Figure 3.7: Pseudocode of routine describing the DVFS technique called by the
proposed DRM algorithm from Fig. 3.5

3.4.1 Simulation Setup

Because we do not have access to NoC based CMP platforms with tens of cores

that we investigate in this study (CMP architectures, which often times are ex-

ploratory), we resort like the rest of the research community to the next best way

to test and validate our ideas, simulation tools. To test our DRM algorithm, we

have developed our own simulation framework, which is implemented on top of

the popular Gem5 full system simulation tool [103]. In addition, we integrate in

48

12/27/2015

1

GEM5

Activity counters

CMP Full

System

Simulation

Ruby

Garnet NoC

McPAT

Cores Power

Estimation

NoC

routers

power

HotSpot Temperature Estimation

Cores power

Floorplan

REST, Reliability Estimation Tool

Temperatures

MTTF

Replaced with

neural network

estimator

Application

Benchmark

CMP arch.

Cores + NoC

Real CMP

with integrated

temperature

sensors

Figure 3.8: Block diagram of the complete simulation framework to simulate
a given application benchmark and to estimate lifetime reliability, measured as
MTTF, of the entire system as combination of cores plus network-on-chip. Note
that when the REST tool is replaced by the neural network MTTF estimator,
supply voltages are also provided together with temperatures as inputs to the
estimator.

our simulation framework several other point tools as shown in the block diagram

from Fig. 3.8.

Gem5 tool is one of the most popular full system simulators capable of

simulating entire computing systems constructed around singlecore or multicore

processors. In the case of chip multiprocessors, the tool can model and simulate

NoC communication between cores. It provides detailed timing and performance

data and also integrates capabilities to estimate NoC router and link power con-

sumption. Hence, simulation of a given application benchmark is accurate and it

also accounts for the operating system. Unfortunately, as we mentioned earlier,

49

Gem5 tool does not output temperatures of cores, which in real processors would

be available through temperature sensors integrated on chip. Therefore, we must

use two additional tools in a sequence as shown in Fig. 3.8. Speci�cally, we �rst

use McPAT power calculator [104] to compute power consumption values for cores

based on the performance data (activity counters) from Gem5. Then, the power

values of all cores and NoC routers are fed into the HotSpot temperature calcu-

lator [105] to estimate temperatures. Finally, the temperature values are used as

input into the REST tool (described in Sec. 2.2) to estimate MTTF of each tile as

well as of the entire CMP. The default architectural con�guration parameters uti-

lized in our custom Gem5 based simulations, unless otherwise speci�ed, are shown

in Table 3.1.

We would like to emphasize that within a simulation framework like this,

we can perform any exploratory investigations for any chip multiprocessor archi-

tecture of interest. In addition, the simulation framework has the advantage of

being able to stretch the ROI execution time for a given application benchmark in

order to allow the complete sequence of processing steps illustrated in Fig. 3.8 to

be performed. In real life deployment of the proposed DRM algorithm though, this

sequence of steps would not be necessary because the on chip temperature sensors

would provide temperature information directly. This is indicated on the left hand

side of Fig. 3.8, where these processing steps would be shortcut by temperature

sensor readings. The same �gure shows that the REST tool from this simulation

setup would be replaced in real life deployment with a neural network based es-

timator described in detail, including training data generation and the training

process, in the previous work [29].

50

Table 3.1: Architectural con�guration parameters.
Parameter Value

Technology node 65nm
Frequencies 2GHz downto 1.4GHz, with 100MHz step
VDDs 1.1V downto 0.95V, with 25mV step
Core Alpha EV6 21264
Core CPU model Out of order (Detailed CPU)
Branch predictor 2 bit counter
Reorder bu�er 80-entries
L1 ICache 32KB
L1 DCache 64KB
L2 2MB
Network 2D regular mesh, 1 router per core
Tile �oorplan Router to the top of core ALU
Link bandwidth 32 bits
Routing algorithm XY
Number of virtual channels (VCs) 2

In all our simulations, we consider both the computational (i.e., cores)

and communication (i.e., network-on-chip) components in a uni�ed manner for the

purpose of the MTTF calculation.

3.4.2 DVFS based Technique

We conduct full system simulations on several Parsec benchmarks [107] to inves-

tigate the DRM scheme for two di�erent CMP architectures composed of 4 cores

and 16 cores respectively. Each of these architectures uses regular mesh NoCs:

2x2 and 4x4. In our simulations, we set as target or desired average MTTF a

value that is 100% longer than what it is when no DRM is applied, which is our

reference case. In other words, we are interested in doubling the average lifetime

of the investigated CMP architectures. Fig. 3.9 − Fig. 3.12 show the simulation

results for blackscholes, canneal, bodytrack, and dedup Parsec benchmarks run as

51

Sketch

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0 2 4 6 8

N
o

rm
al

iz
ed

 M
T

TF

Sampling points

DRM
Reference
Target

Page 1

Figure 3.9: Gem5 with DVFS based DRM simulation of blackscholes benchmark.

applications with 16 threads on a CMP architecture with 4x4 tiles. The plots show

only the period of time that covers the so called region of interest of the Gem5

simulation. For each simulation shown in these �gures, the Gem5 simulator is

stopped a number of times during the ROI (this number depends on the actual

length of the ROI and the selected control period discussed in the previous section)

to perform DRM and update the frequencies and voltages of each tile. Each of

these stop-times corresponds to a data point out of the sampling points shown on

the horizontal axis in Fig. 3.9 − Fig. 3.12.

We note that for some benchmarks the MTTF �uctuates around the target

MTTF. This is for example the case of bodytrack and dedup benchmarks. We

suspect that this is primarily due to the variation in the workload that each core

must do for these particular benchmarks during di�erent control periods inside

the ROI. This may also be as a result of the changes in dependencies created by

frequency throttling among jobs that are executed on di�erent cores. We noticed

52

Sketch

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

N
o

rm
al

iz
ed

 M
T

TF

Sampling points

DRM
Reference
Target

Page 1

Figure 3.10: Gem5 with DVFS based DRM simulation of canneal benchmark.

Sketch

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 2 4 6 8 10

N
o

rm
al

iz
ed

 M
T

TF

Sampling points

DRM
Reference
Target

Page 1

Figure 3.11: Gem5 with DVFS based DRM simulation of bodytrack benchmark.

that when all cores are loaded with work uniformly throughout the ROI (as is

the case of the blackscholes and canneal benchmarks), the overall MTTF is more

stable. Better calibration of the proposed DRM algorithm from Fig. 3.2 can help

address such �uctuations.

53Sketch

-0.5

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

N
o

rm
al

iz
ed

 M
T

TF

Sampling points

DRM
Reference
Target

Page 1

Figure 3.12: Gem5 with DVFS based DRM simulation of dedup benchmark.

Table 3.2: Summary of simulations shown in Fig. 3.9 − Fig. 3.11
Benchmark Avg. MTTF Perf. ROI exec. time Gem5

improv. penalty (reference run) sim. time

blackscholes 100% 11.8% 69 ms 6 h
canneal 100% 16.96% 103 ms 12 h
bodytrack 100% 9.3% 139 ms 9 h
dedup 100% 15.8% 376 ms 18 h

Table 3.2 summarizes the information presented in these plots. The per-

formance penalty includes the time spent to perform the reliability estimation as

shown in Fig. 3.1.b and to execute the DRM algorithm presented in Fig. 3.2.

3.4.3 Hybrid DVFS and Thread Migration based Technique

To evaluate our proposed approach, in our simulations, we conduct experiments on

several application benchmarks to investigate the proposed DRM algorithm for two

di�erent CMP architectures composed of 16 cores and 64 cores, respectively. Each

54

of these architectures use 4×4 or 8×8 regular mesh networks-on-chip with default

con�guration parameters described in Sec. 3.4.1. The values of the parameters

from Fig. 3.5 are δ = 10%, γ = 50%, and K = 4. These values were found

empirically to provide good results.

We report simulation results for several Parsec [107] and Splash2x [107]

application benchmarks. In our simulations, similar to Sec. 3.4.2 we set as target

or the desired average MTTF a value that is with 100% longer than what it is when

no DRM algorithm is used, which is our reference case. In other words, we are

interested in doubling the average lifetime of the investigated CMP architectures.

Fig. 3.13 shows the simulation results for blackscholes benchmark using

16 threads on a CMP architecture with 4×4 tiles. The plot shows only the period

of time that covers the region of interest of the Gem5 simulation. During each

simulation, the Gem5 simulator is halted a number of times during the ROI (this

number depends on the actual length of the ROI and the selected control period

discussed earlier in this chapter) to perform DRM and to update the frequencies

and voltages of each tile or to perform thread migration. Each of these stop-times

corresponds to a data point out of the sampling points shown on the horizontal

axis in Fig. 3.13. Note that in these �gures the horizontal axis represents sampling

points and not actual ROI execution time. That is because the actual length of

the ROI portion when DVFS technique is used becomes longer in absolute time

due to frequency throttling. This �gure shows that the proposed DRM algorithm

can bring and maintain the MTTF above or just beneath the desired objective

(within δ parameter from Fig. 3.5). It can be noted that MTTF �uctuates around

55

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

1 2 3 4 5 6 7 8 9 10

N
o
rm

al
iz

ed
 M

T
T

F

Sampling points

DRM

Reference

Target

Figure 3.13: Simulation results for blackscholes benchmark on an architecture with
4× 4 tiles (i.e., 16 cores). Similar results were obtained for the other benchmarks.

the target MTTF. That is because 1) of the variation in the workload that each

core must do during di�erent control periods inside the ROI and 2) of the inherent

inertia when dealing with latent variables like temperature.

Fig. 3.15 shows the thermal pro�les of the 4 × 4 CMP architecture in

the reference case (i.e., no DRM algorithm being used) and in the case when

the proposed DRM algorithm is used. These thermal maps correspond to the

�fth sampling point from Fig. 3.13 and show that the DRM algorithm successfully

manages to pull down the temperature of all tiles in the CMP architecture, thereby

improving the MTTF of the entire system.

For an 8× 8 CMP architecture, Fig. 3.14 shows the simulation results for

cholesky benchmark compiled to use 64 threads. The dip formed by point 4-6s of

the reference plot is because this particular benchmarks has a behavior that creates

a workload pattern or tra�c which is much heavier in the middle of the ROI period.

During this dip, the activity counters registered inside the Gem5 simulations are

much higher. This directly translates into increased temperature values that in

56

-0.1

0.4

0.9

1.4

1.9

2.4

1 2 3 4 5 6 7 8 9 10

N
o
rm

al
iz

ed
 M

T
T

F

Sampling points

DRM

Reference

Target

Figure 3.14: Simulation results for cholesky benchmark on an architecture with
8× 8 tiles (i.e., 64 cores). The MTTF of the reference case improves in the second
part of the ROI because the actual workload decreases (some threads �nish much
earlier) for this particular benchmark.

turn trigger a degradation of the lifetime reliability. Likewise, Fig. 3.16 shows

the thermal pro�les, which again indicate that the DRM algorithm successfully

manages to pull down the temperature of all tiles in the CMP architecture, thereby

improving the MTTF of the entire system.

We present summary plots (see Fig. 3.17 and Fig. 3.18) that show the per-

formance penalty and the change in energy delay area product (EDAP) for a user

set target MTTF improvement of 100%, for each of the investigated benchmarks

for both CMP architectures. For all simulated benchmarks, the target MTTF was

reached. However, the achieved MTTF has �uctuations/oscillations around the

target as observable in Fig. 3.13 and Fig. 3.14.

3.5 Discussion

The results indicate a signi�cant improvement in lifetime reliability when we use

only DVFS based scheme. However, this improvement is at the expense of some

57

(a)

(b)

Figure 3.15: (a) Thermal pro�le of the 4×4 CMP architecture running blackscholes
benchmark with no DRM algorithm, (b) Thermal pro�le of the same architecture
when the proposed DRM algorithm is used. The color-coded temperature range is
20◦C (blue) to 120◦C.

58

(a)

(b)

Figure 3.16: (a) Thermal pro�le of the 8 × 8 CMP architecture running cholesky
benchmark with no DRM algorithm, (b) Thermal pro�le when the proposed DRM
algorithm is used.

59

0

0.5

1

1.5

2

2.5

3

3.5

4

0

2

4

6

8

10

12

14

E
D

A
P

 D
if

fe
re

n
ce

 (
%

)

P
er

fo
rm

an
ce

 P
en

al
ty

 (
%

)

Performance Penalty (%) EDAP Difference (%)

Figure 3.17: Summary of simulations results for 4 × 4 CMP architecture for a
target MTTF improvement of 100% (i.e., double lifetime). Each data point is the
average of all values obtained during the hold times or sampling points illustrated
in Fig. 3.13 for a given benchmark.

0

0.5

1

1.5

2

2.5

3

3.5

0

2

4

6

8

10

12

14

E
D

A
P

 D
if

fe
re

n
ce

 (
%

)

P
er

fo
rm

an
ce

 P
en

al
ty

 (
%

)

Performance Penalty (%) EDAP Difference (%)

Figure 3.18: Summary of simulations results for 8 × 8 CMP architecture for a
target MTTF improvement of 100%.

performance penalty, as shown in Table 3.2. When compared to the thread mi-

gration based DRM scheme studied in [29] 2, we note that when only the thread

2We consider the DRM scheme from [29] for comparison purposes because it is the only other
DRM scheme that considers both cores and NoC in a uni�ed manner. All other previous DRM
schemes do not include the NoC component in their optimization, and therefore their reported
MTTF values may be o� by as much as 60% as reported in [29].

60

migration was employed, the MTTF was improved by only up to 50% with up

to 9.16% performance penalty. However, in the proposed DVFS based approach,

MTTF can be improved by 100% but with higher performance penalties (up to

16%). This suggests that, for applications where performance degradation is not

acceptable, a thread migration based DRM scheme may be a better choice. In

applications where performance degradation can be tolerated, the proposed DVFS

based DRM scheme can be used to trade performance for larger MTTF improve-

ments. Note that, frequency throttling can theoretically improve MTTF signi�-

cantly − at the limit, if cores are completely stopped, MTTF becomes in�nity. On

the other hand, thread migration is limited in its ability to signi�cantly improve

MTTF even if it would be acceptable to degrade performance − that is because

no matter how much one could shu�e jobs among cores, if the benchmark is com-

putationally intensive and all cores are heavily utilized, temperature pro�le will be

high anyways.

The combination of both thread migration and DVFS techniques presented

in Sec. 3.3 o�ers a better tradeo� between MTTF improvement and performance

degradation. As we see in Fig. 3.17 and Fig. 3.18, the hybrid technique performs

better than each of the approaches when only either thread migration or DVFS

is employed. The results show that we can still have the 100% improvement in

lifetime reliability, but with 7.7% and 8.7% performance penalty in average.

In the simulations, we notice that some applications are highly correlated

in terms of their performance penalty and EDAP. This correlation is higher for

example for benchmarks lu-cp and �t when executed on 8× 8 CMP architectures.

61

On the other hand, this correlation is higher for benchmarks blackscholes and body-

track when executed on 4× 4 CMP architectures. We suspect that this correlation

could be in part due to the speci�c characteristics of tra�c patterns that each

benchmark creates on each core and through the network-on-chip. We noticed in

our simulations that when the CMP system runs fully with all cores being busy

all the time, it is very di�cult to �nd room for improvement; no matter what

one would do as DVFS or thread migration, the penalty in performance is more

prevalent.

62

CHAPTER 4

Proposed Dynamic Energy Management

4.1 Introduction

In this chaper, we investigate three di�erent DVFS based approaches for dynamic

energy management under performance constrains. We �rst develop an e�ective

algorithm for performance loss estimation where DVFS technique is employed and

then we propose novel approaches using Kalman �ltering, a LSTM and a DNN to

dynamically optimize the energy of the CMP.

4.2 Delayed Instruction Count Performance Estimation

The idea of the proposed dynamic energy management is to continuously monitor

the CMP system operation and to periodically make decisions to tune di�erent

control knobs with the objective of shifting the system's operation to states where

energy consumption is reduced as much as possible but without degradation of per-

formance beyond the user speci�ed threshold. In our case the knob is represented

by the voltage/frequency pairs, which can be set individually for each of the cores

of the CMP processor, e�ectively done as part of the DVFS algorithm. This is

under the assumption that by default (i.e., in the reference or base case) all cores

operate at the highest frequency to achieve the best possible performance. Tuning

the knob translates into frequency throttling or frequency increase (if throttling

has been done before for a given core), at opportune times, in order to save energy.

63

The key challenge in achieving that is to �nd a way to dynamically change

between frequency voltage pairs such that the performance degradation is not more

than the acceptable threshold, which is set by the user as a percentage, such as

5% performance degradation. The performance constraint is what complicates the

problem in this case. We address this challenge by introducing a new concept, that

of delayed instructions count, which we use to calculate dynamically the amount of

performance loss that we would introduce if we were to switch the current voltage-

frequency pair for a given core for the next control period to a throttling pair (i.e.,

lower frequency). This amount of performance loss is estimated with respect to

the reference case, which is always that of the highest frequency. We describe

next the derivation of the expression that we propose to use for the estimation of

performance loss.

Assume that we denote with CPI the average CPU cycles per instruction

when the CPU is not stalled and does useful work at a clock frequency that we

refer to as fcpu. Assume also that we denote with CPI
′ the average system cycles

per instruction that the CPU is stalled because it has to wait due to branch misses,

TLB misses, lowest level cache misses, pipeline stalls, etc. Note that with these

notations, we consider the execution of a given instruction as being made up of two

portions. One portion is given by the CPI as average number of CPU frequency

cycles per instruction and the other portion is given by CPI ′ as average number

of system frequency cycles per instruction. This is illustrated for a simple example

in Fig .4.1.

The performance of a processor for a given application is quanti�ed via

64

Total cycles = 20

Number of instructions (𝑰) = 4

CPU clock cycles = 12

System clock cycles = 8

Average CPU cycles per instructions:

𝑪𝑷𝑰𝒄𝒑𝒖 = 𝑪𝑷𝑰 =
𝟏𝟐

𝟒
= 𝟑

Average System cycles per instructions:

𝑪𝑷𝑰𝒔𝒚𝒔 = 𝑪𝑷𝑰′ =
𝟖

𝟒
= 𝟐

𝑻𝒐𝒕𝒂𝒍 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 = 𝑰 × (
𝑪𝑷𝑰

𝒇𝒄𝒑𝒖
+
𝑪𝑷𝑰′

𝒇𝒔𝒚𝒔
)

Total Execution Time

CPU clock cycle running at

frequency 𝑓𝑐𝑝𝑢

System clock cycle (includes LLC

misses, stalls which are not affected

by 𝑓𝑐𝑝𝑢) running at frequency 𝑓𝑠𝑦𝑠

𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒

𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒

Total Execution Time

𝑪𝑷𝑰 𝑪𝑷𝑰′ 𝑪𝑷𝑰 𝑪𝑷𝑰′ 𝑪𝑷𝑰 𝑪𝑷𝑰′ 𝑪𝑷𝑰 𝑪𝑷𝑰′

Figure 4.1: Example utilized to illustrate the two di�erent average cycles per
instruction, CPI and CPI ′, which are used to estimate the total execution time.

the total execution time, Ttotal, given by the following expression.

Ttotal = I × (
CPI

fcpu
+
CPI ′

fsys
), (4.1)

where I is the total number of instructions, fcpu is the clock frequency that the

processor is operated at, and fsys is the system clock frequency.

The total execution time of the application is partitioned into a number

of control periods. During the execution of the application, the system calls the

proposed algorithm at the end of each control period in order to decide about the

V/F pairs for all cores during the next control period. Assume we refer to such

65

10/9/2018

1

Let′s assum𝒆 𝑰𝑷𝑵𝒐𝒕𝑫𝒐𝒏𝒆 as the number of estimated instructions not done in period P, due to running

with frequency 𝒇𝑷 instead of frequency 𝒇𝑯
(𝒇𝑯=2GHz in this example)

𝑻𝑷𝒅𝒆𝒍𝒂𝒚 = Estimated delay for running 𝑰𝑷𝑵𝒐𝒕𝑫𝒐𝒏𝒆 instructions with 𝑪𝑷𝑰𝑷 and frequency 𝒇𝑯 calculated

as:

𝑻𝑷𝒅𝒆𝒍𝒂𝒚 = 𝑰𝑷𝒅𝒐𝒏𝒆×
𝑪𝑷𝑰𝑷 × (

𝒇𝑯
𝒇𝑷

− 𝟏)

𝒇𝑯

𝑷𝑳 = Estimated Performance Loss

𝑰𝑷done = Number of instructions done with frequency 𝒇𝑷 in period P

𝑪𝑷𝑰𝑷 = CPU Cycles Per Instruction in period P

𝑷𝑳 =෍

𝑖=0

𝑃
𝐷𝑖
𝑇

Estimated time behind the schedule (ms)Reference time

𝑷𝟏 = 𝑻 = 𝟏𝟎𝟎𝟎0𝒎𝒔 𝑷𝟐 = 𝑻 = 𝟏𝟎𝟎𝟎𝟎𝒎𝒔 𝑷𝟑 = 𝑻 = 𝟏𝟎𝟎𝟎𝟎𝒎𝒔 𝑷𝟒 = 𝑻 = 𝟏𝟎𝟎𝟎𝟎𝒎𝒔 𝑷𝟓 = 𝑻 = 𝟏𝟎𝟎𝟎𝟎𝒎𝒔

𝟏𝟎𝟎𝟎

𝟏𝟎𝟎𝟎 𝟑𝟖𝟎

𝑷𝑳 =
𝟎

𝟏𝟎𝟎𝟎𝟎

𝑷𝑳 =
𝟏𝟎𝟎𝟎

𝟐𝟎𝟎𝟎𝟎

𝑷𝑳 =
𝟏𝟎𝟎𝟎 + 𝟑𝟖𝟎

𝟑𝟎𝟎𝟎𝟎

𝑷𝑳 =
𝟏𝟎𝟎𝟎 + 𝟑𝟖𝟎

𝟒𝟎𝟎𝟎𝟎

𝑷𝑳 =
𝟏𝟎𝟎𝟎 + 𝟑𝟖𝟎 + 𝟓𝟎𝟎

𝟓𝟎𝟎𝟎𝟎

𝑰𝟏𝒅𝒐𝒏𝒆 =1000

𝑪𝑷𝑰𝟏 = 𝟐 & 𝒇𝟏 =2G

𝑰𝟐𝒅𝒐𝒏𝒆 =600

𝑪𝑷𝑰𝟐 = 𝟏& 𝒇𝟐 =1.5G

𝑰𝟑𝒅𝒐𝒏𝒆 =50

𝑪𝑷𝑰𝟑 = 𝟏. 𝟓& 𝒇𝟑 =1G

𝑰𝟒𝒅𝒐𝒏𝒆 =0

𝑪𝑷𝑰𝟒 = 𝟑& 𝒇𝟒 =0.5G

𝑰𝟓𝒅𝒐𝒏𝒆 =0

𝑪𝑷𝑰𝟓 = 𝟏& 𝒇𝟓 =1.8G

𝑻𝟓𝒅𝒆𝒍𝒂𝒚 =50𝒎s

𝟏𝟎𝟎𝟎 𝟑𝟖𝟎

𝟏𝟎𝟎𝟎 𝟑𝟖𝟎 500

𝑰𝟏𝒅𝒐𝒏𝒆 =1000

𝑪𝑷𝑰𝟏 = 𝟐 & 𝒇𝟏 =2G

𝑰𝟏𝒅𝒐𝒏𝒆 =1000

𝑪𝑷𝑰𝟏 = 𝟐 & 𝒇𝟏 =2G

𝑰𝟏𝒅𝒐𝒏𝒆 =1000

𝑪𝑷𝑰𝟏 = 𝟐 & 𝒇𝟏 =2G

𝑰𝟏𝒅𝒐𝒏𝒆 =1000

𝑪𝑷𝑰𝟏 = 𝟐 & 𝒇𝟏 =2G

𝑰𝟐𝒅𝒐𝒏𝒆 =600

𝑪𝑷𝑰𝟐 = 𝟏& 𝒇𝟐 =1.5G

𝑰𝟐𝒅𝒐𝒏𝒆 =600

𝑪𝑷𝑰𝟐 = 𝟏& 𝒇𝟐 =1.5G

𝑰𝟐𝒅𝒐𝒏𝒆 =600

𝑪𝑷𝑰𝟐 = 𝟏& 𝒇𝟐 =1.5G

𝑰𝟑𝒅𝒐𝒏𝒆 =50

𝑪𝑷𝑰𝟑 = 𝟏. 𝟓& 𝒇𝟑 =1G

𝑰𝟑𝒅𝒐𝒏𝒆 =50

𝑪𝑷𝑰𝟑 = 𝟏. 𝟓& 𝒇𝟑 =1G

𝑰𝟒𝒅𝒐𝒏𝒆 =0

𝑪𝑷𝑰𝟒 = 𝟑& 𝒇𝟒 =0.5G

𝑻𝟒𝒅𝒆𝒍𝒂𝒚 =0𝒎s

𝑻𝟒𝒅𝒆𝒍𝒂𝒚 =0𝒎s

𝑻𝟑𝒅𝒆𝒍𝒂𝒚 =380𝒎s

𝑻𝟑𝒅𝒆𝒍𝒂𝒚 =380𝒎s

𝑻𝟑𝒅𝒆𝒍𝒂𝒚 =380𝒎s

𝑻𝟐𝒅𝒆𝒍𝒂𝒚 =1000𝒎s

𝑻𝟐𝒅𝒆𝒍𝒂𝒚 =1000𝒎s

𝑻𝟐𝒅𝒆𝒍𝒂𝒚 =1000𝒎s

𝑻𝟐𝒅𝒆𝒍𝒂𝒚 =1000𝒎s

𝑻𝟏𝒅𝒆𝒍𝒂𝒚 =0𝒎s

𝑻𝟏𝒅𝒆𝒍𝒂𝒚 =0𝒎s

𝑻𝟏𝒅𝒆𝒍𝒂𝒚 =0𝒎s

𝑻𝟏𝒅𝒆𝒍𝒂𝒚 =0𝒎s

𝑻𝟏𝒅𝒆𝒍𝒂𝒚 =0𝒎s

Figure 4.2: Example utilized to illustrate the estimation of total performance loss
(PL) so far, up to and including the currently completed control period and just
before the start of a new control period for a given core.

periods with the generic index P . Then, applying the same rationale as that for

deriving equation (4.1), for a generic control period P , we can write the expression

for the duration of the period TP as:

TP = IPDone × (
CPIP
fP

+
CPI ′P
fsys

) (4.2)

Where, CPIP and CPI ′P are the average cycles per instruction during period P .

66

IPdone represents the number of instructions executed during period P when the

core operates at a particular clock frequency fP .

Similarly, having the same average cycles per instruction, if the execution

is done at the highest frequency fH , a control period of the same walltime duration

would have executed say IPMax
instructions.

TP = IPmax × (
CPIP
fH

+
CPI ′P
fsys

) (4.3)

Using the equations (4.2) and (4.3), the expression for IPmax can be derived as:

IPmax = IPDone × (

CPIP
fP

+
CPI′P
fsys

CPIP
fH

+
CPI′P
fsys

) (4.4)

Which can be rewritten as:

IPmax = IPDone × (
CPIP (fH

fP
) + CPI ′P (fH

fsys
)

CPIP + CPI ′P (fH
fsys

)
) (4.5)

Let us denote as IPNotDone = IPmax − IPDone the number of instructions

that turned out not to be executed or done in the last control period due to the

fact that the frequency was throttled from fH to fP . These delayed or postponed

instructions will introduce a delay penalty compared to the case when all the

instructions would have been run at fH . This number of instructions is what

we call the DIC, which are postponed for later, and which will result in some

performance degradation. The expression for it can be written as:

IPNotDone = IPDone × ((
CPIP (fH

fP
) + CPI ′P (fH

fsys
)

CPIP + CPI ′P (fH
fsys

)
)− 1) (4.6)

67

That can be simpli�ed to:

IPNotDone = IPDone × (
CPIP (fH

fP
− 1)

CPIP + CPI ′P (fH
fsys

)
). (4.7)

Using again an expression similar to that from equation (4.1), we can

calculate the extra time it would take to run IPNotDone instructions at the highest

clock frequency fH . Let us refer to that as TPdelay , which is essentially the penalty

incurred in control period P because of running at a lower frequency, fP :

TPdelay = IPNotDone × (
CPIP
fH

+
CPI ′P
fsys

) =

(IPDone × (
CPIP (fH

fP
− 1)

CPIP + CPI ′P (fH
fsys

)
))× (

CPIP
fH

+
CPI ′P
fsys

)

(4.8)

Which can be reduced to:

TPdelay = IPDone × (
CPIP (fH

fP
− 1)

fH
) (4.9)

Finally, the total performance loss that is incurred over all the control

periods, is calculated as the following summation:

PL =
N∑
P=1

TPdelay
T

=
N∑
P=1

IPDone × (
CPIP (

fH
fP
−1)

fH
)

T
, (4.10)

where N is the total number of periods and T is the duration or length of the

control period.

Knowing previously selected frequencies for each of the cores of the CMP

that were used in the last control period, together with the statistics about how

many instructions have been executed by each core and what was the average CPI

in the last control period (in system simulators as well as on current operating

systems running on real multicore hardware, these data are readily available), we

68

use equation (4.10) to estimate how much aggregated extra delay we have incurred

up to the current control period. This is illustrated for a very simple example in

Fig. 4.2, where we can see for example that at the end of the �rst control period

the PL is zero because the execution during the �rst control period was done at

the highest clock frequency f1 = 2 GHz. However, at the end of the second

control period, we have incurred a performance loss of 1000/20000 because a lower

frequency of f2 = 1.5 GHz was used (see second row in Fig. 4.2), and so on.

4.3 Kalman Filtering based Technique

The expression in equation (4.10) gives us a good measure of the loss su�ered in

the control period that just �nished execution. However, we would like to use

it to estimate the performance loss during the next, incoming control period and

based on that to be able to make an informed decision about what V/F pair to use

that gives us maximum energy reduction within the limit of allowable performance

degradation. The issue now however is that we need a way to predict what the

actual workload will be in the next control period. In other words, at the end of

the control period index P , we need a predictor for instruction counts and CPI of

the next control period, that of index P + 1. To do that we use a Kalman �ltering

based approach. We use a Kalman �ltering based approach because we found it

to be the best compromise between complexity of implementation, e�ciency, and

accuracy of prediction while considering a history of w past control periods.

The block diagram from Fig. 4.3 is essentially implemented as a control

algorithm inside our customized Sniper based CMP system simulation framework.

69

Sniper

Simulator

Calculate the estimated performance

loss up to control period P+1 for

available frequencies and find the

lowest frequency that satisfies the given

performance loss limit

Freq Inst #

Frequencies for period P+1

DVFS Controller per Core

Application

Stats for Period P

CPI

Inst #

Inst #

Inst # P

P-1

P-w
…

Period

History Table

CPI

CPI

CPI

P+1

Period

Allowed

Performance

Loss

P

Period

Kalman Filter

Predictor

CPIInst #

User Level

Figure 4.3: Block diagram of the proposed DVFS based dynamic energy manage-
ment (DEM) scheme as implemented inside our custom Sniper simulator.

During a regular simulation of a given application or benchmark, for a given ar-

chitecture of the CMP, information about the activity counters (i.e., number of

instructions executed by each core and CPI) is fed to our algorithm. Our algo-

rithm is dynamic, i.e., applied directly at runtime, and does not need any static

application analysis or pro�ling that would be done in advance in order to identify

improvement possibilities. The execution of the given application is done as a se-

ries of control periods. The information collected from the Sniper simulator at the

end of each control period is recorded for a moving window of w past periods and

is utilized to make predictions about the next control periods' instruction counts

70

Algorithm 1: Dynamic Energy Management (DEM) Under Performance Constrainsts
1: Input:
2: α: acceptable performance loss ratio threshold; IPdone , CPIP for just ended control period
3: Output:
4: (VP+1, fP+1) V/F pairs for all cores for next control period
5: De�nitions:
6: T duration of each control period
7: I(P+1)done , CPIP+1 predicted with Kalman �lter predictor
8: FreqList: list of available frequencies sorted from low to high (fH)
9: Tdelay = 0
10: Tref = 0
11: if end of control period index P then
12: for each core in CMP do
13:

14: Tref+ = T

15: Tdelay+ =
IPdone×(

fH
fP
−1)×CPIP

fH
16: Freq_set = False
17:

18: for Freq in FreqList do
19:

20: Trefnext = Tref + T
21:

22: PredTdelay = Tdelay+

23:
I(P+1)done

×(
fH
Freq

−1)×CPIP+1

fH
24:

25: PredPerfLossP+1 = PredTdelay/Trefnext
26:

27: if PredPerfLossP+1 < α then
28: fP+1 = Freq
29: Freq_set = True
30: end if
31: end for
32: if Freq_set = False then
33: fP+1 = fH
34: end if
35: end for
36: end if

Figure 4.4: Pseudocode of the DVFS algorithm. This control algorithm is im-
plemented as a callable routine inside our modi�ed Sniper CMP simulator. It
corresponds to the block at the bottom in Fig. 4.3. The parameter α is set by the
user.

and CPI. The prediction is done with a Kalman �lter based predictor as shown in

Fig. 4.3.

The predictions are then used inside the algorithm for estimating the per-

formance loss using equation (4.10) and for deciding the V/F pairs for all cores for

71

the next control period. The V/F pairs are selected to maximize energy savings but

without violation of the performance loss constraint, which is the user speci�ed.

We assume that, based on the criticality of the application, the user de�nes a toler-

able performance loss ratio. The pseudocode of this control algorithm is shown in

4.4. The algorithm works with a list of V/F pairs, out of which new V/F pairs are

selected for cores if that results into energy reduction without violating the per-

formance degradation ratio threshold speci�ed by the user. For each period, using

the predicted instruction counts and cycles per instruction estimated by Kalman

predictor for the next control period, the algorithm �nds the lowest frequency to

save the maximum possible energy that satis�es the performance constraints.

4.4 LSTM based Technique

The method described in the previous section proposed a Kalman �ltering approach

to predict the workload in the next control period. Our objective in this section

is to investigate other prediction approaches. Speci�cally, we are interested in the

use of the LSTM model due to its ability to capture history in time series.

The block diagram of the proposed dynamic energy management scheme

using a LSTM predictor is shown in Fig. 4.5. The scheme is implemented as a

control loop inside our customized Sniper simulation framework. For each appli-

cation or benchmark, the system simulator is halted periodically. At each stop,

statistics about the performance counters (i.e., number of instructions executed by

each core and CPI values) are collected and fed into the algorithm. The algorithm

records the last statistics for a moving window of w past control periods. It sends

72

Sniper Simulator

LSTM
based

Predictor

Calculate the estimated performance loss up to

control period P+1 for available frequencies and

find the lowest frequency that satisfies the given

performance loss limit

Frequencies for period P+1

P+1

Period

CPIInst # Freq Inst # P

Period

CPI

Stats for Period P

Allowed

Performance Loss
Application

Figure 4.5: Block diagram of the DVFS based dynamic energy management scheme
as implemented inside our custom Sniper simulator.

this information to the LSTM predictor that predicts the workload for the next

control period based on the characteristics of the recorded past.

To use the predictor, the LSTM model is �rst trained using supervised

learning. Training data include CPI and instruction count and are collected and

organized as input features for a moving window of w = 20 in order for the predic-

tion to take into consideration the past 20 data sequences. This is similar to the

Kalman �lter con�guration used in Sec. 4.3 against which we will compare later

73

on. The collection process is done during separate runs of the custom Sniper sim-

ulation framework and without any DEM algorithm. The model is trained with

20,000 samples collected at intervals of 1 ms. The LSTM model itself is rather

simple. It is constructed with just one hidden layer of 4 LSTM blocks or neurons

and the sigmoid activation function is used for each block.

The DEM algorithm utilizes the predicted CPI and instruction count to

estimate the performance loss using equation (4.10). These estimations are then

used by the heuristic that decides the actual V/F pair to be used for each core

in the next control period. These V/F pairs reduce energy consumption without

degrading performance beyond the user set threshold. The pseudocode of the

heuristic is described in Fig. 4.6. In each control period, P , the CPI and the

instruction count for the current period (CPIP , IP) as well as for the next control

period (CPIP+1 , IP+1), as predicted by the LSTM predictor, are passed to the

heuristic algorithm. The algorithm estimates the performance loss for the available

frequencies listed in ascending order and selects the lowest frequency that satis�es

the performance constraints and that lead to maximum energy savings.

4.5 Dynamic Energy Management using DNN

The main idea of the dynamic energy optimization approach proposed in this

section is to use DNN models for prediction or classi�cation. Note that, as in

the case of many other application domains including speech recognition, pattern

recognition, and recommending systems that have been revolutionized lately by

the use of DNN models, the merit of this work lies in the application of the DNN

74

Algorithm: Dynamic Energy Management using LSTM based predictions
1: Input:
2: γ: acceptable performance loss ratio threshold; IPdone , CPIP for just ended control period
3: Output:
4: (VP+1, fP+1) V/F pairs for all cores for next control period
5: De�nitions:
6: T each control period duration
7: I(P+1)done , CPIP+1 predicted with LSTM-based predictor
8: FreqList: list of available frequencies sorted in ascending order (fH is the highest frequency)
9: Tdelay = 0
10: Tref = 0
11: if end of control period index P then
12: for each core in CMP do
13:

14: Tref+ = T

15: Tdelay+ =
IPdone×(

fH
fP
−1)×CPIP

fH
16: Freq_set = False
17:

18: for Freq in FreqList do
19:

20: Trefnext = Tref + T
21:

22: PredTdelay = Tdelay+

23:
I(P+1)done

×(
fH
Freq

−1)×CPIP+1

fH
24:

25: PredPerfLossP+1 = PredTdelay/Trefnext
26:

27: if PredPerfLossP+1 < γ then
28: fP+1 = Freq
29: Freq_set = True
30: end if
31: end for
32: if Freq_set = False then
33: fP+1 = fH
34: end if
35: end for
36: end if

Figure 4.6: Pseudocode of theLSTM based algorithm. This algorithm is imple-
mented as a callable routine inside our modi�ed Sniper CMP simulator. The
parameter γ is set by the user.

model to a speci�c practical problem rather than the DNN model itself, which has

been known for decades already.

The system level block diagram of the proposed optimization framework

75

5/14/2018

1

DVFS controller per core
Application Allowed PL

User level

DNN

based

controller

Full system

CMP

Core

Core

Core

Core

Core

Core

Core

Core

R R R

R R R

R R R

Core

V/F pair for period P+1

V/F

Instr. #

CPI

Kalman

controller,

DVFS

heuristic

Phase 1,2 Phase 3

Figure 4.7: The proposed dynamic energy optimization algorithm switches to
DNN based prediction once the DNN model has been constructed. The Kalman
�ltering based controller block operates similarly to that in Fig. 4.3.

is shown in Fig. 4.7, as it is implemented in our Sniper based full system simu-

lation tool discussed later in Sec. 4.6. The proposed framework is implemented

mainly in software and is responsible for managing all related activities, including

creating, maintaining, and storing speci�c information about the DNN controller.

The information about the DNN topology, related weights, as well training data

represents what is denoted as DNN data. The primary objective of the proposed

dynamic energy optimization approach is to reduce the energy consumption of the

CMP. This can be achieved by throttling CMP core frequencies to the lowest pos-

sible V/F levels while meeting as much as possible the execution deadline of all

executed tasks. Two of the key elements of the optimization framework include 1)

76

the DNN controller with its associated Kalman controller and self-learning tech-

nique and 2) the DVFS algorithm that decides the V/F levels for each of the cores

for the next control period.

As discussed earlier, the Kalman controller is implemented with the help

of a series of Kalman �lters and works with a sliding window of m previous control

periods. Thus, in generating a training data pair, we consider past history covering

the last m control periods. According to the experiences in Sec. 4.3 and 4.4, we

prefer the use of the Kalman based predictor rather than the LSTM one due to

both the ease of implementation and the very good performance demonstrated in

workload estimation. In addition, having in place an existing approach for dynamic

energy optimization provides a way to achieve energy reductions also during the

�rst two phases of the proposed approach, when we collect training data and train

the DNN model.

The implementation of the DNN model based energy optimization algo-

rithm includes three phases as illustrated in Fig. 4.8. In the �rst phase, we collect

input samples (i.e., input features) and their corresponding outputs (i.e., labels)

as the initial training data set. The features capture the benchmark behavior and

the labels represent the V/F pairs identi�ed to lead to energy reduction. In the

second phase, the training data is used to train the DNN model. Lastly, in the last

phase, the DNN model is employed to directly predict optimal V/F pairs for each

CMP core for a given workload at runtime. These phases are described in more

details next.

77

5/15/2018

1

Phase 1

Collection of

training data

Phase 2

Training

Phase 3

DNN based DEM

Period 1

Pair 1

(W, V/F)

Pair 2

(W, V/F)

Pair 3

(W, V/F)

Pair n

(W, V/F)

DNN data

Periodic

workload

characteristics

V/F

per cores

6 steps

W: Workload characteristics as features

V/F: Optimal V/F pair for each core as

label

Control period

PL threshold

Training

DNN

Trained

DNNInput

Output

1 2 3 n

V/F V/F V/F V/F

…

…

…

W W W W

Period 2 Period 3 Period n

Figure 4.8: Illustration of the three phases of the implementation and usage of the
DNN model.

4.5.1 Phase 1: Collection of Training Data

One of the main challenges of working with DNN models is training. This is a

two-faceted challenge: �rst, labeled data is necessary for training and second, the

training process may become computationally intensive and require long training

times for increasingly large training data sets. In addition, workloads can vary

greatly and developing a representative training data set is very di�cult because a

DNN well trained for certain workloads may perform very poorly on di�erent work-

loads. To address the lack of training data when it comes to chip multiprocessors,

we propose to use a new self-adaptive supervised training technique. We develop

the ability to generate training data automatically in three phases as illustrated in

Fig. 4.8.

Phase 1 begins when a new CMP system starts to be used in a datacenter.

78

11/13/2017

1

1. Kalman controller predicts cores

workload

2. Identify best V/F pairs

3. Operation during next period

4. Measure the actual workload at

end of period

5. Correct V/F pairs, possibly

6. Store workload characteristics and

corrected V/F pairs in DNN data

Figure 4.9: Steps of the procedure to generate one training data point during one
control period in Phase 1.

This is the time when the CMP operation starts to be monitored for the purpose

of generating input-output training data pairs in Fig. 4.8. The generation of

training data is done for each control period. For each such control period we

generate, at the end of the period, training data pairs by recording input values

and the corrected outputs (as V/F levels) which would have been better if set at the

beginning of the control period. The six steps followed to generate the corrected

V/F pairs in a given control period are shown in Fig. 4.9.

1. The Kalman controller is used to make predictions about the workload of each

CMP core in the next control period.

2. Then, equation (4.10) is used to estimate the performance loss and to identify the

79

lowest available V/F pairs at which energy could be saved without violating the

performance loss threshold in the next control. The selection of these V/F pairs is

done with the e�cient DVFS heuristic algorithm from Sec. 4.3.

3. Proceed with the execution of the next control period at selected V/F pairs for all

CMP cores.

4. At the end of the just executed control period, measure the actual just executed

workload.

5. Repeat Step 2 but use the actual measured workload to �nd possible corrections

to the just used V/F pairs. The corrected V/F pairs are the ones that ideally

should have been identi�ed earlier in Step 2. These corrected V/F pairs are used

as outputs in the training data set because they would have helped reduce energy

without violation of the performance degradation threshold.

6. The above steps are done for a moving window of m control periods in order to

generate one training data point of input features and corrected V/F pairs added

to the DNN data. These will be used later for the actual training of the DNN

model.

It is important to note that, in theory, one could conduct the whole process

of collecting training data with a set-up that does not use the Kalman �ltering

based prediction combined with the DVFS heuristic. Instead, one could just run

the selected benchmark testcases at the default (highest frequency and voltage pair)

all the time during Phase 1. While this would eliminate the need for the Kalman

�ltering and simplify the overall implementation of the proposed framework, the

80

issue would be that the training data would not be diverse and would always have

as input features values that would characterize core operations at the maximum

frequency all the time. When the Kalman �ltering based technique is used, training

data points are generated also for input features that characterize core operations

at throttled frequencies as well. Therefore, the training data resulting from the

proposed approach is more diverse and characterizes better the operations of all

cores (among the 16 or 64) at many di�erent clock frequencies. In addition, as

already mentioned, the Kalman �ltering based technique provides an alternative

way to achieve energy reductions also during the �rst two phases of the proposed

approach.

4.5.2 Phase 2: Training of the DNN Model

So far, we have developed a mechanism to collect the runtime statistics and con-

struct the training data set. Instruction count and average CPI values together

with the corrected V/F pairs have been recorded as the features and the labels of

the DNN data characterizing all the control periods of Phase 1. Note that the

labels are transformed into the one hot format before actual use. In the one hot

format, for each class in the output we consider a digit which can be zero or one.

If the label belongs to class number k, the k-th digit is set to "1" while the other

digits are set to "0". The collected training data set is now used for supervised

training of the proposed DNN model. The input features are passed to the feed-

forward model. At each node, the weights and biases are applied to the given

inputs and then the result gets activated through an activation function. We use

the RELU function (like that shown in Fig. 2.6) as the activation function because

81

it helps to mitigate the vanishing gradient problem described in [95]. The �nal

result of the output layer is used to calculate the cost. That is, the cross entropy

cost function compares the generated output with the stored labels (recall, these

are the corrected V/F pairs) to calculate the cost based on the prediction error.

The gradient decent optimizer uses this cost to optimize the weights and biases in

the backward direction. Speci�cally, as the gradient decent optimizer algorithm

we use the AdaGrad method, which was shown to give the best results [94]. This

method adapts the learning rate to the model parameters and performs larger up-

dates for infrequent parameters and smaller updates for frequent ones. Thus, it is

well suited for dealing with sparse data, which we see in our case.

4.5.3 Phase 3: Prediction Using the DNN Model

Now, that we have trained the DNN model as the DNN controller from Fig. 4.7,

we can use it in realtime to identify V/F pairs at any time. This is the phase

where the role of making predictions and deciding the V/F pairs is switched from

the Kalman controller and the DVFS heuristic to the DNN controller. Collection

of training data can still be performed in parallel, in order to prepare for future

periodic retraining of the DNN model to address application variability. However,

we do not do this in this work.

4.6 Simulation Results

This section contains the simulation results for the proposed dynamic energy man-

agement techniques discussed earlier in this chapter. The results demonstrate the

82

Table 4.1: Architectural con�guration parameters.
Parameter Value
Technology node 45nm
Core Intel X86
Core CPU model Out of order (Detailed CPU)
Frequencies 2GHz downto 1GHz, with 100MHz step
VDDs f ≥ 1.8G : 1.2V , 1.8G > f ≥ 1.5G : 1.1V , 1.5G > f ≥ 1G : 1V
Transition latency 2000 ns
Branch predictor 2 bit counter
Reorder bu�er 80-entries
L1ICache/1core 32KB
L1DCache/1core 64KB
L2/1core 256KB
L3/4cores 8MB
Network 2D regular mesh, 1 router per core
Link bandwidth 64 bits

e�ectiveness of the Kalman �ltering, LSTM and DNN based approaches and com-

pare them with a state-of-the-art technique [72].

4.6.1 Simulation Setup

We implemented the proposed DEM schemes described earlier inside the Sniper

based CMP system simulation framework [108], which is integrated with the Mc-

PAT power calculator [104]. We conducted extensive simulations on several Parsec

and Splash2x benchmarks [109] to investigate the performance of the proposed

algorithm. In our simulations, we used two di�erent network-on-chip based CMP

architectures composed of 16 (4x4) cores and 64 (8x8) cores. Each of these archi-

tectures uses a regular mesh NoC topology. The default architectural con�guration

parameters utilized in our custom Sniper based simulations are listed in Table 4.1.

83

4.6.2 Kalman Filtering based Technique

In the DEM approach discussed earlier in Sec. 4.3, our primary prediction tech-

nique uses Kalman �ltering. This is used to predict the instruction count and the

average CPI in the next control period for each core. Based on our simulations,

we found empirically that a history window of 20 periods and values of 1, 1, 0.5,

and 0.5 for A, H, Q and R �lter parameters provided consistently very accurate

predictions. Also it is assumed that there is no control input exists and B is set to

0. Therefore, we use these parameter values for all our simulations unless stated

otherwise. For example, in Fig. 4.10, we show the predictions of both the CPI

and the instruction count for a sample core while running the radiosity benchmark

with 64 threads on a 64 core CMP architecture. The predicted values follow very

closely the actual observed values, which turn out to occur at the end of the next

control period. Therefore, we conclude that the Kalman �ltering based prediction

is very e�ective and computationally e�cient. It serves well for our purpose, as it

will be made clear in the next set of simulation results.

As mentioned earlier, this approach uses a Kalman �lter per core for scala-

bility but most importantly for accuracy because we are interested in doing DVFS

at per core level rather than for the whole processor. The Kalman �lter is imple-

mented as a C++ routine, which is integrated inside the Sniper system simulator

that we use for our simulations. Whenever the Kalman �lter needs to be executed,

this routine is called and it executes very fast. Its runtime is very small at less than

0.05% of the duration of a control period. This performance overhead is included

in the measurement of the total execution time for a given benchmark. Thus, the

84

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

2
5
3

C
y
cl

es
 p

er
 I

n
st

ru
ct

io
n
 (

C
P

I)

Control Period

Kalman Filter Prediction

CPI Predicted CPI

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

2
5
3

N
u
m

b
er

 o
f

In
st

ru
ct

io
n
s

Control Period

Instruction# Predicted Instruction#

Figure 4.10: Plots that show the comparison between the predicted values of the
CPI and the instruction count for the next control period and the actual values
that occurred and were observed at the end of the next control period. These
traces are for a sample core (out of 64 cores) during the execution of radiosity
benchmark.

performance for a given benchmark when the proposed DEM is used includes also

the overhead due to the execution of the Kalman �lter routines.

In the next set of simulation experiments, we investigate the performance

of the proposed algorithm for several di�erent values of the performance loss con-

straint or threshold. Recall that this constraint is set by the user who has the

best knowledge about what is the acceptable performance degradation for a given

application. We assume that the user sets this constraint based on her knowledge

of the criticality of the application at hand. The higher the criticality, the lower

85

the PL should be selected. We considered six di�erent PL values including 5%,

10%, 20%, 30%, 40% and 50%. For example, a value of PL = 5% means that the

user wants the proposed algorithm to try to reduce energy consumption as much

as possible but without incurring a performance degradation of more than 5%.

Therefore, for each such PL value, we run the proposed DVFS based dy-

namic energy management algorithm to �nd out what is the maximum achievable

energy reduction under the speci�ed performance degradation constraint. The

results reported here focus on ROI during the execution of a given benchmark.

During each simulation, the custom Sniper simulator is stopped periodically after

a constant amount of time (i.e., control period) and the proposed DEM algorithm

described in Fig. 4.5 is called to �nd the best V/F pairs for all cores for the

next control period. In our simulations the control period is set to 1ms, but it

can be set to other values as well. During each such stop, the DEM algorithm

estimates the delayed instructions count in current control period and predicts the

behaviour of the application on each core for the next period using Kalman �lter

predictor. Then, it tries to control the delay incurred due to the delayed instruc-

tions by selecting the lowest possible frequency, which still satis�es the acceptable

performance penalty threshold.

The plots in Fig. 4.11 show simulation data collected during a sample

run of the barnes benchmark on a 64 core architecture for the four di�erent PL

constraints. The plot in Fig. 4.11.a shows the number of instructions executed

during each control period on one of the 64 cores of the CMP architecture. Please

contrast that with the predicted number of instructions that are delayed for later

86

execution shown in Fig. 4.11.b. This is the number of instructions that could

have been executed in addition during the just completed control period, if the

highest frequency had been used. In other words, because the execution in the

just completed control period was done at a lower frequency (as dictated by the

DVFS algorithm, in order to reduce energy consumption), these instructions are

delayed and thus their execution will be �rolled over� during the incoming control

periods. This plot is as we expected; the larger the threshold for performance

loss, the larger the number of instructions that are not completed and postponed

for later. This in turn will result in longer overall execution time for a given

benchmark. The way frequency was varied is shown in Fig. 4.11.c while the

calculated performance loss at the end of each control period is shown in Fig.4.11.d.

We can see that for a tight PL threshold like 5%, the core frequency is higher than

when the threshold is large. In other words, for example, when the PL thresold

is relaxed to say 50%, the algorithm pushes the frequency way down in order to

save as much energy as possible while trying to keep the estimated performance

loss within the limit of 50%, as seen in the top curve of the plot in Fig. 4.11.d.

Similar plots can be collected for any of the 64 cores of the CMP architecture and

for any of the simulated benchmarks. Noteworthy, we observe that sometimes the

estimated performance loss overshoots as shown by the curve corresponding to the

PL threshold of 50% in Fig. 4.11.d. This happens when the frequency for the

just completed control period was selected too low. As a result the performance

degradation violates the desired threshold for a short period of time. This is a

direct result of the prediction error that was experienced at the end of the previous

control periods. We do not have currently a way to eliminate these �artifacts�,

87

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

N
u
m

b
er

 o
f

In
st

ru
ct

io
n
s

Number of instructions done

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

(a)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8N

u
m

b
er

 o
f

 I
n
st

ru
ct

io
n
s

Estimated number of instructions not done

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

(b)

800

1000

1200

1400

1600

1800

2000

2200

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

F
re

q
u
en

cy
 (

M
H

z)

Frequency Changes

PL=%5 real PL=%20 PL=%30 PL=%40 PL=%50

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

 L
o

ss

Estimated Controlled Performance Loss

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

(d)

Figure 4.11: Simulation results for a sample run of the barnes benchmark. The
x axis represents the index of the control periods. Note that when the frequency
is higher, the total execution time, measured as walltime, is shorter and therefore
the total number of control periods is smaller.

88

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Energy Reduction on 16 cores

PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Benchmarks

N
o

rm
al

iz
ed

 e
n
er

g
y
 r

ed
u
ct

io
n

Energy Reduction on 16 cores

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

Energy Reduction on 64 cores(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

rm
al

iz
ed

 e
n

er
g
y
 r

ed
u
ct

io
n

Benchmarks

Energy Reduction on 64 cores

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

(b)

Figure 4.12: Energy reduction percentages. (a) 16 core architecture with 4x4 mesh
NoC. (b) 64 core architecture with 8x8 mesh NoC.

unless we wanted to become over-conservative in the way we allow the proposed

DVFS algorithm to throttle core frequencies. Therefore, we consider these short

lived PL threshold hikes as acceptable.

The energy reduction for all the benchmarks that we investigated is shown

in Fig. 4.12 for two di�erent CMP architectures. The y axis of these plots shows

normalized values for simplicity and clarity. For example, a value of 0.2 on the y

axis of Fig. 4.12.a means a 20% energy reduction. We can see that energy savings

are consistent across the board and, as expected, the savings are bigger when the

performance loss constraint is more relaxed. Note that for some benchmarks the

89

0

0.1

0.2

0.3

0.4

0.5

0.6

Benchmarks

N
o
rm

al
iz

ed
 p

er
fo

rm
an

ce
 l

o
ss

Performance Loss on 16 cores

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

Performance Loss on 64 cores
(a)

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

0

0.1

0.2

0.3

0.4

0.5

0.6

Benchmarks

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

 l
o

ss

Performance Loss on 64 cores

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

(b)

Figure 4.13: Performance loss percentages. (a) 16 core architecture with 4x4 mesh
NoC. (b) 64 core architecture with 8x8 mesh NoC.

energy savings can be as high as 60% for either of the two CMP architectures.

The performance loss for all benchmarks and for both CMP architectures is shown

in Fig. 4.13. Please note that the plots in this �gure actual performance loss as

calculated and reported by the Sniper tool simulator, and it includes also the over-

head of executing the Kalman �lter routines. Again, the y axis shows normalized

values similar to the plots in Fig. 4.12. Note that for each of the four di�erent

values for the PL threshold, the actual performance loss calculated at the end

of the execution of each benchmarks is kept within limits reasonably well. Some

benchmarks experience slightly larger performance degradation and that is due to

90

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Benchmarks

N
o

rm
al

iz
ed

 E
D

A
P

 i
m

p
ro

v
em

en
t

EDAP Improvement on 16 cores

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

(a)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Benchmarks

N
o

rm
al

iz
ed

 E
D

A
P

 i
m

p
ro

v
em

en
t

EDAP Improvement on 64 cores

PL=%5 PL=%10 PL=%20 PL=%30 PL=%40 PL=%50

(b)

Figure 4.14: Energy Delay Area Product (EDAP) percentages. (a) 16 core archi-
tecture with 4x4 mesh NoC. (b) 64 core architecture with 8x8 mesh NoC.

the �artifacts� discussed earlier.

Finally, we also show in Fig. 4.14 the change in energy delay area product

(EDAP). In all cases the area is actually the same and does not a�ect these plots.

So, in the �gures that compare the EDAP with other implementations, the term

EDP can be considered as well.

91

0

10

20

30

40

50

60

70

80

E
n

er
g

y
 R

ed
u

c
ti

o
n

 (
%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(a)

0

10

20

30

40

50

60

70

P
er

fo
rm

a
n

c
e

D
eg

ra
d

a
ti

o
n

 (
%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(b)

-60

-40

-20

0

20

40

60

80

E
D

P
 i

m
p

ro
v

em
en

t
(%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(c)

Figure 4.15: Simulation results for the 16 core CMP: (a) energy reduction per-
centages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the case when no DEM is used.

92

0

10

20

30

40

50

60

70

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(a)

0

10

20

30

40

50

60

P
er

fo
rm

a
n

ce
 D

eg
ra

d
a

ti
o

n
 (

%
)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(b)

-40

-30

-20

-10

0

10

20

30

40

50

E
D

P
 i

m
p

ro
v

em
en

t
(%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(c)

Figure 4.16: Simulation results for the 64 core CMP: (a) energy reduction per-
centages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the case when no DEM is used.

93

4.6.3 LSTM based Technique

In order to simulate the LSTM approach, we integrated the machine learning

library Keras [110] in our simulation framework and employed it to build and

train the LSTM predictor. To speed-up the training process, we take advantage

of the acceleration provided by a K40c Tesla GPU that we have available on the

workstation with an eight core processor that runs Linux Ubuntu 16.04. The

simulation framework is implemented such that Sniper is stopped periodically (1

ms intervals) and the algorithm from Fig. 4.6 is called as a routine that �nds the

V/F pairs for each core for the next control period.

The dynamic energy management algorithm described in Fig. 4.5 is inves-

tigated for several di�erent application criticality levels, indicated as the tolerable

performance loss percentage. Speci�cally, similar to Sec. 4.6.2, we focus on six

di�erent PL values including 5%, 10%, 20%, 30%, 40%, and 50%. For example,

if the user sets a value of PL = 20%, it means that the objective of the DEM

algorithm is to reduce the energy consumption as much as possible without de-

grading the performance by more than 20% compared to the case when no DEM

is implemented and all cores operate at the highest clock frequency all the time.

First, we compare the DEM algorithm to the case when no DEM algorithm

is used at all. Fig. 4.15 and Fig. 4.16 show the results for the energy reduction,

the total performance degradation, and the EDP on the selected benchmarks for

16 and 64 core CMP architectures. These plots show that while the DEM algo-

rithm reduces the energy consumption, it keeps the total performance loss under

94

Table 4.2: Average EDP improvement of data from Fig. 4.15.c and Fig. 4.16.c
PL Avg. EDP improvement Avg. EDP improvement

16 core (%) 64 core (%)

5% 12.02 10.66
10% 12.08 9.98
20% 13.01 6.60
30% 9.36 9.14
40% 11.92 4.29
50% 1.31 -0.02
Avg. 9.95 6.77

the desired threshold fairly well. The energy savings increase as the tolerable per-

formance degradation is increased suggesting that the DEM algorithm provides a

good mechanism to trade o� performance versus energy consumption. However,

for some benchmarks the performance degradation is slightly larger than expected.

This is due for the most part to the prediction errors of the LSTM based predictor.

Next, we compare the DEM algorithm against the algorithm presented in

the Sec. 4.3, where Kalman �ltering was used as the prediction technique. Fig. 4.17

and Fig. 4.18 compare the energy reduction, the total performance degradation,

and the energy delay product. The EDP data points are also summarized in Table

4.3. We note however that when we use the LSTM technique, the results are

generally slightly and not signi�cantly better that the case when Kalman �ltering

is used for prediction purposes.

4.6.4 Dynamic Energy Management using DNN

In our Sniper based simulation framework we have implemented three energy opti-

mization approaches: the reinforcement learning (RL) approach described in [72],

95

-6

-4

-2

0

2

4

6

8

E
n

er
g
y
 R

ed
u

ct
io

n
 (

%
)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(a)

-6

-4

-2

0

2

4

P
er

fo
rm

a
n

ce
 D

eg
ra

d
a

ti
o

n
(%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(b)

-5

-3

-1

1

3

5

7

E
D

P
 I

m
p

ro
v

em
en

t
(%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(c)

Figure 4.17: Simulation results for the 16 core CMP: (a) energy reduction per-
centages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the DEM algorithm that uses Kalman
�ltering for prediction from Sec. 4.3.

96

-10

-5

0

5

10

15

E
n

er
g
y

 R
ed

u
ct

io
n

 (
%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(a)

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

P
er

fo
rm

a
n

ce
 D

eg
ra

d
a

ti
o

n
(%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(b)

-10

-5

0

5

10

15

E
D

P
 I

m
p

ro
v

em
en

t
(%

)

PL=5% PL=10% PL=20% PL=30% PL=40% PL=50%

(c)

Figure 4.18: Simulation results for the 64 core CMP: (a) energy reduction per-
centages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the DEM algorithm that uses Kalman
�ltering for prediction from Sec. 4.3.

97

Table 4.3: Average EDP improvement of data from Fig. 4.17.c and Fig. 4.18.c
PL Avg. EDP improvement Avg. EDP improvement

16 core (%) 64 core (%)

5% -0.32 2.08
10% 0.31 -0.94
20% 1.05 1.95
30% 0.34 1.26
40% 0.10 0.14
50% 0.69 1.29
Avg. 0.36 0.96

the Kalman �ltering approach from Sec. 4.3, and the proposed DNN model based

approach. This makes the collection of simulation results easier and all the com-

parisons consistent because all simulations are done within the same simulation

tool and on exactly the same benchmarks. The simulation framework includes all

the functions to implement the three phases of the proposed energy optimization

approach. For training the DNN model, we employ Google's Tensor�ow machine

learning library [111]. All simulations are conducted on a Linux Ubuntu 16.04

machine that runs on an Intel Xeon eight core processor equipped with a K40c

Tesla GPU.

As discussed, the objective of the optimization algorithm is to minimize

energy under user set performance constraints. The user can set such constraints

based on known or assumed application criticality levels, which translate into ac-

ceptable performance losses. For example, a video streaming application could be

categorized as high criticality while an email application can be treated as a rather

low criticality level in the sense of expected response or execution time. In this

context, a certain criticality level can be assigned a performance loss threshold or

constraint. In this implementation, for simplicity, we assume the same criticality

98

for all simulated benchmarks, by setting the PL threshold to PL = 10%. This

threshold can easily be changed in our framework. A PL threshold of PL = 10%

means that the user wants the proposed algorithm to save as much as energy possi-

ble but without degrading the performance of the application with more than 10%

compared to the case when no energy optimization was done. Thus, the proposed

DNN model should ideally be able to suggest the best set of V/F pairs for all cores

to ensure energy reduction but within the acceptable performance degradation. To

achieve that, Phase 1 discussed earlier in Sec. 4.5.1 must �rst be done for the given

PL threshold such that the training data is collected for that PL. Then, in Phase

2, the training data is used to train the DNN model, which will then be plugged

in into the DNN controller used to proactively provide V/F settings to all cores

during all control periods within the execution time of the application.

4.6.4.1 Phase1: Collection of Training Data

We have implemented all six steps discussed earlier in Sec. 4.5.2 in the custom

Sniper simulator, which is paused during each control period for the purpose of

collecting training data points. During Phase 1, we use the Kalman �ltering based

prediction, as illustrated in Fig. 4.7. We used half of the benchmarks, selected

arbitrarily, for collection of training data. But, only 70% of that training data

is actually used for training; the remaining 30% is used for model testing and

validation. The Kalman �ltering technique is used to predict the instruction count

and the average CPI for each core of the CMP architecture during each control

period. Similar to the Kalman �ltering based DEM approach we described in Sec.

4.3, we use the same values for the �lter parameters: A = 5, H = 1, Q = 1, R = 0.5

99

and B = 0. These Kalman parameters were found to provide good results.

For example, Fig. 4.19 shows the values of the CPI and the instruction

count predicted by the Kalman �lter as well as their actual values for a sample core

while running the fmm benchmark with 16 threads on a 16 core CMP architecture

and 10% PL constraint. These are values predicted during each control period

in step 1 above. Note that, based on the results demonstrated in Sec. 4.6.2,

Kalman �ltering provides excellent prediction accuracy, while it has no need to

be trained similar to the LSTM based approach (Sec. 4.4), which is the reason

we use it for collection of training data as well as for comparison. The Kalman

�ltering prediction does not perform very well though during abrupt changes of

the predicted variable. The corresponding frequency values calculated in step 2

from Fig. 4.9 are plotted in Fig. 4.20, which also shows the adjusted or corrected

frequency values.

It is the corrected values that are then used as labels together with per-

formance counters of the cores, caches, memory, and NoC to create training data

points. Recall that a training data point is constructed with input features for

a moving window of m past control periods. In our simulations, we use a value

of m = 5 to always capture the workload behavior of the 5 past control periods.

However, this parameter can be changed by the user. In this example, during each

control period, we collected 62 performance counters plus the frequency value for

which the counters values were generated. These performance counters include

statistics from CPU performance counters, di�erent levels of caches, stalls, un-

core memory accesses, TLBs, branch predictors, ALU activities including integer,

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

0

0.5

1

1.5

2

2.5

3

Control Period

C
P

I

Actial Value Predicted by Kalman

(a)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

Control Period

In
st

ru
ct

io
n
 C

o
u
n
t

Actual Value Predicted by Kalman

(b)

Figure 4.19: CPI and instruction count values collected during step 1.

�oating point multiply/divide operations and others that are available inside the

Sniper simulator. In summary, each training data point (saved in the DNN data)

includes a vector of 5x63 values as the input feature plus one value as the output

label; that is a total of 316 values that required roughly 2.5KB per core. Thus, we

need 16x2.5KB=40KB and 64x2.5KB=160KB of memory for the 16 core and 64

core CMP architecture, respectively.

101

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

Control Period

C
o

re
 F

re
q
u

en
cy

 (
M

H
z)

Kalman Method Corrected Kalman Method

Figure 4.20: Frequency values calculated in step 2 from Fig. 4.9.

4.6.4.2 Phase2: Training of the DNN Model

At this point, we needed to decide about the exact topology of the DNN model.

The previous literature does not provide helpful recipes in terms of how one should

size-up a DNN model. Most often, previous literature just reported the exact

DNN topology without further elaborations. In our case, we conducted a design

space exploration type of search to identify the topology for the DNN model that

provided the best results for a few selected benchmarks. We started with one

hidden layer and increased the number of layers until no further improvement

was noticed. For a given number of layers, we varied the number of units per

layer as 300, 400, or 500. At the end of this search, we have found empirically

that an eight layer DNN model was a good topology that provided good results,

yet it is manageable in terms of training times and required storage. The �nal

selected DNN models are shown in Fig. 4.21. While not necessary, we found that

conducting a separate search to identify the topology for the DNN model for any

new CMP architecture, leads to slightly better results.

102

11/8/2017

1

…

Input layer

5x63 = 315

H1

500

Output layer

1

… … … … … … … …

H2

500

H3

500

H4

300
H5

500

H6

500

H7

400

H8

300

(a)

11/8/2017

1

…

Input layer

5x63 = 315

H1

500

Output layer

1

… … … … … … … …

H2

500

H3

500

H4

500
H5

300

H6

300

H7

400

H8

400

(b)

Figure 4.21: Topologies of the DNN models for a) 16 core CMP architecture and
b) 64 core CMP architecture.

Once the DNN models were selected, training was done using the training

data set collected as described in the previous section. Tensor�ow generated the

DNNmodel (i.e., information about the network topology, number of hidden layers,

number of units on each layer, and all weights), which used about 2 MB of memory.

During training, we used a learning rate of 0.001 and a number of training steps

of 2000. The trained DNN model provided about 80% accuracy on the testing and

validation data set, which contained 30% out of the collected training data set.

This phase required about 15 minutes for the 16 core CMP architecture and 1.5 h

103

for the 64 core CMP architecture.

4.6.4.3 Phase3: Runtime Prediction using the DNN Model

Once the DNN model is trained, we are ready to evaluate its performance. This

corresponds to Phase 3 in Fig. 4.8. Essentially, the DNN model is used directly to

identify V/F pairs for all cores during each control period during the execution of a

given benchmark. Evaluation of the DNN model is pretty fast on the machines we

used in our simulations. The overhead of �nding the V/F using the DNN is in the

order of milliseconds, which should not be an issue in practice where applications

run for much longer times (or even continuously) in datacenter servers. In such

cases, the control period would be selected much longer too, compared to the region

of interest duration that system simulators like the one used in this paper focus

on.

As an initial test of the DNN model, we compare its V/F predictions to

those computed using the Kalman �ltering based heuristic for the fmm benchmark

testcase. Fig. 4.22 shows some of the results of this comparison, corresponding to

only one of the cores of the 16 core CMP architecture. We observe that, the DNN

model is good enough at predicting the right frequencies (i.e., V/F pairs).

In a �rst set of simulations, we compare the proposed DNN model based

dynamic energy management algorithm to the case when no DEM algorithm is

used at all. The results of this comparison are reported in Fig. 4.23 and Fig.

4.24 for the two CMP architectures. These �gures report percentages in energy

reduction, in total performance (i.e., benchmark execution time) degradation, and

104

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Control Period

C
o
re

 F
re

q
u
en

cy
 (

M
H

z)

Corrected Kalman Method DNN Method

Figure 4.22: Comparison of the predicted frequencies by the DNN model to those
calculated by the Kalman �ltering technique.

in energy-delay-product improvement. In the second set of simulations, we compare

the proposed DNN model based approach to the reinforcement learning approach

described in [72] and the Kalman �ltering approach proposed in Sec. 4.3. We

selected to work with a moving window of control periods of length m = 5 for

Kalman �ltering and DNN model based approaches. The results of this comparison

are reported in Fig. 4.25 and Fig. 4.26 for the two CMP architectures.

4.7 Discussion

Looking at Fig. 4.12, Fig. 4.13 and Fig. 4.14 in Kalman �ltering approach and

Fig. 4.15 and Fig. 4.16 in LSTM approach and Fig. 4.23 and Fig. 4.24 in DNN

approach, we note that in the majority of cases, the proposed DEM techniques

achieve signi�cant energy reduction while keeping the total performance loss under

the user speci�ed performance constraint fairly well. Nevertheless, the performance

degradation is slightly larger than expected in some benchmarks. We attribute this

105

due to the fact that in our predictor engines the misprediction is inevitable in some

cases and also in the DNN approach the DNN model is not a perfect oracle. In

simulation results in all the proposed techniques, we can see that in the majority

of the benchmarks the EDP is improved. In some di�cult instances, that is not

the case. The reason for that is because we apply the proposed algorithm and

report results only for the region of interest of a given benchmark and not for the

whole duration of execution. These benchmarks are created such that during the

ROI all cores are fully utilized and thus usually there is little room for improving

performance via frequency throttling when everything is busy almost all the time.

In experimental setups like this, it is unlikely that both energy consumption and

performance can be improved because all cores are working all the time. This is not

so in some previous works, which reported wishfull energy consumption reduction

and performance improvement at the same time. We suspect that is possible

only if simulations are monitored outside the ROI where some of the cores do not

have threads scheduled and thus one can �nd room for execution optimization.

This is something that is actually unclear in previous works, which do not discuss

whether their results are reported for ROIs or not. Note that, in our simulations,

the length of each control period is 1 ms. We are forced to work with such a small

control period because the total length of the ROI of the benchmarks that we

use in simulations is relatively short. However, this parameter would be changed

to larger values in real-life deployment where workload benchmarks are executed

continuously or for very long times and not for just tens or hundreds of ms that

is the typical length of the ROI in full system simulators like Sniper and Gem5.

Note that such short ROI simulations on these simulators take hours or days to be

106

accomplished.

Another interesting aspect is that beyond a PL threshold of 40% the EDP

is not improved anymore as seen in Table 4.2. In other words, the DEM algorithm

can o�er bene�ts only when the PL threshold set by the user is less than 40%;

beyond that, the performance degrades too much compared with how much energy

is saved.

Comparing the Kalman �ltering and LSTM techniques in Table 4.3, we

see that both techniques demonstrate almost similar results. However, as we men-

tioned earlier, due to the ease of implementation and no training requirement, the

Kalman �ltering technique has been preferred among the LSTM based approach

in our work. Looking at Fig. 4.25 and Fig. 4.26, we note that the proposed DNN

model based approach provides consistently better energy delay product values

than both our proposed Kalman �ltering based technique and the RL technique

described in [72]. On average, the EDP improvement is 6.3% and 6% for the

16 core CMP architecture and 7.4% and 5.5% for the 64 core CMP architecture,

respectively. This is summarized in Table 4.4.

Table 4.4: Average improvement in terms of EDP values.
Comparison 16 core CMP 64 core CMP

architecture architecture

DNN vs. RL 6.3% 7.4%
DNN vs. Kalman 6% 5.5%

While the improvement is within the range of 5.5%-7.4% on average, we

consider that this is valuable. Aside from the fact that this study does improve

107

results over the existing approaches, and despite that DNN models require training

data collection and training, this work sheds light on what a relatively straightfor-

ward DNN based approach for energy optimization would be able to achieve. This

can be useful information for other researchers who may be interested in employ-

ing DNN models at the processor level - our results would provide an informed

starting or reference point. We consider our work as a step towards what other

researchers see as a necessity to address the complexity in designing CMP systems

and machine learning techniques [112].

108

0

5

10

15

20

25

30

35

40

45

Benchmarks

E
n
er

g
y
 R

ed
u
ct

io
n
 (

%
)

(a)

0

5

10

15

20

25

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d
at

io
n
 (

%
)

(b)

-20

-10

0

10

20

30

40

50

Benchmarks

E
D

P
 I

m
p
ro

v
em

en
t

(%
)

(c)

Figure 4.23: Comparison of the proposed DNN model based energy optimization
algorithm vs. no optimization at all for 16 core CMP. (a) percentage of energy
reduction, (b) percentage of performance degradation, and (c) percentage of EDP
improvement.

109

0

10

20

30

40

50

60

Benchmarks

E
n
er

g
y
 R

ed
u
ct

io
n
 (

%
)

(a)

0

2

4

6

8

10

12

14

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d
at

io
n
 (

%
)

(b)

-5

0

5

10

15

20

25

30

35

40

Benchmarks

E
D

P
 I

m
p
ro

v
em

en
t

(%
)

(c)

Figure 4.24: Comparison of the proposed DNN model based energy optimization
algorithm vs. no optimization at all for 64 core CMP. (a) percentage of energy
reduction, (b) percentage of performance degradation, and (c) percentage of EDP
improvement.

110

-4
-2
0
2
4
6
8

10
12
14
16

Benchmarks

E
n

er
g
y
 R

ed
u

ct
io

n
 (

%
)

DNN vs. RL DNN vs. Kalman

(a)

-6

-4

-2

0

2

4

6

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d
at

io
n

 (
%

)

DNN vs. RL DNN vs. Kalman

(b)

-10

-5

0

5

10

15

20

Benchmarks

E
D

P
 I

m
p
ro

v
em

en
t

(%
)

DNN vs. RL DNN vs. Kalman

(c)

Figure 4.25: Comparison of the proposed DNN model based energy optimization
algorithm against the RL and the Kalman �ltering based approaches for 16 core
CMP. (a) percentage of energy reduction, (b) percentage of performance degrada-
tion, and (c) percentage of EDP improvement.

111

-5

0

5

10

15

20

25

30

35

Benchmarks

E
n

er
g
y
 R

ed
u

ct
io

n
 (

%
)

DNN vs. RL DNN vs. Kalman

(a)

-6

-4

-2

0

2

4

6

Benchmarks

P
er

fo
rm

an
ce

 D
eg

ra
d
at

io
n
 (

%
)

DNN vs. RL DNN vs. Kalman

(b)

-10
-5
0
5

10
15
20
25
30
35
40

Benchmarks

E
D

P
 I

m
p
ro

v
em

en
t

(%
)

DNN vs. RL DNN vs. Kalman

(c)

Figure 4.26: Comparison of the proposed DNN model based energy optimization
algorithm against the RL and the Kalman �ltering based approaches for 64 core
CMP. (a) percentage of energy reduction, (b) percentage of performance degrada-
tion, and (c) percentage of EDP improvement.

112

CHAPTER 5

Conclusion and Future Work

In this dissertation, we investigated techniques for dynamic reliability manage-

ment and dynamic energy management in future network-on-chip based chip mul-

tiprocessors to address emerging design challenges related to reliability and energy

consumption. Our main contributions can be summarized as follows:

• We proposed a dynamic reliability management approach for NoC based chip

multiprocessors that considers both computation and communication compo-

nents in a uni�ed system. The proposed DRM is a hybrid approach that takes

bene�t of both DVFS and thread migration techniques in order to increase

the lifetime reliability of the overall system to the desired target with minimal

performance degradation.

• We proposed novel algorithms for dynamic energy management under perfor-

mance constraints. We proposed a very e�ective heuristic that also uses the

DVFS technique and a very e�cient workload prediction technique based on

Kalman �ltering and LSTM. Either of the two prediction methods is employed

to estimate the workload in the next control period for each of the processor

cores. These estimates are then used to select V/F pairs for each core of the

CMP during the next control period as part of a DVFS technique. The objec-

tive of the DVFS technique is to reduce energy consumption under performance

constraints that are set by the user.

113

• For the �rst time, we investigated the use of deep neural network models for

energy optimization under performance constraints in chip multiprocessor sys-

tems. We introduced a dynamic energy management algorithm implemented in

three phases. In the �rst phase, training data is collected by running several

selected instrumented benchmarks. A training data point represents a pair of

values of cores' workload characteristics and of optimal V/F pairs. This phase

employs Kalman �ltering for workload prediction and an e�cient heuristic al-

gorithm based on dynamic voltage and frequency scaling. The second phase

represents the training process of the DNN model. In the last phase, the DNN

model is used to directly identify V/F pairs that can achieve lower energy con-

sumption without performance degradation beyond the acceptable threshold set

by the user

We tested the proposed algorithms with a variety of benchmarks on 16

and 64 core NoC based CMP architectures. For the proposed hybrid DRM ap-

proach, full-system based simulations using a customized GEM5 simulator demon-

strated that lifetime reliability can be improved by 100% for an average perfor-

mance penalty of 7.7% and 8.7% for the two CMP architectures.

Furthermore, the simulation results demonstrated that the proposed dy-

namic energy management approach can achieve up to 55% energy reduction for

10% performance degradation constraints. In addition, the proposed DNN ap-

proach was compared against existing approaches based on reinforcement learning

and Kalman �ltering/LSTM and was found that it provides average improvements

in EDP of 6.3% and 6% for the 16 core architecture and of 7.4% and 5.5% for the

114

64 core architecture, respectively.

As potential future work, there are several interesting ideas that could be

investigated as described next.

• Study the use of other reliability models such as electromigration (EM), thermal

cycling (TC), and hot carrier injection (HCI) in order to capture the fact that

lifetime should also be a function of the current state of degradation [113].

• Extend the DNN model to an approach where both DVFS and task mapping

are used in a hybrid solution. Currently, it is unclear how the accuracy of the

DNN model would be a�ected if it were used in a system that combines DVFS

and task migration.

• Use snapshots of the whole system at a time, recorded as an image and in-

vestigate convolutional neural networks (CNN) to take into account possible

correlations among di�erent cores.

• Develop a multi-objective approach that takes into the consideration the relia-

bility, energy and performance at the same time.

115

References

[1] J. Whitney and P. Delforge, �Data center e�ciency assessment - scaling
up energy e�ciency across the data center industry: evaluating key
drivers and barriers," Natural Resources Defense Council (NRDC) Report,
2014. [Online]. Available: https://www.nrdc.org/sites/default/files/
data-center-efficiency-assessment-IP.pdf

[2] Annual Energy Outlook, U.S. Energy Information Administration (EIA),
2016. [Online]. Available: http://www.eia.gov/forecasts/aeo/data.
cfm#enconsec

[3] United States Environmental Protection Agency, �Report to Congress on
server and data center energy e�ciency," Report, 2007. [Online]. Avail-
able: https://www.energystar.gov/ia/partners/prod_development/
downloads/EPA_Datacenter_Report_Congress_Final1.pdf

[4] A. Dehon, H.M. Quinn, and N.P. Carter, �Vision for cross-layer optimization
to address the dual challenges of energy and reliability," ACM/IEEE Design
Automation and Test in Europe Conf. (DATE), March 2010.

[5] F. Angiolini, D. Atienza, S. Murali, L. Benini, and G. De Micheli, �Reliability
support for on-chip memories using Networks-on-Chip," IEEE Int. Conf. on
Computer Design (ICCD), Oct. 2007.

[6] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, �Multicore soft error rate
stabilization using adaptive dual modular redundancy," ACM/IEEE Design
Automation and Test in Europe Conf. (DATE), March 2010.

[7] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, �Shoestring: probabilistic soft error
reliability on the cheap," Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), March 2010.

[8] J. Blome, S. Feng, S. Gupta, and S. Mahlke, �Self-calibrating online wearout
detection," Int. Symp. on Microarchitecture (MICRO), pp. 109-120, Dec.
2007.

[9] Y. Li, Y.M. Kim, E. Mintarno, D.S. Gardner, and S. Mitra, �Overcoming early-
life failure and aging for robust systems," IEEE Design & Test of Computers,
vol. 26, no. 6, pp. 28-39, 2009.

[10] B. Datta and W. Burleson, �Circuit-level NBTI macro-models for collaborative
reliability monitoring," ACM Great Lakes Symposium on VLSI (GLSVLSI),
May 2010.

[11] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, �TIMBER: time
borrowing and error relaying for online timing error resilience," ACM/IEEE
Design Automation and Test in Europe Conf. (DATE), March 2010.

[12] L. Huang and Q. Xu, �Energy-e�cient task allocation and scheduling for multi-
mode MPSoCs under lifetime reliability constraint," ACM Int. Conference
on Design Automation and Test in Europe (DATE), 2010.

https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
http://www.eia.gov/forecasts/aeo/data.cfm#enconsec
http://www.eia.gov/forecasts/aeo/data.cfm#enconsec
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf

116

[13] S. Wang and J.-J. Chen, �Thermal-aware lifetime reliability in multicore sys-
tems," Int. Symp. on Quality Electronic Design (ISQED), 2010.

[14] A. Masrur et al., �Schedulability analysis for processors with aging-aware au-
tonomic frequency scaling," IEEE Int. Conf. on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2012.

[15] A. Das, A. Kumar, and B. Veeravalli, �Reliability-driven task mapping for life-
time extension of networks-on-chip based multiprocessor systems," ACM Int.
Conference on Design Automation and Test in Europe (DATE), 2013.

[16] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele, �Combined DVFS
and mapping exploration for lifetime and soft-error susceptibility improve-
ment in MPSoCs," ACM Int. Conference on Design Automation and Test in
Europe (DATE), 2014.

[17] J. Srinivasan, Lifetime reliability aware microprocessors, Ph.D. Thesis, Univer-
sity of Illinois at Urbana-Champaign, 2006.

[18] Z. Lu, J. Lach, M.R. Stan, and K. Skadron, �Improved thermal management
with reliability banking," IEEE Micro, vol. 25, no. 6, pp. 40-49, 2005.

[19] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, �Multi-mechanism reliability
modeling and management in dynamic systems," IEEE Trans. on Very Large
Scale Integration Systems (TVLSI), vol. 16, no. 4, 2008.

[20] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, �Maestro: orchestrating lifetime re-
liability in chip multiprocessors," Int. Conf. on High-Performance Embedded
Architectures and Compilers (HiPEAC), 2010.

[21] A. Tiwari and J. Torrellas, �Facelift: hiding and slowing down aging in multi-
cores," ACM/IEEE Int. Symp. on Microarchitecture (MICRO), 2008.

[22] C. Zhuo, D. Sylvester, and D. Blaauw, �Process variation and temperature-aware
reliability management," ACM/IEEE Design Automation and Test in Europe
Conf. (DATE), 2010.

[23] A.K. Coskun, R.D. Strong, D.M. Tullsen, and T.S. Rosing, �Evaluating the
impact of job scheduling and power management on processor lifetime for
chip multiprocessors," SIGMETRICS/Performance, 2009.

[24] J. Sun, A.K. Kodi, A. Louri, and J.M. Wang, �NBTI aware workload balanc-
ing in multi-core systems," IEEE Int. Symp. on Quality Electronic Design
(ISQED), 2009.

[25] O. Khan and S. Kundu ,�A self-adaptive system architecture to address transistor
aging," ACM/IEEE Design Automation and Test in Europe Conf. (DATE),
2009.

[26] P. Mercati, A. Bartolini, F. Paterna, T.S. Rosing, and L. Benini, �Workload and
user experience-aware dynamic reliability management in multicore proces-
sors," ACM Int. Design Automation Conference (DAC), 2013.

[27] P. Mercati et al., �A Linux-governor based dynamic reliability manager for an-
droid mobile devices," ACM/IEEE Design Automation and Test in Europe
Conf. (DATE), 2013.

117

[28] A. Das, R. A. Sha�k, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and B.
Veeravalli, �Reinforcement learning-based inter- and intra-application ther-
mal optimization for lifetime improvement of multicore systems," ACM Int.
Design Automation Conference (DAC), 2014.

[29] A.Y. Yamamoto and C. Ababei, �Uni�ed reliability estimation and management
of NoC based chip multiprocessors," Microprocessors and Microsystems, vol.
38, no. 1, pp. 53-63, Feb. 2014.

[30] H. Kim, S.B.K. Boga, A. Vitkovskiy, S. Hadjitheophanous, P.V. Gratz, V. Sote-
riou, and M.K. Michael, �Use it or lose it: proactive, deterministic longevity
in future chip multiprocessors," ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 20, no. 4, Sep. 2015.

[31] Z. Ghaderi, A. Alqahtani, N. Bagherzadeh, �Online monitoring and adaptive
routing for aging mitigation in NoCs," ACM/IEEE Design Automation and
Test in Europe Conf. (DATE), 2017.

[32] M. Salehi et al., �dsReliM: Power-constrained reliability management in dark-
silicon many-core chips under process variations," CODES+ISSS, 2015.

[33] M. Salehi et al., �Run-time adaptive power-aware reliability management for
many-cores," IEEE Design & Test, 2017.

[34] D. Gnad et al., �Hayat: harnessing dark silicon and variability for aging decel-
eration and balancing," DAC, 2015.

[35] V. Rathore et al., �HiMap: A hierarchical mapping approach for enhancing
lifetime reliability of dark silicon manycore systems," DATE, 2018.

[36] H. Hong, J. Lim, H. Lim, and S. Kang, �Lifetime reliability enhancement of
microprocessors: mitigating the impact of negative bias temperature insta-
bility," ACM Computing Surveys (CSUR), vol. 48, no. 1, pp. 1-25, Sep. 2

[37] W. Kim, M.S. Gupta, G.-Y. Wei, and D. Brooks, �System level analysis of fast,
per-core DVFS using on-chip switching regulators,� IEEE Int. Symposium
on High Performance Computer Architecture (HPCA), 2008.

[38] T. Kolpe, A. Zhai, and S.S. Sapatnekar, �Enabling improved power manage-
ment in multicore processors through clustered DVFS,� ACM/IEEE Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2011.

[39] K. Chakraborty and S. Roy, �Architecturally homogeneous power-performance
heterogeneous multicore systems,� IEEE Trans. on Very Large Scale Integra-
tion (VLSI) Systems, vol. 21, no. 4, pp. 670-679, Apr. 2013.

[40] A.A. Sinkar, H.R. Ghasemi, M.J. Schulte, U.R. Karpuzcu, and N.S. Kim,
�Low-cost per-core voltage domain support for power-constrained high-
performance processors,� IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 4, pp. 747-758, Apr. 2014.

[41] R. Jevtic, H.-P. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, and B.
Nikolic, �Per-core DVFS with switched-capacitor converters for energy e�-
ciency in manycore processors,� IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 4, pp. 723-730, May 2015.

118

[42] R. Schone, T. Ilsche, M. Bielert, D. Molka, and D. Hackenberg, �Software
controlled clock modulation for energy e�ciency optimization on Intel pro-
cessors,� IEEE Int. Workshop on Energy E�cient Supercomputing (E2SC),
2016.

[43] G. Dhiman and T.S. Rosing, �Dynamic voltage frequency scaling for multi-
tasking systems using online learning,� ACM/IEEE Int. Symposium on Low
Power Electronics and Design (ISLPED), 2007.

[44] M. Moeng and R. Melhem, �Applying statistical machine learning to multicore
voltage and frequency scaling,� ACM Int. Conference on Computing Fron-
tiers, 2010.

[45] H. Jung and M. Pedram, �Improving the e�ciency of power management tech-
niques by using bayesian classi�cation,� Int. Symposium on Quality Elec-
tronic Design (ISQED), 2008.

[46] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres, �Dynamic and
distributed frequency assignment for energy and latency constrained MP-
SoC,� ACM/IEEE Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2009.

[47] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and G.D.
Micheli, �Temperature control of high-performance multi-core platforms us-
ing convex optimization,� ACM/IEEE Design, Automation and Test in Eu-
rope Conference and Exhibition (DATE), 2008.

[48] H. Sayadi, D. Pathak, I. Savidis and H. Homayoun, �Machine learning-based
approaches for energy-e�ciency prediction and scheduling in composite cores
architectures," IEEE Int. Conference on Computer Design (ICCD), 2017.

[49] S. Shari�, A.K. Coskun, and T.S. Rosing, �Hybrid dynamic energy and thermal
management in heterogeneous embedded multiprocessor SoCs,� ACM/IEEE
Asia and South Paci�c Design Automation Conference (ASP-DAC), 2010.

[50] H. Sayadi and H. Homayoun, �Scheduling Multithreaded Applications onto Het-
erogeneous Composite Cores Architecture," IEEE Int. Green and Sustainable
Computing Conference (IGSC), 2017.

[51] C.H. Hsu andW.-C. Feng, �A power-aware run-time system for high-performance
computing,� ACM/IEEE Conference on Supercomputing, 2005.

[52] R. Ge, X. Feng, W. Feng, and K.W. Cameron, �CPU MISER: a performance-
directed, run-time system for power-aware clusters,� IEEE Int. Conf. on
Parallel Processing (ICPP), 2007.

[53] S. Huang and W. Feng, �Energy-e�cient cluster computing via accurate work-
load characterization,� IEEE/ACM Int. Symposium on Cluster Computing
and the Grid (CCGRID), 2009.

[54] B. Rountree, D.K. Lownenthal, B.R. de Supinski, M. Schulz, V.W. Freeh, and
T. Bletsch, �Adagio: making DVS practical for complex HPC applications,�
ACM/IEEE Conference on Supercomputing, 2009.

[55] V. Sundriyal, M. Sosonkina, �Joint frequency scaling of processor and DRAM,�

119

The Journal of Supercomputing, vol. 72, no. 4, pp. 1549-1569, Apr. 2016.

[56] V. Sundriyal, M. Sosonkina, F. Liu, M.W. Schmidt, �Dynamic frequency scaling
and energy saving in quantum chemistry applications,� IEEE Int. Parallel
and Distributed Processing Symposium (IPDPS), 2011.

[57] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, �Interval-based models for run-
time DVFS orchestration in superscalar processors,� ACM Int. Conference
on Computing Frontiers, 2010.

[58] B. Rountree, D.K. Lowenthal, M. Schulz, and B.R. de Supinski, �Practical per-
formance prediction under dynamic voltage frequency scaling,� Int. Green
Computing Conference and Workshops, 2011.

[59] R. Miftakhutdinov, E. Ebrahimi, and Y.N. Patt, �Predicting performance impact
of DVFS for realistic memory systems,� Int. Symposium on Microarchitecture
(MICRO), 2012.

[60] S. Eyerman and L. Eeckhout, �A counter architecture for online DVFS pro�tabil-
ity estimation,� IEEE Trans. on Computers, vol. 59, no. 11, pp. 1576-1583,
March 2010.

[61] J.Y. Won, P. V. Gratz, S. Shakkottai, and J. Hu, �Resource sharing centric
dynamic voltage and frequency scaling for CMP cores, uncore, and memory,�
ACM Trans. on Design Automation of Electronic Systems (TODAES), vol.
21, no. 4, p. 69, Sep. 2016.

[62] C. Ababei and N. Mastronarde, �Bene�ts and costs of prediction based DVFS
for NoCs at router level," IEEE Int. SoC Conference (SOCC), 2014.

[63] L. Shang, L.-S. Peh, and N. K. Jha, �Dynamic voltage scaling with links for
power optimization of interconnection networks," Int. Symposium on High-
Performance Computer Architecture (HPCA), 2003.

[64] A. Das, A. Kumar, B. Veeravalli, R.A. Sha�k, G.V. Merrett, and B.M. Al-
Hashimi, �Workload uncertainty characterization and adaptive frequency
scaling for energy minimization of embedded systems," ACM/IEEE Design,
Automation & Test in Europe Conference (DATE), 2015.

[65] R. Cochran, C. Hankendi, A.K. Coskun, and S. Reda, �Pack & cap: adaptive
DVFS and thread packing under power caps," ACM/IEEE Int. Symposium
on Microarchitecture (MICRO), 2011.

[66] H. Shen, J. Lu, and Q. Qiu, �Learning based DVFS for simultaneous temper-
ature, performance and energy management," ACM/IEEE Int. Symposium
on Quality Electronic Design (ISQED), 2012.

[67] R. Ye and Q. Xu, �Learning-based power management for multicore processors
via idle period manipulation," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 33, no. 7, pp. 1043-1056, July
2014.

[68] B.K. Donohoo, C. Ohlsen, S. Pasricha, Y. Xiang, and C.W. Anderson, �Context-
aware energy enhancements for smart mobile devices," IEEE Trans. on Mo-
bile Computing, vol. 13, no. 8, pp. 1720-1732, July 2014.

120

[69] H. Jung and M. Pedram, �Supervised learning based power management for
multicore processors," IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 29, no. 9, pp. 1395-1408, Sep. 2010.

[70] Z. Chen and D. Marculescu, �Distributed reinforcement learning for power lim-
ited many-core system performance optimization," ACM/IEEE Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2015.

[71] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, �Achieving autonomous power man-
agement using reinforcement learning," ACM Trans. on Design Automation
of Electronic Systems (TODAES), vol. 18, no. 2, article 24, March 2013.

[72] Z. Wang, Z. Tian, J. Xu, R. Maeda and H. Li, �Modular reinforcement learn-
ing for self-adaptive energy e�ciency optimization in multicore system,�
ACM/IEEE Asia and South Paci�c Design Automation Conference (ASP-
DAC), 2017.

[73] D. Biswas, V. Balagopal, R. Sha�k, B. Al-Hashimi and G. Merrett, �Ma-
chine learning for run-time energy optimisation in many-core systems,�
ACM/IEEE Design, Automation and Test in Europe Conference and Ex-
hibition (DATE), 2017.

[74] R.G. Kim, W. Choi, Z. Chen, J.R. Doppa, P.P. Pande, D. Marculescu and
R. Marculescu. �Imitation learning for dynamic VFI control in large-scale
manycore systems,� IEEE Trans. on VLSI Systems, vol. 24, no. 9, pp. 2488-
2501, Sep. 2017.

[75] J.Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, �Up by their bootstraps:
online learning in arti�cial neural networks for CMP uncore power manage-
ment,� HPCA, 2014.

[76] J. Gao, �Machine learning applications for data center optimiza-
tion,� Google White Paper, 2014. [Online]. Available: https:
//static.googleusercontent.com/media/research.google.com/en/
/pubs/archive/42542.pdf.

[77] M.G. Moghaddam and C. Ababei, �Dynamic lifetime reliability management for
chip multiprocessors,� IEEE Trans. on Multiscale Computing sustems, 2018.

[78] M.G. Moghaddam, W. Guan and C. Ababei, �Dynamic energy minimization in
chip multiprocessors using deep neural networks,� IEEE Trans. on Multiscale
Computing sustems, 2018.

[79] C. Ababei and M.G. Moghaddam, �A Survey of Prediction and Classi�cation
Techniques in Multicore Processor Systems," IEEE Trans. on Parallel and
Distributed Systems, 2018.

[80] M.G. Moghaddam and C. Ababei, �Dynamic energy management for chip mul-
tiprocessors under performance constraints,� Microprocessors and Microsys-
tems, vol. 54, pp. 1-13, Oct. 2017.

[81] M.G. Moghaddam, W. Guan and C. Ababei, �Investigation of LSTM based
prediction for dynamic energy management in chip multiprocessors,� IEEE
Int. Green and Sustainable Computing Conference, 2017.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf

121

[82] M.G. Moghaddami, �Dynamic energy and reliability management in network-
on-chip based chip multiprocessors,� IEEE Int. Green and Sustainable Com-
puting Conference, 2017.

[83] M.G. Moghaddam, A. Yamamoto, and C. Ababei, �Investigation of DVFS based
dynamic reliability management for chip multiprocessors," IEEE Int. Con-
ference on High Performance Computing &Simulation (HPCS), 2015.

[84] J.H. Stathis, �Reliability limits for the gate insulator in CMOS technology," vol.
46, no. 2, pp. 265-286, Mar. 2002.

[85] E. Wu, J. Sune, W. Lai, E. Nowak, J. McKenna, A. Vayshenker, D. Har-
mon,�Interplay of voltage and temperature acceleration of oxide breakdown
for ultra-thin gate oxides, Solid-State Electron," vol. 46, no. 11, pp. 1787-
1798, Nov. 2002.

[86] M.A. Alam, H.Ku�uoglu, D. Varghese, S. Mahapatra, �A comprehensive model
for PMOS NBTI degradation: Recent progres,"Microelectronics Reliability,
vol. 47, no. 6, pp. 853-862, Jun. 2007.

[87] A.T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, S. Krishnan
, �NBTI impact on transistor and circuit: models, mechanisms and scaling
e�ects [MOSFETs]," IEEE Int. Electronics Device Meeting (IEDM), 2003.

[88] W. Abadeer, W. Ellis, �Behaviour of NBTI Under AC Dynamic Circuit Condi-
tions," Int. Physics Reliability Symposium (IPRS), 2003.

[89] A.T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, S. Krishnan
, �E�ects of Measurement Temperature on NBTI," IEEE Electron Device
Letters, vol. 28, no. 4, pp. 298-300, Apr. 2007.

[90] J. Keane, X. Wang, D. Persaud and C. Kim, �An all-in-one silicon odometer for
separately monitoring HCI, BTI, and TDDB," IEEE Journal of Solid-State
Circuits, vol. 45, no. 4, pp. 817-829, Apr. 2007.

[91] X. Li, J. Qin and J. Bemstein ,�Compact Modeling of MOSFET Wearout Mech-
anisms for Circuit-Reliability Simulation," IEEE Trans. on Device and Ma-
terial Reliability, vol. 8, no. 1, pp. 98-121, Mar. 2008.

[92] G. Welch and G. Bishop, An Introduction to the Kalman Filter. Chapel Hill,
NC: Univ. North Carolina, Chapel Hill, 1995.

[93] S. Bang, K. Bang, S. Yoon, and E. Chung, �Run-time adaptive workload estima-
tion for dynamic voltage scaling,� IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 28, no. 9, pp. 1334-1347,
Aug. 2009.

[94] S. Ruder, �An overview of gradient descent optimization algorithms,� arXiv
preprint arXiv:1609.04747, Sep. 2016.

[95] The vanishing gradient problem, 2017. [Online]. Available: http://
neuralnetworksanddeeplearning.com/chap5.html

[96] S. Hochreiter and J. Schmidhuber, �Long short-term memory,� Neural Compu-
tation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html

122

[97] A beginner's guide to recurrent networks and LSTMs, 2017. [Online]. Available:
https://deeplearning4j.org/lstm.html

[98] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press,
2012.

[99] Y. LeCun, �Learning invariant feature hierarchies,� ECCV, 2012.

[100] G. Hinton, S. Osindero, and Y. Teh, �A fast learning algorithm for deep belief
nets," Neural Computation, vol. 18, pp. 1527-1554, July 2006.

[101] G. Hinton and R. Salakhutdinov, �Reducing the dimensionality of data with
neural networks," Science, vol. 313. no. 5786, pp. 504-507, July 2006.

[102] L. Deng and D. Yu, �Deep learning: methods and applications," NOW Foun-
dations and Trends in Signal Processing, vol. 7, no. 3-4, June 2014.

[103] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewall, M. Shoaib,
N. Vaish, M. D. Hill, D.A. Wood, �The gem5 simulator," ACM SIGARCH
Computer Architecture News Archive, 2011.

[104] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi, �Mc-
PAT: an integrated power, area, timing modeling framework for multicore
and manycore architectures," IEEE/ACM Int. Symposium on Microarchitec-
ture (MICRO), 2009.

[105] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron and
M.R. Stan, �HotSpot: a compact thermal modeling method for CMOS VLSI
systems," IEEE Trans. on Very Large Scale Integration Systems (TVLSI),
vol. 14, no. 5, 2006.

[106] REST: Reliability ESTimation for chip multiprocessors (CMPs), 2014. [Online].
Available: https://code.google.com/p/reliability-estimator

[107] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S.W. Keckler, �Running
PARSEC 2.1 on M5," The University of Texas at Austin, Technical Report
TR-09-32, Oct. 2009.

[108] T.E. Carlson, W.Heirman, and L. Eeckhout, �Sniper: exploring the level of
abstraction for scalable and accurate parallel multi-core simulation,� Int.
Conf. for High Performance Computing, Networking, Storage and Analysis,
2011.

[109] PARSEC and Splash2 benchmarks, 2017. [Online]. Available: http://parsec.
cs.princeton.edu

[110] Keras: the Python deep learning library, 2017. [Online]. Available: https:
//keras.io/

[111] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S., Cor-
rado, A. Davis, J. Dean, M. Devin and S. Ghemawat, �Tensor�ow: large-
scale machine learning on heterogeneous distributed systems,� arXiv preprint
arXiv:1603.04467, March 2016.

https://deeplearning4j.org/lstm.html
https://code.google.com/p/reliability-estimator
http://parsec.cs.princeton.edu
http://parsec.cs.princeton.edu
https://keras.io/
https://keras.io/

123

[112] R.G. Kim, J.R. Doppa, P.P. Pande, D. Marculescu and R. Marculescu. �Ma-
chine learning and manycore systems design: a serendipitous symbiosis,�
Submitted to Learning, Dec. 2017. [Online]. Available: https://scirate.
com/arxiv/1712.00076

[113] L. Huang and Q. Xu, �AgeSim: a simulation framework for evaluating the
lifetime reliability of processor-based SoCs," ACM Int. Conference on Design
Automation and Test in Europe (DATE), 2010.

https://scirate.com/arxiv/1712.00076
https://scirate.com/arxiv/1712.00076

	Marquette University
	e-Publications@Marquette
	Dynamic Lifetime Reliability and Energy Management for Network-on-Chip based Chip Multiprocessors
	Milad Ghorbani Moghaddam
	Recommended Citation

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF NOMENCLATURE AND ACRONYMS
	CHAPTER Problem Statement, Objective and Contributions
	Problem statement
	Objectives
	Related Work
	Reliability Management Techniques
	Energy Management Techniques

	Contributions
	Dynamic Reliability Management
	Dynamic Energy Management

	Dissertation Organization
	Related Publications

	CHAPTER Background
	Aging Mechanisms
	Time Dependant Dielectric Breakdown
	Negative bias temperature instability

	Reliability Estimation Tool
	Kalman Filtering
	Neural Networks
	Feed-Forward Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory
	Deep Neural Networks

	CHAPTER Proposed Dynamic Reliability Management
	Introduction
	DVFS based Technique
	Hybrid DVFS and Thread Migration based Technique
	Simulation Results
	Simulation Setup
	DVFS based Technique
	Hybrid DVFS and Thread Migration based Technique

	Discussion

	CHAPTER Proposed Dynamic Energy Management
	Introduction
	Delayed Instruction Count Performance Estimation
	Kalman Filtering based Technique
	LSTM based Technique
	Dynamic Energy Management using DNN
	Phase 1: Collection of Training Data
	Phase 2: Training of the DNN Model
	Phase 3: Prediction Using the DNN Model

	Simulation Results
	Simulation Setup
	Kalman Filtering based Technique
	LSTM based Technique
	Dynamic Energy Management using DNN

	Discussion

	CHAPTER Conclusion and Future Work
	References

