8 research outputs found

    Pumping Lemma for Higher-order Languages

    Get PDF
    We study a pumping lemma for the word/tree languages generated by higher-order grammars. Pumping lemmas are known up to order-2 word languages (i.e., for regular/context-free/indexed languages), and have been used to show that a given language does not belong to the classes of regular/context-free/indexed languages. We prove a pumping lemma for word/tree languages of arbitrary orders, modulo a conjecture that a higher-order version of Kruskal\u27s tree theorem holds. We also show that the conjecture indeed holds for the order-2 case, which yields a pumping lemma for order-2 tree languages and order-3 word languages

    The Complexity of the Diagonal Problem for Recursion Schemes

    Get PDF
    We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees. We establish the complexity of the diagonal problem for schemes: given a set of letters A and a scheme G, is it the case that for every number n the scheme accepts a word (a tree) in which every letter from A appears at least n times. We prove that this problem is (m-1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m

    Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

    Get PDF
    Asada and Kobayashi [ICALP 2017] conjectured a higher-order version of Kruskal\u27s tree theorem, and proved a pumping lemma for higher-order languages modulo the conjecture. The conjecture has been proved up to order-2, which implies that Asada and Kobayashi\u27s pumping lemma holds for order-2 tree languages, but remains open for order-3 or higher. In this paper, we prove a variation of the conjecture for order-3. This is sufficient for proving that a variation of the pumping lemma holds for order-3 tree languages (equivalently, for order-4 word languages)

    Recursion Schemes and the WMSO+U Logic

    Get PDF
    We study the weak MSO logic extended by the unbounding quantifier (WMSO+U), expressing the fact that there exist arbitrarily large finite sets satisfying a given property. We prove that it is decidable whether the tree generated by a given higher-order recursion scheme satisfies a given sentence of WMSO+U

    A Type System Describing Unboundedness

    Get PDF
    We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees. We propose a type system that allows to solve the simultaneous-unboundedness problem (SUP) for schemes, which asks, given a set of letters A and a scheme G, whether it is the case that for every number n the scheme accepts a word (a tree) in which every letter from A appears at least n times. Using this type system we prove that SUP is (m-1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m. Moreover, we establish the reflection property for SUP: out of an input scheme G one can create its enhanced version that recognizes the same language but is aware of the answer to SUP

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore