593 research outputs found

    Interval Prediction for Continuous-Time Systems with Parametric Uncertainties

    Get PDF
    The problem of behaviour prediction for linear parameter-varying systems is considered in the interval framework. It is assumed that the system is subject to uncertain inputs and the vector of scheduling parameters is unmeasurable, but all uncertainties take values in a given admissible set. Then an interval predictor is designed and its stability is guaranteed applying Lyapunov function with a novel structure. The conditions of stability are formulated in the form of linear matrix inequalities. Efficiency of the theoretical results is demonstrated in the application to safe motion planning for autonomous vehicles.Comment: 6 pages, CDC 2019. Website: https://eleurent.github.io/interval-prediction

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Development and application of sliding mode LPV fault reconstruction schemes for the ADDSAFE

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Control Engineering Practice. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Control Engineering Practice Vol. 31 (2014), DOI: 10.1016/j.conengprac.2014.05.003This paper describes the development and the evaluation of a robust sliding mode observer fault detection scheme applied to an aircraft benchmark problem as part of the ADDSAFE project. The ADDSAFE benchmark problem which is considered in this paper is the yaw rate sensor fault scenario. A robust sliding mode sensor fault reconstruction scheme based on an LPV model is presented, where the fault reconstruction signal is obtained from the so-called equivalent output error injection signal associated with the observer. The development process includes implementing the design using AIRBUS׳s the so-called SAO library which allows the automatic generation of flight certifiable code which can be implemented on the actual flight control computer. The proposed scheme has been subjected to various tests and evaluations on the Functional Engineering Simulator conducted by the industrial partners associated with the ADDSAFE project. These were designed to cover a wide range of the flight envelope, specific challenging manoeuvres and realistic fault types. The detection and isolation logic together with a statistical assessment of the FDD schemes are also presented. Simulation results from various levels of FDD developments (from tuning, testing and industrial evaluation) show consistently good results and fast detection times.European Union (FP7-233815

    Robust fault detection based on adaptive threshold generation using interval LPV observers

    Get PDF
    In this paper, robust fault detection based on adaptive threshold generation of a non-linear system described by means of a linear parameter-varying (LPV) model is addressed. Adaptive threshold is generated using an interval LPV observer that generates a band of predicted outputs taking into account the parameter uncertainties bounded using intervals. An algorithm that propagates the uncertainty based on zonotopes is proposed. The design procedure of this interval LPV observer is implemented via pole placement using linear matrix inequalities. Finally, the minimum detectable fault is characterized using fault sensitivity analysis and residual uncertainty bounds. Two examples, one based on a quadruple-tank system and another based on a two-degree of freedom helicopter, are used to assess the validity of the proposed fault detection approach.Postprint (published version

    A multiple model adaptive architecture for the state estimation in discrete-time uncertain LPV systems

    Get PDF
    @2017 Personal use of these materials is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating news collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper addresses the problem of multiple model adaptive estimation (MMAE) for discrete-time linear parameter varying (LPV) systems that are affected by parametric uncertainty. The MMAE system relies on a finite number of local observers, each designed using a selected model (SM) from the set of possible plant models. Each local observer is an LPV Kalman filter, obtained as a linear combination of linear time invariant (LTI) Kalman filters. It is shown that if some suitable distinguishability conditions are fulfilled, the MMAE will identify the SM corresponding to the local observer with smallest output prediction error energy. The convergence of the unknown parameter estimation, and its relation with the varying parameters, are discussed. Simulation results illustrate the application of the proposed method.Peer ReviewedPostprint (author's final draft

    Estimation in uncertain switched systems using a bank of interval observers: local vs glocal approach

    Get PDF
    This paper discusses some issues related with the design of a bank of interval observers for uncertain switched systems, in which several sources of uncertainty are considered: parametric uncertainties, unknown disturbances, measurement noise, and unknown switching signal. More specifically, this paper focuses on analyzing the interval estimation accuracy when changes of active mode induce non-positivity of the interval state estimation errors. In particular, it is shown that by combining two types of interval observers, referred to as local and global, the accuracy and reliability of the estimation can be improved. The properties of the obtained so-called glocal observer are investigated and illustrated by means of numerical simulations.acceptedVersio

    Efficient LMI-based quadratic stabilization of interval LPV systems with noisy parameter measures

    Get PDF
    none2openL. IETTO; Valentina OrsiniIetto, Leopoldo; Orsini, Valentin
    • …
    corecore