12 research outputs found

    An improved level set method for vertebra CT image segmentation

    Full text link

    Estudio del comportamiento biomecánico de discos intervertebrales usando un modelo hiperelástico de elementos finitos

    Full text link
    [ES] Las hernias de disco en la zona lumbar son una patología que sufre un número considerable de la población, y afecta gravemente sobre la biomecánica de la columna, limitando la capacidad de movimiento y actividad natural de las vértebras y del paciente. Como propuesta para mejorar los actuales tratamientos, se va a estudiar cómo actúan las cargas sobre la unidad vertebral funcional (UVF) en su actividad natural, diferenciando entre un modelo sano y otro patológico, con disco herniado. A través del método de elementos finitos, se han modelado las UVF caracterizando al disco intervertebral con propiedades elásticas y con propiedades hiperelásticas, para analizar si las diferencias entre un disco sano o un disco herniado dependen o no del modelo usado para caracterizar su comportamiento. Mediante la aplicación de cargas se han simulado los movimientos principales de las vértebras y se han obtenido la tensión de Von Mises del anillo fibroso (AF) y núcleo pulposo (NP), el desplazamiento máximo del anillo fibroso y las rotaciones relativas de las vértebras bajo cada movimiento aplicado. Como resultados del estudio, los modelos con propiedades hiperelásticas que describen un comportamiento más parecido a la realidad, proporcionan un mayor desplazamiento del AF comparado con los modelos patológicos, donde aumenta la tensión debido a la degeneración del AF y a la deshidratación del NP. Por tanto, el método de elementos finitos es una gran herramienta para estudiar y analizar el comportamiento biomecánico de las vértebras, pero, las diversas limitaciones explicadas durante el proceso, influyen sobre los resultados y se necesita seguir investigando para mejorar las condiciones de estudio mediante este método.[EN] Lumbar disc herniation are incredibly common diseases in the population. It seriously affects the biomechanics of the spine, having a huge impact on quality of life because of the limitation on their daily life. As a proposal to improve current treatments, we are going to study how load act on functional vertebral in its natural activity, between a healthy model and a pathological one, with a herniated disc. Through the finite element method, UVFs have been modelled characterizing the intervertebral disc with elastic properties and with hyperelastic properties, to analyse whether the differences between a healthy disc or a herniated disc depend or not on the model used to characterize its behaviour. By applying loads, the main movements of the vertebrae have been simulated and the Von Mises tension of the fibrous annulus (FA) and nucleus pulposus (PN), the maximum displacement of the fibrous annulus and the relative rotations of the vertebrae underneath have been obtained for every movement applied. As results of the study, the models with hyperelastic properties, that describe a behaviour more similar to reality, provide a greater displacement of the FA compared to the pathological models, where the tension increases due to the degeneration of the FA and the dehydration of the PN. Therefore, the finite element method is a great tool to study and analyse the biomechanical behaviour. However, the number of limitations explained during the process influence the results and further research is needed to improve the study conditions.Marín Vázquez, A. (2021). Estudio del comportamiento biomecánico de discos intervertebrales usando un modelo hiperelástico de elementos finitos. Universitat Politècnica de València. http://hdl.handle.net/10251/170202TFG

    Segmentação de discos intervertebrais lombares para modelação e simulação computacional

    Get PDF
    Tese de Mestrado Integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), 2022, Universidade de Lisboa, Faculdade de CiênciasA lombalgia é a principal causa de incapacidade a nível mundial. A degeneração do disco intervertebral é uma das causas da lombalgia, podendo em casos avançados necessitar da remoção do disco intervertebral e substituição deste por um implante. Este implante pode consistir num dispositivo contendo enxerto ósseo (fusão espinhal) ou num disco intervertebral artificial (artroplastia discal). Ambos os métodos apresentam vantagens e desvantagens, pelo que é importante estudar, através de modelação e simulação em elementos finitos, a forma como implantes específicos afetam a biomecânica da coluna lombar antes de os inserir. Esta modelação personalizada requer a capacidade de segmentar as estruturas anatómicas relevantes a partir de imagens médicas. O presente trabalho teve como principal objetivo a implementação/desenvolvimento de um método para localizar e segmentar automaticamente discos intervertebrais lombares em 3D a partir de imagens de ressonância magnética em ponderação T2, com o intuito de auxiliar a construção de modelos de elementos finitos da coluna lombar a partir de casos reais, fornecendo informação precisa e personalizada sobre a forma dos discos intervertebrais do paciente. O desenvolvimento do método para permitir adicionalmente segmentar separadamente as duas principais estruturas do disco – anel fibroso e núcleo pulposo – e detetar automaticamente casos em que a degeneração não permite fazer esta distinção foi posteriormente seguido como objetivo secundário. O método de segmentação foi desenvolvido a partir de um método pré-existente na literatura para realização de segmentações 2D no perfil sagital, tendo este sido parcialmente implementado, modificado e adaptado para uso em 3D. O método permitiu realizar segmentações com uma exatidão média de 87.0 ± 3.7% medida pelo coeficiente de Dice em relação a segmentações manuais de referência. Esta eficácia é comparável com outros métodos de segmentação 3D na literatura. Este método apresenta a vantagem de ser significativamente mais rápido que a maioria dos métodos existentes, demorando apenas alguns segundos para completar uma segmentação dos discos lombares. O método para detetar degeneração discal identificou corretamente o estado de 96% dos discos (saudáveis e degenerados) com que foi testado.Back pain, especially in the lumbar spine, is the main cause of disability in the world. Intervertebral disc (IVD) degeneration is one of the causes of back pain. In some cases this requires the removal of the disc and its replacement with an implant. This implant may consist of either a cage containing bone graft (spinal fusion) or an artificial IVD (disc arthroplasty). Both of these treatments have advantages and disadvantages, which is why it is important to study, through computer modeling and finite element simulation, the ways in which specific implants affect the biomechanics of the lumbar spine before inserting them. This customized modeling requires the ability to segment the relevant anatomical structures from medical images. The present work had as its main objective the implementation/development of a method for localizing and automatically segmenting lumbar IVDs in 3D from T2 weighted magnetic resonance imaging, with the goal of supporting and complementing the generation of finite element models from real lumbar spines, by providing accurate and personalized information on the shape of the patient’s IVDs. The development of the method to also allow performing separate segmentations of the IVD’s two main structures – annulus fibrosus and nucleus pulposus – as well as automatically detecting degenerated IVDs where this distinction is no longer possible was later pursued as a secondary objective. The segmentation method was developed from a pre-existing method in the literature aimed at performing 2D segmentations in the sagittal profile, which was partially implemented, modified and adapted to 3D use. The method performed segmentations with a mean accuracy of 87.0 ± 3.7% as measured by the Dice coefficient in relation to manually segmented reference volumes, or ground truths. This method has the advantage of being significantly faster than most existing 3D segmentation methods, requiring only a few seconds to perform a complete segmentation of the lumbar discs. The method for detecting IVD degeneration correctly identified the status of 96% of the discs (healthy and degenerated) on which it was tested

    Development of a biomimetic finite element model of the intervertebral disc diseases and regeneration

    Get PDF
    Tese de doutoramento do Programa Doutoral em Engenharia BiomédicaDegenerative Disc Disease is one of the largest health problems faced worldwide, based on lost working time and associated costs. This is the driving force for the development of a biomimetic Finite Element (FE) model of the Intervertebral Disc (IVD), which is a multiphasic and highly inhomogeneous structure. A great amount of experimental and numerical works have studied the IVD and proven that it presents osmo-poro-hyper-visco-elastic behavior, with high influence of the anisotropic behavior of collagen fibers. Poroelastic models of the IVD are mostly implemented in commercial FE-packages, which means that the accessibility to the source algorithm is often circumscribed. In order to approach to the biomechanical behavior of the IVD in the Human spine with higher flexibility and accuracy, an innovative poroelastic formulation implemented on a home-developed open-source FE solver is addressed and validated throughout this work. Numerical simulations were mostly devoted to the analysis of the non-degenerated Human IVD time-dependent behavior, using a geometrically accurate FE model of a full motion segment (MS), constructed with quadratic 27 nodes hexaedral elements. The results of the tests performed for creep assessment were inside the scope of the experimental and numerical literature data, with remarkable improvements of the numerical accuracy when compared with some previously published results obtained with the commercial FE-package ABAQUS®. Previously unpublished experimental data from the research partners at VUmc (Amsterdam, The Netherlands) were also analyzed and compared with the MS FE model, which proved to reproduce satisfactorily to the physiological and non-physiological conditions of those experimental tests. The IVD biomechanical behavioral is complex and dependent on multiple factors. The numerical simulations with the present MS FE model, using the home-developed open-source FE solver, demonstrated potential to biomimitize the IVD and thus contribute to the advance of the knowledge on its biomechanics.A Doença Degenerativa dos Discos é um dos maiores problemas de saúde enfrentados a nível mundial, a nível de tempo de trabalho perdido e custos associados. Esta é a motivação para o desenvolvimento de um modelo biomimético de Elementos Finitos (EF) do Disco Intervertebral (DIV), que é uma estrutura multifásica e altamente heterogénea. Um grande número de trabalhos, experimentais e numéricos, estudou o DIV e provou que este apresenta comportamento osmo-poro-hiper-visco-elástico, com influência significativa do comportamento anisotrópico das fibras de colagénio. Os modelos poroelásticos do DIV têm sido frequentemente implementados em programas comerciais de EF, o que significa que o acesso ao algoritmo-fonte é circunscrito. Para obter uma aproximação mais flexível e rigorosa ao comportamento biomecânico do DIV, uma formulação poroelástica inovadora foi implementada num programa de EF de acesso livre, desenvolvido internamente. Esta formulação é descrita e validada ao longo do presente trabalho. As simulações numéricas foram quase totalmente dedicadas à análise do comportamento do DIV Humano não-degenerado, que se sabe ser fortemente dependente do factor tempo. Para esse feito, foi utilizado um modelo de EF geométrico correcto de um segmento móvel (SM) completo, construído com elementos quadráticos hexaédricos de 27 nós. Os resultados dos testes levados a cabo para análise do comportamento do DIV em termos de fluência ficaram dentro do espectro dos resultados experimentais e numéricos disponíveis na literatura. Foram, inclusivé, registadas melhorias notáveis em relação a alguns trabalhos que utilizaram ABAQUS®, um programa de EF comericalmente disponível. Foram também analisados dados experimentais não publicados dos parceiros de investigação da VUmc (Amesterdão, Holanda). A comparação com o modelo EF do SM demonstrou que este modelo reproduz satisfactoriamente as condições dos testes experimentais, sejam elas condições fisiológicas ou não-fisiológicas. O comportamento biomecânico do DIV é complexo e dependente de múltiplos factores. As simulações numéricas levadas a cabo com o modelo EF do SM, utilizando o programa de EF de acesso livre desenvolvido internamente, demonstraram potencial para biomimetizar o DIV e assim contribuir para o avanço do conhecimento da sua biomecânica

    Procedures for finite element mesh generation from medical imaging: application to the intervertebral disc

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaThe paramount goal of this ‘half-year’ work is the development of a set of methodologies and procedures for the geometric modelling by a finite element (FE) mesh of the bio-structure of a motion segment (or functional spinal unit), i.e., two vertebrae and an intervertebral disc, from segmented medical images (processed from medical imaging). At an initial stage, a three-dimensional voxel-based geometric model of a goat motion segment was created from magnetic resonance imaging (MRI) data. An imaging processing software (ScanIP/Simplewire) was used for imaging segmentation (identification of different structures and tissues), both in images with lower (normal MRI) and higher (micro-MRI) resolutions. It shall be noticed that some soft-tissues, such as annulus fibrosus or nucleus pulposus, are very hard to isolate and identify given that the interface between them is not clearly defined. At the end of this stage, images with different resolutions allowed to generate different 3D voxel-based geometric models. Thereafter, a procedure for the FE mesh generation from the aforementioned voxelized data should be studied and applied. However, as the original geometry was only approximately known from real medical imaging, it was difficult to objectively quantify the quality of the FE meshing procedure and the accuracy between source geometry and target FE mesh. In order to overcome such difficulties, and due to the lack of quality of the available medical imaging, a “virtualization” procedure was developed to create a set of segmented 2D medical images from a well-defined geometry of a motion segment. The main idea was to create the conditions to quantify the quality and the accuracy of the developed FE meshing procedure, as well to study the effect of imaging resolution. Starting from the virtually generated 2D segmented images, a 3D voxel-based structure was achieved. Given that initial domains are now clearly defined, there is no need for further image processing. Then, a two-step FE mesh generation procedure (generation followed by simplification) allows to create an optimized tetrahedral FE mesh directly from 3D voxelized data. Finally, because the virtualization procedure allowed to know the initial geometry, one is able to objectively quantify the quality and the accuracy of the final simplified tetrahedral FE mesh, and thus to understand and quantify: a) the role of the medical image resolution on the FE geometrical reconstruction, b) the procedure and parameters of the FE mesh generation step, and c) the procedure and parameters of the FE mesh simplification step, and thus to give a clear contribution in the definition of the procedure for the FE mesh generation from medical imaging in case of an intervertebral disc.O objetivo fundamental deste trabalho de seis meses é o desenvolvimento de um conjunto de metodologias e procedimentos para a modelação geométrica, através de uma malha de elementos finitos (EF) de uma bio-estrutura de um motion segment (ou unidade funcional da coluna), ou seja, duas vértebras e um disco intervertebral, a partir de imagens médicas segmentadas (processadas a partir de imagiologia médica). Numa fase inicial, um modelo geométrico tridimensional baseado em voxels de um motion segment de uma cabra foi criado a partir de informação de imagens médicas de ressonância magnética (RM). Um software de processamento de imagem (ScanIp/Simplewire) foi usado para segmentação de imagens (identificação de diferentes estruturas e tecidos), em imagens de menor (RM normal) e maior (micro-RM) resolução. Deve ser referido que alguns tecidos moles, como o anel fibroso e o núcleo pulposo são muito difíceis de isolar e identificar, dado que as fronteiras destes não estão claramente definidas. No final desta etapa, as imagens com diferentes resoluções permitiram gerar diferentes modelos geométricos 3D baseados em voxels. Posteriormente, um procedimento para geração de malha de EF, a partir da informação voxelizada acima mencionada, deveria ser estudado e aplicado. No entanto, como a geometria original era aproximadamente conhecida a partir de imagens médicas reais, foi difícil quantificar objetivamente a qualidade do procedimento de geração de malha de EF e a precisão entre a geometria de origem e a malha de EF de destino. A fim de superar tais dificuldades, e devido à falta de qualidade de imagens médicas disponíveis, um procedimento de “virtualização” foi desenvolvido para criar um conjunto de imagens médicas 2D segmentadas a partir de uma geometria de um motion segment bem conhecida. A principal ideia foi criar as condições para quantificar a qualidade e a precisão do procedimento de geração de malha de EF desenvolvido, bem como estudar o efeito da resolução da imagem médica. A partir das imagens 2D segmentadas, geradas virtualmente, uma estrutura de voxels 3D pode ser conseguida. Dado que os domínios iniciais estão agora claramente definidos, não há necessidade de processamento de imagem adicional. Por conseguinte, um procedimento de geração de malha de EF de duas etapas (geração seguida por simplificação) permite criar uma malha de EF tetraédrica otimizada diretamente a partir de informação 3D voxelizada. Por fim, como o procedimento de virtualização permitiu conhecer a geometria inicial, é possível quantificar objetivamente a qualidade e exatidão da malha de EF tetraédrica final simplificada, e assim, compreender e quantificar: a) o papel da resolução da imagem médica na reconstrução geométrica de EF; b) o procedimento e os parâmetros da etapa de geração de malha de EF; c) o procedimento e os parâmetros da etapa de simplificação de malhas de EF, e assim, dar uma contribuição clara na definição do procedimento para a geração de malha de EF a partir de imagem médica, no caso de um disco intervertebral.European Project : NP Mimetic - Biomimetic Nano-Fiber Based Nucleus Pulposus Regeneration for the Treatment of Degenerative Disc Disease, funded by the European Commission under FP7 (grant NMP3-SL-2010-246351

    Análisis por elementos finitos de la influencia de las variaciones estructurales en el comportamiento biomecánico del disco intervertebral lumbar normal de un trabajador promedio colombiano.

    Get PDF
    Los trastornos degenerativos del disco intervertebral, son un grave problema de salud pública a nivel nacional e internacional, cuya etiología es reconocida como multicausal. Entre los factores de riesgo asociados a su aparición se mencionan las diferencias anatómicas entre individuos. Sin embargo, aun cuando la literatura reporta variaciones en la estructura del disco intervertebral relacionadas con la forma y tamaño del núcleo pulposo, el número de capas y la orientación de las fibras en el anillo fibroso, su influencia en el comportamiento biomecánico del disco intervertebral en condiciones fisiológicas y laborales en tareas como el transporte de bultos es un tema poco estudiado que se convierte en el objetivo de esta investigación

    Experimental and numerical characterization of the viscoelastic behaviour of cartilages and soft tissues of the human nose

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaThe facial plastic surgery, and particularly the area of rhinoplasty, is undoubtedly a growing up market. Surgical techniques have been evolving to respond to very specific patient desires not only for functional reasons, but also to resolve aesthetic issues. Actually, it is moving plenty of money around the world, being a great scientific and commercial opportunity among researchers. The human nose is composed of three major portions separated by two well-defined regions of transition (K-area and S-area) that are very complicated to deal with in postoperative periods. The viscoelastic behaviour of soft biological tissues, especially that of nasal cartilages and adjacent subcutaneous/fatty tissues, is barely known. There are no studies on the viscoelastic characterization of the mechanical properties of nasal septum (NS), upper lateral cartilages (ULC), and lower lateral cartilages (LLC) in creep and relaxation (basic viscoelasticity features) neither on the determination of frequency- and temperature-dependent properties of these tissues through dynamic mechanical analysis (DMA) in tension and compression. General information on thermal degradations through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) is also missing. Therefore, part of this work intends to fill this lack of the literature giving some insights into the cartilage internal composition and architecture, as well as the specificity of the activated mechanisms under constant stress or strain. Furthermore, numerical simulations were performed based on a hyper-viscoelastic mathematical formulation using a home-made open-source finite element (FE) solver (V-Biomech) in order to find a set of basic constitutive parameters that allow to replicate the experimental creep and relaxation behaviours of nasoseptal cartilage specimens from distinct regions of the quadrilateral cartilage (QLC). Thus, a complete standard biphasic poro-hyper-viscoelastic constitutive law was developed and validated. Finite Element Models (FEM) are gaining relevance to analyse soft biological components. As example, numerical simulations of the viscoelastic behaviours of the specimens harvested from anterior part of the QLC were performed to understand which of the constitutive parameters were more sensitive to achieve the best numerical-experimental agreement. The tools to reproduce these simulations in a more complex geometry (the whole nasal structure, with bony and cartilaginous components) were also developed and presented. The work still goes on it.A cirurgia plástica facial, e em particular a área da rinoplastia, é indubitavelmente um mercado em crescimento. As técnicas cirúrgicas têm evoluído no sentido de dar resposta aos desejos mais específicos de cada paciente não só por razões funcionais, mas também para resolução de problemas estéticos. Atualmente, é uma área que movimenta muito dinheiro em todo o mundo, tornando-se numa evidente oportunidade científica e comercial. O nariz humano está dividido em três regiões principais separadas por duas zonas de transição (áreas K e S) que são muito difíceis de manipular em períodos de recuperação pós-cirurgia. O comportamento viscoelástico de tecidos moles, especialmente o das cartilagens nasais e dos tecidos subcutâneo/adiposo adjacentes, é pouco conhecido. Atualmente, não existem estudos sobre a caracterização de propriedades mecânicas da cartilagem septal nem das cartilagens laterais superiores ou inferiores em fluência e relaxação (características de comportamentos viscoelásticos). A determinação de propriedades mecânicas em função da frequência de oscilação e da temperatura para estes mesmos materiais através de uma análise de DMA em tensão e compressão, assim como informações gerais sobre fenómenos de degradação térmica por DSC e TGA, também não são reportados. Assim sendo, parte desta dissertação pretende preencher esta lacuna da literatura, contribuindo para a compreensão da composição e arquitetura internas da cartilagem e da especificidade dos mecanismos ativados sob influência de uma tensão ou deformação constantes. Além disso, foram levadas a cabo simulações numéricas baseadas numa formulação matemática de híper-viscoelasticidade num software de elementos finitos desenvolvido na Instituição (V-Biomech) e foram encontrados os valores dos parâmetros que permitem replicar o comportamento experimental de fluência e relaxação de cartilagens de diferentes regiões do septo nasal. Assim, uma lei constitutiva que agrega conceitos de híper-elasticidade, viscoelasticidade e permeabilidade, acoplando o distinto comportamento de materiais sólidos e fluidos, foi desenvolvida e validada. Além das simulações do comportamento viscoelástico das amostras colhidas a partir da região anterior do septo, um conjunto de outras ferramentas para aplicação dos mesmos conceitos numa geometria mais complexa foi também desenvolvido e apresentado. Um trabalho que ainda continua

    Sensores em fibra ótica para o estudo biomecânico do disco intervertebral

    Get PDF
    Doutoramento em Engenharia MecânicaO presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição in vivo da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluídos corporais.The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented

    Computational simulation of the intervertebral disc

    Get PDF
    The intervertebral disc is a complex structure unlike any other in the human body. The capability to withstand high loads and deformations in six degrees of freedom is facilitated by the unique soft tissue structures. However, the mechanical behaviour of these tissues is not well understood. The aim of this project was to investigate methods of deriving structural information about the tissues of the intervertebral disc for application in computational simulation, with particular focus on the mechanical function of the annulus fibrosis and how the behaviour of this tissue is governed by its substructures. Magnetic resonance imaging techniques were assessed for potential to inform specimen specific models of the disc. Imaging sequences were developed and validated to image in vitro disc samples in unloaded and compressed states. These images captured the lamellar structure of the annulus in three dimensions to a level of detail not previously published. The image data facilitated the development of a novel method of specimen specific model construction, as well as providing experimental deformation data, against which the models were directly validated. Sensitivity analyses on both generalised and specimen specific models illustrated the influence of interlamellar interaction representation on the gross mechanics of the disc models. The models were adapted to illustrate the effects of tissue degeneration and intervention on disc mechanics Interlamellar interactions and tissue level mechanics were further investigated by developing specimen specific models of disc tissue samples based on microscopy data. Novel methods were developed to implement qualitative histological data into finite element analyses of annulus tissue samples. Interlamellar interactions were shown to provide a strong bond between lamellae. The parameters and variables involved in the mechanical system of the disc pose major challenges for experimental investigation. This study has successfully laid the ground work to negotiate these challenges using a computational approac
    corecore