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Abstract
Asada and Kobayashi [ICALP 2017] conjectured a higher-order version of Kruskal’s tree theorem,
and proved a pumping lemma for higher-order languages modulo the conjecture. The conjecture
has been proved up to order-2, which implies that Asada and Kobayashi’s pumping lemma holds
for order-2 tree languages, but remains open for order-3 or higher. In this paper, we prove
a variation of the conjecture for order-3. This is sufficient for proving that a variation of the
pumping lemma holds for order-3 tree languages (equivalently, for order-4 word languages).

2012 ACM Subject Classification Theory of computation → Lambda calculus

Keywords and phrases higher-order grammar, pumping lemma, Kruskal’s tree theorem, well-
quasi-ordering, simply-typed lambda calculus

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.14

Related Version A full version of the paper is available at http://www.riec.tohoku.ac.jp/
~asada/papers/fsttcs18.pdf.

Acknowledgements We would like to thank anonymous referees for useful comments. This work
was supported by JSPS Kakenhi 15H05706 and 18K11156.

1 Introduction

Kruskal’s tree theorem [7] says that the homeomorphic embedding relation �he on finite
trees is a well-quasi-ordering, i.e., for every infinite sequence of trees π0, π1, π2, . . ., there exist
i < j such that πi �he πj . Here, π �he π′ means that there exists an embedding of the nodes
of π to those of π′, preserving the labels and the ancestor/descendant relation. Asada and
Kobayashi [2] considered a higher-order version �he

κ of �he on simply-typed λ-terms of type
κ, and conjectured that �he

κ is also a well-quasi-ordering, for every simple type κ. Under the
assumption that the conjecture (which we call AK-conjecture) is true, they proved a pumping
lemma for higher-order languages (a la higher-order languages in Damm’s IO hierarchy [3]),
which says that for any order-k tree grammar that generates an infinite language L, there
exists a strictly increasing infinite sequence π0 ≺he π1 ≺he π2 ≺he · · · such that πi ∈ L and
|πi| ≤ expk(ci+ d), where ≺he is the strict version of the homeomorphic embedding, c and
d are constants that depend on the grammar, and expk(x) is defined by exp0(x) = x and
expk+1(x) = 2expk(x). The pumping lemma can be used to prove that a certain language
does not belong to the class of order-k languages. They also proved that the conjecture is
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14:2 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

true up to order-2 types, and hence also the pumping lemma for order-2 tree languages and
(by the correspondence between tree/word languages [1, 3]) order-3 word languages. The
AK-conjecture is still open for order-3 or higher.

In the present paper, we consider a variation of the AK-conjecture (which we call nAK-
conjecture), where the homeomorphic embedding relation is replaced by �#, defined by
π1 �# π2 if and only if, for every tree constructor a, #a(π1) ≤ #a(π2); here #a(π) denotes
the number of occurrences of a in π. The correctness of the nAK-conjecture would imply the
following variation of the pumping lemma: for any order-k tree grammar that generates an
infinite language L, there exists a strictly increasing infinite sequence π0 ≺# π1 ≺# π2 ≺# · · ·
such that πi ∈ L and |πi| ≤ expk(ci+ d). We prove that the nAK-conjecture is true for the
order-3 case, i.e., that �#

κ (the logical relation on simply-typed λ-terms of type κ, obtained
from �#) is a well-quasi-ordering for any type κ of order up to 3. The variation of the
pumping lemma above is thus obtained for order-3 tree languages and order-4 word languages.
To our knowledge, pumping lemmas were known only for tree (word, resp.) languages of
order up to 2 (3, resp.) [2].

To prove the order-3 nAK-conjecture, we define a transformation (·)\ from order-3 λ-
terms to order-2 numeric functions (that are also represented by λ-terms), and prove (i)
the transformation reflects the quasi-orderings, i.e., t1 �#

κ t2 if t1\ �N t2
\ for a certain

quasi-ordering �N on numeric functions, and (ii) �N is a well-quasi-ordering.

Related work. We are not aware of directly related work, besides our own previous work [2].
Our reduction from the well-quasi-orderedness of order-3 λ-terms to that of order-2 numeric
functions relies on the inexpressiveness of simply-typed λ-terms as (higher-order) tree
functions. Zaionc [11, 12, 13] studied the expressive power of simply-typed λ-terms. Pumping
lemmas for higher-order languages have been known to be difficult. After Hayashi [5] proved
a pumping lemma for indexed languages (i.e. order-2 word languages), it was only in 2017
that a pumping lemma for order-3 word languages was proved [2]. We have further improved
the result to obtain a pumping lemma for order-4 word (or, order-3 tree) languages.

The rest of the paper is structured as follows. Section 2 introduces basic definitions.
Section 3 explains the nAK-conjecture and the pumping lemma. Section 4 proves the
nAK-conjecture up to order-3. Section 5 concludes the paper.

2 Preliminaries

We give basic definitions on λ-terms and quasi-orderings.

2.1 λ-terms and higher-order languages
I Definition 1 (types and terms). The set of simple types, ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order1 of a simple type κ, written order(κ) is defined by order(o) = 0
and order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)). The type o describes trees, and
κ1 → κ2 describes functions from κ1 to κ2. A (ranked) alphabet Σ is a map from a finite set
of constants (that represent tree constructors) to the set of natural numbers called arities.
The set of λY nd-terms, ranged over by s, t, u, v, is defined by:

t ::= x | a t1 · · · tk | t1 t2 | λx : κ.t | Yκ t | t1 ⊕ t2

1 For clarity, we use the word order for this notion, and ordering for relations such as ≤, �he, etc.
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Here, x, y, . . . ranges over variables, and a over dom(Σ). The term a t1 · · · tk (where we
require Σ(a) = k) constructs a tree that has a as the root and (the values of) t1, . . . , tk
as children. Yκ and ⊕ represent a fixed-point combinator and a non-deterministic choice,
respectively. We often omit the type annotation and just write λx.t and Y t for λx : κ.t and
Yκ t. A λY nd-term is called: (i) a λ→,nd-term if it does not contain Y ; (ii) a λ→-term if it
contains neither Y nor ⊕; and (iii) an applicative term if it contains none of λ-abstractions,
Y , and ⊕. We often call a λ→-term just a term. As usual, we identify λY nd-terms up to the
α-equivalence, and implicitly apply α-conversions.

A type environment Γ is a sequence of type bindings of the form x :κ such that Γ contains
at most one binding for each variable x. A λY nd-term t has type κ under Γ if Γ `ST t : κ is
derivable from the following typing rules.

Γ, x : κ, Γ′ `ST x : κ
Σ(a) = k Γ `ST ti : o (for each i ∈ {1, . . . , k})

Γ `ST a t1 · · · tk : o

Γ `ST t : κ→ κ

Γ `ST Yκ t : κ
Γ `ST t1 : κ2 → κ Γ `ST t2 : κ2

Γ `ST t1 t2 : κ
Γ, x : κ1 `ST t : κ2

Γ `ST λx : κ1.t : κ1 → κ2

Γ `ST t1 : o Γ `ST t2 : o

Γ `ST t1 ⊕ t2 : o

We consider below only well-typed λY nd-terms. Note that given Γ and t, there exists at
most one type κ such that Γ `ST t : κ. We call κ the type of t (with respect to Γ). We often
omit “with respect to Γ” if Γ is clear from context. Given a judgment Γ ` t : κ, we define
λΓ.t by: λ∅.t := t and λ(Γ, x : κ′).t := λΓ.λx.t. Also we define Γ→ κ by: ∅ → κ := κ and
(Γ, x : κ′)→ κ := Γ→ (κ′ → κ); thus we have ` λΓ.t : Γ→ κ if Γ ` t : κ. Given an alphabet
Σ, we write ΛΣ for the set of λ→-terms whose constants are taken from Σ. Also we define
ΛΣ

Γ,κ := {t ∈ ΛΣ | Γ ` t : κ} and ΛΣ
κ := ΛΣ

∅,κ.
For a λY nd-term t with a type environment Γ, the (internal) order of t (with respect to

Γ), written orderΓ(t), is the largest order of the types of subterms of λΓ.t, and the external
order of t (with respect to Γ), written eorderΓ(t), is the order of the type of t with respect
to Γ. We often omit Γ when it is clear from context. For example, for t = (λx : o.x)e,
order∅(t) = 1 and eorder∅(t) = 0. We define the size |t| of a λY nd-term t by: |x| := 1,
|a t1 · · · , tk| := 1 + |t1|+ · · ·+ |tk|, |s t| := |s|+ |t|+ 1, |λx.t| := |t|+ 1, |Yκ t| := |t|+ 1 and
|s⊕ t| := |s|+ |t|+ 1. We call a λY nd-term t ground (with respect to Γ) if Γ `ST t : o. We
call t a (finite, Σ-ranked) tree if t is a ground closed applicative term (consisting of only
constants). We write TreeΣ for the set of Σ-ranked trees, and use the meta-variable π for a
tree. We often write −→· to denote a sequence (possibly with a condition on the range of the
sequence in the superscript). For example, −→ti

i≤m
denotes the sequence t1, . . . , tm of terms,

and [
−−→
ti/xi

i≤m
] denotes the substitution [t1/x1, . . . , tm/xm].

We sometimes identify a ranked alphabet Σ = {a1 7→ r1, . . . , ak 7→ rk} with the first-
order environment Σ = {a1 : or1 → o, . . . , ak : ork → o} (assuming an arbitrary fixed linear
ordering on Σ).

I Definition 2 (reduction and language). The set of (call-by-name) evaluation contexts is
defined by:

E ::= [ ] t1 · · · tk | a π1 · · ·πiE t1 · · · tk

and the call-by-name reduction for (possibly open) ground λY nd-terms is defined by:

E[(λx.t)t′] −→ E[t[t′/x]] E[Y t] −→ E[t (Y t)] E[t1 ⊕ t2] −→ E[ti] (i = 1, 2)

where t[t′/x] is the usual capture-avoiding substitution. We write −→∗ for the reflexive
transitive closure of −→. A call-by-name normal form is a ground λY nd-term t such that
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t 6−→ t′ for any t′. For a ground closed λY nd-term t, we define the tree language L(t)
generated by t by L(t) := {π | t −→∗ π}. For a ground closed λ→-term t, L(t) is a singleton
set {π}; we write T (t) for such π and call it the tree of t.

In the previous paper [2] we stated the pumping lemma for the notion of a higher-order
grammar ; in this paper, following [8, 9], we use only the formalism by λY nd-terms for simpli-
city. Since there exist well-known order-preserving and language-preserving transformations
between higher-order grammars and ground closed λY nd-terms, we obtain corresponding
results on higher-order grammars immediately.

The notion of a word can be seen as a special case of that of a tree:

I Definition 3 (word alphabet). We call a ranked alphabet Σ a word alphabet if it has a special
nullary constant e and all the other constants have arity 1. For a tree π = a1(· · · (an e) · · · ) of
a word alphabet, we define word(π) := a1 · · · an, and we define utree as the inverse function
of word, i.e., utree(a1 · · · an) := a1(· · · (ane)). The word language generated by a ground
closed λY nd-term t over a word alphabet, written Lw(t), is defined as {word(π) | π ∈ L(t)}.

A tree language (word language, resp.) over an alphabet (word alphabet, resp.) Σ is called
order-n if it is generated by some order-n ground closed λY nd-term of Σ; we note that
the classes of order-0, order-1, and order-2 word languages coincide with those of regular,
context-free, and indexed languages, respectively [10].

2.2 Some quasi-orderings and their logical relation extension
I Definition 4 ((well-)quasi-ordering). A quasi-ordering (a.k.a. preorder) on a set A is a
binary relation on A that is reflexive and transitive. A well-quasi-ordering (wqo for short)
on a set S is a quasi-ordering ≤ on S such that for any infinite sequence (si)i of elements in
S there exist j and k such that j < k and sj ≤ sk.

As a general notation, for a quasi-ordering denoted by �, we write ≈ for the induced
equivalence relation (i.e., x ≈ y if x � y and y � x), and write ≺ for the strict version (i.e.,
x ≺ y if x � y and y 6� x). Also, for a quasi-ordering denoted by ≤, we write ∼ for the
induced equivalence relation and < for the strict version. We apply these conventions also to
notations with superscript/subscript such as �a, �b, �ab , ≤a, ≤b, and ≤ab . Further, for any
quasi-ordering on the set of trees of a word alphabet, we use the same notation also for the
quasi-ordering on the set of words induced through utree.

I Definition 5 (logical relation extension). Let Σ be a ranked alphabet. We call ≤ a base quasi-
ordering (with respect to Σ) if ≤ is a quasi-ordering on the set ΛΣ

o modulo βη-equivalence
and every constant in Σ is monotonic on ≤. We define the logical relation extension of ≤ as
the family (≤κ)κ of relations ≤κ on the set ΛΣ

κ modulo βη-equivalence indexed by simple
types κ where ≤κ’s are defined by induction on κ as follows:

t1 ≤o t2 if t1 ≤ t2
t1 ≤κ→κ′ t2 if for any t′1, t′2, t′1 ≤κ t′2 =⇒ t1 t

′
1 ≤κ′ t2 t

′
2.

Furthermore we extend the relation to open terms: for t1, t2 ∈ ΛΣ
Γ,κ, we define t1 ≤Γ,κ t2 if

λΓ.t1 ≤Γ→κ λΓ.t2. We omit the subscripts of ≤κ and ≤Γ,κ if there is no confusion.

The next lemma follows immediately from the basic lemma (a.k.a. the abstraction theorem)
of logical relations (see the full version for details).
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I Lemma 6. Let ≤ be a base quasi-ordering. Each component ≤κ of the logical relation
extension of ≤ is a quasi-ordering. Further, ≤κ is the point-wise quasi-ordering:

t1 ≤κ→κ′ t2 if and only if for any t′ ∈ ΛΣ
κ , t1 t

′ ≤κ′ t2 t
′.

Every quasi-ordering for higher-order terms used in this paper is a logical relation extension
(of some base quasi-ordering). The next ordering is used in the previous paper [2].

I Definition 7 (homeomorphic embedding). Let Σ be a ranked alphabet. The homeomorphic
embedding ordering �he,Σ between Σ-ranked trees2 is inductively defined by the following
rules:

πi �he,Σ π′i (for all i ≤ k) k = Σ(a)
a π1 · · ·πk �he,Σ a π′1 · · ·π′k

π �he,Σ πi k = Σ(a) > 0 1 ≤ i ≤ k
π �he,Σ a π1 · · ·πk

We extend the above ordering to a base ordering by: t1 �he,Σ t2 if T (t1) �he,Σ T (t2).

For example, br a b �he br (br a c) b. The homeomorphic embedding on words is nothing
but the (scattered) subsequence ordering. The following is a fundamental result on the
homeomorphic embedding:

I Proposition 8 (Kruskal’s tree theorem [7]). For any (finite) ranked alphabet Σ, the homeo-
morphic embedding �he on Σ-ranked trees is a well-quasi-ordering.

Also, we often use the Dickson’s theorem [6] which says that the product quasi-ordering
(component-wise quasi-ordering) of a finite number of wqo’s is a wqo.

The next is the quasi-ordering that is used in the theorems in this paper.

I Definition 9 (occurrence-number quasi-ordering). Let Σ be a ranked alphabet. For a ∈ Σ
and a Σ-tree π, we define #a(π) as the number of occurrences of a in π, and extend this
to a ground closed λ→-term t by #a(t) := #a(T (t)). Then we define a base quasi-ordering
�#,Σ,a by:

t1 �#,Σ,a t2 if #a(t1) ≤ #a(t2).

Also we define a base quasi-ordering �#,Σ by:

t1 �#,Σ t2 if for every a ∈ Σ, t1 �#,Σ,a t2.

Note that π �he π′ implies π �#,Σ π′, shown by induction on the rule of �he; and further
π �he

κ π′ implies π �#,Σ
κ π′ for any κ since �he

κ and �#,Σ
κ are point-wise quasi-ordering. Also

note that �#,Σ
κ = ∩a∈Σ(�#,Σ,a

κ ) for any κ.
The next quasi-ordering is used just in proofs. We write ΣN for the ranked alphabet

{0 7→ 0, 1 7→ 0,+ 7→ 2,× 7→ 2}; we write + t t′ as t + t′ and × t t′ as t × t′. We define a
set-theoretical denotational interpretation J−K of ΛΣN by: JoK := N, Jκ → κ′K is the set of
functions from JκK to Jκ′K, J0K := 0, J1K := 1, J+K(n)(m) := n+m, and J×K(n)(m) := n×m.
For t1, t2 ∈ ΛΣN

Γ,κ, we write t1 =JK
Γ,κ t2 (or t1 =JK t2) if Jt1K = Jt2K.

I Definition 10 (natural number quasi-ordering). We define a base quasi-ordering �N on the
set ΛΣN

o by:

t1 �N t2 if Jt1K ≤ Jt2K.

2 In the usual definition, a quasi-ordering on labels (tree constructors) is assumed. Here we fix the
quasi-order on labels to the identity relation.
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3 Numeric Pumping Lemma for Higher-order Tree Languages

Here we explain the nAK-conjecture and the pumping lemma for higher-order tree languages
with respect to �#,Σ.

I Conjecture 11 (nAK-conjecture). For any Σ and κ, �#,Σ
κ is a well quasi-ordering.

Our main theorem (Theorem 14) is to show the above conjecture for κ of order up to 3.
The above conjecture (and Theorem 14) can be used for the following pumping lemma:

I Theorem 12 (pumping lemma). Assume that Conjecture 11 holds. Then, for any order-n
ground closed λY nd-term t of a ranked alphabet Σ such that L(t) is infinite, there exist an
infinite sequence of trees π0, π1, π2, . . . ∈ L(t), and constants c, d such that:
(i) π0 ≺#,Σ π1 ≺#,Σ π2 ≺#,Σ · · ·, and
(ii) |πi| ≤ expn(ci+ d) for each i ≥ 0.

Furthermore, we can drop the assumption on Conjecture 11 when n ≤ 3.

The proof of the above theorem is obtained as a simple modification of the proof of the
pumping lemma in [2]: see the full version.

I Remark. The theorem we prove in the full version is actually slightly stronger than
Theorem 12 above, in the following three points (see the full version for details):

(i) As in [2], we relax the assumption of nAK conjecture, so that �#,Σ
κ need not be the

logical relation; any higher-order extension of the base quasi-ordering that is closed
under application suffices.

(ii) As in [2], we use actually a weaker conjecture, called the periodicity, which requires
that, for any `ST t : κ → κ and `ST s : κ, there exist i, j > 0 such that ti s �#,Σ

κ

ti+j s �#,Σ
κ ti+2j s �#,Σ

κ · · ·.
(iii) Whilst Theorem 12 states a pumping lemma on �#,Σ, the generalized theorem states

a pumping lemma on arbitrary base quasi-ordering with certain conditions, which
includes �#,Σ and �he as instances.

By the correspondence between order-n tree grammars and order-(n+1) word grammars [3,
1], we also have:

I Corollary 13 (pumping lemma for word languages). Assume that Conjecture 11 holds. Then,
for any order-n ground closed λY nd-term t of a word alphabet Σ (where n ≥ 1) such that Lw(t)
is infinite, there exist an infinite sequence of words w0, w1, w2, . . . ∈ Lw(t), and constants c,
d such that:
(i) w0 ≺#,Σ w1 ≺#,Σ w2 ≺#,Σ · · ·, and
(ii) |wi| ≤ expn−1(ci+ d) for each i ≥ 0.

Furthermore, we can drop the assumption on Conjecture 11 when n ≤ 4.

4 Numeric Version of Order-3 Kruskal’s Tree Theorem

Here we prove the main theorem (Theorem 14 below), which states that the nAK-conjecture
(Conjecture 11) holds for order-3 types. In this whole section, by a term, we mean a λ→-term,
and we never consider a fixed-point combinator nor non-determinism.
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4.1 Main theorem
I Theorem 14. For any alphabet Σ and any type κ of order up to 3, �#,Σ

κ on ΛΣ
κ is a wqo.

The theorem above is obtained as a corollary of the following lemma.

I Lemma 15. For any alphabet Σ, any a ∈ Σ, and any order-2 type environment Γ (i.e.,
a type environment whose codomain consists of types of order up to 2), the quasi-ordering
�#,Σ,a

Γ,o on Λ∅Γ,o is a wqo.

Proof sketch of Theorem 14.
For Theorem 14, it is sufficient that �#,Σ,a

κ on ΛΣ
κ is a wqo for every a ∈ Σ and κ with

order(κ) ≤ 3, because �#,Σ
κ = ∩a∈Σ(�#,Σ,a

κ ) and well-quasi-orderings are closed under
finite intersection.
For �#,Σ,a

κ to be a wqo for every order-3 type κ, it is sufficient that the restriction
of �#,Σ,a

κ to Λ∅κ (i.e. �#,Σ,a
κ ∩(Λ∅κ × Λ∅κ)) is a wqo for every order-3 type κ, because

t1 �#,Σ,a
κ t2 holds if λΣ.t1(�#,Σ,a

Σ→κ ∩(Λ∅Σ→κ × Λ∅Σ→κ))λΣ.t2, and order(Σ→ κ) ≤ 3.
For �#,Σ,a

κ ∩(Λ∅κ × Λ∅κ)) to be a wqo, Lemma 15 is sufficient, because t1(�#,Σ,a
κ ∩(Λ∅κ ×

Λ∅κ))t2 holds if t1 z1 · · · zk �#,Σ,a
Γ,o t2 z1 · · · zk, where κ = κ1 → · · · → κk → o and

Γ = z1 : κ1, . . . , zk : κk.
See the full version for details. J

Henceforth, we fix arbitrary afix ∈ Σ, and show Lemma 15 for a = afix. We prove this
lemma in two steps: First we give a transformation (·)\ from order-3 terms in Λ∅Γ,o (and their
type environment Γ) to order-2 terms in ΛΣN

Γ\,o (and to Γ\) so that it reflects quasi-orderings:
t\ �N

Γ\,o t
′\ implies t �#,Σ,afix

Γ,o t′ (Lemma 18). Then we show that �N
Γ\,o on ΛΣN

Γ\,o is a wqo
(Lemma 19). From these two results, Lemma 15 follows immediately.

4.2 Transformation from order-3 terms to order-2 terms
The key observation behind the transformation (·)\ is as follows. Let s be a closed term of
type om → o and t1, . . . , tm be closed terms of type o. Then, we have:

#a(s t1 · · · tm) = c1 ×#a(t1) + · · ·+ cm ×#a(tm) + d

for some numbers c1, . . . , cm, d that do not depend on t1, . . . , tm. This is because the order-
1 function s representable as a λ→-term can copy only arguments, and the number of
copies cannot depend on the arguments. Thus, if we are interested only in the number of
occurrences of a constant, information about an order-1 function can be represented by a
tuple (c1, . . . , cm, d) of numbers (order-0 values, in other words). By lifting this representation
to order-3 terms in Λ∅Γ,o, we obtain order-2 terms in ΛΣN

Γ\,o.
The actual transformation is non-trivial. Let us first fix Γ = ϕ1 :κ1, . . . , ϕm :κm, f1 :oq1 →

o, . . . , f` : oq` → o. Here, ϕi’s are order-2 variables and fj ’s are variables of order up to 1.
Every element of Λ∅Γ,o can be normalized to a term generated by the following syntax (which
we call an order-3 normal form):

t ::= y | fj | t1 t2 | ϕi t1 · · · tk | λy.t.

Here, y is a local variable of order 0. We require that the order of ϕ t1 · · · tk is at most
1. For example, ϕ : (o → o) → o → o → o, f : o → o → o, x : o ` λy : o. ϕ (f x) ((λy′ :
o. f y′ y′) y) : o → o → o is an order-3 normal form. It can be checked by induction that
for any order-3 normal form t, eorderΓ(t) ≤ 1 (with a suitable environment Γ). Since any
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14:8 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

long βη-normal form in Λ∅Γ,o with order(Γ→ o) = 3 is an order-3 normal form, considering
only order-3 normal forms does not lose generality. In the rest of this section, we use the
meta-variable t for order-3 normal forms.

We now define the transformation for order-3 normal forms. Given a term t0 ∈ Λ∅Γ,o, we
transform the term in a compositional manner, by transforming each subterm t typed by:

ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o; y1 : o, . . . , yn : o ` t : or → o

to a term e with some suitable type environment. Here, y1, . . . , yn are order-0 variables that
are bound inside t0 (rather than t), order(κi) = 2 for i ≤ m, and qi ≥ 0 for i ≤ `. We call
fi and ϕi external variables and yi an internal variable. Note that an external variable fi
can be order-0.

We first explain how variables and environments are transformed.
The variables y1, . . . , yn will just disappear after the transformation.
For each order-1 variable fi of type oqi → o, we prepare a tuple of variables (cfi,1, . . . , cfi,qi

,

dfi). Each cfi,j expresses how often fi copies the j-th argument, and dfi expresses how
often afix occurs in the value of fi, so that the number of afix in fi t1, . . . , tqi

can be
represented by cfi,1×#afix(t1) + · · ·+ cfi,qi ×#afix(tqi) +dfi (recall the observation given
at the beginning of this subsection).
For each order-2 variable ϕi of type κi = (oq1 → o) → · · · → (oqk → o) → (oq → o)
(where qk > 0), we prepare a tuple of order-1 variables (gϕi,1, . . . , gϕi,q, hϕi , ĥϕi). Basically,
gϕi,j and hϕi

are analogous to cfi,j and dfi
, respectively. Given order-1 functions t1, . . . , tk

whose values are ~u1, . . . , ~uk (where each ~u` is a tuple of size q` + 1), for each j ≤ q, the
function ϕi t1 · · · tk copies the j-th order-0 argument gϕi,j(~u1, . . . , ~uk) times, and creates
hϕi

(~u1, . . . , ~uk) copies of the constant afix. The other function variable ĥϕi
is similar to

hϕi but used for counting an internal variable yj rather than afix.

For a type environment

Γ = ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o

where κi = (oqi
1 → o)→ · · · → (oq

i
ki → o)→ (oqi → o) (qiki

> 0, i = 1, . . . , k), we define:

Γ\ :=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
−−→gϕi,j

j≤qi

, hϕi , ĥϕi : oq
i
1+1 → . . .→ oq

i
ki

+1 → o
i≤m

,
−−−−−−−−−−−→−−→cfi,j

j≤qi , dfi : o
i≤`

We now define the transformation of terms. A term t such that

ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o; y1 : o, . . . , yn : o ` t : or → o

is transformed to a tuple (v1, . . . , vn;w1, . . . , wr; e), using the transformation relation

ϕ1 :κ1, . . . , ϕm :κm, f1 :oq1 → o, . . . , f` :oq` → o; y1 :o, . . . , yn :o ` t . (v1, . . . , vn;w1, . . . , wr; e)

defined below. Here, each component is constructed from variables cfi,j , dfi , gϕi,j , hϕi , ĥϕi

above and ×,+, 0, 1. The output of the transformation consists of three parts, separated by
semicolons: a (possibly empty) sequence v1, . . . , vn, a (possibly empty) sequence w1, . . . , wr,
and a single element e. The term vj represents how often yj is copied, wj represents how
often the j-th argument of t is copied, and e represents how often the constant afix is copied.
The terms vj and wj are auxiliary ones for this transformation, and e plays the role of t\
explained in Section 4.1.
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The transformation relation is defined by the following rules, where Γ = ϕ1 : κ1, . . . , ϕm :
κm, f1 : oq1 → o, . . . , f` : oq` → o is fixed.

Γ; y1 : o, . . . , yn : o ` yj . (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

; ; 0)
(IVar)

Γ; y1 : o, . . . , yn : o ` fi . (0, . . . , 0︸ ︷︷ ︸
n

; cfi,1, . . . , cfi,qi ; dfi)
(Var)

Γ; y1 : o, . . . , yn : o ` t1 . (v1, . . . , vn;w1, . . . , wr; e) r ≥ 1
Γ; y1 : o, . . . , yn : o ` t2 . (v′1, . . . , v′n; ; e′)

Γ; y1 : o, . . . , yn : o ` t1t2 . (v1 + w1v
′
1, . . . , vn + w1v

′
n;w2, . . . , wr; e+ w1e

′)
(App0)

Γ; y1 : o, . . . , yn : o ` tj . (~vj ; ~wj ; ej) ~uj = (~wj ; ej) (for each j ∈ {1, . . . , k})
~u′j,j′ = (~wj ; vj,j′) (for each j ∈ {1, . . . , k} and j′ ∈ {1, . . . , n})

k ≥ 1 and the type of tk is order-1
Γ; y1 : o, . . . , yn : o ` ϕi t1 · · · tk .
(ĥϕi(~u′1,1, . . . , ~u′k,1) . . . , ĥϕi(~u′1,n, . . . , ~u′k,n);
gϕi,1(~u1, . . . , ~uk), . . . , gϕi,qi

(~u1, . . . , ~uk); hϕi
(~u1, . . . , ~uk))

(App1)

Γ; y1 : o, . . . , yn : o, yn+1 : o ` t . (v1, . . . , vn, vn+1;w1, . . . , wr; e)
Γ; y1 : o, . . . , yn : o ` λyn+1.t . (v1, . . . , vn; vn+1, w1, . . . , wr; e)

(Lam)

Rules (IVar) (for internal variables of type o) (Var) (for order-1 variables), and (Lam)
should be obvious from the intuition on the tuple and the translation of an environment.
Rules (App0) and (App1) are for applications of order-1 and order-2 functions respectively.
(Note however that in (App0), t1 itself may be an application of order-2 function, of the
form ϕ t1,1 · · · t1,k.) In (App0), note that t1t2 creates w1 copies of (the value of) t2, so that
the number of copies of yi can be calculated by vi + w1v

′
i, where vi and v′i are the numbers

of copies created by t1 and t2 respectively. Rule (App1) is based on the intuition explained
above about the translation of order-2 variables. Note that the same function ĥϕi

is used
for counting y1, . . . , yn; this is because ϕi does not know yj (in other words, ϕi cannot be
instantiated to a term containing yj as a free variable), so that the information for counting
yj can only be passed through arguments ~u′j,j′ .

It should be clear that if Γ; y1 :o, . . . , yn :o ` t . (v1, . . . , vn;w1, . . . , wr; e) then vj , wj′ , e ∈
ΛΣN

Γ\,o and the order of Γ\ → o is no greater than 2.

I Example 16. Let Γ = ϕ : (o→ o)→ o→ o, f : o→ o. Then, we have

Γ\ = gϕ,1, hϕ, ĥϕ : o2 → o, cf,1, df : o

and t := λy.ϕ(ϕf) y is transformed to

t\ = hϕ
(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
+ gϕ,1

(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
× 0
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by the following derivation:

Γ; y : o ` f . (0; cf,1; df )
(Var)

Γ; y : o ` ϕf . (ĥϕ(cf,1, 0); gϕ,1(cf,1, df );hϕ(cf,1, df ))
(App1)

Γ; y : o ` ϕ(ϕf) . (ĥϕ(~u′); gϕ,1(~u);hϕ(~u))
(App1)

Γ; y : o ` y . (1; ; 0)
(IVar)

Γ; y : o ` ϕ(ϕf) y . (ĥϕ(~u′) + gϕ,1(~u)× 1; ;hϕ(~u) + gϕ,1(~u)× 0)
(App0)

Γ;` λy.ϕ(ϕf) y . (; ĥϕ(~u′) + gϕ,1(~u)× 1;hϕ(~u) + gϕ,1(~u)× 0)
(Lam)

where ~u = gϕ,1(cf,1, df ), hϕ(cf,1, df ) and ~u′ = gϕ,1(cf,1, df ), ĥϕ(cf,1, 0). The terms in the
bottom line of the derivation, ĥϕ(~u′) + gϕ,1(~u)× 1 and t\ = hϕ(~u) + gϕ,1(~u)× 0, have type o
under the environment Γ\, and eorder(λΓ\.t\) = order(Γ\ → o) = 2.

The next example is a slightly modified one involving an external variable x : o instead of
the internal variable y : o. We have

(Γ, x : o)\ = Γ\, dx : o

and t′ := ϕ(ϕf)x is transformed to

t′
\ = hϕ

(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
+ gϕ,1

(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
× dx

by the following derivation:

Γ, x : o;` f . (0; cf,1; df )
(Var)

Γ, x : o;` ϕf . (ĥϕ(cf,1, 0); gϕ,1(cf,1, df );hϕ(cf,1, df ))
(App1)

Γ, x : o;` ϕ(ϕf) . (ĥϕ(~u′); gϕ,1(~u);hϕ(~u))
(App1)

Γ, x : o;` x . (0; ; dx)
(Var)

Γ, x : o;` ϕ(ϕf)x . (ĥϕ(~u′) + gϕ,1(~u)× 0; ;hϕ(~u) + gϕ,1(~u)× dx)
(App0)

where ~u and ~u′ are the same as above. J

Lemma 17 below says that the transformation preserves the meaning of ground terms.
Here we regard constants in Σ as variables of up to order 1, and we define a substitution
θafix

Σ by:

θafix
Σ := [

−−−→
1/ca,i

a∈Σ,i≤ar(a)
, 1/dafix ,

−−→
0/da

a∈Σ\{afix}
].

(Recall that afix ∈ Σ above is the constant arbitrarily fixed at the end of Section 4.1.)
I Lemma 17 (preservation of meaning). If Σ;` t . (; ; e), then we have #afix(t) = Jeθafix

Σ K.
The above lemma follows from a usual substitution lemma (on internal variables) and a

subject reduction property; see the full version for the proof.
The correctness of the transformation is stated as the following lemma.

I Lemma 18 (ordering reflection). Let: Σ be an alphabet; afix ∈ Σ; Γ be an environment of
the form

Γ = ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o

where order(κi) = 2 and qi ≥ 0; t, t′ ∈ Λ∅Γ,o; and

Γ;` t . (; ; e) Γ;` t′ . (; ; e′).

Then we have:

t �#,Σ,afix
Γ,o t′ if e �N

Γ\,o e
′.

The proof of the above lemma is given in the full version, where we use Lemma 17 and
substitution lemmas on external variables.
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4.3 �N on order-2 terms is a wqo

The main goal of this subsection is to prove the following lemma.

I Lemma 19 (�N
Γ,o on order-2 terms is wqo). For Γ = f1 : oq1 → o, . . . , fn : oqn → o, the

quasi-ordering �N
Γ,o on ΛΣN

Γ,o is a wqo.

Lemma 15 follows as a corollary of Lemma 19 above and Lemma 18 in the previous
subsection:

Proof of Lemma 15. Let t0, t1, . . . ∈ Λ∅Γ,o be an infinite sequence. We have the infinite
sequence e0, e1, . . . ∈ ΛΣN

Γ\,o such that Γ;` ti . (; ; ei), and by Lemma 18, ti �#,Σ,afix
Γ,o tj if

ei �N
Γ\,o ej . By Lemma 19, there indeed exist i, j (i < j) such that ei �N

Γ\,o ej . Thus, we
have ti �#,Σ,afix

Γ,o tj as required. J

To prove Lemma 19, we restrict (without loss of generality) ΛΣN
Γ,o to the set of β-normal

forms (which we call order-2 polynomials), generated by the following grammar:

P ::= 0 | 1 | P1 + P2 | P1 × P2 | f P1 · · · Pq

Here, in f P1 · · · Pq, f should have type oq → o. We write PN
2 for the set of all order-2

polynomials, and write PN
Γ,o for ΛΣN

Γ,o ∩ PN
2 . Note that the arity of f may be 0, so that, for

example, f1(f2 × (f2 + 1)) ∈ PN
f1:o→o,f2:o,o. Thus, for Lemma 19, the following suffices:

I Lemma 20 (�N
Γ,o on order-2 polynomials is wqo). For Γ = f1 : oq1 → o, . . . , fn : oqn → o,

the quasi-ordering �N
Γ,o on PN

Γ,o is a wqo.

The idea for proving this lemma is as follows:
An order-2 polynomial is regarded as a tree. Thus, by Kruskal’s tree theorem (Proposi-
tion 8), the set PN

Γ,o is well-quasi-ordered with respect to the homeomorphic embedding
�he,ΣN∪Γ

o . Unfortunately, however, the relation P1 �he,ΣN∪Γ
o P2 does not necessarily imply

�N
Γ,o; for example, if P1 = 1 and P2 = f1(1), then P1 �he,ΣN∪Γ

o P2 holds but P1 �N
Γ,o P2

does not, because f1 may be instantiated to λx.0. Similarly for P1 = f2 and P2 = f2 × 0.
To address the problem above, we classify the values of f ∈ PN

Γ,o (i.e. elements of ΛΣN
oq→o)

into a finite number of equivalence classes A(1), . . . , A(`), and use the classification to
further normalize order-2 polynomials, so that P1 �he,ΣN∪Γ

o P2 implies P1 �N
Γ,o P2 on

the normalized polynomials. For example, in the case of P1 = 1 and P2 = f1(1) above,
the values of f1 are classified to (i) those that use the argument, (ii) those that return a
positive constant without using the argument, and (iii) those that always return 0. We
can then normalize P2 = f1(1) to f1(1) (in case (i)), f1(0) (in case (ii)), and 0 (in case
(iii)), respectively. (In case (ii), any argument is replaced with 0, because the argument
is irrelevant.) Thus, we can indeed deduce P1 �N

Γ,o P2 from P1 �he,ΣN∪Γ
o P2 when the

value of f1 is restricted to just those in (i); and the same holds also for (ii) and (iii).
It follows that the restriction of the relation �N

Γ,o to each classification of the values of
f1, . . . , f` ∈ dom(Γ) is a wqo. Since the number of classifications is finite, by Dickson’s
theorem (recall the sentence below Proposition 8), �N

Γ,o (which is the intersection of the
restrictions of �N

Γ,o to the finite number of classifications) is also a wqo.

We first formalize and justify the reasoning in the last part (using Dickson’s theorem).
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I Definition 21 (finite case analysis). For Γ = f1 : κ1, . . . , fn : κn, we call a finite case
analysis of Γ a family (Aji )i≤n,j∈Ji

of sets such that ΛΣN
κi

= ∪j≤Ji
Aji for each i ≤ n. For

(Ai)i≤n such that Ai ⊆ ΛΣN
κi

, we define a quasi-ordering �N
Γ,(Ai)i

on ΛΣN
Γ,o as follows:

t �N
Γ,(Ai)i

t′ ⇐⇒ ∀t1 ∈ A1, . . . , tn ∈ An. Jt[ti/fi]iK ≤ Jt′[ti/fi]iK

We often omit the subscript Γ of �N
Γ,(Ai)i

and write �N
(Ai)i

.

The following lemma follows immediately from the fact that the intersection of a finite
number of wqo’s is a wqo (which is in turn an immediate corollary of Dickson’s theorem).
(see the full version for omitted proofs in the rest of this section).

I Lemma 22. For Γ = f1 : κ1, . . . , fn : κn and a finite case analysis (Aji )i≤n,j∈Ji of Γ, if
�N

(Aji
i

)i

on ΛΣN
Γ,o is a wqo for any “case” (ji)i≤n ∈

∏
i≤n Ji, then so is �N on ΛΣN

Γ,o.

Thus, to prove Lemma 20, it remains to find an appropriate decomposition ΛΣN
κi

= ∪j≤JiA
j
i

(where κi is an order-1 type oq → o), and prove that �N
(Aji

i
)i

is a wqo.

Henceforth we identify an element of ΛΣN
oq→o with the corresponding element of the

polynomial semi-ring N[x1, . . . , xq]. For example, λx1.λx2.((λy.y)x1) + x2 × x2 is identified
with the polynomial x1 + x2

2 (which is obtained by normalizing and omitting λ-abstractions,
assuming a fixed ordering of the bound variables). For t ∈ ΛΣN

oq→o we write poly(t) for the
corresponding polynomial.

We define the equivalence relation ∼ as the least semi-ring congruence relation on
N[x1, . . . , xq] that satisfies (i) a ∼ 1 if a > 0 and (ii) xji ∼ xi if j > 0. For example,
2x2

1x2 + 3x1x
2
2 + x1 + 4 ∼ x1x2 + x1 + 1, and the quotient set N[x1]/ ∼ consists of:

[0]∼, [1]∼, [x1]∼, [x1 + 1]∼,

and N[x1, x2]/ ∼ consists of

[0]∼, [1]∼, [x1]∼, [x2]∼, [x1x2]∼, [1+x1]∼, [1+x2]∼, [1+x1x2]∼, [x1+x2]∼, . . . , [1+x1+x2+x1x2]∼.

In general, P(P([q])) (where [q] denotes {1, . . . , q} and P(X) denotes the powerset of X)
gives a complete representation of the quotient set N[x1, . . . , xq]/∼, i.e.,

N[x1, . . . , xq]/∼ =
{[ ∑
{p1<···<pr}∈Φ

xp1 · · ·xpr

]
∼

∣∣∣∣Φ ∈ P(P([q]))
}
.

Through poly : ΛΣN
oq→o → N[x1, . . . , xq], we can induce an equivalence relation on ΛΣN

oq→o
from ∼ on N[x1, . . . , xq], and let AΦ

q be the equivalence class corresponding to Φ, i.e.,

AΦ
q :=

{
t ∈ ΛΣN

oq→o

∣∣∣ poly(t) ∼
∑

{p1<···<pr}∈Φ

xp1 · · ·xpr

}
. (1)

Then we have ΛΣN
oq→o = tΦ∈P(P([q]))A

Φ
q . Now, given Γ = f1 : oq1 → o, . . . , fn : oqn → o, we

have obtained a finite case analysis of Γ as (AΦ
qi

)i≤n,Φ∈P(P([qi])); for (Φi)i ∈
∏
i≤n P(P([qi])),

we write �N
(Φi)i

for �N
(AΦi

qi
)i

. Thus it remains to show that �N
(Φi)i

on PN
Γ,o is a wqo for each

(Φi)i ∈
∏
i≤n P(P([qi])).

The following lemma justifies the partition of polynomials based on ∼.

I Lemma 23 (zero/positive). For any Γ = f1 : oq1 → o, . . . , fn : oqn → o, (Φi)i ∈∏
i≤n P(P([qi])), and Γ ` P : o, we have either P �N

(Φi)i
0 or 1 �N

(Φi)i
P .
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In other words, the lemma above says that, given an order-2 polynomial P , whether
P [t1/f1, . . . , tn/fn] evaluates to 0 or not is solely determined by the equivalence classes
t1, . . . , tn belong to.

I Example 24. Let Γ := f : o2 → o, and Φ := {∅, {1, 2}} ∈ P(P([2])), which denotes the
equivalence class [1 + x1x2]∼. We have 1 �N

Φ f P1 P2 for any P1 and P2, since any element of
the equivalence class is of the form a+ · · · for some natural number a ≥ 1.

Based on the property above, we define the rewriting relation −→(Φi)i
, to simplify order-2

polynomials by replacing (i) subterms that always evaluate to 0, and (ii) arguments of a
function that are irrelevant, with 0.

I Definition 25 (rewriting relation and (Φi)i-normal form). For Γ = f1 : oq1 → o, . . . , fn :
oqn → o and (Φi)i ∈

∏
i≤n P(P([qi])), we define the relation −→◦(Φi)i

by the following two
rules.

P −→◦(Φi)i
0 if P �N

(Φi)i
0 and P 6= 0.

f` P1 · · · Pq`
−→◦(Φi)i

f` P1 · · · Pk−1 0Pk+1 · · · Pq`
if (i) Pk 6= 0 and (ii) for all φ ∈ Φ`

such that k ∈ φ, there exists p ∈ φ such that Pp �N
(Φi)i

0.
We write P0 −→(Φi)i

P1 if Pi = E[P ′i ] and P ′0 −→◦(Φi)i
P ′1 for some E, P ′0 and P ′1, where the

evaluation context E is defined by:

E ::= [ ] | E + P | P + E | E × P | P × E | f P1 . . . Pi−1E Pi+1 . . . Pq.

We call a normal form of −→(Φi)i
a (Φi)i-normal form.

Intuitively, the condition (ii) in the second rule says that whenever the k-th argument Pk
is used by f`, it occurs only in the form of Pk × Pp × · · · (up to equivalence) and Pp always
evaluates to 0; thus, the value of Pk is actually irrelevant.

I Example 26. We continue Example 24. Recall Γ = f : o2 → o and Φ = {∅, {1, 2}}.
Consider the order-2 polynomial f 1 (1× 0). It can be rewritten to f 1 0 by using the first
rule (and the evaluation context E = f 1 [ ]). We can further apply the second rule to obtain
f 1 0 −→Φ f 0 0, because k = 1 satisfies the conditions ((i) and) (ii). In fact, if 1 ∈ φ ∈ Φ,
then φ = {1, 2}; hence, the required condition holds for p = 2. Note that f 0 0 is a Φ-normal
form; the first rule is not applicable, as f 0 0 6�N

Φ 0 by the discussion in Example 24.

The following lemma guarantees that any order-2 polynomial can be transformed to at
least one equivalent (Φi)i-normal form.

I Lemma 27 (existence of normal form).
1. −→(Φi)i

is strongly normalizing.
2. If P −→(Φi)i

P ′ then P ≈N
(Φi)i

P ′.

We can reduce the wqoness of �N
(Φi)i

to that of �he,ΣN∪Γ
o by the following lemma:

I Lemma 28. For Γ = f1 : oq1 → o, . . . , fn : oqn → o, (Φi)i ∈
∏
i≤n P(P([qi])), and

(Φi)i-normal forms Γ ` P ′, P : o, if P ′ �he,ΣN∪Γ
o P then P ′ �N

(Φi)i
P .

The proof is given by a simple calculation using Lemma 23 and that the given (Φi)i-normal
forms P ′, P do not satisfy the condition for the rewriting −→(Φi)i

.
Now we are ready to prove Lemma 20.
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Proof of Lemma 20. By Lemma 22, it suffices to show that �N
(Φi)i

on PN
Γ,o is a wqo for each

(Φi)i ∈
∏
i≤n P(P([qi])). By the Kruskal’s tree theorem, �he,ΣN∪Γ

o on PN
Γ,o is a wqo, and

hence the sub-ordering �he,ΣN∪Γ
o on the subset

{P ∈ PN
Γ,o | P is a (Φi)i-normal form} ⊆ PN

Γ,o

is a wqo. Therefore by Lemma 28, �N
(Φi)i

on {P ∈ PN
Γ,o | P is a (Φi)i-normal form} is a wqo.

By Lemma 27, {P ∈ PN
Γ,o | P is a (Φi)i-normal form} and PN

Γ,o – both modulo βη-equivalence
– are isomorphic (with respect to �N

(Φi)i
and �N

(Φi)i
); hence �N

(Φi)i
on PN

Γ,o is a wqo. J

5 Conclusion

W have introduced the nAK-conjecture, a weaker version of the AK-conjecture in [2], and
proved it up to order 3. We have also proved a pumping lemma for higher-order grammars
(which is slightly weaker than the pumping lemma conjectured in [2]) under the assumption
that the nAK-conjecture holds. Obvious future work is to show the nAK-conjecture or the
original AK-conjecture for arbitrary orders. Finding other applications of the two conjectures
(cf. an application of Kruskal’s tree theorem to program termination [4]) is also left for future
work.
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