
INVESTIGATING POWER
MANAGEMENT SCHEMES IN

OUT-OF-ORDER
MICROPROCESSORS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2017

By
Yaman Cakmakci

School of Computer Science

Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 14
1.1 Challenges with computer architecture simulation 17

1.2 Challenges with power management 18

1.3 Publications . 23

1.4 Thesis structure . 23

2 Background 25
2.1 Introduction . 25

2.2 List of related metrics . 26

2.3 Out-of-order microprocessors . 26

2.3.1 Overview of an out-of-order pipeline 28

2.4 Microprocessors as CMOS circuits 30

2.5 Power dissipation in microprocessors 33

2.5.1 Dynamic Voltage and Frequency Scaling 34

2.5.2 Recent advancements in DVFS management 35

2.5.3 Power gating . 40

2.6 Performance and power tradeoffs . 47

2.6.1 Power and performance modelling 50

2.7 Workload generation . 52

2.7.1 A comparison of GLAM with the presented tools 56

2

2.8 Summary . 57

3 Experimental Infrastructure 59
3.1 Processor simulation . 60

3.1.1 An overview of available simulators 61

3.1.2 gem5 . 65

3.2 Power modelling . 69

3.3 Temperature modelling . 70

3.4 Simulation toolflow . 72

3.5 Simulation models . 73

3.5.1 Architectural model . 73

3.5.2 Technology model . 73

3.5.3 Floorplan . 73

3.6 Hardware Experiments . 74

3.7 Summary . 75

4 Generator of LLVM Assisted Microbenchmarks 76
4.1 GLAM: Generator of LLVM Assisted Benchmarks 77

4.1.1 Code specification . 78

4.1.2 Code generation . 80

4.1.3 Execution harness generation 81

4.2 Evaluation . 83

4.2.1 Comparison of microbenchmarks on different architectures . . 83

4.2.2 Performance and power trade-offs 85

4.2.3 Measuring Energy Per Instruction 87

4.3 Conclusion . 89

5 Cyclic Power Gating 90
5.1 State-Retentive architecture . 94

5.2 Power-Gating overheads . 94

5.3 CPG Power and Evaluation Strategy 98

5.4 Experimental methodology . 98

5.5 Evaluation . 100

5.5.1 Compute bound evaluation 101

5.5.2 Memory bound evaluation 105

5.5.3 An analysis of CPG for varying levels of memory intensity . . 110

3

5.6 Comparison with VFS . 112
5.7 CPG at program function granularity 120
5.8 Conclusion . 121

6 Conclusions and Future Work 122
6.1 Summary . 122
6.2 Future work . 123

6.2.1 CPG Off-period Selection 123
6.2.2 Exploiting memory stalls for determining CPG sleep periods . 124
6.2.3 CPG enabled compute stack 124

Bibliography 127

A Compiler Driven Cyclic Power Gating 141
A.1 Analysis of Memory Behaviour of CPU2006 benchmarks 143
A.2 Memory Operations on LLVM IR 145
A.3 Compile-Time Classification of Memory-Bound Functions 148

A.3.1 k-NN Based Classification using LLVM 149
A.4 Conclusion . 151

B Specification of GLAM Generated Code 152
B.1 Components of a GLAM Specification 152

4

List of Tables

2.1 An overview of DVFS performance/power predictors 38
2.2 An overview of power-gating schemes 46

3.1 List of architectural simulators . 62

4.1 Energy Per Instruction Measurements 88

5.1 Simulation parameters . 100
5.2 Description of SPEC CPU2006 benchmarks 114

A.1 Function level cache missing behaviour of SPEC benchmarks 144
A.2 A Subset of the Training Set Used for Function Classification 150

B.1 List of keywords used for a GLAM benchmark specification 153

5

List of Figures

1.1 Trend showing the exponential increase in processor transistor counts.
[Data taken from [DKM+12]] . 15

1.2 Microprocessor power dissipation projections against actual power dis-
sipation (Figure taken from Danowitz et al. [DKM+12]) 16

1.3 Trend showing transistor operating voltages by year. [Data taken from
[DKM+12]] . 21

2.1 Generic Out-of-Order pipeline with in-order fetch,decode and retire
stages and out-of-order execution backend. 28

2.2 Lateral view of an n-type MOSFET transistor, where L is the gate
length, and x is the direction of the flow from source terminal to the
drain terminal. 31

2.3 Insulating and conducting states of a transistor. Where the gate voltage
(VG) is lesser than threshold voltage (Vth), the transistor is in an insu-
lating state. A conductive path is formed between the source and drain
terminals as gate voltage becomes higher than threshold voltage. . . . 32

2.4 CMOS inverter with configuration in on and off states. 33

2.5 Power Gating scheme where the power gating of the circuit is con-
trolled at positive (Vdd) or negative supply(Vss) 41

2.6 Power gating scheme (Taken from [JKK+12]). When pgenable is as-
serted low, the supply voltage to the power gated block is cut off. . . 41

2.7 Handling of in-rush current (Taken from [JKK+12]) 42

2.8 Power gating cycle intervals (x-axis represents time, and y-axis repre-
sents energy)(Taken from [HBS+04]) 45

2.9 Performance Roofline Model (taken from [WWP09]). 51

3.1 Experimental Infrastructure Tool Flow. 60

3.2 gem5 block diagram. 66

6

3.3 Simulation object class hierarchy. 67

3.4 Cache replacement policy class hierarchy. 68

3.5 McPAT block diagram (Taken from [LAS+09]). 70

3.6 HotSpot modelling granularity (a) functional blocks (b) grid (c) func-
tional blocks with grids (Figure taken from Huang et al. [HGV+06]). 71

3.7 Sample HotSpot output. 71

3.8 Simulation tool flow . 72

3.9 Simulated ARM A57 floorplan . 74

3.10 Hardware Event Profiling . 75

4.1 GLAM tool flow . 78

4.2 GLAM Harness Generation . 83

4.3 Integer microbenchmarks . 84

4.4 EDP scaling of memory-bound vs compute-bound application 85

4.5 Effect of memory latency . 86

4.6 Best EDP based on frequency selection 87

5.1 Block Diagram of a System-on-Chip with a CPG Controller. 92

5.2 Cyclic Power Gating. 93

5.3 State-retentive Architecture . 95

5.4 State-retentive Power Gating . 96

5.5 Tool flow used for simulations. 99

5.6 Execution Time for a Compute Bound Microbenchmark. 102

5.7 Total Energy for a Compute Bound Microbenchmark. 103

5.8 Average Power for a Compute Bound Microbenchmark. 104

5.9 Final Temperature for a Compute Bound Microbenchmark. 105

5.10 EDP for a Compute Bound Microbenchmark. 106

5.11 Execution Time for a Memory Bound Microbenchmark. 107

5.12 Total Energy for a Memory Bound Microbenchmark. 108

5.13 Average Power for a Memory Bound Microbenchmark. 108

5.14 Average Static Power for a Memory Bound Microbenchmark. 109

5.15 Static Energy for a Memory Bound Microbenchmark. 109

5.16 Final Temperature for a Memory Bound Microbenchmark. 110

5.17 EDP for a Memory Bound Microbenchmark. 111

5.18 EDP winners of CPG executions accross benchmarks with differing
LLCMPK. 112

7

5.19 Performance of CPG against 4 VFS levels (Lower is better) 117
5.20 Energy consumption of CPG against 4 VFS levels (Lower is better) . 118
5.21 EDP of CPG against 4 VFS levels (Lower is better) 119
5.22 EDP of the Function-Grain CPG Scheme for the mcf Benchmark (Lower

is better). 120

6.1 CPG Enabled Compute Stack . 126

A.1 Energy Delay Product for Memory and Compute Bound Applications 142
A.2 EDP of the CPG scheme for the mcf benchmark. 145
A.3 Compilation flow . 149
A.4 EDP for soplexbenchmark . 151

B.1 Graphical representation of the GLAM specification. 154

8

Abstract

INVESTIGATING POWER MANAGEMENT SCHEMES IN

OUT-OF-ORDER MICROPROCESSORS

Yaman Cakmakci
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2017

Limitations imposed by the the end of Dennard Scaling have led to a significant in-
crease in the power density of chips. This has elevated power efficiency to a first order
design constraint.

This thesis proposes a novel microbenchmark generator, the Generator of LLVM
Assisted Microbenchmarks (GLAM), a tool which enables the generation of architec-
ture agnostic microbenchmarks by exploiting the LLVM Intermediate Representation.
GLAM can be used for design space exploration, as a tool to aid in power model gen-
eration, and has been used to evaluate the power management scheme described in this
thesis.

Furthermore, a novel power management scheme, Cyclical Power Gating (CPG),
is proposed. CPG exploits a state-retentive power-gating technique that allows power
consumption to be scaled linearly without reducing the supply voltage. CPG works
by turning the core on and off over a parameterised period and duty cycle. The low
switching overhead of CPG can be used to apply it at the granularity of program func-
tion level, and provides Energy Delay Product (EDP) gains when compared to nominal
operation.

A simulation-based comparison of CPG with equivalent voltage and frequency lev-
els of a system equipped with Dynamic Voltage and Frequency Scaling shows that CPG
provides 6.27% better Energy-Delay-Product than Voltage and Frequency Scaling.

9

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

11

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

Spending the last four years in Manchester made me realise that no matter how dark
a city is, it is actually the people that brings in the light. First, and foremost I am
thankful to my supervisor Mikel Lujan for accepting me as a PhD student and making
these splendid four years possible. His guidance in times where I felt lost, along with
his patience will be remembered. I would like to thank Will Toms for his assistance in
times of need, and for all the technical discussions that would at times context switch
to non-technical gibberish during our lunch breaks.

I had the chance to work with very bright people within the APT. I would like to
thank Christos, John Mawer, Andy Nisbet, James Clarkson, John Goodacre, Guillermo,
Bernard, Swapnil, Mireya, Andrey, Thanos, Seckin, Mohsen, Farideh, Andrew Leem-
ing, Geoffrey, Matt, Jim Garside, Guangda, Andi, and Antoniou for being great col-
leagues. A special thanks to Ioanna, Serhat, Cosmin, Ozan, Emre and Sebastian for
all the beers we had and their support during the stressful writing period. The MLO
folk also deserve a shout-out for all their humour and cheerfulness. Thanks to Nikos,
Henry, Sarah, and Kostas for all the lunches we had in the business school, along with
the weekend activities that resulted in occasional hangovers. I wish all the best for
Kostas and Idoia. I would like to thank Anatoli for being a great gig buddy, and a
friend. I would like to thank Erhan, and Babis for being great flatmates, and having
to endure the terror of sharing a house with me. A special thanks to my best mate
Yalim, for all the hilarious conversations we had over gtalk throughout the writing of
this thesis.

I have been lucky to establish friendships here that I am sure will last forever. I
would like to thank Asan for all that he has taught, and all the open conversations we
had. I wish him the brightest future. Paris deserves a special thanks for his politically
correct sense of humor, and all the coffees that we shared for slacking purposes. Wish
you a great future with Laura and the kid! A big thanks to Evangelos for proving his
friendship once more by taking the time to proof-read the thesis. I hope our paths will

12

intersect in the future! Finally, I would like to thank Esin for all her love and laughter.
For all their support and affection, a big thanks to my family to whom this thesis is

dedicated to.
If I have forgotten anyone, please excuse me.

13

Chapter 1

Introduction

Microprocessors are devices that can be programmed to solve a wide variety of prob-
lems with different inputs. For example, they can be programmed to run critical au-
topilot algorithms that control aeroplanes, or for applying not so critical digital filters
to photographs shared over the internet. The fundamental building blocks of micropro-
cessors are called transistors. Transistors are used as switching circuits to build logic
gates, which are then used to build logic blocks such as adders, decoders and registers,
that make up a microprocessor. Microprocessors are manufactured using Complemen-
tary Metal Oxide Semiconductor (CMOS) technology and have been increasing in an
exponential scale since the 1960s.

An important factor on the subject of CMOS evolution and transistor scaling is
Dennard scaling. Dennard laid the scientific foundations of scaling [DGR+74]. A
simplified interpretation of Dennard scaling is that each new generation of transistors
results in a two fold decrease in chip area and power consumption, while the perfor-
mance is doubled. The main benefit that came from shrinking transistor sizes were the
inherent performance improvements that came with the new technology.

A CMOS IC such as a microprocessor has two main contributors to the power
it dissipates. Static power, also called leakage, is dissipated as long as the circuit is
powered on [WHB05]. Leakage is dependent on supply voltage, and increases ex-
ponentially with temperature [WHB05]. Dynamic power only contributes to power
dissipation when the transistors are switching. The feature size of a transistor specifies
the length between the source and drain terminals of a transistor. With 90-nm tran-
sistors, the direct benefits of Dennard Scaling started to diminish mainly due to the
increase in leakage power [DCK07].

Moore explained a trend in his 1965 paper [Moo65] that has remained valid for

14

15

Figure 1.1: Trend showing the exponential increase in processor transistor counts.
[Data taken from [DKM+12]]

around half a century. He wrote: “The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year. Certainly over the short term
this rate can be expected to continue, if not to increase.” He also added that there is
no reason why this would not continue in the long term. A simplified rephrasing of
Moore’s previous statement can be interpreted as the number of transistors that can be
deployed per area will double every two years. Figure 1.1 shows how this observation
applied to transistor counts for production processors marketed from 1971 up until
2016 [DKM+12].

It has been projected that Moore’s law will continue beyond 7 nanometers by intro-
ducing new technologies that will replace the current silicon CMOS devices in the long
term, and by perfecting the manufacturing process in the short term [TP06, Tou16]. As
of 2016, Intel Corporation announced that it will be shipping the 10 nm Cannonlake
architecture by 2017 [Eas16].

Although the manifestation of Moore’s Law has provided an increase in transis-
tor counts, the breaking of Dennard Scaling has resulted in underutilisation of these
transistors. The increase in transistor counts without the means of decreasing power
characteristics in proportion leads to an increase in the power density of microproces-
sors. This can result in thermal issues, which in turn limit the operating capabilities

16 CHAPTER 1. INTRODUCTION

Figure 1.2: Microprocessor power dissipation projections against actual power dissi-
pation (Figure taken from Danowitz et al. [DKM+12])

of these chips. The problem is illustrated in Figure 1.2, where the proportional scaling
between actual and projected power breaks around 2005. The inability to retain the
power density of chips has lead to efficient power management of computing systems
becoming a primary design requirement.

There are two power management schemes that are being used extensively in com-
puting systems; power gating, and Voltage and Frequency Scaling (VFS). Power gating
is used to cut off the voltage supply to unused blocks in a system, and enable the volt-
age supply back on when that block is required for execution. VFS is utilised online by
a technique called Dynamic Frequency and Voltage Scaling (DVFS), where the voltage
and frequency of a block is reduced in parallel at times when the expected performance
of the block is low.

The methodology for performing empirical research in the domain of computer
architecture, including power management schemes, are either by implementing the
Register Transfer Level (RTL) level code on Field Programmable Gate Arrays (FPGA)
using hardware description languages, or through simulators written in high-level pro-
gramming languages. As the intellectual property for common instruction sets such as
ARM or x86 are not always available to the research community, system simulations
are used as a cost-effective way for performing research. A major disadvantage of

1.1. CHALLENGES WITH COMPUTER ARCHITECTURE SIMULATION 17

using simulators is long simulation times due to computational requirements of cycle-
accurate simulation and program size of benchmarks contained in typical benchmark
suites. Current methodologies to reduce simulation times mark regions of interests
based either on program phases, or hardware events. These regions are simulated at
a higher level of detail, while periods that are not in these regions are simulated at a
lower level of detail with minimal degradation in accuracy [GEE10].

This dissertation aims to tackle some of the challenges posed by computer archi-
tecture research methodologies, and the end of Dennard scaling. There are two main
contributions that appear in this dissertation. These contributions, presented in Chap-
ter 4 and Chapter 5, are:

• Generator of LLVM Assisted Benchmarks (GLAM), an architecture indepen-
dent synthetic workload generator that generates user-defined benchmarks at the
Low-Level Virtual Machine (LLVM) [LA04] Intermediate Representation (IR)
level. GLAM is utilised to generate synthetic workloads aimed at exploring ar-
chitectural proposals. This approach enables faster evaluation of research ideas
by reducing the simulation time compared to running actual benchmarks (Chap-
ter 4).

• By first presenting the shortcomings of VFS, a novel runtime configurable power-
gating method called Cyclical Power Gating (CPG) is proposed for decreasing
leakage, and temperature. CPG works by switching between on and off (power-
gated) cycles within a given period while storing the state of the power-gated
blocks for quick wake-up purposes. CPG is proposed as an alternative to VFS,
and it is shown that CPG can outperform equivalent VFS states in terms of En-
ergy Delay Product. (Chapter 5)

1.1 Challenges with computer architecture simulation

Simulating microprocessor based systems enables design space exploration without
prototyping at the hardware level, but long simulation times is the major downside of
this approach. A given research idea is tested by inserting the proposed changes di-
rectly into the simulator source code or through software modules that are interfaced
with the simulator. These modifications are then evaluated against a baseline config-
uration by executing a subset of a benchmark suite that is convenient to evaluate the
implemented idea. There are two issues with performing simulations to evaluate an

18 CHAPTER 1. INTRODUCTION

idea by executing benchmarks.

Firstly, an implemented research idea is generally focused towards a certain block
within a microprocessor. On the other hand a selected benchmark from a suite may not
be continously stressing the targeted hardware block, which leads to a requirement to
single out and replay the phase that is intended to stress that particular block. One so-
lution to this problem is available through means of offline phase classification, where
a program binary is divided into chunks of instructions and these chunks are grouped
together based on a similarity metric using a clustering algorithm [HPLC05]. Although
offline analysis leads to reduced simulation times, the assumptions made during offline
analysis might fall short since execution also depends on runtime data.

The second issue lies in the fact that most benchmarks have long execution times,
and running a benchmark execution until it terminates may take a long time to simu-
late. Most of the published work limits benchmark execution up until some number
of instructions from the beginning of execution, and this may lead to an inaccurate
evaluation of that benchmark since all of the program behaviour is not captured in the
evaluation. As an example, simulation of the mcf benchmark from the SPEC CPU2006
benchmark suite [Hen06a] on the customised gem5 simulation platform described in
Chapter 3 would take approximately a week, and this would only cover the first 50
seconds of the execution.

A possible solution to the previously mentioned problems on benchmark execu-
tions is using microbenchmarks to evaluate architectural changes in a simulated en-
vironment. A microbenchmark is a small segment of code that specifically targets
a certain set of blocks within a microprocessor. Using microbenchmarks greatly de-
crease execution time without affecting the validity of the evaluation, since the same
architectural block is utilised with lesser number of instructions [CAP+15, JEJI08].

The Generator of LLVM Assisted Microbenchmarks (GLAM) described in Chap-
ter 4 introduces a novel way of producing architecture independent microbenchmarks
by targeting the LLVM Intermediate Representation.

1.2 Challenges with power management

With transistor counts increasing and Dennard Scaling reaching an end, the scaling
down of transistors has given rise to reliability and power-related research problems
[SABR04]. This means that if the number of transistors per area were to keep on dou-
bling with each new generation of transistors in the absence of proportionally scaled

1.2. CHALLENGES WITH POWER MANAGEMENT 19

operating voltages, power density of newer chips will be so high that it would not be
possible to run them at the highest performance profile that transistor specifications
allow. The power characteristics of the transistor technology used directly affects the
power dissipation of a chip.

Equation 1.1 gives the total power dissipated by a chip [WHB05]:

Ptotal = Pdynamic +Pstatic. (1.1)

Static power, defined by Equation 1.2, consists of the product of supply voltage
(Vdd) for the device and the current (Istatic) passing through [WHB05]

Pstatic = IstaticVdd. (1.2)

Dynamic power is directly proportional to circuit clock frequency and the square
of voltage, and C is the amount of charge required to charge the load capacitance
(Equation 1.3). The parameter α defines the ratio of switching going on on the chip at
a given frequency cycle. For example, when half of the transistors on a chip would be
switching at a given cycle then α would be 0.5 [WHB05].

Pdynamic = αCV 2
dd f . (1.3)

Although it still is technically possible to manufacture smaller transistors, the op-
erating voltages can not be lowered as aggressively as before because they are on the
boundary of a physical lower limit [FDN+01]. Operating voltages of transistors hit-
ting a lower limit also means that the contribution of leakage power to system power
dissipation is showing an increasing trend.

As transistors shrink they become more susceptible to reliability issues such as age-
ing. Transistor wear-out, also known as transistor ageing, is the gradual degradation
of transistors from their initial properties in terms of operation. This may eventually
lead to the total failure of the transistor. The common failure mechanisms [SWV+09]
for transistors are Time Dependent Electric Breakdown (TDDB), Negative-Bias Tem-
perature Instability (NBTI), Hot Carrier Induction (HCI) and electromigration.

Almost all of the reliability problems are caused by operation of the device at a high
temperature [Ala03], which is a function of power dissipation. Schemes that provide
finer grained power management in terms of response time should be developed in
order to have more reliable and power efficient systems.

20 CHAPTER 1. INTRODUCTION

Power-efficient computing techniques can be classified into three categories; tem-
poral, spatial and redundancy reduction. Temporal techniques are mainly concerned
with decreasing the throughput by employing methods such as execution throttling
[UKM02] and Dynamic Voltage Frequency Scaling (DVFS) [HM07]. Spatial tech-
niques improve power-efficiency by constraining the computation into a smaller area at
the expense of increased power density. The concept of memory hierarchy can be given
as a primary example of this technique [HP12]. Redundancy reduction techniques are
optimisations applied to the system in order to reduce redundant information storage
or messaging such as disabling of cache coherence when memory blocks are known
to be private to a core [CRG+11], or application aware adaptive cache replacement
policies [JNaS+12].

When system performance is a concern, a major contradiction in requirements for
power-efficient computing and temperature decreasing methods lies in the fact that
power-efficient techniques aim to reduce the spatial or temporal space that an operation
takes place in, potentially creating hotspots, whereas keeping the temperature lower
requires the distribution of the operation over a wider area or period. In the case that
temperature becomes the primary concern, temporal power-efficiency techniques are
more suitable for tackling the issue.

Dynamic power is dissipated when there is transistor activity, whereas static power
(leakage) is the power dissipated as long as a transistor is powered. Two techniques
are applied in order to reduce power in circuits; Voltage and Frequency Scaling (VFS)
and power-gating.

Dynamic Voltage and Frequency Scaling (DVFS) is the most commonly used tech-
nique for power-efficiency and thermal control in microprocessors [HDH+10, KM08].
DVFS relies on decreasing voltage and frequency of the on-chip transistors based on
decisions coming from the related layer such as the operating system. It is important
to note that voltage and frequency are dependent on each other, and once voltage is de-
creased the upper bound of the frequency that a transistor can run at is also decreased.
DVFS can be controlled by an algorithm that selects an appropriate pair from a set of
available voltage/frequency pairs, and provides the opportunity to dynamically switch
between performance (high voltage/frequency) and low-power modes (low voltage/fre-
quency).

There are two main issues concerning the usability of DVFS in the future. Firstly,
the contribution of static power to the total power consumption is increasing as scaling
down of supply voltages has limitations due to reaching physical boundaries. The

1.2. CHALLENGES WITH POWER MANAGEMENT 21

O
pe

ra
tin

g
Vo

lta
ge

 (V
)

0.2
0.785

1.37
1.956
2.541
3.126
3.711
4.296
4.881
5.467
6.052
6.637
7.222
7.807
8.393
8.978
9.563

10.148
10.733
11.319
11.904
12.489
13.074
13.659
14.244

14.83
15.415

16

Year

19
70

19
76

19
82

19
88

19
94

20
00

20
06

20
12

Figure 1.3: Trend showing transistor operating voltages by year. [Data taken from
[DKM+12]]

22 CHAPTER 1. INTRODUCTION

meaning of this is that it is not possible to utilise these transistors in their highest
capabilities. Utilisation wall [VSG+10] caused by the end of reduction in operating
voltages is one of the major challenges in the field of computer architecture and VLSI
research. Operating voltages of microprocessors by year is given in Figure 1.3. Various
approaches are being applied to go beyond the utilisation wall such as circuit-level
techniques, approximate computing, introducing on-chip accelerators and larger on-
chip caches [Tay12]. A second issue is related to lowering of supply voltages. As
previously discussed, DVFS relies on voltage/frequency pairs. The number of possible
pairs decreases as the gap between nominal and threshold voltages are lowered with
each newer transistor generation, thus resulting in a reduction of the effectiveness of
the scheme [LSH10].

Another power-saving technique commonly used in microprocessors is power gat-

ing. Power gating is used to turn off blocks that are not in use to reduce power. One
major advantage is that it eliminates static power completely as there is no voltage be-
ing applied to the transistors within the block that is gated off. The downside of this is
that all the information in the power gated block must be copied to somewhere else in
the system or be lost. State-retentive power-gating provides an adjustable balance point
between sleep/wake-up speed and power savings. There is research on state-retentive
power gating that power gates a whole processor core [JKK+12] or only the register
file [RRK11] while waiting for memory accesses in order to save power.

In light of the previous paragraphs, a computing system requires a decision mech-
anism in order to switch between a performance driven mode and a power-efficient
mode that would help in preventing thermal and reliability issues. This can be further
enhanced by proposing a computing stack that contains the appropriate elements in
each of the layers ranging from circuit-level to the application layer. This PhD thesis
proposes a a simulation-based investigation for an alternative power management
technique, called Cyclic Power Gating (Chapter 5). Cyclic Power Gating can be
utillised as a power management scheme that is able to overcome the shortcomings of
VFS on future technologies, and provide better leakage management as it is a form of
power gating.

The contributions to the field and the structure of the thesis is summarised in the
following sections.

1.3. PUBLICATIONS 23

1.3 Publications

The material from Chapter 5 appears in the following journal publication:

• Y. Cakmakci; W. Toms; J. Navaridas; M. Lujan, “Cyclic Power-Gating as an
Alternative to Voltage and Frequency Scaling,” in IEEE Computer Architecture
Letters, 2015

Other publications during time of studies:

• Project Beehive: A Hardware/Software Co-designed Stack for Runtime and Ar-
chitectural Research. Christos Kotselidis, Andrey Rodchenko, Colin Barrett,
Andy Nisbet, John Mawer, Will Toms, James Clarkson, Cosmin Gorgovan,
Amanieu d’Antras, Yaman Cakmakci, Thanos Stratikopoulos, Sebatian Werner,
Jim Garside, Javier Navaridas, Antoniu Pop, John Goodacre and Mikel Lujan,
MULTIPROG-2016

1.4 Thesis structure

The organisation of the thesis is as follows:

• Chapter 2: Background material intended to provide the fundamentals of the
material presented in this thesis will be covered in this chapter. Topics included
are out-of-order microprocessors, power dissipation in microprocessors, power
management schemes, workload generation, and performance-power tradeoffs.
A review of the literature for power management schemes with a focus on DVFS
and power gating is provided. Previous work on power models, and workload
generation is also explained.

• Chapter 3: Experimental infrastructure used to obtain results within this work
will be provided in detail including the methodology used to calculate power and
temperature.

• Chapter 4: Synthetic workload generation is a technique used to generate
benchmarks for design space exploration, computer architectural evaluation, and
fault detection. Generator of LLVM Assisted Microbenchmarks (GLAM) is in-
troduced as a novel way of generating synthetic workloads. The phases that en-
compass workload generation are: code specification, code generation, harness

24 CHAPTER 1. INTRODUCTION

generation and execution. Each of these phases are explained in detail along
with examples.

• Chapter 5: This chapter introduces Cyclic Power Gating (CPG) as a novel
power management scheme. The state-retentive architecture that is used is pre-
sented, followed by an explanation of how the power-gating overheads are mod-
elled. Then CPG period selection is discussed, and a comparison of CPG with
VFS is provided. The results are compared with an equivalent VFS setup.

• Chapter 6: A summary of the thesis is presented, along with possible future
work.

Chapter 2

Background

2.1 Introduction

A compute stack is a multi-layered abstraction that splits the hardware and software
based on system design requirements. A highly generalised composition would in-
clude hardware, systems software, and application layers. System blocks that operate
at a digital logic level such as processors, GPUs, interrupt controllers stand in the hard-
ware layer. Since hardware resources are limited, a mediating layer between the appli-
cation layer and hardware is required in order to allocate these resources for execution.
Systems software is the layer that allocates the system resources to applications so
that their correct execution is guaranteed. Operating systems, hypervisors, and virtual
machines reside in the systems software stack. Although predictions that heteroge-
neous systems [CMHM10] will be increasingly prevalent in the future to overcome
the power wall, contemporary computing systems are still dominated by multiple issue
Out-of-Order cores with little or no heterogeneity.

Initially, power and energy efficiency have been a concern for embedded systems.
After the benefits of technology scaling in terms of performance increases and power
reductions started to diminish, combined with the emergence of energy-hungry data
warehouses, power and energy efficiency become a first order design constraint for all
computer architectures.

This chapter provides a primer for the material presented in Chapter 4, and Chap-
ter 5. Pipeline stages that constitute the operation of an out-of-order microprocessor
will be described. This will be followed by a description of power dissipation in mi-
croprocessors that is enough to understand the problems that arise from scaling down
of transistors without going into VLSI-level details. The relationship between power,

25

26 CHAPTER 2. BACKGROUND

energy and performance will also be discussed to provide a perspective on how these
metrics are inter-related. A list of metrics used throughout this dissertation will also
be provided along with their definitions.

2.2 List of related metrics

This section provides a list of metrics used throughout the dissertation.

• Instructions Per Cycle (IPC): Provides the number of instructions committed
per cycle. IPC is a common metric used to measure the throughput of a proces-
sor.

• Cycles Per Instruction (CPI): CPI provides the average latency of instructions,
in cycles, that have been executed. It is the inverse of IPC.

• Power: Power is the energy used per unit time, and is measured in Watts.

• Average Power: Average power over a period T.

• Peak Power: Maximum dissipated power in a period T.

• Energy: Integral of power over a period T.

• Energy Delay Product (EDP): EDP is the multiplication of the energy it takes
to complete a unit of work by the time it takes to complete that work.

• Instruction Level Parallelism (ILP): Average number of independent instruc-
tions within an instruction stream.

2.3 Out-of-order microprocessors

Pipelining is an execution technique used to increase the throughput of a processor in
terms of instructions executed per unit of time. Pipelined microprocessors were ini-
tially scalar processors meaning that the execution was limited to a maximum through-
put of one instruction per cycle [HP12, SL13]. Superscalar processors enabled the
issuing of multiple instructions per cycle thus leading to an increase in instruction
throughput. Instruction Level Parallelism (ILP) is a metric of how many instructions
an application can run in parallel within an instruction window without being stalled

2.3. OUT-OF-ORDER MICROPROCESSORS 27

by dependent instructions. The number of instructions that can be issued in parallel is
dependent on the ILP inherent in that stream.

The parallelisation of an instruction stream is limited by pipeline hazards [HP12,
SL13]. There are three types of pipeline hazards; structural, control, and data hazards.

Structural hazards occur when there are more instructions to be executed than func-
tional units to execute on, leading to the execution of these instructions to be stalled
until the functional unit is available. When an instruction is stalled, all the other in-
structions that depend on the output of the stalled instruction are also stalled. This
leads to the stalling of execution for that instruction and the following instructions that
are dependent on it until the execution units are freed.

Control hazards are introduced by the inability to predict which branches will be
taken resulting in stalls until the branch that will be taken is known. Branch prediction
is a method used to overcome control hazards, but branch predictors still lack the
accuracy to correctly predict the control flow without errors.

Data hazards occur when the availability of a source operand for an instruction
depends on the destination operand of a previous instruction. Given an instruction
stream that consists of totally independent instructions, it would be possible to execute
all the instructions in the stream in a single cycle in the presence of an unlimited num-
ber of functional units. On the contrary, if the instruction stream is structured so that
each instruction in the stream is dependent on the previous in order to execute, then
it would take a cycle for each instruction to be processed. Classification of instruc-
tion dependencies can be grouped into two main classes; true and false dependencies.
A true dependency occurs when an instruction’s source operand is dependent on the
previous instruction’s destination operand. This is called a Read-After-Write (RAW)
dependency. False dependencies occur in the form of Write-After-Read (WAR) or
Write-After-Write (WAW). Although it is not possible to parallelise instructions that
contain true dependencies, it is possible to get rid of false dependencies using out-of-

order execution techniques [SL13] .

An out-of-order microprocessor [HP12, SL13] is a superscalar microprocessor that
employs mechanisms to resolve false dependencies between instructions and exploit
Instruction Level Parallelism (ILP). In this section, a description of how an out-of-
order microprocessor pipeline is structured will be presented.

The following subsections will detail out each pipeline stage for an out-of-order
core that is given in Figure 2.1.

28 CHAPTER 2. BACKGROUND

Figure 2.1: Generic Out-of-Order pipeline with in-order fetch,decode and retire stages
and out-of-order execution backend.

2.3.1 Overview of an out-of-order pipeline

Figure 2.1 provides a block diagram for an out-of-order pipelined processor. Pipelined
processors that can dynamically schedule instructions based on operand availability
are able to execute instructions out of program order, but the executed programs are
retired from the pipeline in program order. A program is fetched, decoded and is-
sued in-order, but depending on inter-instruction dependencies, the execution of the
instructions can be out-of-order. While the solution to a control hazard, in the form
of a branch predictor, has a direct effect on where the next instruction will be fetched
from, structural and data hazards cannot be resolved during the in-order stages as the
information required to detect these hazards is not available at the early stages of the
execution [SL13]. The details of the each pipeline stage will be provided in the rest of
this subsection. These details are not microarchitecture specific, and are intended to
provide a generic introduction.

Fetch

The main activity that occurs in the fetch stage is the filling of the instruction queue.
An instruction queue is a FIFO structure that contains the sequence of instructions that
may potentially be executed. If a branch predictor is used, instructions are fetched from
a Level-1 instruction cache into the instruction queue depending on the estimation of

2.3. OUT-OF-ORDER MICROPROCESSORS 29

the next address to fetch instructions from. Otherwise the fetch unit stalls until the
next address to fetch from is calculated. Some architectures also include a mechanism
that shuts off the fetch stage on detection of loops. This mechanism is known as
Loop Stream Detector (LSD) in the Intel architecture. Once a loop is detected, the
instructions are cached in a limited size buffer, called a loop buffer [Sin08].

Decode

Instructions are read from the instruction queue and decoded so that the operand re-
quirements and executions units are known in advance. Operand requirements con-
sist of knowing whether an instruction produces an output, and the number of source
operands. If the operation will produce an output a physical register file entry is gen-
erated for the instruction to write its result. In case of an Instruction Set Architecture
(ISA) with instructions of variable lengths, the decode logic becomes rather compli-
cated, resulting in a higher contribution to the overall energy consumption of the core.
An entry in the Reorder Buffer (ROB), physical register file, or load/store queue is
allocated at this stage for the instruction depending on the resources it requires.

Register rename

Register renaming is the assignment of physical registers to eliminate false dependen-
cies. False data dependencies are removed by dynamically assigning different physical
registers for the same logical (architectural) registers. The lifetime of a physical reg-
ister can be summarised in four phases: Allocation, writeback, dependent reads, and
deallocation. When an instruction is decoded, a free physical register is allocated for
that instruction to write its result. The value produced by executing the instruction is
written to the allocated physical register. Subsequent instructions that depend on the
architectural register read the value from the renamed physical register. When there are
no more references left to the physical register in the pipeline the allocated physical
register is freed.

Issue

The issue stage marks the beginning of the execution for an instruction. At this stage,
an instruction that is queued in a reservation station is issued on to a functional unit
for execution. A reservation station, also known as an issue queue, is a microarchi-
tectural structure where instructions wait until their source operands or a functional

30 CHAPTER 2. BACKGROUND

unit becomes ready. Reservation stations are either centralised or distributed. Despite
complexity at the hardware logic level, centralised reservation stations offer the ad-
vantage of higher functional unit utilisation as all the information on instructions to be
executed is available [SL13]. Distributed reservation stations require less logic, but do
not offer as high utilisation as centralised reservation stations, as once an instruction is
in a reservation station, it is stuck in that specific queue for the specific execution unit.
A good balance between the two is offered by clustered reservation stations where a
reservation station covers several execution units of the same type. A dispatch stage
precedes the issue stage depending on the implementation of the reservation type. It is
responsible for submitting decoded instructions to the reservation stations. There is no
need for a dispatch stage in the case of a centralised reservation station implementation.

Execute

Instructions are executed in the related functional unit in this stage. The types of
available functional units are ISA dependent. Most ISAs support integer arithmetic
through an Arithmetic Logic Unit (ALU), floating point arithmetic through a Floating
Point Unit (FPU), memory operations through a Load/Store Unit (LSU). There are also
some architectures that require functional units for various Single Instruction Multiple
Data (SIMD) instructions.

Completion

The physical register file is updated by writing the result of the recently executed in-
struction to the allocated register. The Reorder Buffer (ROB) is needed at this stage in
order to retire the instructions in-order. The order is maintained by the initial allocation
of an entry in this FIFO structure during the decode stage. The value produced by the
completed instruction is copied over from the physical register file to the architectural
register file. This marks the end of execution for the instruction being executed, and
this is reflected in the architectural state of the system.

2.4 Microprocessors as CMOS circuits

Transistors are the building blocks of all the digital devices. Metal Oxide Semiconduc-
tor Field Effect Transistors (MOSFET) are the type of transistors that are used to build

2.4. MICROPROCESSORS AS CMOS CIRCUITS 31

Figure 2.2: Lateral view of an n-type MOSFET transistor, where L is the gate length,
and x is the direction of the flow from source terminal to the drain terminal.

Complementary Metal Oxide Semiconductor (CMOS) circuits that make up contem-
porary microprocessors [WHB05]. MOSFETs are used to control current flowing from
one terminal, known as the source onto the end terminal called the drain by applying
voltage on a third terminal called the gate. An oxide layer below the gate terminal,
called gate oxide, is used as a dielectric layer insulating the gate from the substrate and
other terminals. A diagram showing a cross-section of a MOSFET is given in Figure
2.2.

MOSFETs come in two types differentiated by whether the channel induced on
the substrate is of positive or negative type. A p-type MOSFET carries the current
using positive charged particles called holes, whereas a n-type MOSFET the current is
carried using electrons.

The voltage applied on the gate is known as VG, Vth is the minimum voltage that
needs to be applied to enable a conducting path between source and drain, and VD is the
voltage at the drain terminal.. When VG is lower than Vth (Figure 2.3a), the transistor
is said to be in an insulating state as the resistance between the source and drain is too
high for having current flow in between the two terminals. When VG is greater than Vth

(Figure 2.3b), current starts to flow from source to drain, and the transistor acts as a
closed circuit.

A CMOS circuit is a composition of p-type and n-type MOSFET devices connected

32 CHAPTER 2. BACKGROUND

(a) VG <Vth

(b) VG >Vth

Figure 2.3: Insulating and conducting states of a transistor. Where the gate voltage
(VG) is lesser than threshold voltage (Vth), the transistor is in an insulating state. A
conductive path is formed between the source and drain terminals as gate voltage be-
comes higher than threshold voltage.

2.5. POWER DISSIPATION IN MICROPROCESSORS 33

(a) CMOS Inverter consist-
ing of an n-type transis-
tor and a p-type transistor,
where A is the input voltage
and Q is the output voltage.

Vdd

p

in

out

V = 0

V

R

(b) A = 0 Vddin

out

V

V

R

=

Vdd

n

(c) A =V dd

Figure 2.4: CMOS inverter with configuration in on and off states.

in serial and in parallel to implement the required behaviour of the circuit. A CMOS
inverter is shown in Figure 2.4a to provide an example. The inverter is composed of
a n-type MOSFET, and a p-type MOSFET connected serially. Figure 2.4b shows the
circuit model of the inverter when 0V is applied at input A. At that state the n-type
MOSFET is on and the p-type MOSFET is off, so the current flows between positive
supply (Vdd) and Q thus asserting the output high. When the input voltage, VSS is equal
to drain voltage Vdd , the p-type MOSFET is on, and the n-type MOSFET is off. Q is
connected to the ground in this configuration, asserting the output low.

2.5 Power dissipation in microprocessors

Power dissipation of a microprocessor is the sum of static and dynamic power dissi-
pated as given in Equation 2.1. Static power, given by Equation 2.2, is the product of
supply voltage (Vdd) for the device and the leakage current (Ileakage) passing through.
Dynamic power is directly proportional to circuit clock frequency and the square of
voltage, and C is the amount of capacitance required to charge the load capacitance
(Formula 2.3). α defines the ratio of switching going on on the chip at a given fre-
quency cycle. For example, when half of the transistors on a chip would be switching
at a given cycle then α would be 0.5.

Ptotal = Pdynamic +Pstatic (2.1)

Pstatic = IleakageVdd (2.2)

34 CHAPTER 2. BACKGROUND

Pdynamic = αCV 2
dd f (2.3)

The contribution of static power to overall power consumption is becoming an increas-
ing proportion of overall power as transistors shrink [FDN+01]. Two main factors
that make up static power are gate leakage and sub-threshold leakage. Sub-threshold
leakage is the power dissipated even when a transistor is below Vth, translating into the
power dissipation of a transistor when the gate is off. Gate leakage is caused by the
direct tunnelling of electrons through the gate insulator.

Supply voltage (Vdd) decreases with each new transistor technology in order to ob-
tain a reduction in power density. A decreased supply voltage means that the transistor
has to operate at a lower frequency, assuming that the threshold voltage (Vth) remains
the same. Since low frequency operation is not something chip designers want, a re-
duction in Vth is also made. Vth is proportional to Vdd and with smaller Vths leakage
increases so voltage scaling is no longer possible [BMMF02].

The problem with gate leakage current is that, as the gate oxide gets thinner with
newer technology nodes, gate leakage current increases. High-K insulators have com-
pensated this issue at some technology nodes [FASB04].

Dynamic Voltage and Frequency Scaling (DVFS), and power gating will be dis-
cussed in the following subsections as the most common means of achieving power
and energy efficiency in microprocessors.

2.5.1 Dynamic Voltage and Frequency Scaling

DVFS works by scaling the supply voltage and the operating frequency of the core in
parallel. It is important to note that voltage and frequency are dependent on each other,
and once voltage is decreased the upper bound of the frequency that a transistor can
run at is also decreased. DVFS enabled processors provide a number of voltage and
frequency pairs called operating points along with a software interface allowing the
operating system, or the userspace applications to select operating points based on a
criteria such as performance or power saving.

There are two main issues concerning the usability of DVFS in future technologies.
The first issue is the contribution of static power to total power consumption as scaling
down of the supply voltages is becoming an issue. This means that the importance of
the time it takes to finish a task is not the only limiting factor for performance any-
more. Although DVFS provides a decrease in power dissipation, this gain is shadowed

2.5. POWER DISSIPATION IN MICROPROCESSORS 35

by the fact that the actual amount of time it takes to complete a given task takes longer,
and this results in an increase in the energy required to complete the task due to higher
leakage energy. Since the contribution of leakage power to the total power dissipation
increases as a new technology node is adopted, the utility of DVFS comes into ques-
tion. Secondly, process variability in newer technology nodes, and transistor wear-out
results in variant threshold voltage and this also has a limiting affect on the operational
range of DVFS [HW04, Bor05].

2.5.2 Recent advancements in DVFS management

This subsection aims to present a subset of the recent research within the domain of
DVFS prediction and control. DVFS governors are used to make predictions on sys-
tem performance by looking at certain metrics within the system such as performance
counters, load, or power consumption. These predictions enable the governor to set
the processor voltage and frequency to a level that do not introduce a considerable
performance hit, while increasing energy savings.

It is possible to control DVFS enabled computing systems in various temporal gran-
ularities. DVFS can be controlled by the hardware, operating system, or application
layers. The distance between the controlling layer and the DVFS controller is the
determining factor in temporal granularity used in decision making for transitioning
between different voltage and frequency levels since each layer in between introduces
an extra overhead in terms of time. The scale of the controller can be at microproces-
sor, server, or datacenter levels. Since control can only be achieved through an ability
to estimate what is likely to happen, accurate prediction techniques are required to ef-
fectively utilise DVFS. High reaction time of the DVFS controllers presented in this
subsection can justify the requirement for a low-latency power management scheme.
An alternative approach to DVFS have been presented in the Figure 5.2 of this disser-
tation.

Performance and power prediction

Simplistic performance and power models tend to split execution behaviour into pipeline
and memory intervals without taking the variability in latency incurred by memory ac-
cesses into account. Eyerman et al. [EE10] models execution using pipelined and
nonpipelined fractions. A pipelined phase consists of the cycles that the out of order
pipeline is executing instructions without being stalled. A nonpipelined phase begins

36 CHAPTER 2. BACKGROUND

when either an instruction or data load miss occurs on the last level cache (LLC) and
pipeline execution can not progress until the related cache misses complete. Two en-
ergy prediction models are proposed based on whether clock gating is implemented in
the system or not. The work assumes that static power consumption of the processor
at a given voltage is known in advance, and a hardware counter that provides energy
consumption is present. A similar approach is present in the work of Keramidas et al.

[KSK10] where the pipelined phase is named steady state, and the stall cycles account
for the nonpipelined phase. A new hardware performance counter that counts the total
cycles for a leading load is presented in [RLSdS11]. A leading load begins when a
load instruction misses at the LLC. All the other subsequent loads that issue and com-
plete before the leading load are not counted by the hardware counter as the leading
load already covers that period. Stores are not taken into account since most modern
microprocessors contain a write buffer that is implemented to hide memory access la-
tencies that are incurred from store misses. The leading load counter is activated by
an additional bit that is inserted for each load/store queue entry. Since the leading load
counter has been proposed using simulated research, Su et al. devises a methodology to
implement an equivalent counter on commodity hardware using a combination of five
performance counters [SGG+14, SGS+14]. The number of memory cycles is extracted
by a combination of counters that track Miss Status Handling Registers (MSHR) occu-
pancy in cycles and cache miss counters. The pipelined fraction is obtained by using
the executed cycles performance counter.

Although the models presented in the previous paragraph are accurate in the pres-
ence of memory controllers with constant access time, contemporary systems utilise
Dynamic RAM where access time depends on the location of stored data. Another
issue also arises in the presence of memory prefetchers, which are hardware blocks
intended to hide memory latency. Prefetchers fetch data from memory based on a pre-
diction of the memory location that the pipeline will request. Miftakhutdinov et al.

[MEP12] addresses these issues by introducing a memory access critical path mea-
surement methodology which also takes memory bandwidth into account.

Dynamic concurrency throttling (DCT) is an adaptive execution technique used for
scheduling multi-threaded workloads on a system with multiple processing units. The
number of threads that can be executed on a multi-threaded architecture are throttled
from an application-level scheduler that is distinct from the operating systems sched-
uler using a prediction model. The application level scheduler provides the number

2.5. POWER DISSIPATION IN MICROPROCESSORS 37

of hardware threads that it will be needing, and the operating system halts the un-
used hardware threads if the number required by the application level scheduler is less
than the number of available hardware threads, which in turn leads to energy savings.
A performance counter events-driven userspace approach for applying DCT has been
provided in [CMDAN06]. Useful instructions per cycle, uIPC, is defined as the IPC
over a phase without the synchronisation and parallelisation instructions. This met-
ric is combined with hardware performance counter events triggered over that phase
to provide insight into the amount of computational resources that may be required.
Curtis et al. [CMSB+08] extends this work by showing that EDP can be decreased
significantly by introducing a prediction model that can estimate near-optimal setting
for selecting the most beneficial DVFS and concurrency throttling pair. An important
point when taking DVFS into account is that the IPC increases when frequency is low-
ered, while the execution time of the program increases. This is due to the relative
completion of memory operations taking shorter time in terms of cycles as core cycle
periods increase. This leads to the adoption of instructions per second metric instead
of IPC in order to retain the accuracy of the prediction model.

A summary of the predictors is provided in Table 2.1 based on memory models,
hardware overheads, and the operational scope of the predictor in terms of spatiality
and temporality.

DVFS Governors

A DVFS governor is a mechanism that decides what the most suitable operating point
is based on predetermined criteria such as low power, EDP or temperature control. It
can either be implemented in hardware or software layers of the compute stack.

A chip can be partitioned into different Voltage Frequency Islands (VFI) enabling
each separate VFI with a island-wise operating point. This reduces the granularity of
DVFS so that per-core or memory system wide operating points can be set, leading
to higher flexibility in system-wide DVFS at the cost of complexity. Various DVFS
governor algorithms have been compared for Chip Multiprocessors (CMP) over the
execution of multi-threaded benchmarks [HM07]. Results show that having many VFIs
may not be worth the additional circuit complexity as the overheads overshadow the
gains. In contrast to this analysis, which utilises off-chip voltage regulators, it has been
shown that on-chip voltage regulators can provide significant energy savings due to an
order of magnitude faster operating point switching speed [KGWB08]. While off-
chip regulators can switch operating points at a granularity of microseconds, on-chip

38 CHAPTER 2. BACKGROUND

Table 2.1: An overview of DVFS performance/power predictors

Predictor Memory
model Requirements Granularity

[EE10] Constant
latency

Stall cycle counter,
first pending miss register,
power meter, static power
values at different
voltage levels

Per-core,
runtime
overhead
not provided

[KSK10] Constant
latency

Steady state counter,
miss-event interval
counter

Single core,
150M cycles
prediction window,
runtime overhead
not provided

[RLSdS11] Constant
latency

Leading loads counter,
one bit per
load/store queue
entry

Single core,
Interval based
prediction window

[SGS+14] Constant
latency None

Per-core,
200ms prediction
window, negligible
runtime overhead

[MEP12] Variable
latency

Global critical path
counter per request,
Global DRAM slack
counter, Per DRAM bank
slack counters, Prefetch
stall counter

Single core,
100K instruction
prediction
window, runtime
overhead not
provided

[CMSB+08] Not
discussed

Dynamic Concurrency
throttling algorithm,
9 counters/thread

Multi-threaded,
Prediction window
not specified

2.5. POWER DISSIPATION IN MICROPROCESSORS 39

regulators can switch between operating points at nanosecond scale. Since the aim of
this work is to present a comparison between the overheads of on-chip and off-chip
voltage regulators, an offline DVFS algorithm that calculates the optimal operating
point before runtime is used. The results show that for a single power domain, the
fast switching provided by on-chip voltage regulators is compensated by the switching
overheads. When a similar evaluation is made for four power domains, with each
domain representing a core in the CMP, it is shown that on-chip regulators can provide
significant improvements.

Power capping is a hierarchical power management method where a peak power
limit is specified at a higher level such as a datacenter, with smaller structures such
as servers and microprocessors adapting their runtime power budget in coordination
with the requirements of the higher level structures. Cochran et al. [CHCR11] pro-
pose an offline classifier using performance counters, temperature, and power sensors
for picking up suitable DVFS voltage and frequency under a specified power budget.
The operating point data from the offline classifier is distilled into a lookup table that
enables the selection of suitable operating points at runtime. This achieves high energy
savings with minimal deterioration in performance.

A model that predicts the system performance by employing hardware imple-
mented Artificial Neural Networks is proposed in [CWL11]. A global resource man-
ager is used to keep track of per-application resource allocations for a chip multi-
processor. Hardware-based ANNs learn to make better allocation decisions through
the performance response of each application resulting in higher performance.

A control theoretic DVFS controller that targets temperature control was studied in
[WMW09]. The algorithm works by using temperature sensors and an online power
estimator to determine DVFS level required to fulfill power budget. Temperature pre-
diction is used to avoid reaching a maximum temperature rather than reducing power
consumption.

A fraction of CMPs are equipped with a DVFS controller for the memory sys-
tem. Coordination of the core DVFS, and memory-system DVFS seperately is in-
efficient. CoScale [DMB+12] proposes an algorithm that executes on the operating
system scheduler to enable the coordination of core and memory-system DVFS.

Compile-time methodologies for dynamic power management have been studied
extensively in previous work. Dynamic compilation is a run-time technique, where the
machine code that executes on the processor is generated on-the-fly at run-time. Wu et

40 CHAPTER 2. BACKGROUND

al. [WMC+05, WMC+06] propose a dynamic compilation system that acquires infor-
mation about the resource requirements of the application that it compiles, and drives
the DVFS to lower frequencies if idle time is detected. Multi-threaded workload per-
formance decreases when there are more threads executing in parallel than the number
of processing units.

2.5.3 Power gating

Power gating is a circuit level power reduction technique that cuts off the voltage to
the block that is being power gated. Power gating is used to turn off blocks that are
not in use to reduce static power. A major advantage of power gating from a power
management perspective is that it eliminates static power dissipation completely as
there is no voltage being applied to the transistors within the blocks that are gated
off, thus the power dissipation of the power gated block becomes non-existent. The
downside of this is that all the information in the power gated block must be copied
somewhere else in the system or be lost. There is research on state-retentive power
gating that power gates a whole processor core [JKK+12] or only the register file
[RRK11] while waiting for memory accesses in order to save power.

A sleep transistor is used to cut off and enable voltage on the block to be power-
gated. Power gating could be implemented in a coarse granularity using a single sleep
transistor to cover a whole logic block. A more fine grained method can be followed by
inserting a sleep transistor for each standard cell (Multi Threshold CMOS). The trade-
off between these two approaches is between area and control over the power-gated
cells. It is possible to power-gate a circuit block using two different configurations
using either a header switch (Figure 2.5a), or a footer switch (Figure 2.5b).

The header switch configuration is established by placing the sleep transistor be-
tween Vdd and the block to be power-gated. A PMOS transistor is used in header
switch configurations. When a footer switch is used, the sleep transistor is placed be-
tween the block to be power-gated and Vss. Footer switches are implemented using
NMOS transistors [Kea07].

Power gating schemes for in-order cores

Detecting pipeline stalls in in-order cores is a trivial task, since the only factor that
leads to a pipeline stall is high-latency memory accesses. Power gating for in-order

2.5. POWER DISSIPATION IN MICROPROCESSORS 41

(a) Header Configuration (b) Footer Configuration

Figure 2.5: Power Gating scheme where the power gating of the circuit is controlled at
positive (Vdd) or negative supply(Vss)

Figure 2.6: Power gating scheme (Taken from [JKK+12]). When pgenable is asserted
low, the supply voltage to the power gated block is cut off.

cores has been examined in [RRK11, ISK+09].

An investigation of state-retentive power gating during memory accesses in in-
order multi-threaded architectures was carried out in [RRK11]. A two level sleep
configuration that power-gates the register file is proposed with the first mode being
highly-responsive at the expense of lesser leakage savings, and the other being a high
wake-up latency high leakage saving mode. The first mode of sleeping is applied when
an L1 miss is detected, whereas the second mode is activated after the detection of an
L2 miss.

Jeong et al. [JKK+12] provides a low-overhead method for reducing leakage power
dissipation in in-order cores during long memory-stalls by introducing a state retentive
power gating architecture called Memory Access Power Gating (MAPG). MAPG is
composed of a Programmable Power Gating Switch (PPGS), and a controller designed
to power-gate the core when the execution is not progressing due to memory-stalls.

42 CHAPTER 2. BACKGROUND

Figure 2.7: Handling of in-rush current (Taken from [JKK+12])

The operation of a simplified power gating scheme, as shown in [JKK+12], is given
in Figure 2.6. The scheme works by dividing the current paths between supply voltage
(Vdd core), and ground (Vss). When the signal to enable power gating (pg enable) is
asserted, the supply to the virtual voltage domain (Vdd int) is cut off, and all the transis-
tors within that domain lose their state along with their static power dissipation. The
difference between a state-retentive power gating design and a simplistic power gating
design is the introduction of state-retentive registers, that retain the state of the logic
block during sleep, and restore the state before wake-up. An important design consid-
eration to keep in mind while implementing power-gating is the handling of in-rush
current. In-rush current is defined as the rushing of current into an electrical circuit
once it is turned on. A larger current could result in dysfunctional behaviour or may
lead to the burning out of circuit elements. In order to overcome these risks the header
switches are partitioned into groups and powered up sequentially, and the partitioned
voltage domains are powered up in groups as shown in Figure 2.7. The guarantee of
reliability that comes from decreasing the current comes at the price of wake-up la-

tency. The time (Tcharge) taken to charge the capacitive elements (Q) of a circuit is a
function of the in-rush current (Ilimit) as given by Equation 2.4:

Tcharge = Q/Ilimit . (2.4)

2.5. POWER DISSIPATION IN MICROPROCESSORS 43

PPGS divides the core into two power domains; collapsible and non-collapsible.
The non-collapsible domain is responsible for powering of the state retention registers,
and clamp circuits that enable retention of data. Another issue that adds to the wake-up
and sleep delays is the time it takes to save and restore the data from the state-retentive
registers. This is done by gating off of the core clock, and then asserting the clamp
signals to enable data retention. The inverse of this process is followed when restoring
the state, where the data is restored back after the gated power domain is reenabled.

Calculation of safe wake-up modes for the core are performed through the con-
struction of a Power Delivery Network (PDN) model for cores using 22nm and 32nm
technologies with high performance and low-operating power devices. The total charge
for core logic, excluding caches, and interconnect capacitance is modeled using Equa-
tion 2.5, where Qcore is the total charge, Clogic is the device capacitance, and Cint is
interconnect capacitance. With the given parameters, the minimum wake-up latency
for a single power domain is given by Equation 2.6. The wake-up latency induced by
the two-stage wake-up methodology then becomes 2∗Tmin−charge.

Qcore = (Clogic +Cint)×Vdd core (2.5)

Tmin−charge = Qcore/Ilimit (2.6)

The authors conclude the work by introducing MAPG controller, which is a state
machine with three states: active, stall, and idle. Active state is when the core is in
execution mode, or waking-up from a power-gated state. Stall state is when the execu-
tion is not progressing forward due to the handling of memory dependencies. Memory
dependencies are easily detected by setting a timer each time a memory instruction is
being executed, and observing whether the time passed is greater than the latency of
a last-level cache miss (i.e. memory access). This method is convenient for in-order
cores that MAPG is implemented on, but would not be feasible for out of order ex-
ecution since memory requests can be executed in parallel, and efficiently estimating
memory stalls in this case is not trivial. The idle state is when a core is halted as there
is nothing to execute for at least 100 microseconds. This approach is shown to provide
energy savings of 20% on average compared to nominal execution.

Power gating in superscalar cores

The general approach when power gating certain blocks in a superscalar microprocesor
relies on mechanisms to detect the idleness of that particular block. Other situations

44 CHAPTER 2. BACKGROUND

such as avoiding thermal emergencies are also taken into account in various schemes
as described below.

In a system with fewer threads than cores, a thread in a hot-core can be migrated to a
cooler one and the migrated core can be power-gated for thermal management purposes
using a software controlled approach [CCF+07]. Thread migration for forced power
gating becomes a problem, when the number of tasks that are running is more than
the number of cores available in the system due to performance considerations. Vega
et al. [VBB13] proposes applying Per Core Power Gating (PCPG) through the use of
an operating system scheduler that employs a heuristic which measures the difference
between tasks to cores mappings by looking at the ratio of per mapping performance
(IPC of all running threads) over per mapping power dissipation.

Idle-cycle injection (ICI) is a method that is used to force a core into an idle state.
A control algorithm that injects idle cycles for temperature reduction is proposed in
[SMC+13].

Decreasing the instruction fetch bandwidth of a superscalar core using fetch throt-
tling was found to provide energy savings due to a decrease in speculative execution
penalties [UKM02]. A Branch prediction guided technique is proposed for the power-
gating of floating point units in [HBS+04]. Battle et al. [BHHR12] propose a register
file power gating methodology using a reference counting register file that is modified
to detect unused registers.

An application for the power gating of unused register subarrays in a GPU is pro-
posed in [JRKA15]. Power gating in superscalar cores requires mechanisms to detect
stall prediction. Arora et al. [AMP+15], provide a comprehensive idle-time analysis
for benchmarks that utilise CPU and the GPU simultaneously. The findings indicate
an absence of long idle times in most of the benchmarks, and claims that there are no
situations in which conventional power-gating would lead to energy savings.

Hu et al. [HBS+04] proposes architectural techniques for reducing leakage power
by power-gating execution units. They first provide analytical equations for estimating
the break-even point, which is the point where the overhead of power-gating becomes
equal to the energy saved by power-gating, and then introduce power-gating schemes
where the convenient times for sleeping of execution units are detected by looking at
idle periods and branch mispredictions.

The time points that indicate important power-gating intervals in this work are
given in Figure 2.8.

The decision to power-gate the circuit is taken when an idle interval is detected

2.5. POWER DISSIPATION IN MICROPROCESSORS 45

Figure 2.8: Power gating cycle intervals (x-axis represents time, and y-axis represents
energy)(Taken from [HBS+04])

at the time between t = 0 and t = T1. The leakage energy up until T1 amounts to the
energy while the unit to be power-gated is in active mode. The sleep signal is asserted
at T1, and is distributed to the header switch responsible for cutting off the supply
voltage to the unit to be power-gated. T2 marks the time when the sleep signal reaches
the gate of the header switch. The energy consumed between T1 and T2 is Eoverhead1 .

When the sleep signal reaches T2, the virtual supply voltage is cut off and the charge
within the power-gated block starts to decrease as a result of the decreasing voltage.
The virtual supply voltage drops superlinearly until T4, where the voltage drops to
almost zero resulting in an increase in leakage energy savings.

An upcoming busy interval is detected at T5 through the use of control logic. The
deasserted sleep signal leads to an energy overhead (Eoverhead2) caused by the pro-
pogation of the signal. The signal reaches the header switch at T6, thus leading to the
charging of the virtual supply voltage. The leakage energy savings per cycle decrease
until it becomes zero when the virtual supply voltage is fully charged at T7.

The break-even point T3 is the point where the overhead of power-gating (Eoverhead =

Eoverhead1 +Eoverhead2) is equal to the energy saved by power-gating. Aggregate energy

46 CHAPTER 2. BACKGROUND

Table 2.2: An overview of power-gating schemes

Scheme Core
type Event Power-gated

Blocks
Wake-up
overhead

[RRK11] In-order
Cache
miss Register file 5 cycles

[JKK+12] In-order
Cache
miss Core ∼10ns

[VBB13] Out-of-order
Migration
heuristic Core 20ms

[SMC+13] Out-of-order Thermal Core
Varies by
processor

[HBS+04] Out-of-order
Execution
unit idle

Execution
units 9 cycles

[BHHR12] Out-of-order
Register
file bank
idle

Register
file bank 17 cycles

[JRKA15] GPU
Register
subarray
unused

Register
subarray 10 cycles

savings are equal to the energy overhead for the switching on and off of the header
device at this point.

The results show that the time based technique can power-gate the floating point
unit for 28% of the execution time, where as the branch prediction guided scheme can
power-gate the floating point unit for 40% of the time. Performance degradation for
both schemes is shown to be at 2%.

A summary of power gating schemes for different architectures covering different
microprocessor blocks is provided in Table 2.2. As previously mentioned, power gat-
ing an in-order core based on a predefined event is trivial since it can easily be known
a priori which events will lead to pipeline stalls. This problem is transformed into a
non-trivial problem when the core type that is to be power-gated is changed into an
out-of-order core. This is mainly due to the inability to accurately predict whether a
memory access will lead to a pipeline stall, and the period of that stall. Memory stall
prediction remains an open problem for out-of-order cores, and even state-of-the-art
predictors applied for DVFS control are accurate to 65% [MEP12]. Another issue with
performance event-centric power-gating is in their inability to be utilised as actuators
for control algorithms if thermal control was required. Cyclic power gating proposed
in Chapter 5 can be used in such a scenario, since it is equipped with a low switching

2.6. PERFORMANCE AND POWER TRADEOFFS 47

overhead, and is not tied to a certain event by design.

2.6 Performance and power tradeoffs

Different approaches for power management can be taken depending on the organisa-
tion of the compute stack. It is possible to implement approaches that are hardware
based, software driven or a combination of both.

It is useful for the processor to be aware of the class of running applications in
order to take power management decisions. When the software stack is provided with
an interface to the hardware layer, power reduction and dynamic power management
techniques are utilised more efficiently. A holistic approach where all the layers have
the appropriate interfaces to access system-wide information about the runtime state
has proven beneficial in many of the previous research [JNaS+12, DMB+12, CRG+11,
SKK11, LMC+11].

Despite differences in pipeline depth and pipeline stages, all superscalar micropro-
cessors contain both in-order and out-of-order pipeline structures. Most contemporary
commodity superscalar processor designs contain a backend that executes out-of-order,
and an in-order frontend that contains the fetch and retire stages. Structures that are
required to maintain program order at fetch and retire stages. Out-of-order structures
are designed to exploit instruction level parallelism (ILP) that is inherent in sequen-
tial programs. ILP is a metric of how many instructions an application can run in
parallel within an instruction window without being stalled by dependent instructions.
Instruction dependencies are classified in three types; write-after-write (WAW), read-
after-write (RAW), write-after-read (WAR). WAW and WAR are called false depen-
dencies, and these types of dependencies can be omitted by register renaming where a
different physical register is assigned for the same logical register in order to break the
dependency [HP12, SL13].

The maximum achievable ILP is determined by the largest sequence of independent
instructions, once false dependencies have been removed. Listing 2.1 shows two dif-
ferent instruction streams with Listing 2.1a showing a stream where no ILP exist, and
Listing 2.1b showing a stream with an ILP of 4. Another way of thinking about ILP,
is looking at the distance between the last write on a register, and the first subsequent
read on that register. This is also called instruction dependency distance [SL13].

There are false dependencies that can be handled by compiler techniques (i.e. in-
struction scheduling), and hardware techniques (i.e. register renaming) [SL13]. True

48 CHAPTER 2. BACKGROUND

r 8 = r 9 + r 10
r 6 = r 7 + r 8
r 4 = r 5 + r 6
r 2 = r 3 + r 4
r 0 = r 1 + r 2

a: ILP=1

r 0 = r 1 + r 2
r 3 = r 4 + r 5
r 6 = r 7 + r 8
r 9 = r 10 + r 11
r 12 = r 1 + r 0

b: ILP=4

Listing 2.1: Instruction streams with differing ILPs

dependencies are the cause of serialisation within the pipeline, and they are one of the
main causes that lower the ILP of an instruction stream. In a given instruction stream,
that executes on an ideal out of order pipeline, instructions are only serialised in the
presence of true dependencies (Read After Write dependencies). ILP provides a the-
oretical upper limit for a given program bound by a certain ISA. However the issue
and retire width of a processor bounds the maximum ILP that can be exploited. An
optimal execution on a given processor design would be when the number of instruc-
tions executed per cycle is equal to the issue/retire width of the processor specification.
In reality this is not possible mainly due to two reasons; memory access latency, and
structural hazards.

The stalls in a pipeline due to memory access latency are called memory stalls.
In an ideal memory subsystem, where data locality is not an issue, instructions in the
pipeline would not be stalled while waiting for memory as all the memory requests
would be filled immediately. What happens in an actual system is that each mem-
ory request issued through load/store instructions in the pipeline is forwarded into the
memory hierarchy. The request is served within a time period depending on the layer
of memory hierarchy the requested location resides in. This can range from few cycles
if the request was filled from the L1 cache upto hundreds of cycles if it needs to be
fetched from memory.

Another type of stall is the pipeline stall, which happens when application require-
ments could not be met by the underlying processor (i.e. lack of parallel execution
units for a given task, low decode throughput, instruction dependencies, or a combina-
tion of these) [SL13].

While out-of-order execution is able to mask some of the memory access latency,
there is not much the core can do in the case of heavily memory-bound program phases
where most of the time spent during execution is spent within the memory hierarchy.

2.6. PERFORMANCE AND POWER TRADEOFFS 49

This latency provides opportunity for exploiting memory-bound phases for energy-
efficient execution. There are different techniques for memory latency reduction in
order to decrease the memory access time, or reducing core performance during these
phases that both result in energy savings. Compute-bound workloads make heavy use
of the backend and the frontend, whereas most of the execution time is spent outside
the core in memory-bound workloads.

An application phase is defined as a period of execution with a degree of homo-
geneity with respect to the behaviour of the processor. A phase is deemed memory-
bound when most of the execution time is spent in the memory system as opposed
to being spent performing computation in-core. The optimal execution speed for
compute-bound workloads is the maximum core frequency available [AA14] in the
system. Memory-bound workloads on the other benefit from power savings on a lower
core frequency [SKK11].

The degree to which a program is memory-bound is highly dependent on the data
set that is provided as input to that program. Although it is possible to know whether
a piece of code interacts with the memory system by only looking at its instructions, it
is not generally possible to know in advance which layer of the memory hierarchy will
respond to these requests.

While in memory-bound phases most of the work is being done by the memory
system, compute-bound phases complete their work within the core. This means that
the related subsystem that the work is being done on is the main contributor to power
dissipation.

The time it takes to bring data from higher levels of the memory hierarchy is usually
much higher than out-of-order execution can compensate for, resulting in the pipeline
being stalled most of the time waiting for data. This means that the core does not need
to run at high frequency, as memory latency becomes the bottleneck of execution.
From an energy consumption perspective, execution of memory-bound workloads on
lower core frequencies lead to higher energy savings compared to higher frequency
execution.

When the memory system is not involved, in an ideal compute-bound phase, the
most energy-efficient way of execution occurs when the program being executed runs
uninterrupted at the maximum available frequency. Various layers in the compute stack
can incur overheads by interrupting program execution. As an example, the operating
system level interruption of the execution can be caused by a context switch. This
might result in the instructions of the program residing in the instruction cache being

50 CHAPTER 2. BACKGROUND

flushed leading to an unnecessary batch of memory system operations. Running at
slower frequencies (in the presence of DVFS) will also result in higher execution times,
and this performance hit may lead to higher static energy dissipation.

2.6.1 Power and performance modelling

Modelling of power and performance is useful during early design space exploration of
new processor designs, and for runtime execution profile (such as power saving, high-
performance, ...) selection. This subsection provides several approaches that can be
used at runtime or early design time. The work presented here can be used in tandem
with the novel microbenchmark generation tool described in Chapter 4 to generate
power models, and be exploited to provide online decision mechanisms for the power
management scheme described in Chapter 5.

Accurate and stable runtime power modelling for mobile and embedded CPUs

Walker et al. [WDH+16] provides a methodology for building runtime power models
for mobile and embedded devices by using hardware performance counters (HWPC).
The methodology consists of four steps that are: data acquisition, HWPC selection,
model formulation, and a CPU voltage model.

The data acquisition step is where data for different HWPCs are collected by run-
ning a variety of workloads for the mobile domain. The infrastructure built for data
acquisition takes different voltage/frequency pairs available within the processor for
more precise measurements.

Most processors have a limit on the HWPCs that can be monitored simultaneously.
The authors propose a novel statistical HWPC selection methodology in order to over-
come this problem. This work also points out that the CPU voltage varies based on the
workload being executed, and claims that it is important to model the voltage regulator
for high precision modelling of static power. Finally, the authors compare the results
produced by their models with the actual measurement data, and find that their models
accurately represent the power for ARM Cortex-A7 and ARM Cortex-A15 cores, with
an error of 3.8% and 2.8% respectively.

Roofline model

Williams et al. [WWP09] proposes a performance-based roofline model that is mo-
tivated by the fact that the work done on any Von Neumann-based processor, despite

2.6. PERFORMANCE AND POWER TRADEOFFS 51

Figure 2.9: Performance Roofline Model (taken from [WWP09]).

architectural differences, is composed of memory and numerical operations with con-
straints on peak performance dictated by the architecture. The authors argue that the
higher level of accuracy that comes with stochastic analytical models, and statistical
performance models rarely provides the means for understanding how a program can
be optimized, thus limiting their usability to only a group of experts within the domain.
Performance-based roofline models connect the floating-point performance W(Flops)
with the memory performance Q(bytes) using a metric called operational intensity de-
fined as I (Flops/Byte).

Operational intensity can be thought of as a scaling factor, with a higher value
meaning higher scalability. Figure 2.9 shows an example for two different versions
of AMD Opteron, with the difference in both processors only being the number of
cores, the X2 being a dual-core system, whereas the X4 is a quad-core that has the
same microarchitecture as X4. From the model’s point of concern they both have the
same memory bandwidth, and only differ in floating point operation bandwidth. The
x-axis here represents the operational intensity (per operation memory bandwidth),
while the y-axis represents the attainable floating-point performance. Any possible
implementation of an algorithm is represented by a vertical line drawn on the x-axis.
The roofline given in the figure provide the upper bound for these two architectures,
and means that any algorithm implemented on these machines can not be optimised to
achieve values above this roofline.

[CP14] extends the described roofline model by including microarchitectural pa-
rameters for the cache hierarchy and out-of-order execution.

52 CHAPTER 2. BACKGROUND

McPAT: an integrated power, area, and timing modeling framework for multicore
and manycore architectures

McPAT is a hierarchical software modelling tool that enables power, area and timing
aspects to be modelled at a detail ranging from architectural to wire level [LAS+09].
All the components that are available in current microprocessors such as interconnects,
multithreading, caches, and memory controllers can be included in the models. It is
also possible to have McPAT communicate with performance simulators, temperature
and reliability modelling tools using the XML based interface. This enables evalu-
ation of systems with power management schemes such as DVFS. The hierarchical
structure of McPAT lets researchers work at the level of abstraction that is required
of the research idea. Unspecified parameters can be inferred by the optimiser. The
power model relies on capacitance values since dynamic power is a function of load
capacitance and voltage, whereas the timing model calculates the RC delays requiring
wire resistance values. Area models are calculated by taking memory structures, and
combinational logic structures like decoders into account.

2.7 Workload generation

Synthetic workloads, also called microbenchmarks, are dummy programs aimed to
exhibit execution behaviour that is targeted to generate activity within a subset of mi-
croprocessor blocks which enables testing of the microprocessor in situations such as
peak power or reliability issues. These workloads also enable evaluation of architec-
tural proposals in a faster manner in terms of execution time when compared with
regular benchmarks. This section introduces the state-of-the-art in synthetic workload
generation. The presented content aims to provide the basis to explain why a new mi-
crobenchmark generator tool (GLAM), as described in Chapter 4, is required. GLAM
is proposed to enable microbenchmark generation at the intermediate representation
level in an architecture independent fashion by leveraging the LLVM IR. A compari-
son of GLAM against the presented material will also be presented at the end of the
section.

CERE: LLVM-based codelet extractor

CERE [CAP+15] is a codelet extractor that generates an LLVM IR representation of
instrumented binaries. Code isolation is a method for capturing the essence of the work

2.7. WORKLOAD GENERATION 53

a given computer program completes, and recreating that for reducing the time and re-
sources it takes for benchmarking and compiler evaluation purposes. The challenges
in code isolation include different language support, repeatability on different architec-
tures, and accuracy at both computation and memory levels. [CAP+15] propose CERE
as an LLVM IR level code isolator that can outline hotspots within a program written
in any programming language that has a LLVM supported frontend. CERE captures
the execution behaviour of a given program, and generates an output that is a highly
accurate representation of it.

Automated microprocessor stressmark generation

Joshi et al. [JEJI08] propose an automated way for generating synthetic workloads
aimed to stress the processor (stressmarks) for maximum power dissipation, maxi-
mum temperature and maximum change in current. This is accomplished by ini-
tially creating an abstract workload model (AWM) by collecting statistics over an
actual benchmark execution. The AWM incorporates features related to instruction
mix, instruction-level parallelism (ILP), instruction/data footprint, and data access pat-
terns. Instruction mix represents variable latency integer and floating point instruc-
tions, along with memory and branching instructions from the dynamic instruction
stream of an executed workload. The ILP feature for the model is created by gener-
ating a cumulative distribution of instruction dependency distances spread over eight
buckets. Instruction footprint is acquired by measuring unique instruction references,
while the data footprint is generated by investigating the unique address references
within the program. Data stride is modelled as a distribution of localised data strides
as introduced in [Jos07]. The modeling technique is motivated by the fact that quan-
tifying data locality using a simple distribution is inadequate for workload synthesis,
thus a characterisation that contains various data access patterns at instruction gran-
ularity is required. The stride value for each load and store instruction is measured,
and then the most frequent value for each individual instruction is recorded along with
the percentage of that stride within the measured individual instructions’ accesses. If
an instruction is observed to have over 80% stride similarity, it is labelled as strongly

strided instruction. A cumulative distribution of the most frequent stride patterns is
generated along with the ratio of the memory accesses that each of these patterns rep-
resent. Branching behaviour is modelled by generating a branch transition rate, which
is the ratio of switches between taken/not-taken branches divided by the total num-
ber of branch instructions. A moderate branch transition rate indicates an irregularity

54 CHAPTER 2. BACKGROUND

within branching behaviour, which decrease the likelihood of correct branch predic-
tion.

A workload is synthesised from an AWM through five steps. In the first step,
a linear block chain is generated based on the average basic block size, where the
instruction footprint obtained from the AWM is used to calculate the size of each block
along with the population of the individual blocks using the obtained instruction mix
characteristics and ILP metric. A second step involves the modeling of memory access
patterns, where each memory access instruction is assigned a stride value from the
stride distribution explained in the previous paragraph. Each memory access walks
through a circular buffer in strides specified by its assigned stride value, where the
size of the buffer is dependent on the ratio of the program’s data footprint divided
by the total number of load/store instructions within that program. The branching
behaviour is modelled in the third step by assigning a transition rate for each branch
instruction that was inserted in the first step. The fourth step assigns registers to each
register based on the instruction dependency distances from the AWM. Finally, code
is generated by emitting assembly code into a C source file skeleton that targets a
specific ISA. Stressmark generation involves the utilisation of a genetic algorithm in
conjunction with the described workload synthesis methodology, where a benchmark
is synthesised from an AWM in iterations until a benchmark that stresses the objective
function (maximum change in current, maximum temperature, etc) the most is found.

The workload synthesis method is evaluated to be accurate with an average error
of 10.9% for replicated SPEC CPU2000, and Specjbb2005 benchmarks. Generated
stressmarks are evaluated to meet the requirements in generating the maximal amount
of stress defined by the objective function.

Systematic energy characterization of CMP/SMT processor systems via auto-
mated microbenchmarks

Bertran et al. [BBG+12] propose MicroProbe as an automated microbenchmark gener-
ation framework, and shows its uses for application phase grained power consumption
by calculating the contribution of each component for an IBM POWER7 CMP sys-
tem with multithreading capabilities. The tool is also utilised for measuring energy
per instruction (EPI), and generating stressmarks that target maximum power dissi-
pation. The framework consists of architecture, code generation and design space
exploration (DSE) modules driven by user-defined policies intended for validation of
research ideas. The generation process is driven by a python interface which provides

2.7. WORKLOAD GENERATION 55

the user with a high-level of flexibility. The architecture module provides portability
by decoupling the architectural properties from the code generation module by having
the user input the architectural details using text files. It implements three functions:
an ISA definition for the PowerPC architecture, the microarchitectural definition for
the POWER7, and a set-associative cache model. The ISA definition enables the gen-
eration of assembly code for the defined ISA, and can be input by the user in a text
format. Microarchitecture definitions contain information on processor components
like functional units, caches, and layout. The partial information contained within the
microarchitectural definition is completed using an automatic bootstrapping scheme
that generates instruction level profiling information such as latency and instruction to
block mappings. EPI is also measured during this phase using the available on-chip
power sensors. The microarchitectural models are used to reduce the time it takes for
DSEs by providing the related microarchitectural information, thus avoiding the need
to apply an exhaustive search to infer these properties. A sample cache model pro-
posed in this work is the set-associative cache model that defines the cache hierarchy
for the POWER7 microarchitecture. Using the model definition makes it possible for
the code generator to model the exact cache behaviour of the architecture that the mi-
crobenchmark will execute on. Each cache level in the hierarchy is assigned a single
cache set responsible for generating the hit/miss ratio for the given level. The code
generation module follows a five-step process for generating the target microbench-
mark. These steps are: skeleton definition, instruction distribution, memory behaviour
modeling, branching behaviour, and ILP modeling by defining the instruction depen-
dency distance. The framework also makes it possible for the user to add new passes
as new requirements arise. The authors claim that abstract workload models do not
expose the ability for instruction type selection, whereas the compiler-like code gen-
eration module of MicroProbe allows this by introducing an instruction selection pass.
The DSE module enables the user to specify a design space, along with the algorithms
to search within it. It is required for finding benchmarks that meet certain criteria dic-
tated by the research idea that is being investigated. It allows for exhaustive searching
within the DSE, as well as genetic algorithm searches. The integration of DSE support
with the code generator makes it more convenient for implementing a feedback-driven
generation method. A performance counter-based power model for the POWER7 is
also proposed. This model is built in a bottom-up fashion, defining system power
as the sum of the power consumption of individual components. They break down
the total power consumption into four dimensions defined over idle power dissipation.

56 CHAPTER 2. BACKGROUND

These dimensions are dynamic power dissipated per hardware thread, power overhead
of utilising symmetrical multi threading (SMT), power overhead of running multiple
cores simultaneously, and the uncore power dissipation. The work is concluded by
claiming an average error below 2.3% for estimating the power consumption for the
SPEC CPU2006 benchmarks, and stressmarks that are 10.7% power-inefficient over
the observed SPEC CPU2006 benchmark runs.

Workload synthesis: Generating benchmark workloads from statistical execution
profile

Kim et al. [KLJR14] generates an execution profile for a given workload by utilising
hardware performance counters, and outputs a representative synthetic workload with a
reduced execution time compared to the actual workload. The work targets the mobile
application space, where it is a burden within the research community as benchmark-
ing Android applications are non-trivial due to their closed source nature combined
with their inherent interactivity. A two-step methodology that consists of a sampling
stage and a regeneration stage is used. The application to be replicated is profiled by
sampling performance counters periodically, where each interval is named a workload

slice. The period for each workload slice is defined as slice length. By taking workload
slices through an execution, a tracing log that indicates performance counter results per
slice over time is constructed. The profiled program is regenerated by concatenating
code templates (kernel functions), that are representative code sequences for a given
performance counter class for each workload slice. This is achieved by making use of
a synthesis solver, which basically maps kernel functions to workload slices based on
the execution profile of each workload slice. The distinct classes of kernel functions
consist of: ALU, branching, memory, idle, branch miss and cache miss. The short-
coming of the kernel functions for memory functions is that they only utilise L1 hits
and misses. The replicated workload has a 18% discrepancy in IPC compared to the
actual workload.

2.7.1 A comparison of GLAM with the presented tools

From an operational and functional point of view all of the presented materials in
this section bear certain similarities with GLAM. The LLVM based codelet extractor

2.8. SUMMARY 57

[CAP+15] is similar in that it operates at the LLVM IR level to isolate code struc-
tures from a larger program body that could later be executed in a standalone fash-
ion, thus reducing execution time while still retaining the execution properties of the
isolated section, but the isolated code sections are still too coarse-grained to be la-
belled microbenchmarks. A second issue was the limitation of this tool to the Intel
x86 architecture at the time this dissertation was written. The workload synthesisers
[JEJI08, KLJR14, BBG+12] aim to generate microbenchmarks with similar execution
properties as GLAM, since both of these tools target maximal utilisation of selected mi-
croprocessor blocks. Where they differ is their approach in doing so, in which GLAM
microbenchmarks are generated directly from a user provided definition, whereas the
automated microprocessor stressmark generator relies on an abstract workload model
generated through runtime profiling. In addition these tools require a backend for each
new output architecture, as opposed to GLAM, where generation for the LLVM IR
can easily be transformed into all of the LLVM supported architectures. An in-depth
description of GLAM can be found in Chapter 4.

2.8 Summary

This section introduced the basics of out-of-order execution, power dissipation in mi-
croprocessors, power management schemes, the relationship between power dissipa-
tion and performance, and automated workload generation. The current landscape in
these areas were briefly explained, and the opportunities for improvement have been
pointed out.

The concerns that underlie the utility of DVFS in the future are mainly due to the
end of transistor scaling. Increased leakage power, and the reduced difference between
supply and threshold voltages are the main reasons that lead to these concerns. Power
gating is a sure way of reducing leakage power, and has been applied widely within
research and commercial domains. Recent developments revolving around these con-
cepts were provided. A novel power management scheme, and how it compares with a
recent technology node, is provided in Chapter 5. Since research on microarchitecture
level proposals require a simulator, and the execution of benchmark suites on simu-
lation environments take too long, a novel microbenchmark generator that is mainly
used to create microbenchmarks to enable quick prototyping on simulators is proposed
in Chapter 4.

In Chapter 3, the experimental infrastructure used to investigate the work that is

58 CHAPTER 2. BACKGROUND

proposed in this thesis will be presented.

Chapter 3

Experimental Infrastructure

Chapter 2 reviewed existing power management schemes and their limitations. Mod-
ifications at a microarchitectural-level and their interaction with the higher layers of
the compute stack makes it mandatory to build a simulation infrastructure where the
effect of microarchitectural modifications can be evaluated on performance, power
and temperature. It is possible to evaluate the performance of applications including
low-level software such as operating systems or virtualisation layers on real hardware
[PZW+07]. Most commodity processors provide built-in counters that provide infor-
mation on average power consumption, or system temperature [Spr02, Han12]. Mi-
croarchitecture level modifications can be evaluated in two ways, (i) by implementing
RTL level code on FPGAs, or (ii) via simulators written in a high level programming
language with the capability to simulate microarchitectural details. Although there
are open-source efforts to create RTL level experimentation platforms [LWC+16], the
intellectual property for implementations of common ISAs such as ARM or x86 re-
mains largely out of reach for the research community. This makes it necessary to use
simulators to evaluate ARM and x86 ISA based systems.

The experimental infrastructure used to determine the efficacy of material pre-
sented in Chapter 5 is briefly explained in this chapter. The tool flow shown in Figure
3.1 is introduced in order to evaluate microarchitectural ideas and their consequent
power and temperature implications. For this reason, the available tools in the re-
search domain were integrated together in order to establish a simulation environment
required to evaluate the novel power management approach proposed in Chapter 5 that
is intended to address the limitations of the current power management schemes, as
described in Chapter 2, in terms of performance, power, and temperature. Each of the
blocks will be explained in further detail within their respective sections.

59

60 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

Figure 3.1: Experimental Infrastructure Tool Flow.

3.1 Processor simulation

Simulation of microprocessors and memory hierarchies is a cost-effective way of eval-
uating architectural ideas. Simulation makes it possible to quantitatively compare a
baseline architecture against different modified versions of that architecture before go-
ing to the costly and time consuming task of verifying an RTL implementation. Sim-
ulators differ in parameters including simulation model, instruction set architecture
(ISA) support, memory hierarchy and interconnect configurations, multi-core support,
source code availability, and performance.

The level of detail captured by a simulation environment is determined by the
amount of accuracy required in terms of representing an actual system. The most
widely used modes of simulation are functional, cycle-accurate, and interval-simulation.

Functional simulation is used to verify the behaviour of a given design without
taking temporal aspects of that design into account [Eec08]. A common use case of
functional simulation is verification of the hardware/software interface. This makes
it impossible to simulate microarchitectural aspects that are representative of actual
hardware such as the pipeline stages of a superscalar microprocessor. Although it
is technically possible to decouple memory hierarchy simulation from the simulation
of a core, simulating a highly accurate memory system with functionally simulated
cores still leads to incorrect simulation results due to the skew in memory access tim-
ings introduced by the low level of detail that is inherent in the functional core model
[GPD+14].

Cycle-accurate modelling increases the level of detail that is simulated at a func-
tional level at the cost of simulation time. While functional models usually execute at
a single instruction per cycle model without taking pipeline details into account, cycle-
accurate models typically model each pipeline stage with a relatively higher level of
accuracy by simulating pipeline stages and their structures with individual clocks as-
signed to each of them. This results in a very steep increase in simulation time. There
are two approaches taken to decrease the simulation time of a cycle accurate simulation

3.1. PROCESSOR SIMULATION 61

which are co-simulation using field programmable gate arrays (FPGA) [CSK+07], and
interval simulation [GEE10] [EEKS09].

Co-simulation using FPGAs involve the offloading of execution of a part of the sim-
ulated system onto previously built Intellectual Property (IP). Although the speedup
gained from this approach can be orders of magnitude greater [TWA+10], it requires
the development of the hardware block using a hardware design language (HDL), and
an extra effort in verifying the implemented block. Although verification is required
for simulators written in high level languages, the time it takes to verify hardware de-
signs is significantly higher compared to software designs. Since FPGA device sizes
are also limited, another issue arises with the implementation of many-core systems on
FPGAs as it is not possible to fit the whole design space into them.

The other alternative, interval simulation, speeds up the simulation by only simu-
lating the regions of interest in a highly detailed fashion, while simulating the remain-
ing execution regions using an analytical model at a higher level of abstraction. The
analytical model is implemented as a superloop that increments simulation statistics
based on occurences of events, rather than simulating the hardware blocks that process
these events in a detailed manner. The regions of interest can be set by a list of events
that trigger a detailed simulation such as branch mispredicts or last level cache (LLC)
misses. It is also possible to mark regions of interest from the code being executed, so
that the simulator is notified to increase the level of detail being simulated.

In the following subsection an overview of available simulators in the computer
architecture domain will be presented along with a justification on the selection of the
simulator used within this dissertation.

3.1.1 An overview of available simulators

Table 3.1 provides a list of the most widely used simulators for architectural research.
The initial investigation on the scope of research being done in the area of microar-
chitecture from a power management perspective, with emphasis on both the compute
and memory blocks, lead to the following general requirements for building an infras-
tructure that enables users to experiment in the most flexible fashion:

• Multi-architecture support was a key requirement in order to evaluate different
architectures and different ISAs on the simulation platform.

• Memory System Flexibility in terms of configuration and ease of prototyping
memory system blocks related to cache hierarchy and coherence.

62 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

• Source code availability along with user community support in order to make
modifications in unforseen circumstances as the API for a closed-source simula-
tor may be limited for specifying required behaviour

• Support, along with a user community behind the tool would be helpful in times
when problems took a long time to solve.

• Full system simulation was a key requirement in order to include the operating
system behaviour in evaluations

The advantages and shortcomings of the listed simulators will be discussed below,
along with a description of why gem5 was chosen as the simulator to be used in this
work.

gem5

The gem5 simulator [BBB+11] is a highly modular simulation infrastructure that en-
ables experimentation of research ideas at microarchitecture and system level including
microprocessors, interconnects, memory hierarchy and cache coherence. It can per-
form functional and cycle-accurate simulation, and can switch between functional and
cycle-accurate simulation modes using a fast forwarding mechanism for performing
interval simulations. There are two different ways of simulating the memory system
within gem5; General and Ruby. General memory system simulates a snooping bus
with parameters for adjusting bandwidth and latency. Ruby [MSB+05] is a highly

Table 3.1: List of architectural simulators

Simulator Supported
architectures

Memory
System
Flexibility

Simulation
Modes

Licence
Type

Comm.
support

gem5
x86-64, armv8,
aarch64, mips,
sparc, ppc

Flexible
System call,
full system BSD-like High

Sniper x86-64 Limited System call MIT High
Z-sim x86-64 Limited System call GPLv2 Low

Simics
x86-64, armv7,
ppc, mips, sparc Limited

System call,
full system Proprietary Low

Marss x86-64 Limited
System call,
full system GPLv2 Low

3.1. PROCESSOR SIMULATION 63

detailed memory system simulation framework where the user can explore highly de-
tailed memory hierarchy configurations and on-chip networks with different topolo-
gies. Ruby also comes with a domain specific language (DSL), named Specification

Language for Implement Cache Coherence (SLICC) that makes it possible to define
cache coherence protocols that can be plugged into the cache hierarchy without any
extra effort. Cache controllers, memory controllers and the protocol that is used when
messaging between these controllers can be modeled using SLICC. All the level of
detail comes at the price of increased execution time. Measured execution time for
highly memory-bound workloads is around 40k instructions per second, whereas this
number is increased to 400k instructions when the execution is completely compute-
bound. The average error for simulation of gem5 utilising the ARM ISA has been
measured to be in the range of 20% on average when compared with an ARM Cortex-
A15 [GPD+14]. The causes of errors in simulation have been summarised as; (i)
architectural equivalence do not necessarily model microarchitectural equivalence, (ii)
loss of information due to abstraction, (iii) core models that are not representative of
the actual core being simulated.

Sniper

Sniper [HCE12] is a multicore x86-64 simulator that executes using a mixture of inter-
val [GEE10] and cycle-accurate simulation. Only regions of interests that are marked
by certain hardware events are simulated using the cycle-accurate engine, while the
rest of the simulation is carried out using a simplified analytic model that has been
shown to be sufficiently accurate [EEKS09]. Sniper’s visualisation support makes data
analysis easier than with other simulators. It can only simulate directory based cache
coherence with MESI, MESIF and MSI protocols. The McPAT power modelling tool
is fully integrated into the simulator, making it straightforward to obtain power es-
timates for the overall simulation, or periodically. A user can easily obtain stacked
plots that demonstrate the fraction of cycles spent, power plots over time, and profiling
information that contains a call graph. It is the fastest simulator relative to the level
of detail that it simulates, peaking at around several millions of instructions per sec-
ond (MIPS). However, the lack of multiple architecture support ties this simulator to
the x86-64 architecture making simulating mobile domain applications difficult. An
evaluation of the Sniper simulator finds that the average error across a range of multi-
threaded applications was found to to be 25% [CHE11] when validated against an Intel
XEON X7460 multi-core server.

64 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

ZSim

ZSim [SK13] is a detailed many-core simulator, that can simulate 1000s of cores. Par-
allel simulation is enabled using a two phase bound-weave algorithm. The algorithm
works by first generating a list of memory interactions through a higher-abstraction
simulation. The second phase consists of detailed simulation making use of the tim-
ings obtained from the first to minimise the synchronisation overheads that other par-
allel simulators incur. Acceleration of Out-of-Order instruction execution is achieved
by using Dynamic Binary Translation (DBT). DBT enables simulation of executed
instructions in one to two orders of magnitude compared to other cycle-accurate simu-
lators. It is the fastest simulator that is available with an open source licence, with sim-
ulation performance reaching hundreds of MIPS for detailed out-of-order cores. It has
a modular cache configuration system, that makes the integration of custom implemen-
tations for coherence and replacement policies easy. Unfortunately, it lacks support for
mobile architectures, full-system simulation and power modelling. The average abso-
lute error for ZSsim has been measured as 11.2% for multi-threaded workloads, and
lower than 10% for single-threaded workloads when validated against an Intel XEON
L5640 multi-core processor.

Simics

Simics [MCE+02] is a proprietary licensed simulator that can be integrated with the
Ruby memory system simulator. It has an ISA simulator that can perform functional
and cycle-accurate simulations for ARM, MIPS, Intel and Sparc ISAs. It enables users
to implement and integrate their microarchitectural ideas through a microarchitectural
interface (MAI). Being able to configure the memory system using Ruby provides all
the blocks needed to implement detailed memory system simulations. Executions can
be rewound for further examination of the simulated system making debugging easier
using reverse simulation. Another distinguishing feature of Simics is the fault injec-
tion mechanism that enables injection of faults to simulated systems. The proprietary
nature, and fairly low usage within the computer architecture community are the main
shortcomings of this simulator.

Marss

Microarchitectural and System Simulator for x86-based Systems (marss) [PACG11] is
a multicore x86-64 simulator that comes with a detailed Out-of-Order execution model

3.1. PROCESSOR SIMULATION 65

that can simulate hundred thousands of instructions per second. It includes write-back
and write-through cache implementations, MESI and MOESI cache coherence proto-
cols, and a simple DRAM model. It lacks in modelling of detailed cache models, there-
fore making implementations for experimental cache replacement models not possible
without extra effort. Lacking support for ISAs other than x86-64, and the lack of
a modular simulation infrastructure required for the purposes of this dissertation has
been the main reason for ruling out the possibility of using this simulator.

Based on the evaluation of the parameters listed in Table 3.1, the gem5 simulator
was chosen based on its high level of modularity, community support, and the open
source licence. The software architecture and the modifications made to gem5 to build
the required experiment infrastructure will be detailed in the following subsections.

3.1.2 gem5

A simplified block diagram encapsulating the execution of gem5 is provided in Figure
3.2. The simulator infrastructure is an event-driven architecture that triggers events
when the event tick is reached. This approach negates unnecesseray computation for
simulation periods that are idle. Simulation is driven from a python interface that con-
sists of wrappers for the C++ objects constructed through a system definition provided
at the beginning of the simulation. A system configuration describes the type of cores,
level of details for timing purposes, memory hierarchy configuration, network-on-chip
configuration, root filesystem and operating system kernel to execute.

Software architecture

The simulator is built using an event-driven architecture, where each event triggers an
introspection or a change in the simulation objects that are associated with the han-
dling of the event. The quantum of simulation in terms of time is called a tick in gem5.
Events are triggered when a specified tick is reached, and the triggering of an event
can also result in scheduling of other events. For example, the first thing an initialised
core does is schedule a fetch instruction event at a given address. Once the tick for
the scheduled fetch is reached, this fetch event requests the instruction residing at the
address the program counter points to, which is not cached at the beginning of execu-
tion, leading to an instruction cache miss event that is scheduled based on the latency
provided in the simulator configuration. The fetch request event that originated from
the execution of the fetch pipeline stage leads to several other events that eventually

66 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

Figure 3.2: gem5 block diagram.

lead to the filling of the cache line that the requested instruction address corresponds
to, and the subsequent filling of the instruction queue. All the blocks that take part in
this chain of events are either modified or introspected during this process, and this is
how events that are temporal in nature inflict changes in the spatial configuration of the
simulated logic blocks. These simulated logic blocks are called SimObjects in gem5.
The class hierarchy for simulation objects is given in Table 3.3.

A SimObject represents a physical component that is being simulated, and it also
makes it possible for the simulated physical component to be configured prior to sim-
ulation. It is inherited from the EventManager, Serializable, and Drainable classes.
EventManager class contains member functions that enables an object to schedule and
deschedule events onthe event queue. Drainable class is used to put simulation ob-
jects into a consistent state when switching between CPU models or checkpointing.
Serializable class helps with the serialization of simulation objects so that they can
be written to memory when taking checkpoints. Clocked objects (ClockedObject) are
simulation objects that inherit the SimObject class with extensions that enable synchro-
nised timing of events. Another type of object is the memory object (MemObject) that
is an extension of the ClockedObject. The MemObject class provides master and slave
ports on top of the timing functionality provided by ClockedObjects. The introduction
of these ports enable MemObject instantiations to be connected to each other in a way
that precisely represents the behaviour of memory system blocks such as load/store

3.1. PROCESSOR SIMULATION 67

Figure 3.3: Simulation object class hierarchy.

queues, or instruction, and data caches.

There are four CPU models that can be simulated using gem5. These are atomic,
timing, out of order, and minor. The atomic CPU model acts as a functional model that
targets correct ISA execution with constant timing behaviour in memory accesses that
are defined using latency parameters provided at configuration time. The timing CPU
model simulates an in-order core and the timing for its memory accesses in a more
detailed way that represents the behaviour of an actual memory system. The minor
CPU model is a timing CPU model developed to accurately represent an ARM Cortex
A9 core. The Out-of-Order model implements a superscalar CPU model that exploits
instruction level and memory level parallelism. The details of the Out-of-Order model
will be provided in the following paragraph as it is the core model that has been used
throughout this work.

The Out-of-Order CPU model contains a 5-stage pipeline that consists of fetch, de-
code, register rename, issue-execute-writeback (IEW), and commit stages. The fetch
stage is responsible for filling up the instruction queue, and can be configured to work
with branch prediction. The decode stage resolves the operands of the fetched instruc-
tion, and determines to which functional unit operands are sent for execution. The
register renaming stage resolves false dependencies for the instruction operands. In
the IEW, a reservation is made at the related functional unit for the execution of the
instruction, the instruction is executed. Then the result is written back to the register
file. Finally, the commit stage retires the instructions that have executed in the order
that they were fetched.

68 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

Figure 3.4: Cache replacement policy class hierarchy.

3.2. POWER MODELLING 69

Memory system configuration involves the definition of the memory hierarchy
depth by specifying the levels of caching in the system along with parameters for the
size and replacement policy of the caches residing on each level. All the caches are
inherited from the BaseCache class, whose base class is the MemObject. BaseCache
contains CPU and memory side port connections, and functions used for receiving re-
quests based on the timing model being simulated. Cache objects are connected with
the neighbouring levels in the memory hierarchy using Port objects. Each instantiation
of a cache is a specialisation of the Cache class using a cache tag store that is inherited
from the BaseTags class. BaseTags contain properties such as the cacheline length,
cache size, access latencies and number of blocks. Replacement policies are imple-
mented by inheriting from the BaseTags class. A replacement policy declares how and
where new blocks will be inserted and replaced within a cache. The class hierarchy for
cache replacement policies and representation is given in Figure 3.4.

A memory request in gem5 can be issued by any simulation object that contains
a master port, whereas the responses are handled using slave ports contained within
simulation objects. For instance, a CPU core contains two separate ports for making
requests from the memory system through fetch queue or the load/store queue. Mes-
saging between master and slave ports is established by forwarding Packet objects until
they reach the destination where the requested data is located.

3.2 Power modelling

Power models are linked into the simulation using a modified version of the Multicore
Power, Area, and Timing (McPAT) tool [LAS+09]. The choice of McPAT has been
made on the basis that it already had partial integration with the gem5 simulation en-
vironment, with the bits for periodically obtaining power statistics missing, which has
been added during the construction of the simulation infrastructure. McPAT enables
users to model power, area and timing in a holistic manner for in-order and out-of-
order cores, and memory hierarchies. It can model dynamic and static power dissipa-
tion seperately for Complementary Metal Oxide Semiconductor (CMOS), Silicon On
Insulator (SOI), and double-gate devices. It is built on top of CACTI [MBJ09], which
is a tool that models timing, area, leakage, and dynamic power for cache hierarchies.

The block diagram of McPAT is given in Figure 3.5. McPAT is configured through
an XML file, where the user specifies architectural, manufacturing process, and tim-
ing level details such as number of cores, supply voltage, physical register file size, or

70 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

Figure 3.5: McPAT block diagram (Taken from [LAS+09]).

clock frequency. A cycle accurate simulator, or the performance counter results ob-
tained over execution on real hardware, can be used to generate the dynamic inputs
concerning the machine state.

3.3 Temperature modelling

Thermal evaluation of the simulated architecture is accomplished using the HotSpot
[HGV+06] temperature modelling tool. HotSpot generates an RC model of the system
that is being simulated. An RC model is a way of representing the circuit as a network
of resistors and capacitors. It requires a floorplan that specifies each architectural block
in terms of width, height, and an origin point in a two dimensional representation.
Chip and heat sink specifications in terms of thickness and thermal conductivity are
also provided at configuration time. Initial temperatures of each block that have been
defined in the floorplan can also be configured.

HotSpot requires power traces as input at each sampling period to calculate tem-
perature. The provided traces should provide the component-level power dissipation
for each architectural block that has been specified in the floorplan file.

The thermal behaviour of chips can be modelled at different granularities. As il-
lustrated in Figure 3.6, it is possible to choose between functional block, regular grid
sizes or functional blocks divided into regular grids as simulation output.

A temperature map generated by HotSpot through running a sample application
on a single core microprocessor is given in Figure 3.7. It can be seen that the sample
application stresses the execution unit blocks heavily, causing them to heat up to 360
Kelvin.

3.3. TEMPERATURE MODELLING 71

Figure 3.6: HotSpot modelling granularity (a) functional blocks (b) grid (c) functional
blocks with grids (Figure taken from Huang et al. [HGV+06]).

Figure 3.7: Sample HotSpot output.

72 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

Figure 3.8: Simulation tool flow

This modelling tool was chosen on the basis that it was the only available temper-
ature modelling tool that was being maintained during the course of this dissertation.

3.4 Simulation toolflow

It was indicated in the beginning of the chapter that there was a requirement for a
tool flow that would enable microarchitectural research evaluation with power and
temperature aspects. The tool flow presented in Figure 3.8 has been developed in order
to make such research possible.

The tool flow presented involves gem5 statistics being input into McPAT at a con-
figurable period, and McPAT generating the required power traces for HotSpot to cal-
culate the temperature of each block based on activity dictated by the application that
is being simulated.

3.5. SIMULATION MODELS 73

3.5 Simulation models

This section provides the configuration of the simulation environment for the research
presented in Chapter 5.

3.5.1 Architectural model

The simulated architecture used within this dissertation models an ARM A57 that is
an Out-of-Order microprocessor utilising the ARMv8-A ISA [ARM]. This core was
specifically chosen as it was the state-of-the art out-of-order ARM core that was avail-
able in the market at the writing of this dissertation. The in-order fraction of the
pipeline has a three instruction wide fetch unit that includes a dynamic branch pre-
dictor with a Branch Target Buffer (BTB) containing a Global History Buffer (GHB).
BTB acts as a cache that stores the address of branch instructions. At each fetch cycle
the Program Counter (PC) is compared with the entries in the BTB, and when a hit
occurs the instructions from the address of either the taken or not taken branch are
fetched based on the majority of past branch decisions as stored in GHB. The decode
stage is 8-wide enabling upto eight micro-instructions to be issued. The issue queue
has 32 entries. Execution units contained within the core are: a 16-Entry load/store
unit for memory operations, two integer units, and an FPU. The integer physical reg-
ister file contains 192 entries, and the floating point register file contains 128 entries.
There is a 40-entry reorder buffer for tracking the fetched instruction order. The The
memory hierarchy consists of a 3-way set associative 48KB instruction cache, a 32KB
2-way set associative L1 data cache, a 512KB 16-way set associative L2 cache, and a
8MB 16-way set associative L3 cache.

3.5.2 Technology model

FinFET transistors provide better leakage properties than their CMOS counterparts.
As of this writing, the latest technology node was 14nm. A state-of-the art 14nm Fully
Depleted Silicon on Insulator Fin Field Effect Transistor (FinFET) model similar to
[WJMH15] was used to simulate power and temperature effects.

3.5.3 Floorplan

The floorplan of the simulated architecture for temperature modeling is given in Fig-
ure 3.9. The floorplan is a modified version of the out-of-order core floorplan that is

74 CHAPTER 3. EXPERIMENTAL INFRASTRUCTURE

Core0_InstructionFetchUnit_InstructionCache

Core0_InstructionFetchUnit

Core0_RenamingUnit

Core0_LoadStoreUnit_DataCache

Core0_LoadStoreUnit

C
o
re

0
_
M

em
o
ry

M
an

ag
em

en
tU

n
it

_
It

lb

Core0_MemoryManagementUnit_Dtlb

Core0_MemoryManagementUnit

Core0_ExecutionUnit_RegisterFiles

Core0_ExecutionUnit

Core0

L20

L30

Figure 3.9: Simulated ARM A57 floorplan

provided by HotSpot [HGV+06]. This has been achieved by modifying the relevant
blocks such as instruction and data caches in accordance with the architectural model
specifications described previously.

3.6 Hardware Experiments

This section describes the hardware infrastructure that is used to conduct the experi-
ments in Chapter 4. The methodology used for the experiments is the same although
different architectures, namely ARM and x86 64, are used in the experiment. A block
diagram showing how a benchmark is profiled is given in Figure 3.10. Power and per-
formance event counters are available for both of the architectures. This eliminates the
need to setup an external power management infrastructure, leading to opportunities in

3.7. SUMMARY 75

Figure 3.10: Hardware Event Profiling

software-only measures for profiling of software with respect to power consumption.
Measurement of events is accomplished by resetting the related performance counters
before the region of interest in a benchmark, and reading the counters at the end of the
region of interest.

3.7 Summary

An experimental infrastructure composed of microprocessor, power, and temperature
is a key requirement for evaluating microarchitectural techniques. An overview of
the simulator landscape was provided, along with a justification of why the described
setup was used. This chapter presented the simulation infrastructure that is used for
the experiments made in Chapter 4 and Chapter 5 .

Chapter 4

Generator of LLVM Assisted
Microbenchmarks

Microbenchmarks are segments of code that are aimed to target a single operation
within a processor in order to isolate the effects of that single operation while noth-
ing in parallel is being executed within the system. The granularity of the operation
can be as simple as the execution of a single block of ALU instructions, or can trig-
ger relatively more complicated execution as in the case of a dual-threaded synchro-
nisation code segment that executes on two-cores and stresses the cache coherency
mechanism of the processor. The most common use cases for microbenchmarks are:
(i) evaluating processor behaviour in terms of power, thermal, reliability and perfor-
mance [WJY+07], (ii) verification of a processor design [LFOK11], (iii) generating
representative workloads to reduce execution times [CAP+15], and (iv) fault detection
[KPFG14].

An overview of the available microbenchmark and workload generation tools, and
their shortcomings have been provided in Chapter 2. This chapter will introduce
a novel automated benchmark generator, named Generator of LLVM Assisted Mi-
crobenchmarks (GLAM) for automatically generating microbenchmarks independent
of architecture by generating microbenchmarks from a user given specification that is
then translated into an intermediate language (IR), where the generated IR is conse-
quently compiled into native code.

Manual generation of microbenchmarks each time for a different architecture is a
cumbersome process in terms of the process being open to errors while writing as-
sembly code and the time spent for rewriting a piece of code that essentially executes

76

4.1. GLAM: GENERATOR OF LLVM ASSISTED BENCHMARKS 77

in a very similar way to previously written code. Even though previous work on au-
tomated benchmark generation [BBG+12] [JEJI08] decouples code generation from
benchmark requirements, thus providing modularity, a new backend for code genera-
tion needs to be written in order to utilise this decoupling. GLAM, on the other hand,
translates user specifications into LLVM IR, enabling it to be compiled into any archi-
tecture supported by the LLVM compiler infrastructure. Architecture agnosticism that
is enabled by generating the microbenchmarks into LLVM IR is the main contribution
of GLAM. The main motivation behind implementing this tool was the need for a way
of quickly examining the properties of compute-bound execution and memory-bound
execution in the simulation environment described in Chapter 3. The chapter will first
explain the building blocks, and system architecture of GLAM, going into detail on
how microbenchmarks are generated from user specification to machine code gener-
ation. This will be followed by showing the utility of GLAM by generating a com-
parison for two different architectures that execute the same microbenchmark speci-
fications, providing researchers a practical way of comparing different architectures.
Finally, how this tool can be used to provide power characterisation on an instruction
granularity is shown.

4.1 GLAM: Generator of LLVM Assisted Benchmarks

The tool flow of GLAM is given in Figure 4.1. High-level microbenchmark specifica-
tions by the user can be provided using a JSON formatted specification file. The flexi-
bility provided by the specification format enables the user to generate either streamed
or looped instruction sequences and link them to each other. This makes it possible
to generate binaries ranging from microbenchmarks to larger scale benchmarks that
can mimic the behaviour of actual applications. Options to include profiling code us-
ing performance counters, and support for different architectures can also be included
using the specification. Repeatability is enforced by design as all the code that is gen-
erated, and the experiments conducted are based on a single JSON file. More about the
capabilities that can be exploited using this structured way of specifying code genera-
tion will be explained in the related subsection.

Once the user generates these specifications, the GLAM framework transforms
these specifications into LLVM IR. How the IR is generated depends on the require-
ments of the user. GLAM is able to generate IR code that takes microarchitectural
properties into account through a microarchitectural definition. Information provided

78 CHAPTER 4. GENERATOR OF LLVM ASSISTED MICROBENCHMARKS

Figure 4.1: GLAM tool flow

such as the details of the cache hierarchy or the number of functional units within the
core helps the framework tailor the generated code for the architecture that is being
experimented on.

After the generation of an intermediate level representation, the IR code can then
be translated into native assembly code into any architecture that is supported by the
LLVM Static Compiler (llc). If the user requires the generated code to be profiled,
a harness that includes hardware performance counter profiling code is used to auto-
matically wrap each of the generated assembly routines. The output for each of the
function executions are written to a single Comma Seperated Values (CSV) format for
ease of data processing. This makes it possible for the user to easily evaluate differ-
ent instruction mixes with varying memory behaviour from a performance and power
perspective.

In the following subsections details on program specification, code generation, ar-
chitectural definition, and profiling code insertion is provided along with a sample
use-case of the tool and the chapter will be concluded.

4.1.1 Code specification

GLAM uses the JSON data interchange format, which is a context free grammar com-
monly used in the web application domain. GLAM specification format has a hierar-
chical structure letting the user define multiple numbers of modules that may contain
multiple functions, and functions that may contain multiple numbers of code blocks.

4.1. GLAM: GENERATOR OF LLVM ASSISTED BENCHMARKS 79

It enables the specification of the programs to compile the generated IR into native
code. Function prototypes can be customised along with their parameters. This makes
it possible to pass parameters like loop counters through the harness during execution.
The most noteworthy definition within the specification is the block entry. Block entry
lets the user specify homogeneous instructions streams that are sequenced or looped
along with the instruction distances between them. This makes it possible to mimic the
behaviour of any program phase as blocks can be concatenated in any granularity and
behaviour that a program can have.

Listing 4.1 provides a sample GLAM benchmark specification. A top-level repre-
sentation named experiment is used to define everything that will be common for the
modules that will be built. All the information provided for the experiment is used to
automatically generate a harness for each specified architecture. It is also possible to
provide the architecture definition files that provide specific information such as cache
hierarchy details to guide in the benchmark generation process. The architectural def-
inition is most useful when generating memory operations. The execution harness can
be generated to run on actual hardware with Hardware Performance Counter (HWPC)
based profiling enabled per function generated, or to run on a simulator with the HWPC
profiling code replaced by the related simulator hooks that let the user enable/disable
statistics dumping or tracing. The number of times an experiment is to be repeated can
also be specified, so that a statistically significant execution of the generated code can
be established.

All the information required to generate the IR code is defined in the module repre-
sentation. Module is a top-level container for all the functions that are specified within
it. Function specifications provide the input parameters, the data types associated with
the parameters and the return type of the function. There are three types of parameters
that could be specified; data, data pointer, and loop counter. Data declares parameters
of the specified data type to be passed as values. Data pointer, as the name suggests, is a
pointer to the input parameter type and is used in conjunction with the memory related
operations. Loop counter parameter type is used to control the looping behaviour.

The most essential part of the GLAM benchmark specification is the block specifi-
cation. Code blocks that can perform various operations can be defined within a func-
tion, and can be appended after each other making it possible to generate functions
with a high level of variety in their control flow. Each block definition can only con-
tain a single operation. These operations can be grouped as; integer arithmetic, floating

80 CHAPTER 4. GENERATOR OF LLVM ASSISTED MICROBENCHMARKS

point arithmetic, and memory operations. Arithmetic operations can be addition, sub-
traction, multiplication, and division. Memory operations are used to generate memory
accesses that hit or miss on different levels of the cache, using different strides, with or
without thrashing behaviour. The count of the instructions to be generated within the
block, and a homogeneous instruction dependency distance for these instructions can
also be specified.

Appendix B can be consulted for an exhaustive description of the GLAM key-
words.

4.1.2 Code generation

The first step of code generation is generating the related LLVM modules, functions
and blocks as empty stubs. GLAM keeps an internal representation of all the LLVM
elements in the form of wrapper functions, making it possible to map the GLAM spec-
ifications to the LLVM elements.

After this process, an entry block that is responsible for the initialisation is gener-
ated. The entry block is used to allocate space on the stack for loop counters or data
parameters passed onto the current stack frame, and generating enough instruction dis-
tance for the next blocks instruction distance requirements to be met.

Each of the generated blocks are connected to each other using unconditional
branches. All the blocks are generated based on name, instruction dependency dis-
tance, operation and instruction count properties that are provided from the GLAM
specification file. A loop flag that indicates whether looping should be implemented
within the block can be set to true if looping is required. The operation property spec-
ifies, which LLVM function to use, which boils down to the specific functional unit
usage of the current block.

The output of the code generation module consists of an assembly file per module
per architecture that conform to the initial JSON specifications provided by the user.
An example of the outputs from the generation sequence is given in Listing 4.2. A
block of 8 add instructions with an instruction dependency of 2 is specified as shown
in Listing 4.2a. An LLVM IR block is generated based on the specifications in Listing
4.2b, and it is compiled into x86-64 assembly using llc in 4.2c. The output of the same
code block for aarch64 architecture can be seen in Listing 4.2d. Then the function
in the assembly file is wrapped by a C++ source program that is tailored to call the
generated piece of code with the specified inputs. The generation of the C++ harness
will be explained in the following subsection.

4.1. GLAM: GENERATOR OF LLVM ASSISTED BENCHMARKS 81

{
” e x p e r i m e n t ” : {

”name ” : ” g l a m b a s e e x p e r i m e n t ” ,
” d e s c r ” : ” E x p e r i m e n t s f o r i n t , f l o a t , mem” ,
” r e p e a t ” : ”10” ,
” a r c h ” : [” x86−64” , ” a a r c h 6 4 ”] ,
” a r c h f i l e ” : [” xeon−e5−2670. j s o n ” , ” none ”] ,
” s i m u l a t e ” : [f a l s e , f a l s e] ,
”hwpc” : [” I n s t r u c t i o n s ” , ” Cyc l e s ” , ” L1 Access ” ,

” LLC Loads ” , ” LLC Load Miss ”] ,
” module ” : [{

”name ” : ” i a d d s a m p l e ” ,
” d e s c r ” : ” i n t e g e r a l u t e s t ” ,
” o u t p u t ” : ” o u t p u t / i n t a l u t e s t s . l l ” ,
” f u n c t i o n ” : [{

”name ” : ” i a d d 1 ” ,
” d e s c r ” : ” i a d d 1 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 1 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [”PARAM” , ” 0 ”]

}]
}]

}]
}

}

Listing 4.1: A sample microbenchmark specification

4.1.3 Execution harness generation

A C++ execution harness is automatically generated for each generated LLVM IR
module, once the module is compiled into native assembly as shown in Figure 4.2.

82 CHAPTER 4. GENERATOR OF LLVM ASSISTED MICROBENCHMARKS

” b l o c k ” : [
{

”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 2 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”8”

}]

a: GLAM Block Specification

b0 :
%15 = add i 6 4 %12, %13
%16 = add i 6 4 %13, %14
%17 = add i 6 4 %14, %15
%18 = add i 6 4 %15, %16
%19 = add i 6 4 %16, %17
%20 = add i 6 4 %17, %18
%21 = add i 6 4 %18, %19
%22 = add i 6 4 %19, %20

b: Generated LLVM IR

addq %r d i , %r a x
addq %rcx , %r d i
addq %rax , %r c x
addq %r d i , %r a x
addq %rcx , %r d i
addq %rax , %r c x
addq %r d i , %r a x
addq %rcx , %r d i

c: Generated x86-64 assembly

add x8 , x8 , x12
add x12 , x12 , x14
add x14 , x14 , x8
add x8 , x8 , x12
add x12 , x12 , x14
add x14 , x14 , x8
add x8 , x8 , x12

d: Generated ARM assembly

Listing 4.2: Code generation outputs

Each function defined within the LLVM IR module is wrapped with code for profiling
the function. The wrapper code is responsible for initialising HWPCs, and the power
measurement setup if required. The generated harness drives the execution as specified
in the GLAM specification, inserting the profiling hooks for the specified HWPCs, and
printing out the results in CSV format.

In the following section, three use cases for GLAM will be shown. The first use
case shows the execution of the benchmarks on different architectures, which are gen-
erated from the same specification. The second use case provides an example of using
GLAM to examine trade-offs between performance and power for compute bound and
memory bound workloads. The third use case is an example of how GLAM can be
used to measure Energy Per Instruction.

4.2. EVALUATION 83

Figure 4.2: GLAM Harness Generation

4.2 Evaluation

In this section three use cases for GLAM will be shown. Generation of microbench-
marks from the same specification will be presented first. This will be followed by
an analysis of performance and power on memory-bound and compute-bound mi-
crobenchmarks. Finally, a methodology to measure the EPI using GLAM will be
detailed out.

4.2.1 Comparison of microbenchmarks on different architectures

The first use case of GLAM is intended to show how a generated LLVM IR can be
used to evaluate the behaviour of ALU units in microprocessors that have different
architectural and microarchitectural configurations. For this reason, a GLAM spec-
ification was prepared to generate looped blocks of code that contains sequences of
addition and multiplication instructions (Listing B.1). A different microbenchmark is
generated for each case with instruction dependency distances ranging from one to

84 CHAPTER 4. GENERATOR OF LLVM ASSISTED MICROBENCHMARKS

eight. Then the generated LLVM IR was automatically compiled into native assembly
code for AArch64 and x86 64 architectures as specified in the GLAM specification.
The harnesses for each architecture were automatically built to read Hardware Perfor-
mance Counters (HWPC) for instructions retired, and the number of cycles for each of
the function generated.

The results for microbenchmarks generated to stress the ALU of the underlying
processor are presented in Figure 4.3.

aarch64 microbenchmarks for add and mul

IP
C

0

0.5

1

1.5

2

2.5

benchmark
iadd1 iadd2 iadd3 iadd4 iadd5 iadd6 iadd7 iadd8 imul1 imul2 imul3 imul4 imul5 imul6 imul7 imul8

(a) AArch64

x86 microbenchmarks for add and mul

IP
C

0

1

2

3

4

benchmark
iadd1 iadd2 iadd3 iadd4 iadd5 iadd6 iadd7 iadd8 imul1 imul2 imul3 imul4 imul5 imul6 imul7 imul8

(b) x86 64

Figure 4.3: Integer microbenchmarks

The results for the aarch64 architecture (Figure 4.3a) were obtained from the A57
core on an ARM Juno Development platform that contains a big.LITTLE architec-
ture with four A53 cores, and two A57 cores. The 86 64 results (Figure 4.3b) were

4.2. EVALUATION 85

Figure 4.4: EDP scaling of memory-bound vs compute-bound application

taken from a 16-core Intel Sandy Bridge Xeon E5-2690 server. The obvious differ-
ences between the execution of the same microbenchmark stem from the underlying
architectural details such as the number of functional units, and the number of cycles
a multiplication operation completes in. It can be seen from the figures that the IPC of
iadd microbenchmarks do not increase after two for the AArch64 (Figure 4.3a) as the
A57 core only has two ALUs available for integer arithmetic, whereas the Xeon core
(Figure 4.3b) has three ALUs thus an upper bound of 3 for the IPC. This subsection
has been presented to show a use-case of GLAM for comparing code for different ISAs
executing on different architectures.

4.2.2 Performance and power trade-offs

GLAM can also be used to exploit HWPCs for investigation of performance and power
trade-offs. This use case aims to look into the relation between EDP and runtime
frequency for compute bound and memory bound applications. Figure 4.4 shows
the energy delay product (EDP) of three classes of applications running on an Intel
Sandy Bridge Xeon E5-2690; memory-bound, compute-bound, and compute-bound

86 CHAPTER 4. GENERATOR OF LLVM ASSISTED MICROBENCHMARKS

with front-end disabled. The memory-bound workload is a load stream designed to
miss on LLC with each load instruction, whereas the compute-bound workloads are
different versions of the same ALU instruction stream, similar to the experiment de-
scribed in the previous subsection, where no instruction dependencies exist. The back-
end only version takes advantage of the loop stream detector (LSD) within the Sandy
Bridge microarchitecture in order to shut down the frontend (fetch and decode) while
executing small loops [DHJS10]. These two-cases show the extreme ends of the pro-
gram phase spectrum from the perspective of the processor core. Every other possible
program phase lies within these two extremes, and can be classified based on where
they stand in the spectrum. The interesting point here is that memory-bound program
phases do not require the core to run at the highest frequency, as most of the work
is actually being done by the memory system, outside of the core. Contrary to this,
the best EDP for compute-bound program phases requires the program to run on the
highest frequency available.

Figure 4.5: Effect of memory latency

Figure 4.5 shows how the average load instructions executed per cycle for a loop of

4.2. EVALUATION 87

load instructions with a streaming behaviour vary based on the size of the input data.
It can be observed from the figure that as the data size increases the number of loads
committed per cycle decreases. This is solely due to the increase in time it takes for
a memory access to be filled as the data block accessed by the loop cease to fit in a
higher level of the memory hierarchy as data size increase.

Be
st

 E
D

P

1200000
1300000
1400000
1500000
1600000
1700000
1800000
1900000
2000000
2100000
2200000
2300000
2400000
2500000
2600000
2700000

Data Size
1024 114688 786432 1605632 2424832 3244032 4063232 4882432 5701632

Figure 4.6: Best EDP based on frequency selection

Figure 4.6 shows the running frequency that provides the best EDP for the afore-
mentioned looping load stream routine. From the figure, it is evident that the best EDP
is the lowest frequency when the size of the input data is larger than the last level cache
size of the processor, that is 20 MBs in this case. The GLAM specification file used
in this subsection for the memory-bound microbenchmark is provided in Listing B.2,
whereas the compute-bound specification is given in Listing B.1.

4.2.3 Measuring Energy Per Instruction

Energy per instruction (EPI) is a metric used to indicate the dynamic power consump-
tion of a single instruction throughout the execution. It is possible to use GLAM to

88 CHAPTER 4. GENERATOR OF LLVM ASSISTED MICROBENCHMARKS

Table 4.1: Energy Per Instruction Measurements

PPPPPPPPPCore
Instr. Integer

add
Int
multiply

Single-FP
add

Single-FP
multiply

Double-FP
add

Double-FP
multiply

A53 73pJ 100pJ 86pJ 81pJ 121pJ 380pJ
A57 249pJ 545pJ 351pJ 358pJ 485pJ 820pJ
Xeon i7-4770 1206pJ 3494pJ 5344pJ 6492pJ 6708pJ 10924pJ

measure the EPI in an architecture independent manner. In this subsection, a method-
ology for measuring EPI using GLAM on different architectures will be shown. The
total energy consumption for a processor can be decomposed into idle and dynamic
factors (Equation 4.1). The idle power amounts to the static energy, also called leak-
age. Eidle is the constant energy consumed to retain the transistor supply voltage. The
dynamic power, given by Edynamic, is the energy consumed while there is switching
activity in the processor blocks that are being utilised.

Etotal = Eidle +Edynamic (4.1)

In order to measure the EPI, the average idle power dissipation when the processor
is not doing any work is firstly measured. After the idle power is measured, sequences
of instructions for the type of instruction to be measured is generated. For this purpose
functions that consist of looped sequences of 1024 instructions (Ninstructions) for integer
add, integer mul, single-precision floating point add, single-precision floating point
mul, double-precision floating point add, and double-precision floating point mul are
generated. The instruction dependency distance has been set to four in order to fill
all of the available functional units (NFU) for the instruction being measured. After
the execution of the generated instruction sequences, EPI can then be calculated as in
Equation 4.2:

Einstruction =
Etotal−Eidle

NFU ×Ninstructions
(4.2)

The EPI results for measurements taken on an ARM Juno Development platform
and an Intel Xeon E5-2670 processor are provided in Table 4.1. The methodology
used for the EPI measurements have been explained in Chapter 3 (Figure 3.10). The
numbers given in Table 4.1 reflect a single execution of the experiment since variation
from execution-to-execution was observed to be negligible.

Juno platform is a big.LITTLE architecture with four A53 cores, and two A57

4.3. CONCLUSION 89

cores. The idle power was measured beforehand with DVFS disabled in order to pre-
vent fluctuations in energy consumption that might be caused by changes in voltage and
frequency. A53 cluster frequency was set to 850MHz, which is the maximum available
frequency for the little cluster. A57 cluster frequency was set to 1.1GHz, again being
the maximum available frequency for the big cluster. Idle energy consumption over a
period of one second for the A53 cluster has been measured as 0.124J, and 0.19J for
the A57 cluster. Each microbenchmark was pinned to a single A53, and A57 core in
separate executions and the execution energy was measured over each run.

Intel Xeon E5-2670 is a high-end server processor with eight cores. The idle en-
ergy over a second was measured to be 0.75J. The measurements were obtained using
the on-chip RAPL counters with DVFS and hyperthreading disabled, and the core fre-
quency set to 2.4GHz.

4.3 Conclusion

GLAM has been introduced in this chapter as a way of generating michrobenchmarks
for an intermediate representation that provides enough proximity to machine language
semantics while also retaining the portability offered by being a high-level abstraction.
Three use-cases for GLAM were provided, and another use-case where GLAM gen-
erated microbenchmarks are used for faster architectural evaluation on simulators will
be shown in Chapter 5. In the next chapter Cyclic Power Gating will be introduced as
a novel method of power management in out-of-order microprocessors. The tool is set
to be released with an open source licence in 2018.

Chapter 5

Cyclic Power Gating

The increase in power dissipation per chip area caused by Moore’s law providing
denser chips combined with the end of Dennard scaling can lead to the under-utilisation
of available transistors within a chip [HGV+06, EBA+11]. It became evident that it
might not be possible to operate these transistors at a high frequency as this mode
of operation required higher supply voltages. But having densely packed chips with
transistors supplied at higher voltages causes thermal problems, that in turn lead to re-
liability problems. Since thermal issues are rooted in increased power density, power
efficiency has become a first order design constraint.

This has steered researchers in the domain of computer architecture towards in-
troducing power management techniques at different granularities to overcome power
density-related problems. Initially this led to the rise of symmetrical multi-core and
symmetrical multi-threaded designs [BDM09]. After the realisation that the scaling
of symmetric multi-core systems would come to a halt due to limiting issues such as
cache coherence, power dissipation, and memory wall, different multi-core designs be-
gan to emerge [EBA+11]. General Purpose GPU (GPGPU) systems tried to tackle the
memory wall problem by introducing a many-thread architecture through smaller but
faster memory hierarchy designs. On the other hand, asymmetric multi-core proces-
sors [Gre11] started to emerge, driven by the application requirements for smartphones
in particular.

There have also been propositions to tackle this problem using circuit level tech-
niques that are independent of architecture and topology, such as Voltage and Fre-
quency Scaling (VFS) and power gating.

Voltage and Frequency Scaling (VFS) works by scaling the supply voltage and the
operating frequency of the core in parallel. Dynamic Voltage and Frequency (DVFS)

90

91

is a technique to drive VFS either through a software, or hardware interface. DVFS
can provide significant energy savings when computation requirements for an applica-
tion are not intense [SKK11]. As discussed in Chapter 2, voltage and frequency are
dependent on each other, and that the maximum frequency that a circuit can run at is
decreased when voltage is lowered. There are two main issues concerning the usabil-
ity of DVFS in future technologies. Firstly, the contribution of static power to the total
power consumption is becoming important due to the increasing transistor densities as
described in the first paragraph of this chapter. Secondly, process variability in sub
65nm nodes [HW04], and transistor wear-out results in variation in the threshold volt-
age of transistors [Bor05] and this affects the operational range of DVFS. It has been
suggested that there would be a standard deviation of approximately 33% in threshold
voltages of the mean threshold voltage [MSZ+11].

Power gating works by cutting off the supply voltage to a circuit block, such as the
whole core or a microarchitectural block such as the register file [HBS+04, RRK11].
Although power gating is a feasible way of decreasing static power dissipation, it is
mainly applicable at times when a circuit block is detected to be idle.

When a system is power gated all internal state is lost. Therefore, power-gating
is conventionally applied once a core is detected to be idle, when the core frontend
is shut off and all the instructions in-flight are committed. There are several different
methods to preserve the state of the core making it possible to power-gate while the
core is active.

There have been alternative proposals to exploit power-gating by injecting idle-
cycles from the software layer, thus driving the core into an idle state to achieve thermal
control over the system [SMC+13]. The shortcoming of this approach is the need to
switch contexts for the control algorithm to work and issue idle cycles, which amounts
to a granularity of tens of milliseconds.

State-retentive power-gating is an approach that can be used as a means of achiev-
ing finer granularity, at the expense of leakage savings. This is due to the introduction
of extra state-retentive logic into the circuit. State-retentive power-gating on a pro-
cessor core enables the power-gating of circuit blocks within the core by saving the
run-time state of the power-gated circuit block to state-retentive registers. This enables
the processor to be power-gated regardless of whether the processor is idle or not.
Since the run-time state is stored closer to the processor, the wake-up time incurred by
state-retention is lesser compared to conventional power gating.

In this chapter an aggressive form of state retentive power gating, called Cyclic

92 CHAPTER 5. CYCLIC POWER GATING

Figure 5.1: Block Diagram of a System-on-Chip with a CPG Controller.

Power Gating (CPG) is proposed, and evaluated. CPG power-gates the core on and
off over an adjustable period whilst retaining the run-time state of the core for faster
wake-up and sleep time transitions. In designs where VFS is not available, CPG can
be utilised as an alternative to DVFS with lesser static power dissipation and finer-
granularity for switching frequencies. The effective frequency of a processor can be
set by changing the off rate, which is the ratio of off and on periods within a single
power-gating period. A comparison of temporally equivalent nodes to a VFS config-
uration has been included in the evaluation section of this section in order to show
the feasibility of the idea. CPG can also be employed alongside VFS since there are
no technical limitations that would prevent those two approaches operating together,
possibly leading to higher power savings, although this is out of scope regarding this
dissertation. A state-retentive power-gating method, that is able to save and restore the
processor state during sleep and wake-up periods, is employed in order to minimise
the performance impact of power-gating. A controller that drives the CPG needs to be
implemented in the core, in order to provide higher responsiveness. Figure 5.1 shows
how the CPG controller fits in a System-on-Chip (SoC) architecture.

CPG operates as shown in Figure 5.2. It works by power-gating the core on (re-
taining voltage supply to the virtual voltage domain) and off (by cutting off the voltage

93

Figure 5.2: Cyclic Power Gating.

to the virtual voltage domain), effectively changing the operating frequency while the
supply voltage and clock frequency is constant. A more detailed description of this
figure is given in Section 5.2.

The effective operating frequency of the core is given by the ratio of on cycles and
the sum of on and off cycles throughout the fixed period, TCPG. This can be calculated
using Equation 5.1.

CPGduty cycle =
TCPG−Toff

TCPG
(5.1)

Toff is defined as the number of off cycles within TCPG. A timer block in the CPG
controller counts the off cycles given by Toff , and this count is reinitialised when a
new CPG period begins. This makes it possible to change the duty-cycle (i.e. the
effective core frequency), between any two CPG cycles without incurring any extra
overheads other than the sleep and wake-up processes. The duty-cycle can theoretically
be assigned any value between [0 : 1]. This means that the effective frequency of the
core can be scaled to any value that is lower than the operating frequency. This provides
greater flexibility in scaling the frequency than DVFS where the number of possible
voltage and frequency pairs for a given technology node is limited.

Throughout the rest of this chapter, the CPG architecture is presented in detail,

94 CHAPTER 5. CYCLIC POWER GATING

providing an evaluation of the overheads incurred, and providing results for the evalu-
ation of how it compares with VFS. The detailed evaluation of the overheads provides
the identification of a break-even time, that is the minimum number of cycles to sleep
for which the state-retentive power-gating methodology applied consumes the same
amount of energy as it saves.

5.1 State-Retentive architecture

The state-retentive power-gating design that is employed in the proposed Cyclic Power
Gating (CPG) architecture is presented in this section.

The block diagram for the state-retentive architecture is given in Figure 5.3. All
of the memory structures within the architecture are implemented using SRAM cells,
with the exception of pipeline registers that are implemented as D-type Flip Flops
(DFF). The cell-array of each SRAM is connected to a data-retention voltage supply
that retains the power supply during the sleep periods of the core. Elements that are
part of the memory hierarchy, L1 caches, and the TLBs, are not power-gated to allow
outstanding memory requests to be completed while the core is sleeping. This enables
the exploration of memory access latency-induced pipeline stalls for saving energy.
There is also additional overhead incurred for clamping and retaining data and initial-
ising the latches and clocks [JKK+12]. The modelling parameters will be provided in
detail in the experimental methodology section.

5.2 Power-Gating overheads

The sleep and waking-up processes do not occur instantly, as can be seen from Figure
5.2 for the Tsleep and Twakeup periods. This means that power is still dissipated during
these periods, which can lead to power-inefficient execution for cases where the power
dissipated during sleep and wake-up phases is greater than the power saved during the
rest of the CPG cycle. Power-gating overheads during Tsleep and Twakeup are caused by
the charging and discharging of the Power Delivery Network (PDN).

Figure 5.4 shows how the power-gated sections are connected to a virtual power
supply, Vvirt, which is connected to Vdd through header switches. The header switches
are turned off once the core is power-gated, causing the energy stored in the PDN to
be discharged through the leakage current of the transistors. When the header switches
are back on, the core wakes up, the PDN is recharged and Vvirt is connected back to

5.2. POWER-GATING OVERHEADS 95

Figure 5.3: State-retentive Architecture

Vdd. The time and energy required to transition Vvirt from zero to Vdd is determined
by CD, which consists of the capacitances of the transistors connected to the power
supply Cs, the capacitances of the header switches Ch and the power supply decoupling
capacitance Cd. The energy that is consumed to charge Vvirt is given by Equation 5.2:

Echarge =
1
2

CDV 2. (5.2)

In-rush current is the current that flows through a circuit when the circuit is first

96 CHAPTER 5. CYCLIC POWER GATING

Figure 5.4: State-retentive Power Gating

powered on, and is larger than the steady state current. A high in-rush current during
the waking up of the core can result in voltage droop, which may lead to potentially
erroneous behaviour. The header switches shown in Figure 5.4 are partitioned into two
groups (header[0] and header[1]) and activated sequentially to prevent possible faults
from a large in-rush current. The number of headers in header[0] has been chosen so
that the limited in-rush current drawn does not exceed the current limit (IT DP) bound
by the Thermal Design Power (TDP) as described in [JKK+12].

With the limited current, the time taken to charge the PDN is as given in Equation
5.3:

Tcharge =
CDV
IT DP

. (5.3)

The header switches in header[1] are turned on as soon as Vvirt is charged to 90% of
Vdd. The total time it takes for the charging process to complete is given by Twakeup =

2×Tcharge.

The overheads of power-gating have been examined through a state-retentive ar-
chitecture model generated using the McPAT power estimation tool [LAS+09]. The
McPAT power modelling tool has been modified to sum up all the capacitances inside
the circuit in order to estimate CD, using the assumptions as explained in [HBS+04]
where Ch = 0.1Cs and CD = 0.2Cs. ITDP has been obtained from the TDP calculation
performed by McPAT.

5.2. POWER-GATING OVERHEADS 97

In-rush currents might also cause voltage noise events that might potentially harm
the circuit. It has been ensured using the Voltspot PDN modelling tool [ZWM+14] that
the calculated power-gating in-rush currents do not cause any voltage noise greater than
the safe margins, set around 5% of Vdd.

When CD is discharged, the core is in a steady power-gated state. The only power
dissipated at this point is due to the leakage current of the state-retentive SRAM com-
ponents. To calculate the leakage for state-retentive elements, leakage currents of the
state-retentive cell arrays for each SRAM component have been decoupled from the
rest of the leakage of the core within McPAT. It is possible to calculate the energy
consumed during the power-gated state using these decoupled values of capacitance,
leakage, and TDP current.

A key value is the break-even time, Tbe, which is the time below which power-
gating consumes more energy than it saves. A simplified estimate of break-even time
can be calculated in terms of cycles of the CPU running at nominal frequency by using
the per-cycle TDP energy:

Ec =
T DP
fmax

(5.4)

The energy saved while the CPU is power-gated is related to the ratio of current while
the CPU is active (IT DP), to state retention leakage (Ipg

o f f). Therefore, the number of
cycles the CPU needs to be power-gated to offset power-gating overhead is:

ce = (
Ewakeup

Ec
+ coverhead)∗

IT DP

(IT DP− Ipg
o f f)

(5.5)

where coverhead is the number of cycles for draining/filling and initialization:

coverhead = (Tprep +Tinit)∗ fmax (5.6)

The actual time taken to perform the power-gating operation is:

cpg = coverhead +Twakeup fmax (5.7)

where fmax is the nominal clock-frequency. The break-even time is therefore:

cbe = ce + cpg (5.8)

For the target architecture presented in this section this value is ∼50 cycles (22ns).

98 CHAPTER 5. CYCLIC POWER GATING

5.3 CPG Power and Evaluation Strategy

Power dissipation of the CPG scheme is given by Equation 5.9:

P = Pon ∗duty cycle+(Poff ∗ (1−duty cycle))+
Epg

TCPG
. (5.9)

It can be seen that the power dissipation is inversely proportional to TCPG, which
is the period for a single on-off phase. This is due to the power gating overhead given
by Epg being constant for a single on-off phase, as the core sleeps and wakes up only
once. The power dissipated while the core is awake is given by Pon, whereas the
sleeping power dissipation is given by Poff . The overheads incurred by Epg includes
overheads for pipeline filling and draining along with initialisation. Since the caches
are not power-gated during the period the core sleeps, their contribution to the overall
power dissipation is not tied to CPG. These aspects will be inspected in the analysis
for the memory-bound workload in the evaluation section.

An initial evaluation of CPG is done by executing two microbenchmarks that rep-
resent the extreme ends of the application phase spectrum. Instruction dependency

distance is the distance between the first read of the register that a previous instruction
has written to. The compute bound microbenchmark is a series of Arithmetic Logic
Unit (ALU) adds with an instruction dependency distance of four that accesses the L1
data cache at a rate of 0.05 per instruction. The choice of a dependency distance higher
than the integer ALU issue width of the processor was made in order to minimise inter-
instruction dependencies which would lead to a slowdown in execution. The memory
bound instruction consists of a sequence of load instructions that are looped over, and
it generates an LLC miss rate of 0.78 per instruction. The details of the microbench-
marks will be provided along with how they execute with the CPG scheme will be
provided in the following subsections.

5.4 Experimental methodology

To investigate CPG, a simulator platform consisting of gem5 simulator modified to
execute periodic calculations for power and temperature using McPAT and Hotspot
was built. The cycle-accurate gem5 [BBB+11] was used since an implementation of
the CPG scheme affects the timing behaviour of the system.

The event-driven architecture of the gem5 makes it possible to implement new sim-
ulation objects that can issue events into the system event queue, and take action when

5.4. EXPERIMENTAL METHODOLOGY 99

events are triggered. CPG events were implemented by making use of the gem5 events
system. CPG events schedule core sleep and wake-up events based on the CPG pe-
riod and off rate parameters that are provided at simulation configuration time. One
problem this approach causes is in interrupt handling. A received interrupt needs to be
reposted if it was received while the core is asleep. This functionality has been imple-
mented in order to avoid deadlocks, and erroneous behaviour that might be caused by
the missing of an interrupt by the operating system.

The simulation tool flow is given in Figure 5.5. A CPU similar to the ARM A57
at a 14-nm technology node was modelled. The simulation parameters can be seen
in Table 5.1. Chapter 3 can be consulted for a detailed description of the simulation
infrastructure.

Figure 5.5: Tool flow used for simulations.

Section 5.4 presented the experimental methodology used to evaluate the material
presented in this Chapter. The evaluation of the CPG scheme for memory-bound and
compute-bound workloads will be presented in Section 5.5. The applicability of the
scheme will be shown by evaluating it on two microbenchmarks generated using the
Generator of LLVM Microbenchmarks (GLAM) tool presented in Chapter 4. This will
be followed by a comparison of CPG with VFS for SPEC CPU2006 benchmarks in
Section 5.6. Section 5.7 will present how CPG can be applied at a program function
granularity, and the chapter will be concluded.

100 CHAPTER 5. CYCLIC POWER GATING

Table 5.1: Simulation parameters

Parameter Configuration

Architectural Parameters

Processor ARMv8

Machine width 3-wide (issue upto 8 uops)

L1 instruction cache 48KB 3-Way Set-Associative

L1 data cache 32KB 2-Way Set-Associative

L2 private cache 512KB 16-Way Set-Associative

L3 shared cache 8MB 16-Way Set-Associative

Memory Size 8GB

Physical Register File 128-Entry Integer, 192-Entry Float

Load/Store Queue 16-Entry

Reorder buffer 40-Entry

Issue Queue 32-Entry

Physical Parameters

Area 2.2mm2

TDP 3W

CD 17.3nF

Wake-up Energy 7.98nJ

Wake-up Time 5.27ns

Sleep Time 8.3ns

Break-Even Time 20.7ns

Voltages (V) 1.00 0.96 0.92 0.88 0.84 0.80

Frequencies (GHz) 2.00 1.74 1.50 1.26 1.00 0.73

Equivalent off rate 0.0 0.13 0.25 0.37 0.50 0.63

5.5 Evaluation

This section will provide an evaluation of the CPG scheme by investigating how it
performs when executing programs with differing amount of time spent on core. This
evaluation is made on the premise that the benefit of CPG is inversely proportional
with the time of execution spent in-core, meaning that CPG will prove beneficial for

5.5. EVALUATION 101

memory-bound workloads.

5.5.1 Compute bound evaluation

The compute bound microbenchmark is a loop containing 16 add instructions, with
an instruction dependency distance of four, that operate on 64-bit registers with their
values stored in the processor registers at all times. The number of instructions were
chosen in order to minimise the contribution of data cache misses that are introduced
from the execution of the loop. The only data cache accesses that are made during the
execution is for the loop counters since they are stack-allocated. An instruction depen-
dency distance of four was chosen to generate highly instruction level parallel code to
ensure a high utilisation of the out-of-order core being simulated. The benchmark is
executed until the CPU commits 4.75 billion instructions after a 250 million warm-up
window. The number of committed instructions have been selected arbitrarily, and a
change in this parameter would not lead to any changes in results since the executed
code is homogeneous. The execution of the application is compared with nominal
CPU operation at 2GHz and CPG periods of 100, 200, 300, 400, and 500 nanoseconds
with off rates of 10%, 20%, 30%, 40%, 50%. Each bar in the x-axis represents an
execution of the compute-bound benchmark with each x-axis label indicating the CPG
period, and the off cycle percentage. For example, 500 30 represents the execution of
the benchmark with a CPG period of 500 nanoseconds, and the ratio of the off period
to the on period as 30% (i.e. on rate of 70%, or an off period of 150 nanoseconds).

Performance results can be seen in Figure 5.6. Each bar in the figure represents the
time in seconds that it takes for the microbenchmark to complete its execution. Nom-
inal operation where CPG is not applied is indicated by the noCPG bar. The fastest
and most energy efficient way of completing a compute-bound benchmark is through
race-to-idle, where a task is executed at the highest available frequency and without
any interruptions [AA14]. Since all the work required for the application execution
occurs on the core, the execution time increases monotonically as the core is throttled
down more aggressively (i.e. a higher off rate). Comparison of energy consumption
for the CPG scheme with various throttling and periods against noCPG is given in
Figure 5.7. The plots show a monotonically increasing trend, which is linked to the
explanation for performance. The difference in energy added on top of the noCPG
execution is the sum of static power and the dynamic overhead of switching that was
dissipated during the times that the core was power-gated. The energy overhead shown
in the figure matches with the race-to-idle explanation given. Since temperature is a

102 CHAPTER 5. CYCLIC POWER GATING

no
CP

G
10

0-
10

10
0-

20
10

0-
30

10
0-

40
10

0-
50

20
0-

10
20

0-
20

20
0-

30
20

0-
40

20
0-

50
30

0-
10

30
0-

20
30

0-
30

30
0-

40
30

0-
50

40
0-

10
40

0-
20

40
0-

30
40

0-
40

40
0-

50
50

0-
10

50
0-

20
50

0-
30

50
0-

40
50

0-
50

CPG Period(ns) - Off rate(%)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ti
m

e(
s)

Compute Bound Microbenchmark

Figure 5.6: Execution Time for a Compute Bound Microbenchmark.

function of average power, the outcome of consuming less power as off-rate increases
(Figure 5.8) is a lower final temperature as shown in Figure 5.9. Although a reduction
in power do not directly result in energy-efficiency, the technique might provide useful
in controlling temperature for cooling purposes when the thermal design power (TDP)
limit of the processor has been reached.

5.5. EVALUATION 103

no
CP

G
10

0-
10

10
0-

20
10

0-
30

10
0-

40
10

0-
50

20
0-

10
20

0-
20

20
0-

30
20

0-
40

20
0-

50
30

0-
10

30
0-

20
30

0-
30

30
0-

40
30

0-
50

40
0-

10
40

0-
20

40
0-

30
40

0-
40

40
0-

50
50

0-
10

50
0-

20
50

0-
30

50
0-

40
50

0-
50

CPG Period(ns) - Off rate(%)

1.6

1.8

2.0

2.2

2.4

To
ta

l E
ne

rg
y(

J)

Compute Bound Microbenchmark

Figure 5.7: Total Energy for a Compute Bound Microbenchmark.

104 CHAPTER 5. CYCLIC POWER GATING

Figure 5.8: Average Power for a Compute Bound Microbenchmark.

5.5. EVALUATION 105

no
CP

G
10

0-
10

10
0-

20
10

0-
30

10
0-

40
10

0-
50

20
0-

10
20

0-
20

20
0-

30
20

0-
40

20
0-

50
30

0-
10

30
0-

20
30

0-
30

30
0-

40
30

0-
50

40
0-

10
40

0-
20

40
0-

30
40

0-
40

40
0-

50
50

0-
10

50
0-

20
50

0-
30

50
0-

40
50

0-
50

CPG Period(ns) - Off rate(%)

50

52

54

56

58

60

62

64

Te
m

pe
ra

tu
re

(C
el

siu
s)

Compute Bound Microbenchmark

Figure 5.9: Final Temperature for a Compute Bound Microbenchmark.

For compute bound executions, the performance of throttled cores running under
CPG is always worse than nominal operation and therefore the power reductions do not
lead to EDP savings (Figure 5.10). To conclude, compute bound workloads are highly
sensitive to interruptions in execution resulting in reduced performance and energy
efficiency. In this scenario CPG may still provide fine-grained temperature control,
which may prove its utility in thermal control, and reliability issues.

5.5.2 Memory bound evaluation

The memory bound microbenchmark is a loop containing 32 load instructions that op-
erate on 64-bit registers. The addresses that the data are loaded from are incremented in
64 byte increments causing each load instruction to miss in LLC cache, and the overall
miss rate per instruction is 0.78%. Overall miss rate is decreased due to the existence
of loop counters that are stack allocated. The choice of 32 load instructions have been
made in order to counter this. The microbenchmark has an IPC of 0.02, making it
represent a case of a memory-bound program phase. The benchmark is executed until
52 million instructions are committed by the core. The execution of the application is
compared at CPG periods of 100, 125, 150, 175, and 200 nanoseconds that are power-
gated 10%, 20%, 30%, 40%, and 50% of the time, against a 2GHz (noCPG) frequency

106 CHAPTER 5. CYCLIC POWER GATING

no
CP

G
10

0-
10

10
0-

20
10

0-
30

10
0-

40
10

0-
50

20
0-

10
20

0-
20

20
0-

30
20

0-
40

20
0-

50
30

0-
10

30
0-

20
30

0-
30

30
0-

40
30

0-
50

40
0-

10
40

0-
20

40
0-

30
40

0-
40

40
0-

50
50

0-
10

50
0-

20
50

0-
30

50
0-

40
50

0-
50

CPG Period(ns) - Off rate(%)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 E
DP

(lo
we

r i
s b

et
te

r)
Compute Bound Microbenchmark

Figure 5.10: EDP for a Compute Bound Microbenchmark.

execution that is not throttled. Smaller increments in period selection have been se-
lected for memory bound evaluation as having high stall periods greater than L3 miss
periods would lead to unneccessary power-gating of the core.

As previously stated, the executing code is looping over a block of independent
load instructions. The order of execution can be simplified as a cycle of fetch from
predicted branch and load. Since the loop counter is not dependent on the load instruc-
tions, the loop execution can progress independent of the load instructions. Given a
reorder buffer, and reservation stations of unlimited size, this could go on indefinitely
in the presence of a branch predictor. Because the load instructions have a long latency
to reach the commit stage, any instructions that are executed out-of-order are squashed
and re-fetched. This is known as a replay trap [ERB+95]. Performance results for
the memory bound microbenchmark are given in Figure 5.11. Each bar in the figure
represents the time in seconds that it takes for the microbenchmark to complete its
execution. A monotonic trend is observed although the differences on the lower CPG
periods are negligible. There are two factors contributing to the slowdown; serialisa-
tion of load instructions, and stalling of the fetch stage during off periods. Stalling
of the fetch stage does not affect execution as much as it does in the compute-bound
workload, as there are always long-latency requests that are continuing while the core

5.5. EVALUATION 107

no
CP

G
10

0
10

10
0

20
10

0
30

10
0

40
10

0
50

12
5

10
12

5
20

12
5

30
12

5
40

12
5

50
15

0
10

15
0

20
15

0
30

15
0

40
15

0
50

17
5

10
17

5
20

17
5

30
17

5
40

17
5

50
20

0
10

20
0

20
20

0
30

20
0

40
20

0
50

CPG Period(ns) - Off rate(%)

1.2

1.4

1.6

1.8

2.0
Ti

m
e(

s)

Memory Bound Microbenchmark

Figure 5.11: Execution Time for a Memory Bound Microbenchmark.

is asleep. Memory requests can be handled in parallel, but the power-gating prevents
new requests being issued, resulting in unnecessary delays in starting memory oper-
ations. One possible solution to this is equipping the CPG controller with a decision
mechanism on when to sleep in the presence of memory instructions.

The CPG scheme has advantage in terms of energy efficiency when the execution
is memory-bound. This is reflected in Figure 5.12, where all off rates with all the CPG
periods have lower energy footprints compared to nominal execution. This is because
most of the execution time of the microbenchmark is spent on the memory system.
Contrary to the compute bound results, the plots show a monotonically decreasing
trend for values of CPG periods of 125ns and 100ns. Delaying of the instruction fetch-
ing due to throttling has an advantage, but once the reorder buffer is full, while there
is room for execution, it starts creating inefficiencies in the pipeline. There is also the
effect on delaying the issuing of new load requests due to the forced backend stalls es-
pecially in the CPG instances with higher periods. Average static power monotonically
decreases in a consistent manner as shown in Figure 5.13. Although average power,
and average static power (Figure 5.14) are much lower in most instances, the reduction
in performance affects execution time leading to discrepancies in overall energy. All of
the CPG instances have lower energy consumption compared to the nominal operation.

108 CHAPTER 5. CYCLIC POWER GATING

no
CP

G
10

0
10

10
0

20
10

0
30

10
0

40
10

0
50

12
5

10
12

5
20

12
5

30
12

5
40

12
5

50
15

0
10

15
0

20
15

0
30

15
0

40
15

0
50

17
5

10
17

5
20

17
5

30
17

5
40

17
5

50
20

0
10

20
0

20
20

0
30

20
0

40
20

0
50

CPG Period(ns) - Off rate(%)

1.5

2.0

2.5

3.0

To
ta

l E
ne

rg
y(

J)
Memory Bound Microbenchmark

Figure 5.12: Total Energy for a Memory Bound Microbenchmark.

Figure 5.13: Average Power for a Memory Bound Microbenchmark.

Final temperatures are similar to that of compute-bound microbenchmark executions,
again showing CPGs utility in temperature control. The plots for final temperatures

5.5. EVALUATION 109

no
CP

G
10

0
10

10
0

20
10

0
30

10
0

40
10

0
50

12
5

10
12

5
20

12
5

30
12

5
40

12
5

50
15

0
10

15
0

20
15

0
30

15
0

40
15

0
50

17
5

10
17

5
20

17
5

30
17

5
40

17
5

50
20

0
10

20
0

20
20

0
30

20
0

40
20

0
50

CPG Period(ns) - Off rate(%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

St
at

ic
Po

we
r(W

)

Memory Bound Microbenchmark

Figure 5.14: Average Static Power for a Memory Bound Microbenchmark.

no
CP

G
10

0
10

10
0

20
10

0
30

10
0

40
10

0
50

12
5

10
12

5
20

12
5

30
12

5
40

12
5

50
15

0
10

15
0

20
15

0
30

15
0

40
15

0
50

17
5

10
17

5
20

17
5

30
17

5
40

17
5

50
20

0
10

20
0

20
20

0
30

20
0

40
20

0
50

CPG Period(ns) - Off rate(%)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

St
at

ic
En

er
gy

(J)

Memory Bound Microbenchmark

Figure 5.15: Static Energy for a Memory Bound Microbenchmark.

are given in Figure 5.16, and they show a monotonically decreasing trend that is con-
sistent with the trend in average power dissipation. Temperature being a function of

110 CHAPTER 5. CYCLIC POWER GATING

average power, applying CPG in a memory-bound phase shows that thermal control
may be achieved while not affecting the performance. This is due to the loosened re-
quirements for core-bound computation, since most of the work is being done in the
memory system. Applying CPG in a memory-bound phase is useful in where energy
can be saved with negligible performance degradation, with the added advantage of
lower thermal dissipation.

Finally, the EDP results are given in Figure 5.17. It is clear from the plots that
they do not show a clear pattern for CPG periods higher than 125, which is a result
of the previously explained interactions between the front-end and the back-end of
the pipeline. For lower CPG periods, it is possible to achieve better EDP than nominal
execution (noCPG), which shows that applying CPG on memory-bound workloads can
be beneficial in terms of energy savings with minimal degradation in performance.

no
CP

G
10

0
10

10
0

20
10

0
30

10
0

40
10

0
50

12
5

10
12

5
20

12
5

30
12

5
40

12
5

50
15

0
10

15
0

20
15

0
30

15
0

40
15

0
50

17
5

10
17

5
20

17
5

30
17

5
40

17
5

50
20

0
10

20
0

20
20

0
30

20
0

40
20

0
50

CPG Period(ns) - Off rate(%)

50

55

60

65

Te
m

pe
ra

tu
re

(C
el

siu
s)

Memory Bound Microbenchmark

Figure 5.16: Final Temperature for a Memory Bound Microbenchmark.

5.5.3 An analysis of CPG for varying levels of memory intensity

Figure 5.18 shows the optimal EDP gains that can be achieved for program phases
that lie in between the compute-bound and memory-bound microbenchmarks that have

5.5. EVALUATION 111

no
CP

G
10

0
10

10
0

20
10

0
30

10
0

40
10

0
50

12
5

10
12

5
20

12
5

30
12

5
40

12
5

50
15

0
10

15
0

20
15

0
30

15
0

40
15

0
50

17
5

10
17

5
20

17
5

30
17

5
40

17
5

50
20

0
10

20
0

20
20

0
30

20
0

40
20

0
50

CPG Period(ns) - Off rate(%)

1

2

3

4

5

6

 E
DP

(lo
we

r i
s b

et
te

r)

Memory Bound Microbenchmark

Figure 5.17: EDP for a Memory Bound Microbenchmark.

been presented in the previous subsections. Last Level Cache Misses Per Kilo Instruc-
tions (LLCMPK) is a metric that can be used to denote the memory intensity of a
program. Microbenchmarks with LLCMPK values of 1, 5, 10, 25, 50, and 100 have
been created using the GLAM tool described in Chapter 4. These microbenchmarks
have been executed with CPG periods 100, 125, 150, 175, 200 and with off periods of
10%, 20%, 30%, 40%, 50%. Each bar in the figure represents the lowest EDP obtained
from the results of these executions normalised against nominal operation. It can be
seen from the figure that EDP is improved in all instances except LLCMPK 1, which
can be classified as compute-bound.

In the next section a comparison of CPG will be made to show how it evaluates
against VFS. Although these schemes can be used together, CPG might prove useful
in cases where per-core on-chip voltage regulators are not feasible on chips, or with
low-voltage devices where there is no possible means of having multiple voltage and
frequency pairs due to lack of enough difference between nominal and threshold volt-
ages.

112 CHAPTER 5. CYCLIC POWER GATING

0

1.1

LL
C
M
PK

_1

LL
C
M
PK

_5

LL
C
M
PK

_1
0

LL
C
M
PK

_2
5

LL
C
M
PK

_5
0

LL
C
M
PK

_1
00

0.840.872
0.9150.9320.912

1.0351

Figure 5.18: EDP winners of CPG executions accross benchmarks with differing LL-
CMPK.

5.6 Comparison with VFS

A comparison of VFS and CPG in terms of performance, power and energy-delay-
product (EDP) is presented in this section. These two power management approaches
were compared for benchmarks from the SPEC CPU2006 benchmark suite [Hen06b].

SPEC CPU2006 benchmarks has a wide range of application profile such as mem-
ory intensive graph traversals, core-bound computation, and irregular branching be-
haviour. The descriptions of the benchmarks are given in Table 5.2. Each benchmark
has been executed until five billion instructions are committed by the CPU. Extremely
memory-bound application behaviour is covered by the mcf, omnetpp, libquantum, and
GemsFDTD benchmarks. For example, the mcf benchmark has forty-eight last level
cache misses per kilo instructions and an IPC of 0.10. From the selected benchmarks
hmmer, gobmk, h264ref, tonto, and soplex represents compute-bound applications. As
an example hmmer and gobmk has IPCs of 2.7, and 1.2 respectively. Although their
IPCs differ, these two benchmarks have similar L1 data cache (dcache) access rates at
about approximately 0.04 misses per cycle for both of them. When instruction cache
(icache) miss rates are examined, hmmer exhibits a much lower rate at 0.000695 misses
per cycle, whereas gobmk has an instruction cache miss rate of 0.019.

5.6. COMPARISON WITH VFS 113

Benchmark
Programming
language

Application
domain

Description

astar C++ AI
Path-finding algorithms
for graph and map
data structures

bwavess Fortran 77
Computational
Fluid Dynamics

Navier-stokes equation
solver

bzip2 C Compression
File compression using
the Burrows-Wheeler
algorithm

calculix Fortran, C
Structural
mechanics

Solves partial differential
equations using the
finite element method

dealII C++
Partial differential
equations

Solves partial differential
equations using the
adaptive finite element method

GemsFDTD Fortran
Computational
Electromagnetics

Solver for Maxwell’s
equations

gobmk C AI
Plays and analyses games
of Go

h264ref C Compression
Video compression algorithm
that implements the H.264/AVC
standard

hmmer C Search
Gene sequence
search in a database

lbm C
Computational
fluid dynamics

Implementation of the
Lattice Boltzmann Method for
incompressible fluid simulation

leslie3d Fortran
Computational
fluid dynamics

Solver for a computational
fluid dynamics problem
using Linear-Eddy Model

libquantum C
Quantum
computing

Quantum computer
simulation library

114 CHAPTER 5. CYCLIC POWER GATING

mcf C
Combinatorial
optimisation

Solver for a single-depot
vehicle scheduling in public
transportation

milc C
Quantum
chronodynamics

Simulation of 4D lattice
gauge theory

namd C++
Molecular
dynamics

Simulates large
biomolecular systems

omnetpp C++
Discrete event
simulation

Simulates a large
Ethernet network

povray C++
Computer
graphics

Implements a ray tracer

sjeng C AI Chess playing algorithm

soplex C++
Linear
programming

Solves a linear program
reduced to triangular equations
using LU-factorisation

tonto Fortran
Quantum
chemistry

Determines the atomic
structure of crystals

xalancbmk C++
Data
representation

Transforms an XML file with
an XSLT description
into HTML

zeusmp Fortran Physics
Simulation of astrophysical
phenomena

Table 5.2: Description of SPEC CPU2006 benchmarks

The nominal frequency of the CPU is set to 2 GHz. Each VFS node is compared
to a CPG scheme with an off-period that gives an equivalent scaling in frequency. For
example an off-period of 50% is taken as equivalent to clock frequency of 1GHz. CPG
periods that have been executed start from 100 nanoseconds up to 200 nanoseconds
with increments of 25 nanoseconds. The CPG period that provides the best result in
its related metric is shown in the charts presented in this chapter in order to maintain
clarity. Each bar in the x-axis represents a benchmark execution, with the benchmark
name, CPG period, and the off cycle percentage. For example, hmmer-150 37 repre-
sents the execution of the hmmer benchmark with a CPG period of 150 nanoseconds,
and an off period of 37%. Results are divided into four buckets, with each bar in a

5.6. COMPARISON WITH VFS 115

group representing the value of a benchmark normalised to the equivalent VFS execu-
tion. The normalised execution time for the VFS execution in each group is 1. The
benchmarks under the 1.26GHz group are all benchmarks executed with an off period
of 37% as an example.

Figure 5.19 shows the performance results of voltage and frequency pairs compared
against their equivalent CPG configuration. A value equal and greater than one indi-
cates that the CPG scheme has worse performance than the VFS equivalent. Overall,
the CPG scheme has approximate 15% better performance than VFS.

It can be observed that VFS outperforms CPG for gobmk, and sjeng on the lowest
frequency, 1GHz (50%). For gobmk, VFS have a relative higher dcache utilisation,
which means that instructions are fetched into the pipeline more efficiently. Another
difference is in dcache utilisation, where VFS has a higher hit rate compared to CPG.
The greatest indicator for the difference in performance times is observed in the Out-
of-Order pipeline structures. The number of times reorder buffer, issue queue and
load queues had their full signals asserted are approximately 15% higher in the VFS
execution, meaning that the VFS run for this benchmark exploits out-of-order more
efficiently compared to the CPG scheme at this frequency.

The other benchmark in the 1GHz bucket where VFS outperforms CPG is sjeng.
The reason for CPG performing worse than VFS for this benchmark is related to the
out-of-order core model that gem5 simulates. In this model, when a load or store in-
struction fails to issue memory requests due to miss status handling registers (MSHRs)
not being available, these memory instructions are squashed and replayed. This is seen
in the 25% higher number of squashed loads in the CPG execution. In the case of sjeng,
the number of dcache caused squashes is higher for the VFS execution by 27%, but the
difference in the number of cycles dcache is blocked is higher in the CPG scheme by
42%.

Since mcf is a highly memory-bound benchmark the difference in performance lies
in the data path. The contribution of out-of-order execution to performance in mcf is
negligible, as indicated by the low IPC of this benchmark. This can be observed by
the differences in load store queue (LSQ) full events provided by the simulator, where
VFS has a 11% higher LSQ utilisation. Another point that effects the performance
is in the out-of-order core model that gem5 simulates, as explained for the case of
sjeng. This is seen in the 25% higher number of squashed loads in the CPG execution.
Although there are more squashed loads in the CPG execution, the miss rates for data
caches are lower. This means that the data is brought onto the core more quickly in the

116 CHAPTER 5. CYCLIC POWER GATING

CPG scheme than in VFS. On a highly memory-bound application the performance
bottleneck is caused by the memory latency, and CPG is observed to induce lower
memory latency in this case.

CPG has slightly better performance for the bzip2 benchmark due to better specula-
tive execution. This is observed in the higher branch prediction rate for CPG execution.
The milc benchmark has higher irregularities in control flow compared to bzip2. This
is one of the reasons CPG scheme performs better than VFS, with 2% higher correct
branch prediction rate. Although, 2% is not a big difference, this translates as twice as
much squashed icache misses.

The analysis provided for the 1GHz bucket applies to the rest of the buckets en-
tirely. Still, a decreasing trend across buckets in terms of the normalised performance
of CPG across all benchmarks is observed. This is due to the core executing on nomi-
nal frequency without interruptions, whereas VFS is still bound by a smaller frequency.
Overall, CPG scheme can perform better than VFS by 6.2%.

The normalised energy consumed for the CPG scheme against VFS is given in
Figure 5.20. Each of the bar charts on the x-axis represent the CPG enabled execution
of a benchmark with the x-axis label for each plot providing the benchmark name,
CPG period, and the off cycle percentage for that specific execution. The label mcf-

100 13% indicates that the mcf benchmark for that sample has been executed with a
CPG period of 100 nanoseconds, and an off period of 13% meaning that the core is
asleep for 13 nanoseconds after doing 87 nanoseconds of work. There are four buckets;
1GHz, 1.26GHz, 1.5GHz, and 1.74GHz with each bucket representing a voltage and
frequency pair for a VFS configuration.

It can be seen from the figure that CPG is almost equally energy-efficient than
VFS for all the benchmarks in all the voltage and frequency levels. A greater reduc-
tion in energy can be seen in the lower frequencies, 5.1% at 1GHz, especially in the
memory-bound benchmarks where the static power contributes more to the total power
dissipation of the core as most of the work is being done by the memory system. This
is mainly due to the better leakage reduction that CPG provides.

The energy, and performance results as they were explained in the previous chapter
showed that CPG can outperform VFS in both of those areas. Energy Delay Product
(EDP), is a metric that is used to provide a balance between energy and performance.
The EDP results on how CPG compares with VFS are given in Figure 5.21. Since CPG
outperforms VFS in energy and performance in lower voltage and frequency levels, the
resulting EDP for the CPG scheme is 6.27% better compared to VFS.

5.6. COMPARISON WITH VFS 117

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

 o
f S

PE
C

 C
PU

20
06

 a
ga

in
st

 1
G

H
z

Normalised Performance

0.
70

0

0.
85

0

1.
00

0
astar_100

bwavess_125

bzip2_100

calculix_125

dealII_125

GemsFDTD_150

gobmk_100

gromacs_125

h264ref_125

hmmer_100

lbm_100

leslie3d_125

libquantum_125

mcf_125

milc_125

namd_100

omnetpp_125

povray_100

sjeng_125

soplex_100

tonto_175

xalancbmk_125

zeusmp_125

geomean

0.
89

8

0.
78

9

0.
87

5

0.
98

3
0.

96
7

0.
96

5

0.
91

4

0.
83

0

0.
98

1

0.
85

2

0.
82

4
0.

82
8

0.
84

2
0.

84
1

0.
94

5
0.

96
1

0.
93

6

0.
97

8

0.
74

9

0.
94

9

0.
98

0

0.
84

3
0.

85
6

0.
91

4

(a
)P

er
fo

rm
an

ce
of

C
PG

ag
ai

ns
tV

FS
at

1G
H

z

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

 o
f S

PE
C

 C
PU

20
06

 a
ga

in
st

 1
.2

6G
H

z

Normalised Performance

0.
70

0

0.
85

0

1.
00

0

astar_100

bwavess_125

bzip2_100

calculix_125

dealII_100

GemsFDTD_150

gobmk_100

gromacs_100

h264ref_100

hmmer_125

lbm_100

leslie3d_125

libquantum_125

mcf_125

milc_125

namd_100

omnetpp_100

povray_100

sjeng_125

soplex_200

tonto_100

xalancbmk_100

zeusmp_125

geomean

0.
91

5

0.
87

4
0.

87
0

0.
98

8

0.
91

9

0.
97

5

0.
93

4

0.
86

0

0.
82

6

0.
91

5

0.
85

2

0.
90

1
0.

89
1

0.
90

1

0.
93

3

0.
97

3
0.

94
8

0.
97

5

0.
83

3

0.
93

9

0.
98

7

0.
88

2
0.

90
1

0.
94

4

(b
)P

er
fo

rm
an

ce
of

C
PG

ag
ai

ns
tV

FS
at

1.
26

G
H

z

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

 o
f S

PE
C

 C
PU

20
06

 a
ga

in
st

 1
.5

G
H

z

Normalised Performance

0.
70

0

0.
85

0

1.
00

0

astar_150

bwavess_125

bzip2_100

calculix_100

dealII_100

GemsFDTD_125

gobmk_100

gromacs_125

h264ref_100

hmmer_100

lbm_100

leslie3d_100

libquantum_125

mcf_100

milc_125

namd_100

omnetpp_100

povray_100

sjeng_125

soplex_100

tonto_100

xalancbmk_100

zeusmp_125

geomean

0.
94

8

0.
91

8
0.

93
4

0.
98

8

0.
96

0
0.

98
1

0.
94

4

0.
90

2
0.

92
4

0.
94

8

0.
88

8

0.
95

0
0.

92
5

0.
93

5

0.
96

3
0.

97
7

0.
96

3
0.

98
3

0.
90

2

0.
96

0

0.
99

7

0.
91

3

0.
95

9
0.

96
1

(c
)P

er
fo

rm
an

ce
of

C
PG

ag
ai

ns
tV

FS
at

1.
5G

H
z

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

 o
f S

PE
C

 C
PU

20
06

 a
ga

in
st

 1
.7

4G
H

z

Normalised Performance

0.
7

0.
851

astar_175

bwavess_150

bzip2_100

calculix_100

dealII_150

GemsFDTD_150

gobmk_100

gromacs_125

h264ref_100

hmmer_200

lbm_100

leslie3d_100

libquantum_100

mcf_125

milc_125

namd_100

omnetpp_100

povray_100

sjeng_125

soplex_150

tonto_150

xalancbmk_175

zeusmp_125

geomean

0.
98

8
0.

96
3

0.
95

6

0.
98

7

0.
95

3

0.
98

8
0.

96
4

0.
94

8

0.
99

4
0.

97
5

0.
94

0.
97

9
0.

95
8

0.
97

9
0.

96
4

0.
98

5
0.

97
5

0.
98

3
0.

95
9

0.
96

7
0.

98
8

0.
95

3
0.

97
6

0.
97

5

(d
)P

er
fo

rm
an

ce
of

C
PG

ag
ai

ns
tV

FS
at

1.
74

G
H

z

Fi
gu

re
5.

19
:P

er
fo

rm
an

ce
of

C
PG

ag
ai

ns
t4

V
FS

le
ve

ls
(L

ow
er

is
be

tte
r)

118 CHAPTER 5. CYCLIC POWER GATING

N
orm

alised Energy of SPEC
 C

PU
2006 against 1G

H
z

Normalised Energy

0.700

1.100
astar_100

bwavess_125

bzip2_125

calculix_200

dealII_125

GemsFDTD_150

gobmk_200

gromacs_150

h264ref_200

hmmer_175

lbm_150

leslie3d_125

libquantum_125

mcf_150

milc_125

namd_200

omnetpp_125

povray_150

sjeng_200

soplex_100

tonto_175

xalancbmk_125

zeusmp_125

geomean

0.949

0.849
0.883

1.028
1.017

0.969
0.939

0.846

0.995

0.924

0.775

0.844

0.968

1.031

0.987
1.001

0.970

1.007

0.895

1.031

0.988

0.872

1.003

1.066

1.000

(a)E
nergy

consum
ption

ofC
PG

againstV
FS

at1G
H

z

N
orm

alised Energy of SPEC
 C

PU
2006 against 1.26G

H
z

Normalised Energy

0.700

1.100

astar_200

bwavess_125

bzip2_125

calculix_200

dealII_100

GemsFDTD_150

gobmk_200

gromacs_150

h264ref_200

hmmer_125

lbm_150

leslie3d_125

libquantum_125

mcf_125

milc_125

namd_200

omnetpp_125

povray_125

sjeng_200

soplex_200

tonto_200

xalancbmk_100

zeusmp_125

geomean

0.996

0.934
0.935

1.052
1.022

1.015
0.989

0.911

1.015

0.979

0.879

0.940

1.014

1.059

1.014
1.032

1.011
1.036

0.969

1.055
1.030

0.941

1.026

1.083

1.000

(b)E
nergy

consum
ption

ofC
PG

againstV
FS

at1.26G
H

z

N
orm

alised Energy of SPEC
 C

PU
2006 against 1.5G

H
z

Normalised Energy

0.700

1.100

astar_200

bwavess_125

bzip2_200

calculix_200

dealII_175

GemsFDTD_125

gobmk_200

gromacs_150

h264ref_200

hmmer_200

lbm_125

leslie3d_125

libquantum_125

mcf_125

milc_125

namd_200

omnetpp_200

povray_175

sjeng_200

soplex_200

tonto_200

xalancbmk_100

zeusmp_125

geomean

1.016
0.982

0.976

1.050
1.026

1.027
1.004

0.953

1.028
1.013

0.941

1.000
1.028

1.061
1.028

1.037
1.023

1.040

1.003

1.054
1.037

0.973

1.039
1.058

1.000

(c)E
nergy

consum
ption

ofC
PG

againstV
FS

at1.5G
H

z

N
orm

alised Energy of SPEC
 C

PU
2006 against 1.74G

H
z

Normalised Energy

0.700

1.060

astar_175

bwavess_200

bzip2_200

calculix_200

dealII_150

GemsFDTD_200

gobmk_200

gromacs_200

h264ref_200

hmmer_200

lbm_200

leslie3d_200

libquantum_175

mcf_200

milc_200

namd_200

omnetpp_200

povray_200

sjeng_200

soplex_200

tonto_200

xalancbmk_200

zeusmp_200

geomean

1.019
1.010

0.993

1.035
1.015

1.025
1.011

0.985

1.027
1.024

0.981

1.021
1.026

1.056

1.011
1.027

1.019
1.030

1.017
1.031

1.031

0.996

1.030
1.041

1.000

(d)E
nergy

consum
ption

ofC
PG

againstV
FS

at1.74G
H

z

Figure
5.20:

E
nergy

consum
ption

ofC
PG

against4
V

FS
levels

(L
ow

eris
better)

5.6. COMPARISON WITH VFS 119

N
or

m
al

is
ed

 E
D

P
of

 S
PE

C
 C

PU
20

06
 a

ga
in

st
 1

G
H

z

Normalised EDP

0.
50

0

1.
10

0

astar_100

bwavess_125

bzip2_125

calculix_175

dealII_125

GemsFDTD_150

gobmk_200

gromacs_125

h264ref_125

hmmer_100

lbm_150

leslie3d_125

libquantum_125

mcf_150

milc_125

namd_200

omnetpp_125

povray_100

sjeng_175

soplex_100

tonto_175

xalancbmk_125

zeusmp_125

geomean

0.
86

1

0.
67

0

0.
77

2

1.
01

0
0.

98
3

0.
94

4

0.
86

1

0.
70

3

0.
98

4

0.
78

7

0.
64

0

0.
69

8

0.
81

6
0.

86
9

0.
94

2
0.

96
8

0.
90

9

0.
99

3

0.
67

0

0.
97

6
0.

97
2

0.
73

7

0.
85

8

0.
97

5
1.

00
0

(a
)E

D
P

of
C

PG
ag

ai
ns

tV
FS

at
1G

H
z

N
or

m
al

is
ed

 E
D

P
of

 S
PE

C
 C

PU
20

06
 a

ga
in

st
 1

.2
6G

H
z

Normalised EDP

0.
50

0

1.
10

0

astar_100

bwavess_125

bzip2_100

calculix_175

dealII_100

GemsFDTD_150

gobmk_200

gromacs_150

h264ref_175

hmmer_125

lbm_150

leslie3d_125

libquantum_125

mcf_125

milc_125

namd_200

omnetpp_100

povray_125

sjeng_175

soplex_200

tonto_175

xalancbmk_100

zeusmp_125

geomean

0.
93

0

0.
81

7
0.

81
4

1.
04

4

0.
93

9

0.
99

3

0.
92

6

0.
78

6

0.
83

9

0.
89

7

0.
74

8

0.
84

7

0.
90

3

0.
96

3
0.

94
2

1.
01

3
0.

96
5

1.
01

7

0.
80

7

0.
99

2
1.

01
9

0.
83

3

0.
92

4

1.
02

3
1.

00
0

(b
)E

D
P

of
C

PG
ag

ai
ns

tV
FS

at
1.

26
G

H
z

N
or

m
al

is
ed

 E
D

P
of

 S
PE

C
 C

PU
20

06
 a

ga
in

st
 1

.5
G

H
z

Normalised EDP

0.
50

0

1.
10

0

astar_150

bwavess_125

bzip2_125

calculix_200

dealII_100

GemsFDTD_125

gobmk_200

gromacs_125

h264ref_175

hmmer_200

lbm_125

leslie3d_100

libquantum_125

mcf_125

milc_125

namd_200

omnetpp_150

povray_175

sjeng_175

soplex_100

tonto_200

xalancbmk_100

zeusmp_125

geomean

0.
96

5

0.
90

2
0.

91
1

1.
03

9
0.

98
8

1.
01

3

0.
95

1

0.
86

2

0.
95

4
0.

96
0

0.
83

7

0.
95

0
0.

95
6

0.
99

7
0.

99
7

1.
01

8
0.

98
8

1.
02

7

0.
90

5

1.
02

0
1.

03
5

0.
89

1

0.
99

6
1.

02
7

1.
00

0

(c
)E

D
P

of
C

PG
ag

ai
ns

tV
FS

at
1.

5G
H

z

N
or

m
al

is
ed

 E
D

P
of

 S
PE

C
 C

PU
20

06
 a

ga
in

st
 1

.7
4G

H
z

Normalised EDP
0.

50
0

1.
10

0

astar_175

bwavess_150

bzip2_150

calculix_200

dealII_150

GemsFDTD_200

gobmk_175

gromacs_200

h264ref_175

hmmer_200

lbm_200

leslie3d_100

libquantum_175

mcf_175

milc_125

namd_200

omnetpp_200

povray_150

sjeng_175

soplex_150

tonto_175

xalancbmk_200

zeusmp_125

geomean

0.
99

3
0.

97
6

0.
94

9

1.
02

3

0.
96

8
1.

01
5

0.
97

8
0.

93
8

1.
02

4
1.

00
3

0.
92

6

1.
00

4
0.

99
2

1.
03

9

0.
98

0
1.

01
4

0.
99

7
1.

01
6

0.
97

9
0.

99
8

1.
02

0

0.
95

2

1.
01

1
1.

01
8

1.
00

0

(d
)E

D
P

of
C

PG
ag

ai
ns

tV
FS

at
1.

74
G

H
z

Fi
gu

re
5.

21
:E

D
P

of
C

PG
ag

ai
ns

t4
V

FS
le

ve
ls

(L
ow

er
is

be
tte

r)

120 CHAPTER 5. CYCLIC POWER GATING

Figure 5.22: EDP of the Function-Grain CPG Scheme for the mcf Benchmark (Lower
is better).

5.7 CPG at program function granularity

In previous sections, application of CPG was shown for microbenchmarks that ex-
hibit homogeneous phase behaviour, and the SPEC CPU2006 benchmarks that exhibit
variable phase behaviour. Actual applications are composed of both memory-bound
and compute-bound phases. It was shown that applying CPG during compute-bound
phases will be detrimental in terms of EDP. In this section a methodology to apply
CPG during the execution of memory-bound functions within the mcf benchmark will
be presented. For this purpose, an instruction that interfaces the CPG Controller with
the software was implemented in the gem5 simulator. Then, the per-function cache
miss rates for the mcf benchmark was obtained by executing it using Cachegrind.
Cachegrind is a software tool from the Valgrind Dynamic Binary Instrumentation
Toolkit [NS07]. The functions that had a Last Level Cache Miss Per Kilo Instruc-
tion (LLCMPK) of over 6 were obtained using this analysis. All the function entries
were modified to include the CPG instruction in order to enable CPG at function entry.
The CPG instruction was inserted before these functions in order to disable throttling
at function exit. The modified version of the mcf benchmark was executed on the
simulation infrastructure. The EDP results can be seen in Figure 5.22.

Each bar in the x-axis represents an execution of the mcf benchmark, with the CPG
period, and the off cycle percentage. For example, 125 20 represents the execution of
the mcf benchmark with a CPG period of 125 nanoseconds, and the ratio of the off
period to the CPG period is 20% (i.e. on rate of 80%, or 25 nanoseconds off period).

The provided results are normalised to nominal execution at 2GHz, and it can be

5.8. CONCLUSION 121

seen that all CPG configurations except the ones with 10% off have better EDP com-
pared to nominal execution. The main reason for this can be explained by these periods
being lesser than the break-even time. A 1.1% increase in EDP on average is observed,
with the maximum gain in EDP being 2.9%.

5.8 Conclusion

This chapter has presented CPG as a novel power management approach using a state-
retentive power gating methodology. The evaluation for a system modelled using 14
nanometer technology parameters showed that CPG can be a strong alternative to VFS
in future technologies, where the scaling of frequency and voltage will be limited due
to the lower supply voltage future technologies are required to operate on. It has also
been shown that applying CPG at a lower granularity can provide better EDP compared
to nominal operation. Chapter 6 will provide the concluding remarks, and show future
directions that the work presented in this thesis can be steered towards.

Chapter 6

Conclusions and Future Work

Aggressive technology scaling is driving the requirements for novel power manage-
ment methodologies in order to overcome power density induced problems such as heat
dissipation and transistor ageing. Reducing static power dissipation in a controllable
manner with minimal degrading in performance is a key criteria for tackling thermal
issues and achieving energy-efficient systems. It is possible to maximise the utilisation
of power management schemes when the elements within the compute stack can relay
the information about their runtime state across the stack. Another aspect that should
be considered is the granularity that a power management scheme can work at. High
overhead schemes tend to cause performance degradation especially in compute-bound
program phases, and this leads to energy inefficiency. This dissertation presented an
alternative way for power management, and has shown that it is possible to provide
better Energy Delay Metrics compared to nominal operation when the operating gran-
ularity was lowered to program function level.

6.1 Summary

Chapter 1 introduced the problems that were born out of aggressive transistor scaling.
The challenges in computer architecture simulation about execution of benchmarks on
simulators were briefly presented. Furthermore, a brief overview of microprocessor
power management and reasons for their limitations were provided.

Chapter 2 provided background material to aid in the comprehension of the follow-
ing chapters. The operation of an out-of-order microprocessor was explained. Power
dissipation and common power management schemes were discussed covering the sub-
ject from the transistor level up to the application level. Furthermore, an overview

122

6.2. FUTURE WORK 123

of the developments within power management, hardware-software interaction, and
workload generation was provided.

Chapter 3 described the state-of-the-art in hardware simulation, and explained the
operation of the experimental infrastructure used for this thesis. Details of the cycle-
accurate simulator used and how it was interfaced with power and temperature mod-
eling tools have been provided. Furthermore, power and performance measurement
methodologies on real hardware were provided.

Chapter 4 introduced a portable benchmark generator that generates code for a vir-
tual ISA. Three use cases were presented to demonstrate domains where the tool could
be used in. The benchmarks generated used for this tool were used for the evaluation
of the Cyclical Power Gating (CPG) scheme that was explained in Chapter 5.

CPG has been proposed as a power management scheme that is fit to tackle the
power challenges brought on by aggressive technology scaling. The evaluation of
CPG against a DVFS configuration on a 14nm out-of-order microprocessor showed
that CPG outperforms DVFS by 6.27% on EDP.

6.2 Future work

6.2.1 CPG Off-period Selection

A key part of the Cyclic Power-Gating scheme is the selection of Tcpg, the period
over which the CPG recurs and (most critically) To f f , the power-gated period. To f f

is limited by the break-even time of state-retentive architecture, below which the cost
of turning the CPU on and off outweigh any benefits from power-gating. Above the
break-even time, the overheads of the power-gating diminish and the energy-saving
increases with sleep-time. However, in order for the CPG scheme to be energy-efficient
the time spent power-gated in the pipelined execution phase must be minimized. Non-
pipelined regions last as long as the memory-latency of the critical path loads. If To f f

is too long, any outstanding memory accesses will be completed and the power-gating
will needlessly increase execution time. If To f f is too short, the CPU will be woken
up too early and the CPU will still be stalled (or about to be stalled) and energy will
be wasted due additional active cycles spent in non-pipelined execution. The optimal
time for the off-period in each cycle of a CPG scheme may be different and ideally a
custom To f f that best suits the CPU execution patterns over a period would be selected.
This could be further examined by investigating online phase detection methods, and

124 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

combining them with an online CPG governor equipped with the ability to take such
decisions over each period.

6.2.2 Exploiting memory stalls for determining CPG sleep periods

In Chapter 5, an evaluation of the CPG scheme over SPEC benchmarks was made
followed by a function granularity evaluation for a memory-bound benchmark. It has
been shown that it is possible to outperform nominal execution when CPG has been
applied at only a fraction of memory-bound functions, measured in terms of the num-
ber of last level cache misses per kilo instructions, while the rest of the functions
were executing nominally. Appendix A presents the groundwork for detecting pos-
sibly memory-bound functions using a supervised machine learning algorithm that is
executed at compile-time. Entry and exit into these functions can be hinted by the
compiler to the microprocessor through a CPG-enabling instruction, and the processor
can apply CPG only during those times. When this is combined with a leading load
based memory stall prediction technique as described in Chapter 2, CPG duty cycles
can be decided by the microprocessor leading to further reductions in EDP.

6.2.3 CPG enabled compute stack

A computing system requires a decision mechanism in order to switch between a per-
formance boosting power-efficient mode and a cooling mode designed to sustain the
expected lifetime of the system. This can be enabled by proposing a computing stack
that contains the appropriate elements in each of the layers ranging from circuit-level
to the application layer. To increase the utilisation of CPG, a computing stack that
is equipped with appropriate mechanisms on each layer to have a power-efficient
high performance computing system with controllable immunity to temperature
related faults can be investigated.

A holistic approach to tackling this problem requires schemes that are able to take
action based on knowledge of application character (memory/computation require-
ments) combined with hardware state (localised temperature estimations). Figure 6.1
shows the proposed CPG-aware stack. As is the case with layered architectures each
layer can use services provided by the layer underneath it. A brief description for each
layer is provided below:

• Application Layer: This layer can contain any Java application that is compiled

6.2. FUTURE WORK 125

into bytecode. These bytecodes are executed by the underlying managed runtime
environment (JVM).

• Managed Runtime Environment: This layer is a simple stack machine, which
is used as a virtual execution environment to abstract an application from the
underlying operating system and hardware. The primary responsibility of this
layer is generating machine specific code from bytecode. MREs are widely used
in datacenters and mobile systems, with the most popular examples being Java
Virtual Machine (JVM), and Android Runtime. The main features of an MRE
are its automatic handling of memory management, and ability to dynamically
compile code. Dynamic compilation has been shown to provide significant ad-
vantages in an adaptive runtime environment where the system-wide concern
can switch between performance and energy-efficiency during different periods.
Temperature control can also be achieved within this layer.

• Operating System: The operating system is used to manage the underlying
hardware resources (CPUs, memory, I/O devices,...) and provide the higher lay-
ers with interfaces to access these resources.

• Processor: The blocks of interest in this layer are Dynamic Voltage Frequency
Scaling (DVFS) controller, CPG controller and performance counters. Perfor-
mance counters are architectural registers that track the occurrence of certain
events such as last level cache misses, instruction cache misses or L2 cache read
requests. They are implemented by processor vendors to provide the users of the
platform the opportunity to inspect their software.

126 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Figure 6.1: CPG Enabled Compute Stack

Bibliography

[AA14] Susanne Albers and Antonios Antoniadis. Race to Idle: New Algo-
rithms for Speed Scaling with a Sleep State. ACM Transactions on Al-

gorithms, 10(2):9:1–9:31, 2014.

[Ala03] Muhammad A. Alam. A Critical Examination of the Mechanics of
Dynamic NBTI for PMOSFETs. In Electron Devices Meeting, 2003.

IEDM’03 Technical Digest. IEEE International, pages 14–4. IEEE,
2003.

[AMP+15] Manish Arora, Srilatha Manne, Indrani Paul, Nuwan Jayasena, and
Dean M Tullsen. Understanding Idle Behavior and Power Pating Mech-
anisms in the Context of Modern Benchmarks on CPU-GPU Integrated
System. In 2015 IEEE 21st International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 366–377. IEEE, 2015.

[ARM] ARM. A57 mpcore processor technical reference manual.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The Gem5 Simulator. SIGARCH Computer Architecture News, 39(2):1–
7, 2011.

[BBG+12] Ramon Bertran, Alper Buyuktosunoglu, Meeta S. Gupta, Marc Gonza-
lez, and Pradip Bose. Systematic Energy Characterization of CMP/SMT
Processor Systems via Automated Micro-Benchmarks. In Proceedings

of the 2012 45th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 199–211. IEEE Computer Society, 2012.

127

128 BIBLIOGRAPHY

[BDM09] Geoffrey Blake, Ronald G Dreslinski, and Trevor Mudge. A Survey of
Multicore Processors. IEEE Signal Processing Magazine, 26(6):26–37,
2009.

[BGDG+10] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani,
Hermann De Meer, Minh Quan Dang, and Kostas Pentikousis. Energy-
Efficient Cloud Computing. The Computer journal, 53(7):1045–1051,
2010.

[BHHR12] Steven Battle, Andrew D. Hilton, Mark Hempstead, and Amir Roth.
Flexible Register Management Using Reference Counting. In IEEE In-

ternational Symposium on High-Performance Computer Architecture,
pages 1–12. IEEE, 2012.

[BMMF02] David Blaauw, Steve Martin, TREVOR MUDGE, and Krisztián Flaut-
ner. Leakage current reduction in vlsi systems. Journal of Circuits,

Systems, and Computers, 11(06):621–635, 2002.

[Bor05] Shekhar Borkar. Designing Reliable Systems From Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation. MI-

CRO, IEEE, 25(6):10–16, 2005.

[CAP+15] Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and
William Jalby. CERE: LLVM-Based Codelet Extractor and Replayer
for Piecewise Benchmarking and Optimization. ACM Transactaions on

Architecture and Code Optimimization, 12(1):6:1–6:24, 2015.

[CCF+07] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke, Henrdrik
Hamann, Alan Weger, and Pradip Bose. Thermal-Aware Task Schedul-
ing at the System Software Level. In Proceedings of the 2007 Interna-

tional Symposium on Low Power Electronics and Design, pages 213–
218. ACM, 2007.

[CHCR11] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. Pack
& cap: Adaptive DVFS and Thread Packing Under Power Caps. In
Proceedings of the 44th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 175–185. ACM, 2011.

BIBLIOGRAPHY 129

[CHE11] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Ex-
ploring the Level of Abstraction for Scalable and Accurate Parallel
Multi-Core Simulation. In Proceedings of 2011 International Confer-

ence for High Performance Computing, Networking, Storage and Anal-

ysis, page 52. ACM, 2011.

[CMDAN06] Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and
Dimitrios S. Nikolopoulos. Online Power-Performance Adaptation of
Multithreaded Programs Using Hardware Event-Based Prediction. In
Proceedings of the 20th annual international conference on Supercom-

puting, pages 157–166. ACM, 2006.

[CMHM10] Eric S Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic,
FPGAs, and GPGPUs? In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 225–
236. IEEE Computer Society, 2010.

[CMSB+08] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S.
Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Predic-
tion Models for Multi-Dimensional Power-Performance Optimization
on Many Cores. In Proceedings of the 17th International Conference

on Parallel Architectures and Compilation Techniques, pages 250–259.
ACM, 2008.

[CP14] Victoria Caparros Cabezas and Markus Pschel. Extending the Roofline
Model: Bottleneck Analysis with Microarchitectural Constraints. In
Workload Characterization (IISWC), 2014 IEEE International Sympo-

sium on, pages 222–231. IEEE, 2014.

[CRG+11] Blas A. Cuesta, Alberto Ros, Marı́a E. Gómez, Antonio Robles, and
José F. Duato. Increasing the Effectiveness of Directory Caches By
Deactivating Coherence for Private Memory Blocks. In Proceedings

of the 38th Annual International Symposium on Computer Architecture,
pages 93–104. ACM, 2011.

[CSK+07] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William
Reinhart, Darrel Eric Johnson, Jebediah Keefe, and Hari Angepat.

130 BIBLIOGRAPHY

FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-
System, Cycle-Accurate Simulators. In Proceedings of the 40th Annual

IEEE/ACM international Symposium on Microarchitecture, pages 249–
261. IEEE Computer Society, 2007.

[CWL11] Ming Chen, Xiaorui Wang, and Xue Li. Coordinating Processor and
Main Memory for Efficient Server Power Control. In Proceedings of the

International Conference on Supercomputing, pages 130–140. ACM,
2011.

[DCK07] Robert H Dennard, Jin Cai, and Arvind Kumar. A Perspective on To-
days Scaling Challenges and Possible Future Directions. Solid-State

Electronics, 51(4):518–525, 2007.

[DGR+74] Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest Bas-
sous, and Andre R. LeBlanc. Design of Ion-Implanted MOSFET’s With
Very Small Physical Dimensions. Solid-State Circuits, IEEE Journal of,
9(5):256–268, 1974.

[DHJS10] Martin Dixon, Per Hammarlund, Stephan Jourdan, and Ronak Singhal.
The Next-Generation Intel Core Microarchitecture. Intel Technology

Journal, 14(3), 2010.

[DKM+12] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and
Mark Horowitz. CPU DB: Recording Microprocessor History. Commu-

nications of the ACM, 55(4):55–63, April 2012.

[DMB+12] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F.
Wenisch, and Ricardo Bianchini. Coscale: Coordinating CPU and
Memory System DVFS in Server Systems. In Proceedings of the 2012

45th Annual IEEE/ACM International Symposium on Microarchitec-

ture, pages 143–154. IEEE Computer Society, 2012.

[Eas16] Ashraf Eassa. Intel Corp. Confirms First 10-Nanometer Product on
Track for 2017 Introduction, 2016.

[EBA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark Silicon and the End of Mul-
ticore Scaling. In Computer Architecture (ISCA), 2011 38th Annual

International Symposium on, pages 365–376. IEEE, 2011.

BIBLIOGRAPHY 131

[EE10] Stijn Eyerman and Lieven Eeckhout. A Counter Architecture for On-
line DVFS Profitability Estimation. IEEE Transactions on Computers,
59(11):1576–1583, 2010.

[Eec08] Lieven Eeckhout. Sampled processor simulation: A survey. Advances

in Computers, 72:173–224, 2008.

[EEKS09] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith.
A Mechanistic Performance Model for Superscalar Out-of-Order Pro-
cessors. ACM Transactions on Computer Systems (TOCS), 27(2):3,
2009.

[ERB+95] John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon, Bradley J. Ben-
schneider, Debra Bernstein, Ruben W. Castelino, Elizabeth M. Cooper,
Daniel E. Dever, Dale R. Donchin, Timothy C. Fischer, et al. Internal
Organization of the Alpha 21164, a 300-MHz 64-bit Quad-Issue CMOS
RISC Microprocessor. Digital Technical Journal, 7(1):119–135, 1995.

[FASB04] Clemens J Först, Christopher R Ashman, Karlheinz Schwarz, and Pe-
ter E Blöchl. The interface between silicon and a high-k oxide. Nature,
427(6969):53–56, 2004.

[FDN+01] David J. Frank, Robert H. Dennard, Edward Nowak, Paul M. Solomon,
Yuan Taur, and Hon Sum Philip Wong. Device Scaling Limits of Si
MOSFETs and Their Application Dependencies. Proceedings of the

IEEE, 89(3):259 –288, 2001.

[GEE10] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. Interval Sim-
ulation: Raising the Level of Abstraction in Architectural Simulation.
In 16th IEEE International symposium on High-Performance Com-

puter Architecture (HPCA-16), pages 307–318. IEEE Computer Soci-
ety, 2010.

[GPD+14] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor
Mudge, Chander Sudanthi, Christopher D. Emmons, Mitchell Hayenga,
and Nigel Paver. Sources of Error in Full-System Simulation. In Per-

formance Analysis of Systems and Software (ISPASS), 2014 IEEE Inter-

national Symposium on, pages 13–22. IEEE, 2014.

132 BIBLIOGRAPHY

[Gre11] Peter Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. ARM White Paper, pages 1–8, 2011.

[Han12] Arria V Device Handbook. Features of the cortex-a9 mpu subsystem.
2012.

[HBS+04] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan, Victor Zyuban,
Hans Jacobson, and Pradip Bose. Microarchitectural Techniques for
Power Gating of Execution Units. In Proceedings of the 2004 Interna-

tional Symposium on Low Power Electronics and Design, pages 32–37.
ACM, 2004.

[HCE12] Wim Heirman, Trevor Carlson, and Lieven Eeckhout. Sniper: Scal-
able and Accurate Parallel Multi-Core Simulation. In 8th International

Summer School on Advanced Computer Architecture and Compilation

for High-Performance and Embedded Systems (ACACES-2012), pages
91–94. High-Performance and Embedded Architecture and Compilation
Network of Excellence (HiPEAC), 2012.

[HDH+10] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Fi-
nan, Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Ger-
hard Schrom, et al. A 48-Core IA-32 Message-Passing Processor with
DVFS in 45nm CMOS. In 2010 IEEE International Solid-State Circuits

Conference-(ISSCC), pages 108–109. IEEE, 2010.

[Hen06a] John L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH

Computer Architecture News, 34(4):1–17, 2006.

[Hen06b] John L. Henning. Spec CPU2006 Benchmark Descriptions. ACM

SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[HGV+06] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankara-
narayanan, Kevin Skadron, and Mircea R Stan. HotSpot: A Com-
pact Thermal Modeling Methodology for Early-Stage VLSI Design.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
14(5):501–513, 2006.

BIBLIOGRAPHY 133

[HM07] Sebastian Herbert and Diana Marculescu. Analysis of Dynamic Volt-
age/Frequency Scaling in Chip-Multiprocessors. In Low Power Elec-

tronics and Design (ISLPED), 2007 ACM/IEEE International Sympo-

sium on, pages 38–43. IEEE, 2007.

[HP12] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Elsevier, 2012.

[HPLC05] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint
3.0: Faster and More Flexible Program Analysis. In Journal of Instruc-

tion Level Parallelism, 2005.

[HW04] Raymond Heald and Ping Wang. Variability in Sub-100nm SRAM De-
signs. In Proceedings of the 2004 IEEE/ACM International Conference

on Computer-Aided Design, pages 347–352. IEEE Computer Society,
2004.

[ISK+09] Daisuke Ikebuchi, Naomi Seki, Yu Kojima, M Kamata, Lei Zhao,
Hideharu Amano, Toshiaki Shirai, Satoshi Koyama, Tatsunori Hashida,
Y Umahashi, et al. Geyser-1: A MIPS R3000 CPU Core with Fine
Grain Runtime Power Gating. In Solid-State Circuits Conference, 2009.

A-SSCC 2009. IEEE Asian, pages 281–284. IEEE, 2009.

[JEJI08] Ajay M. Joshi, Lieven Eeckhout, Lizy K. John, and Ciji Isen. Auto-
mated Microprocessor Stressmark Generation. In 2008 IEEE 14th In-

ternational Symposium on High Performance Computer Architecture,
pages 229–239. IEEE, 2008.

[JKK+12] Kwangok Jeong, Andrew B. Kahng, Seokhyeong Kang, Tajana S. Ros-
ing, and Richard Strong. MAPG: Memory Access Power Gating. In
Proceedings of the Conference on Design, Automation and Test in Eu-

rope, pages 1054–1059. EDA Consortium, 2012.

[JNaS+12] Aamer Jaleel, Hashem H. Najaf-abadi, Samantika Subramaniam, Si-
mon C. Steely, and Joel Emer. CRUISE: Cache Replacement and
Utility-aware Scheduling. In Proceedings of the Seventeenth Inter-

national Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 249–260. ACM, 2012.

134 BIBLIOGRAPHY

[Jos07] Ajay Manohar Joshi. Constructing Adaptable and Scalable Synthetic

Benchmarks for Microprocessor Performance Evaluation. ProQuest,
2007.

[JRKA15] Hyeran Jeon, Gokul Subramanian Ravi, Nam Sung Kim, and Murali
Annavaram. Gpu register file virtualization. In Proceedings of the 48th

International Symposium on Microarchitecture, pages 420–432. ACM,
2015.

[Kea07] Power Gating Overview, pages 33–40. Springer US, Boston, MA, 2007.

[KGWB08] Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David Brooks. Sys-
tem level analysis of fast, per-core DVFS using on-chip switching reg-
ulators. In 2008 IEEE 14th International Symposium on High Perfor-

mance Computer Architecture, pages 123–134. IEEE, 2008.

[KLJR14] K. Kim, C. Lee, J. H. Jung, and W. W. Ro. Workload Synthesis: Gen-
erating Benchmark Workloads From Statistical Execution Profile. In
Workload Characterization (IISWC), 2014 IEEE International Sympo-

sium on, pages 120–129. IEEE, 2014.

[KM08] Stefanos Kaxiras and Margaret Martonosi. Computer Architecture
Techniques for Power-Efficiency. Synthesis Lectures on Computer Ar-

chitecture, 3(1):1–207, 2008.

[KPFG14] Manolis Kaliorakis, Mihalis Psarakis, Nikos Foutris, and Dimitris Gi-
zopoulos. Accelerated Online Error Detection in Many-Core Micropro-
cessor Architectures. In 2014 IEEE 32nd VLSI Test Symposium (VTS),
pages 1–6. IEEE, 2014.

[KSK10] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras.
Interval-based Models for Run-time DVFS Orchestration in Superscalar
Processors. In Proceedings of the 7th ACM International Conference

on Computing Frontiers, CF ’10, pages 287–296, New York, NY, USA,
2010. ACM.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Code Generation

and Optimization, 2004. CGO 2004. International Symposium on, pages
75–86. IEEE, 2004.

BIBLIOGRAPHY 135

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: An Integrated Power, Area,
and Timing Modeling Framework for Multicore and Manycore Archi-
tectures. In Proceedings of the 42Nd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 469–480. ACM, 2009.

[LFOK11] Joseph C. Libby, Ashley Furrow, Paddy O’Brien, and Kenneth B. Kent.
A Framework for Verifying Functional Correctness in Odin ii. In Field-

Programmable Technology (FPT), 2011 International Conference on,
pages 1–6. IEEE, 2011.

[LMC+11] Michael A. Laurenzano, Mitesh Meswani, Laura Carrington, Allan
Snavely, Mustafa M. Tikir, and Stephen Poole. Reducing Energy Usage
with Memory and Computation-Aware Dynamic Frequency Scaling. In
European Conference on Parallel Processing, pages 79–90. Springer,
2011.

[LSH10] Etienne Le Sueur and Gernot Heiser. Dynamic Voltage and Frequency
Scaling: The Laws of Diminishing Returns. In Proceedings of the

2010 International Conference on Power Aware Computing and Sys-

tems, pages 1–8. USENIX Association, 2010.

[LWC+16] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben
Keller, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Stevo Bailey,
Milovan Blagojevic, et al. An Agile Approach to Building RISC-V Mi-
croprocessors. IEEE Micro, 36(2):8–20, 2016.

[MBJ09] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi. CACTI 6.0: A Tool to Model Large Caches. HP Laborato-

ries, pages 22–31, 2009.

[MCE+02] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas
Moestedt, and Bengt Werner. Simics: A Full System Simulation Plat-
form. Computer, 35(2):50–58, 2002.

[MEP12] Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N. Patt. Predict-
ing Performance Impact of DVFS for Realistic Memory Systems. In

136 BIBLIOGRAPHY

Proceedings of the 2012 45th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, MICRO-45, pages 155–165, Washington,
DC, USA, 2012. IEEE Computer Society.

[Moo65] Gordon E. Moore. Cramming More Components Onto Integrated Cir-
cuits, 1965.

[MSB+05] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R
Marty, Min Xu, Alaa R Alameldeen, Kevin E Moore, Mark D Hill,
and David A Wood. Multifacet’s general execution-driven multiproces-
sor simulator (GEMS) toolset. ACM SIGARCH Computer Architecture

News, 33(4):92–99, 2005.

[MSZ+11] Evelyn Mintarno, Joelle Skaf, Rui Zheng, Jyothi Bhaskar Velamala,
Yu Cao, Stephen Boyd, Robert W. Dutton, and Subhashish Mitra. Self-
Tuning for Maximized Lifetime Energy-Efficiency in the Presence of
Circuit Aging. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 30(5):760–773, 2011.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In ACM Sigplan no-

tices, pages 89–100. ACM, 2007.

[PACG11] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSS:
A Full System Simulator for Multicore x86 CPUs. In Proceedings of the

48th Design Automation Conference, pages 1050–1055. ACM, 2011.

[PSZ+07] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, Arif Merchant, and Kenneth Salem. Adaptive
Control of Virtualized Resources in Utility Computing Environments. In
ACM SIGOPS Operating Systems Review, pages 289–302. ACM, 2007.

[PZW+07] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang G
Shin, et al. Performance Evaluation of Virtualization Technologies for
Server Consolidation. HP Labs Tec. Report, 2007.

[RL16] Haris Ribic and Yu David Liu. AEQUITAS: Coordinated Energy Man-
agement Across Parallel Applications. In Proceedings of the 2016 In-

ternational Conference on Supercomputing, page 4. ACM, 2016.

BIBLIOGRAPHY 137

[RLSdS11] Barry Rountree, David K. Lowenthal, Martin Schulz, and Bronis R.
de Supinski. Practical performance prediction under Dynamic Voltage
Frequency Scaling. In 2011 International Green Computing Conference

and Workshops, pages 1–8, July 2011.

[RRK11] Soumyaroop Roy, Nagarajan Ranganathan, and Srinivas Katkoori.
State-Retentive Power Gating of Register Files in Multicore Processors
Featuring Multithreaded In-Order Cores. Computers, IEEE Transac-

tions on, 60(11):1547–1560, 2011.

[SABR04] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers.
The Impact of Technology Scaling on Lifetime Reliability. In Depend-

able Systems and Networks, 2004 International Conference on, pages
177–186. IEEE Computer Society, 2004.

[SGG+14] Bo Su, Joseph L. Greathouse, Junli Gu, Michael Boyer, Li Shen, and
Zhiying Wang. Implementing a leading loads performance predictor on
commodity processors. In Proceedings of the 2014 USENIX Conference

on USENIX Annual Technical Conference, pages 205–210, Berkeley,
CA, USA, 2014.

[SGS+14] Bo Su, Junli Gu, Li Shen, Wei Huang, Joseph L. Greathouse, and Zhiy-
ing Wang. Ppep: Online performance, power, and energy prediction
framework and dvfs space exploration. In Proceedings of the 47th An-

nual IEEE/ACM International Symposium on Microarchitecture, pages
445–457, 2014.

[Sin08] Ronak Singhal. Inside intel next generation nehalem microarchitecture.
In Hot Chips, volume 20, 2008.

[SK13] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-Core Systems. In Proceedings

of the 40th Annual International Symposium on Computer Architecture,
pages 475–486. ACM, 2013.

[SKK11] Vasileios Spiliopoulos, Stefanos Kaxiras, and Georgios Keramidas.
Green Governors: A Framework for Continuously Adaptive DVFS. In
Green Computing Conference and Workshops (IGCC), 2011 Interna-

tional, pages 1–8. IEEE, 2011.

138 BIBLIOGRAPHY

[SKZ08] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy Aware
Consolidation for Cloud Computing. In Proceedings of the 2008 Con-

ference on Power Aware Computing and Systems, pages 1–5. USENIX
Association, 2008.

[SL13] John Paul Shen and Mikko H. Lipasti. Modern Processor Design: Fun-

damentals of Superscalar Processors. Waveland Press, 2013.

[SMC+13] Filippo Sironi, Martina Maggio, Ricardo Cattaneo, Giovanni F. Del
Nero, Donatello Sciuto, and Marco D. Santambrogio. ThermOS:
System Support for Dynamic Thermal Management of Chip Multi-
Processors. In Proceedings of the 22nd International Conference on

Parallel Architectures and Compilation Techniques, pages 41–50. IEEE
Press, 2013.

[Spr02] Brinkley Sprunt. Pentium 4 performance-monitoring features. IEEE

Micro, 22(4):72–82, 2002.

[SWV+09] Alvin W Strong, Ernest Y Wu, Rolf-Peter Vollertsen, Jordi Sune,
Giuseppe La Rosa, Timothy D Sullivan, and Stewart E Rauch III. Re-

liability Wearout Mechanisms in Advanced CMOS Technologies, vol-
ume 12. John Wiley & Sons, 2009.

[Tay12] Michael B. Taylor. Is Dark Silicon Useful? Harnessing the Four Horse-
men of the Coming Dark Silicon Apocalypse. In Design Automation

Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 1131 –1136.
IEEE, 2012.

[Tou16] Chris Toumey. Less is Moore. Nature nanotechnology, 11(1):2–3, 2016.

[TP06] Scott E. Thompson and Srivatsan Parthasarathy. Moore’s Law: The
Future of Si Microelectronics. Materials Today, 9(6):20–25, 2006.

[TWA+10] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry
Cook, David Patterson, and Krste Asanović. RAMP gold: an FPGA-
based architecture simulator for multiprocessors. In Proceedings of the

47th Design Automation Conference, pages 463–468. ACM, 2010.

BIBLIOGRAPHY 139

[UKM02] Osman S. Unsal, C. Mani Krishna, and CA Mositz. Cool-Fetch:
Compiler-Enabled Power-Aware Fetch Throttling. Computer Architec-

ture Letters, 1(1):5–5, 2002.

[VBB13] Augusto Vega, Alper Buyuktosunoglu, and Pradip Bose. SMT-Centric
Power-Aware Thread Placement in Chip Multiprocessors. In Proceed-

ings of the 22nd International Conference on Parallel Architectures and

Compilation Techniques, pages 167–176. IEEE, 2013.

[VSG+10] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation Cores: Reducing the Energy
of Mature Computations. In Proceedings of the Fifteenth Edition of AS-

PLOS on Architectural Support for Programming Languages and Oper-

ating Systems, pages 205–218. ACM, 2010.

[WDH+16] Matthew J. Walker, Stephan Diestelhorst, Andreas Hansson, Anup K.
Das, Sheng Yang, Bashir M. Al-Hashimi, and Geoff V. Merrett. Accu-
rate and Stable Run-Time Power Modeling for Mobile and Embedded
CPUs. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 2016.

[WHB05] Neil Weste, David Harris, and Ayan Banerjee. CMOS VLSI design. A

circuits and systems perspective, 11:739, 2005.

[WJMH15] Olivier Weber, Emmanuel Josse, J Mazurier, and Michel Haond. Static
and dynamic power management in 14nm FDSOI technology. In IC De-

sign & Technology (ICICDT), 2015 International Conference on, pages
1–4. IEEE, 2015.

[WJY+07] Wei Wu, Lingling Jin, Jun Yang, Pu Liu, and Sheldon X-D Tan. Efficient
Power Modeling and Software Thermal Sensing for Runtime Tempera-
ture Monitoring. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 12(3):25, 2007.

[WMC+05] Qiang Wu, Margaret Martonosi, Douglas W. Clark, Vijay Janapa Reddi,
Dan Connors, Youfeng Wu, Jin Lee, and David Brooks. A Dynamic
Compilation Framework for Controlling Microprocessor Energy and

140 BIBLIOGRAPHY

Performance. In Proceedings of the 38th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 271–282. IEEE Com-
puter Society, 2005.

[WMC+06] Qiang Wu, Margaret Martonosi, Douglas W. Clark, Vijay Janapa Reddi,
Dan Connors, Youfeng Wu, Jin Lee, and David Brooks. Dynamic-
Compiler-Driven Control for Microprocessor Energy and Performance.
IEEE Micro, 26(1):119–129, 2006.

[WMW09] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained
power control for chip multiprocessors with online model estimation.
In ACM SIGARCH computer architecture news, volume 37, pages 314–
324. ACM, 2009.

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An Insightful Visual Performance Model for Multicore Architectures.
Commun. ACM, 52(4):65–76, 2009.

[ZWM+14] Runjie Zhang, Ke Wang, Brett H. Meyer, Mircea R. Stan, and Kevin
Skadron. Architecture Implications of Pads as a Scarce Resource. In
2014 ACM/IEEE 41st International Symposium on Computer Architec-

ture (ISCA), pages 373–384. IEEE, 2014.

Appendix A

Compiler Driven Cyclic Power Gating

Saving energy while not degrading the performance of an application is an important
goal in computer architectural research. Contemporary compute stacks are equipped
with mechanisms that allow each layer in the stack to provide means of coordina-
tion for energy efficiency and performance improvements [RL16, SKZ08, BGDG+10,
PSZ+07]. A cross-layer approach where different layers are equipped with the knowl-
edge of the operation of the other layers enables coordinated decision-making [CHCR11,
CMDAN06].

In Chapter 5, Cyclical Power Gating (CPG) was introduced as an alternative for
Dynamic Voltage and Frequency Scaling (DVFS). CPG works by quickly power gating
a core and waking it up as defined by the duty cycle and the CPG period. The duty
cycle defines the ratio of on and off cycles with an example of 80% duty cycle meaning
that the core is power gated for 20% of the defined CPG period. The analysis of CPG
provided evidence that the CPG scheme has its benefits in terms of energy-efficiency
on memory-bound benchmarks. This was mainly due to the power-gating of the core
while the memory system was still active bringing in data closer to the core. A compile-
time methodology to infer whether a program function is memory-bound or not is
presented in this chapter.

A program phase is defined as a categorisable segment of a program with common
behaviour. It is possible to categorise a program phase as being either compute-bound,
when the processor resources are being utilised at a fairly high level, or memory-bound,
when the data required for computation is being moved closer to the core for compu-
tation. From the perspective of the core, these two program phases require different
measures when energy savings with the least degradataion in performanceis required.
Compute-bound phases provide the highest performance at the expense of least energy

141

142 APPENDIX A. COMPILER DRIVEN CYCLIC POWER GATING

Figure A.1: Energy Delay Product for Memory and Compute Bound Applications

when they race-to-idle, meaning that executing without any interruptions at the highest
frequency available. The energy efficiency of race-to-idle does not apply to memory-
bound phases since most of the work required by the application is being done out
of the core. It has been shown in previous work [SKK11], as well as in Chapter 5
and Chapter 4, that executing memory-bound phases at a relatively lower frequency
do not have as big an impact on performance as lowering the frequency of compute-
bound phases. The decrease in energy consumption outweighs the performance hit
in memory-bound phases (Figure A.1). Since applications consist of a combination
of compute-bound and memory-bound phases, applying CPG at an application level
granularity would not be the most effective approach when energy-efficiency is tar-
geted. In this section a compiler-driven method for lowering the granularity of CPG to
function-level will be presented.

Firstly, an analysis of the memory behaviour of selected benchmarks from the
SPEC CPU2006 suite will be presented. The candidate functions provided by this
analysis will be tagged with an instruction that hints the processor on how to drive

A.1. ANALYSIS OF MEMORY BEHAVIOUR OF CPU2006 BENCHMARKS 143

CPG, and compared with a baseline where CPG is not applied. Secondly, a way of au-
tomatically doing this using a classifier implemented as a compiler analysis pass will
be presented. The results of the compiler-driven approach to applying CPG will be
presented, along with a concluding analysis.

A.1 Analysis of Memory Behaviour of CPU2006 bench-
marks

Memory behaviour of benchmarks at a granularity of functions needs to be charac-
terised in order to evaluate whether applying CPG on memory-bound functions can
improve the metrics. Selected benchmarks from the CPU2006 suite have been eval-
uated by executing them using the Cachegrind tool on an Intel Xeon E5-2690 CPU.
Results of this evaluation will be presented in this section along with a discussion.

Cachegrind is a tool within the Valgrind Dynamic Binary Instrumentation Toolkit
[NS07]. It enables instrumentation of code by inserting a layer between the code that
is being executed, and hardware making it possible to mimic the behaviour of differ-
ent memory hierarchy configurations. An instruction cache, first-level data cache and
a shared last-level cache can be simulated with parameterized associativity, cacheline
size, and cache size. The tool also enables the simulation of branch prediction if de-
sired.

Cachegrind output is composed of cache access behaviour of the instrumented
benchmark, and it provides event counts for instructions executed (Ir), instruction
cache read misses (I1mr), last-level cache read misses caused by instruction cache
(ILmr), data cache reads (Dr), data cache read misses (D1mr), last-level cache read
misses caused by data cache (DLmr), data cache writes (Dw), D1 cache write misses
(D1mw), and last-level cache write misses caused by data cache (DLmw).

The results provided by Cachegrind are used to calculate data cache initiated last-
level cache misses per kilo instructions (LLCMPK), as given in Equation A.1. ILmr is
not included in the equation as the problem of picking the appropriate CPG duty-cycle
is an open problem, and this might lead to possible performance problems since the
fetching of instructions might be delayed.

LLCMPK = 1000× (DLmr+DLmw)
Ir

(A.1)

Table A.1 gives the results for the functions that have the highest three LLCMPK value

144 APPENDIX A. COMPILER DRIVEN CYCLIC POWER GATING

Table A.1: Function level cache missing behaviour of SPEC benchmarks

Benchmark Function LLCMPK Benchmark Function LLCMPK

astar
getregfillnum 0.084

bwaves
bi cgstab block 22.327

isaddtobound 0.018 mat times vec 21.608
makebound2 0.0083 shell 16.629

cactusADM
bench staggeredleapfrog2 3.114

gamess
vclr 0.002

N/A N/A tftri 0.003
N/A N/A ddot 0.002

gcc
ggc mark rtx children 45.104

gobmk
hashtable clear 39.583

ggc mark trees 14.129 do get read result 4.356
bitmap element allocate 3.565 hashtable partially clear 4.200

gromacs
mk mshift 0.0009

h264ref
FastPelY 14 0.534

new i nblist 0.0007 UMVPelY 14 0.234
put in list 0.0004 UnifiedOneForthPix 0.086

hmmer
P7Viterbi 3.695

leslie3d
setbc 54.350

RandomSequence 2.786 update 25.094
sre random 7.223 extrapi 23.816

mcf
flow cost 166.465

milc
su3mat copy 76.565

refresh neighbour lists 92.082 sub four su3 vecs 68.106
suspend impl 67.418 uncompress anti hermitian 60.344

namd
calc self energy 0.002

omnetpp
deliver 78.283

calc self merge fullelect 0.0005 findGate 62.588
calc self 0.0004 get 35.516

perlbench
Perl sv upgrade 1.256

libquantum
quantum sigma x 50.000

Perl sv setsv flags 1.050 quantum cnot 33.101
Perl re intuit start 0.891 quantum toffoli 27.249

sjeng
QProbeTT 48.515

xalancbmk
push 0.661

ProbeTT 43.022 StylesheetExecutionContext 0.621
checkECache 36.999 findXObject 0.472

within each analysed benchmark. The outcome of this analysis will provide the basis
to enable further experimentation to test whether applying CPG at function granularity
can provide improvements in metrics of concern when comparing against a race-to-idle
configuration.

The results show that some of the examined benchmarks such as gamess, gromacs
do not contain any functions that could be considered memory-bound as the func-
tion with the highest LLCMPK in gamess is vclr with an LLCMPK of 0.002, and
mk mshift in gromacs with an LLCMPK of 0.0009. Other benchmarks that do not
contain functions high in LLCMPK are astar, namd, perlbench, gamess, h264ref, and
xalancbmk. Benchmarks with the functions that contain functions that have a high LL-
CMPK are gcc, mcf, sjeng, bwaves, gobmk, leslie3d, milc, omnetpp, and libquantum.

Since there is no possibility of achieving energy-efficient execution against race-
to-idle in workloads that only contain compute-bound functions, the focus will be put
on workloads that have memory bound functions with a high LLCMPK.

To test the hypothesis that applying CPG on highly memory-bound functions will
provide energy-efficient execution compared to race-to-idle and higher performance

A.2. MEMORY OPERATIONS ON LLVM IR 145

Figure A.2: EDP of the CPG scheme for the mcf benchmark.

compared to application granularity CPG, the functions in the mcf benchmark with
high values of LLCMPK are picked as candidates. These selected functions have
a mean LLCMPK of 56.26730, with the highest LLCMPK function being flow cost
(166.46561) and the lowest LLCMPK function being price out impl (6.02613). A
pseudo-instruction that provides a software interface to the CPG controller has been
implemented in the simulator. This instruction is manually inserted at the entry and
exit points of these functions through the modification of the C source file using asm()

function calls. The performance of the function-grained CPG scheme is 10% worse
than race-to-idle, but the energy consumption is 11% less. This results in a 1.1% EDP
increase as given in Figure A.2.

A.2 Memory Operations on LLVM IR

Low Level Virtual Machine Project (LLVM) is a highly modular collection of software
enabling applications within the domains of compilers, virtual machines, and develop-
ment tools. An intermediate representation (IR) is a layer of abstraction that eases the
transformation of a high level source language into a target language that could be ma-
chine code, or another high level language. It represents the language for an abstract
machine that has its limits bound by a high level programming language on one end and
machine language on the other. On one hand, there is the machine-abstracted domain
of high level programming languages, which provide means of clarity and portabil-
ity, and on the other there is the machine-specific assembly that is the actual binary
code which executes on digital logic. Although an IR is not necessary for compiling a
high level language into binaries, it enables a more portable and modular compilation
framework.

146 APPENDIX A. COMPILER DRIVEN CYCLIC POWER GATING

LLVM IR is a strongly-typed instruction set for an abstract machine with a theoret-
ically infinite number of registers, where each instruction represents an operation that
affects the control behaviour of the machine. It uses Static Single Assignment (SSA)
when setting scalar values to virtual registers. SSA form means that a new register
must be used each time a scalar value is assigned, meaning that a variable can only be
assigned once.

An LLVM program is a collection of one or more modules, where each module
contains functions that are composed of basic blocks. Basic blocks are composed of bi-
nary and memory operations. Control between other basic blocks defined in a function
is established using terminator instructions, which are synonymous to branch instruc-
tions. All LLVM instructions with the exception of terminator instructions produce an
output value.

A description of each memory operation will be provided below, before going fur-
ther with the representation of memory accesses in LLVM IR.

• alloca: This instruction is used to allocate stack storage memory as specified in
its source operand. The memory allocated is located at the stack of the function
that it was called from.

• load: Loads data of size defined by its type, from the address provided as its
source operand.

• store: Stores the value in its first operand into the address pointed to by its second
operand.

• fence: This instruction is used to insert a fence, also known as a memory barrier,
to enable memory ordering at the point it is executed. It is essentially a way of
serialising pending memory operations.

• cmpxchg: Represents a compare-and-swap operation, where a value residing at
an address in memory is loaded and compared to the value provided as a source
operand. In the case that the two values are equal, the data in the memory is
updated with a new value.

• atomicrmw: Provides a representation for an atomic operation to modify the
memory.

• getelementptr: Being one of the most crucial instructions for memory opera-
tions in an LLVM machine, this instruction generates the address that the other

A.2. MEMORY OPERATIONS ON LLVM IR 147

memory operations use to read from and write to. The address to be generated
could be as simple as an offset, or more complicated like being the address for
an element of a data structure that is indexed by an array.

%1 = a l l o c a i32 , i 3 2 4
s t o r e i 3 2 0 xabababab , i 3 2 * %1
%2 = l o a d i 6 4 * %1
%3 = add i 3 2 %2, %2

Listing A.2: Stack Operations

Modern operating systems divide a process memory address space mainly into two
partitions; heap and stack. Stack memory is used to store local variables that are lo-
cal to a function. On the other hand, heap memory is used to allocate memory that
is global. This means that memory allocated within the heap can also be accessed
outside function scope. Each function is provided a stack frame as defined by the Ap-
plication Binary Interface (ABI) of the architecture that the program is being executed
on. LLVM IR represents the allocation of memory within the stack using the alloca

instruction. This enables the definition of local variables, and pointers. Pointers are
essentially local variables that contain the address of a memory location. Output regis-
ter of the alloca instruction can later be written to and read from using store, and load

instructions.
To illustrate how stack allocation is represented using LLVM IR, an example for

the addition of a 32-bit stack allocated integer is given in Listing A.2. A register is
assigned as the output of the alloca instruction (%1), followed by the store operation
of a constant value into the register. Then, the stored value is loaded into a new register
(%2). Finally, the value in this register is added with itself (%3).

An example for the addition of a heap allocated single precision floating point
register is given in A.3. First step in the example calls malloc with size parameter of
512 bytes(%1). Then, a single precision floating point variable is allocated on the stack
through the alloca function (%2). A bitcast is needed to cast the 8-bit integer pointer
returned by malloc to a floating point pointer due to the enforcement of strong-typing in
LLVM IR (%3). This is followed by a load that gets the pointer to the address that was
allocated by malloc (%4). The address for the 16th element of the allocated memory
block is loaded into the register %5, and the data in that address is subsequently loaded
into register %6. Finally, the loaded value in register %6 is added with itself (%7).

148 APPENDIX A. COMPILER DRIVEN CYCLIC POWER GATING

%1 = c a l l n o a l i a s i 8 * @malloc (i 6 4 512)
%2 = a l l o c a f l o a t * , a l i g n 8
%3 = b i t c a s t i 8 * %1 t o f l o a t *
s t o r e f l o a t * %3, f l o a t ** %2, a l i g n 8
%4 = l o a d f l o a t ** %2, a l i g n 8
%5 = g e t e l e m e n t p t r i n b o u n d s f l o a t * %4, i 6 4 16
%6 = l o a d f l o a t * %5, a l i g n 4
%7 = add f l o a t %6, %6

Listing A.3: Heap Operations

The examples in the previous two paragraphs show how the memory instructions
are used in LLVM IR. In the next section, a methodology to provide a binary classifi-
cation of functions from the SPEC CPU2006 benchmarks will be explained.

A.3 Compile-Time Classification of Memory-Bound Func-
tions

A method to classify functions through features that are obtained from program func-
tions at the LLVM IR using a supervised learning algorithm will be explained in this
section. Supervised learning is a machine learning technique that tries to classify an
unclassified data point by comparing it with previously observed and classified data
points.

The transformation of a program function that is written in a high-level source code
into machine code in a standard compilation flow is given in Figure A.3a. The high-
level source code, usually written by a developer, is input to a frontend compiler which
generates an intermediate representation (IR) of the code for a virtual ISA. Then, the
intermediate representation (IR) is passed through a number of analysis passes that
are used to obtain information which will be used as input for transformation passes
that optimise the intermediate representation. Finally, this optimised IR is input to the
backend compiler which generates machine-specific code.

The compile-time classification technique proposed in this chapter modifies this
standard flow by inserting a classifier that categorises a function as being memory-
bound or compute-bound. The proposed classifier is implemented as a function-scope
analysis pass. A function-scope analysis pass enables access to obtain all the IR level

A.3. COMPILE-TIME CLASSIFICATION OF MEMORY-BOUND FUNCTIONS149

(a) Standard Compilation Flow

(b) Compilation Flow with Function Classifier

Figure A.3: Compilation flow

statistics for a program function. Although it is not possible to be sure of the memory-
boundedness of a function without having its input data, this methodology may achieve
EDP gains by hinting at the CPG controller for a possibly memory-bound function.

A.3.1 k-NN Based Classification using LLVM

An LLVM function analysis pass to classify functions as memory-bound or compute-
bound from their LLVM IR features was implemented. The pass uses the k-NN algo-
rithm to classify functions. The k-NN algorithm is a machine learning technique that is
used for classification and regression. The algorithm works by mapping a training set
that consists of n-dimensional feature vectors onto n-dimensional space, and calculates
the distance of each element in a data set to the elements in the training set. The data

150 APPENDIX A. COMPILER DRIVEN CYCLIC POWER GATING

Table A.2: A Subset of the Training Set Used for Function Classification

Funct. Term. Binary
Ops

Logical
Ops

Memory
Ops

Get Elem.
Pointer Alloca Class

push pawn 0.22 0 0 0.6 0.09 0.04 comp
sre random 0.10 0.18 0 0.609 0.04 0.06 mem
DV push 0.15 0.05 0 0.57 0.17 0.05 comp

instance is assigned a class based on the closest k number of neighbors that belong to
the same class.

A training data set was prepared based on the LLCMPK results obtained from
the execution of the benchmarks using cachegrind as shown in Table A.1. LLVM IR
statistics for these functions were gathered by using a script that analyses the emitted
IR code for SPEC CPU2006 benchmarks.Statistics obtained from the function analysis
pass are terminator, binary, logical, and memory operators. Terminator operators are
the total number of Branch instructions including direct and indirect branches. Logical
operators are the total number of bit shifting that have been used. Binary operators
are the total number of arithmetic operators for integer and floating point operations.
Memory operators consist of load and store instructions. The count of getelementptr
instructions is used as a seperate feature, since it is involved in pointer arithmetic and
using it as a seperate feature instead of adding it to the memory counts would increase
its weight. All the features were preprocessed so that they are represented as a fraction
of the total instructions within that function. A subset of the training set with their
LLVM statistics can be seen in Table A.2.

To test the implemented classifier soplex benchmark from the SPEC CPU2006
benchmark suite was compiled using the modified LLVM infrastructure. The func-
tions tagged as memory-bound were cross-validated against the Cachegrind output.
An LLCMPK of 4 was set as a threshold as the condition for classifying a function
as memory-bound. The classifier used have correctly classified 70% of the memory-
bound functions. The produced binary was executed on the simulator infrastructure
to test whether the methodology used resulted in EDP savings. EDP of the execu-
tion across different CPG periods and duty cycles is given in Figure A.4. The results
show that none of the CPG configurations achieve better EDP than the nominal execu-
tion. This can be explained by the false-positive memory-bound benchmarks, that are
compute-bound.

A.4. CONCLUSION 151

Figure A.4: EDP for soplexbenchmark

A.4 Conclusion

A compiler-driven methodology to hint at the CPG controller for possibly memory-
bound benchmarks was proposed in this chapter. The results indicate that a more
accurate classifier is required, since throttling of a compute-bound function by the
CPG scheme has detrimental effects on performance and energy consumption.

Appendix B

Specification of GLAM Generated
Code

This appendix is intended to provide an exhaustive description for the specification
of GLAM generated microbenchmarks. The specifications for each microbenchmark
generated for performing the experiments in Chapters 4 and 5 are also provided.

B.1 Components of a GLAM Specification

As discussed in Chapter 4, GLAM uses a hierarchical specification to represent the
generated code as shown in Figure B.1. A GLAM generated program, tagged as ex-

periment, contains n number of modules where each module consist of m number of
functions that contain a directed graph with each node representing a code block that
executes an operation that is provided in the specification.

A minimal GLAM generated program contains a single module with a single func-
tion, that contains an entry and exit code block. Entry block initialises certain vari-
ables that will be needed throughout the execution of the generated function, and the
exit block returns the register value as defined in the function prototype. List of all the
keywords along with their descriptions and options are provided in Table B.1.

152

B.1. COMPONENTS OF A GLAM SPECIFICATION 153

Table B.1: List of keywords used for a GLAM benchmark specification

Keyword Description

experiment
Container for all the modules generated. Specifies aspects common
to all modules that are contained.

name
String to be used for specifying an experiment, module, function
or a code block.

descr
Description for a given experiment, module, function, or a code block.
This is not generated into code, and is only used for increasing the
readability of the specification.

repeat
Number of times the execution harness is executed to have statistically
significant results.

arch
Target architecture for compiling the execution harness to. Can be any
architecture supported by LLVM compiler (llc).

simulate
This boolean value is used to specify whether the harness will
wrap code with simulator hooks or read from hardware
performance counters.

hwpc List of hardware performance counters to probe during execution.
module List of modules to be generated
output Output file name for the LLVM IR code that the module generates.
function List of functions to be generated for the module.

prototype

Function prototype definition. ”returns” specify the return type of the
function. ”input” specifies input parameters in terms of LLVM types.
”value” specifies the value of each parameter that will be passed onto
the function. ”type” specifies whether the parameter is ”data”,
”dataptr”, or ”loopctr”.

block

List of code blocks to be generated for the function. ”distance”
specifies instruction dependency distance within the generated
instructions of the code block. ”operation” specifies the type of
operation that the code block does. Supported operations are
integer and floating point arithmetic and memory operations that
repeatedly hit, miss, or thrash on cache.

instrcount Number of instructions within the code block.
dataarg Index of the input parameter that contains the data for this code block.

loop
Tuple that specifies whether loop post-condition is constant or
parameter based.

154 APPENDIX B. SPECIFICATION OF GLAM GENERATED CODE

Experiment
Module 1 Module n

. . .

Entry Exit OperationEntry

Exit

Operation

funct_1

Entry

Exit

Operation

funct_1

funct_m

Figure B.1: Graphical representation of the GLAM specification.

Listing B.1: Experiment specification used in 4.2.1

{
” e x p e r i m e n t ” : {

”name ” : ” a l u t e s t ” ,
” d e s c r ” : ” T e s t s f o r t h e i n t e g e r a l u u n i t f o r

add / sub / mul wi th dependency of 1 : 8 ” ,
” r e p e a t ” : ”10” ,
” a r c h ” : [” x86−64” , ” x86−64” , ” a a r c h 6 4 ”] ,
” s i m u l a t e ” : [t r u e , f a l s e , f a l s e] ,
”hwpc” : [” UOPS RETIRED ” , ”PAPI TOT CYC ” , ”

IDQ UOPS NOT DELIVERED ” , ”ILD STALL : IQ FULL
” ,

” r a p l : : : PACKAGE ENERGY:PACKAGE0” , ”
r a p l : : : PP0 ENERGY :PACKAGE1” ,

B.1. COMPONENTS OF A GLAM SPECIFICATION 155

” r a p l : : : PP0 ENERGY :PACKAGE0” , ” r a p l
: : : PACKAGE ENERGY:PACKAGE1” ,

”LLC REFERENCES” , ”LLC MISSES ” , ”
BRANCH INSTRUCTIONS RETIRED” , ”
MISPREDICTED BRANCH RETIRED” ,

”MEM UOPS RETIRED : ALL LOADS” , ”
MEM UOPS RETIRED : ALL STORES ”] ,

” module ” : [{
”name ” : ” i n t a l u t e s t s ” ,
” d e s c r ” : ” h e l p s i n f i n d i n g t h e number o f

a l u s ” ,
” o u t p u t ” : ” o u t p u t / i n t a l u t e s t s . l l ” ,
” f u n c t i o n ” : [{

”name ” : ” i a d d 1 ” ,
” d e s c r ” : ” i a d d 1 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 1 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” i a d d 2 ” ,
” d e s c r ” : ” i a d d 2 ” ,
” p r o t o t y p e ” :{

156 APPENDIX B. SPECIFICATION OF GLAM GENERATED CODE

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 2 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” i a d d 3 ” ,
” d e s c r ” : ” i a d d 3 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 3 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” i a d d 4 ” ,

B.1. COMPONENTS OF A GLAM SPECIFICATION 157

” d e s c r ” : ” i a d d 4 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 4 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” i a d d 5 ” ,
” d e s c r ” : ” i a d 5 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 5 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]

158 APPENDIX B. SPECIFICATION OF GLAM GENERATED CODE

} ,{
”name ” : ” i a d d 6 ” ,
” d e s c r ” : ” i a d d 6 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 6 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” i a d d 7 ” ,
” d e s c r ” : ” i a d d 7 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 7 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,

B.1. COMPONENTS OF A GLAM SPECIFICATION 159

” loop ” : [” 0 ” , ” 0 ”]
}]

} ,{
”name ” : ” i a d d 8 ” ,
” d e s c r ” : ” i a d d 8 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 8 ” ,
” o p e r a t i o n ” : ” add ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul1 ” ,
” d e s c r ” : ” imul1 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 1 ” ,

160 APPENDIX B. SPECIFICATION OF GLAM GENERATED CODE

” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul2 ” ,
” d e s c r ” : ” imul2 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 2 ” ,
” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul3 ” ,
” d e s c r ” : ” imul3 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,

B.1. COMPONENTS OF A GLAM SPECIFICATION 161

” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 3 ” ,
” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul4 ” ,
” d e s c r ” : ” imul4 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 4 ” ,
” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul5 ” ,
” d e s c r ” : ” i a d 5 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

162 APPENDIX B. SPECIFICATION OF GLAM GENERATED CODE

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 5 ” ,
” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul6 ” ,
” d e s c r ” : ” imul6 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 6 ” ,
” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul7 ” ,
” d e s c r ” : ” imul7 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

B.1. COMPONENTS OF A GLAM SPECIFICATION 163

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 7 ” ,
” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
} ,{

”name ” : ” imul8 ” ,
” d e s c r ” : ” imul8 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” i n t 6 4 ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ”] ,
” v a l u e ” : [” 0 ” , ” 0 ”] ,
” t y p e ” : [” l o o p c t r ” , ” d a t a ”]

} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,
” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 8 ” ,
” o p e r a t i o n ” : ” mul ” ,
” i n s t r c o u n t ” : ”256” ,
” loop ” : [” 0 ” , ” 0 ”]

}]
}]

}]
}

}

164 APPENDIX B. SPECIFICATION OF GLAM GENERATED CODE

Listing B.2: Experiment specification used in 4.2.2

{
” e x p e r i m e n t ” : {

”name ” : ” memtest ” ,
” d e s c r ” : ” cache microbenchmark ” ,
” r e p e a t ” : ”100” ,
” a r c h ” : [” x86−64” , ” x86−64” , ” a a r c h 6 4 ”] ,
” a r c h f i l e ” : [” t e s t i n p u t / a r c h / xeon−e5−2670.

j s o n ” , ” none ” , ” none ”] ,
” s i m u l a t e ” : [t r u e , f a l s e , t r u e] ,
”hwpc” : [” I n s t r u c t i o n s ” , ” Cyc l e s ” , ” L1 Access

” ,
” LLC Loads ” , ” LLC Load Miss ”] ,

” module ” : [{
”name ” : ” l l c m i s s ” ,
” d e s c r ” : ” h e l p s i n f i n d i n g t h e number o f

f p u s ” ,
” o u t p u t ” : ” o u t p u t / memtest . l l ” ,
” f u n c t i o n ” : [{

”name ” : ” l 3 m i s s ” ,
” d e s c r ” : ” l o a d 1 ” ,
” p r o t o t y p e ” :{

” r e t u r n s ” : ” f l o a t ” ,
” i n p u t ” : [” i n t 6 4 ” , ” i n t 6 4 ” , ” i n t 6 4

” , ” f l o a t p t r ”] ,
” v a l u e ” : [” 0 ” , ”0” ,<

m o d i f y f o r d a t a s i z e > , ”0”] ,
” t y p e ” : [” d a t a ” , ” d a t a ” , ” l o o p c t r ” , ”

d a t a p t r ”]
} ,
” b l o c k ” : [

{
”name ” : ” b0 ” ,

B.1. COMPONENTS OF A GLAM SPECIFICATION 165

” d e s c r ” : ” b l o c k b0 ” ,
” d i s t a n c e ” : ” 1 ” ,
” o p e r a t i o n ” : ” l 3 m i s s ” ,
” i n s t r c o u n t ” : ”32” ,
” d i s t a n c e ” : ” 1 ” ,
” d a t a a r g ” : ” 3 ” ,
” loop ” : [” 0 ” , ” 2 ”]

}]
}]

}]
}

}

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Challenges with computer architecture simulation
	Challenges with power management
	Publications
	Thesis structure

	Background
	Introduction
	List of related metrics
	Out-of-order microprocessors
	Overview of an out-of-order pipeline

	Microprocessors as CMOS circuits
	Power dissipation in microprocessors
	Dynamic Voltage and Frequency Scaling
	Recent advancements in DVFS management
	Power gating

	Performance and power tradeoffs
	Power and performance modelling

	Workload generation
	A comparison of GLAM with the presented tools

	Summary

	Experimental Infrastructure
	Processor simulation
	An overview of available simulators
	gem5

	Power modelling
	Temperature modelling
	Simulation toolflow
	Simulation models
	Architectural model
	Technology model
	Floorplan

	Hardware Experiments
	Summary

	Generator of LLVM Assisted Microbenchmarks
	GLAM: Generator of LLVM Assisted Benchmarks
	Code specification
	Code generation
	Execution harness generation

	Evaluation
	Comparison of microbenchmarks on different architectures
	Performance and power trade-offs
	Measuring Energy Per Instruction

	Conclusion

	Cyclic Power Gating
	State-Retentive architecture
	Power-Gating overheads
	CPG Power and Evaluation Strategy
	Experimental methodology
	Evaluation
	Compute bound evaluation
	Memory bound evaluation
	An analysis of CPG for varying levels of memory intensity

	Comparison with VFS
	CPG at program function granularity
	Conclusion

	Conclusions and Future Work
	Summary
	Future work
	CPG Off-period Selection
	Exploiting memory stalls for determining CPG sleep periods
	CPG enabled compute stack

	Bibliography
	Compiler Driven Cyclic Power Gating
	Analysis of Memory Behaviour of CPU2006 benchmarks
	Memory Operations on LLVM IR
	Compile-Time Classification of Memory-Bound Functions
	k-NN Based Classification using LLVM

	Conclusion

	Specification of GLAM Generated Code
	Components of a GLAM Specification

