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ABSTRACT 

Degenerative Disc Disease is one of the largest health problems faced worldwide, based on lost 

working time and associated costs. This is the driving force for the development of a biomimetic 

Finite Element (FE) model of the Intervertebral Disc (IVD), which is a multiphasic and highly 

inhomogeneous structure. A great amount of experimental and numerical works have studied the 

IVD and proven that it presents osmo-poro-hyper-visco-elastic behavior, with high influence of the 

anisotropic behavior of collagen fibers. 

Poroelastic models of the IVD are mostly implemented in commercial FE-packages, which 

means that the accessibility to the source algorithm is often circumscribed. In order to approach 

to the biomechanical behavior of the IVD in the Human spine with higher flexibility and accuracy, 

an innovative poroelastic formulation implemented on a home-developed open-source FE solver 

is addressed and validated throughout this work. 

Numerical simulations were mostly devoted to the analysis of the non-degenerated Human 

IVD time-dependent behavior, using a geometrically accurate FE model of a full motion segment 

(MS), constructed with quadratic 27 nodes hexaedral elements. The results of the tests 

performed for creep assessment were inside the scope of the experimental and numerical 

literature data, with remarkable improvements of the numerical accuracy when compared with 

some previously published results obtained with the commercial FE-package ABAQUS®. 

Previously unpublished experimental data from the research partners at VUmc (Amsterdam, The 

Netherlands) were also analyzed and compared with the MS FE model, which proved to 

reproduce satisfactorily to the physiological and non-physiological conditions of those 

experimental tests. 

The IVD biomechanical behavioral is complex and dependent on multiple factors. The 

numerical simulations with the present MS FE model, using the home-developed open-source FE 

solver, demonstrated potential to biomimitize the IVD and thus contribute to the advance of the 

knowledge on its biomechanics. 
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RESUMO 

A Doença Degenerativa dos Discos é um dos maiores problemas de saúde enfrentados a nível 

mundial, a nível de tempo de trabalho perdido e custos associados. Esta é a motivação para o 

desenvolvimento de um modelo biomimético de Elementos Finitos (EF) do Disco Intervertebral 

(DIV), que é uma estrutura multifásica e altamente heterogénea. Um grande número de 

trabalhos, experimentais e numéricos, estudou o DIV e provou que este apresenta 

comportamento osmo-poro-hiper-visco-elástico, com influência significativa do comportamento 

anisotrópico das fibras de colagénio.  

Os modelos poroelásticos do DIV têm sido frequentemente implementados em programas 

comerciais de EF, o que significa que o acesso ao algoritmo-fonte é circunscrito. Para obter uma 

aproximação mais flexível e rigorosa ao comportamento biomecânico do DIV, uma formulação 

poroelástica inovadora foi implementada num programa de EF de acesso livre, desenvolvido 

internamente. Esta formulação é descrita e validada ao longo do presente trabalho. 

As simulações numéricas foram quase totalmente dedicadas à análise do comportamento 

do DIV Humano não-degenerado, que se sabe ser fortemente dependente do factor tempo. Para 

esse feito, foi utilizado um modelo de EF geométrico correcto de um segmento móvel (SM) 

completo, construído com elementos quadráticos hexaédricos de 27 nós. Os resultados dos 

testes levados a cabo para análise do comportamento do DIV em termos de fluência ficaram 

dentro do espectro dos resultados experimentais e numéricos disponíveis na literatura. Foram, 

inclusivé, registadas melhorias notáveis em relação a alguns trabalhos que utilizaram ABAQUS®, 

um programa de EF comericalmente disponível. Foram também analisados dados experimentais 

não publicados dos parceiros de investigação da VUmc (Amesterdão, Holanda). A comparação 

com o modelo EF do SM demonstrou que este modelo reproduz satisfactoriamente as condições 

dos testes experimentais, sejam elas condições fisiológicas ou não-fisiológicas.  

O comportamento biomecânico do DIV é complexo e dependente de múltiplos factores. As 

simulações numéricas levadas a cabo com o modelo EF do SM, utilizando o programa de EF de 

acesso livre desenvolvido internamente, demonstraram potencial para biomimetizar o DIV e 

assim contribuir para o avanço do conhecimento da sua biomecânica.  
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“Facts are the air of scientists. Without them you can never fly.” 
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8 and 16. 

7.3 

Figure 7.3. Comparison between the adjusted exponential curves (“Adj”) related to the 
displacement outcomes of the activity periods, for the overloaded IVD. The presented 
outcomes are from days 1, 2, 8 and 16. 

7.4 

Figure 7.4. Comparison between the exponential and the experimental curves. The 
presented DHV curves are from days 1 and 16. 

7.5 

Figure 7.5. Example of an input file for the assignment of the boundary conditions. The 
FE solver has the capacity of reading sequential boundary conditions files. a) First input 
file (“.bio”); b) Second input file (“.bio1”). 

7.7 

Figure 7.6. Example of a section of an input file for the identification of each degree-of-
freedom where the boundary conditions will be assigned. “.bcid” stand for “Boundary 
Conditions Identification”. 

7.8 

Figure 7.7. Example of an input file for the assignment of the constitutive parameters of a 
given material. This example refers to the standard NP. 

7.8 

Figure 7.8. Example of the generic output file, which contains the evolution of the 
simulation. This information is also visualized in real time through command line 
environment. a) First section of the file, containing the generic information from the 
mesh, from the simulation and also from the materials; b) Continuation, with the 
information from the other materials and also with the numerical characteristics of the 
first time step of the simulation. 

7.10 

Figure 7.9. Example of a section of an output file containing force and displacement 7.11 
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information, along the duration of the simulation. This file is divided per each “bcid”. It 
also provides additional information on whether force or displacement boundary 
conditions were applied to that “bcid”. 

Figure 7.10. Example of a section of an output file containing the results for average 
pressure, divided per material, for each time step of the simulation. 

7.11 

Figure 7.11. Example of a section of an output file containing the results of the fiber 
stretch, along the simulation. 

7.12 

Figure 7.12. Example of a section of an output file containing the information on the 
volume variation of the each one of the materials, along the simulation. 

7.12 
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“It is the weight, not numbers of experiments that is to be regarded.” 

Isaac Newton 

 

1. INTRODUCTION 

 

The present work is devoted to the development of a biomimetic finite element model of the 

Human intervertebral disc, with the aim of creating a framework to understand the diseases that 

affect this highly complex structure, along with evaluating possible pathways to promote its 

rehabilitation and regeneration. This chapter intends to describe the motivation for this work, as 

well as to enumerate its major objectives and relevant contributions.  

Finally, the structure of this thesis will be detailed. 

 

 

1.1. Motivation 

 

The intervertebral discs (IVDs) are fibro-cartilaginous cushions serving as shock absorbing system 

of the spine, which protect the vertebral bodies (VB), brain, and other structures, providing both 

flexibility and load support. They are considered as chondroid tissues and are composed by three 

major components: the nucleus pulposus (NP), the annulus fibrosus (AF) and the cartilage 

endplate (CEP). Healthy IVDs are highly hydrated and essential for human well-being, because 

their functions are of upmost importance for the spine (Adams et al., 2009; Raj, 2008). Figure 

1.1 shows one of the most typical representations of the IVD. 

The motivation for this work comes directly from the fact that degeneration of the IVD is 

strictly associated with spine problems, which are a major cause of disability on western societies 

(Whatley and Wen, 2012).  
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Figure 1.1. Typical schematic axial representation of the IVD (although the CEP is not visible). Adapted from 

Adams and Roughley (2006). 

 

In fact, work absenteeism and decrease of productivity placed these diseases into the 

category of economic and social priorities. Over the last eighty years, a considerable amount of 

studies developed efforts to found the causes and possible treatment strategies for Degenerative 

Disc Disease (DDD) and other spine problems (Gamradt and Wang, 2005). ExperimentalI and 

computationalII studies were held, covering the fields of anatomy, physiology and biomechanics, 

for both native and degenerated conditions of the IVD. The most important works on this fieldIII 

will be referred later on this document, as well as the most important facts on IVD biomechanics.  

The first record of a spinal biomechanical study goes back to an Egyptian papyrus, which 

was endorsed to the 17th century BC. Later on, the outstanding work of Leonard da Vinci started a 

new era for the study of the biomechanics of the Human body, with the well-known “Vitruvian 

Man”. Da Vinci was probably the first one trying to describe the problematic of spinal stability, 

and produced the first detailed analysis of the constitution of the Human spine, with the correct 

curvatures and number of MS, as shown in Figure 1.2. On the 17th century, Giovanni Borelli’s 

studies lead to merge of mechanisms with anatomy and physiology, creating a discipline that he 

called “iatromechanics”, which preceded biomechanics. Borelli described the IVD as a 

viscoelastic substance, since he found that the spinal musculature was not able to support all the 

loading efforts. Therefore, the IVD should be a spring in-between the VBs, cushioning and 

protecting the bone, which corresponds to nowadays knowledge’s about the load-sharing ability 

of the Human spine components (Sanan and Rengachary, 1996). 

Despite of the advances of the 20th century, the knowledge on this subject is still 

incomplete. On the one hand, experimental studies are not able to explain all the specificities of 

                                                 
I Experimental studies include in vivo, ex vivo and in vitro studies. In vitro studies are performed with IVDs 

that can be kept alive after extraction or tested post-mortem.  
II The computational studies may also be denominated as in silico studies. 
III The main focus is on the computational studies. 

Nucleus

Pulposus

Annulus

Fibrosus
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the IVD and its interactions with the adjacent structures (Bron et al., 2009). On the other hand, 

computational models still have a way to go until the biological and biomechanical phenomena 

are accurately reproduced, despite of the great amount of computational spine and IVD studies 

published in the last forty years (Schmidt et al., 2013). Therefore, the pursuit of a more complete 

and reliable IVD model is the driving force for this work. To reach this innovation, the Finite 

Element Method (FEM) is here adopted.  

 

 

Figure 1.2. The details of the Human spine studied by Da Vinci. Adapted from Sanan and Rengachary 

(1996). 

 

This work is divided into two branches: geometrical and functional. Firstly, a finite element 

(FE) model of the IVD is required. Such model shall include the relevant anatomical and 

geometrical features of the Human IVD. Secondly, the soft-tissues that compose the IVD must be 

identified and modeled in order to carry out the numerical simulations. These in silico studies 

shall allow the identification of the biomechanical functionality of the native human IVD and the 

pathways for its degeneration. Literature data and bioreactor experimental testsIV from research 

partnersV are the benchmark for the evaluation of the numerical results obtained with the 

biomechanical model of the IVD to be developed under the present work.   

                                                 
IV The bioreactor experimental tests are in vitro compression studies performed with animal IVDs that are kept 

alive after extraction, between one to three weeks. Human IVDs are not used on these experiments, due to ethical 
issues, so the outcomes from animal IVDs are extrapolated to Human models. 

V Department of Orthopedic Surgery, VU University Medical Center (VUmc, Amsterdam, The Netherlands). 
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1.2. Objectives 

  

The present work is oriented to the development of a computational framework to study the 

specificities of IVD. In detail, this works involves updating a home-developed open-source FE 

solver and the development of a complete 3D FE model of an IVD.  

The applied methodology starts with a literature review, in order to understand all the 

issues related with the Human IVD and its degeneration, as well as the state-of-the-art concerning 

the numerical modeling and numerical simulation of the Human spine. Additionally, this first 

stage will contribute for the definition of the situations to be numerically simulated and analyzed. 

The developed FE model shall produce valuable information for the study of IVD 

degeneration and regeneration. Finally, the results from the Finite Element Analysis (FEA) will be 

compared with in vitro/in vivo tests, in order to validate the developed model and the 

implemented algorithms. 

In addition, the present work runs in parallel with the European project NPmimeticVI, which 

has the purpose of developing a biomimetic nano-polymer based gel for minimally invasive IVD 

regeneration treatment. The developments achieved in this work may also contribute for the 

progress of this project. 

Therefore, four major objectives may be defined for this work: 

1) Development of an accurate 3D FE model of a human IVD and its major adjacent 

structures;  

2) Modeling and implementation of the time-dependent behavior of the IVD, using a home-

developed open source FE solver. The most important features are: 

a. Hyper-viscoelasticity, i.e., rheological behavior of the IVD; 

b. Osmo-poroelasticity, i.e., multiphasic behavior of the soft-tissues that constitute 

the IVD, including the osmotic swelling pressure gradient; 

3) Identification of the mechanical loads and mechanical properties of the healthy IVD, in 

order to establish an IVD characteristics framework. This objective will be completed with 

                                                 
VI For further information on this project, please visit www.npmimetic.com 

file:///C:/Users/ACastro/Documents/PhD/Escrita/www.npmimetic.com
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the analysis of several groups of results, namely: 

a. Short creep tests, i.e., computational tests with duration inferior to 3h, 

associated with short-term activities; 

b. Long creep tests, i.e., computational tests with the duration of 48h, related to 

the Human daily activities; 

c. Analysis of bioreactor data from VUmc, including comparison with analogous 

numerical simulations; 

4) Contribute to the definition of a set of design specifications of the IVD functionality. The 

quantification of the mechanical properties is a key factor to the success and definition of 

treatment strategies of degenerated IVDs. The most relevant topics are: 

a. The quantification of the appropriate mechanical loads to maintain the viability of 

the Human IVD, i.e., the determination of the limits for the healthy levels of 

loading; 

b. The definition of the osmo-poro-hyper-viscoelastic characteristic of the native and 

degenerated IVD, i.e., the identification of the behavioral differences between 

what is a healthy IVD and what is a non-healthy one. 

 

1.2.1. Contributions 

 

The first contribution from the present work is the development of a full 3D FE model of a Human 

lumbar motion segment (MS), which includes one IVD and the two adjacent VBs. This model 

shall be geometrically and constitutively accurate, i.e., the FE model shall be able to reproduce 

the in-vivo behavior of the Human IVD, and such aim can only be achieved if the geometrical and 

constitutive features are correctly modeled. In addition, this model shall be also capable of 

accounting for the multiple degeneration-related behavioral changes that occur on the Human 

spine, in order to establish a framework for the biomechanical differences between native and 

degenerated conditions of the IVD, as much as possible. 

Such model can only be developed and explored with the proper set of computational 

tools. This work deals with the update of a home-developed open-source FE solver, oriented to 

the IVD biomechanical features and implemented in FORTRAN language. This software was 

already oriented to the modeling and simulation of soft-tissues, as it included their almost 
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incompressibility, the most relevant constitutive models and viscoelastic effects, as presented by 

(Alves et al., 2010). However, it was limited to monophasic problems. As the IVD was previously 

identified as a multiphasic soft-tissue, an innovative biphasic formulation is here developed and 

implemented. This formulation is the second major contribution of the present work. 

The third major contribution of this work is related with the validation of the first two key 

contributions, i.e., the validation of both MS model and FE solver. An integrated computational 

framework for the analysis of bioreactor data from the partners at VUmc is developed, combining 

custom-made FORTRAN data filters and numerical simulation through the open-source FE solver. 

Even if the validation task is first performed through comparison with well-known literature data, 

the analysis of the tests performed with the VUmc bioreactor is the paramount methodology for 

the evaluation of the in vivo behavior of the IVD, due to the nature of these testsVII. This group 

already published bioreactor-related works (Paul et al., 2013, 2012)VIII, but a systematic tool for 

the analysis of the bioreactor outcomes was needed, as well as the comparison of the 

experimental outcomes with analogous numerical predictions, in order to achieve a better 

understanding over the complex IVD behavior. Simultaneously, such procedure also completes 

the validation of the numerical work. 

  

                                                 
VII As previously described, the bioreactor environment allows the maintenance of the IVD viability up to three 

weeks, under compression tests. 
VIII Additional references on the analysis of the IVD behavior from this group may be considered: (Bron et al., 

2009; Detiger et al., 2013; Smit, 2002; van der Veen, 2009). 
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1.3. Thesis Structure 

 

The present thesis is globally structured in six chapters: “Introduction”, “The Intervertebral 

Discs”, “State-of-the-art”, “Finite Element Modeling”, “Results and Discussion” and 

“Conclusions”. These chapters are briefly described below. 

The first (and present) chapter, “Introduction”, reveals the motivation and objectives for 

this work, under the framework of the FE modeling of the IVD. 

The second chapter, “The Intervertebral Discs”, is a comprehensive description of the 

particularities of the IVD, covering the grounds of anatomy, physiology, functionality, 

biomechanics and degeneration. In addition, this chapter also deals with the biomechanics of the 

IVD in the constitutive and numerical points of view, i.e., it includes a literature review of the 

constitutive modeling of incompressible soft-tissues (oriented to the IVD) and a description of the 

most significant IVD FE models available in the literature.  

The third chapter, “Finite Element Modeling”, presents the mechanical modeling, the 

development of the constitutive equations and the generation and optimization of the FE mesh. 

The fundamental tool for this work is an open-source home-developed FE solver, whose 

functioning and modeling features are described. This solver already comprised several relevant 

features of biomechanics, namely the almost incompressibility of soft-tissues, viscoelastic effects 

and the relevant isotropic and anisotropic hyperelastic laws. In addition, an innovative biphasic 

poroelastic formulation (coupled with osmotic swelling) is implemented and detailed. The IVD FE 

model is also fully described, from the geometrical features to the material properties. 

The fourth chapter, “Validation”, deals with the validation of the innovative biphasic 

poroelastic formulation. This task starts with the generic Terzaghi’s 1D consolidation test. 

Afterwards, the validation task is performed using the IVD FE model, through comparison with 

literature data and also through a mesh convergence study. 

The fifth chapter, “Results and Discussion”, comprises a complete numerical study of the 

IVD, using FEM. The main purpose is to characterize the biomechanical behavior and 

functionality of the IVD (and the adjacent structures in the Human spine), both in healthy and 

pathological conditions. Several numerical tests are held and its results are compared with 
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available literature data and experimental tests from research partners. The results are analyzed 

and discussed at the light of the current knowledge on IVD FE modeling. 

The sixth (and last) chapter, “Conclusions”, is the comprehensive description of the 

outcomes of the present work. Therefore, a critical review of the whole work is presented. In 

addition, suggestions for possible future work are addressed.  

This thesis also includes four annexes, including the exploration of one numerical case that 

was out of scope of the “Results and Discussion”, the detailed analysis of a very particular 

experimental test from the research partners, the example of a set of input and output files of the 

open-source FE solver and, finally, the list of publications and communications related to the 

present work. 
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2. THE INTERVERTEBRAL DISCS 

 

The present chapter is a comprehensive description of the particularities of the IVD, covering the 

grounds of anatomy, physiology, functionality, biomechanics and degeneration. In addition, the 

IVD-oriented constitutive modeling and state-of-the-art on the IVD FE models are revised and 

detailed, with focus on the most relevant works published to date. In other words, this chapter 

deals with the review of the literature associated with the IVD, being divided in four sections, 

namely “Anatomy and Physiology”, “Biomechanics”, “Degeneration” and “Numerical Modeling”.  

 

 

2.1. Anatomy and Physiology 

 

The Human spine is a complex system, anchored on an advanced neuromuscular control and 

consisting of 4 major zones: the neck with the cervical VBs (C1 to C7), the thoracic VBs (T1 to 

T12), the lumbar VBs (L1 to L5) and the sacral VB (S1). Figure 2.1 shows a representation of the 

complete Human spine, which is also denominated as vertebral column or backboneI.  

This is a stable structure, even if highly mobile. Furthermore, none of the components of 

the spine can be considered as self-sufficient, because they are mutually dependent (Ebraheim et 

al., 2004; Grumme and Bittl, 1998; Niosi and Oxland, 2004). The major functions of the spine 

are weight bearing, allowing motion between upper torso and pelvis and protection of the spinal 

cord and nerve roots (Dolan and Adams, 2001; Niosi and Oxland, 2004).  

The functional unit of the spine is the MS, also denominated as functional spinal unit (FSU 

or simply SU) (Frei et al., 2002; Gamradt and Wang, 2005). There are 24 MS on the Human 

spine and each one of these load-sharing units is composed of 2 VBs linked by one IVD. Figure 

                                                 
I Sagittal (or lateral) and axial (or transverse) planes are the most frequent choice for spine and IVD 

representation, and are usually presented from the anterior (or ventral) position to the posterior (or ventral) position, 
or vice versa. Visualization of the frontal (or coronal) plane is less usual. 
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2.2 shows a picture of a sagittal cut of a healthy Human lumbar IVD (a)) and a schematic 

representation on the same perspective (b)). There are a total of 23 IVDs in the entire length of 

the spinal cord. It must be highlighted that there is no IVD between the C1 and C2 VBs (Raj, 

2008).  

 

 

Figure 2.1. The complete Human spine, in both sagittal and frontal views. Adapted from Noailly (2009). 
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b) 

Figure 2.2. The Human IVD: a) Ex vivo photography of a healthy Human lumbar IVD, with the VB also visible (mid 

sagittal cut, anterior-posterior direction). Adapted from Adams et al. (2009); b) Schematic representation of a mid 

sagittal cut of the IVD, posterior-anterior direction. Adapted from Noailly (2009). 

 

The spine is exposed to different types of loads and stresses, namely dynamic and static 

loads, tensile stresses, torsional loads, shear stresses and a combination of tensile, compressive 

and shear stresses. The importance of the IVD for the spine is to maintain flexibility and motion, 

preserving the proper anatomic spatial orientation (Adams et al., 2009; Nixon, 1986; Riches et 

al., 2002). Nevertheless, the stability and dynamics of the Human spine is also dependent on 

other structures, namely the facet joints and several ligaments (Ebraheim et al., 2004). 

The IVD is a highly inhomogeneous porous structure, which contains solid and fluid 

materials. It is, in its majority, avascular (Raj, 2008; Shankar et al., 2009). The central structures 

of the disc (NP and AF) are quite different in both constitution and function, but are paired 

structures, vertically limited by the CEPs and vertebral endplates (VEPs). The NP presents a gelly-

structure with embedded fibers and occupies the core of the IVD. Surrounding it, emerge an 

amount of concentrically arranged fibers supported on a porous matrix, which is the AF (Shankar 

et al., 2009; Urban et al., 2000; Wagner and Lotz, 2004). The CEP is a layer of hyaline cartilage 

that is responsible for most of the nutrients exchange with the VB. Each IVD has approximately 7-

13mm in height and 35-55mm in diameter (axial plane). If one considers the 23 IVDs stacked, 

this construct would comprise approximately one-fourth to one-third of the total height of the 

vertebral column (Ebraheim et al., 2004; Raj, 2008; Whatley and Wen, 2012). Figure 2.3 shows 

an example of a MS, with the IVD anatomy highlighted. 
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The VB is substantially stiffer than the IVD. It is a highly porous and vascularized portion of 

bone tissue, containing two distinct layers of bony material, as happens with other bony 

structures. The inner layer is the trabecular bone (TB), which can be roughly distinguished by the 

lower density, in comparison with the cortical bone (CB) (Fields et al., 2010). This last one forms 

the outside layer, which is in direct contact (proximal-distal axis of the spine) with the IVD through 

the VEP. The discrimination between the VEP and the CEP is not always clear, as some authors 

only refer to the “endplate” and do not separate these two structures (Swider et al., 2012). 

However, the CEP only covers the internal one-third of the extension of the AF, which means that 

this IVD component is also in direct contact with the VB. Therefore, even considering that a 

continuum medium is being discretized, the VEP is the existent and perceptible border between 

the IVD and the remaining VB (Adams et al., 2009; Ebraheim et al., 2004; Mirza and White, 

1995; Raj, 2008). 

 

 

Figure 2.3. Anatomy of a MS, with emphasis on the IVD dimensions. Adapted from Raj (2008). 

 

In what concerns to the boundaries between the three IVD components, these are to a 

certain extent visible, but the transition from one component to another is smooth. Therefore, 

detaching one from another is demanding, both on ex vivo experiments and computational 

imaging techniques (McNally et al., 2000). The discussion on the correct definition of the IVD 

internal boundaries may be correlated with the discussion of what is the better imaging technique 

to investigate the IVD structure and when should a certain technique be applied. Presently, 

discography, X-Rays, Computational Tomography (CT), Magnetic Resonance Imaging (MRI) and 

myelography are used (Grumme and Bittl, 1998; Li and Wang, 2006; Taher et al., 2012). CT 

images have proved to be a good tool for the segmentation of hard tissue like the bony 

structures, but turned out to be less efficient than MRI images in the detection of soft tissues, 
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such as the IVD components. However, more important than the imaging technique, the obtained 

images should have good resolution, in order to allow the identification of the IVD components 

and its healthiness. 

The IVDs are positioned in one of the most sensible locations of the Human body, next to 

the spinal canals. Consequently, in vivo studies are quite challenging to perform (Nachemson 

and Morris, 1964). As a matter of fact, the work of Wilke et al. (1999) proved that those studies 

could be performed, but they are highly dependent on the availability of volunteers and the 

experiment can be excessively painful and intrusive. Therefore, the major part of the information 

about the IVD behavior still comes from in vitro studies. These studies are usually performed ex 

vivo, but some up-to-date techniques allow the IVD to be kept aliveII after the sacrifice of the 

animal. The works of (Chan et al., 2013; Gantenbein et al., 2006; Korecki et al., 2007; Paul et 

al., 2013, 2012) described bioreactors capable of providing nutrition and mechanical stimulation 

to the extracted IVD between one to three weeks. This kind of procedures can become the next 

benchmark for IVD experimental studies. Allied to these remarkable developments, numerical 

studies through the FEMIII are benefiting from the improvements on the computational power to 

become more exhaustive and wide-ranging every day (Schmidt, Galbusera, et al., 2013).  

 

2.1.1. Nucleus Pulposus 

 

The NP has high water content, through a highly hydrated gel. Embedded on this gel are fibers of 

collagen and elastin. In detail, the NP consists of two major regions: the solidified porous center 

and the surrounding gel-like area. Type II collagen and radially organized elastin fibers provide 

consistence to the central region and hold the less dense surrounding area, which contains 

proteoglycan molecules, with preponderance of aggrecan. The presence of hydrophilic 

glycoaminoglycans (mainly chondroitin and keratin sulfate) creates strong water-bonds and also 

contributes to the global consistency of the NP (Iatridis et al., 1996; Shankar et al., 2009; Urban 

et al., 2000).  

The NP is osmo-poro-visco-hyperelastic, mostly isotropic and almost incompressible. It is 

neither exclusively a solid nor a fluid, thus it is considered a biphasic tissue (Iatridis et al., 1997, 

                                                 
II The artificial nutrition and the loading stimuli are the most important factors for the survival of the IVDs. 
III Simulations through Multibody Systems (MBS) are also frequent for the study of spine macromechanics. 
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1996).  However, it must be highlighted that young NP show tendency for a fluid-like behavior, 

which progressively turns into a solid-like behavior with ageing, as the hydration decreases. 

Such characteristics tailor the NP into a structure that sustains the stress gradients in vivo, 

mainly compressive and shear stresses. The volumetric changes along the daily activities are 

almost exclusively due to the fluid exchanges with the adjacent structures (CEP and AF), which 

are regulated by the osmotic swelling pressureIV. Consequently, these internal pressure gradients 

rule the stress and strain profiles of the NP (Nerurkar et al., 2010; Schroeder et al., 2010; 

Schultz et al., 2009; Skrzypiec et al., 2007).  

The complex biochemical composition is probably the key for the mechanical behavior of 

the NP, together with the spatial confinement between the AF and the CEP. Modeling approaches 

to the NP must consider the influence of both porous and fluid parts (multiphasic approaches), 

as well as the interaction between them (Huyghe et al., 2003; Schmidt, Bashkuev, et al., 2013; 

Schmidt, Galbusera, et al., 2013; Schroeder et al., 2010). 

 

2.1.2. Annulus Fibrosus 

 

The AF is stiffer than the NP. This higher stiffness is due to a porous matrix with high density of 

fibrous composite tissue. Its biochemical composition is mainly grounded on collagen fibers, but 

elastin fibers and proteoglycans can also be found. The biomechanical functions of the AF are 

containing intradiscal pressure (IDP)V and guiding the intervertebral motion (Adams and Green, 

1993; Iatridis et al., 1999; Wagner and Lotz, 2004).  

The architecture of the AF is highly stratified, with intricate angle relations (cross-angle) 

between several layers of fibers, which are denominated as lamellae. Marchand and Ahmed 

(1990) reported a range of 15 to 26 AF fiber layers, and it is frequent to see references to an 

average number of 20 layers (Iatridis et al., 2013; Noailly et al., 2005). Each one of these layers 

works to bear up the harsh mechanical conditions of the spine, in thigh association with spine 

ligaments. The AF fibers are inhomogeneous (region-dependent), thus the AF is typically divided 

into inner and outer regions. In fact, fibers present radial and circumferential differentiation, in 

terms of mechanical properties and cross-angle (Holzapfel et al., 2005; Malandrino et al., 2013). 
                                                 
IV The concept of “osmotic swelling pressure” will be detailed in the following section. 
V The AF acts as vessel wall, in order to intradiscal fluid. 
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The outermost fibers of the AF are well organized and more resistant to tensile forces, i.e., after 

flexion or extension efforts, the elastin fibers are essential to the return of the whole IVD structure 

to its pre-movement position. Therefore, these fiber layers are responsible for the characteristic 

bulging effect of the AF, as a response to the NP pressure gradient.  

The organization and concentration of the collagen fibers decreases from the outside into 

inside, which means that the innermost AF is less stiff. A thin band of tissue makes the transition 

from the AF to the NP (Adams and Green, 1993; Eberlein et al., 2001; Holzapfel et al., 2005). 

This structural organization leads to a tissue that is anisotropic and osmo-poro-visco-hyperelastic 

(Eberlein et al., 2001; Holzapfel et al., 2005). FE models of the AF commonly use hyperelastic 

constitutive laws with tension-only reinforcing elements to model the collagen fibers (Little et al., 

2010; Noailly et al., 2005). 

 

2.1.3. Cartilage Endplate 

 

The CEP is a thin layer of hyaline cartilage, composed by proteoglycan, collagen and water. Such 

composition is quite close to the composition of articular cartilage, but the water content of the 

articular cartilage is superior (Wilson et al., 2007). It is a non-uniform structure, with an average 

thickness of 0,6mm. The highest cell density is registered in its center, but the center is also the 

thinnest region of the CEP (Hamilton et al., 2006; Moore, 2006, 2000; Roberts et al., 1989).  

Nevertheless, Thompson’s morphological classification of IVD degenerationVI originally 

considered the irregularity of the CEP as a degeneration mark (Thompson et al., 1990). It acts as 

an anchoring structure, covering the whole extension of the NP and about one-third of the AF, but 

it includes some points of contact with the marrow as well (Moore, 2006, 2000).  

Given these features, the CEP is the main responsible for the exchange of nutrients with 

the adjacent VB, as already indicated (Swider et al., 2012). Figure 2.4 shows the nutrition 

pathways of the IVD. Since the healthy IVD is avascular for adult Humans, the greater part of its 

nutrition goes by diffusion, as the capillary network of the CEP take the nutrients to the inner 

parts of the IVD, by osmotic regulation of the proteoglycan content (Hamilton et al., 2006; 

Jackson et al., 2011; Roberts et al., 1989).   

                                                 
VI This classification will be detailed in the third section of the present chapter. 
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Subsequently, most of the known problems affecting the IVD tend to start or to involve 

CEP-related issues. When the CEP is calcified (by ageing effect, for example), it becomes 

gradually impermeable, so the flow of nutrients is interrupted. Later on, this effect may promote 

the appearing of cracks, which will increase again the permeability, but the fluid flow is then 

hardly regulated. In addition, an incomplete or injured endplate will be less able to withstand the 

pressure from the NP. Fractures may cause this kind of damage too. Pathological conditions of 

the CEP may also lead to the appearance of protuberant structures on the adjacent VB, 

denominated as Schmorl’s nodes. These nodes are probably a root for disc degeneration (Adams 

and Dolan, 2012; Iatridis et al., 2013; Moore, 2006). 

 

 

Figure 2.4. Nutrition pathways of the IVD. Adapted from Raj (2008). 

 

2.1.4. Cellular Level 

 

The extracellular matrix (ECM) of the IVD cells has a “cartilage-like” behavior, which may explain 

most of the characteristics of the IVD components. The major issue concerning the current 

knowledge about the mechanobiology of IVD cells is the source of the data, given that in vitro or 

in vivo animal experiments are not able to mimic the response of the Human cells (Beckstein et 

al., 2008; Schmidt and Reitmaier, 2013).  The in vitro tests are performed with isolated cells or 

separated group of cells, instead of a proper continuum environment. The in vivo animal 

experiments can be useful to understand the live phenomena, but they are (at most) comparable 
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to the Human cellsVII. Therefore, the mechanisms of mechanotransduction of the Human IVD are 

not quite understood yet, even if there is evidence that the ECM determines the non-uniform 

intercellular mechanical environment of the IVD (Choi, 2009; Guilak et al., 1999; Hsieh and 

Twomey, 2010; Song et al., 2008).  

Today there is recognition that the IVD has a low metabolic rate. Moreover, the NP cell 

population changes drastically since immaturity to adulthood: from chordocytes and chordoblasts 

to chondricytic cells. The exact behavior of the immature NP cells is one of the major questions 

that remains to be answered in this field of knowledge, even if the mechanical properties follow 

the natural changes related with ageing: from predominantly swelling properties to elastic 

properties. Therefore, NP cells are usually subjected to compression and shear stresses, 

combined with the tendency of the tissue to swell (Neidlinger-Wilke et al., 2013). However, 

relative cell homogeneity is maintained, opposite to the AF inhomogeneous cell population. This 

inhomogeneity corresponds to the layered structure of the AF and contributes to its complex 

mechanical behavior. The AF cells are typically subjected to tensile and shear strains, which may 

occur between the lamellae or even within the lamellae (Adams and Green, 1993; Hsieh and 

Twomey, 2010; Neidlinger-Wilke et al., 2013). Given that the nutrients supply is provided by the 

CEP, the cells from this component are determinant for the maintenance of synthesis and 

integrity of the ECM (Cao et al., 2011; Choi, 2009; Shirazi-Adl et al., 2010; Song et al., 2008). 

 

  

                                                 
VII Alini et al. (2008) reported that the absence of notochordal cells in adult cow and sheep NP resembles the 

organization of Human adult NP, which does not occur with other animals, such as mouse, dog or pig. 
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2.2. Biomechanics 

 

The major role of the IVD is mechanical, as it constantly transmits loads arising from body weight 

and muscle activity through the spinal column, starting on the head into the upper extremities 

and beginning on the torso into the lower extremities. Each IVD provide six degrees of freedom to 

the correspondent spinal MS, serving as a central axial structure for cushioning loads. Moreover, 

it must be highlighted that the IVD has a rate-dependent behavior, based on viscoelasticity (short 

periods, under 1min) and poroelastic effects (longer periods, from minutes to hours) (Ebraheim 

et al., 2004; Galbusera, Schmidt, Noailly, et al., 2011; Raj, 2008; Schroeder et al., 2010; 

Shankar et al., 2009).  

Diverse mechanical solicitations on the spine take place all day long, even during rest or 

sleep. The response of each MS is clearly influenced by the IVD behavior and by the interaction 

with the adjacent structures, namely ligaments and musculoskeletal system. In addition, the 

distribution and transfer of loads is dependent on the type of solicitation. For example, the MS is 

stiffer in extension than in flexion, even if the IVD internal pressure is higher on flexion 

movements (Jayson et al., 1973; Martinez et al., 1997; Riches et al., 2002; Williams et al., 

2007). During activities as frequent as level walking, the peak compressive forces can rise to 

more than three times of the value of body weight, increasing to at least five times of the value of 

body weight for vigorous forms of activity or at the extremes of motion, with trunk flexion or load 

carriage. However, concerns must be particularly addressed to the first hours of the day, due to 

an effect of bending stiffness that is declared to occur during the first three active hours of the 

day (after the rise up). During bending and lifting tasks, the peak bending moment resisted by the 

lumbar spine is twice as great in the early morning compared to later in the day, on healthy 

people with no IVD degeneration (Dolan and Adams, 2001; Rohlmann et al., 2006; Snook et al., 

2002; van der Veen, 2009) 

The healthy IVDs are very similar along the different spinal levels, in both composition and 

function. Mostly size and shape vary from the cervical level into the lumbar region (Ebraheim et 

al., 2004). Given these geometrical differences, the stress and strain fields are different. The 

lumbar spine is the most studied section, since it concentrates most of the circadian 

deformation, and thus most of the injuries. Spinal instability, disc degeneration, posture, loading 
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history and muscle fatigue were proved to significantly change the stress distribution, inside the 

IVD (Moore, 2006; Niosi and Oxland, 2004; Panjabi, 2003). On the one hand, the IVD is an 

anisotropic structure, dependent on the fiber directions, mainly those from the AF (Adams and 

Green, 1993; Tsuji et al., 1993). On the other hand, the loading equilibrium is provided by the 

osmotic swelling pressure. The osmotic swelling pressure is the regulatory mechanism of the 

solute exchange through permeable membranes, i.e., the minimum pressure to nullify osmosis. 

In simple terms, the healthy IVD permanently presents a given positive internal pressure that 

ensures the integrity and responsiveness of the systemVIII, mostly due to the NP swelling 

propertiesIX (Lanir, 2012; Sivan et al., 2006; Whatley and Wen, 2012). The IVD osmotic swelling 

behavior is more noticeable on the height recovery during rest periods (Adams et al., 

2009; Galbusera, Schmidt, Noailly, et al., 2011; Zander et al., 2010) . The conjunction of 

these features (anisotropy and osmotic swelling pressure) with the viscoelasticity of the tissues 

(matrixes and fibers) allows the IVD to deal with a great complexity of efforts. 

The NP is responsible for sustaining the axial compressive loads, while the tensile stresses 

are held by the AF, which is always in a pre-stressed condition. In detail, under loading 

conditions, the pressure goes from the NP to the surrounding structures, i.e., a radial flow occurs 

from the NP into the inner layers of the AF and a vertical flow is noticed from the NP into the 

CEPs (Neidlinger-Wilke et al., 2013; Raj, 2008). Figure 2.5 shows a schematic representation of 

this pressure distribution inside the IVD. 

These phenomena may occur dynamically at multiple time scale and convert the 

compressive loading from the NP into tension within the AF, while reducing the loads on the 

adjacent VB. However, different loading profiles may disarrange this organization. For example, 

sustained compression efforts decrease the NP pressure and increase the compressive stress in 

the AF and neural arch (Adams and Dolan, 2012; Iatridis et al., 2013; Nixon, 1986).  

The CEP is not really able to handle with compressive loads, but has also the function of 

absorbing some of the pressure that originally comes from the NP. Therefore, this component 

acts as a physical barrier, establishing the major part of the IVD-VB interactions (Hadjipavlou et 

al., 2008; Moore, 2006; Roberts et al., 1989; Shankar et al., 2009). 

 

                                                 
VIII This is extremely relevant for the maintenance of healthy IDP levels (Adams et al., 2009). 
IX The native NP osmotic swelling pressure is around 0.20MPa, while the equivalent pressure for the AF is 

around 0.05MPa (Galbusera, Schmidt, Noailly, et al., 2011). 
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Figure 2.5. Schematic representation of the pressure distribution inside the IVD, under a typical axial compressive 

load. Adapted from Noailly (2009). 

 

2.2.1. Loads 

 

The spine system experiences the most demanding mechanical solicitations of the whole Human 

body. Day by day, on an infinite diversity of environments, the spine is being subjected to 

different kinds of loading profiles, in slow or rapid movements. In simple terms, there are 

compressive and shear loads and a complex combination of compressive and shear forces as 

well (Bazrgari, Shirazi-Adl, and Kasra, 2008; Frei et al., 2002; Niosi and Oxland, 2004; Schultz et 

al., 1982). The lumbar spine transmits loads between each intervertebral level through the IVD 

and the facet joints. Under compression, the load is transmitted primarily through the anterior 

spine. For that reason, the IVD is able to support large loads within the spine.  

The dominant features for load-bearing are the maintenance of the internal pressure within 

the NPX and the associated bulging effect on the AF and on the CEP. Nevertheless, some authors 

have suggested that the proportion of load transmission shifts to the posterior elements of the 

spine with advancing degeneration (Bazrgari, Shirazi-Adl, and Kasra, 2008; Natarajan et al., 

2004; Niosi and Oxland, 2004; Rohlmann et al., 2006). This means that whenever the portion of 

load transmitted through the anterior spine is decreased, degeneration is probably occurring or 

has occurred. Under shear loads, it was found that the healthy IVD transfers load peripherally 

through the AF. Unfortunately, there is a lack of studies concerning the biomechanics of load 

                                                 
X NP internal pressure is mostly based on the osmotic swelling pressure gradient. 
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transfer in shear or in combined loading (Bazrgari, Shirazi-Adl, and Larivière, 2009; Bazrgari, 

Shirazi-Adl, and Kasra, 2008; Iatridis et al., 1999; Yang and King, 1984). 

The regular daily loadsXI are averagely 200N during restXII and between 600 to 800N during 

activity. For the present discussion, the magnitude of the loads is considered as independent 

from the type of solicitation, i.e., all the described activities are equaled to a compressive load. 

Nevertheless, this is only an oversimplification, since angular movementsXIII are of topmost 

importance for the spine. Typical moments on the spine for pure flexion and extension 

movements are averagely 4 to 10 NmXIV. These moments correspond, for example, to position 

changes (Guan et al., 2007; Rohlmann et al., 2012). In what concerns the daily periods, 

moderate activities such as level walking, sitting or carrying light objects are considered for the 

typical loading profiles (Adams et al., 1987; Sato et al., 1999; Wilke et al., 1999). Harsher 

activities, such as lifting and carrying heavy objects, may be represented through 1500 or even 

2000N loads (Pollintine et al., 2010; Wilke et al., 1999). 

 

2.2.2. Mechanical Responses 

 

The velocity of a given movement is one of the factors influencing the mechanical response of the 

spine, i.e., if the movement is faster, the effect for the structures of the spine is more severe. 

Such effect is more noticed on the IVD, regardless of the type of movement or carried/lifted load. 

The acceleration of the movement also determines the response of the spinal structures, 

because muscle activation-reaction mechanism is more difficult when a given movement begins 

suddenly. The muscles, as well as the ligaments, may not accomplish the task required by that 

sudden movement, so the spine will be exposed to excessive loadings and the probability of 

injury is larger (Bazrgari et al., 2008a; Colombini et al., 2008; Dolan and Adams, 2001; Niosi 

and Oxland, 2004).  

The posture of the subject is determinant for the response of the Human spine, particularly 

on the magnitude of the beard load and percentage of load transferred through the spinal 

                                                 
XI For the present discussion, the magnitude of the loads is considered as independent from the type of 

solicitation, i.e., all the described activities are equaled to a compressive load. 
XII The rest period is associated with lying prone. 
XIII Angular movements: rotation, flexion and extension. 
XIV Moments from 1 to 20Nm are reported in the literature (Guan et al., 2007; Moramarco et al., 2010; 

Rohlmann et al., 2012; Schmidt et al., 2009). 
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structures. Subjects who work constantly with flexed postures probably have higher risk of 

developing spine diseases, as the consequences of the loading effects become less sustainable 

and the condition of the IVD is increasingly degraded (Gunning et al., 2001; Holzapfel et al., 

2005; Nerurkar et al., 2010; Rohlmann et al., 2012). To prove this point, one may mention the 

concept of Whole Body Vibration (WBV), i.e., the exposition of the body to vibratory environment. 

Such conditions influence the response of the Human tissues and the spine is not an exception 

(Dupuis and Zerlett, 1987). People are not only exposed to WBV in harsh working environments 

(truck drivers or construction workers, for example), but even in their leisure time. Indeed, some 

authors defend that WBV is a proper training method for better performances in work and sport 

(Prisby et al., 2008), while others have found that it is a risk factor for spinal injuries (Dupuis and 

Zerlett, 1987; Guo et al., 2011; Wilder and Pope, 1996).  

The works of Bazrgari and co-workers (2008 to 2009XV) reported that the probability of 

occurrence of DDD may be increased by long exposure to vibration, augmenting the 

consequences of IVD degeneration, especially if linked with genetic predisposition. The 

assessment of WBV may help to understand, macroscopically, the degree of mechanical 

solicitations on the spine and, subsequently, on the IVD. They also investigated the effects of 

musculoskeletal excitation on the spine and concluded that near-resonance frequencies are 

associated to heavier loads. 

  

                                                 
XV Full references: Bazrgari, Shirazi-Adl, and Kasra (2008); Bazrgari, Shirazi-Adl, and Larivière (2009); 

Bazrgari, Shirazi-Adl, and Parnianpour (2009); Bazrgari, Shirazi-Adl, Trottier, et al. (2008). 
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2.3. Degeneration 

 

The degeneration of the IVD is firmly associated with the diseases of the spine, particularly low 

back pain. For many years, a considerable amount of studies have developed efforts to trace the 

causes and possible solutions for such issue, given that spine problems are a major cause of 

disability on western societies. Recent reports from the European Commission (and associated 

agencies) clearly show that the frequency of these diseases tends to augment every year 

(European Agency for Safety and Health at Work, 2008; European Comission, 2007; Hadjipavlou 

et al., 2008; Taher et al., 2012). 

The mechanical structure, and consequently the mechanical behavior of the three main 

components of the IVD are altered by degeneration. Figure 2.6 shows different snapshots on the 

comparison between healthy and degenerated IVDs. The beginning of adulthood has been 

described as the age for the first symptoms of IVD degeneration to appear: an effect of 

conversion of tensile stresses in compressive stresses is stated to occur, meaning weakened 

mechanical conditions of the AF and CEP (Adams et al., 2009; Holm et al., 2004).  

Afterwards, the NP will be affected, as the fluid exudation is insufficient and the aggrecan 

content is degraded. Overall, the mechanical performance stress distribution is altered, as the 

load-support function is progressively transferred from the NP to the AF. The IVD starts to suffer 

from increasing height reduction, the hydration level is also lower and herniation may occur. 

These events may be correlated with pathologic quantity and distribution changes on the collagen 

fibers (Choi, 2009; Hadjipavlou et al., 2008; Iatridis et al., 2013; Shankar et al., 2009; Urban 

and Roberts, 2003). On the one hand, it should be highlighted that none of these events occur 

separately, as all the components of the IVD are mutually-dependent. On the other hand, the 

timeline is not linear, as the described complications may be happening simultaneously or not. 

The causes for IVD degeneration are not yet fully understood, and the complaints from the 

patients are also miscellaneous. An assortment of pathways for degeneration may be numbered: 

it may start with a fracture (or other damage) on the CEP, as a result of abnormal loading or 

calcification (Colombini et al., 2008). Proteoglycan loss, first on the CEP and then on the NP, 

may precipitate degeneration as well (Massey et al., 2012). Moreover, it must be highlighted that 
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CEP failure is one of the most important triggers for DDD, as nutrition can be interrupted and so 

the viability of the IVD cells is compromised. The nutrients flow can still be ensured through the 

outer AF, but this pathway is not enough to maintain the integrity of the whole IVDXVI (Adams and 

Roughley, 2006; Galbusera et al., 2013; Hadjipavlou et al., 2008).  

 

 

a) 

 

b) 

Figure 2.6. Comparison between healthy (left) and degenerated IVDs (right): a) Axial cut. Adapted from Urban & 

Roberts (2003); b) Sagittal cut. Adapted from Adams et al. (2009).  

 

The individual environmental conditions are also important to understand this problem, 

namely vibratoryXVII environments or other demanding work postures (Dupuis and Zerlett, 1987; 

Niosi and Oxland, 2004; Stokes and Iatridis, 2004). Consequently, the etiology of IVD 

degeneration must be described as multifactorial, considering the range of factors that may 

cause it: genetic factors (the group of genes corresponding to the various components of the 

                                                 
XVI The pathways for IVD nutrition were already described in the previous sections of the present chapter. 
XVII The effects of vibration on the Human spine were described in the previous section. 
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ECM are strongly related to the risk factors for degeneration), metabolic disorders, neurogenic 

inflammation, autoimmune issues, low-grade infection, toxicity, nutrition issues, ageing and 

mechanical factors (Beattie, 2008; Hadjipavlou et al., 2008; Kalichman and Hunter, 2008). 

Again, these factors may occur simultaneously, with direct or indirect links, contributing for the 

pathologic state of the IVD, as shown in Figure 2.7. One must also take into account that IVD 

degeneration may be considered as an expression of the state of the IVD, and not so much as a 

diagnostic for a disease (Kalichman and Hunter, 2008). 

 

 

Figure 2.7. Multiple pathways for IVD degeneration. Adapted from Hadjipavlou et al. (2008). 

 

Ageing is one of the most reported factors for IVD degeneration, even if some 

complications are not age-related, such as disc narrowing. IVD herniation, for example, is related 

with senescence of disc cells. Blood irrigation of the IVD is also a collateral effect of ageing, as 

the IVD is not vascularized (Hadjipavlou et al., 2008; Shankar et al., 2009; Song et al., 2008; 

Urban and Roberts, 2003). Nowadays, it is also widely accepted that mechanical stress and 

inflammatory response are directly connected. At the cellular level, abnormal events (as chronic 

loading or severe acute efforts) trigger metabolic reactions (which begin on lower nutrients 
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supply) that lead to loss of extracellular matrix integrity, and consequently, losses on disc 

functions (Colombini et al., 2008). Figure 2.8 gives a perspective on the detailed sequence of 

events that lead to IVD degeneration after abnormal chronic load. 

 

 

Figure 2.8. Metabolic changes in discs subjected to abnormal loads. Adapted from Colombini et al. (2008). 

 

Furthermore, the pathway for IVD degeneration may depend on the time of the day: it is 

recognized that early hours of the day are more suitable to spine injuries, so IVDs become more 

vulnerable to degeneration if subjected recurrently to efforts during that time. Accumulation of 

repetitive efforts or, in other words, fatigue, has also an important role on promoting the 

degeneration, due to the low metabolic rate presented by the IVD (Dolan and Adams, 2001; 

Martin et al., 2002; Niosi and Oxland, 2004). 

Along the years, several classifications of IVD degeneration have been proposed. The first 

benchmark was the Thompson scale (Table 2.1), primarily based on ex vivo morphological 

analysis over the mid-sagittal plane of the MS (Thompson et al., 1990). The Pfirrmann scale 

(Table 2.2) benefited from the advances of the imaging techniques and provided an in vivo 

classification through MRI (Pfirrmann et al., 2001). Both scales consider five grades, from minor 

to severe degeneration. The primary ex vivo analysis is clearly useful for the in situ evaluation of 

the tissues, so these two classifications are complementary. Given the intricate nature of this 

problem, some particular cases may not be fully diagnosed through imaging methods, i.e., if the 

images do not match the patient complaints, the diagnostic will rely mostly on the experience of 
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the examiner and also on the cooperation of that patient. Some authors even defended that the 

existing classifications were not detailed enough and proposed modifications. In detail, the 

modified Pfirrmann scale elaborated by Griffith and co-workers has 8 grades, including 

meticulous evaluation of the IVD height decrease, for the more severe cases (Griffith et al., 

2007). Nevertheless, most of the authors agree that the IVD is a very specific tissue and shows 

unique rates of degradation, in comparison with other connective tissues (Adams and Roughley, 

2006; Gamradt and Wang, 2005; Griffith et al., 2007; Pfirrmann et al., 2001; Roughley, 2004). 

At worst, disc prolapse (or even rupture) may occur, as a combination of degradation effects, 

formation of fissures and severe loading (Wognum et al., 2006).  

 

Table 2.1. Morphological classification of IVD degeneration grades. Adapted from Thompson et al. (1990). 

Grade NP AF CEP VB 

I Bulging gel Discrete fibrous lamellae 
Hyaline cartilage with uniform 

thickness 
Margins rounded 

II 
White fibrous tissue 

peripherally 

Mucinous material between the 

lamellae 
Thickness irregularities Margins pointed 

III 
Consolidated fibrous 

tissue 

Extensive mucinous infiltration 

and loss of distinction between 
the NP and the AF 

Focal defects 

Early chondrophytes 

or osteophytes at 
margins 

IV 
Horizontal clefts, 

parallel to the CEP 
Focal disruptions 

Fibrocartilage extending from 
subchondral bone, which suffers 

from focal sclerosis and irregularity 

Osteophytes smaller 

than 2mm 

V 
Clefts extend through NP and AF 

Lost 
Diffuse sclerosis 

Osteophytes larger 

than 2mm 

 

Table 2.2. Imaging classification of IVD degeneration grades. Adapted from Pfirrmann et al. (2001). 

Grade Structure 
Distinction between 

NP and AF 
Signal intensity Height of the IVD 

I Homogeneous, bright white Clear 
Hyperintense, isointense to 

cerebrospinal fluid 
Normal 

II 
Inhomogeneous, with or 

without horizontal bands 
Clear 

Hyperintense, isointense to 

cerebrospinal fluid 
Normal 

III Inhomogeneous, gray Unclear Intermediate 
Normal to slightly 

decreased 

IV 
Inhomogeneous, gray to 

black 
Lost Intermediate to hypointense 

Normal to moderately 

decreased 

V Inhomogeneous, black Lost Hypointense Collapsed disc space 
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2.3.1. Associated Diseases 

 

The DDD, also known as spondylosis, is a condition expressed by degenerated IVD. Patients may 

suffer from disc herniation, spinal stenosis or a combination of both, since the symptoms for 

these diseases tend to overlap and one may provoke the other. Other spine diseases, as 

rheumatoid arthritisXVIII , may (indirectly) contribute to the deterioration of the condition of a patient 

with DDD (Roughley, 2004; Shankar et al., 2009).  

DDD involves an accelerated pathology, mostly initiated by a small protrusion that presses 

the posterior longitudinal ligament. Subsequently, this protrusion starts to increase and causes 

back pain, followed by large protrusion that herniates through the posterior ligament. At this 

stage, the integrity of the nerve roots is compromised and the pain is acute. Progressive 

degeneration of the IVD leads to osteoarthritis, including angiogenesis and cytokine release in the 

area that can spread to the posterior intervertebral joints as well as to the central joints (Panjabi, 

2003; Ruberté et al., 2009; Urban and Roberts, 2003).  

Furthermore, spinal instability, disc narrowing or injuries caused by mechanical loadsXIX can 

lead to DDD, or at least improve the chances of this disease to appear. After some years studying 

this subject, Panjabi (2003) resumed clinical spinal instability as the condition of inability of the 

spine to maintain the proper kinematic performance under normal physiological conditions. 

Mechanical instability is a slightly different concept, as it is characterized by loss of the 

ability to handle spinal loads. To sum up, this lack of stability produces abnormal intervertebral 

motions, which accelerate the degenerative process. However, the opposite may also be true: 

degenerated discs may produce abnormal kinematic patterns (Colombini et al., 2008; Grumme 

and Bittl, 1998; Panjabi, 2003). 

Disc herniation is normally triggered by weakening or tearing of the AF, caused by 

excessive stress or even by an accident. Ageing also plays an important role, considering the 

senescence of the IVD cells. It provokes abnormal compression of the spinal cord and nerve 

roots and, consequently, inflammation of these structures. Herniation may occur as bulging, 

protusion, extrusion or a free fragment (Adams and Roughley, 2006; Buy and Gangi, 2010; 

                                                 
XVIII Rheumatoid arthritis is a progressive inflammatory condition which is characteristic of synovial joints. 
XIX Injuries caused by mechanical loads may be acute (e.g., whiplash) or resultant from abnormal chronic 

loads (e.g., wrong working postures). 
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Michalek et al., 2012). Spinal stenosis has almost the same consequences, and can be triggered 

by a previous degenerated state, osteoporosis or a tumor. The narrowing of the lumbar spine 

canal exposes the nervous components to acute damage (Fritz et al., 1998; Pollintine et al., 

2010). 

 

2.3.2. Treatments 

 

The intricate etiology of the DDD leads to several approaches for its treatment, from disc 

arthroplasty to gene therapy (Andreula et al., 2004; Iatridis et al., 2013; Martin et al., 2002; Van 

den Broek et al., 2012). Native and degenerated IVD properties have been studied in Human and 

animal models, as well as new treatment strategies. Goat and sheep models are the most 

frequent, as they show similar properties to Human IVD. However, here again some doubts still 

exist about the validity of those studies for the development of solutions for Human DDDXX. Other 

treatments, such as ozone therapy or NP replacement through hydrogel injection are less 

invasive and tend to present better results, in case of light to moderate degenerative stages. 

Nevertheless, one shall consider first the non-surgical treatments, such as pain relief 

medication and physiotherapy methods. This first option may produce effective results, if the 

disease is in its preliminary stages (Strange et al., 2010; Wilke et al., 1999). The surgical options 

shall only be considered after the failure of the conservative rehabilitation procedures. 

Most of the established surgical treatments of DDD show reasonable results on pain 

reduction, particularly in short-term. Spinal fusion, chemonucleolysis, microdiscectomy or disc 

arthroplastyXXI are the most applied techniques. However, they are mostly invasiveXXII and they are 

also not totally satisfactory in terms of restoring the capability of normal motion to the patients 

(Andreula et al., 2004; Gamradt and Wang, 2005). Therefore, surgeons seek new spinal 

technologies, which must be minimally invasive to reduce pain and preserve motion. In addition, 

such strategies shall ensure long-term or permanent cure. Potential biological strategies that 

have been studied include protein injection, gene transfer, and cell therapy. Although short-term 

                                                 
XX Alini et al. (2008) reported the similarities between Human and goat (or cow) IVD cells (as described in the 

first section of this chapter), while Smit (2002) analyzed (and supported) the use of quadruped animals for Human-
related IVD studies, in terms of biomechanics. 

XXI Disc arthroplasty may include total or partial substitution of the IVD. 
XXII Tissue disruption may be pointed out as the major disadvantage of the massively invasive techniques. 
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satisfactory outcomes have been reported following intradiscal injection of growth factors, this 

method faces several limitations. Gene therapy may be more effective, but similar doubts as with 

protein administration arise. The safety of gene transfer into IVD cells needs to be further 

investigated as well, since the science of IVD cell transplantation is still in its early stages. 

Advancements in nanotechnology based tissue regeneration techniques may offer the possibility 

of repairing damaged discs, but such techniques are also not satisfactorily developed yet (Ruan 

et al., 2007; Taher et al., 2012; Yoon, 2005).  

Ozone therapy is a minimally invasive technique that consists on the injection of a medical 

mixture based on oxygen and ozone (Oder et al., 2008). The surgeon guides the insertion of the 

needle into the NP recurring to live image feed (X-Ray). For patients under 50 years old, this may 

be the best answer, if they are suffering from an early stage of DDD. Older patients or those 

suffering from an advanced stage of DDD are not eligible for this kind of therapy (Andreula et al., 

2003; Muto et al., 2004). Even if this technique has been motivating significant debates, most of 

the studies proved its safety and reliability (Re et al., 2008; Steppan et al., 2010). It has three 

major advantages, namely i) being minimally invasive, ii) the patient may leave the hospital a few 

hours after the treatment and iii) no tissue is removed, as this technique is solely based on the 

injection of a compound. 

If the patient is suffering from moderate to severe DDD, the current treatment trend is NP 

replacement techniques through hydrogel injection. This technique is being constantly improved 

and can even become to be the best strategy to preserve normal spine biomechanics and tissue 

integrity, as much as possible. Since only that damaged portion of tissue is removed, this 

procedure can still be considered as minimally invasive. The procedure consists on the injection 

of a two-function needle, which means that the removal of the degenerated NP tissue and the 

injection of the compound is done through the same channel, i.e., the needle (Reitmaier et al., 

2012; Silva-Correia et al., 2011; Van den Broek et al., 2012). 

 

  



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

2. THE INTERVERTEBRAL DISCS   23/60 

 

2.4. Numerical Modeling 

 

Soft tissues in general and the IVD constituents in particular are known to be highly 

complex and very much dependent on the characteristics of each individual, as well as on 

its biomechanical function.  

The IVD is a very good example of a highly specific soft tissue, because it is a 

heterogeneous mixture of a highly hydrated core (the NP) with a dense structure of fibers 

(on the AF) and cartilage (CEP), i.e., in short, the IVD consists on a solid porous matrix filled 

with a fluid (Raj, 2008). Thus, one may sustain that IVD numerical modeling can only be 

accurate enough if poroelasticityXXIII, viscoelasticity and fiber anisotropy are considered (Schmidt, 

Galbusera, et al., 2013). Fibers resist to tension and aqueous solutions characteristically resist to 

compression (Huyghe et al., 2003), so the osmotic swelling pressure shall also be considered, as 

it rules the IVD pressure under the typical compressive loadingsXXIV (Neidlinger-Wilke et al., 2013).  

Stress and strain fields within an IVD are mostly time-dependent. Creep and stress-

relaxation phenomenaXXV have been exhaustively described in the literature, as the IVD 

(mainly through the NP and the AF) has a rate-dependent behavior, grounded not only on 

poroelastic behavior, but also on hiper-viscoelasticity (Schroeder et al., 2010). Maxwell, Kelvin-

Voigt or ZenerXXVI rheological models have been widely applied, but the generalized Maxwell 

modelXXVII was described as the best suited for IVD modeling (Ehlers et al., 2009, 2003; Liu and 

Ovaert, 2011).  

Nonetheless, while viscoelasticity is more important to model fast events (a few 

seconds), poroelasticity is far more important to describe long -term phenomena like creep 

and/or stress relaxation, i.e., to model the long-term behavior (minutes to hours). AF fibers 

are the other focus of attention on IVD modeling. The works of Eberlein et al. (2001), 

                                                 
XXIII Biphasic, triphasic or quadriphasic theories may be applied to model this category of tissues. 
XXIV A brief overview on the multiphasic media, focused on the IVD modeling, is going to be held in the next 

sub-section. 
XXV Creep behavior corresponds to the ability of a given tissue or structure to deform permanently under the 

action of constant mechanical stress, while stress relaxation effects correspond to the analogous mechanism of 
deformation under the action of constant strain (Athanasiou and Natoli, 2008; Pierce et al., 2013). 

XXVI The Zener rheological model, also known as Standard Linear Solid model, is a combination of Maxwell and 
Kelvin-Voigt models (Casula and Carcione, 1992). 

XXVII This model will be detailed in the next chapter, on the “Formulation” section. 
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Holzapfel et al. (2005), Malandrino et al. (2013) and Noailly et al. (2011) described the 

strict relationship between the local fibers orientation and the global morphology of the 

MSXXVIII. AF Fibers are modeled with regional differentiation of crossing angle and mechanical 

properties. Traditional approaches considered an average of 30 degrees of crossing 

angle (Jensen, 1980), but Holzapfel et al. (2005) described a variation between 23 to 46 

degrees (approximated values) from the ventral to the dorsal  regions, through a linear 

regression model. Eberlein and co-workers (2001) proved that the mechanical properties, 

such as the stiffness of the fibers, varied both radially and circumferentially. This detailed 

description of the fibers properties is essential to the global behavior of the MS, particularly 

on rotation and flexion/extension movements (Noailly et al., 2011). 

In what concerns to the FE modeling solutions, the commercial FE-package ABAQUS® 

(Simulia, USA) is probably the most applied, as will be shown in the “Finite Element 

Models” sub-section. The commercial FE-package ANSYS® (Ansys Inc., USA) is also 

frequently mentioned, but mostly for the pre-processing tasks, even if this software is 

capable of performing the simulations as well (Dennison et al., 2008). The other 

commercial FE solver to be mentioned is Marc MSC® (MSC Software, USA), which was 

chosen by Noailly et al. (2011) or Swider et al. (2010), for example. These (and other) 

software are able to deal with multiphasic problems and with the major part of the 

particularities of the soft tissues. In addition, when a given feature is not available on the 

FE-package, the researcher may program (and integrate) user -defined subroutinesXXIX.  

However, the adoption of a fully home-developed FE solver offers major advantages 

over programming in commercial FE-packages, because the drawbacks associated with the 

rigidity of a proprietary commercial code hamper the freedom of the researcher, when the 

complexity of the model increases. Firstly, as the researcher has direct view on the source 

code, the verifiability of the software is taken to a higher level and the bridging between the 

relevant features of constitutive modeling is much more flexible. Secondly, the 

dissemination of models and their implementation is not limited, as well as the discussion 

of the outcomes. The present work is based on the development of a home-developed 

open-source FE solver, based on the need of crafting solutions for the very specific 

                                                 
XXVIII Other works regarding the modeling of AF fibers may be considered, namely Elliott and Setton (2001), 

Hollingsworth and Wagner (2011) or Klisch and Lotz (1999). 
XXIX These subroutines are usually programmed in FORTRAN or C++ languages. 
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demands of biomechanical (and soft tissue) modeling. Other open-source packages are 

available, and the most relevant of them for multiphasic soft tissue modeling is FEBio (The 

University of Utah, USA), which may be shortly described as a nonlinear implicit FE 

framework, designed specifically for analysis in computational solid biomechanics and written in 

C++. This package is freely available and may also include pre- and post-processing tools, 

which are denominated PREVIEW and POSTVIEW, respectively (Maas et al., 2012). Besides the 

access to the source and the possibilities of modifying and recompiling the code, another great 

advantage of FEBio is the dissemination, as the developing team distributes the details of their FE 

implementation is peer-reviewed publications (Ateshian et al., 2012, 2011, 2010; Maas et al., 

2012). This dissemination usually does not occur with commercial packages, i.e., the common 

researcher does not have access to the implementation details and not even to the source 

formulation while working with ANSYS® or ABAQUS®. In addition, other groups are already 

testing (and validating) the performance of FEBio in their works (Galbusera et al., 2012).  

The researcher shall be aware of the advantages and disadvantages of using 

commercial or open-source FE packages. On the one hand, the FEBio team may claim to 

have developed the first FE implementation of solute transport across contact interfaces in 

deformable porous media (Ateshian et al., 2012), but they also reckon that still need 

problem-specific verification and validation to ensure that the outcomes obtained with 

FEBio are accurate enough for a specific problem (Henninger et al., 2010; Maas et al., 

2012). To achieve this, the FEBio user-community must grow. On the other hand, the 

commercial solvers are presented as powerful tools, with high verifiability and validation 

levels, provided by a large community of users.  

 

2.4.1. Multiphasic Media 

 

Terzaghi was probably the first author analyzing the multiphasic problems, in 1925. He 

devoted his work to the understanding of soil consolidation, establishing the consolidation 

experiments and theoretical soil mechanics in general, through “Terzaghi's theory of one -

dimensional consolidation” (Terzaghi, 1943, 1925). This theory is based on the principle 

of effective stress, which undertakes that a porous matrix and the water filling those pores 

fully carry the portions of the total material stress. The other historic reference in this field 
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is the work of Biot, who developed the theory which is now referred as “Biot theory of 

poroelasticity”. In a few words, the previously described Terzaghi’s Principle was 

transformed by Biot in order to be valid for more complex three-dimensional (3D) situations 

(Biot, 1972, 1941).  

Detournay and Cheng (1993) provided an extensive review about poroelasticity. 

Accordingly to these authors, if both Terzaghi and Biot works are taken into consideration, one 

may simply describe poroelasticity as the study of the behavior of porous media, which consists 

of a porous solid elastic matrix enclosing interconnected fluid-saturated pores. The presence of 

the fluid not only increases the stiffness of the whole material, but also results in fluid flow driven 

by the pressure gradients between the different material regions. 

Most of the poroelastic IVD FE studiesXXX were performed using biphasic formulations. 

These formulations are an effective choice, as they mean smaller number of constitutive 

parameters and thus lower complexity of the constitutive modeling  (Frijns et al., 1997; 

Pierce et al., 2013). In depth, biphasic approaches only consider the influence of solid and 

fluid parts, while triphasic and quadriphasic theories also include the influence of the ionic 

fluxes. Therefore, biphasic modeling may be considered as a simplification of the more 

complete quadriphasic models. In order to achieve such simplification, the ionic flux is 

considered to be infinitely fast and is, subsequently, dismissed (Snijders et al., 1995; van 

Loon et al., 2003; Wilson, van Donkelaar, van Rietbergen, et al., 2005) . In addition, 

biphasic approaches showed good commitment between the accuracy of the results and 

the requested computational time, in comparison with more complex models (Iatridis et al., 

2003; Wilson, van Donkelaar, and Huyghe, 2005; Wu and Chen,  1996).  

One of the major references in multiphasic modeling applied to soft tissues is the 

work of Huyghe and co-workers (Eindhoven University of Technology, The Netherlands). 

This group developed a FE implementation of a biphasic model (Huyghe, 1986) that tries 

to describe solid-fluid interactions with high accuracy. The evolution of this model, through 

mechano-electrochemical theories, led to state-of-the-art triphasic and quadriphasic 

formulations (Huyghe et al., 2003; van Loon et al., 2003). The connection with 

experimental work was essential to the establishment of parameters and boundaries. The 

primary field of application of the bioporomechanical theory was the cardiovascular tissue, 

                                                 
XXX To be detailed in the “Finite Element Models” sub-section. 
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but this model became appropriate to describe articular cartilage and IVD components  

(Huyghe, 1986; Oomens et al., 1987; Schroeder et al., 2010; Snijders et al., 1995).  

This group typically uses ABAQUS® FE-package, in which they integrate home-

developed material lawsXXXI. One good example is their implementation of the state-of-the-art 

biphasic swelling theoryXXXII, which was first published by Wilson, van Donkelaar and Huyghe 

(2005), and derived from the work of Lanir (1987). The osmotic swelling behavior 

describes the tendency of a given soft tissue to swell due to the fluid flow. Such flow is 

related to the osmosis-driven positive gradient of pressure, which allows the fluid to enter 

in the porous matrix of that soft tissue, i.e., the fiber network of the tissue functions under 

tensile pre-stressing and the fluid saturating the extrafibrillar space is under pressure. 

ABAQUS® did not have the solution to model poroelastic materials with swelling 

properties, so Wilson and co-workers developed an UMAT user-subroutine to include 

osmotic swelling behavior on their ABAQUS-based cartilage poroelastic FE model (Wilson et 

al., 2007; Wilson, van Donkelaar, and Huyghe, 2005), which was later applied to their IVD 

model (Schroeder et al., 2010, 2006). 

 

2.4.2. Finite Element Models 

 

Simulations through FEA contributed for some of the most important advances in biomechanical 

science, namely on knee, hip or spine studies (Oomens et al., 2009). The benefits of using FE 

models in biomechanical studies are mostly related with the possibility of controlling all the 

parameters of a given simulation, from boundary conditions to material properties. In addition, 

some biological structures are not easy to study in vivo or even to obtain for ex vivo studies, so 

the predictions obtained through computational models and their correspondent numerical 

simulations are essential. The IVD is a good example of one of these structures (Schmidt, 

Galbusera, et al., 2013). 

Around the world, several research groups have applied FEA to study the biomechanics of 

the IVD, since 1974 (Belytschko et al., 1974). In fact, it is being shown across this work that one 

                                                 
XXXI The home-developed material laws are usually known as user-defined subroutines, as previously 

mentioned. 
XXXII One may also consider the work of Broberg (1993) as an approach for the IVD osmotic swelling behavior. 



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

2. THE INTERVERTEBRAL DISCS   28/60 

of the major issues on IVD studies is the fact that they are hardly accessible for in vivo studies. In 

vitro studies are a valid and recurrent option for experimental tests, but they mostly use cadaveric 

IVDs (Goins et al., 2005). As already mentioned, the most advanced culture systems allow the 

survival of the IVDs for a given period of time, usually no more than three weeks after extraction 

(Paul et al., 2013). Even if this is an important technological advance, it is still time-constrained, 

due to the senescence of the IVDs after those three weeks.  

Consequently, FEA is the most appropriate answer for “unlimited” studies involving the 

biomechanical behavior of the Spine and the IVDs. However, it must be highlighted that the best 

option is to combine FEM with experimental studies, in order to obtain a general overview of the 

problematic and also to get retro-feedback between the experimental outputs and the numerical 

inputsXXXIII, as performed on the studies of Joshi et al. (2009) or Wang et al. (2012). In fact, one of 

the major challenges in the numerical simulation is the extrapolation of experimental data 

to a set of parameters to feed the simulations. 

This section intends to describe the state-of-the-art on the evolution of the IVD FE 

modeling. Knowledge has evolved from the pioneer 2D studies to the more realistic 3D 

simulations, with the help of fast progress of computing science. Several topics have been 

covered, from the effects of different boundary conditions to new treatment strategies. On the 

one hand, the most up-to-date studies apply multiphasic poroelastic formulations coupled with 

osmotic pressure gradient, in order to account for the fluid exchanges and activity/recovery 

cycles (Hussain et al., 2012; Massey et al., 2012; Schmidt, Bashkuev, et al., 2013; Schroeder et 

al., 2010; van den Broek et al., 2012). On the other hand, modeling of the highly non-linear AF 

fibers also deserved the attention of several works (Eberlein et al., 2004; Holzapfel et al., 2005). 

Belytschko et al. (1974) developed the first known FE model of an IVD, in 2D. They studied 

the effects of different magnitudes of axial loading in stress distribution and IDP. Even if the 

technology was limited at the time, this group could conclude that the AF is stiffer than was 

initially supposed by direct measurements and that the decrease on the elastic properties has no 

significant influence on IDP. 

Lin et al. (1978) were the firsts to create a complete 3D FE model of an IVD. They coupled 

experimental work, FE modeling and optimization in the same study, creating a complete 

framework to study the biomechanical behavior of the lumbar IVD. The objective was to identify 

                                                 
XXXIII Hybrid simulation, combining FEM and MBS, may also be considered. 
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the material properties of the IVD, starting with axial compression experiments. After the FE 

simulation and subsequent parameters optimization, they have shown the uniformity of the discs 

within the lumbar section of the spine, and confirmed that the orthotropic elastic moduli 

decrease directly with the advance of IVD degeneration. 

Simon et al. (1985) developed the first published approach to the study of IVD poroelastic 

biomechanical behavior. They analyzed factors as strain fields, fluid flow, fluid pressure and 

stress fields, in order to evaluate the creep response of the IVD. The major outcome of this work 

was the description of the association between the increase of permeability and disc 

degeneration. It was shown that the daily cycles, including both loading and recovery phases, are 

highly dependent of the poroelastic phenomena. The healthy IVD depends on the flow of 

nutrients from the adjacent spine components, so degeneration may occur if such flow is altered. 

Shirazi-Adl and co-workers (1986-1987)XXXIV developed a L2-L3 nonlinear 3D FE model to 

investigate the effects of various loading conditions in this lumbar motion segment, as sagittal 

plane moments, axial torque alone and axial torque combined with compression. They 

concluded, amongst other facts, that the stiffness of the motion segment is dependent on the 

sagittal plane moments and that the most vulnerable element of the segment in torque is the 

posterior bony structure. In addition, they also found correlation between large extension/flexion 

loads and disc degeneration. These works may be considered as pioneers on the study of the IVD 

macromechanics and were indeed the firsts to consider the facet joints all together. 

Goel and Kim (1989) developed a FE model of the L3-L4 MS, which is shown in Figure 

2.9. This model was presented with a coarse mesh, due to the computing limitations, but its 

geometric features were accurate enough. The goal for this work was to study the effects of two 

surgical procedures to heal injuries of the lumbar spine. Total denucleation and bilateral total 

discectomy were simulated, and both of them included NP removal. At the biomechanical point 

of view, these two surgical procedures are almost similar. They found that the loading through 

the facets was increased and the disc bulge in posterior region decreased, for both of the facets 

have an important role in protecting injured IVD, as the total stresses in the two VBs were not 

significantly increased after the injury. These conclusions led to important developments in terms 

of the NP replacement or regeneration procedures 

                                                 
XXXIV Complete references: (Shirazi-Adl and Drouin, 1987; Shirazi-Adl et al., 1986a, 1986b). 
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Figure 2.9. L3-L4 MS FE model developed by Goel and Kim (1989). 

 

Natarajan et al. (1994) developed FE models of the L3-L4 MS, on intact and damaged 

conditions. This study intended to determine the pathways for IVD degeneration (and failure), and 

became an important reference in this subject. Their analyses showed that degeneration mainly 

started with problems in the CEP, which was pointed out as the weak link of each MS. In what 

concerns the applied loads, they demonstrated that pure compressive load is not enough to 

produce real damage on the AFXXXV, i.e., the biomechanical behavior (and degeneration) of this IVD 

component is more influenced by the formation of peripheral tears. In addition, flexion efforts are 

more likely to cause damage than equivalent extension efforts. This group would later continue 

their IVD FE studies. 

Wu and Chen (1996) developed a 3D poroelastic FE model of a lumbar MS (Figure 2.10), 

using and defining the mechanical modeling of a mixed FE formulation. This work is one of the 

pioneer studies on long term creep response of the IVD using poroelasticity. The FE model was 

constructed based on CT imaging information, including one VB and one IVD, as well as adjacent 

structures, such as the facet joints and ligaments. They came to the conclusion that this model 

was able to give correct clinical information about the behavior of the Human spine. The 

implemented 3D FE mixed formulation was essential to this accuracy on the results, since it was 

developed in such way that the imposition and derivation of the pore fluid pressure can be 

obtained on FE nodes. Thus, the total stress is calculated correctly on the poroelastic structure, 

which was not possible with the existing FE implementations on porous media.  

                                                 
XXXV Later on, it was shown that this finding was not correct. 

L3-L4 IVD

L3 VB

Facet

L4 VB



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

2. THE INTERVERTEBRAL DISCS   31/60 

 

Figure 2.10. Lumbar MS FE model developed by Wu and Chen (1996). 

 

Argoubi and Shirazi-Adl (1996) developed a poroelastic FE model of the L2-L3 MS, in order 

to analyze the creep response of the MS under different loading profiles and pathological 

conditions. This study continued (in some extent) the works of Shirazi-Adl and co-workers, which 

were previously mentioned. They developed a stratified AF model, with 8 layers of fibers 

embedded in an AF-matrix bulk (Figure 2.11) and also introduced an approach for simulating the 

osmotic pressure gradient, by applying a positive pressure along the MS free boundaries. 

However, the major novelty of this work was the implementation of strain-dependent permeability 

for the MS components, based on articular cartilage studies. This characteristic proved to be 

essential for the validity of long-term compression studies, for both native and pathological 

conditions. The strain-dependent permeability formulation and the material parameters 

determined on this work are still one of the benchmark for poroelastic IVD studies, along with the 

works of (van der Voet, 1997) and (Ferguson et al., 2004). 

 

 

Figure 2.11. Schematic representation of the 8 fiber layers of the L2-L3 MS FE model developed by Argoubi and 

Shirazi-Adl (1996). 
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Kong et al. (1996-1998)XXXVI combined FEM and numerical optimization to measure several 

biomechanical parameters on the L3-L4 MS, during the simulation of lifting tasks. They analyzed 

the evolution of deformation, IDP, strains, stresses, and load transfer paths. Their results showed 

general evidence that muscles stabilize the spine, particularly when the spine is being subjected 

to high loads or large flexed postures. Consequently, muscular malfunctioning will cause overload 

on the IVDs and ligament. They also concluded that the posterolateral regions of the IVD are 

more subjected to higher stresses than the other regions. 

Kim (2000) presented a comparison between young and old adults, by developing FE 

models of the L3-L4 MS that simulated each one of those stages. Their main goal was to study 

the process of formation of peripheral tears in the anterior outer AF over the years. The AF was 

modeled with 16 layers of fibers and 6 different materials, depending on the region. The results 

allow concluding that, in the early years of life, the strain levels are significantly high and may 

cause layer failure in that region of the AF. This proves that the biomechanical properties of the 

AF are influenced by ageing. 

Eberlein and co-workers (2001-2004)XXXVII developed FE models of Human lumbar spine 

(isolated L2-L3 and also more complete L2-S1), firstly in healthy condition. They focused their 

study on the development of an innovative constitutive model for the description of the 

heterogeneity and nonlinear anisotropic response of the AF collagen fiber network, starting with 

stress-strain experiments of healthy single AF lamellae. Their approach included regional variation 

of the AF properties, both on dorsal-ventral regions and internal-external regions, which resulted 

in four different regions with specific material propertiesXXXVIII and variable fiber angle, calculated 

through a linear regressionXXXIX. They defined the AF as a fiber-reinforced material, with specific 

stiffening behavior, which was not possible in standard ABAQUS®. Therefore, they developed 

and implemented an user-subroutine to include their constitutive model on that FE-package. 

Afterwards, they developed a comparable degenerated model. This degenerated AF has less 

material density, modeled through the removal of the central elements, as shown in Figure 2.12. 

Overall, these works provided reasonable approximations to the experimental data for flexion and 

lateral bending and extension and axial moments. The major difficulty found by the authors was 

the imprecise knowledge about the local degree of hard and soft tissue degeneration in the whole 

                                                 
XXXVI Complete references: (Kong et al., 1998, 1996) 
XXXVII Complete references: (Eberlein et al., 2004, 2001). 
XXXVIII Dorsal-internal, dorsal-external, ventral-internal and ventral-external. 
XXXIX Dependent on the angular region. 
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Human spine. However, the new constitutive model showed potential to be applied on the 

development of spinal implants, as it described the physiological strain behavior of AF fibers. In 

addition, the achieved regional differentiation rates of the AF tissue are one of the current 

benchmarks on AF FE modeling. 

 

Figure 2.12. Cross-sectional view of the degenerated AF FE model developed by (Eberlein et al., 2004). 

 

Ferguson et al. (2004) studied the transport of solutes within a lumbar IVD. They 

considered strain-dependent permeability and osmotic swelling pressure through fixed boundary 

pore pressureXL. In addition, their FE model (which is shown in Figure 2.13) is highly refined, in 

order to eliminate possible mesh-related issues on the fluid flow simulation. They analyzed the 

fluid flow through diffusion and convection during 24h simulations, i.e., they simulated a diurnal 

loading cycle, consisting of 8h of resting periodXLI and 16h of constant compressive loadXLII.  

 

Figure 2.13. Lumbar IVD FE model developed by Ferguson and co-workers. 

                                                 
XL 0.2MPa boundary pore pressure at the VEP and outer AF. 
XLI This resting period was based on the action of the osmotic pressure. 
XLII The applied load was equivalent to 0.5MPa average mechanical stress. 
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The key conclusion from this work is that the convective transport of solutes during resting 

periods is substantial. Such phenomenon is strictly associated with the proper functioning of the 

CEP, so this model proved that the obstruction of this channel shall acelerate disc degeneration. 

Nevertheless, while the transport of low-weight solutes was accurately predicted, the influence of 

larger solutes on IVD physiology stood not well understood. As previously mentioned, the material 

parameters correspondent to the strain-dependent permeability formulation determined on this 

work are one of the benchmark for poroelastic IVD studies. 

Natarajan and co-workers (2004-2008)XLIII developed a 3D poroelastic FE model from a 

serial computed axial CT scan of L4-L5 MS. The commercially available ADINA FE-package was 

the selected FE solver, and the FE model is shown in Figure 2.14. They considered osmotic 

swelling pressureXLIV and regional strain-dependent permeabilityXLV, even if such parameters were 

obtained from discrepant sources in the literature. Their models simulated grades I and IV of 

Thomson’s scale. The severely degenerated model was modeled with reduced permeability and 

porosity, along with increased stiffness. They concluded that asymmetric manual lifting (in three 

different activities) causes large translational and rotational motion, injuring the IVD, starting with 

local yield failure in the AF and CEP. Fluid exchange between the IVD and surrounding tissues 

was described as essential to the healthiness of the spine. Restriction of the fluid exchange 

process may increase IDP, leading to higher IVD bulge and, ultimately, causing back pain.  

 

Figure 2.14. L4-L5 MS FE model developed by Natarajan et al. (2008). 

                                                 
XLIII Full references: (Natarajan et al., 2008, 2007, 2006, 2004). 
XLIV The osmotic swelling behavior approach used in this work derived from the work of Broberg (1993). 
XLV The approach presented by (Iatridis et al., 1998) was considered in this study for the implementation of 

the strain-dependent permeability. 
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Joshi and co-workers (2004-2009)XLVI used ABAQUS® to study four conditions of the IVD: 

intact, bone in plug, denucleated and implanted (with an NP-hydrogel replacement). In what 

concerns this last condition, they tested precise filling of the NP cavity (after 80% denucleation), 

as well as under- and over-dimensioned implants, in terms of height and diameter. Figure 2.15a) 

shows “NP Implant 1”, which is under-height, while Figure 2.15b) shows “NP Implant 2”, which 

is under-diameter. The objective was to evaluate the performance of NP-hydrogel replacement. 

   

 a)  b) 

Figure 2.15.  Schematic representation of the under-dimensioned implants modeled by Joshi et al. (2009). a) Under-

height implant (“NP Implant 1”); b) Under-diameter implant (“NP Implant 2”). 

 

The results showed good approximation to the intact IVD, for the situations of correct or 

exaggerated filling of the NP cavity. In fact, for these cases, the abnormal stresses caused by 

previous implants were reduced and the load transfer from the NP to the AF was inside the scope 

of the conditions registered for healthy IVD. The behavior of the under-dimensioned implants was 

not satisfactory. These works contributed to the optimization of forthcoming IVD implants, 

through the definition of thresholds for several biomechanical parameters of the implant, such as 

volume or material stiffness. However, the constitutive modeling was limited, as the IVD 

components were only modeled as hyperelastic materials, i.e., no osmo-poro-viscoelasticity 

behavior was considered. 

                                                 
XLVI Complete references: (Joshi, 2004; Joshi et al., 2009). 
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Little and co-workers (2004-2010)XLVII developed FE models of the healthy and degenerated 

L4-L5 in order to identify critical aspects of IVD degeneration, using ABAQUS®. Figure 2.16 

shows the healthy IVD FE model, with so-called “fluid elements” defining the NP. They modeled 

the AF matrix as a reinforced-ground matrix, accounting for the interactions in-between the fibers 

and between the fibers and the solid matrixXLVIII. Osmo-poro-viscoelasticity was not explicitly 

included in this work, which means that the model could be more accurate, but the hydrostatic 

pressure of the NP was considered. They applied kinematic boundary conditions for the loading 

of their models, namely 500N axial compression for simulation of relaxed standingXLIX and also 

several rotation profiles to simulate the motion limits of the IVD. Such boundary conditions 

intended to simulate the action of muscles and ligaments of the spine. After the definition of the 

healthy condition, this group found that the lesionsL on the AF are less significant for the IVD 

biomechanics than the loss of NP hydrostatic pressure, i.e., the removal of the NP hydrostatic 

pressure provoked reduced IVD stiffness and innervated the surrounding tissues, increasing back 

pain. Thus, the great importance of the NP internal pressure for the IVD biomechanics (and 

degeneration triggering) is the key outcome of this work. 

 

Figure 2.16. Healthy IVD (without CEP) FE model developed by (Little, 2004). 

 

Goel et al. (2005) developed intact and implanted geometrical models of L3-S1, in order to 

study the influence of the implantation of a Charite® (DePuy Spine, USA) artificial disc model at 

the L5-S1 level. This implanted model is shown in Figure 2.17. Axial compression and pure 

flexion/extension simulations were performed with ABAQUS®. This group also validated the FE 

models with load-controlled experimental tests on cadaveric Human lumbar spines. In what 

                                                 
XLVII Complete references: (Little and Adam, 2010; Little, 2004; Little et al., 2008, 2007). 
XLVIII This part of the study was supported by experimental work, using sheep IVDs, as described on (Little et 

al., 2010) and also partially described on (Little, 2004; Little et al., 2007). 
XLIX This loading profile also served for validation purposes. 
L Rim, radial and circumferential lesions. 
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concerns to the major conclusions, they found that the major effects of this implant are 

registered at the upper CEP. The differences in IDP and shear stresses between intact and 

implanted models were minor, but this study was limited to this particular implant model. The 

other limitation that can be addressed to this study was the application of linear elastic materials 

for all the components, instead of the more accurate non-linear formulations, which were proved 

as particularly important for the IVD tissues. 

 

 

Figure 2.17. L3-S1 FE model developed by Goel et al. (2005). The Charité® disc implant was also modeled and 

included in this study, at the L5-S1 level. 

 

Lodygowski et al. (2005) proposed, developed and validated a simplified L4-L5 MS model 

based on medical images. This group previously developed a more complete lumbar 3-D MS 

model, but with this study they intended to prove that it was possible to generate valuable 

simplified model. This model was proved as worthy for numerical simulation of surgery and 

analysis of spine behavior, namely for compression, bending and torsion. However, it must be 

highlighted that this model was validated for whole spine deformations (macromechanics), i.e., 

the simplification approach may not be reasonable for more focused studies.  

Silva et al. (2005) developed an axisymmetric nonlinear poroelastic FE model with strain-

dependent permeabilityLI of an IVD hydrogel prosthesis, using ABAQUS®. No osmotic swelling 

                                                 
LI The Argoubi and Shirazi-Adl model (1996) was chosen for the implementation of the strain-dependent 

permeability. 
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behavior was considered, but the free draining of the model was ensured by the condition of zero 

pore pressure on the free external boundaries. They also tested their hydrogel replacement 

experimentally, in order to perform a numerical-experimental comparison of axial deformation 

and predicted fluid loss, during creep loading. The outcomes of the numerical model indicated 

that fluid loss of the prosthetic IVD is similar to that of native IVDs, i.e., the NP lost more water 

content than the AF, which was in agreement with the experimental results. The obtained stress 

distribution pattern revealed that this IVD replacement technique allowed the maintenance of the 

native IVD stress patterns, namely in what concerns the fluid and stress transferences from the 

NP to the AF. They identified shortages on the consolidation model available on ABAQUS®, as 

this model was not capable of predicting material creep that is not related with fluid loss. 

Nevertheless, the good correlation between this IVD hydrogel prosthesis and the available data on 

native IVDs was interesting for the evaluation of this IVD replacement technique.  

Ehlers et al. (2005-2009)LII developed a simplified L4-L5 MS FE model as an example to 

prove that is was possible to reproduce accurately the fundamental mechanical and electro-

chemical responses of hydrated soft tissues. This model, which is shown in Figure 2.18, only 

included three components, namely the NP, the AF and the VB. Therefore, no distinction was 

made on the VB layers and the CEP was also not considered. They used quadratic 20-nodes 

Taylor-Hood elements. However, the constitutive modeling included all the relevant features of 

the IVD biomechanics, which means that this work was the pioneer on the comprehensive 

numerical modeling of the IVD. The NP was modeled as isotropic, viscoelastic and charged 

material. The AF was treated as anisotropic and charged material, with regional variation of the 

properties of the fibers. The isotropic solid matrixes were modeled with the Neo-Hookean model, 

the anisotropic part of the AF was modeled with polyconvex Ogden-type law and the generalized 

Maxwell model was selected for the viscoelastic modeling. Their fitting for the viscoelastic 

material parameters is one of the major references in the field. Nevertheless, the main emphasis 

was on the application of the Theory of Porous Media, which was proposed to the description of 

the charged hydrated tissues, along with strain-dependent permeability and osmotic swelling 

behaviorLIII. Overall, the validation performed by the authors, through swelling experimentsLIV, 

allowed them to conclude that this was a thermodynamically consistent biphasic model and 

could be used for IVD degeneration and replacements studies. 

                                                 
LII Full references: (Ehlers et al., 2009, 2006) 
LIII The approach for the IVD osmotic swelling behavior was based on a simplification of Lanir’s model (1987). 
LIV Without mechanical loading, i.e., consolidation tests. 
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Figure 2.18. L4-L5 MS FE model developed by Ehlers et al. (2009). 

 

Noailly and co-workers (2005-2012)LV developed a L3-L5 FE model, which is shown in 

Figure 2.19, to understand the relative biomechanical roles of the different spinal tissues. They 

included the facets and the ligaments, which were carefully modeled with a hyperelastic law. In 

addition, the distinction between the CEP and the VEP was also considered. They found evidence 

that the geometrical characteristics of tissues affect the stress distribution, especially when 

accurate non-linear behavior laws are applied on the FE models. Several loading profiles were 

tested, with particular emphasis on flexion/extension and rotation movements.  

 

Figure 2.19. L3-L5 FE model developed by Noailly et al. (2012). 

                                                 
LV Complete references: (Noailly, 2009; Noailly et al., 2012, 2011, 2007, 2005). 
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Later on, they used this model to work on the development of new IVD replacement 

strategies. This work reveals the limitations of previous FE studies of IVD, namely on the 

reproduction of the proper biomechanical kinematic parameters of the Human spine. 

Nevertheless, it was determined that the interactions within the IVD and between the IVD and its 

adjacent structures are influenced by soft tissue structural organization, tissue material properties 

and boundary conditions. Therefore, important findings were achieved for the next generation of 

biomechanical studies of the IVD, namely on the importance of the criss-cross angle of the AF 

collagen fibers. However, the major drawback of this study was the absence of osmo-

poroelasticity. 

Rohlmann et al. (2006) developed FE models of the L3-L4 MS to investigate the influence 

of different grades of IVD degeneration on the mechanical behavior of the Human spineLVI. For 

that purpose, normal and reduced height IVD models were developed. Figure 2.20a) shows the 

native MS model, while Figure 2.20b) shows the severely degenerated model. Variations on the 

bulk modulus of the NP were also considered. Some simplifications were assumed, as the 

neglecting of muscle forces and fluid transfer within the IVD. One may consider that such 

simplifications would reduce the accuracy of the model, but the authors found good correlation 

with in vitro data on the outcomes of intersegmental rotation and IDP. The advanced DDD 

condition, i.e., the IVD with severely reduced height, provoked a decrease on intersegmental and 

axial rotation, through the increase of AF stiffness. A buckling effect on the ligaments was also 

noticed, as the length of the ligaments remained unaltered. 

 

   

 a)  b) 

Figure 2.20. L3-L4 MS FE models developed by Rohlmann et al. (2006). a) Native MS model, with normal IVD 

height; b) Severely degenerated MS model, with highly reduced IVD height. 

                                                 
LVI This team was also responsible for several studies on spinal loadings, with or without IVD instrumentation, 

as summarized on (Rohlmann et al., 2012). 

Healthy IVD Degenerated IVD

Reduced heightNormal height

Healthy IVD Degenerated IVD

Reduced heightNormal height



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

2. THE INTERVERTEBRAL DISCS   41/60 

Schroeder and co-workers (2006-2010)LVII developed a simplifiedLVIII lumbar IVD FE model 

based on the geometry of Human L4-L5 IVD. They modeled their IVDLIX with osmo-poro-visco-

hyper-elasticityLX, which they denominate as “OVED model”, because they reckoned that some 

internal mechanical conditions of the IVD could not be directly measured as a function of 

experimentally assessable biophysical characteristics. They modeled the non-fibrilar NP and AF 

matrixes with the same modified Neo-Hookean law, while the AF fibers were modeled through the 

Zener model. The osmotic swelling behavior model was the one from Wilson et al. (2005), 

accounting for the presence of intra- and extra-fibrillar water, which was a distinguishing noveltyLXI. 

Such features were not included on ABAQUS®, which was the selected FE-package for this work, 

so they were included through user-defined materials. Therefore, the guiding lines of this model 

are the IVD tissues biochemical composition, organization and specific constituent properties. 

Their approach was firstly to model and simulate isolated samples of tissue, in order to obtain 

the constituent properties of both NP and AF. The parameter values were compiled for the 

construction of the full IVD modelLXII and its behavior was validated against in vitro creep 

experiments that used Human lumbar IVDs (500N of uniaxial compression, as performed by 

(Heuer et al., 2007)). The selected outcomes for this validation were the radial bulge, axial creep 

displacement and IDP. One may argue that the validation presented in this work is not sufficiently 

accurate, in comparison with the experimental work of Heuer et al. (2007), but this “OVED 

model” was very important for the next generation of IVD FE studies. In fact, this model was the 

pioneer on the description the possibility of accurately determining the internal mechanical 

conditions of the IVD as a function of assessable biophysical characteristics, through the FE 

modeling of the IVD osmo-poro-hiper-viscoelasticity (with primary and secondary fibers network). 

Schmidt and co-workers (2006-2013)LXIII developed a L1-L5 FE model, in order to simulate 

IVD degeneration and then to evaluate a NP substitute, using ABAQUS®. However, they focused 

their analyses on the L4-L5 MS. The L4-L5 IVD FE model is shown in Figure 2.21. First, they 

simulated three different stages of IVD degeneration, namely mild, moderate, and severe 

                                                 
LVII Full references: (Schroeder et al., 2010, 2008, 2007, 2006). 
LVIII This group has chosen to work with a model which represents ¼ of the full IVD. 
LIX Despite being denominated as “IVD model”, this model only included the NP and the AF, i.e., the CEP was 

not considered. 
LX Including small fibrillar structures. 
LXI The implemented law for the osmotic swelling behavior was dependent on the intra-fibrillar water, based on 

the work of (Urban and McMullin, 1988). 
LXII This approach is denominated as “composition-based model”. 
LXIII Full references: (Schmidt and Reitmaier, 2013; Schmidt et al., 2011, 2010, 2007, 2006; Schmidt, 

Bashkuev, et al., 2013). 
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degeneration. In comparison with the healthy condition, the IVD height was reduced by 16.5%, 

49.5% and 82.5% for each case, respectively. The stiffness of the NP was also increased, in 

direct proportion to the advance of the degeneration, while the AF remained unaltered. Their goal 

was to identify the loading properties of the AF in each one of these situations. For the 

simulations with the full lumbar spine model, they included a connecting element between the 

four IVDs to act as a “load follower”. Their results allowed concluding that circumferential tears, 

one of the major precursors of degeneration, could occur since early stages. In addition, both 

shear and tensile strain on the AF decrease with advanced degeneration. Afterwards, they studied 

the relation between time of the day and loading on the spine, through the evaluation of fluid 

pressure. At this point, they included the strain-dependent permeability and simulated 48h of 

axial compression cycles, considering activity (1000N) and recovery periods (350N), i.e., 

considering the regular circadian variations. Partial saturation for the IVD to avoid having negative 

pore pressures on unloading/recovery phases was applied, as well as an external pressure 

gradient, playing the role of an osmotic pressure gradient.  

 

 

Figure 2.21. L4-L5 IVD FE model developed by Schmidt et al. (2011). The authors have chosen to model the CEP on 

the full diameter of the IVD and distinguished between the NP-covering CEP and the AF-covering CEP. 

 

The results showed that the permeability of the IVD tissuesLXIV and the resting periods play a 

major role on the mechanical behavior of the spine, given that these tissues present greater 

resistance to fluid outflow than inflow, which is an essential feature to the equilibrium in the 

recovering phases. Finally, in order to evaluate the behavior of a NP substitute, they considered 

osmotic swelling behaviorLXV on their model. They found that under-sized implants are not capable 

of mimicking the behavior of the native IVD. Overall, this group improved their work throughout 

                                                 
LXIV They compared the strain-dependent permeability parameters of Argoubi and Shirazi-Adl (1996) and 

Ferguson (2004), using the model of Argoubi and Shirazi-Adl (1996). 
LXV The adopted osmotic swelling behavior model was the one from Wilson et al. (2005). 
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the years, from a non-poroleastic model to an osmo-poro-hyperelastic IVD model, including 

seventeen criss-cross fiber layers on the AF. The behavior of this model was validated with 

experimental data and proved to be a good approach to the Human IVD. 

Teo et al. (2007) devoted their work to the creation of a tool for surgical training. They 

developed a FE model of the Human spine, based on medical images. Their challenge was to 

determine the effects of heterogeneous meshing for complex anatomic structures. In the end, 

they found that using different types of elements can be helpful for better accuracy (and lower 

computational time) on biomechanical studies. 

Monteiro (2009) presented a hybrid method (MBS and FEM) to study the effects of 

interbody fusion on IVD. In what concerns the FE model, the multilevel L3-L5 model was 

validated with experimental data. Simulations were performed for compression and flexion. Co-

simulation studies are interesting, as they cover the grounds of the different numerical methods. 

In fact, the MBS method was useful to complement the macromechanical analysis. The 

outcomes of this work allowed concluding that not only the fused IVD is biomechanically altered, 

as higher stresses were measured on the adjacent IVDs, which would probably lead to multilevel 

IVD degeneration.  

Massey and co-workers (2009-2012)LXVI developed an axisymmetric MS FE model to study 

the degeneration of IVD and the influence of a hydrogel NP replacement. Poroelasticity and 

osmotic swelling were considered in order to produce accurate predictions of the physiological 

and biomechanical changes on the IVD behavior during the diurnal cycle. This investigation 

eventually leads to the detection of earlier intervention points in spine treatments. It also exposed 

the association between the loss of proteoglycan content and the stress increase, which are 

directly related to IVD degeneration. 

Malandrino and co-workers (2009-2013)LXVII presented a L4-L5 IVD FE model with a poro-

hyperlastic matrix, based on the Neo-Hookean model and also on the strain-dependent 

permeability model of Argoubi and Shirazi-Adl (1996). The main focus of this work was on the AF 

modeling, namely on the description of the significance of the AF fiber angle for the mechanical 

behavior of the whole IVD. Their AF model, which is shown in Figure 2.22, included four 

                                                 
LXVI Complete references: (Massey, 2009; Massey et al., 2012). 
LXVII Complete references: (Malandrino et al., 2013, 2009). 
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mechanically different regionsLXVIII, and the orientation of the fibers was calibrated for each one of 

those regions, using a direction-dependent strain energy density term, reproducing the well-

known criss-cross pattern. Nevertheless, they simplified their model by considering that all the 

hyperelastic and fluid-phase material parameters remained unchanged throughout the AF. They 

validated their model by comparing it with the experimental results of Heuer et al. (2007), and 

the results showed that fiber patterns and stiffness variations can determine a realistic 

approximation to the IVD biomechanics, depending on the AF criss-cross fiber patterns. 

 

 

Figure 2.22. AF FE model developed by Malandrino et al. (2013), with regional variation. 

 

Shirazi-Adl et al. (2010) developed FE models of a uniaxial cell cultureLXIX and a complete 

axisymmetric IVD, in order to study the IVD cells and the effects of CEP permeability. They found 

numerical evidence that reinforced the previous knowledge on the extreme importance of the 

CEP for the IVD survival. The periphery of the AF still transports nutrients, even when the CEP is 

calcified or damaged, but this is not enough to maintain the viability of the whole disc. The IVD 

ECM is determinant for the global behavior of the IVD, so the knowledge about material and 

cellular properties must become deeper, even if this is a very particular field of the IVD FE 

studies. 

Swider et al. (2010) applied the substructuring techniqueLXX to simplify a poroelastic FE 

model of L5-S1 MS. They proved that this technique is useful to reduce the computational time 

and improve the detection of local effects, on behalf of the time-dependent response of biological 

                                                 
LXVIII Anterior-interior, Anterior-exterior, Posterior-interior and Posterior-exterior. 
LXIX This cell culture was necessarily performed in vitro. 
LXX Reducing the structure’s initial domain to several subset domains. 
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tissue. This substructured model was validated with results from complete models, also with non-

linear behavior. Three different loading profiles were selected, namely compression and torsion, 

which proved the accuracy and usability of this technique. 

Strange et al. (2010) developed a L4-L5 IVD model in both native and degenerated 

conditions, in order to evaluate the biomechanical behavior of an elastomeric NP replacement, 

which can be implanted via minimally invasive surgery. The NP and the AF were solely 

hyperelastic, through Mooney-Rivlin law, which means that neither viscoelasticity nor 

poroelasticity were considered. However, regional variation of the AF properties was taken into 

account and the internal fiber angle was 30 degrees. Figure 2.23 shows that the CEP was not 

included in the model, but it also shows that the FE mesh is reasonably refined. For the 

evaluation of the NP substitute, the compressive stiffness, radial AF bulge and stress distribution 

patterns were measured under displacement-controlled loading. They tested several conditions, 

namely the native IVD, complete nucleotomy, partial nucleotomy, partial implant and complete 

implant. The results were satisfactory and comparable with literature data, despite of the 

limitations of the model. Nevertheless, this study seems to demonstrate that the elastomeric NP 

replacement implant can restore the axial compressive mechanical properties of the native IVD.  

 

 

Figure 2.23. Native L4-L5 IVD model developed by Strange et al. (2010). 

 

Galbusera and co-workers (2011)LXXI analyzed different approaches for simulating the 

swelling behavior of the IVD, through the daily cycles. For this purpose, they developed and 

tested a L4-L5 MS FE model, using ABAQUS®, coupled with user-subroutines when 

needed. They compared the biphasic swelling theory derived from the works of Lanir 

                                                 
LXXI Complete references: (Galbusera, Schmidt, Neidlinger-Wilke, et al., 2011; Galbusera, Schmidt, Noailly, et 

al., 2011) 
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(1987) and Wilson et al. (2005) with a phenomenological swelling approach based on the 

poroelastic consolidation theory (fixed swelling pressure). They also included hyperelasticity 

of the solid matrixes through Neo-Hookean model and strain-dependent permeability 

through Argoubi and Shirazi-Adl model. This work led them to the conclusion that IVD 

behavior is highly dependent on reliable material properties, with focus on the parameters 

for permeability. The osmotic swelling behavior parameters applied on this work are the 

reference for the IVD FE studies which include such behavior.  They concluded that the 

swelling behavior due to the strain-dependent osmotic pressure is a realistic approach to 

IVD macro-biomechanics. Afterwards, they analyzed the degenerative morphological 

changes of the IVD, through the simulation of several degenerative conditions: reduced 

disc height, endplate sclerosis, reduced water content, reduced IVD permeability and 

reduced osmotic swelling pressure. Their simulations first included a pre-conditioning free-

swelling period, which was not time-limited, i.e., they allowed the model to swell until 

consolidation was reached. Then, they simulated the daily cycle, through axial compression 

loadings, namely 200N for 8h (recovery period) and 500N for 16h (activity period). Most of 

these conditions are related with changes on IVD porosity and permeability, which 

demonstrated the influence directly and indirectly all the mechanisms of the IVD behavior. 

The reduction of IVD height, water content and osmotic swelling pressure were proved to 

be the most relevant features on the degeneration process. 

 

2.4.3. Summary  

 

The state-of-the-art IVD FE modeling reflects that the global behavior of the IVD is assumed to be 

osmo-hyper-poro-visco-elastic, with high influence of the anisotropy of AF fibers (Schmidt, 

Galbusera, et al., 2013). The most complete models use all these features, even if some studies 

still neglect the impact of poroelasticity. Nonetheless, when this feature is considered, the 

osmotic swelling behavior is either neglected or implemented through the addition of an extra 

pressure or through fixed boundary pressure, which is also not realistic for the reproduction of 

the complex fluid flow biomechanisms.  
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3. FINITE ELEMENT MODELING 

 

The mechanical modeling and finite element implementation of a novel poroelastic biphasic 

model is introduced and detailed, and the constitutive modeling briefly addressed.  

The FE implementation is carried out in a home-developed open-source FE solver.  

The chapter ends with the description of the building of  

an anatomically relevant FE mesh of a Human lumbar motion segment. 

 

 

3.1. Mechanical Modeling 

 

The continuum formulation (mechanical and constitutive modeling) suited for the FE 

implementation and simulation of the biomechanical behavior of an osmo-poro-hyper-viscoelastic 

MS FE model is described in what follows. A novel poroelastic formulation was developed and 

implemented in a home-developed FE solver, which already included the most relevant features 

for biomechanical modeling and simulation of soft-tissues, such as their almost incompressibility 

and viscoelastic effects.  

The essential continuum mechanics background is presented, along with derivations of the 

second Piola-Kirchhoff stress tensor (Π ) and their FE implementation. Biological soft tissues 

such as the NP and the AF are subject to finite deformations and their mechanical behavior is 

highly nonlinear, anisotropic, inhomogeneous and incompressible in the physiological state.  

To model the non-linear isotropic and/or anisotropic tissues’ passive mechanical behavior, 

several phenomenological hyperelastic constitutive models are implemented and used. In 

particular, an anisotropic fiber-reinforced hyperelastic material which takes into account and 

incorporates the histological structure, i.e., an anatomically-based fibers distribution within the AF 

is accurately taken into account and a new algorithm detailed and described. The multiphasic 
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nature of the IVD, coupled with the Darcy’s law and osmotic properties, are also a key feature of 

the IVD’s tissues.  

The implementation of these biomechanical phenomena into a FE formulation is based on 

a mixed two-field variational principle, i.e., displacement and pressure fields, with a total 

Lagrangian formulation and a fully implicit time integration scheme (Alves et al., 2010) in 

agreement with the pioneer work of (Sussman and Bathe, 1987).  

The name of mixed u/P formulation reflects the use of separate interpolations for the 

displacements and the Cauchy (hydrostatic) pressure. Although its primary application to almost 

incompressible media, it may also be applied to compressible analyses. Both u/P-c and u/P 

finite elements can be used, being the first ones the most appropriate for multiphasic 

applications, as they guarantee the required continuity of the pressure fields between adjacent 

elementsI. The second ones are recommended for monophasic applications. In the following 

derivation, a general nonlinear framework is adopted, in which material and/or geometric 

nonlinearities and large deformations are considered.    

 

3.1.1. Basic Kinematics 

 

The description of the basic kinematics starts with the assumption that 0  represents the 

configuration of an arbitrary body of interest and  0: , xX:  be the non-linear 

deformation.   maps points 0X  of the reference configuration (load free state) one to one 

and onto points x  of the current configuration (loaded deformed state).  

The deformation gradient tensor ( F ) is defined as 

X

u
I

X

x
F









 .  3.1 

The displacement field is defined as Xxu  , and I  is the second order unit tensor. As 

described in Figure 3.1, F  is a linear transformation that maps infinitesimal small vector Xd  of 

the reference configuration onto infinitesimal small vector xd  of the current configuration, 

                                                 
I The discussion on the finite elements chosen for the lumbar MS model will be held on the second section of 

the present chapter.  



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

3. FINITE ELEMENT MODELING   3/30 

XFx dd  . The Jacobian 0)det(  FJ  is a measure of the local volume change. Adopting a 

decomposition of the total deformation gradient into volumetric I
31J  and isochoric  FF

31 J  

parts, the total deformation gradient F  can be rewritten as: 

    FFIF
313131   JJJ , 3.2 

With the isochoric deformation gradient defined as: 

FF 3

1


 J . 3.3 

The right Cauchy-Green strain tensor C  and the Green-Lagrange strain tensor E  are two 

different measures of the continuum strain field, and are defined, respectively, by: 

FFC
T  3.4 

 ICE 
2

1
 3.5 

 

 

Figure 3.1. Decomposition of deformation gradient tensor F  into volumetric I
31J  and isochoric  FF

31 J  

parts. From the left to the right, the sequence of the image is reference and current configurations. 

 

Observing Figure 3.1, and rather than dealing directly with F , C  and E , one can apply 

the same multiplicative decomposition, in order to obtain strain measures of the isochoric 

deformation F ,i.e.,:  

CFFC 3

2


 JT  3.6 

 ICE 
2

1
 3.7 

0

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The term I3

1

J  is associated with volumetric deformations, while F  is related to the 

isochoric deformations of the material, i.e., volume preserving deformation.  

 

3.1.2. Constitutive Modeling 

 

Soft-tissues have shown to have a non-linear elastic constitutive behavior. In a hyperelastic 

framework, one needs to postulate the existence of strain energy function  CW , defined per unit 

reference volume. The constitutive equations must fulfill two requirements, namely the principle 

of material frame indifference and the concept of material symmetry. If materials are 

homogeneous, the second Piola-Kirchhoff stress tensor, which is a totally material symmetric 

tensor that express the stress relative to the reference configuration (Bonet and Wood, 1997; 

Sussman and Bathe, 1987), is derived from the strain energy function  CW , which plays the 

role of a stress potential, as follows: 

 
C

C
Π






W
2  3.8  

From the representation theorem for invariants, isotropic hyperelastic materials can be 

expressed in terms of the principal invariants of C . So, the following equality can be written:  

   321 ,, IIIWW C , 3.9  

Where 321 ,, III  are the invariants of C , defined as: 

IC :1 I  3.10  

 CC :
2

1 2

12  II
 

3.11 

 Cdet3 I
 3.12 

Moreover, a homogeneous hyperelastic material can evidence not only an isotropic 

behavior but also an anisotropic behavior. Considering that the anisotropic behavior can be 

associated with two families of fibers, characterized by two unit vector fields 1a   and 2a  in the 

reference configuration that describes the local fiber directions, the strain energy function  CW  

must be expressed as a function of these two unit vectors, in addition to their dependence of C , 
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i.e.,  21,, aaCW . Moreover, from the representation theorem for invariants, anisotropic 

hyperelastic material which is assumed to be reinforced by two family of fibers is represented by 

the nine invariants 9,1, iI i  of the right Cauchy-Green strain tensor C . Thus the strain energy 

function  21,, aaCW  can be rewritten as: 

   9432121 ...,,,,,, IIIIIWW aaC  3.13  

The first three invariants of the right Cauchy-Green tensor  321 ,, III  are related with 

isotropy. An anisotropic material which is reinforced by one family of fibers has a single preferred 

direction at each material point, motivating invariants 4I  and 5I , while an anisotropic material 

which is reinforced by two families of fibers has two preferred directions. Considering this last 

situation, the anisotropy-related invariants 4I  to 9I  are required. In summary, the mixed 

invariants of the right Cauchy-Green tensor are defined as: 

114 aCa I  3.14 

1

2

15 aCa I  3.15 

226 aCa I  3.16 

2

2

27 aCa I  3.17 

218 aCa I  3.18 

 2219 aa I  3.19 

Having the multiplicative decomposition of the deformation gradient F , as written in 

equation 3.2, and considering that a material which keeps the volume constant throughout a 

motion is characterized by the incompressible constraint 1J , it is assumed that the strain 

energy function  21,, aaCW  for a slightly compressible anisotropic material reinforced by two 

families of fibers takes an uncoupled form, in which the volumetric (“vol”) and isochoric (“isoc”) 

components are such that: 

  ),...,()(,, 9121 IIWJWW isocvol aaC , 3.20  
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Where 91,..., II  are the isochoric contribution of the invariants 91,..., II , i.e., are the invariants 

of C . For the sake of simplicity )(JWvol  and ),...,( 91 IIWisoc  will be hereafter rewritten as 

)(JWH  and  
21,, aaCW , respectively, as referred by Holzapfel and Gasser (2001). 

The strain energy function adopted in this work is in accordance with the work of  Alves 

et al. (2010): 

       JQJWWW H

0

2121 ,,,,  aaCaaC  3.21  

where the additional term 0Q  has the merit of coupling the mixed formulation, i.e., displacement 

and pressure fields (Alves et al., 2010; Sussman and Bathe, 1987). Besides, the total isochoric 

strain energy function  21,, aaCW  can be decomposed into isotropic and anisotropic parts. The 

3 terms of  21,, aaCW  shown in equation 3.21 are given by: 

     2121 ,,,, aaCCaaC anisoiso WWW   3.22 

   21
2

 JJW k
H


 3.23 

   20 ~

2

1
ppJQ

k




 3.24 

In equations 3.22 to 3.24, k  is a penalty parameter playing the role of a bulk modulus, 

p~  is the pressure interpolated from the (unknown) pressure field and p  is the pressure 

computed from the (unknown) displacement fields. The mathematical contribution of k  to the 

second Piola-Kirchhoff stress tensor can be clearly seen from the derivative the volumetric strain 

energy function )(JWH : 

   
CC 










 J

J

JWJW HH , 3.25  

Where p  is given by (Sussman and Bathe, 1987): 

 
 1




 J

J

JW
p k

H  . 3.26 



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

3. FINITE ELEMENT MODELING   7/30 

After some mathematical developments (Alves et al., 2010), it can be shown that 

 pp ~  is the hydrostatic pressure of the Cauchy stress tensor, and that the hydrostatic 

pressure results from the penalization of volume variation quantified by quantity  1J , i.e., the 

volume variation. 

The contribution of the isochoric strain energy density arises from the adopted hyperelastic 

constitutive model. In what concerns the IVD modeling, the most used isotropic hyperelastic 

constitutive models are the compressible Neo-Hookean (equation 3.27) and incompressible 

Mooney-Rivlin (equation 3.28). The isotropic part comprises the matrixes of the NP and the AF, 

along with the CEP (Bonet and Wood, 1997; Schmidt et al., 2007). The Holzapfel model 

(equation 3.29) is applied for the anisotropic contribution of the AF fibers (Holzapfel et al., 2005).  

    22

1 )(ln
2

)(ln
3

)(ln3
2

J
K

J
G

JGI
G

WNH C  3.27 

     33 201110  ICICWMR C  3.28 

     













 





 


11

2

1
,,

2
62

2
42 1

1

1

1

2

21

IkIk

Holzapfel ekek
k

W aaC  
3.29 

About equations 3.27 and 3.28, G  is the shear modulus and 10C  and 01C  are material 

parameters ([MPa]). K  is the bulk modulus of the (compressible) material. On equation 3.29, 

01 k  and 02 k  are material parameters ( 1k  [MPa], 2k  is dimensionless). It must be 

highlighted that these invariants depend on fibers’ directions, as defined in equations 3.14 and 

3.16, respectively. 

 

3.1.3. Boundary Value Problem 

 

The boundary value problem of a finite elastostatics problem consists in finding a displacement 

field Uu  such that the equations of equilibrium and the boundary conditions are satisfied: 

0fFΠ  0Div  3.30 

T
ΠΠ   3.31 
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0uu      (on D,0 ) 3.32 

NFΠt 0     (on N,0 ) 3.33 

The second Piola-Kirchhoff stress tensor (Π ) is symmetric (equation 3.8) from the balance 

of angular momentum. 0  and 0  are the volume and surface of the body in the reference 

configuration, respectively. Boundary 0  is partitioned into N,0  and D,0 . N,0  is a 

boundary where surface tractions (i.e. first Piola-Kirchhoff traction vector) 0t  are prescribed, and 

D,0  is a boundary where displacements 0u  are prescribed. U  is a solution space where 

0uu   on D,0  and 0f  denotes prescribed body forces. N  is the exterior unit normal vector. 

The underbars    denote prescribed functions on the boundaries   ,0
 of the continuum 

medium occupying the domain   (Alves, 2003; Sussman and Bathe, 1987). A representation 

of this configuration is shown in Figure 3.2. 

  

Figure 3.2. Boundary value problem configuration. 

 

3.1.4. Variational Principle 

 

Based on the variational principle, the weak form of the boundary value problem is derived in the 

material description. In the following, anisotropic hyperelastic materials which are reinforced by 

two families of fibers are considered. 
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The boundary value problem defined in equations 3.30 to 3.33 is equivalent to finding the 

minimization points  u  of the functional of the total potential energy  u  over the set U . The 

functional of the total potential energy can be written as: 

   uu extWd 













 

0

0 , 3.34 

With the potential of external forces given by:  

  




0,0

0000 ddS

N

ext ufutu  
3.35 

It must be reminded that 0f  are prescribed body forces (like gravity forces), which will be 

neglected hereafter, and 0t  are prescribed external surface tractions, which will be assumed as 

not dependent on the deformation. To solve the minimization problem, the first variation of the 

functional  u , with respect to the displacement field u  vanishes, as: 

  0 uuu D  3.36 

For an arbitrary virtual displacement field, 0Uu . 0U is a function space where 0u   on 

D,0  (Simo and Taylor, 1991). Equation 3.36 is called weak form of the boundary value 

problem formulated in equations 3.30 to 3.33. In other words, it means that the variation of the 

integrated ‘internal stress’ potentialII must equal the variation in the ‘external loading’ potential for 

any field of virtual displacements 0Uu  compatible with boundary value problem.  

However, it is worth noting that in a mixed formulation there are admissible independent 

variations of displacements and pressure. Therefore, the previous functional  u  and 

minimization problem must be properly modified to include the independent variation of the 

pressure variable.  

The inclusion in the strain energy function of the term  JQ0 , which is a function of both 

displacements u  and the separately and independently interpolated pressure p~  (or simply p ), 

allows to rewrite  u  in such a way that, for independent variations of displacements and 

pressure variables, the following equality holds: 

                                                 
II Due to variations in the displacements and pressure. 
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   uu extWdp 













 

0

0, . 3.37 

The new boundary value problem which is associated with constrained conditions such as 

almost incompressibility can now be applied to derive the mixed variational formulation. Besides 

the usual displacement field Uu , one additional pressure field Pp  is incorporated and 

treated as independent variable. Therefore, the first variation of the new mixed functional 

 p,u  with respect to the displacement field u  and pressure filed p  shall vanish:  

  0,  uuu pD               0,  ppDp u  3.38 

This is valid for arbitrary functions Uu  and Pp , respectively. After some 

mathematical developments, and by substituting equation 3.37 into equation 3.38, by the chain 

rule, the problem can be stated as: find solution   PUp ,u  such that for all virtual solutions 

  PUp  ,u : 

0:

,00

00  
 N

dSd utEΠ       and  
3.39 

 
0:

0

0

0








dp
p

JQ
 , 

3.40 

Where E  is the first variational of E  with respect to the displacement field u . The second 

Piola-Kirchhoff stress tensor Π  is given, by definition, as follows: 

      
volisoc

H JQJWWW
ΠΠ

C

C

C
Π 











0

22 . 3.41 

After some mathematical developments, it can be shown that: 

 
 

  11 ~212  








 kl

kl

klk

kl

kl CJp
C

W
CJJ

C

W CC
  

3.42 

Where the equality  1 Jp k  (equation 3.26) was considered. The first and second terms 

of the second Piola-Kirchhoff stress tensor are, respectively, the so-called isochoric and 

volumetric parts of the second Piola-Kirchhoff stress tensor. It is worth noting that p  does not 
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play any role in equation 3.42. In addition, it can be established that p~  corresponds to the 

hydrostatic pressure of the Cauchy stress tensor. 

 

3.1.5. Finite Element Implementation 

 

It is well known that displacement-based finite element methods are difficult to use in the 

analysis of incompressible or slightly compressible materials. These difficulties include ill-

conditioning of stiffness matrix and volumetric locking of the mesh due to over-constraint of the 

displacement field, as the bulk modulus K  in case of total incompressibility. To 

incorporate the incompressibility constraint in a mixed formulation is a solution commonly 

followed to circumvent this problem, and almost incompressibility can be simply achieved if 

volumetric strains are conveniently penalized, i.e., k  shall be at least three orders of magnitude 

larger than the shear modulus. By invoking finite element approximation, displacements and 

pressure are interpolated independently, 

  A

AN xξx   3.43 

  A

A pGp ξ~  3.44 

where AN  and 
AG  are isoparametric shape functions, ξ  is the vector of natural coordinates, 

and A
x  and Ap  are the nodal coordinates and nodal pressure, respectively. 

Weak form of equations 3.39 and 3.40 are generally nonlinear in the unknown 

displacement field u  and pressure p . They are solved by the Newton-Raphson iterative method, 

after linearization (of the weak form) based on the first order Taylor’s expansion. In matrix form, 

the governing equations of motion for a finite element is: 








































P

U

PPPU

UPUU

F

FR

p

u

KK

KK

0
: , 3.45 

where R are the nodal point forces (vector of the external forces) corresponding to a given time 

tt  ,   is the linearization operator and u  and p  are vectors containing nodal 

increments in u  and p , respectively. 
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  TPFFU
 is the internal forces vector, which is partitioned into two parts, one part for 

displacements variations and the other for pressure variations. Similarly, the stiffness matrix is 

divided in four parts.  

After some mathematical manipulations, the following algebraic expression (in indicial 

notation) of UF  and PF  can be determined, respectively: 
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In addition, UUK , PUK , UK P  and PPK  are given by: 
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In the previous set of equations (3.46 to 3.51) the following definitions are used: 
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Where klrsC  is the 4th order constitutive tensor that derives from the chosen isotropic and/or 

anisotropic constitutive models and volumetric strain function: 

   

klrs

H

klrsrs

kl
klrs

CC

JW

CC

W

C
C
















22

22
C

. 3.53 



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

3. FINITE ELEMENT MODELING   13/30 

The following set of derivatives with respect to nodal displacements and pressure are also 

considered: 

lLikkLil

Li

kl NFNF
u

C
,, 




 3.54 

 kMlLlMkL

MjLi

kl NNNN
uu

C
,,,,

2





 

3.55 

AG
p

p




~
 

3.56 

 Finally, it is worth noting that the equilibrium of the deformable body is achieved when 

the following equality is verified: 
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The equality of equation 3.57 means that when the vector of external forces is equal to the 

vector of internal ones, the deformable body is in equilibrium.  

The Newton-Raphson iterative method for equation 3.56 at each load (time) increment is 

defined in iteration j  by: 
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Which is followed by the update: 
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u  is the vector of solution of displacement of the nodal values and p  is the vector of solution of 

pressure nodal values. For a given time increment  ttt , , a trial solution is firstly determined 

using an explicit algorithm.  

Starting from the explicit “trial” solution, the equilibrium is iteratively determined until the 

norm of the total non-equilibrated forces is smaller than a threshold value, which is typically lower 

than 1% of the norm of the external forces.  
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3.1.6. Innovative Biphasic Modeling 

   

Biphasic soft-tissues, such as the IVD components, are typically almost incompressible. This 

feature is taken into account by assuming a multiplicative decomposition of the deformation 

gradient into volumetric and isochoric parts, and by using a mixed interpolation of the 

displacement and pressure fields, as previously described.  

The biphasic medium is assumed to be homogeneous and continuous, in the macroscopic 

point of view. It can be simply characterized by the initial fluid ( f ) and solid ( s ) volume 

fractions, n , with  sf ,  and  1n . The fluid is assumed to fill completely the pores 

of the solid phase, by flowing through it. The fluid flux relative to the solid matrix is commonly 

modeled by Darcy’s law (Huyghe et al., 1991; Wilson, van Donkelaar, van Rietbergen, et al., 

2005), written as: 

f

sff pn  *)( Kvvw , 
3.60 

Where w  is the flux of the fluid relative to the solid matrix, fn is the current fluid fraction and 

)( sf vv   is the relative velocity of the fluid with respect to the solid matrix. *
K  is the hydraulic 

permeability tensor which, in case of isotropic permeability, is simply defined as   IK JK **  . 

 JK *  is the strain-dependent permeability, I  the second order unity tensor  and fp  is the 

gradient of the pore (or fluid) pressure (Ehlers et al., 2009; Huyghe et al., 1991; Wilson et al., 

2006; Wilson, van Donkelaar, van Rietbergen, et al., 2005). The permeability is strain-dependent 

and 0M  is the unique material parameter, accordingly to (van der Voet, 1997): 
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The biphasic formulation here adopted consists of an innovative implementation that 

couples the strain energy density potential shown in equation 3.21 with Darcy’s law (equation 

3.60), embedded on the formulation proposed by Huyghe (1986) for a biphasic medium.  

As a result of such coupling, the new elemental stiffness matrix and the corresponding 

elemental system of equations are written as follows: 
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3.62 

The initial formulation based on the strain energy density potential presented on equation 

3.21 was updated to a biphasic formulation, being the major differences the introduction of term 

*K
K  on the stiffness matrix and the dissipative terms 21,, TTU  on the right hand side of equation 

3.62, defined as follows (Huyghe, 1986): 
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Indexes n  and 0  refer to the beginning of the time increment ( ntt  ) and to the 

reference configuration ( 0t ), respectively. The term U  acts as quantifier of the volume 

variation due to fluid flowing in time increment  ttt nn , . 
AG  are the shape functions for 

pressure field interpolation and *K
K  introduces the permeability phenomenon ( *K ) in the 

elemental stiffness matrix, what will allow to take into account fluid flowing.  

From equation 3.62, one must pay special attention to the term PF , which was previously 

defined on equation 3.47. This term “weights”, for a given material point, the non-equilibrated 

pressure between displacements field and the interpolated pressure, i.e., pp ~ . For a 

monophasic formulation, this non-equilibrated pressure should vanish in the vicinity of the 

equilibrium configuration, once that pp ~ . The introduction of a biphasic formulation in the FE 

model imposes that this link between the pressures determined from either the displacement 

fields or the pressure field shall be eliminated from the right-hand side of the stiffness matrix, and 

thus 0PF III.  

                                                 
III Validation of formulation is already published, as shown on the fourth annex of the present work 

(“Publications and Communications”). 
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As shown in equation 3.42, the second Piola-Kirchhoff stress tensor depends only on the 

interpolated pressure p~ , and not on the displacement based interpolated pressure p  , i.e., this 

term does not play any role on the final form of the second Piola-Kirchhoff stress tensor, and thus 

on the effective Cauchy stress tensor. The point is that, while previously the hydrostatic pressure 

was linked with the displacement field, such connection is eliminated, and now the independent 

pressure variable results from the deformation history of the biphasic medium, i.e., the 

contribution to the equilibrium of the pressure-field is now introduced by terms 21,, TTU .  

Finally, because a totally implicit formulation is here adopted (i.e., 1 ), also 2T  can be 

eliminated. Consequently, the right-hand side of equation 3.62 may finally be re-written in the 

following form: 
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3.67 

 

3.1.7. Osmotic Swelling Behavior 

 

Several studies have shown the importance of osmotic swelling behavior to the IVD 

biomechanics, namely for the height recovery during rest periods and for the maintenance of 

healthy IDP levels (Riches et al., 2002; Huyghe et al., 2003; Schroeder et al., 2010). Therefore, 

the osmotic swelling pressure gradient must be included in the formulation.  

In the standard biphasic theory, the total Cauchy stress ( totσ ), which can be determined 

the push-forward expression:  

T

tot
J

FΠFσ
1

 , 3.68 

Which results from the contribution of both solid ( sσ ) and fluid phases ( Ip ), as stated on 

equation 3.69 (Huyghe et al., 1991; Wilson, van Donkelaar, van Rietbergen, et al., 2005): 

Iσσ pstot   3.69 
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Where p  is the pore (or fluid) pressure and sσ  the effective solid phase stress tensor. The 

biphasic osmotic swelling model implemented is the one adopted by Wilson et al. (2005), in the 

following form: 

  s

f

tot σIσ   , 3.70 

where 
f  is the water chemical potential and   is the osmotic pressure gradient (Wilson, van 

Donkelaar, van Rietbergen, et al., 2005), as defined by: 

  extextextFintextint RTcccRT  24 22 
 3.71 

On equation 3.71, temperature (T ), external salt concentration ( extc ) and osmotic 

coefficients ( int  and ext ) were assumed to be constants. The ionic concentrations in all areas 

of the disc are assumed in equilibrium with the external salt concentration extc  at all times. 

Hence, ion flow is assumed to be infinitely fast compared to fluid flow. Otherwise, one would 

have to move for tri- or quadriphasic formulations (Frijns et al., 1997; Huyghe et al., 1991). The 

fixed charge density ( Fc ) is strain-dependent, and thus can be expressed as a function of the 

tissue’s deformation (Wilson, van Donkelaar, van Rietbergen, et al., 2005): 

Jn

n
cc

f

f

FF



10,

0,

0,  
3.72 

Where 0,fn  is the initial fluid volume fraction and 0,Fc  the initial fixed charge density. It must be 

highlighted that the osmotic pressure in equilibrium is only function of the deformation tensor F . 

In depth, the volume variation defined by J  (between the initial and current configurations) rules 

the calculus of the osmotic pressure in the equilibrium state (Wilson et al., 2007). Swelling 

behavior was considered for both NP and AF (Galbusera et al., 2011; Schmidt et al., 2013). 

 

3.1.8. Viscoelastic Behavior 

 

Viscoelasticity is also important for the biomechanics of the IVD, as previously discussed. Both 

creep and stress relaxation shall be taken into account when describing the time-dependent 

behavior of soft tissues. A quasi-linear hyper-viscoelastic model was adopted, with a rheological 
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model based on the coupling of up to 5 Maxwell elements in parallel with a nonlinear spring. This 

model is known as generalized non-linear Maxwell model or Maxwell-Wiechert model (Figure 3.3).  

 

  

Figure 3.3. Schematic representation of the adopted rheological model, i.e., a generalized Maxwell model, where up 

to 5 Maxwell elements can be assembled in parallel with a non-linear spring. Adapted from (Jimenez Rios et al., 

2007). 

 

The formulation is stated on equation 3.73, as presented by Kaliske et al. (2001): 
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Where  tG  is the so-called time relaxation function,  n  is the damper characteristic time and 

0EEa nn   is the ratio between the nonlinear spring na  introduced by the Maxwell element 

and the nonlinear spring 0a  (Kaliske et al., 2001).  

Viscoelastic behavior was taken into account for the NP matrix (Ehlers et al., 2009; Iatridis 

et al., 1997).  Finally, the long term viscous effect can be determined from the hereditary time 

integral: 
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3.1.9. Innovative Annulus Fibrosus Modeling 

 

The AF was modeled with regional differentiation (Cavalcanti et al., 2013). Firstly, the angles of 

the fibers within the AF evolve circumferentially from ventral to dorsal regions. Being   the 

absolute fiber angleIV, the following evolution law was used (Holzapfel et al., 2005):  

 130.02.23  , 3.75 

Where α is the polar angle associated with the circumferential position of a given material point, 

as shown in Figure 3.4.  

 

 

Figure 3.4. Schematic representation of the AF differentiation. “V” stands for “ventral” and “D” stands for “dorsal”. 

In addition, “e” stands for exterior and “i” stands for “interior”, in relation to the position of the IVD in the spine. 

Adapted from Elliott and Setton (2000) and Holzapfel et al. (2005). 

 

The implementation of equation 3.75 means that the fiber angle increases linearly from 

about 23.2º at ventral region ( º0 ) to about 43.6º at dorsal region ( º180 ), as function of 

its initial polarposition within the AF.  

In addition, based on the works of Eberlein et al. (2001) and Holzapfel et al. (2005), it was 

found that the matertial parameters of the Holzapfel model for anisotropic behavior ( 1k  and 2k , 

as shown in equation 3.29) should be reduced to 25% on the circumferential direction (ventral to 

                                                 
IV Angle within the axial plane. 
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dorsal) and to 15% on the radial direction (external to internal), starting from the ventral-external 

area (Cavalcanti et al., 2013). In other words, this means that the mechanical properties 

assigned to each material point took into account its relative radial and circumferential 

positioning within the AF. 

 

3.1.10. Summary 

 

The fundamental mechanical modeling implemented on the home-developed open-source FE 

solver was briefly described along this section. The implemented features were explicitly oriented 

to the IVD constitutive modeling, even if the solver already had some of the necessary conditions 

for the numerical simulation by FE of the soft-tissues’ behavior, such as their almost 

incompressibility and viscoelastic effects.  

The innovative biphasic poroelastic formulation here developed intends to take into 

account the multi-physics phenomena occurring inside the IVD and also the interaction between 

the IVD and its adjacent structures. The osmotic swelling behavior was coupled to this 

formulation, in order to account for the osmotic pressure gradients that equilibrate and maintain 

the viability of the IVD. Finally, the innovative modeling of the AF fibers was included to follow the 

current knowledge on the AF regional differentiation, i.e., the radial and circumferential evolution 

of both the AF mechanical properties and the fibers’ orientation within the AF were accurately 

taken into account in order to mimic the anatomical structure of a real IVD. 
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3.2. Finite Element Model 

 

The development of the MS FE model was based on a model of a Human L4 VB and the two 

adjacent IVDs previously published by Smit (1996), which is shown in Figure 3.5. This model was 

available in the Biomechanical Data Resources of the International Society of Biomechanics 

(ISB), in the section denominated “ISB FEM Mesh Repository”V, and it was developed with ANSYS 

software. Other authors, such as Noailly et al. (2005), also used this model as the basis for their 

spine-related FE studies.  

On the one hand, the specifications of Smit’s model are very coherent with the 

particularities of the native Human VB and IVD, i.e., all the relevant componentsVI are included 

and the dimensionsVII are compatible with the Human lumbar spine. On the other hand, the mesh 

was mostly built with 8-node linear hexahedra (Hex8)VIII, which allowed the straightforward 

conversion for u/P-c 27-node quadratic hexahedra (Hex27). 

 

Figure 3.5. Sagittal cut of the original Human L4 VB FE model from Smit (1996). 

 

                                                 
V The main link for the ISB Biomechanical Data Resources is http://isbweb.org/data/. However, these 

resources are now available at the Data Repository of the Biomed Town Portal, and the main link for it is 
https://www.biomedtown.org/biomed_town/LHDL/Reception/datarepository/repositories/BelRepWikiPages. The 
L4 VB model is available at the section “L4 Vertebra For Ansys”. 

VI Despite having some anatomical issues, which will be described later, this model included the three IVD 
components and the VB with the facet and respective facet cartilage layer. 

VII The height of the Human native lumbar IVD is 7 to 13mm, while its diameter is around 35 to 55mm, as 
described in the previous chapter. 

VIII The original mesh had some degenerated hexahedral elements, with 6 nodes. 
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The other possible strategy for the development of the MS FE model would be the mesh 

generation from medical images after 3D reconstruction. In general, a FE model can be 

generated from a solid voxel-based 3D model obtained from 3D reconstruction of a set of 2D 

medical images. Medical images are usually obtained from X-Ray, CT and MRI. In fact, most of 

FE models are based on CT images, MRI images or a combination of CT and MRI images. Part of 

them are even created by algorithms using “standard” dimensions mentioned in literature 

(Tyndyka et al., 2007).  

The resolution of medical imagesIX plays an important role in the accuracy of 3D 

geometrical reconstruction of anatomical structures from 2D images. In fact, image resolution is 

directly proportional to the quality of the FE mesh, i.e., the higher is resolution, more accurate is 

the FE mesh (Kelm et al., 2012). The 3D reconstruction process is somewhat tricky, mostly due 

to the poor identification of some tissues or extremely complex geometric details. In addition, the 

NP and the AF have similar densities, which makes 3D reconstruction even more difficult (Li and 

Wang, 2006; Wang et al., 2012). The imaging segmentation could become a very user-

dependent task and the time consumption would increase drastically (Kelm et al., 2012).  

This option could be more accurate than using an existent FE model, but it has some 

major drawbacks, namely the time consumption and the difficulty in gathering high resolution 

medical images. Such drawbacks reinforced the option for the adaptation of the Smit’s full VB FE 

model. 

 

3.2.1. Model development 

 

The original VB model from Smit (1996) was converted on a full MS, including the two facets and 

its respective facet cartilage layers, as shown in Figure 3.6. The conversion process involved the 

removal of the top IVD and the replication of the VB (with its respective facet), in order to create a 

model of the L3-L4 MS. The original mesh was discretized with Hex8 and some 6-node 

degenerated elements, which were all updated to Hex27, by dividing each 8-node initial element 

in eight elements. After this procedure, a Hex27 FE element mesh was obtained. It must also be 

highlighted that the degenerated elements were arranged in groups of three, in order to create 

                                                 
IX The image resolution is determined by pixel size and slice thickness (Li and Wang, 2006). 
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regular 8-node elements, by eliminating the internal nodes and thus maintaining the external 

boundaries of the model. All the modifications on the FE mesh were performed using the mesh-

edition features of the open-source FE solver. 

 

Figure 3.6. Sagittal cuts of the original FE models: a) The model developed by Smit (1996), with one VB and two 

IVDs; b) The first stage of the full MS model, with the two facets and its respective facet cartilage layers. 

 

The first stage of the full MS model (Figure 3.6) had some anatomical issues, namely the 

absence of the VEP and the exaggerated length of the CEP on the axial plane. Figure 3.7 shows a 

sagittal cut of the FE mesh used in this study. It comprises a full MS, including all relevant 

features of one IVD and two VBs.  

  

Figure 3.7. Sagittal cut of the L3-L4 FE model. 
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This second stage model had the mentioned anatomical issues solved, namely in what 

concerns to the VB and to the CEP. The two components of the VB, i.e., the TB and the CB, have 

a more accurate distribution, as the CB layer is larger in this model. However, the most relevant 

alteration on the VB is the inclusion of the VEP, i.e., the layer of CB which is adjacent to the IVD, 

through the AF and the CEP. The VEP-CEP interaction is one of the most debated topics in the 

literature (Adams et al., 2009; Ebraheim et al., 2004; Swider et al., 2010), as discussed in the 

previous chapter. The CEP is also shorter, which is a more realistic configuration, i.e., the AF is 

now in direct contact with the VEP, as described in the literature (Adams et al., 2009; Raj, 2008). 

The most accurate representation would be the CEP covering the NP and one-third of the AF (Raj, 

2008). However, the current configuration was more compatible with the chosen fibrillar model. 

The facets were removed, in order to reduce the computational weight of the model, as 

they were not essential for the forthcoming simulations. The IVD has an average height of 

12.8mm and an axial cross section of 1555.3mm2, while the full MS has an average height of 

60.9mm. The FE mesh is discretized with 1 892 27-node u/P-c quadratic hexahedra and 16 425 

nodes. For the sake of simplicity, only vertex nodes are visualized in Figure 3.7. 

 

3.2.2. Material Parameters 

 

The constitutive modeling of the IVD FE model was fully described in the previous section of this 

chapter and the L3-L4 FE model components were defined in the previous sub-section of this 

chapter. This section intends to enunciate the constitutive material parameters of each one of the 

MS FE model components. 

The five MS ground substances (NP, AF, CEP, TB and CB) were considered to be isotropic 

(Mooney-Rivlin model, as presented by Bonet and Wood (1997)) and permeable (strain-

dependent permeability model from (van der Voet, 1997)). The AF fibers were anisotropic 

(Holzapfel model, as presented by Holzapfel et al. (2005)), while the NP was considered to be 

viscoelastic (Maxwell model, as presented by Kaliske et al. (2001)). Swelling properties were 

considered for both NP and AF (strain-dependent osmotic swelling pressure model from Wilson et 

al. (2005)). The components of the VB were considered to be very stiff and highly permeable. 

Regarding these characteristics, the material parameters selected for the standard numerical 

simulations are shown in Table 3.1. These parameters were based on multiple literature sources 
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and numerical optimization, i.e., some parameters were taken from the literature and then 

adjusted throughout the development of the work to allow a more realistic behavior of the model. 

 

Table 3.1. Material properties of the MS components. Multiple data sources were assessed, as stated on each entry 

of the table. Numerical optimization was also performed throughout the choice of these parameters. 

 NP AF CEP TB CB 

IsotropyX  
10C

 
[MPa] 0.15 0.18 1.00 41.67 3846.15 

01C
 
[MPa] 0.03 0.045 0.00 0.00 0.00 

PermeabilityXI  

 

*

0K [mm4.N-1.s-1] 7.50e-4 7.50e-4 7.50e-3 0.10 0.10 

M  8.50 8.50 8.50 18.00 22.00 

AnisotropyXII  

 

2k  - 300.00 - 

1k [MPa] - 12.00 - 

Viscoelasticity
XIII 

 

1a  1.70 - - 

1 [s]
 

11.765
 

- - 

2a  1.20 - - 

2 [s]
 

1.100 - - 

3a  2.00 - - 

3 [s]
 

0.132 - - 

SwellingXIV 

 

R  [N.mm.mmol-1.K-1] 8.31450 8.31450 - 

T  [K] 298.00 298.00 - 

int  0.83 0.83 - 

ext  0.92 0.92 - 

extc [mmol.mm-3] 0.00015 0.00015 - 

0,Fc [mmol.mm-3] 0.00030 0.00018 - 

0,fn  0.80 0.70 - 

 

                                                 
X (Schmidt et al., 2007; Smit, 1996) 
XI (Argoubi and Shirazi-Adl, 1996; Ferguson et al., 2004) 
XII (Cavalcanti et al., 2013; Holzapfel et al., 2005) 
XIII (Ehlers et al., 2009; Iatridis et al., 1997) 
XIV (Galbusera et al., 2011) 
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3.3. Mesh Convergence Study 

 

Starting from the initial 3D MS FE model presented on Figure 3.7, five other FE models were 

developed, as shown in Figure 3.8. The geometrical and anatomical features are shared between 

the six models and are identified in Figure 3.8a). Material properties were also kept unchanged, 

i.e., all the models used the material parameters listed on Table 3.1.  

 

Figure 3.8. The geometrical MS model (a)) derived in six different FE models. b) and c) are the non-refined models, 

while d) and e) ate the refined ones. b) and d) were built with 27-node hexahedrons. As only the vertex nodes are 

shown, the visualization of 4-node and 10-node tetrahedra is the same (c) and e)).  

A sagittal cut is shown for all the models. 

 

b) c)

d) e)

a)

Annulus Fibrosus

Nucleus Pulposus

Trabecular Bone (VB)

Cortical Bone (VB)

Cartilage Endplate



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

3. FINITE ELEMENT MODELING   27/30 

These six models are divided in two groups, the non-refined and the refined models. For 

each group, the three types of u/P-c quadratic elements were used (4-node and 10-node 

tetrahedra and 27-node quadratic hexahedron). Figure 3.8b) and Figure 3.8c) show the primary 

models, i.e., the models with a coarse FE mesh refinement. The refined FE meshes are shown in 

Figure 3.8d) and Figure 3.8e). For the sake of simplicity, only vertex nodes are shown. 

Consequently, the visualization of the 4-node and 10-node tetrahedra is the same (Figure 3.8c) 

and Figure 3.8e)). Table 3.2 contains the number of nodes and number of elements of each FE 

mesh.  

 
Table 3.2. List of characteristics of each 3D FE MS model. 

Mesh Number of nodes Number of elements 

Non-refined 

Tet4
 

26 827 22 704 

Tet10
 

31 561 22 704 

Hex27 16 425 1 892 

Refined 

Tet4
 

184 171 156 864 

Tet10
 

213 685 156 864 

Hex27 109 109 13 072 

 

The main goal for the development of these six different FE meshes with the same 

geometry was to perform a convergence study, i.e., to compare the outcomes of the different FE 

meshes for the same geometrical model, in order to ensure the validity of the forthcoming results 

and to eliminate possible mesh-related inaccuracies. The simulations and results related to this 

convergence study will be presented and discussed in the “Validation” chapter. 

The procedures of alteration between the different finite elements and mesh refinement 

were executed using the mesh-edition features of the open-source FE solver, but the selected 

visualization software was GiD 7.4.6b®. In other words, the mesh pre-processing procedures 

were accomplished with custom-made FORTRAN code, being the mesh filesXV compatible with 

GiD 7.4.6b®, as well the numerical output filesXVI.  

  

 

                                                 
XV The available mesh format files are “.msh” and “.unv”. 
XVI The output files concerning the resultant mesh are expressed in “.res” format. 
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4. VALIDATION 

 

This chapter presents the validation of the innovative biphasic poroelastic formulation and also of 

the lumbar IVD FE model. Firstly, the validation of the through Terzaghi’s 1D test is presented. 

Then, several tests are described, in order to evaluate the IVD FE model.  

The swelling periods, the comparison with benchmark literature data and the outcomes of the 

mesh convergence study are included in this chapter. 

 

 

4.1. Terzaghi’s 1D Test 

 

The first step on the numerical analysis of the current work is to validate the innovative biphasic 

formulation. This task was based on Terzaghi’s uniaxial compression test for 1D consolidation 

(Terzaghi, 1943, 1925).  

The theoretical model developed by Terzaghi is based on the relationship between Relative 

Pressure ( TP ), Relative Depth ( TZ ), Relative Consolidation time ( TT ) and also a cumulative 

parameter ( TM ). The analytical solution is given by: 

   TT TM

TT

n T

T eZM
M

P
2

sin
2

0






 







  4.1 

This model is valid for confined compression tests and was originally developed to analyze 

soil consolidation problems, i.e., it was first devoted to answer geomechanical questions. Later 

on, Terzaghi’s model started being applied to bioporomechanics, in order to evaluate the 

behavior of biological mixtures, as performed by (Huyghe, 1986; Oomens et al., 1987a, 1987b). 

The parameters on equation 4.1 are defined by the following expressions: 
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From equations 4.3 and 4.4, z  is the consolidation depth, h  is the thickness of the layer 

and H  is the compressive modulus. For the sake of simplicity, in equation 4.5,  5,1n , given 

that MT is merely slightly influenced by values of n  higher than 5. The pressure-related variables 

of equation 4.2 stand for the initially applied pressure ( 0
~p ) and the current pressure ( p~ )I. The 

objective of this test is to evaluate the consolidation process of a given material, as the fluid 

outflow takes place. It must be highlighted that for 1T  the consolidation process of the 

specimen should be largely completed (Huyghe, 1986; Terzaghi, 1943). 

The testing scheme included a clay layer and a consolidation layer (with height = h ). The 

load is applied on the top surface of the clay layer. The example for the 27-node hexahedral 

mesh (Hex27) is shown in Figure 4.1, but the testing model was built with each one of the three 

types of u/p-c elements available on the open source FE solver, i.e., the linear 4-node 

tetrahedron (linear tetrahedron enriched with a bubble function at the center of the element, 

Tet4) and the quadratic 10-node tetrahedron (Tet10) were also tested, in order to prove the 

validity of the developed formulation.  

The clay layer is much more permeable than the consolidation layer, in order to allow the 

fluid to flow from top to bottom. The primary layers of elements of the consolidation layer are 

more refined then the bottom ones, to facilitate the fluid flowing and achieve better description of 

the pressure gradients. The first layers of elements are critical for the consolidation process, i.e., 

the probability of occurrence of numerical instabilities is higher on the first layers. The fluid flow 

is steadier on the bottom layers, so the mesh refinement can be dismissed for those layers 

(Huyghe, 1986).  

                                                 
I These pressure variables were already detailed in Chapter 3. 
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Figure 4.1. Testing scheme for Terzaghi’s test, for the 27-node hexahedral mesh. The same scheme was adopted for 

the 4 and 10-node tetrahedral meshes. Only vertex nodes are shown. 

 

The absolute stiffness properties are not relevant at this point. However, the two layers 

were considered to be isotropic and linear elastic, with the same value of compressive modulus 

for both of them. 

The applied load was uniaxial compression, while all the other degrees of freedom were 

fully constrained. Fluid flow was only allowed on the top of the clay layer, being blocked on the 

rest of the model, i.e., the fluid could not flow through the other boundaries. The bottom of the 

model (ground) is rigid and impermeable. 

Each test was performed with the same boundary conditions, having T as the only non-

constant parameter. Therefore, the results for each type of element were compared with the 

analytical solution correspondent to the following four Relative Consolidation Time values, i.e.,

 112.1,540.0,0901.0,0105.0TT , as shown in Figure 4.2.  

The results from the comparison between the numerical simulations and the analytical 

solution of Terzaghi’s model are quite satisfactory, as the consolidation process is taking place as 

it should (Huyghe, 1986; Oomens et al., 1987a, 1987b; Terzaghi, 1943, 1925). Minor 

differences between the TP  vs. TZ  curves are perceived along the four different time values. 

Therefore, each model shows good agreement with the analytical solution, for the used range of 

values of TT .  

Clay layer

Consolidation

layer

Load



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

4. VALIDATION  4/30 

 

a) 

 

b) 

 

c) 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P

Z

Terzaghi Tet4

Tet10 Hex27

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P

Z

Terzaghi Tet4

Tet10 Hex27

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P

Z

Terzaghi Tet4

Tet10 Hex27



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

4. VALIDATION  5/30 

 

d) 

Figure 4.2. Comparison between the results of Relative Pressure vs. Relative Depth predicted by the analytical 

solution of Terzaghi’s model and the results obtained with different types of elements, namely the linear 4-node 

tetrahedron enriched with a bubble function at the center of the element (Tet4), the quadratic 10-node tetrahedron 

(Tet10) and the quadratic 27-node hexahedra (Hex27). The Relative Consolidation Time varied between four values: 

a) 0105.0TT ; b) 0901.0TT ; c) 540.0TT ; d) 112.1TT .  

 

Nevertheless, Figure 4.2a) shows a noticeable difference between the 10-node tetrahedron 

and the other three curves, which may be justified by the relationship between the configuration 

of the element (tetrahedron with quadratic interpolation) and the reduced consolidation time. In 

fact, with larger consolidation times, significant differences were no longer verified. 

This simple test was the first stage for the validation of the developed biphasic formulation, 

as the fluid flow seems to be ensured in correct conditions, which means that the present results 

may be extrapolated for more complex 2D and 3D situations. The three types of elements, i.e., 

Tet4, Tet10 and Hex27 were proved as reliable to be applied in the following simulation tasks of 

the current work.  
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4.2. Swelling Periods  

 

Physiologically, the swelling periods are the time intervals which usually correspond to the rest 

periods. These periods are considered to averagely last for one-third of the day (8h) and are 

usually denominated by rest or recovery phases (Schmidt et al., 2010). The activity periods are 

characterized by loading profiles with multiple combination of efforts and positions. In fact, axial 

compression, rotation and flexion-extension efforts occur along the regular day period, during 

diverse positions, such as normal walking, climbing stairs or carrying objects. The load 

magnitudes are usually above 500N (Galbusera et al., 2011). The rest periods are characterized 

by a reduction of the load to the minimum and steady positions, which usually correspond to 

sleeping. This combination allows the IVD to recover height, mostly due to its swelling properties, 

which means that the IVD regains the fluid content lost during the activity periods. However, it 

must be highlighted that the swelling properties also play an important role on the activity 

periods, i.e., it was proved that the loading equilibrium is greatly influenced by the osmotic 

swelling pressure gradient (Schmidt et al., 2013).  

In what concerns to numerical simulations, the initial swelling period is somewhat different 

from the functional swelling periods. The condition of the IVD FE model shall be approximated to 

the physiological condition of the in vivo IVD, before the “real” simulation starts. Therefore, the 

initial swelling period may be understood as a numerical pre-conditioning. Several loading levels 

for the pre-conditioning and recovery periods can be found in the literature. Four different 

loadcases were considered for the simulation of the initial swelling periods, namely free swelling 

(Galbusera et al., 2011) and loaded swelling with 200N (idem), 250N (Sato et al., 1999) and 

350N (Schmidt et al., 2010).  

Regarding the four tests, the bottom VB was fully constrained, while lateral and sagittal 

movements of the MS were allowed. Unconstrained fluid flow was allowed in all external 

boundaries of the MS model. The loading profiles were necessarily different, as per the free 

swelling test no load was applied and the top VB was left unconstrained. For the three loaded 

swelling cases, uniaxial compression was performed, being the load applied on the top VB for 

60s and then held until the end of the test. The total duration of the tests was 8h. 
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First, the disc height variation (DHV) of the four loadcases was compared (Figure 4.3). 

DHV expresses the difference in time between the initial IVD height and current IVD height. 

Secondly, three different pressure variables were assessed, for each loadcase. NP average 

pressure (NP AveP) denotes the pressure of the NP, i.e., the pressure of the biphasic mixture 

that constitutes the NP. IDP represents the pressure of the fluid in the center of the IVD, i.e., 

inside the NPII. Osmotic pressure (OsmP) is the osmotic swelling pressure gradient measured for 

the NP. These quantities are evaluated in Figure 4.4. 

  

 

Figure 4.3. Comparison between the DHV results of the four possibilities for the initial swelling period, along the 8h 

of the present (Free Pre-Swelling, 200N, 250N and 350N). 

 

In what concerns the loaded swelling, the AveP results for the 200N load seem to be well-

balanced with the OsmP component, as both present an average value of 0.182MPa and a very 

similar evolution throughout the test. This finding is solid evidence that the average pressure of 

the IVD is provided by the swelling equilibrium. The IDP is slightly lower (average of 0.144MPa), 

but the curve of IDP versus time is similar to the curves of the other two components of the 

pressure, along the 8h of the test, as visible in Figure 4.4b)). The DHV also seems to be stable 

around -0.50mm, which is consistent with the available data (Galbusera et al., 2011). When the 

load was slightly increased to 250N, the OsmP did not changed significantly, as its average value 

was 0.184MPa. The final values for both IDP and AveP increased marginally, to 0.172MPa and 

0.215MPa, respectively. However, those components started to reveal a slight creep effect, i.e., 

                                                 
II In some cases, this pressure variable is denominated simply as “fluid pressure”. 
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the initial pressure value (just after the application of the load) is higher than the final one, for the 

same load (Figure 4.4c)). In addition, the DHV increased to -0.67mm and also denoted a creep 

effect, given that a DHV value of -0.50mm was measured immediately after the application of the 

load (Figure 4.3). In the 350N loadcase, the AveP is consistently above the OsmP, meaning that 

real compression is occurring on the IVD. This finding is reinforced by the DHV results, i.e., the 

IVD height loss is increasing along the test (Figure 4.3). The final value of -1.05mm, after a 

noticeable creep effect, is in accordance with literature data (Schmidt et al., 2010). However, the 

OsmP and the IDP come to equilibrium around the 6th hour of test, which was also theoretically 

expected (Galbusera et al., 2011) (Figure 4.4d)).  
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c) 

´ 

d) 

Figure 4.4. Pressure results of the four possibilities for the initial swelling period: a) Free Pre-Swelling; b) 200N; c) 

250N and d) 350N. NP AveP, IDP and OsmP were assessed and compared between each other, along the 8h of the 

test. 

 

To summarize, the 200N load seems to be the most appropriated to simulate the resting 

period. The 250N load might also be considered to such purposes, due to the presented 

displacement and pressure equilibrium. Finally, the 350N load seems to be exaggerated and the 

results seem to show that this load magnitude will not allow the average lumbar IVD to recover 

from the activity periods. Free swelling allows the disc to increase in height, as theoretically 

expected (Galbusera et al., 2011; Johannessen and Elliott, 2005), i.e., Figure 4.3 shows positive 
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DHV for this case, which means that the IVD slightly increased in height. Table 4.1 summarizes 

the pressure and displacement measurements along the 8h of that test. 

 

Table 4.1. Pressure and displacement measurements over time, for the free swelling test. 

Time (h) DHV (mm) IDP (MPa) OsmP (MPa) 

0 0.00 0.00 0.188 

1 0.196 0.126 0.167 

2 0.226 0.143 0.163 

4 0.248 0.153 0.160 

6 0.257 0.156 0.159 

8 0.262 0.158 0.158 

 

After the fourth hour, IDP and OsmP become almost equilibrated, and their value at the 

end of the test is the same (0.158MPa), which was also theoretically expected, as no load is 

being applied on the MS. However, the most important part of the free swelling phenomena 

occurs in the first two hours of test. As a matter of fact, 75% of the final DHV and 80% of the final 

IDP are measured at the first hour of test. At the second hour, 86% of the final DHV and 90% of 

the final IDP are already obtained.  

This is probably the best approximation for the simulation of the pre-conditioning period 

because it replicates the in vivo condition of the IVD. The equilibrium between the IDP and OsmP 

shows that the pressurization of the IVD comes directly from the strain-dependent osmotic 

swelling pressure gradient (Wilson et al., 2005). The DHV relative increase of only 14% after the 

second hour is a direct consequence of such equilibrium. In addition, the IVD height increase of 

0.262mm only represents 2% of the total initial IVD height, which is negligible.  

 

4.2.1. Comparison of swelling simulation methods  

 

The described procedure for simulating the pre-conditioning period using free swelling was also 

applied by Galbusera et al. (2011) on ABAQUS®. In that work, strain-dependent and fixed 

swelling methods were considered. On the one hand, strain-dependent osmotic pressure gradient 
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is the same approach that was previously described, i.e, the osmotic pressure gradient is also 

calculated through Wilson’s modelIII. This approach will be further denominated as “BS”, which 

stands for “Biphasic Swelling”.  

On the other hand, the osmotic pressure gradient in the center of the NP was a given input 

parameter. This condition will be further denominated as “FOP”, which stands for “fixed osmotic 

pressure”. Galbusera and co-workers used the result of the strain-dependent osmotic pressure 

gradient at the end of the 8h of free swelling as the fixed osmotic pressure value (0.165 MPa). In 

the present work, two different situations were considered, as the fixed osmotic pressure gradient 

was tested with the result of the strain-dependent osmotic pressure gradient at the beginning of 

the test (“FOP (1)”, 0.188 MPa) and then with the result of the strain-dependent osmotic 

pressure gradient at the end of the test (“FOP (2)”, 0.158 MPa). The material properties of both 

AF and CEP remained unaltered.  

Figure 4.5 shows the comparison between the three hypotheses of the present work (BS, 

FOP (1) and FOP (2)) and the two hypotheses (BS and FOP) from Galbusera et al., in terms of 

DHV (Figure 4.5a)), IDP (Figure 4.5b)), NP volume variation (Figure 4.5c)) and AF volume 

variation (Figure 4.5d)). DHV and AF volume variation were very similar for the strain-dependent 

approaches of both works, at the end of the 8 hours (around 0.26mm and 1.8%, respectively). 

However, both IDP and NP volume variation are slightly lower on Galbusera’s work (4.9% versus 

6.2% and 0.136MPa versus 0.158MPa, respectively). On the one hand, as the DHV is similar, 

this correlation between lower NP volume variation and higher IDP is probably associated with 

the existing differences on material properties and geometrical features, which alter the stress 

distribution inside the NP. On the other hand, as both works use Wilson’s model for strain-

dependent osmotic swelling, Figure 4.6 compares the evolution of IDP and OsmP along the 8 

hours of the test. 

The OsmP curves present a different evolution, but the starting and ending values (around 

0.19 and 0.16MPa, respectively) are close, as expected. The first two hours are the most 

significant for the behavior of Galbusera’s model. This finding was already listed and discussed, 

in what concerns the present work. As a matter of fact, the major part of the behavioral changes 

seems to happen during the first hour of free swelling. However, IDP and OsmP seem to need 

more time to reach the equilibrium on Galbusera’s model.  

                                                 
III Using a user-subroutine integrated on ABAQUS®, as first implemented by Wilson et al. (2005). 
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d) 

Figure 4.5. Comparison between the present model and Galbusera and co-workers model: a) DHV; b) IDP; c) NP 

volume variation and d) AF volume variation. 

 

  

Figure 4.6. Comparison between the evolution of IDP and OsmP of the BS models from the present work and the 

work of Galbusera et al. (2011). 

 

The FOP (2) model seems to be very similar to the current BS model, probably meaning 

that the open source FE solver allowed more flexibility to the calculus of the strain-stress 

conditions of the IVD than the commercially available FEM package here evaluatedIV, even when 

the osmotic swelling pressure gradient is constant and not strain-dependent.  

                                                 
IV It must be reminded that Galbusera and co-workers implemented the same osmotic swelling formulation on 

ABAQUS®. 
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The slight differences noticed between BS and FOP (2) models still give the impression 

that the BS approach is the most accurate one. Fixed osmotic pressure gradient will not be 

suitable for more complex loadcases, as it would not track the larger deformations. The FOP (1) 

presents significant differences to both FOP (2) and BS models, showing that the model is 

sensitive to the higher osmotic pressure gradient. The Galbusera’s FOP model also presents 

significant differences to the correspondent BS model, in all measured quantities.  

In fact, the top values for Galbusera’s FOP model are higher than the equivalent values for 

the BS model. This finding is more evident on the DHV and AF volume variation results, which 

are interconnected: the IVD height increase is greater, due to the higher and constant OsmP, so 

the stretching effect on the AF fibers is harsher. 

 

4.2.2. Summary 

 

To go over the main points of the swelling periods simulation, one has to start by distinguishing 

between the initial swelling period and the following functional swelling periods. The purpose of 

the initial swelling period is to approximate the condition of the IVD FE model to the physiological 

condition of the in vivo  IVD, before the start of the realistic simulation. This may be understood 

as a numerical pre-conditioning. The obtained results have shown that the idealistic free swelling 

condition is the fastest and most accurate method to simulate the initial swelling period. 

The other swelling periods are associated with the recovery periods, also known as night 

periods, as they usually occur during the night, in order to allow the spine to recover from the 

occurrences of the activity routines. Loads higher than 250N were proved to be over the limits 

that allow the recovery of the IVD, as they caused increasing height reduction, instead of 

maintaining a given height diminutionV. This finding is in accordance with the works of 

(Eijkelkamp et al., 2001; Galbusera et al., 2011; Goins et al., 2005). 

This recovery process takes place through the imbibition of the fluid that is lost during the 

activity routines, which results on the regain of IVD height. These results provided a valuable 

insight on the daily mechanisms of fluid flowing in the spine, which will be detailed in the “Long 

Creep” and “Bioreactor Data Analysis” sections of the “Results and Discussion” chapter.  

                                                 
V In other words, creep effect was noticed, but it is not supposed to occur during the resting period. 
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4.3. Short Creep Validation 

 

The following set of tests intended to evaluate the response of the MS FE model under short 

loading periods, i.e., loadcases that do not last more than 3h. It must be highlighted that this 

premise does not account for duration of the pre-conditioning periods. The creep behavior of 

healthy human IVD is then assessed and compared with experimental and numerical literature 

sources, particularly Heuer et al. (2007) and Schroeder et al. (2010).  

The benchmark of short creep test for this work is the experiment performed by Heuer et 

al. (2007). This test helped to understand the significance of the osmotic swelling behavior. 

Then, a convergence study was performed, in order to ensure that the quality of the results is not 

significantly influenced by the configuration of the FE mesh neither by mesh refinements. 

Alternative material configurations were also tested, in order to validate the selected set of 

material parameters.  

 

4.3.1. 500N, 15mins 

 

This first set of tests aimed to reproduce the experimental protocol of Heuer et al. (2007). For 

that purpose, 500 N were applied on the upper VB during 5min (slow loading to allow proper 

stabilization of the model) and then held for 15min. The load was applied through the vertical 

axis of the MS model, with the bottom VB fully constrained. Lateral and sagittal movements were 

allowed, in order to follow all the requirements described by Heuer’s protocol. The importance of 

the osmotic swelling behavior for the IVD biomechanics was also evaluated, as this test was 

performed with three different swelling conditions: without osmotic swelling (“No Swelling”), with 

a pre-conditioning period of 1h of free swelling (“Pre-Swelling”) and also with osmotic swelling, 

but without that pre-conditioning period (“No Pre-Swelling”). This pre-conditioning period 

represents the minimum required interval to reach swelling equilibrium, as described in the 

previous section of the present chapter. Figure 4.7 shows comparison between the experimental 
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results and the numerical ones, considering the different swelling modes. DHV and NP average 

pressure (NP AveP)VI were assessed. 

 

 

a) 

 

b) 

Figure 4.7. Results of a 15min creep test at 500N of compression: a) DHV; b) NP AveP. The three options for the 

swelling behavior of the numerical model are compared with the experimental work of Heuer et al. (2007). 

 

Heuer et al. (2007) experimentally measured a range of -1.08 to -1.57mm of DHV 

(average of -1.32mm), at the end of the 15 min. At the same time, the range of the NP AveP was 

between 0.36 and 0.52MPa (average of 0.44MPa). From the three numerical situations, the best 

                                                 
VI Average pressure on the NP, which considers both solid and fluid phases. 
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fit between numerical and experimental data seems to be obtained by the test which included a 

pre-conditioning period of 1h of free swelling (“Pre-Swelling”), the simulated DHV for these 

testing conditions is -1.21mm and the NP AveP is 0.41MPa. When the osmotic swelling is not 

considered (“No Swelling”), the DHV is in agreement with the experimental data (-1.28mm), but 

the NP AveP is outside the measured range (0.30MPa). The last situation, with osmotic swelling, 

but no pre-conditioning period (“No Pre-Swelling”), presents good fit for the NP AveP (0.39MPa), 

but a poor agreement for the DHV measurements (-1.09mm).  

These findings emphasize the importance of the osmotic swelling for IVD biomechanics. 

Without osmotic swelling, the pressure gradientsVII do not reach the expected levels. Therefore, 

the expected fluid imbibition and exudation cannot be simulated.  

The differences between the values obtained with that setup and those from Heuer et al. 

(2007) are probably related to specimen-to-specimen variability and material properties 

(Johannessen and Elliott, 2005; Périé et al., 2005). 

In addition, the pre-conditioning period is apparently important for the numerical 

reproduction of the experimental tests. The literature states that the pre-conditioning periods 

should be related with the recovery times, which are usually between 1 and 8h, as already 

described in the previous section of the present chapter. The results here obtained seem to 

follow these statements. This period is essential to simulate some of the effect of the loading 

history, since the IVD is naturally under an initial stress condition (Schmidt et al., 2010). To sum 

up, the setup with pre-conditioning period (“Pre-Swelling”) was considered to be the standard for 

the forthcoming simulations.  

 

4.3.2. Convergence study outcomes 

 

In order to ensure the validity of the results, the six different MS FE modelsVIII were submitted to 

the same test. The previously described protocol for uniaxial compression based on Heuer’s 

experiment (500N load during 15mins) was applied, and the pre-conditioning period of 1h of free 

swelling was also considered. The experimental data was compared with the results from the six 

FE models. Figure 4.8 shows the comparison between Heuer’s data and the non-refined and 
                                                 
VII Pressure distribution inside the IVD. 
VIII Described in the “Mesh Convergence Study” section of the 3rd Chapter. 
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refined mesh models, respectively. Figure 4.10 shows the comparison between the non-refined 

and refined mesh models. DHV and NP AveP were assessed. 

 

 

a) 

 

b) 

Figure 4.8. Comparison between the experimental results of Heuer et al. (2007) and the numerical results obtained 

with different types of elements, for the non-refined meshes (“NR”): a) DHV; b) NP AveP. 

 

On the one hand, the numerical DHV values are inside the experimental range, for both 

primary and refined Tet10 and Hex27 models, as shown on Figure 4.8a). Both configurations 

present an average DHV of -1.18mm at the end of the 15mins. The results for the Tet4 models 

are slightly outside that range, which may be explained by the unique configuration of the linear 

4-node tetrahedra (enriched with a bubble function at the center of each element). It is likely that 
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such FE configuration would not be appropriate to predict DHV, at least with this low number of 

nodes. In fact, the refined Tet4 model (final DHV of -1.02mm) is closer to the other models than 

the non-refined model (final DHV of -0.90mm), as shown on Figure 4.10a). This combination of 

outcomes probably means that higher number of nodes means less deviation on the numerical 

results, when one is using the Tet4 elements. On the other hand, in what concerns the NP AveP 

measurements, minor differences are perceived between the three types of elements, for the 

cases of both primary and refined model, as shown on Figure 4.8b), Figure 4.9b) and Figure 

4.10b). 

 

 

a) 

 

b) 

Figure 4.9. Comparison between the experimental results of Heuer et al. (2007) and the numerical results obtained 

with different types of elements, for the refined meshes (“R”): a) DHV; b) NP AveP. 
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The referred values are inside the experimental range, as the average NP AveP is 

0.43MPa. Such findings point out that the new biphasic formulation here implemented is 

sufficiently accurate to describe the fluid exchanges and pressure gradients that occur within the 

IVD and adjacent structures, independently of the topology of the FE mesh, i.e., the quality of the 

results was not significantly affected by the type of element, which means that one can choose 

any of the three types of element. However, the lower number of nodes and elements of the non-

refined Hex27 model means lower simulation time, in comparison with the other possibilities. For 

this reason, it was demonstrated that the non-refined “Hex27” model is the appropriated choice 

for the numerical simulations.  

 

 

a) 

 

b) 

Figure 4.10. Comparison between the non-refined (“NR”) and the refined (“R”) models: a) DHV; b) NP AveP. 
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4.3.3. Increasing loads, 15mins 

 

The second set of short creep tests intended to match the conclusions of the works of O’Connell 

et al. (2011) and Wilke et al. (1999). The test settings were the same of the first tests, only with 

different load magnitudes, namely 1000N, 1500N and 2000 N. These load magnitudes are in 

the scope of moderate to harsh daily activitiesIX (McMillan et al., 1996; Pollintine et al., 2010; 

Wilke et al., 1999). The loads were applied during 5 min and then held for 15 min. The pre-

conditioning period of 1h of free swelling was considered for all the loadcases. NP AveP and DHV 

were assessed and compared between the loadcases (Figure 4.11). The outcomes of the 500N 

loadcase were also included in that comparison.  

Another possible approach to understand the behavior of the IVD under different 

compressive loadings is the calculus of the spine height reduction (SHR). SHR is based on the 

assumption that the lumbar, thoracic and cervical spine will undergo the same deformation (Krag 

et al., 1990; Williams et al., 2007). If one also assumes that each lumbar IVD deforms equally, 

one third of the total stature loss is in the lumbar spine and then each one of the five lumbar 

IVDs will be responsible for one fifteenth of the total stature loss. Therefore, SHR is calculated 

through the ratio of DHV in relation to the initial disc height (DHi), as shown on the following 

expression: 

15

1 






 



DHi

DHVDHi

SHR
 

4.6 

The relative variations of the disc height (RDHV) and NP AveP (RPV) may also be 

considered. Both of these quantities are calculated through the ratio of the difference between 

the initial and final values, in relation to the final value: 

DHVf

DHVfDHVi
RDHV




 

4.7 

NPAvePf

NPAvePfNPAvePi
RPV


  4.8 

                                                 
IX These loads may represent activities such as manual labor, car driving or lifting/carrying an object. 
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The values of SHR and RDHV are presented on Table 4.2, while the RPV values are 

presented in Table 4.3. The results presented on Figure 4.11a) and Table 4.2 seem to be in 

good agreement with the experimental data available in the literature. Before the creep period, 

the DHV is about -1.40mm for 1000N, -1.74mm for 1500N and -1.98mm for 2000N. These 

results are inside the range of the studies of Joshi et al. (2009) and O’Connell et al. (2011), as 

both groups measured an average DHV of about -1.40mm for 1000N, -1.60mm for 1500N and -

1.85mm for 2000N. It must be highlighted that these values were obtained in in-vitro axial 

compression tests of non-degenerated human IVD. 

 

 

a) 

 

b) 

Figure 4.11. Simulated creep test during 15min at different load magnitudes of uniaxial compression, namely 500, 

1000, 1500 and 2000N: a) DHV; b) NP AveP. 
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Figure 4.11a) reveals that the different loads yield a relative increase of the DHV in the 

same average level, as the outlines of the DHV versus time curves are very similar. In addition, 

Table 4.2 shows that the creep response of the IVD model to the different loadcases is effectively 

consistent with the work of Heuer et al. (2007). 

 

Table 4.2. Displacement measurements for the different load magnitudes of uniaxial compression, namely 500N, 

1000N, 1500N and 2000N. 

Loadcase [N] DHVi [mm] DHVf [mm] SHR [%] RDHV [%] 

500 -0.96 -1.21 0.63 21.17 

1000 -1.40 -1.77 0.92 20.84 

1500 -1.74 -2.21 1.15 21.43 

2000 -1.98 -2.54 1.32 22.00 

 

Table 4.3. NP AveP measurements for the different load magnitudes of uniaxial compression, namely 500N, 1000N, 

1500N and 2000N. 

Loadcase [N] NP AvePi [MPa] NP AvePf [MPa] RPV [%] 

500 0.46 0.41 11.14 

1000 0.83 0.74 10.47 

1500 1.20 1.08 10.05 

2000 1.57 1.42 9.48 

 

The relative increase of the DHV (positive RDHV) for 500N is about 21% (from -0.96 to -

1.21mm, which means progressive loss of IVD height), which is also verified for the other three 

loadcases. The evolution of the SHR values reveals that the relative difference between each 

loadcase is inversely proportional to the increase of the load, i.e., the difference between the 

500N and 1000N loadcases is 0.29% and the difference between the 1500N and 2000N 

loadcases is 0.17%. One might have predicted that the SHR value for 2000N would be four times 

the SHR value for 500N (2.53% instead of 1.32%), but when the load becomes exaggerated, the 

IVD starts to reach its physiological and anatomical limits. The osmotic component of the native 

IVD is an important feature for this type of regulatory and protective effect, as well as the AF 

fibers. In what concerns the NP AveP results (presented in Figure 4.11b) and Table 4.3), the 

applied loads are in agreement with the load profiles of the daily activities studied by Wilke et al. 
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(1999). The curves of NP AveP versus time have similar evolutions, varying from 0.83MPa to 

0.74MPa for 1000N, 1.20MPa to 1.08MPa for 1500N and 1.57 to 1.42MPa for 2000N. 

Consequently, the relative decrease of the NP AveP in 15mins is averagely 10% (negative RPV) 

for the four loadcases, which is consistent with the model’s response to the aforementioned 

500N load. In fact, these outcomes are in agreement with the work of Schmidt et al. (2010) 

whose numerical model was also validated by in vivo and in vitro data. In addition, the similarity 

in the evolution of NP AveP as a function of load is aligned with the previously discussed 

consistency on the RDHV values. 

 

4.3.4. Other configurations 

 

In order to consolidate the validation of the current model, other two material configurations were 

tested, following the protocol of holding a 500N load during 15mins. The pre-conditioning and the 

load application periods were also unaltered. Firstly, only the permeability parameters (
*

0K  and 

M ) for the IVD components were altered. The new values are the ones provided by Argoubi and 

Shirazi-Adl (1996). Secondly, the Neo-Hookean modelX was chosen to describe the isotropic part 

of the IVD ground substances. The characteristic Neo-Hookean parameters (   and K ) and the 

permeability parameters were updated based on the work of Schmidt et al. (2013). Table 4.4 

shows the values of the parameters for these two different configurations. All the other 

parameters, such as the osmotic swelling or viscoelastic properties, were unalteredXI.  

In addition, the numerical test of Schroeder et al. (2010) was also included in this 

comparison. The main differences between the current model and the one from Schroeder and 

co-workers are the applied FE solver and the material properties. This group used ABAQUS FE-

package with user-defined materialsXII and a composition-based material model, i.e., they used 

the measurable tissue composition from in-house experimental studies directly as an input for the 

numerical simulations.  

The comparison between the experimental outcomes from Heuer et al. (2007), the 

outcomes from the current MS model, the alternative configurations and the numerical outcomes 

                                                 
X The Neo-Hookean model is properly described in the 3rd chapter. 
XI The material properties are listed on Table 3.1. 
XII Which included the osmotic swelling model of Wilson et al. (2005). 
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from Schroeder et al. (2010) is shown in Figure 4.12. DHV (Figure 4.12a)) and NP AveP (Figure 

4.12b)) were assessed.  

 

Table 4.4. Alternative material configurations. 

 
NP AF CEP 

Argoubi and Shirazi-Adl (1996) Permeability  

*

0K [mm4.N-1.s-1] 3.0e-4 3.0e-4 7.0e-3 

M  10.00 12.00 10.00 

Schmidt et al. (2013) 

Isotropy 
G

 
[MPa] 1.34 2.46 2.14 

K
 
[MPa] 0.81 2.91 2.53 

Permeability  

*

0K [mm4.N-1.s-1] 2.13e-3 3.0e-4 7.0e-3 

M  10.00 12.00 10.00 

 

Figure 4.12 shows that some important differences may occur if the material properties 

are changed. The standard simulation achieved -1.21mm of DHV and 0.41MPa of NP AveP. On 

the one hand, the slight differences between the “original” permeability parameters and the ones 

of Argoubi and Shirazi-Adl (1996) have little effect on the behavior of the model. For this case, 

the final DHV is -1.15mm and the final NP AveP is 0.41MPa. On the other hand, the parameters 

provided by Schmidt et al. (2013) resulted on largely different outcomes, in comparison with the 

standard simulations. The IVD model is clearly stiffer in this situation, which is perceptible on the 

DHV final value of -0.43mm and also on the NP AveP final value of 0.34MPa.  
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b) 

Figure 4.12. Simulated creep test during 15min at 500N of uniaxial compression. The FE model was configured with 

three different sets of material properties (standard parameters, permeability parameters from Argoubi and Shirazi-

Adl (1996) and material parameters from Schmidt et al. (2013)) and the outcomes were compared with the 

experimental results of Heuer et al. (2007) and also with the numerical results of Schroeder et al. (2010). Assessed 

outcomes: a) DHV; b) NP AveP. 

 

The Neo-Hookean parameters probably have major influence in the analyzed outcomes, in 

comparison with the permeability properties. Regarding the outcomes of the two alternative 

configurations, one may assume that the standard material parameters deliver the best 

approximation to the experiment of Heuer and co-workers. 

Finally, Schroeder et al. (2010) numerically achieved -1.85mm of DHV and 0.40MPa of 

IDP in the end of the 15mins. The NP AveP curve presented on that work (Figure 4.12b)) 

presents a similar evolution and a close final value (0.40MPa), but the evolution of the DHV 

(Figure 4.12a)) poles apart. The present MS model presents DHV curves with analogous 

evolution for the analyzed situations, regardless of the material properties.  

The same analogous evolution is verified on Figure 4.7a) and Figure 4.11a), with different 

osmotic swelling approaches and varying loading profiles, respectively. The curve presented by 

Schroeder and co-workers has a very significant increase rate (RDHV of 82.12%, against 21.17% 

of the current standard simulation), which means that their IVD model is not capable of reaching 

stabilization after 15mins as it should. The osmotic swelling formulation is the same, but its 

implementation on ABAQUS® is inevitably different. In addition, their composition-based material 

model may also be contributing for the disclosed behavioral discrepancies. 
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4.3.5. Summary 

 

The pressure and displacement outcomes are consistent among the different loading profiles, 

i.e., variables like NP AveP or (absolute) DHV increased when the load was also increased. This 

proves that the FE model has the ability of responding to harsh loading levels, but it also means 

that the numerical outcomes have to be carefully analyzed if one wants to identify the risk of 

overloading, as no damage laws were implemented.  

The mesh convergence study proved that the innovative biphasic formulation implemented 

in the open-source home-developed FE solver is sufficiently accurate to describe the fluid 

exchanges and pressure gradients that occur within the IVD, with any of the three types of 

elements tested, i.e., Tet4, Tet10 and Hex27. The non-refined version of the mesh with these last 

elements is the most appropriate choice for the remaining work, as it means less computational 

effort, without prejudice for the numerical results. 

Finally, the comparison with the work of Schroeder et al. (2010) shows that the present 

model is even capable of producing more realistic outcomes than other models, which used 

commercial FE packages. Therefore, this section provided very satisfactory outcomes concerning 

the advantages of using the open-source home-developed FE solver. 
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5. RESULTS AND D ISCUSSION 

 

This chapter presents the outcomes of the FE study. The lumbar IVD FE model was tested under 

several loading profiles, and the outcomes are here presented. These loading profiles are divided 

in pre-conditioning swelling periods and short and long creep tests. The last section also deals 

with the evaluation of previously unreleased experimental data from VUmc’s bioreactor. The 

central purpose is to characterize the biomechanical behavior and functionality of the lumbar IVD, 

both in healthy and pathological conditions. The results are analyzed and discussed at the light of 

the current knowledge on IVD biomechanics.  

 

 

5.1. Short Creep 

 

The creep behavior of healthy Human IVD is here assessed and compared with experimental and 

numerical literature sources (Heuer et al., 2007; Joshi et al., 2009; O’Connell, Jacobs, et al., 

2011; Schroeder et al., 2010; Tyrrell et al., 1985; Wilke et al., 1999; Williams et al., 2007), 

corresponding to short term testsI. Nonetheless, other studies regarding the non-degenerated 

behavior of the Human lumbar spine could also be in the scope of the current analysis, namely 

the works of Adams et al., (1990), Ferguson et al. (2004), Frei et al. (2002), Johannessen and 

Elliott (2005), Keller et al. (1987), McMillan et al. (1996), Pollintine et al. (2010), Sato et al. 

(1999), Schmidt et al. (2010) and Sivan et al. (2006). 

As this chapter is devoted to the creep behavior evaluation, only (uni)axial compression 

loads are taken into consideration. However, compressive strain tests and the subsequent stress 

relaxation effects are also described by several sources in the literature (Ellingson and Nuckley, 

2012; Iatridis et al., 1999; Périé et al., 2005; Yao and Gu, 2007). 

                                                 
I It must be reminded that short creep tests stand for loadcases that do not last more than 3h. 
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5.1.1. 800N, 20mins 

 

The experimental test for in-vivo short creep evaluation of Human IVD performed by Tyrrell et al. 

(1985) was numerically reproduced by Williams et al. (2007). This test consisted on two steps of 

uniaxial unconfined compression, i.e., an 800N load was applied and held during 20mins and 

then reduced (and held) to 400N during 10mins. The referred protocol does not contain any 

reference to a pre-conditioning period, but the need for IVD pressurization before the actual 

numerical simulation starts was already defined in this work. Three different pre-conditioning 

situations were applied, for 1h: i) free swelling; ii) 200N loading and iii) 400N loading. Firstly, free 

swelling is the benchmark choice of the present work. Secondly, the 200N load was chosen due 

to the association with the native osmotic swelling pressure, also as described in the previous 

chapter. Finally, the 400N load is aligned with the experimental protocol, namely with the last 

10mins of the test.  

In addition, two different load protocols were tested: i) reduced load of 400N (1), as 

described originally by Tyrrell et al. (1985) and Williams et al. (2007), and ii) reduced load of 

200N (2). This last option was also related to the native osmotic swelling pressure and native 

loading profiles for the recovery periods.  

Therefore, six numerical simulations were performed and the percentage of SHR was 

compared with the results of SHR versus time obtained by Tyrrell et al. (1985) and Williams et al. 

(2007), first with the original protocol (Figure 5.1a)) and then with the reduced load of 200N 

(Figure 5.1b)). The numerical results obtained with the two reduced load protocols were 

compared in terms of SHR, NP AveP and OsmP, and presented in Figure 5.2. Figure 5.3 shows 

the comparison between NP AveP and OsmP of each pre-conditioning option, considering both 

reduced load protocols. 

The numerical work of Williams et al. (2007) lead to noteworthy agreement with the 

experimental data from Tyrrell et al. (1985), on both stages of the present test. The current 

model showed good agreement with the experimental work on the first stage, but satisfactory 

results on the second stage were obtained only when the reduced load was 200N, instead of the 

original 400N reduced load. This fact is probably related with the differences on the initial 

osmotic pressure considered for the two models. In fact, the initial osmotic pressure considered 

by Williams’ model is 0.36MPa, while the initial osmotic pressure considered in the current 
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model is 0.19MPa. The choice of the parameters for the calculus of the strain-dependent osmotic 

pressure gradient was based on the work of Galbusera et al. (2011), as defined in the previous 

chapterII. In simple terms, the described adjustment of the reduced load in accordance with the 

osmotic properties allowed a good adjustment with both experimental and numerical references, 

which means that the current model is functioning as expected. 

 

 

a) 

 

b) 

Figure 5.1. Curves of SHR versus time: a) Comparison of the literature data (Tyrrell et al. (1985) and Williams et al. 

(2007)) with the numerical results of the three pre-conditioning options, applying the original protocol; b) 

Comparison of the literature data with the numerical results of the three pre-conditioning options, applying the 

adapted protocol with reduced load of 200N. 

                                                 
II Other literature sources, such as Ferguson et al. (2004), Schroeder et al. (2006) or Urban and McMullin, 

(1988) also pointed out an OsmP value of approximately 0.20MPa for the healthy NP.  
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a) 

 

b) 

 

c) 

Figure 5.2. Comparison between the outcomes of the six numerical simulations: a) SHR; b) NP AveP; c) OsmP. 
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The results of the modified protocol (2) are the ones to be compared with the works of 

Tyrrel and co-workers and Williams and co-workers. The top SHR calculated by Tyrrell et al. was 

0.87%, while Williams et al. obtained 0.85%. Both free swelling and 400N pre-load situations 

presented good results (0.87% and 0.86%, respectively), while the 200N pre-loadcase presented 

a slightly inferior SHR value of 0.82%. In what concerns the final SHR values, Tyrrell et al. 

calculated 0.30%, while Williams et al. obtained 0.29%. The current model registered 0.38% for 

the free swelling case, 0.31% for the 200N pre-loadcase and, lastly, 0.34% for the 400N pre-

loadcase. However, the SHR evolution of the 400N pre-loadcase is quite far from the references, 

particularly in the first 10mins of the test. The SHR initial value of this loadcase is different from 

0% (0.52%), which was also registered for the 200N pre-loadcase (0.24%).  

 

 

a) 

 

b) 
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c) 

Figure 5.3. Comparison between the pressure variables (NP AveP and OsmP) of the numerical simulations: a) Free 
Pre-Swelling; b) Pre-Load 200N; c) Pre-Load 400N. 

 

The evolution of the free swelling case throughout the whole test is the closest to the 

references, as it starts from 0% of SHR, despite of having the most distant final value. These facts 

indicate that the two situations of loaded pre-conditioning produced slightly worse results than the 

free swelling option, which is coherent with previous findings.   

The comparisons held on Figure 5.2 show the responsiveness of the model to the different 

loading profiles. Figure 5.2a) highlights the differences between the original and the modified 

protocols, which were previously discussed. Figure 5.2b) shows that the free swelling options 

present the highest value of NP AveP in the first stage (0.75MPa) and also the highest values in 

the end of both protocols (0.31 and 0.18MPa for the original and modified protocols, 

respectively). In what concerns the OsmP measurements (Figure 5.2c)), little differences are 

noticed between the different loading profiles. Nevertheless, the loading profile of free pre-

swelling with reduced load of 200N (“Free Pre-Swelling (2)”) presents an equilibrium between 

both analyzed pressure variables at the end of the test (Figure 5.3a)), which reinforces the 

indication that the modified protocol is well-matched with the IVD FE model properties and also 

that free swelling is the correct choice for the pre-conditioning period (as discussed earlier in this 

work). In fact, Figure 5.3b) and c) show a noticeable lag between NP AveP and OsmP for the 

“Pre-Load 200N (2)” and “Pre-Load 400N (2)” loading profiles, at the end of the test.  

Figure 5.4 shows the average pressure distribution inside the MS FE model, at the end of 

the first stage (Figure 5.4a)) and the at the end of the test (Figure 5.4b)), for the “Free Pre-
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Swelling (2)” loading profile. This profile was chosen because it represents the best fit with the 

literature data, as already discussed. 

 

  

  a)  b) 

Figure 5.4. Sagittal cut of the MS FE model, with the visualization of the (average) pressure distribution 

correspondent to the “Free Pre-Swelling (2)” loading profile: a) After the first stage; b) At the end of the test. The 

scale is presented on the images, and the pressure unit is MPa. 

 

Figure 5.4 only represents the “Free Pre-Swelling (2)” loading profile, but the pressure 

distribution inside the MS FE model is similar on the six numerical simulations. A clear 

compressive effective (positive AveP) is noticed inside the NP. The other components of the MS 

present lower average pressure and a slight traction effect can be occurring on the inferior VB. 

The boundaries between the NP and the AF are well distinguishable, which means that the AF is 

stiffer than the NP and thus the pressure is lower in that area. Therefore, seems like the AF fibers 

are working efficaciously to the AF reinforcement and pressure control. 

 

5.1.2. 2000N, at 1N/s 

 

The final short creep test was performed in agreement with the experimental test of (O’Connell, 

Jacobs, et al., 2011), through a loading test with three stages, i.e., this test included a pre-
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conditioning period of 1h (i), a ramp loading period (compressive uniaxial load) of 2000N at 1 

N/s (ii) and a creep period (holding of the 2000N load) of 1h (iii). Figure 5.5a) shows the 

evolution of the IVD height versus the applied load. Figure 5.5b) shows the evolution of both 

intradiscal and osmotic pressures in the center of the NP. Figure 5.5c) shows the relative 

evolution of the volume of the three IVD components. Lastly, Figure 5.5d) shows the percentage 

of AF fibers on each level of stretch. These values were assessed at the end of the test. The 

stretch ( ) is defined as follows: 

L

l


 
5.1 

Where l  is the final length of the fiber and L  is its initial length. Stretch values lower than 1 

mean that the fibers are under compression, while stretch values higher than 1 mean that the 

fibers are under traction. In addition, Figure 5.6 shows the average pressure distribution inside 

the MS FE model, at the end of each of the three stages. This information is complementary to 

the “Time vs. NP AveP” curve of Figure 5.5b). 

This final test also showed the expected IVD behavior. After the ramp loading period, the 

DHV is 2.55mm and the NP AveP is 1.45MPa (Figure 5.5a) and b)). The comparison of these 

values with the results of the previous tests indicates that the loading rate influences the stress-

state of the IVD, but only in what concerns to the pressure measurements. It must be highlighted 

that the NP AveP is lower than the OsmP during the first hour of the test (Figure 5.5b)), due to 

the free swelling conditions. 

On the one hand, this “initial” NP AveP is lower than the NP AveP measured after loading 

for the loadcase of 2000N during 15mins (1.57MPa). The final NP AveP is 1.32MPa, which is in 

agreement with the data from Wilke et al. (1999). The evolution of both intradiscal and osmotic 

pressures reveals a straight response to the applied load, from the pre-conditioning to the creep 

period. On the other hand, the presented DHV signifies an average reduction of 20% of the initial 

IVD height and 1.33% of SHR, which are similar outcomes to the ones of the loadcase of 2000N 

during 15mins. Nevertheless, at the end of the extended creep period, the DHV is 3.29mm or 

26% of the initial IVD height. These measurements are in good agreement with the 23% of 

average axial compression experimentally determined by O’Connell et al. (2011), but they 

probably represent an overloading effect (Paul et al., 2013).  
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d) 

Figure 5.5. Three stages loading test, involving: i) a pre-conditioning period, ii) a loading period of 2000N at 1 N/s 

and, finally, iii) a creep stage. The following parameters were assessed, considering the full length of the test: a) DHV 

versus loading scheme; b) NP AveP and Osmotic Pressure of the NP (OsmP); c) Volume variation of the three IVD 

components (NP, AF and CEP); d) Relative distribution of AF fibers by its stretch, at the end of the test. The 

distinction between the compression and traction zones is signaled. 

 

Figure 5.5c) shows that both NP and CEP were losing volume during the loading phases of 

this test. The final relative volume variation values were -13.5% and- 15.1%, respectively. In 

contrast, the volume of the AF is increasing throughout the test (8.6% of relative volume 

variation). This volume increase is due to the fluid flow and pressure gradients within the IVD. 

The physiological direction of the flow is from the CEP into the inner structures of the IVD, 

so volume variations outcomes are most likely in accordance with the literature (Ferguson et al., 

2004). The same explanation may be valid to justify the high percentage of AF fibers under 

tension (stretch values higher than 1), as seen in Figure 5.5d). In fact, the AF is bulging and its 

fibers are stretched, which gives the impression that the axial compression of the FE model is 

occurring as expected (Eberlein et al., 2004; Holzapfel et al., 2005).  

Figure 5.6 confirms that the 2000N compression is excessive for the MS. Figure 5.6b) 

shows a clear bulging effect after the ramp loading, even if it does not seem exaggerated. 

However, after 1h of sustained 2000N loading (Figure 5.6c)), the bulging is visibly non healthy, 

as the IVD becomes highly deformed. Nevertheless, the NP still contains most of the pressure, in 

comparison with the other MS components. The combined analysis of these outcomes (Figure 
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5.5 and Figure 5.6) shows that the IVD may be able to bear up the ramp loading of 2000N at 

1N/s. In that period, the numerical outcomes are inside the range of the results from the work of 

O’Connell et al. (2011), even if the overloading effect is already noticeable. Moreover, the 

sustainment of those 2000N for 1h is noticeably out of the physiological range. 

 

      

 a)  b) 

 

c) 

Figure 5.6. Sagittal cuts of the MS FE model, at the end of each one of the three stages: a) After the pre-

conditioning; b) After the ramp loading; c) At the end of the test, after the creep phase. The average pressure 

distribution inside the model is shown. The scale is presented on the images, and the pressure unit is MPa. 
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5.1.3. Summary 

 

The short creep tests here presented show that the behavior of the native MS FE model is aligned 

with experimental and numerical literature data, which means that the selected material 

parameters and the innovative biphasic formulation and the models implemented for the 

description of strain-dependent permeability, biphasic osmotic swelling, fibers anisotropy and 

viscoelasticity have proved to be valid for the FE simulation of the physiological IVD behavior.  

The comparison with the work of (O’Connell, Jacobs, et al., 2011) and the tests with 

increasing load magnitude allowed to conclude that loads higher than 1000N are potentially 

harmful for the IVD, particularly when these efforts are prolonged on timeIII. Some tests with 

loadcases over 2000N can still be found in the literature (Eijkelkamp et al., 2001; Li and Wang, 

2006; White and Panjabi, 1990)IV, but such efforts are clearly exaggerated and do not reflect the 

loading range of the native Human IVD.  

The next step is to perform longer tests, which can express the circadian variations of the 

IVD behavior. 

 

  

                                                 
III For very harsh loadcases, even a few seconds may be enough to cause damages on the spine. 
IV Natarajan et al. (2007) pointed out that the Human spine is probably capable of bearing 4000N loads, for 

acute/extreme efforts. 
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5.2. Long Creep 

 

Several loading profiles were tested and compared, in order to understand the physiological and 

biomechanical behavior of the IVD during 48h, in which two recovery periods (8h each) and two 

activity periods (16h each) were included. This section also includes comparisons of the 

numerical outcomes with selected literature data. 

The first recovery period also serves the purpose of pre-conditioning or adaptation to the 

load, as described on the “Swelling Periods” section of the previous chapter. The loads were 

applied during 60s and then held through the duration of the period. Four resting loads were 

considered, namely 200N, 250N, 350N and 500N. In what concerns the activity periods, 500N, 

600N, 700N, 850N and 1000N loads were tested. The denomination of the loadcase is given by 

the magnitude of the loads, i.e., “200-500N” means that the resting load is 200N (for 8h) and 

the activity load is 500N (16h), repeated twice. 

 

5.2.1. 200-500N 

 

This loading profile partially reproduces the test implemented by Galbusera et al. (2011). Figure 

5.7 shows the outcomes of the current model and the comparison with the reference work, 

whenever data is availableV. DHV (Figure 5.7a)), pressure variables (IDP, OsmP and NP AveP - 

Figure 5.7b)) and volume variation (Figure 5.7c)) are presented. 

The DHV results suggest that the current model is working analogously to the model of 

Galbusera and co-workers, even if the comparison may only be held for the second day. The 

maximum axial displacement of -1.53mm is also inside the range of the studies of Schmidt et al. 

(2013, 2011), correspondent to 16h of 500N of axial compression. However, in what concerns 

the pressure measurements, the current model seems to be more accurate on the prediction of 

the osmotic component. Firstly, as described earlier, the 200N rest load seems to be adjusted to 

                                                 
V The work of Galbusera et al. (2011) considers a different approach for the first day, so the comparison may 

only be held for the second day of the test. 



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

5. RESULTS AND DISCUSSION  14/58 

the period of IVD recovery, as demonstrated by the pressure results for the initial 8h: the 

evolution of both NP AveP and the OsmP is very similar. Secondly, on the second resting period, 

between the 24th and 32th hours, the NP AveP and the OsmP components tend to the equilibrium 

and their final values are almost equal (around 0.175MPa), as expected. Then, as was also 

expected, the IDP gets equilibrated with the OsmP. The top value of 0.43MPa and the creep 

effect during the activity period are consistent with the studies of (Frei et al., 2002; Heuer et al., 

2007; Schmidt et al., 2011; Schroeder et al., 2010) on NP internal pressure evaluation. In what 

concerns the volume variation, the volume of the NP increases during the resting periods and 

diminishes during the activity periods, associated with the variations on the IVD height, which 

seems to be mostly caused by the fluid flow.  
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c) 

Figure 5.7. Results of the 200-500N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, OsmP 

and NP AveP); c) Volume variation. The comparison with the work of Galbusera et al. (2011) is held between 24 and 

48h, for the DHV, IDP and OsmP variables. 

 

The volume of the AF increases on the first 8h (pre-conditioning period), correspondingly to 

the bulging effect (Heuer et al., 2008). On the following 36h, the evolution of AF volume is 

related to the volume variation of the NP, as it increases on the activity periods and diminishes in 

the resting periods, i.e., the volume variation of the AF is inversely proportional to the volume 

variation of the NP, as theoretically expected (Ferguson et al., 2004; O’Connell, Jacobs, et al., 

2011). Such proportionality may be explained by the fluid exchanges between these two 

components and also by the characteristic traction response of the AF fibers to the compressive 

loading, which cause AF bulging. Finally, the volume of the CEP diminishes along the test, 

probably due to the effects of the compressive load. 

 

5.2.2. 200-600N 

 

The literature points out that the non-harmless average activity loadVI should be between 500 and 

1000N (Galbusera et al., 2011; Schmidt et al., 2013; Tyrrell et al., 1985; Zander et al., 2010). 

The lowest end of this physiological range should probably between 500 and 600N, for low to 

                                                 
VI The activity load may also be referred to as the day-time load. 
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moderate activity days. In what concerns the resting load, 200 and 250N loads were already 

justified on the “Swelling Periods” section of the previous chapter. These loads are associated 

with the native osmotic pressure gradient, and thus are the most indicated for the simulation of 

the recovery periods. This statement was discussed and confirmed in the mentioned section. 

Figure 5.8 shows the outcomes of the 200-600N loading profile. In detail, DHV (Figure 5.8a)), 

pressure variables (IDP, OsmP and NP AveP - Figure 5.8b)) and volume variation (Figure 5.8c)) 

are presented. The global discussion on these outcomes will be held in the “Comparison #1” 

sub-section, where the present loadcase is compared with 200-500N and 250-600N loadcases, 

i.e., the other low to moderate circadian loading profiles. 
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c) 

Figure 5.8. Results of the 200-600N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, OsmP 

and NP AveP); c) Volume variation.  

 

5.2.3. 250-600N 

 

This loadcase is the last of the three low activity daily cycles. Therefore, Figure 5.9 shows the 

outcomes of the 250-600N loading profile, namely DHV (Figure 5.9a)), pressure variables (IDP, 

OsmP and NP AveP - Figure 5.9b)) and volume variation (Figure 5.9c)). The discussion on these 

outcomes will be held in the “Comparison #1” sub-section. 
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b) 

 

c) 

Figure 5.9. Results of the 250-600N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, OsmP 

and NP AveP); c) Volume variation.  

 

5.2.4. Comparison #1 

 

Figure 5.10 shows the comparison between the outcomes of the three low to moderate daily 

cycles (200-500N, 200-600N and 250-600N), namely DHV (Figure 5.10a)), IDP (Figure 5.10b)), 

OsmP (Figure 5.10c)) and NP AveP (Figure 5.10d)). These three circadian loading profiles 

intended to simulate the physiological stimulation on the Human spine during a regular day, 

without promoting any overloading or IVD degeneration. 
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d) 

Figure 5.10. Comparison between the three low activity daily cycles, namely 200-500N, 200-600N and 250-600N 

loadcases. a) DHV; b) IDP; c) OsmP; d) NP AveP.  

 

From the results shown in Figure 5.7, Figure 5.8 and Figure 5.9, one may assume that the 

three low activity loading profiles seem to properly describe the daily routine of the Human 

lumbar spine, without any noticeable overloading effect.  

The two loadcases with resting load of 200N present almost exactly the same DHV, IDP, 

OsmP and NP AveP values in the end of the 32th hour (approximately -0.53mm, 0.14MPa, 
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0.19MPa were measured for the 250-600N loadcase, for the same variables. The 200-600N 
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24th hour and 0.34MPa in the end of the test, while a value of 0.30MPa was measured on both 

time periods for the 200-500N loadcase.  
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loading history seems to influence the velocity of stabilization of the IVD model, but not the 

displacement and pressure measurements after stabilization. This postulation is only valid for 

non-overloading situations. 

 

5.2.5. 250-700N 

 

As abovementioned, literature sources suggested other loadcases to describe the loading daily 

routine. Crossing such references with the previous obtained dataVII, three other situations were 

tested, using the resting load of 250N and three higher levels of activity load (700, 850 and 

1000N). These three situations were analyzed individually and then compared between each 

other. The 250-600N loadcase was also compared with the abovementioned loadcases. The 

objective for such comparison is to understand the IVD response to different top loads, while 

applying the same physiological recovery conditions. 

Figure 5.11 shows the outcomes of the 250-700N loading profile, namely DHV (Figure 

5.11a)), pressure variables (IDP, OsmP and NP AveP - Figure 5.11b)) and volume variation 

(Figure 5.11c)). The discussion on these outcomes will be held in the “Comparison #2” sub-

section, which will aggregate these moderate to harsh loadcases. The 700N load was selected 

based on the works of (Adams et al., 1990; Sato et al., 1999). 

 

   

a) 

                                                 
VII From the “Swelling Periods” section and also from “Comparison #1” sub-section. 
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b) 

 

c) 

Figure 5.11. Results of the 250-700N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, OsmP 

and NP AveP); c) Volume variation. 
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Figure 5.12 shows the outcomes of the 250-850N loading profile, namely DHV (Figure 5.12a)), 

pressure variables (IDP, OsmP and NP AveP -  Figure 5.12b)) and volume variation (Figure 

5.12c)). As abovementioned, since this is a moderate circadian loading profile, the discussion on 

its outcomes will be held in the “Comparison #2” sub-section. The 850N load was selected 

based on the work of (Tyrrell et al., 1985).  

0.00

0.25

0.50

0.75

1.00

0 8 16 24 32 40 48

P
re

ss
u

re
 (

M
P

a
)

Time (h)

IDP

OsmP

AveP

-24.00

-16.00

-8.00

0.00

8.00

16.00

24.00

0 8 16 24 32 40 48

V
o

lu
m

e
 V

a
ri

a
ti

o
n

 (
m

m
3
)

Time (h)

NP AF CEP



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

5. RESULTS AND DISCUSSION  23/58 

 

a)  

 

b) 

 

c) 

Figure 5.12. Results of the 250-850N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, OsmP 
and NP AveP); c) Volume variation. 
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5.2.7. 250-1000N 

 

Figure 5.13 shows the outcomes of the 250-1000N loading profile, namely DHV (Figure 5.13a)), 

pressure variables (IDP, OsmP and NP AveP - Figure 5.13b)) and volume variation (Figure 

5.13c)). The discussion on these outcomes will be held in the “Comparison #2” sub-section.  

This loadcase represents the border line between the moderate to the harsh circadian 

loading profiles, even if several contemporary works pointed out this 1000N load as the regular 

activity load (Galbusera et al., 2011; Joshi et al., 2009; Malandrino et al., 2009; O’Connell, 

Jacobs, et al., 2011; Schmidt et al., 2013; van den Broek et al., 2012). 
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c) 

Figure 5.13. Results of the 250-1000N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, 

OsmP and NP AveP); c) Volume variation. 

 

5.2.8. Comparison #2 

 

Figure 5.14 contains the global comparison between the four loading profiles with resting load of 

250N, from 600 to 1000N of activity load. DHV (Figure 5.14a)), IDP (Figure 5.14b)), OsmP 

(Figure 5.14c)) and NP AveP (Figure 5.14d)) are evaluated. Table 5.1 summarizes the maximum 

values of DHV and IDP for each loadcase. 
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b) 

  

c) 

 

d) 

Figure 5.14. Comparison between the four moderate to harsh activity daily cycles, namely 250-{600, 700, 850, 
1000}N loadcases. a) DHV; b) IDP; c) OsmP; d) NP AveP.  
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Table 5.1. Maximum values of DHV and IDP, for the four moderate to harsh activity daily cycles, namely 250-{600, 

700, 850, 1000}N loadcases. 

Loadcase [N] DHVmax [mm] IDPmax [MPa] 

250-600 -1.85 0.39 

250-700 -2.19 0.46 

250-850 -2.73 0.55 

250-1000 -3.28 0.65 

 

The comparison between these four loading conditions seems to demonstrate that the IVD 

responds differently to different activity loads. The top values of DHV and IDP, shown on Table 

5.1, are directly proportional to the magnitude of the loadVIII, which means that the model is very 

sensitive to loading variations, as theoretically expected (Natarajan et al., 2004). These values 

are also inside the range of literature data (Ferguson et al., 2004; Galbusera et al., 2011; 

Schmidt et al., 2013). However, as the recovery load was the same, the DHV and pressure 

behavior of the four tests is very similar on the final stage of the resting period, which means that 

the IVD is also responding properly to the load adjustment. It must be highlighted that the 

evolution of the OsmP, during the initial 8h, is not exactly adjusted to the evolution of the 

analogous NP AveP and IDP, which means that the 250N load is probably slightly exceeding the 

natural resting load for a lumbar IVD with this characteristicsIX. However, in the end of the 32th 

hour, the IDP and OsmP converged to the same value (around 0.19MPa), for the four tests, 

which gives good indications about the accuracy of the recovery process. 

Nevertheless, the two higher top loads (850 and 1000N) produce some overloading effect. 

The analyzed time period (two days) is not enough to evaluate long-term damage, but the 

analysis of DHV and volume variation gives the indication that the repetition of such loading 

profiles over time would trigger IVD degeneration through mechanical factors. The analysis of the 

pressure variables also reveal some tendency to non-healthy values, in accordance with the 

works of (Massey et al., 2012; Sato et al., 1999). The 1000N load is described by multiple 

authors (Galbusera et al., 2011; Noailly et al., 2011; O’Connell, Jacobs, et al., 2011; Ruiz et al., 

2013; Schmidt et al., 2013) as related to moderate daily activities, but the healthy levels of 

                                                 
VIII This observation is also valid for the NP AveP and OsmP. 
IX This situation was already revealed in the 2nd section of the present chapter. 
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average loading for 16h are exceeded. Loading levels of 600 to 700N seem to be much more 

appropriate for the good functioning of the MS in the Human spine, as already discussed. 

 

5.2.9. 350-1000N 

 

Figure 5.15 shows the outcomes of the 350-1000N loading profile, namely DHV (Figure 5.15a)), 

pressure variables (IDP, OsmP and NP AveP - Figure 5.15b)) and volume variation (Figure 

5.15c)). The purpose of this loadcase was to establish a comparison with the analogous 

numerical test presented by (Schmidt et al., 2010).  
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c) 

Figure 5.15. Results of the 350-1000N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, 

OsmP and NP AveP); c) Volume variation. 

 

On the one hand, the 350N load seems to create an overloading effect since the beginning 

of the test, as the NP AveP, IDP and OsmP values are misadjusted on the initial 8hX. This 

discrepancy also occurs in the end of the 32th hour. On the other hand, the 1000N load 

associated with the activity period also seems to contribute for the overloading effect, as was 

already revealed in the previous sub-section. In the present test, the initial disc height is also not 

recovered on the second resting period and the volume variation of the NP is negative all along 

the test. The top IDP of 0.61MPa is lined up with the experimental work of (McMillan et al., 

1996), but the top DHV value (-3.34mm) is about 25% of the initial disc height.  

In comparison with the 250-1000N loadcase, the lower load variation of this loading profile 

(650N against 750N) caused lower top IDP, but higher top DHV. On the one hand, this situation 

indicates that harsh loading variations may cause acute damage, namely AF disruption, as 

described by (Adams and Green, 1993; Hollingsworth and Wagner, 2011). On the other hand, it 

also reveals that the higher load levels along the daily cycles cause sustained IVD height 

reduction, which may not be recovered if the activity period is regularly too severe or if the 

recovery period is not well established.  

These results were then compared with the two hypotheses considered on the numerical 

work of (Schmidt et al., 2010), which was validated with experimental data. They simulated the 

                                                 
X This situation was already discussed in the 2nd section of the present chapter. 
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IVD osmotic swelling behavior by imposing a 0.25MPa pressure on the MS external boundariesXI, 

which is an alternative approach to the abovementioned BS and FOP methods. The differences 

between the two hypotheses considered are solely the permeability properties. The first 

hypothesis (1) is based on the same source of the current model (Ferguson et al., 2004) and the 

second hypothesis (2) uses a hybrid approachXII with permeability parameters that were also 

assessed in this workXIII (Schmidt et al., 2010). 

The initial OsmP of the current model is 0.187MPa, and the initial IDP is 0.26MPa, while 

the initial IDP of both models from Schmidt and co-workers is around 0.39MPa. This higher initial 

IDP is probably explained by the fixed boundary pressure. The higher slope of both IDP curves 

seems to be caused by the lack of the strain-dependent osmotic swelling behavior, as the OsmP 

gradient contributes to the equilibrium of the IDP.  

In what concerns the DHV, the fixed boundary pressure of 0.25 MPa is also the most likely 

cause for the lower maximum displacement of both models from Schmidt and co-workers and for 

the full recovery of the initial disc height at the 32th hour (second resting period)XIV.  

 

 

a) 

                                                 
XI Schmidt and co-workers didn’t consider any specific osmotic swelling algorithm. 
XII The permeability parameters from Argoubi and Shirazi-Adl (1996) were applied for the activity periods and 

the parameters from Ferguson et al. (2004) were applied for the recovery periods. 
XIII This situation is described on the “Alternative Configurations” sub-section of the “Short Creep” section of 

the present chapter, even if there was no variation of parameters along the test, as performed by Schmidt and co-
workers. 

XIV Similar assumptions were reached on the analysis of the “800N, 20mins” sub-section of the “Short Creep” 
section of the present chapter, based on the works of (Tyrrell et al., 1985; Williams et al., 2007). 
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b) 

Figure 5.16. Comparison between the numerical outcomes of the MS FE model and the analogous outcomes of the 

work of Schmidt et al. (2010): a) DHV; b) Pressure (IDP and NP AveP). The first situation (Schmidt et al., 2010 (1)) 

considered the permeability parameters from Ferguson et al. (2004) and the second situation (Schmidt et al., 2010 

(2)) considered a hybrid set of parameters. 

 

As abovementioned, the two configurations for the permeability applied by Schmidt and co-

workers are not significantly different from the ones of the current MS model, so one may 

assume that the permeability properties shall not be a cause for the discrepancy on the results of 

both works. Nevertheless, they proved that the choice of different permeability parameters clearly 

produces different outcomes of the numerical model, for long periods of time. The specific 

geometrical features of the IVD FE model of Schmidt and co-workers are most likely to have a 

role on that discrepancy. 

 

5.2.10. 500-1000N 

 

Figure 5.17 shows the outcomes of the 500-1000N loading profile, namely DHV (Figure 5.17a)), 

pressure variables (IDP, OsmP and NP AveP - Figure 5.17b)) and volume variation (Figure 

5.17c)). The application of the 500N load for the resting period was not previously explored, but 

this loadcase was based on the numerical test presented by (Galbusera et al., 2011). The 

outcomes of that work are included in Figure 5.17a) and Figure 5.17b), between the 24th and the 

48th hours. 
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a) 

 

b) 

 

c) 

Figure 5.17. Results of the 500-1000N loading profile, along 48h: a) DHV vs. Load; c) Pressure variables (IDP, 
OsmP and NP AveP); c) Volume variation. The comparison with the work of Galbusera et al. (2011) is held between 

24 and 48h, for the DHV, IDP and OsmP variables. 
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The present work uses the same osmotic swelling pressure model (and constitutive 

parametersXV) applied on the study of Galbusera and co-workers. However, the stiffness properties 

are not the same. This situation was not evident on the comparison for the 200-500N loading 

profile, but is probably the main reason for the discrepancy on the DHV values. In fact, while the 

current MS model denotes a clear overloading effect (visible on the DHV and volume variation 

curves, Figure 5.17a) and c), respectively), the model from Galbusera and co-workers seems to 

be able to handle with the 500 and 1000N loads. This situation may not be favorable for that 

model, because the risk of damage is probably being masked. The chosen recovery load of 500N 

is not aligned with the majority of the literature, as previously discussed. 

In what concerns the pressure variables, the top IDP value measured by Galbusera and co-

workers is 0.57MPa. At the same time, the current model registered 0.53MPaXVI. However, Figure 

5.17b) shows that, at the end of the test, Galbusera and co-workers measured IDP and OsmP 

values of 0.36 and 0.28MPa, respectively, while the present model registered 0.43 and 0.34MPa 

for the same variables. The ending difference between these two pressure components is similar 

for both models (around 0.08MPa). The main difference between the two models is visible on the 

evolution of each component, as the OsmP measured by Galbusera and co-workers is steadier 

along the test than the OsmP registered by the present model. On the contrary, the IDP 

component of the present model stabilizes faster than the analogous component of the other 

model. The higher sensitivity of the osmotic component, on the current model, seems to indicate 

that the integration of the strain-dependent osmotic swelling algorithm on the home-developed 

solver produces better results than the integration of the same algorithm on a commercial FE-

package, i.e., the present model seems to be more accurate, as already described on the 200-

500N loadcase. 

 

5.2.11. Comparison #3 

 

Figure 5.18 shows the comparison between the three loading profiles with activity load of 1000N. 

DHV (Figure 5.18a)), IDP (Figure 5.18b)), OsmP (Figure 5.18c)) and NP AveP (Figure 5.18d)) are 

evaluated. 
                                                 
XV Presented on the previous chapter. 
XVI The top IDP value registered by the current simulation is 0.56MPa, but it occurs at the 8th hour, which 

cannot be compared with the work of Galbusera and co-workers. 
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d) 

Figure 5.18. Comparison between the three loadcases with the top activity load, namely {250, 350, 500}-1000N 

loadcases. a) DHV; b) IDP; c) OsmP; d) NP AveP. 

 

The comparative revision presented on Figure 5.18 demonstrates the different responses 

of the IVD to the different loading profiles, following the consistency of the previous testsXVII. When 

the equilibrium is reached, the displacement and pressure values for the three tests are similar, 

which means that the different resting loads have little influence on the activity periods.  

However, the larger load variation on the 250-1000N test is the most probable cause for 

the IDP to be the highest of this set (0.65MPa, against 0.61MPa from the 350-1000N loadcase 

and 0.56MPa from the 500-1000N loadcase), as already discussed.  

One already reached the conclusion that the 1000N load is almost certainly exaggerated 

for the 16h of the physiological activity period, but the focus of the present comparison is on the 

resting loads. The model’s response to the different values for the resting load confirms the 

previous finding that the natural resting load is about 200-250N, for the healthy lumbar Human 

IVD, which is firmly associated with the average value of 0.20MPa for the native OsmP (in the 

equilibrium). The 350 and 500N resting loads cause a visible overloading effect since the 

beginning of the test, i.e., the maintenance of these loads during these 8h do not allow the IVD to 

recover from the activity period. Nevertheless, the abovementioned severe load variation of the 

250-1000N loadcase is also a possible cause for the mechanical failure of the IVD.  

                                                 
XVII This consistency of the numerical outcomes was also demonstrated on “Comparison #1” and 

“Comparison #2” sub-sections. 
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5.2.12. Summary 

 

The outcomes of displacement, pressure and volume variation allowed the evaluation of the 

biomechanical behavior of the IVD FE osmo-poro-visco-elastic model (with fiber-reinforcement), 

under different loadcases of uniaxial unconfined compression.  

The activity load was described as three or four times averagely larger than the recovery 

load. The initial swelling essaysXVIII gave the clue that the recovery load should be around 200N, 

for a healthy lumbar disc. In what concerns to the activity load, it should have an average 

magnitude of 700N, which was also indicated by (Adams et al., 1990; Helfenstein, 2011; Sato et 

al., 1999). Moderate daily activities can be represented by a 1000N load, as described by 

(Galbusera et al., 2011; Noailly et al., 2011; Ruiz et al., 2013; Schmidt et al., 2013, 2010). 

However, the recovery process of the IVD is impaired for loads higher than 850N, which means 

that higher loads will probably accelerate IVD degeneration.  

  

                                                 
XVIII “Swelling Periods” section. 
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5.3. Bioreactor Data Analysis 

 

This section deals with the analysis of the bioreactor data from the Department of Orthopedic 

Surgery of VUmc (Amsterdam, The Netherlands). The ex vivo bioreactor system was developed 

within this group, and is denominated as Loaded Disc Culture System (LDCS). In short, this 

system is capable of maintaining an IVD alive for at least 3 weeks after extractionXIX, without losing 

its biomechanical and physiological properties. A schematic representation of this system is 

shown in Figure 5.19.  

 

 

Figure 5.19. Schematic representation of the LCDS. Adapted from (Paul et al., 2012). 

 

Other IVD-oriented bioreactors are described in the literature (Chan et al., 2013; 

Gantenbein et al., 2006; Korecki et al., 2007)XX, but the LDCS reports the longest period of IVD 

viability. This system reproduces the IVD native environment, by enabling the close monitoring of 

oxygen and nutrient supply levels, through the introduction of a culture medium, along with 

providing static or dynamic mechanical axial loading, as seen in Figure 5.19. Up to twelve IVDs 

may be simultaneously under experiment in this equipment. The LDCS-related publications from 

Paul and co-workers reported experiments with several loading profiles, varying not only the load 

                                                 
XIX The IVDs are extracted after the sacrifice of the animal, which is usually a goat. 
XX This type of bioreactor was already mentioned in the second chapter. Each system may use IVDs from 

different animals. 
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magnitude, but also the loading regime, which could be static or dynamicXXI (Paul et al., 2013, 

2012). The LDCS data to be analyzed in this section was not previously explored nor published, 

so the first step is to discuss the displacement outcomes from the experimental loading tests, 

and then compare them with the results of analogous numerical simulations.  

Three test-groups were considered for the present analysis, organized as follows: i) test-

group 1 includes four IVDs from goats 1 and 2, which were kept alive for 22 days, ii) test-group 2 

includes four IVDs from goats 3 and 4, which were kept alive for 24 days and iii) test-group 3, 

which includes an IVD from goat 5, which was kept alive for 16 days. It must be highlighted that 

the viability of the IVD on the LDCS is related with the magnitude of the loading profile. In order to 

compare these three test-groups, the duration of the test-groups 1 and 2 was limited to 16 days. 

Test-groups 1 and 2 included two native (“Nat”) and two injected (“Inj”) IVDs, i.e., each 

goat from these groups had one IVD left intact and the adjacent IVD injected with 0.5U/ml 100uL 

of chondroitinase ABC (CABC) on PBS solutionXXII. These IVDs were tested under physiological 

loading conditions, which means that this loading profile is comparative to activities such as lying 

down and walking in goats and relaxed standing and unsupported sitting in Humans. It consists 

of a sinusoidal load (1Hz) of 150N average and 100N amplitude for 16h (activity period), 

followed by other sinusoidal load (1Hz) of 50N average and 10N amplitude for 8h (resting 

period)XXIII. However, the transition between the activity and resting periods is performed with 1h of 

triangular loading (0.25Hz) of 200N average and 100N amplitude. Slight adjustments on the 

system’s functioningXXIV explain the extra two days of duration of test-group 2. 

The IVD from the fifth goat was maintained intact, but it was Overloaded (“Ove”), i.e., the 

activity period loading profile was increased, in comparison with the other two test-groups. The 

resting period and the transitions between the major periods are the same, but the activity 

loading profile consists of a sinusoidal load (1Hz) of 300N average and 100N amplitude for 16h. 

This loading profile simulates jumping on a haystack in goats or lifting objects in Humans. 

The maximum displacement from each one of the 16 days was analyzed, after filtering of 

the LDCS output data. A custom-made FORTRAN filter was developed and applied to reduce the 

                                                 
XXI The authors stated that, from the physiological point of view, the dynamic regimes cause large dynamic 

displacement, while the static regimes induced a prolonged creep effect. 
XXII The CABC is an enzyme that cleaves proteoglycans, i.e., this PBS-CABC compound (further denominated 

only as CABC) is injected on the goat IVD with the aim of triggering degeneration (Detiger et al., 2013). 
XXIII Sinusoidal loadings are associated with dynamic loading regimes. 
XXIV For example, the buffering period when the loads are altered was optimized. 
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computational weight of the raw experimental data, since these were sampled at 10HzXXV. The 

comparison was first held between the four non-degenerated IVDs (Figure 5.20a)) and then 

between the four injected IVDs, plus the overloaded one (Figure 5.20b)). Secondly, the test-

groups 1 and 2 were internally compared, i.e., the native IVDs from goats 1 and 2 were 

compared with the injected IVDs from the same goats (Figure 5.21a)). The same procedure was 

followed for goats 3 and 4 (Figure 5.21b)).  

 

 

a) 

 

b) 

Figure 5.20. Comparison of the overall displacement outcomes of the LDCS test-groups, for 16 days. a) DHV of the 

native IVDs, from test-groups 1 and 2; b) DHV of the injected IVDs, from test-groups 1 and 2 and overloaded IVD 

from test-group 3. 

                                                 
XXV This sampling rate corresponds to 10 samples per second, which ultimately resulted in 36000 values per 

hour. The developed filter was adjusted to 0.1Hz, i.e., a maximum of 360 values per hour. 
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a) 

 

b) 

Figure 5.21. Comparison of the DHV outcomes within each test-group, for 16 days. a) Test-group 1; b) Test-group 2. 

 

In order to help on the analysis of Figure 5.20 and Figure 5.21, Table 5.2 summarizes all 

the displacement measurements, in terms of ending DHV (DHVf) and relative variation of the 

DHV, from the first to the 16th day. 

The four native IVDs present similar DHVf, with only 0.20mm of difference between the 

lowest and the highest DHVf, i.e., the IVD from goat 3 reached -1.52mm and the IVD from goat 4 

obtained -1.72mm. The IVDs from test-group 1 reached almost the same DHVf, with -1.57mm 

and -1.58mm, for goats 1 and 2, respectively. In what concerns to the injected IVDs, the 

difference between the lowest and the highest DHVf is 0.36mm, which means higher dispersion 
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of results. The lowest DHVf corresponds to the second goat (-1.77mm), while the top value 

corresponds to the first goat (-2.13mm). The IVDs from test-group 2 reached close DHVf values, 

with -1.87mm and -1.81mm, for goats 3 and 4, respectively. The overloaded IVD (goat 5) 

reached -1.97mm on the 16th day, which is inside the range of the DHVf measurements from the 

injected IVDs. 

 

Table 5.2. Relative displacement measurements of the nine IVDs, from the five goats. 

Goat Condition DHVf (mm) RDHV (%) 

1 

Native -1.57 16.10 

Injected -2.13 22.88 

2 

Native -1.56 11.75 

Injected -1.77 27.80 

3 

Native -1.52 16.72 

Injected -1.87 8.93 

4 

Native -1.72 18.99 

Injected -1.81 26.49 

5 Overloaded -1.97 11.67 

 

However, the analysis of the DHVf values is not enough to understand the overall behavior 

of the IVDs on the LDCS. The assessment of the RDHV shows that the evolution of native IVDs 

along the 16 days is similar for three of them, with 18.99% for the IVD of the fourth goat, 16.72% 

for the third and 16.10% for the first. The native IVD of the second goat is somewhat out of 

scope, as it registered a lower difference between the first and the 16th day, with a RDHV value of 

11.75%. The injected IVDs presented higher dispersion of results, as was also noticed on the 

DHVf analysis, with 27.80% for the IVD of the second goat, 26.49% for the fourth and 22.88% for 

the first. The injected IVD of goat 3 presented a RDHV value of 8.93%, which is the lowest RDHV 

value of the nine analyzed IVDs. In the current analysis, the overloaded IVD is closer to the native 

IVDs, as it registered 11.67% of RDHV. 

After analyzing all the presented daily displacement outcomes (DHV vs. time, DHVf and 

RDHV), one may say that the native IVDs present analogous behavior over the 16 days, as visible 

in Figure 5.20a), even considering the enumerated slight differences.  
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In what concerns to the injected IVDs, one may admit that the injection of the CABC 

compound can produce different effects, which is probably related with individual particularities 

of each goat and each IVD. The injected IVD from goat 3 showed regular DHVf and low RDHV, 

which probably means that the influence of the compound on the IVD was effective since the first 

day, while the other injected IVDs suffered from a more gradual degeneration effect. However, 

the two IVDs from the fourth goat showed close evolution of the DHV over time, thereby the 

injection of the CABC solution on the IVD of this goat was presumably not as significant as 

expected. The overloaded IVD presented low RDHV combined with high DHVf, meaning that the 

overloading was noticed since day 1 and also that the global behavior was not significantly 

altered during the testXXVI.  

Regardless of the mentioned exceptions, both injected and overloaded IVDs show higher 

DHVf and RDHV values, in comparison with the native ones, meaning that degeneration is 

probably occurring on those IVDs. The overloading effect is noticed since the first application of 

the exaggerated activity load, but the influence of the CABC compound is slower. 

After the analysis of the overall displacement outcomes, the DHV of the first two days of 

test-groups 1 and 2 were exhaustively analyzed. Therefore, two activity periods, two recovery 

periods and three transitions stages were highlighted. Figure 5.22a) shows the described 

outcomes from the first test-group, while Figure 5.22b) shows the analogous outcomes from the 

second test-group. As the intention here was to compare the behavior of the native IVD versus the 

injected IVD of the same goat, for the two goats of each test-group, the overloaded IVD from test-

group 3 was not included. 

Regarding the first test-group (Figure 5.22a)), it is visible that the two native IVDs present 

similar behavior. Further, the DHV evolution of the injected IVD from goat 2 is close to the 

analogous evolution of the native IVDs. However, the progressive degenerative effect can be 

observed on the second recovery period, as the minimum DHV (-0.72mm) is higher than the 

DHV of the first recovery period (-0.68mm), meaning that the IVD is consistently losing height. 

This height loss is not perceived on the native IVDs. The injected IVD from goat 1 lost more 

height than the other three IVDs of this test-group since the beginning of the test. The DHV 

difference between of first and the second recovery periods is also larger (measured DHV values 

of -0.96mm and -1.05mm, respectively). 

                                                 
XXVI This particular situation is comprehensively analyzed on the third section of the Annexes. 
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a) 

 

b) 

Figure 5.22. DHV evolution over the first two days of the LDCS experiment. a) First test-group; b) Second test-group. 

Two native and two injected IVDs are considered in each test-group. 

 

The outcomes from the second test-group (Figure 5.22b)) are not so clear, due to the DHV 

evolution of the IVDs from the fourth goat. The native IVD presents the same final DHV value than 

the correspondent injected IVD (approximately -1.26mm), without presenting a progressive height 

loss. In other words, the injected IVD diminished in height from the first recovery period to the 
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second one (measured DHV values of -0.49mm versus -0.63mm, respectively), which is the sign 

of progressive degenerative effect, but it ended losing the same height than the native IVDXXVII. This 

finding probably means that the initial height of the IVDs should have been taken into 

consideration, in order to normalize the DHV measurements. Nevertheless, it must be highlighted 

that this height difference may be related with the cutting of the VBXXVIII and not directly with the 

IVD, since the studied IVDs belonged to adjacent levels and their height should not be 

significantly different.  

The DHV evolution of the IVDs from the third goat was also not straightforward, as the 

native IVD presented similar behavior to the injected IVD of the fourth goat, i.e., the IVD was not 

injected, but it disclosed some progressive degenerative effect. In what concerns to the injected 

IVD of the third goat, this one obeyed to what was initially expected, i.e., it diminished in height 

more significantly than the other IVDs since the first activity period. In addition, the DHV 

measured after the first recovery period was lower than the analogous value of the second 

recovery period (-0.92mm versus -0.98mm, respectively). 

In agreement with the findings of the DHV outcomes after 16 days, the DHV detailed 

measurements during the first two days of the experiments allow the identification of some 

degeneration signs on the injected IVDs. Detiger and co-workers (2013) also found consistent 

evidence of IVD height reduction after the injection of the CABC compound, even if their analysis 

was performed using different methods.  

The native IVDs tend to maintain their height along the experiment, while the injected IVDs 

tend to lose height progressively. This systematic height reduction is mostly noticed on the loss of 

the ability to return to the same height level after the recovery period. However, some 

discrepancies were noticed between the two analyzed test-groups (1 and 2) and also between the 

IVDs of the same test-group, which can be justified by the adjustments on the equipment and on 

the testing proceduresXXIX, but also by the inter-specimen variability of the goats.  

On the one hand, one can conceive that some goats have genetic predisposition to 

degeneration, which may have promoted the unexpected behavior of the native IVD of the third 

goat, under physiological loading. On the other hand, the injection of the CABC compound on the 

                                                 
XXVII The DHV variation of the native IVD in the same time steps was limited to -0.02mm, i.e., -0.70mm at the 

end of the first recovery period and -0.72mm after the second recovery period. 
XXVIII This refers to the preparation of the IVDs prior to the LDCS experiments. 
XXIX The already mentioned differences on the VB cutting may influence the height measurements significantly. 
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adjacent level may have stimulated the degeneration of the IVD that was supposed to be kept 

under native conditions. 

The next step is to compare these first two daily cycles of the experimental tests with 

analogous numerical simulations, using the developed MS FE model. 

 

5.3.1. Comparison with the MS FE model 

 

In order to have better understanding over the LDCS outcomes, and also to continue the 

evaluation of the MS FE model, the experimental tests were numerically reproduced. However, 

some important assumptions had to be held, since the experiments were performed with goat 

IVDs and the FE model correspond to a full Human MS. The average axial cross section of the 

goat IVD is around 300-400mm2, accordingly to the VUmc experimental data, while the average 

axial cross section of the Human IVD stands between 1200 to 1600mm2. The IVD FE model has 

an axial cross section of 1555.3mm2, as described in the previous chapter.  

Consequently, the Human IVD is averagely four times larger than the goat IVD, so one 

could assume that the loads to be applied on the MS FE model should be four times greater than 

the loads experimentally applied on the goat IVDs, on the LDCS. The sinusoidal loadings were 

also simplified to linear loadings, given that the sinusoidal wave would meant an extra 

computational effort, without significant improvements on the numerical outcomes. Linear 

loadings may also be denominated as static loadings, at the light of the available loadings 

regimes of the LDCS. Computationally, at the hourly time-scale, it was verified that the sinusoidal 

and the linear loading regimes produce similar outcomes. If one was working with shorter testsXXX, 

the two regimes probably caused different behavior of the FE model, due to the viscoelastic 

effects. Therefore, the numerical physiological loading profile consists of 600N for 16h (activity 

period), followed by 200N for 8h (resting period). This model is known as “Native”. The transition 

between the activity and resting periods is performed with 800N for 1h, in order to maintain a 

similar timeline with the experimental tests. The overloading profile, which will be ahead 

denominated as “Overload”, had the same resting and transition periods, but the activity load 

was increased to 1200N.  

                                                 
XXX Shorter tests, in this context, mean tests with duration inferior than one minute. 
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The effect of the CABC compound was reproduced on the numerical modeling through the 

reduction of the osmotic pressure gradient. As aforementioned, CABC cleaves proteoglycans, 

which are involved on the osmotic pressure mechanisms, through the regulation of the fixed 

charged density ( Fc ). In detail, proteoglycans have an essential role on fluid attraction and 

detainment, which allows the IVD to maintain its internal pressure, namely due to the “vessel-

wall”-like behavior of the AF fibers. Hence, if the proteoglycan content is reduced, the hydration 

of the IVD is also reduced and the osmotic pressure gradient is lower (Massey et al., 2012; 

Wognum et al., 2006). The initial fixed charge density ( 0,Fc ) of the NP was then reduced, in two 

levels, as presented on Table 5.3. The objective was to reduce the native NP 0,Fc
 

(0.00030mmol.mm-3) step by step until it reaches the native 0,Fc
 value of the AF 

(0.00018mmol.mm-3). The model with the first 0,Fc
 reduction is entitled “Low OsmP 1” and the 

model with the second 0,Fc
 reduction is denominated “Low OsmP 2”XXXI. In order to evaluate an 

extreme situation of proteoglycans cleavage, i.e., total split, a model without osmotic swelling was 

also tested (“No Swelling”). 

 

Table 5.3. Osmotic swelling material properties of the native FE model and reduced OsmP models.  

Model NP 0,Fc [mmol.mm-3] 

Native 0.00030 

Low OsmP 1 0.00024 

Low OsmP 2 0.00018 

 

The other core hypothesis to simulate degeneration was the modification of the tissues’ 

permeability, but this mechanism is highly dependent on the degeneration gradeXXXII. Low to mild 

degeneration are probably related to a decrease of CEP permeability, due to the calcification of 

this component, while mild to severe degeneration are more likely associated with an increase of 

CEP permeability, as a result of probable crack openings (Adams and Dolan, 2012; Urban et al., 

2000). The permeability behavior of the degenerated NP and AF remains uncertain, but some 

studies pointed out that it could increase (Iatridis et al., 1998; Johannessen and Elliott, 2005; 

                                                 
XXXI These two reduced osmotic pressure models will also be analyzed on the first section of the Annexes. 
XXXII Mild degeneration, as reported by Detiger et al. (2013), stands for grades III to IV on Thompson’s scale. 
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O’Connell, Vresilovic, et al., 2011; Urban et al., 2000). Some of these studies tried to implement 

these permeability changes on their numerical models, but those parameters are also diffuse. 

The proteoglycans might be related to the permeability variations, but the association is also 

unclear. The IVD components are also described to increase in stiffness, as modeled by 

(Natarajan et al., 2006) and (Schmidt et al., 2007), but this variation was not previously 

described in the literature as having a direct link to the injection of CABC compound (Detiger et 

al., 2013). 

Figure 5.23 shows the behavior of the five numerical approaches, namely “Native”, “Low 

OsmP 1”, “Low OsmP 2”, “No Swelling” and “Overload” models. Figure 5.24 shows the 

comparison between the native and non-physiological DHV outcomes of the experimental and 

numerical tests.  

 

 

Figure 5.23. DHV outcomes of the five numerical approaches to the experimental data, namely “Native”, “Low 

OsmP 1”, “Low OsmP 2”, “No Swelling” and “Overload” models. 

 

The behavior of the numerical model corresponds to what was theoretically expectedXXXIII. 

Firstly, the “Native” model is able to fully recover the initial height on the resting periods, and the 

maximum DHV is inside the physiological displacement range. Secondly, the reduced OsmP 

                                                 
XXXIII The transition periods will be excluded from the analysis of the maximum and minimum displacement 

measurements, as their purpose was just to establish the transition between the activity and recovery periods, on the 
experimental apparatus. 
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models show some signs of degeneration, as the fluid flow seems to be diminished, and thus the 

initial height is not recovered. This effect is progressive, as the “Low OsmP 1” model is less 

affected than the “Low OsmP 2” model. The maximum displacement also progressively 

increasedXXXIV, in comparison with the “Native” model. In addition, the “No Swelling” model shows 

clear signs of degeneration, as the maximum displacement is significantly increased and this 

increase is progressive throughout the daily cycles, without any sign of recovery. Finally, the 

“Overload” model shows the highest top displacement, but not the lowest recovery rateXXXV, i.e., 

the overloading origins severe DHV levels, but the native constitutive properties allow this model 

to maintain some capacity to recapture the lost fluid, when the load is decreased. These 

differences between the five numerical models are visible on Figure 5.23. 

The comparison of the first two daily cycles of the native IVDs with the equivalent period of 

the “Native” model (Figure 5.24a)) shows that the numerical model is able to reproduce the 

physiological behavior of the goat IVD, particularly during the activity period. Numerically, the 

maximum DHV was -1.36mm, while the average experimental measurement was -1.20mmXXXVI.  

In what concerns to the resting periods, an important difference is noticed, as the 

numerical model is able to regain all the fluid lost during the activity period. The goat IVDs do not 

reach that DHV value of approximately 0.00mm, as their average DHV value on the resting period 

is -0.58mm.   

Nonetheless, these four IVDs maintain the same DHV recovery level from the first to the 

second daily cycle, which was previously described as a sign of no degeneration. In other words, 

the DHV results indicate no degeneration, but incomplete recovery. This fact is probably related 

with the intrinsic behavioral differences between the goat and Human IVDs, namely the specific 

biomechanical stimuliXXXVII. The numerical model helped to understand that the ideal situation is to 

fully recover the fluid on the resting periods. However, the action of AF fibers may also be limiting 

the range of DHV, and this limit situationXXXVIII is not predicted in the FE solver. This action shall not 

be considerably different in Human and goat spines. 

 

                                                 
XXXIV From the first to the second daily cycle. 
XXXV The recovery rate shall be understood as the difference between the DHV after the activity period and the 

DHV after the recovery period. The lowest recovery was registered by the “No Swelling” model. 
XXXVI Considering the four native goat IVDs. 
XXXVII The nutrition pathways included in the LDCS functioning and the ion-influenced fluid retention may also 

have a role in this situation. 
XXXVIII The limit situation shall be understood as the maximum extension of the fibers. 
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a) 

 

b) 

Figure 5.24. Native and non-physiological DHV outcomes of the experimental and numerical tests, for two daily 

cycles. a) The four native IVDs compared with the native numerical model; b) The four injected IVDs compared with 

the two reduced OsmP models. 

 

The comparison of the first two daily cycles of the injected IVDs with the equivalent period 

of the reduced OsmP models (Figure 5.24b)) shows that the behavior of both numerical models 

may be associated with the IVDs from goats 1 and 3, but not so much with the IVDs from goats 2 

and 4. Subsequently, Figure 5.25 shows selective comparisons between the non-physiological 

-3.00

-2.00

-1.00

0.00

0 20 40 60

D
is

c
 H

ei
g
h

t 
V

a
ri

a
ti

o
n

 (
m

m
)

Time (h)

G1 Nat G2 Nat G3 Nat

G4 Nat Num Nat

-3.00

-2.00

-1.00

0.00

0 20 40 60

D
is

c
 H

ei
g

h
t 

V
a
ri

a
ti

o
n

 (
m

m
)

Time (h)

G1 Inj G2 Inj

G3 Inj G4 Inj

Num Low OsmP 1 Num Low OsmP 2



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

5. RESULTS AND DISCUSSION  50/58 

DHV results of the experimental and numerical tests. The analysis of Figure 5.24b) suggested 

that the injected IVDs from goats 1 and 3 should be grouped in one graphic (Figure 5.25a)), 

while the injected IVDs from goats 2 and 4 should be compiled in other graphic (Figure 5.25b)).  

These two groups of injected IVDs were compared with the two reduced OsmP models 

and, additionally, with the “No Swelling” model. Table 5.4 summarizes the DHV values of these 

six DHV curves, and it helps to demonstrate the abovementioned differences between the four 

experimental tests, and also between the experimental tests and the numerical ones.  

The “Low OsmP 1” model shows only slight signs of degenerationXXXIX, while the “Low 

OsmP 2” model is closer to the injected IVDs from goats 1 and 3. The native IVDs presented a 

DHV difference of averagely 0.58mm after the recovery periods, when compared with the 

“Native” model. The average difference between “G1 Inj” and “G3 Inj” and the “Low OsmP 2” 

model, after the recovery periods, is 0.50mm, i.e., the distance between these two injected IVDs 

and the numerical model is close to what was measured for the native condition, which denotes 

consistency of the outcomes. In addition, the analogous difference for the maximum 

displacement is averagely 0.25mm, which is in agreement with the 0.16mm difference found for 

the native condition.  

 

 

a) 

                                                 
XXXIX Both maximum DHV and DHV after recovery are not significantly distant, when one is comparing the first 

daily cycle with the second one. 
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b) 

Figure 5.25. Non-physiological DHV outcomes of the experimental and numerical tests, for two daily cycles. a) The 

injected IVDs from goats 1 and 3 compared with the two reduced OsmP and the “No Swelling” models; b) The 

injected IVDs from goats 2 and 4 compared with the two reduced OsmP and the “No Swelling” models. 

 

Table 5.4. Summary of the DHV values of the four injected IVDs and the reduced OsmP models, after each activity 

and recovery period, obtained by numerical simulation. 

IVD 

DHV [mm] 

1st Activity 

Period 

1st Recovery 

Period 

2nd Activity 

Period 

2nd Recovery 

Period 

Experimental 

G1 Inj -1.46 -0.96 -1.57 -1.05 

G2 Inj -1.12 -0.68 -1.18 -0.72 

G3 Inj -1.52 -0.92 -1.56 -0.97 

G4 Inj -1.09 -0.49 -1.21 -0.63 

Numerical 

Low OsmP 1 -1.56 -0.29 -1.59 -0.30 

Low OsmP 2 -1.74 -0.47 -1.80 -0.49 

No Swelling -2.17 -1.36 -2.63 -1.82 

 

However, none of these injected IVDs is by chance near to the behavior of the “No 

Swelling” model. The recovery rate of this model is approximately 0.80mm for the two daily 

cycles, meaning that this is the model with less capacity for regaining fluid content, as already 

referred.  
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At the light of the experimental tests, the behavior of the “No Swelling” model probably 

means that the proteoglycan cleavage promoted by the injected quantity of CABC compound is 

only enough to cause mild degeneration, as expected. Considering the described outcomes, the 

situation of an IVD without any osmotic pressure gradient is certainly related to severe 

degeneration. 

The DHV measurements from the injected IVDs of goats 2 and 4 shall not be directly 

compared with these numerical outcomes, as their maximum displacement is significantly lower 

than the analogous measurement of the other two injected IVDs. Therefore, the DHV measured 

after each recovery period is nearer to the numerical models, but the recovery rate is 

considerably uneven. The unexpected behavior of these IVDs, particularly the behavior of “G2 

Inj”, was previously discussed. Nevertheless, the average recovery rate of “G4 Inj” is inside the 

[0.50-0.60]mm range of the other two injected IVDs.  

Finally, the five non-physiological IVDs were compared with the overloaded model, as 

shown in Figure 5.26. As already discussed, there are clear dissimilarities between the injected 

IVDs, so the behavior of “G5 Ove” is unsurprisingly closer to the behavior of “G1 Inj” and “G3 

Inj”. However, the DHV measured from the “Overload” model is unexpectedly distant from the 

experimental outcomes.  

 

 

Figure 5.26. DHV outcomes from the five non-physiological goat IVDs compared with the overloaded model. 
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This finding probably means that the MS FE model is excessively sensitive to the applied 

loads, having that the goat IVDs present a much more limited range of height variation. If these 

experimental tests were performed in vivo, one might argued about the great influence of the 

ligaments, but these structures were removed before the IVDs are tested in the LDCS. Therefore, 

this noticeable behavioral difference is almost certainly related to the intrinsic biochemical and 

biomechanical properties of the goat IVDs. One may also argue that the Human IVDs would have 

a larger range of height variation, due to their greater cross-sections and initial height. In addition, 

the action of AF fibers shall not be neglected. As abovementioned, the response of the fibers to 

the compressive loadings may restrict the range of DHV. 

 

5.3.2. Summary 

 

The LDCS outcomes were exhaustively analyzed, but such analysis was only possible after 

filtering, as the amount of data was too large to work with. Globally, it was possible to notice that 

the injection of the CABC compound on the goats caused degeneration on the targeted IVDs, but 

it could affect the adjacent levels similarly. In addition, the overloading mode also resulted on a 

pathological IVD, even if the biomechanical behavior was different, i.e., the overloaded IVD 

starting being degraded right after the application of the load, while the injected IVDs revealed a 

gradual degenerated behavior.  

The comparison with the MS FE model was successful, particularly for the physiological 

situations. The degenerated behavior of the IVD is extremely complex, particularly because of the 

undisclosed physiological preventing criteria related to the diverse loading and environmental 

stimuli. However, the numerical model was able to reproduce the general behavioral lines of the 

goat IVDs from the three test-groups.   
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“Science never solves a problem without creating ten more.” 

George Bernard Shaw 

 

6. CONCLUSIONS 

 

This chapter conceals the wide-ranging description of the essential outcomes of the present work. 

Therefore, a critical review of the whole work is presented. In addition, suggestions for further 

improvements and future work are also enumerated. 

 

 

6.1. Concluding Remarks 

 

The literature review endorsed the IVD as an inhomogeneous porous tissue, which contains solid 

and fluid materials. Its main components are the NP, the AF and the CEP. The NP is a gel-like-

structure with high proteoglycan content and embedded collagen fibers, which results on a tissue 

that is mostly isotropic, hyper-viscoelastic and incompressible. The AF consists of a porous 

skeleton with high density of interconnected collagen fibers, which support the NP content and 

confers noticeable anisotropic behavior. Finally, the CEP is a layer of hyaline cartilage that 

handles the nutrients exchange with the VB, the major bony components of the spine I. 

The IVDs provide six degrees of freedom to each spinal MS, serving as central axial 

cushions for the diverse loading efforts. In vivo studies are problematic and potentially harmful, 

mostly due to the proximity of the spinal canals. Therefore, the major part of the information 

about the IVD biochemistry and biomechanical behavior comes from in vitro studies. Despite of 

the advances on the experimental techniques, which are essential to the description of the 

                                                 
I The other bony components of the spine are the facets, which are attached to the VBs. 
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biomechanical features of the tissues, the numerical methods are an essential tool to analyze 

and dissect the IVD behavior, as they allow unlimited repetitions and complete control over the 

testing conditions. The FE method was the selected numerical tool for the analysis of the micro 

and macro biomechanical behavior of the Human IVD.  

In order to achieve valid numerical studies, the IVD must be accurately modeled. The 

researcher shall first choose between using commercial or open-source FE packages, and then 

construct the FE model. The commercial solvers are powerful tools, with multiple solutions and a 

large community of users. However, the outcomes here presented proved the ability of a home-

developed open-source FE solver to equal and even overcome the performance of commercial FE 

packages, regardless of the aggregation of user-defined materials and behavior laws to such 

solvers. This is the primary conclusion of this work. 

The current lumbar MS FE model included an IVD with osmo-hyper-poro-visco-elastic 

behavior and with noteworthy influence of the anisotropic AF fibers as well. The key basis was the 

development and implementation of an innovative biphasic poroelastic formulation, which 

included the strain-dependent permeability model of van der Voet (1997) and the osmotic 

swelling model of Wilson, van Donkelaar, van Rietbergen, et al. (2005). The generalized non-

linear Maxwell model (Kaliske et al., 2001) was selected for the hyper-viscoelastic behavior, while 

the Mooney-Rivlin model (Bonet and Wood, 1997) was chosen for the isotropic matrix behavior. 

The other novelty was the implementation of the regional differentiation of the AF fibers, based on 

the anisotropic model of Holzapfel et al. (2005) and also on the findings of Eberlein et al. (2001). 

These formulations were implemented on the home-developed open-source FE solver, which 

means that the described choices and developments on the constitutive modeling were 

determinant for the remarkable performance of the MS FE model.  

The other significant branch for the presented good outcomes was the FE mesh, which 

was constructed with Hex27 elements. The geometrical accuracy of this model and the 

appropriate choice of finite elements and mesh refinement allowed valid comparisons with 

literature dataII and with outcomes from the VUmc’s LDCS. Nevertheless, the Terzaghi’s test for 

1D consolidation and the convergence study proved that the Tet4 elements (linear tetrahedron 

enriched with a bubble function at the center of the element) and the Tet10 elements were also 

valid choices for the numerical simulations, as their behavior on those tests was very satisfactory 

                                                 
II Experimental (Heuer et al., 2007; O’Connell et al., 2011; Tyrrell et al., 1985; Wilke et al., 1999) and 

numerical data (Galbusera et al., 2011; Williams et al., 2007). 
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and generally similar to the behavior of the Hex27 elements. This flexibility on the finite element’s 

configuration was one of the relevant points for the validation of the innovative biphasic 

formulation. 

The comparison with experimental and numerical data was the other relevant point for 

validation of the innovative biphasic formulation, as well as for the evaluation of the home-

developed open-source FE solver. The lumbar MS FE model was tested under several loading 

profiles, from the pre-conditioning periods to the circadian variations. The major outcomes were 

displacement and pressure (NP AveP, OsmP and IDP), but volume variation or fiber stretch were 

also discussed. The stress-strain condition of the IVD was thus analyzed at the macromechanical 

point of view, i.e., internal variables as stress and strain were not discussed, since they are not 

measurable in the experimental studies. 

The swelling tests have shown that the free swelling condition is the fastest and most 

accurate method to simulate the pre-conditioning, even if this is a non-realistic condition. 

However, this stage is essential to induce the physiological stressed condition of the IVD. The 

recovery periods are best simulated with loads until 250N, as higher loads were proved to cause 

increasing height reduction, instead of allowing the IVD to regain the fluid lost during the activity 

periods.  

The short and long creep tests have shown that the behavior of the native MS FE model is 

aligned with experimental and numerical literature data. The comparisons with the works of 

Schroeder et al. (2010) and (Galbusera et al., 2011) were determinant for the evaluation of the  

performance of the home-developed open-source FE solver and the associated  MS FE model. It 

was proved that the MS model here developed is able of reproducing experimental studies and 

theoretical predictions, equally or better than the referred studies, which used ABAQUS® with 

user-defined material laws. It was also concluded that loads higher than 1000N are potentially 

harmful for the IVD, despite of several studies indicating otherwise. The creep response of the MS 

model denoted a clear overload effect when loads of that magnitude were applied, both on 

displacement and pressure outcomes. 

The LDCS analysis involved exploration of both experimental and numerical data. Globally, 

the IVDs injected with the CABC compound were more vulnerable to degeneration than the other 

IVDs, even if some exceptions were detected. The overloading mode also caused IVD 

degeneration, but the observed biomechanical degenerative behavior was different, i.e., the 
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overloaded IVD starting being degraded right after the application of the load, while the injected 

IVDs revealed a gradual degenerated behavior. After the analysis of the experimental outcomes, 

analogous numerical simulations were performed and their behavior was compared. The 

comparison with the MS FE model was fruitful, particularly for the physiological situations. 

However, some discrepancies were noticed on the simulations of degenerated IVDs is extremely 

complex, probably due to the undisclosed physiological damage-prevention mechanism. 

Nevertheless, the general behavior of the non-physiological numerical models was also 

satisfactorily simulated, which proved the broadness of the MS model. 

In resume, the numerical simulations with the MS FE model, using the home-developed 

open-source FE solver, showed its validity and potential to contribute to the understanding on the 

IVD biomechanics. This shall be the take-home message associated with this work. 

Finally and in a nutshell, a very personal comment from the author: spine biomechanics is 

a fascinating and promising subject, and I do feel that we are still very far from a complete 

understanding of the biomechanics and the biomechanisms playing a paramount role on the IVD 

in particular and spine in general. Future will bring us, certainly, fascinating new achievements 

on this area of science. 
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6.2. Future Work 

 

The present work could be improved with a list of additional tasks, which were not performed 

mostly due to lack of time.  

First of all, different types of loading profiles could be applied, such as multi-axial 

translational loadings or rotation, flexion and extension efforts. These possibilities are already 

enclosed on the home-developed open-source FE solver, but the current option was to not explore 

them in this work. The option was to exhaustively explore the available data on uniaxial 

compression, but the other loading profiles could be explored later on. 

The FE model could be extended to the full extension of the lumbar spine and include the 

adjacent structures to the VB and IVD, namely the facets, ligaments and muscles. These 

structures would be particularly helpful for the rotation, flexion and extension efforts. In what 

concerns to the other lumbar IVDs, the larger model could possibly be more accurate on the 

macro-scale behavioral predictions. 

The macromechanical behavior, namely the calculus of the global loads acting on the 

spine, could also benefit from a hybrid numerical approach, i.e., integration of both FE and MBS 

techniques with retro-feedback between the outcomes of each technique. The advantage of the 

simulation through MBS is its fastness, as this method uses lower amount of computational 

memory and processing capability. Therefore, the hybrid approach would be based on using the 

FE method to simulate the local behavior of the MS and the MBS to predict the global behavior of 

the spine. 

In what concerns to the local behavior of the IVD, quadriphasic modeling could be 

implemented. The biphasic approach was proved to be effective, but the consideration of the 

ionic fluxes could bring extra accuracy to the current model. The disadvantage of the 

quadriphasic modeling is the augmented number of variables, which could be hard to quantify. In 

addition, the computational weight time could also increase exponentially. 

To sum up, these tasks could be performed to increase the accuracy and also to expand 

the outcomes of the present work, if the time was not a limitation.  
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7. ANNEXES 

 

7.1. 500N, 15mins, different osmotic properties 

 

The loading protocol of 500N during 15minsI, as performed experimentally by Heuer et al. 

(2007), was used in this work as a benchmark for short creep analyzes. The importance of the 

osmotic swelling for the natural behavior of the IVD was also previously examined, as well as the 

influence of different stiffness propertiesII. One has also registered that the reduction of the 

osmotic swelling pressure gradientIII played a major role on the long term IVD behavior.  

Therefore, the described short creep loading protocol was applied to find out the influence 

of the osmotic swelling material properties on the short termIV. This task was not included neither 

on the “Validation” chapter, nor on the “Results and Discussion” chapter because it was not 

directly associated with the remaining simulation tasks.  

Figure 7.1 shows the displacement (Figure 7.1a)) and pressure (Figure 7.1b)) outcomes of 

four numerical variations, namely “No Swelling”, “Pre-Swelling” (standard 0,Fc V), “Low OsmP 1” 

and “Low OsmP 2”, which were compared with the work of Heuer and co-workers. 

As theoretically expected, the osmotic swelling material properties, namely the fixed charge 

( Fc )VI, do not play a significant role on the short term response of the IVD. On the one hand, the 

pressure (NP AveP, Figure 7.1b)) naturally dropped, from the standard model to the “No 

Swelling” case, i.e., the two reduced osmotic pressure models and the model without any 

osmotic pressure gradient were gradually more distant from the reference situation, in 

                                                 
I Uniaxial compressive load. 
II Chapter 4, “Short Creep Validation” section, “500N, 15mins” and “Other configurations” sub-sections, 

respectively. 
III Through the alteration of the initial fixed charge density ( 0,Fc ). 

IV Chapter 5, “Bioreactor Data Analysis” section, “Comparison with the MS FE model” sub-section. 
V As stated in Chapter 3, “Finite Element Model” section, “Material Parameters” sub-section. 
VI Which is dependent on the initial fixed charge density ( 0,Fc ) 



DEVELOPMENT OF A BIOMIMETIC FE MODEL OF THE IVD DISEASES AND REGENERATION 

7. ANNEXES   2/14 

comparison with the standard model. On the other hand, the displacement outcomes of the four 

numerical models (DHV, Figure 7.1a)) are not very apart from each other, which means that the 

reduction of the osmotic pressure is only noticeable for longer test periods. One may thus 

assume that the extrapolation of the outcomes from the short creep tests may not be enough to 

establish solid conclusions about the circadian variations of the IVD biomechanical behavior. As 

already discussed, poroelasticity and osmolality are essentially noticed on the long term, so the 

variation of the material properties associated with these constitutive features can only be 

evaluated on long term simulations. 

 

a) 

 

b) 

Figure 7.1. Simulated creep test during 15min at 500N of uniaxial compression. The FE model was configured with 

four different sets of osmotic swelling material properties, namely “No Swelling”, “Pre-Swelling” (standard 

parameters), “Low OsmP 1” and “Low OsmP 2”. Assessed outcomes: a) DHV; b) NP AveP. 
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7.2. Detailed analysis of Overloaded LDCS Data 

 

On the “Bioreactor Data Analysis” section of the “Results and Discussion” chapter, the general 

LDCS outcomes were analyzed. At this stage, a different approach for the analysis of the behavior 

of the overloaded IVD is discussed. Only the activity periods were here considered, along the 16 

days of the experiment. Figure 7.2 shows the comparison between the DHV of the days 1, 2, 8 

and 16, during the referred period. “Exp” stands for “experimental values”. 

 

 

Figure 7.2. Comparison between the experimental displacement outcomes (“Exp”) during the activity periods, for the 

overloaded IVD. The presented outcomes are from days 1, 2, 8 and 16. 

 

On the one hand, Figure 7.2 confirms that the maximum displacement is increasing along 

the experiment, as a consequence of the overloading mode. On the other hand, this graphic also 

shows that the evolution of the displacement is not significantly different along the days. The 

exception is the first day, but this situation can be explained by the initial adaptation of the IVD to 

the LDCS and the respective stimuli. In other words, the first day is the experimental pre-

conditioning. On the succeeding selected days, the global DHV of the activity period is 

considerably lower, which may be explained by a daily load accumulation effect. In order to 

demonstrate the similarity between the behavior of this IVD on the different days, an adjustment 

of an exponential curve was taken into consideration. The expressions for this curve and for the 
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calculus of the mean absolute error (MAE) between the theoretical and experimental results are 

the following: 

           [            ))] 7.1 

    
∑          ) 

 

 
 7.2 

Regarding equation 7.1, d0 is the DHV measured for the first time step, dsat and cd are 

adjustable parameters, t is the current time step and t0 is initial time step. dc is the resultant 

adjusted value, which will be ahead denominated as “Adj”. On equation 7.2, n  is the number of 

samples of the experimental data. The results of this adjustment are shown on Figure 7.3. The 

comparison between the exponential adjustment and the experimental curves from the first and 

sixteenth days is shown on Figure 7.4. Table 7.1 contains the parameters obtained from the 

adjustment of the exponential curve. 

On the one hand, the adjustment of the exponential curve was quite satisfactory, as the 

experimental and theoretical curves are very close and the generic MAE is meaningfully low. On 

the other hand, the contents of Table 7.1 confirm that the overloaded IVD maintains regular 

behavior along the 16 days of the experiment. In fact, the adjustable parameters dsat and cd are 

very similar, on the four days analyzed. The MAE values are also near between each other. The 

exception is the already discussed adaptation on the first day, which is noticeable on the largest 

dsat and MAE parameters of this analysis.  

 

 

Figure 7.3. Comparison between the adjusted exponential curves (“Adj”) related to the displacement outcomes of 

the activity periods, for the overloaded IVD. The presented outcomes are from days 1, 2, 8 and 16. 
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Figure 7.4. Comparison between the exponential and the experimental curves. The presented DHV curves are from 

days 1 and 16. 

 
Table 7.1. Characteristic parameters of the exponential curve adjustment, for days 1, 2, 8 and 16.  

Day         n MAE 

#1 -0.977 0.434 5381 0.036% 

#2 -0.582 0.413 5379 0.004% 

#8 -0.568 0.428 5377 0.005% 

#16 -0.568 0.402 5374 0.005% 

 

From the current analysis, concerning the DHV outcomes of the activity periods, it may be 

concluded that the growing maximum displacement is a result of the gradual degradation of the 

IVD under overloading conditions. In addition, the evolution of the DHV is similar during the 

extension of the experiment, i.e., the DHV curves are almost equal for the four studied days, 

which means that the displacement increase rate does not vary significantly throughout these 16 

days. This is probably the most important conclusion that may be drawn from the exponential 

adjustment of the experimental data, i.e., the degeneration caused by the overloading mode is 

clearly distinguishable from the degenerative cascade promoted by the CABC compound. 
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7.3. General aspects of the open-source FE solver 

 

7.3.1. Input Files 

 

 

a) 
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b) 

Figure 7.5. Example of an input file for the assignment of the boundary conditions. The FE solver has the capacity of 

reading sequential boundary conditions files. a) First input file (“.bio”); b) Second input file (“.bio1”). 
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Figure 7.6. Example of a section of an input file for the identification of each degree-of-freedom where the boundary 

conditions will be assigned. “.bcid” stand for “Boundary Conditions Identification”. 

 

 

Figure 7.7. Example of an input file for the assignment of the constitutive parameters of a given material. This 

example refers to the standard NP. 
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7.3.2. Output Files 

 

 

a) 
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b) 

Figure 7.8. Example of the generic output file, which contains the evolution of the simulation. This information is also 

visualized in real time through command line environment. a) First section of the file, containing the generic 

information from the mesh, from the simulation and also from the materials; b) Continuation, with the information 

from the other materials and also with the numerical characteristics of the first time step of the simulation. 
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Figure 7.9. Example of a section of an output file containing force and displacement information, along the duration 

of the simulation. This file is divided per each “bcid”. It also provides additional information on whether force or 

displacement boundary conditions were applied to that “bcid”. 

 

 

Figure 7.10. Example of a section of an output file containing the results for average pressure, divided per material, 

for each time step of the simulation. 
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Figure 7.11. Example of a section of an output file containing the results of the fiber stretch, along the simulation. 

 

 

Figure 7.12. Example of a section of an output file containing the information on the volume variation of the each 

one of the materials, along the simulation. 
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7.4. Publications and Communications 

 

Castro, A.P.G., Completo, A., Flores, P., Alves, J.L., 2011. Overview on the modeling of the 
biomechanical behavior of the intervertebral disc. In: 4º Congresso Nacional de 
Biomecânica. 

 
The present work draws an overview on the numerical modeling and numerical simulation of the 
biomechanical behavior of the Intervertebral Discs (IVD). Since 1974 that several research groups 
around the world have been devoting attention to this subject and several examples of the 
application of the Finite Element Analysis (FEA) to study the biomechanics of the IVD can be found. 
The authors of the present work are presently working under the scope of a wider European project 
which main expected achievements are: 1) to investigate the biomechanisms of disc degeneration; 
2) to develop a biomimetic strategy for the IVD regeneration; 3) the development of several 
numerical tools, with a special emphasis on a spine-oriented FEA solver, in order to contribute to the 
investigation of new strategies for treatment and/or rehabilitation of the Degenerative Disc Diseases. 
The presented overview aims to establish the starting point of such research work. 

 

Castro, A.P.G., Wilson, W., Huyghe, J.M., Ito, K., Alves, J.L., 2012. A poroelastic approach for an 
open source finite element model of the intervertebral disc. In: CMMBE2012. 

 
Degenerative Disc Disease (DDD) is one of the largest health problems faced worldwide, based on 
lost working time and associated costs. This works deals with the development of a biomimetic 
Finite Element (FE) model of the Intervertebral Disc (IVD). Several recent studies have emphasized 
the importance of an accurate biomechanical modeling of the IVD. Thus, a hyper-visco-poro-elastic 
formulation is briefly addressed throughout this paper. The FE implementation and numerical 
simulations are being carried out on a home-developed open source FE solver. The validation of the 
newly implemented biphasic formulation was performed through Terzaghi’s test for confined 
compression, and some preliminary simulations of a poro-viscoelastic IVD FE model were carried 
out, being their results briefly discussed. The next step is to include the poroelastic swelling 
behavior. 

 

Castro, A.P.G., Completo, A., Flores, P., Alves, J.L., 2013. Overview on the modeling of the 
biomechanical behavior of the intervertebral disc. In: 5º Congresso Nacional de 
Biomecânica. 

 

The major goal for the present work is to evaluate a biomimetic Finite Element (FE) model of the 
Intervertebral Disc (IVD). Recent studies have emphasized the importance of an accurate 
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biomechanical modeling of the IVD, which is a highly complex biphasic medium. A novel biphasic 
poroelastic model was implemented and coupled with Wilson’s model (2005) for biphasic osmotic 
swelling behavior. Numerical tests were devoted to the analysis of the time-dependent behavior of 
the IVD. The results show good agreement with literature experimental data (Heuer et al., 2007 or 
O’Connell et al., 2011) and also with other numerical studies (Galbusera et al., 2011). In brief, this 
in-development IVD FE model aims to be a valuable tool to study the biomechanics of the IVD and 
its pathways for degeneration. 

 

Castro, A.P.G., Wilson, W., Huyghe, J.M., Ito, K., Alves, J.L., 2013. Validation of an Open Source 
Finite Element Biphasic Poroelastic Model. Application to the Intervertebral Disc 
Biomechanics. In: Poromechanics V. American Society of Civil Engineers, Reston, VA, pp. 
2131–2139. 

 
A great amount of experimental and numerical studies have studied the Intervertebral Disc (IVD) 
and proven that it presents hyper-visco-poro-elastic behavior. However, the accessibility and 
flexibility of the software used in numerical studies is often hampered by the proprietary nature of 
the FEM-packages used. A novel biphasic poroelastic formulation was implemented on a home-
developed open source FE solver, in order to approach to the biomechanical behavior of the IVD in 
the Human Spine. Firstly, a simple consolidation test with three different u/p-c elements was 
compared with Terzaghi’s model. Secondly, three IVD FE models were built with the same three 
types of elements and tested through Heuer’s experimental protocol. Terzaghi’s test was important 
to validate the innovative biphasic poroelastic formulation. Such verdict was confirmed by the 
application of this formulation to the IVD FE model. Therefore, the in-development open source FE 
solver shall become an appropriate to the description of IVD. 

 

Castro, A.P.G., Wilson, W., Huyghe, J.M., Ito, K., Alves, J.L., 2013. Intervertebral Disc Creep 
Behavior Assessment Through An Open Source Finite Element Solver. J. Biomech. 
(http://dx.doi.org/10.1016/j.jbiomech.2013.10.014) 

 
Degenerative Disc Disease (DDD) is one of the largest health problems faced worldwide, based on 
lost working time and associated costs. By means of this motivation, this work aims to evaluate a 
biomimetic Finite Element (FE) model of the Intervertebral Disc (IVD). Recent studies have 
emphasized the importance of an accurate biomechanical modeling of the IVD, as it is a highly 
complex multiphasic medium. Poroelastic models of the disc are mostly implemented in 
commercial finite element packages with limited access to the algorithms. Therefore, a novel 
poroelastic formulation implemented on a home-developed open source FE solver is briefly 
addressed throughout this paper.  The combination of this formulation with biphasic osmotic 
swelling behavior is also taken into account. Numerical simulations were devoted to the analysis of 
the non-degenerated Human lumbar IVD time-dependent behavior. The results of the tests 
performed for creep assessment were inside the scope of the experimental data, with a remarkable 
improvement of the numerical accuracy when compared with previously published results obtained 
with ABAQUS®. In brief, this in-development open-source FE solver was validated with literature 
experimental data and aims to be a valuable tool to study the IVD biomechanics and DDD 
mechanisms. 
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