
Lambda-Definable Order-3 Tree Functions are
Well-Quasi-Ordered
Kazuyuki Asada
Tohoku University, Sendai, Japan
asada@riec.tohoku.ac.jp

https://orcid.org/0000-0001-8782-2119

Naoki Kobayashi
The University of Tokyo, Tokyo, Japan
koba@is.s.u-tokyo.ac.jp

Abstract
Asada and Kobayashi [ICALP 2017] conjectured a higher-order version of Kruskal’s tree theorem,
and proved a pumping lemma for higher-order languages modulo the conjecture. The conjecture
has been proved up to order-2, which implies that Asada and Kobayashi’s pumping lemma holds
for order-2 tree languages, but remains open for order-3 or higher. In this paper, we prove
a variation of the conjecture for order-3. This is sufficient for proving that a variation of the
pumping lemma holds for order-3 tree languages (equivalently, for order-4 word languages).

2012 ACM Subject Classification Theory of computation → Lambda calculus

Keywords and phrases higher-order grammar, pumping lemma, Kruskal’s tree theorem, well-
quasi-ordering, simply-typed lambda calculus

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.14

Related Version A full version of the paper is available at http://www.riec.tohoku.ac.jp/
~asada/papers/fsttcs18.pdf.

Acknowledgements We would like to thank anonymous referees for useful comments. This work
was supported by JSPS Kakenhi 15H05706 and 18K11156.

1 Introduction

Kruskal’s tree theorem [7] says that the homeomorphic embedding relation �he on finite
trees is a well-quasi-ordering, i.e., for every infinite sequence of trees π0, π1, π2, . . ., there exist
i < j such that πi �he πj . Here, π �he π′ means that there exists an embedding of the nodes
of π to those of π′, preserving the labels and the ancestor/descendant relation. Asada and
Kobayashi [2] considered a higher-order version �he

κ of �he on simply-typed λ-terms of type
κ, and conjectured that �he

κ is also a well-quasi-ordering, for every simple type κ. Under the
assumption that the conjecture (which we call AK-conjecture) is true, they proved a pumping
lemma for higher-order languages (a la higher-order languages in Damm’s IO hierarchy [3]),
which says that for any order-k tree grammar that generates an infinite language L, there
exists a strictly increasing infinite sequence π0 ≺he π1 ≺he π2 ≺he · · · such that πi ∈ L and
|πi| ≤ expk(ci+ d), where ≺he is the strict version of the homeomorphic embedding, c and
d are constants that depend on the grammar, and expk(x) is defined by exp0(x) = x and
expk+1(x) = 2expk(x). The pumping lemma can be used to prove that a certain language
does not belong to the class of order-k languages. They also proved that the conjecture is

© Kazuyuki Asada and Naoki Kobayashi;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:asada@riec.tohoku.ac.jp
https://orcid.org/0000-0001-8782-2119
mailto:koba@is.s.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.14
http://www.riec.tohoku.ac.jp/~asada/papers/fsttcs18.pdf
http://www.riec.tohoku.ac.jp/~asada/papers/fsttcs18.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

true up to order-2 types, and hence also the pumping lemma for order-2 tree languages and
(by the correspondence between tree/word languages [1, 3]) order-3 word languages. The
AK-conjecture is still open for order-3 or higher.

In the present paper, we consider a variation of the AK-conjecture (which we call nAK-
conjecture), where the homeomorphic embedding relation is replaced by �#, defined by
π1 �# π2 if and only if, for every tree constructor a, #a(π1) ≤ #a(π2); here #a(π) denotes
the number of occurrences of a in π. The correctness of the nAK-conjecture would imply the
following variation of the pumping lemma: for any order-k tree grammar that generates an
infinite language L, there exists a strictly increasing infinite sequence π0 ≺# π1 ≺# π2 ≺# · · ·
such that πi ∈ L and |πi| ≤ expk(ci+ d). We prove that the nAK-conjecture is true for the
order-3 case, i.e., that �#

κ (the logical relation on simply-typed λ-terms of type κ, obtained
from �#) is a well-quasi-ordering for any type κ of order up to 3. The variation of the
pumping lemma above is thus obtained for order-3 tree languages and order-4 word languages.
To our knowledge, pumping lemmas were known only for tree (word, resp.) languages of
order up to 2 (3, resp.) [2].

To prove the order-3 nAK-conjecture, we define a transformation (·)\ from order-3 λ-
terms to order-2 numeric functions (that are also represented by λ-terms), and prove (i)
the transformation reflects the quasi-orderings, i.e., t1 �#

κ t2 if t1\ �N t2
\ for a certain

quasi-ordering �N on numeric functions, and (ii) �N is a well-quasi-ordering.

Related work. We are not aware of directly related work, besides our own previous work [2].
Our reduction from the well-quasi-orderedness of order-3 λ-terms to that of order-2 numeric
functions relies on the inexpressiveness of simply-typed λ-terms as (higher-order) tree
functions. Zaionc [11, 12, 13] studied the expressive power of simply-typed λ-terms. Pumping
lemmas for higher-order languages have been known to be difficult. After Hayashi [5] proved
a pumping lemma for indexed languages (i.e. order-2 word languages), it was only in 2017
that a pumping lemma for order-3 word languages was proved [2]. We have further improved
the result to obtain a pumping lemma for order-4 word (or, order-3 tree) languages.

The rest of the paper is structured as follows. Section 2 introduces basic definitions.
Section 3 explains the nAK-conjecture and the pumping lemma. Section 4 proves the
nAK-conjecture up to order-3. Section 5 concludes the paper.

2 Preliminaries

We give basic definitions on λ-terms and quasi-orderings.

2.1 λ-terms and higher-order languages
I Definition 1 (types and terms). The set of simple types, ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order1 of a simple type κ, written order(κ) is defined by order(o) = 0
and order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)). The type o describes trees, and
κ1 → κ2 describes functions from κ1 to κ2. A (ranked) alphabet Σ is a map from a finite set
of constants (that represent tree constructors) to the set of natural numbers called arities.
The set of λY nd-terms, ranged over by s, t, u, v, is defined by:

t ::= x | a t1 · · · tk | t1 t2 | λx : κ.t | Yκ t | t1 ⊕ t2

1 For clarity, we use the word order for this notion, and ordering for relations such as ≤, �he, etc.

K. Asada and N. Kobayashi 14:3

Here, x, y, . . . ranges over variables, and a over dom(Σ). The term a t1 · · · tk (where we
require Σ(a) = k) constructs a tree that has a as the root and (the values of) t1, . . . , tk
as children. Yκ and ⊕ represent a fixed-point combinator and a non-deterministic choice,
respectively. We often omit the type annotation and just write λx.t and Y t for λx : κ.t and
Yκ t. A λY nd-term is called: (i) a λ→,nd-term if it does not contain Y ; (ii) a λ→-term if it
contains neither Y nor ⊕; and (iii) an applicative term if it contains none of λ-abstractions,
Y , and ⊕. We often call a λ→-term just a term. As usual, we identify λY nd-terms up to the
α-equivalence, and implicitly apply α-conversions.

A type environment Γ is a sequence of type bindings of the form x :κ such that Γ contains
at most one binding for each variable x. A λY nd-term t has type κ under Γ if Γ `ST t : κ is
derivable from the following typing rules.

Γ, x : κ, Γ′ `ST x : κ
Σ(a) = k Γ `ST ti : o (for each i ∈ {1, . . . , k})

Γ `ST a t1 · · · tk : o

Γ `ST t : κ→ κ

Γ `ST Yκ t : κ
Γ `ST t1 : κ2 → κ Γ `ST t2 : κ2

Γ `ST t1 t2 : κ
Γ, x : κ1 `ST t : κ2

Γ `ST λx : κ1.t : κ1 → κ2

Γ `ST t1 : o Γ `ST t2 : o

Γ `ST t1 ⊕ t2 : o

We consider below only well-typed λY nd-terms. Note that given Γ and t, there exists at
most one type κ such that Γ `ST t : κ. We call κ the type of t (with respect to Γ). We often
omit “with respect to Γ” if Γ is clear from context. Given a judgment Γ ` t : κ, we define
λΓ.t by: λ∅.t := t and λ(Γ, x : κ′).t := λΓ.λx.t. Also we define Γ→ κ by: ∅ → κ := κ and
(Γ, x : κ′)→ κ := Γ→ (κ′ → κ); thus we have ` λΓ.t : Γ→ κ if Γ ` t : κ. Given an alphabet
Σ, we write ΛΣ for the set of λ→-terms whose constants are taken from Σ. Also we define
ΛΣ

Γ,κ := {t ∈ ΛΣ | Γ ` t : κ} and ΛΣ
κ := ΛΣ

∅,κ.
For a λY nd-term t with a type environment Γ, the (internal) order of t (with respect to

Γ), written orderΓ(t), is the largest order of the types of subterms of λΓ.t, and the external
order of t (with respect to Γ), written eorderΓ(t), is the order of the type of t with respect
to Γ. We often omit Γ when it is clear from context. For example, for t = (λx : o.x)e,
order∅(t) = 1 and eorder∅(t) = 0. We define the size |t| of a λY nd-term t by: |x| := 1,
|a t1 · · · , tk| := 1 + |t1|+ · · ·+ |tk|, |s t| := |s|+ |t|+ 1, |λx.t| := |t|+ 1, |Yκ t| := |t|+ 1 and
|s⊕ t| := |s|+ |t|+ 1. We call a λY nd-term t ground (with respect to Γ) if Γ `ST t : o. We
call t a (finite, Σ-ranked) tree if t is a ground closed applicative term (consisting of only
constants). We write TreeΣ for the set of Σ-ranked trees, and use the meta-variable π for a
tree. We often write −→· to denote a sequence (possibly with a condition on the range of the
sequence in the superscript). For example, −→ti

i≤m
denotes the sequence t1, . . . , tm of terms,

and [
−−→
ti/xi

i≤m
] denotes the substitution [t1/x1, . . . , tm/xm].

We sometimes identify a ranked alphabet Σ = {a1 7→ r1, . . . , ak 7→ rk} with the first-
order environment Σ = {a1 : or1 → o, . . . , ak : ork → o} (assuming an arbitrary fixed linear
ordering on Σ).

I Definition 2 (reduction and language). The set of (call-by-name) evaluation contexts is
defined by:

E ::= [] t1 · · · tk | a π1 · · ·πiE t1 · · · tk

and the call-by-name reduction for (possibly open) ground λY nd-terms is defined by:

E[(λx.t)t′] −→ E[t[t′/x]] E[Y t] −→ E[t (Y t)] E[t1 ⊕ t2] −→ E[ti] (i = 1, 2)

where t[t′/x] is the usual capture-avoiding substitution. We write −→∗ for the reflexive
transitive closure of −→. A call-by-name normal form is a ground λY nd-term t such that

FSTTCS 2018

14:4 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

t 6−→ t′ for any t′. For a ground closed λY nd-term t, we define the tree language L(t)
generated by t by L(t) := {π | t −→∗ π}. For a ground closed λ→-term t, L(t) is a singleton
set {π}; we write T (t) for such π and call it the tree of t.

In the previous paper [2] we stated the pumping lemma for the notion of a higher-order
grammar ; in this paper, following [8, 9], we use only the formalism by λY nd-terms for simpli-
city. Since there exist well-known order-preserving and language-preserving transformations
between higher-order grammars and ground closed λY nd-terms, we obtain corresponding
results on higher-order grammars immediately.

The notion of a word can be seen as a special case of that of a tree:

I Definition 3 (word alphabet). We call a ranked alphabet Σ a word alphabet if it has a special
nullary constant e and all the other constants have arity 1. For a tree π = a1(· · · (an e) · · ·) of
a word alphabet, we define word(π) := a1 · · · an, and we define utree as the inverse function
of word, i.e., utree(a1 · · · an) := a1(· · · (ane)). The word language generated by a ground
closed λY nd-term t over a word alphabet, written Lw(t), is defined as {word(π) | π ∈ L(t)}.

A tree language (word language, resp.) over an alphabet (word alphabet, resp.) Σ is called
order-n if it is generated by some order-n ground closed λY nd-term of Σ; we note that
the classes of order-0, order-1, and order-2 word languages coincide with those of regular,
context-free, and indexed languages, respectively [10].

2.2 Some quasi-orderings and their logical relation extension
I Definition 4 ((well-)quasi-ordering). A quasi-ordering (a.k.a. preorder) on a set A is a
binary relation on A that is reflexive and transitive. A well-quasi-ordering (wqo for short)
on a set S is a quasi-ordering ≤ on S such that for any infinite sequence (si)i of elements in
S there exist j and k such that j < k and sj ≤ sk.

As a general notation, for a quasi-ordering denoted by �, we write ≈ for the induced
equivalence relation (i.e., x ≈ y if x � y and y � x), and write ≺ for the strict version (i.e.,
x ≺ y if x � y and y 6� x). Also, for a quasi-ordering denoted by ≤, we write ∼ for the
induced equivalence relation and < for the strict version. We apply these conventions also to
notations with superscript/subscript such as �a, �b, �ab , ≤a, ≤b, and ≤ab . Further, for any
quasi-ordering on the set of trees of a word alphabet, we use the same notation also for the
quasi-ordering on the set of words induced through utree.

I Definition 5 (logical relation extension). Let Σ be a ranked alphabet. We call ≤ a base quasi-
ordering (with respect to Σ) if ≤ is a quasi-ordering on the set ΛΣ

o modulo βη-equivalence
and every constant in Σ is monotonic on ≤. We define the logical relation extension of ≤ as
the family (≤κ)κ of relations ≤κ on the set ΛΣ

κ modulo βη-equivalence indexed by simple
types κ where ≤κ’s are defined by induction on κ as follows:

t1 ≤o t2 if t1 ≤ t2
t1 ≤κ→κ′ t2 if for any t′1, t′2, t′1 ≤κ t′2 =⇒ t1 t

′
1 ≤κ′ t2 t

′
2.

Furthermore we extend the relation to open terms: for t1, t2 ∈ ΛΣ
Γ,κ, we define t1 ≤Γ,κ t2 if

λΓ.t1 ≤Γ→κ λΓ.t2. We omit the subscripts of ≤κ and ≤Γ,κ if there is no confusion.

The next lemma follows immediately from the basic lemma (a.k.a. the abstraction theorem)
of logical relations (see the full version for details).

K. Asada and N. Kobayashi 14:5

I Lemma 6. Let ≤ be a base quasi-ordering. Each component ≤κ of the logical relation
extension of ≤ is a quasi-ordering. Further, ≤κ is the point-wise quasi-ordering:

t1 ≤κ→κ′ t2 if and only if for any t′ ∈ ΛΣ
κ , t1 t

′ ≤κ′ t2 t
′.

Every quasi-ordering for higher-order terms used in this paper is a logical relation extension
(of some base quasi-ordering). The next ordering is used in the previous paper [2].

I Definition 7 (homeomorphic embedding). Let Σ be a ranked alphabet. The homeomorphic
embedding ordering �he,Σ between Σ-ranked trees2 is inductively defined by the following
rules:

πi �he,Σ π′i (for all i ≤ k) k = Σ(a)
a π1 · · ·πk �he,Σ a π′1 · · ·π′k

π �he,Σ πi k = Σ(a) > 0 1 ≤ i ≤ k
π �he,Σ a π1 · · ·πk

We extend the above ordering to a base ordering by: t1 �he,Σ t2 if T (t1) �he,Σ T (t2).

For example, br a b �he br (br a c) b. The homeomorphic embedding on words is nothing
but the (scattered) subsequence ordering. The following is a fundamental result on the
homeomorphic embedding:

I Proposition 8 (Kruskal’s tree theorem [7]). For any (finite) ranked alphabet Σ, the homeo-
morphic embedding �he on Σ-ranked trees is a well-quasi-ordering.

Also, we often use the Dickson’s theorem [6] which says that the product quasi-ordering
(component-wise quasi-ordering) of a finite number of wqo’s is a wqo.

The next is the quasi-ordering that is used in the theorems in this paper.

I Definition 9 (occurrence-number quasi-ordering). Let Σ be a ranked alphabet. For a ∈ Σ
and a Σ-tree π, we define #a(π) as the number of occurrences of a in π, and extend this
to a ground closed λ→-term t by #a(t) := #a(T (t)). Then we define a base quasi-ordering
�#,Σ,a by:

t1 �#,Σ,a t2 if #a(t1) ≤ #a(t2).

Also we define a base quasi-ordering �#,Σ by:

t1 �#,Σ t2 if for every a ∈ Σ, t1 �#,Σ,a t2.

Note that π �he π′ implies π �#,Σ π′, shown by induction on the rule of �he; and further
π �he

κ π′ implies π �#,Σ
κ π′ for any κ since �he

κ and �#,Σ
κ are point-wise quasi-ordering. Also

note that �#,Σ
κ = ∩a∈Σ(�#,Σ,a

κ) for any κ.
The next quasi-ordering is used just in proofs. We write ΣN for the ranked alphabet

{0 7→ 0, 1 7→ 0,+ 7→ 2,× 7→ 2}; we write + t t′ as t + t′ and × t t′ as t × t′. We define a
set-theoretical denotational interpretation J−K of ΛΣN by: JoK := N, Jκ → κ′K is the set of
functions from JκK to Jκ′K, J0K := 0, J1K := 1, J+K(n)(m) := n+m, and J×K(n)(m) := n×m.
For t1, t2 ∈ ΛΣN

Γ,κ, we write t1 =JK
Γ,κ t2 (or t1 =JK t2) if Jt1K = Jt2K.

I Definition 10 (natural number quasi-ordering). We define a base quasi-ordering �N on the
set ΛΣN

o by:

t1 �N t2 if Jt1K ≤ Jt2K.

2 In the usual definition, a quasi-ordering on labels (tree constructors) is assumed. Here we fix the
quasi-order on labels to the identity relation.

FSTTCS 2018

14:6 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

3 Numeric Pumping Lemma for Higher-order Tree Languages

Here we explain the nAK-conjecture and the pumping lemma for higher-order tree languages
with respect to �#,Σ.

I Conjecture 11 (nAK-conjecture). For any Σ and κ, �#,Σ
κ is a well quasi-ordering.

Our main theorem (Theorem 14) is to show the above conjecture for κ of order up to 3.
The above conjecture (and Theorem 14) can be used for the following pumping lemma:

I Theorem 12 (pumping lemma). Assume that Conjecture 11 holds. Then, for any order-n
ground closed λY nd-term t of a ranked alphabet Σ such that L(t) is infinite, there exist an
infinite sequence of trees π0, π1, π2, . . . ∈ L(t), and constants c, d such that:
(i) π0 ≺#,Σ π1 ≺#,Σ π2 ≺#,Σ · · ·, and
(ii) |πi| ≤ expn(ci+ d) for each i ≥ 0.

Furthermore, we can drop the assumption on Conjecture 11 when n ≤ 3.

The proof of the above theorem is obtained as a simple modification of the proof of the
pumping lemma in [2]: see the full version.

I Remark. The theorem we prove in the full version is actually slightly stronger than
Theorem 12 above, in the following three points (see the full version for details):

(i) As in [2], we relax the assumption of nAK conjecture, so that �#,Σ
κ need not be the

logical relation; any higher-order extension of the base quasi-ordering that is closed
under application suffices.

(ii) As in [2], we use actually a weaker conjecture, called the periodicity, which requires
that, for any `ST t : κ → κ and `ST s : κ, there exist i, j > 0 such that ti s �#,Σ

κ

ti+j s �#,Σ
κ ti+2j s �#,Σ

κ · · ·.
(iii) Whilst Theorem 12 states a pumping lemma on �#,Σ, the generalized theorem states

a pumping lemma on arbitrary base quasi-ordering with certain conditions, which
includes �#,Σ and �he as instances.

By the correspondence between order-n tree grammars and order-(n+1) word grammars [3,
1], we also have:

I Corollary 13 (pumping lemma for word languages). Assume that Conjecture 11 holds. Then,
for any order-n ground closed λY nd-term t of a word alphabet Σ (where n ≥ 1) such that Lw(t)
is infinite, there exist an infinite sequence of words w0, w1, w2, . . . ∈ Lw(t), and constants c,
d such that:
(i) w0 ≺#,Σ w1 ≺#,Σ w2 ≺#,Σ · · ·, and
(ii) |wi| ≤ expn−1(ci+ d) for each i ≥ 0.

Furthermore, we can drop the assumption on Conjecture 11 when n ≤ 4.

4 Numeric Version of Order-3 Kruskal’s Tree Theorem

Here we prove the main theorem (Theorem 14 below), which states that the nAK-conjecture
(Conjecture 11) holds for order-3 types. In this whole section, by a term, we mean a λ→-term,
and we never consider a fixed-point combinator nor non-determinism.

K. Asada and N. Kobayashi 14:7

4.1 Main theorem
I Theorem 14. For any alphabet Σ and any type κ of order up to 3, �#,Σ

κ on ΛΣ
κ is a wqo.

The theorem above is obtained as a corollary of the following lemma.

I Lemma 15. For any alphabet Σ, any a ∈ Σ, and any order-2 type environment Γ (i.e.,
a type environment whose codomain consists of types of order up to 2), the quasi-ordering
�#,Σ,a

Γ,o on Λ∅Γ,o is a wqo.

Proof sketch of Theorem 14.
For Theorem 14, it is sufficient that �#,Σ,a

κ on ΛΣ
κ is a wqo for every a ∈ Σ and κ with

order(κ) ≤ 3, because �#,Σ
κ = ∩a∈Σ(�#,Σ,a

κ) and well-quasi-orderings are closed under
finite intersection.
For �#,Σ,a

κ to be a wqo for every order-3 type κ, it is sufficient that the restriction
of �#,Σ,a

κ to Λ∅κ (i.e. �#,Σ,a
κ ∩(Λ∅κ × Λ∅κ)) is a wqo for every order-3 type κ, because

t1 �#,Σ,a
κ t2 holds if λΣ.t1(�#,Σ,a

Σ→κ ∩(Λ∅Σ→κ × Λ∅Σ→κ))λΣ.t2, and order(Σ→ κ) ≤ 3.
For �#,Σ,a

κ ∩(Λ∅κ × Λ∅κ)) to be a wqo, Lemma 15 is sufficient, because t1(�#,Σ,a
κ ∩(Λ∅κ ×

Λ∅κ))t2 holds if t1 z1 · · · zk �#,Σ,a
Γ,o t2 z1 · · · zk, where κ = κ1 → · · · → κk → o and

Γ = z1 : κ1, . . . , zk : κk.
See the full version for details. J

Henceforth, we fix arbitrary afix ∈ Σ, and show Lemma 15 for a = afix. We prove this
lemma in two steps: First we give a transformation (·)\ from order-3 terms in Λ∅Γ,o (and their
type environment Γ) to order-2 terms in ΛΣN

Γ\,o (and to Γ\) so that it reflects quasi-orderings:
t\ �N

Γ\,o t
′\ implies t �#,Σ,afix

Γ,o t′ (Lemma 18). Then we show that �N
Γ\,o on ΛΣN

Γ\,o is a wqo
(Lemma 19). From these two results, Lemma 15 follows immediately.

4.2 Transformation from order-3 terms to order-2 terms
The key observation behind the transformation (·)\ is as follows. Let s be a closed term of
type om → o and t1, . . . , tm be closed terms of type o. Then, we have:

#a(s t1 · · · tm) = c1 ×#a(t1) + · · ·+ cm ×#a(tm) + d

for some numbers c1, . . . , cm, d that do not depend on t1, . . . , tm. This is because the order-
1 function s representable as a λ→-term can copy only arguments, and the number of
copies cannot depend on the arguments. Thus, if we are interested only in the number of
occurrences of a constant, information about an order-1 function can be represented by a
tuple (c1, . . . , cm, d) of numbers (order-0 values, in other words). By lifting this representation
to order-3 terms in Λ∅Γ,o, we obtain order-2 terms in ΛΣN

Γ\,o.
The actual transformation is non-trivial. Let us first fix Γ = ϕ1 :κ1, . . . , ϕm :κm, f1 :oq1 →

o, . . . , f` : oq` → o. Here, ϕi’s are order-2 variables and fj ’s are variables of order up to 1.
Every element of Λ∅Γ,o can be normalized to a term generated by the following syntax (which
we call an order-3 normal form):

t ::= y | fj | t1 t2 | ϕi t1 · · · tk | λy.t.

Here, y is a local variable of order 0. We require that the order of ϕ t1 · · · tk is at most
1. For example, ϕ : (o → o) → o → o → o, f : o → o → o, x : o ` λy : o. ϕ (f x) ((λy′ :
o. f y′ y′) y) : o → o → o is an order-3 normal form. It can be checked by induction that
for any order-3 normal form t, eorderΓ(t) ≤ 1 (with a suitable environment Γ). Since any

FSTTCS 2018

14:8 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

long βη-normal form in Λ∅Γ,o with order(Γ→ o) = 3 is an order-3 normal form, considering
only order-3 normal forms does not lose generality. In the rest of this section, we use the
meta-variable t for order-3 normal forms.

We now define the transformation for order-3 normal forms. Given a term t0 ∈ Λ∅Γ,o, we
transform the term in a compositional manner, by transforming each subterm t typed by:

ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o; y1 : o, . . . , yn : o ` t : or → o

to a term e with some suitable type environment. Here, y1, . . . , yn are order-0 variables that
are bound inside t0 (rather than t), order(κi) = 2 for i ≤ m, and qi ≥ 0 for i ≤ `. We call
fi and ϕi external variables and yi an internal variable. Note that an external variable fi
can be order-0.

We first explain how variables and environments are transformed.
The variables y1, . . . , yn will just disappear after the transformation.
For each order-1 variable fi of type oqi → o, we prepare a tuple of variables (cfi,1, . . . , cfi,qi

,

dfi). Each cfi,j expresses how often fi copies the j-th argument, and dfi expresses how
often afix occurs in the value of fi, so that the number of afix in fi t1, . . . , tqi

can be
represented by cfi,1×#afix(t1) + · · ·+ cfi,qi ×#afix(tqi) +dfi (recall the observation given
at the beginning of this subsection).
For each order-2 variable ϕi of type κi = (oq1 → o) → · · · → (oqk → o) → (oq → o)
(where qk > 0), we prepare a tuple of order-1 variables (gϕi,1, . . . , gϕi,q, hϕi , ĥϕi). Basically,
gϕi,j and hϕi

are analogous to cfi,j and dfi
, respectively. Given order-1 functions t1, . . . , tk

whose values are ~u1, . . . , ~uk (where each ~u` is a tuple of size q` + 1), for each j ≤ q, the
function ϕi t1 · · · tk copies the j-th order-0 argument gϕi,j(~u1, . . . , ~uk) times, and creates
hϕi

(~u1, . . . , ~uk) copies of the constant afix. The other function variable ĥϕi
is similar to

hϕi but used for counting an internal variable yj rather than afix.

For a type environment

Γ = ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o

where κi = (oqi
1 → o)→ · · · → (oq

i
ki → o)→ (oqi → o) (qiki

> 0, i = 1, . . . , k), we define:

Γ\ :=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
−−→gϕi,j

j≤qi

, hϕi , ĥϕi : oq
i
1+1 → . . .→ oq

i
ki

+1 → o
i≤m

,
−−−−−−−−−−−→−−→cfi,j

j≤qi , dfi : o
i≤`

We now define the transformation of terms. A term t such that

ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o; y1 : o, . . . , yn : o ` t : or → o

is transformed to a tuple (v1, . . . , vn;w1, . . . , wr; e), using the transformation relation

ϕ1 :κ1, . . . , ϕm :κm, f1 :oq1 → o, . . . , f` :oq` → o; y1 :o, . . . , yn :o ` t . (v1, . . . , vn;w1, . . . , wr; e)

defined below. Here, each component is constructed from variables cfi,j , dfi , gϕi,j , hϕi , ĥϕi

above and ×,+, 0, 1. The output of the transformation consists of three parts, separated by
semicolons: a (possibly empty) sequence v1, . . . , vn, a (possibly empty) sequence w1, . . . , wr,
and a single element e. The term vj represents how often yj is copied, wj represents how
often the j-th argument of t is copied, and e represents how often the constant afix is copied.
The terms vj and wj are auxiliary ones for this transformation, and e plays the role of t\
explained in Section 4.1.

K. Asada and N. Kobayashi 14:9

The transformation relation is defined by the following rules, where Γ = ϕ1 : κ1, . . . , ϕm :
κm, f1 : oq1 → o, . . . , f` : oq` → o is fixed.

Γ; y1 : o, . . . , yn : o ` yj . (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

; ; 0)
(IVar)

Γ; y1 : o, . . . , yn : o ` fi . (0, . . . , 0︸ ︷︷ ︸
n

; cfi,1, . . . , cfi,qi ; dfi)
(Var)

Γ; y1 : o, . . . , yn : o ` t1 . (v1, . . . , vn;w1, . . . , wr; e) r ≥ 1
Γ; y1 : o, . . . , yn : o ` t2 . (v′1, . . . , v′n; ; e′)

Γ; y1 : o, . . . , yn : o ` t1t2 . (v1 + w1v
′
1, . . . , vn + w1v

′
n;w2, . . . , wr; e+ w1e

′)
(App0)

Γ; y1 : o, . . . , yn : o ` tj . (~vj ; ~wj ; ej) ~uj = (~wj ; ej) (for each j ∈ {1, . . . , k})
~u′j,j′ = (~wj ; vj,j′) (for each j ∈ {1, . . . , k} and j′ ∈ {1, . . . , n})

k ≥ 1 and the type of tk is order-1
Γ; y1 : o, . . . , yn : o ` ϕi t1 · · · tk .
(ĥϕi(~u′1,1, . . . , ~u′k,1) . . . , ĥϕi(~u′1,n, . . . , ~u′k,n);
gϕi,1(~u1, . . . , ~uk), . . . , gϕi,qi

(~u1, . . . , ~uk); hϕi
(~u1, . . . , ~uk))

(App1)

Γ; y1 : o, . . . , yn : o, yn+1 : o ` t . (v1, . . . , vn, vn+1;w1, . . . , wr; e)
Γ; y1 : o, . . . , yn : o ` λyn+1.t . (v1, . . . , vn; vn+1, w1, . . . , wr; e)

(Lam)

Rules (IVar) (for internal variables of type o) (Var) (for order-1 variables), and (Lam)
should be obvious from the intuition on the tuple and the translation of an environment.
Rules (App0) and (App1) are for applications of order-1 and order-2 functions respectively.
(Note however that in (App0), t1 itself may be an application of order-2 function, of the
form ϕ t1,1 · · · t1,k.) In (App0), note that t1t2 creates w1 copies of (the value of) t2, so that
the number of copies of yi can be calculated by vi + w1v

′
i, where vi and v′i are the numbers

of copies created by t1 and t2 respectively. Rule (App1) is based on the intuition explained
above about the translation of order-2 variables. Note that the same function ĥϕi

is used
for counting y1, . . . , yn; this is because ϕi does not know yj (in other words, ϕi cannot be
instantiated to a term containing yj as a free variable), so that the information for counting
yj can only be passed through arguments ~u′j,j′ .

It should be clear that if Γ; y1 :o, . . . , yn :o ` t . (v1, . . . , vn;w1, . . . , wr; e) then vj , wj′ , e ∈
ΛΣN

Γ\,o and the order of Γ\ → o is no greater than 2.

I Example 16. Let Γ = ϕ : (o→ o)→ o→ o, f : o→ o. Then, we have

Γ\ = gϕ,1, hϕ, ĥϕ : o2 → o, cf,1, df : o

and t := λy.ϕ(ϕf) y is transformed to

t\ = hϕ
(
gϕ,1(cf,1, df), hϕ(cf,1, df)

)
+ gϕ,1

(
gϕ,1(cf,1, df), hϕ(cf,1, df)

)
× 0

FSTTCS 2018

14:10 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

by the following derivation:

Γ; y : o ` f . (0; cf,1; df)
(Var)

Γ; y : o ` ϕf . (ĥϕ(cf,1, 0); gϕ,1(cf,1, df);hϕ(cf,1, df))
(App1)

Γ; y : o ` ϕ(ϕf) . (ĥϕ(~u′); gϕ,1(~u);hϕ(~u))
(App1)

Γ; y : o ` y . (1; ; 0)
(IVar)

Γ; y : o ` ϕ(ϕf) y . (ĥϕ(~u′) + gϕ,1(~u)× 1; ;hϕ(~u) + gϕ,1(~u)× 0)
(App0)

Γ;` λy.ϕ(ϕf) y . (; ĥϕ(~u′) + gϕ,1(~u)× 1;hϕ(~u) + gϕ,1(~u)× 0)
(Lam)

where ~u = gϕ,1(cf,1, df), hϕ(cf,1, df) and ~u′ = gϕ,1(cf,1, df), ĥϕ(cf,1, 0). The terms in the
bottom line of the derivation, ĥϕ(~u′) + gϕ,1(~u)× 1 and t\ = hϕ(~u) + gϕ,1(~u)× 0, have type o
under the environment Γ\, and eorder(λΓ\.t\) = order(Γ\ → o) = 2.

The next example is a slightly modified one involving an external variable x : o instead of
the internal variable y : o. We have

(Γ, x : o)\ = Γ\, dx : o

and t′ := ϕ(ϕf)x is transformed to

t′
\ = hϕ

(
gϕ,1(cf,1, df), hϕ(cf,1, df)

)
+ gϕ,1

(
gϕ,1(cf,1, df), hϕ(cf,1, df)

)
× dx

by the following derivation:

Γ, x : o;` f . (0; cf,1; df)
(Var)

Γ, x : o;` ϕf . (ĥϕ(cf,1, 0); gϕ,1(cf,1, df);hϕ(cf,1, df))
(App1)

Γ, x : o;` ϕ(ϕf) . (ĥϕ(~u′); gϕ,1(~u);hϕ(~u))
(App1)

Γ, x : o;` x . (0; ; dx)
(Var)

Γ, x : o;` ϕ(ϕf)x . (ĥϕ(~u′) + gϕ,1(~u)× 0; ;hϕ(~u) + gϕ,1(~u)× dx)
(App0)

where ~u and ~u′ are the same as above. J

Lemma 17 below says that the transformation preserves the meaning of ground terms.
Here we regard constants in Σ as variables of up to order 1, and we define a substitution
θafix

Σ by:

θafix
Σ := [

−−−→
1/ca,i

a∈Σ,i≤ar(a)
, 1/dafix ,

−−→
0/da

a∈Σ\{afix}
].

(Recall that afix ∈ Σ above is the constant arbitrarily fixed at the end of Section 4.1.)
I Lemma 17 (preservation of meaning). If Σ;` t . (; ; e), then we have #afix(t) = Jeθafix

Σ K.
The above lemma follows from a usual substitution lemma (on internal variables) and a

subject reduction property; see the full version for the proof.
The correctness of the transformation is stated as the following lemma.

I Lemma 18 (ordering reflection). Let: Σ be an alphabet; afix ∈ Σ; Γ be an environment of
the form

Γ = ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o

where order(κi) = 2 and qi ≥ 0; t, t′ ∈ Λ∅Γ,o; and

Γ;` t . (; ; e) Γ;` t′ . (; ; e′).

Then we have:

t �#,Σ,afix
Γ,o t′ if e �N

Γ\,o e
′.

The proof of the above lemma is given in the full version, where we use Lemma 17 and
substitution lemmas on external variables.

K. Asada and N. Kobayashi 14:11

4.3 �N on order-2 terms is a wqo

The main goal of this subsection is to prove the following lemma.

I Lemma 19 (�N
Γ,o on order-2 terms is wqo). For Γ = f1 : oq1 → o, . . . , fn : oqn → o, the

quasi-ordering �N
Γ,o on ΛΣN

Γ,o is a wqo.

Lemma 15 follows as a corollary of Lemma 19 above and Lemma 18 in the previous
subsection:

Proof of Lemma 15. Let t0, t1, . . . ∈ Λ∅Γ,o be an infinite sequence. We have the infinite
sequence e0, e1, . . . ∈ ΛΣN

Γ\,o such that Γ;` ti . (; ; ei), and by Lemma 18, ti �#,Σ,afix
Γ,o tj if

ei �N
Γ\,o ej . By Lemma 19, there indeed exist i, j (i < j) such that ei �N

Γ\,o ej . Thus, we
have ti �#,Σ,afix

Γ,o tj as required. J

To prove Lemma 19, we restrict (without loss of generality) ΛΣN
Γ,o to the set of β-normal

forms (which we call order-2 polynomials), generated by the following grammar:

P ::= 0 | 1 | P1 + P2 | P1 × P2 | f P1 · · · Pq

Here, in f P1 · · · Pq, f should have type oq → o. We write PN
2 for the set of all order-2

polynomials, and write PN
Γ,o for ΛΣN

Γ,o ∩ PN
2 . Note that the arity of f may be 0, so that, for

example, f1(f2 × (f2 + 1)) ∈ PN
f1:o→o,f2:o,o. Thus, for Lemma 19, the following suffices:

I Lemma 20 (�N
Γ,o on order-2 polynomials is wqo). For Γ = f1 : oq1 → o, . . . , fn : oqn → o,

the quasi-ordering �N
Γ,o on PN

Γ,o is a wqo.

The idea for proving this lemma is as follows:
An order-2 polynomial is regarded as a tree. Thus, by Kruskal’s tree theorem (Proposi-
tion 8), the set PN

Γ,o is well-quasi-ordered with respect to the homeomorphic embedding
�he,ΣN∪Γ

o . Unfortunately, however, the relation P1 �he,ΣN∪Γ
o P2 does not necessarily imply

�N
Γ,o; for example, if P1 = 1 and P2 = f1(1), then P1 �he,ΣN∪Γ

o P2 holds but P1 �N
Γ,o P2

does not, because f1 may be instantiated to λx.0. Similarly for P1 = f2 and P2 = f2 × 0.
To address the problem above, we classify the values of f ∈ PN

Γ,o (i.e. elements of ΛΣN
oq→o)

into a finite number of equivalence classes A(1), . . . , A(`), and use the classification to
further normalize order-2 polynomials, so that P1 �he,ΣN∪Γ

o P2 implies P1 �N
Γ,o P2 on

the normalized polynomials. For example, in the case of P1 = 1 and P2 = f1(1) above,
the values of f1 are classified to (i) those that use the argument, (ii) those that return a
positive constant without using the argument, and (iii) those that always return 0. We
can then normalize P2 = f1(1) to f1(1) (in case (i)), f1(0) (in case (ii)), and 0 (in case
(iii)), respectively. (In case (ii), any argument is replaced with 0, because the argument
is irrelevant.) Thus, we can indeed deduce P1 �N

Γ,o P2 from P1 �he,ΣN∪Γ
o P2 when the

value of f1 is restricted to just those in (i); and the same holds also for (ii) and (iii).
It follows that the restriction of the relation �N

Γ,o to each classification of the values of
f1, . . . , f` ∈ dom(Γ) is a wqo. Since the number of classifications is finite, by Dickson’s
theorem (recall the sentence below Proposition 8), �N

Γ,o (which is the intersection of the
restrictions of �N

Γ,o to the finite number of classifications) is also a wqo.

We first formalize and justify the reasoning in the last part (using Dickson’s theorem).

FSTTCS 2018

14:12 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

I Definition 21 (finite case analysis). For Γ = f1 : κ1, . . . , fn : κn, we call a finite case
analysis of Γ a family (Aji)i≤n,j∈Ji

of sets such that ΛΣN
κi

= ∪j≤Ji
Aji for each i ≤ n. For

(Ai)i≤n such that Ai ⊆ ΛΣN
κi

, we define a quasi-ordering �N
Γ,(Ai)i

on ΛΣN
Γ,o as follows:

t �N
Γ,(Ai)i

t′ ⇐⇒ ∀t1 ∈ A1, . . . , tn ∈ An. Jt[ti/fi]iK ≤ Jt′[ti/fi]iK

We often omit the subscript Γ of �N
Γ,(Ai)i

and write �N
(Ai)i

.

The following lemma follows immediately from the fact that the intersection of a finite
number of wqo’s is a wqo (which is in turn an immediate corollary of Dickson’s theorem).
(see the full version for omitted proofs in the rest of this section).

I Lemma 22. For Γ = f1 : κ1, . . . , fn : κn and a finite case analysis (Aji)i≤n,j∈Ji of Γ, if
�N

(Aji
i

)i

on ΛΣN
Γ,o is a wqo for any “case” (ji)i≤n ∈

∏
i≤n Ji, then so is �N on ΛΣN

Γ,o.

Thus, to prove Lemma 20, it remains to find an appropriate decomposition ΛΣN
κi

= ∪j≤JiA
j
i

(where κi is an order-1 type oq → o), and prove that �N
(Aji

i
)i

is a wqo.

Henceforth we identify an element of ΛΣN
oq→o with the corresponding element of the

polynomial semi-ring N[x1, . . . , xq]. For example, λx1.λx2.((λy.y)x1) + x2 × x2 is identified
with the polynomial x1 + x2

2 (which is obtained by normalizing and omitting λ-abstractions,
assuming a fixed ordering of the bound variables). For t ∈ ΛΣN

oq→o we write poly(t) for the
corresponding polynomial.

We define the equivalence relation ∼ as the least semi-ring congruence relation on
N[x1, . . . , xq] that satisfies (i) a ∼ 1 if a > 0 and (ii) xji ∼ xi if j > 0. For example,
2x2

1x2 + 3x1x
2
2 + x1 + 4 ∼ x1x2 + x1 + 1, and the quotient set N[x1]/ ∼ consists of:

[0]∼, [1]∼, [x1]∼, [x1 + 1]∼,

and N[x1, x2]/ ∼ consists of

[0]∼, [1]∼, [x1]∼, [x2]∼, [x1x2]∼, [1+x1]∼, [1+x2]∼, [1+x1x2]∼, [x1+x2]∼, . . . , [1+x1+x2+x1x2]∼.

In general, P(P([q])) (where [q] denotes {1, . . . , q} and P(X) denotes the powerset of X)
gives a complete representation of the quotient set N[x1, . . . , xq]/∼, i.e.,

N[x1, . . . , xq]/∼ =
{[∑
{p1<···<pr}∈Φ

xp1 · · ·xpr

]
∼

∣∣∣∣Φ ∈ P(P([q]))
}
.

Through poly : ΛΣN
oq→o → N[x1, . . . , xq], we can induce an equivalence relation on ΛΣN

oq→o
from ∼ on N[x1, . . . , xq], and let AΦ

q be the equivalence class corresponding to Φ, i.e.,

AΦ
q :=

{
t ∈ ΛΣN

oq→o

∣∣∣ poly(t) ∼
∑

{p1<···<pr}∈Φ

xp1 · · ·xpr

}
. (1)

Then we have ΛΣN
oq→o = tΦ∈P(P([q]))A

Φ
q . Now, given Γ = f1 : oq1 → o, . . . , fn : oqn → o, we

have obtained a finite case analysis of Γ as (AΦ
qi

)i≤n,Φ∈P(P([qi])); for (Φi)i ∈
∏
i≤n P(P([qi])),

we write �N
(Φi)i

for �N
(AΦi

qi
)i

. Thus it remains to show that �N
(Φi)i

on PN
Γ,o is a wqo for each

(Φi)i ∈
∏
i≤n P(P([qi])).

The following lemma justifies the partition of polynomials based on ∼.

I Lemma 23 (zero/positive). For any Γ = f1 : oq1 → o, . . . , fn : oqn → o, (Φi)i ∈∏
i≤n P(P([qi])), and Γ ` P : o, we have either P �N

(Φi)i
0 or 1 �N

(Φi)i
P .

K. Asada and N. Kobayashi 14:13

In other words, the lemma above says that, given an order-2 polynomial P , whether
P [t1/f1, . . . , tn/fn] evaluates to 0 or not is solely determined by the equivalence classes
t1, . . . , tn belong to.

I Example 24. Let Γ := f : o2 → o, and Φ := {∅, {1, 2}} ∈ P(P([2])), which denotes the
equivalence class [1 + x1x2]∼. We have 1 �N

Φ f P1 P2 for any P1 and P2, since any element of
the equivalence class is of the form a+ · · · for some natural number a ≥ 1.

Based on the property above, we define the rewriting relation −→(Φi)i
, to simplify order-2

polynomials by replacing (i) subterms that always evaluate to 0, and (ii) arguments of a
function that are irrelevant, with 0.

I Definition 25 (rewriting relation and (Φi)i-normal form). For Γ = f1 : oq1 → o, . . . , fn :
oqn → o and (Φi)i ∈

∏
i≤n P(P([qi])), we define the relation −→◦(Φi)i

by the following two
rules.

P −→◦(Φi)i
0 if P �N

(Φi)i
0 and P 6= 0.

f` P1 · · · Pq`
−→◦(Φi)i

f` P1 · · · Pk−1 0Pk+1 · · · Pq`
if (i) Pk 6= 0 and (ii) for all φ ∈ Φ`

such that k ∈ φ, there exists p ∈ φ such that Pp �N
(Φi)i

0.
We write P0 −→(Φi)i

P1 if Pi = E[P ′i] and P ′0 −→◦(Φi)i
P ′1 for some E, P ′0 and P ′1, where the

evaluation context E is defined by:

E ::= [] | E + P | P + E | E × P | P × E | f P1 . . . Pi−1E Pi+1 . . . Pq.

We call a normal form of −→(Φi)i
a (Φi)i-normal form.

Intuitively, the condition (ii) in the second rule says that whenever the k-th argument Pk
is used by f`, it occurs only in the form of Pk × Pp × · · · (up to equivalence) and Pp always
evaluates to 0; thus, the value of Pk is actually irrelevant.

I Example 26. We continue Example 24. Recall Γ = f : o2 → o and Φ = {∅, {1, 2}}.
Consider the order-2 polynomial f 1 (1× 0). It can be rewritten to f 1 0 by using the first
rule (and the evaluation context E = f 1 []). We can further apply the second rule to obtain
f 1 0 −→Φ f 0 0, because k = 1 satisfies the conditions ((i) and) (ii). In fact, if 1 ∈ φ ∈ Φ,
then φ = {1, 2}; hence, the required condition holds for p = 2. Note that f 0 0 is a Φ-normal
form; the first rule is not applicable, as f 0 0 6�N

Φ 0 by the discussion in Example 24.

The following lemma guarantees that any order-2 polynomial can be transformed to at
least one equivalent (Φi)i-normal form.

I Lemma 27 (existence of normal form).
1. −→(Φi)i

is strongly normalizing.
2. If P −→(Φi)i

P ′ then P ≈N
(Φi)i

P ′.

We can reduce the wqoness of �N
(Φi)i

to that of �he,ΣN∪Γ
o by the following lemma:

I Lemma 28. For Γ = f1 : oq1 → o, . . . , fn : oqn → o, (Φi)i ∈
∏
i≤n P(P([qi])), and

(Φi)i-normal forms Γ ` P ′, P : o, if P ′ �he,ΣN∪Γ
o P then P ′ �N

(Φi)i
P .

The proof is given by a simple calculation using Lemma 23 and that the given (Φi)i-normal
forms P ′, P do not satisfy the condition for the rewriting −→(Φi)i

.
Now we are ready to prove Lemma 20.

FSTTCS 2018

14:14 Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered

Proof of Lemma 20. By Lemma 22, it suffices to show that �N
(Φi)i

on PN
Γ,o is a wqo for each

(Φi)i ∈
∏
i≤n P(P([qi])). By the Kruskal’s tree theorem, �he,ΣN∪Γ

o on PN
Γ,o is a wqo, and

hence the sub-ordering �he,ΣN∪Γ
o on the subset

{P ∈ PN
Γ,o | P is a (Φi)i-normal form} ⊆ PN

Γ,o

is a wqo. Therefore by Lemma 28, �N
(Φi)i

on {P ∈ PN
Γ,o | P is a (Φi)i-normal form} is a wqo.

By Lemma 27, {P ∈ PN
Γ,o | P is a (Φi)i-normal form} and PN

Γ,o – both modulo βη-equivalence
– are isomorphic (with respect to �N

(Φi)i
and �N

(Φi)i
); hence �N

(Φi)i
on PN

Γ,o is a wqo. J

5 Conclusion

W have introduced the nAK-conjecture, a weaker version of the AK-conjecture in [2], and
proved it up to order 3. We have also proved a pumping lemma for higher-order grammars
(which is slightly weaker than the pumping lemma conjectured in [2]) under the assumption
that the nAK-conjecture holds. Obvious future work is to show the nAK-conjecture or the
original AK-conjecture for arbitrary orders. Finding other applications of the two conjectures
(cf. an application of Kruskal’s tree theorem to program termination [4]) is also left for future
work.

References
1 Kazuyuki Asada and Naoki Kobayashi. On Word and Frontier Languages of Unsafe

Higher-Order Grammars. In 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55 of LIPIcs, pages 111:1–111:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2016.

2 Kazuyuki Asada and Naoki Kobayashi. Pumping Lemma for Higher-order Languages. In
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 97:1–97:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.97.

3 Werner Damm. The IO- and OI-Hierarchies. Theor. Comput. Sci., 20:95–207, 1982.
4 Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,

17(3):279–301, 1982. doi:10.1016/0304-3975(82)90026-3.
5 Takeshi Hayashi. On Derivation Trees of Indexed Grammars –An Extension of the uvwxy-

Theorem–. Publ. RIMS, Kyoto Univ., pages 61–92, 1973.
6 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London

Mathematical Society, 3(1):326–336, 1952.
7 Joseph B. Kruskal. Well-Quasi-Ordering, The Tree Theorem, and Vazsonyi’s Conjecture.

Transactions of the American Mathematical Society, 95(2):210–225, 1960. URL: http://
www.jstor.org/stable/1993287.

8 Pawel Parys. Intersection Types and Counting. In Naoki Kobayashi, editor, Proceedings
Eighth Workshop on Intersection Types and Related Systems, ITRS 2016, Porto, Portugal,
26th June 2016., volume 242 of EPTCS, pages 48–63, 2016. doi:10.4204/EPTCS.242.6.

9 Pawel Parys. The Complexity of the Diagonal Problem for Recursion Schemes. In Satya V.
Lokam and R. Ramanujam, editors, 37th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2017, December 11-15,
2017, Kanpur, India, volume 93 of LIPIcs, pages 45:1–45:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.45.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.97
http://dx.doi.org/10.1016/0304-3975(82)90026-3
http://www.jstor.org/stable/1993287
http://www.jstor.org/stable/1993287
http://dx.doi.org/10.4204/EPTCS.242.6
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.45

K. Asada and N. Kobayashi 14:15

10 Mitchell Wand. An algebraic formulation of the Chomsky hierarchy. In Category Theory
Applied to Computation and Control, volume 25 of LNCS, pages 209–213. Springer, 1974.

11 Marek Zaionc. Word Operation Definable in the Typed lambda-Calculus. Theor. Comput.
Sci., 52:1–14, 1987. doi:10.1016/0304-3975(87)90077-6.

12 Marek Zaionc. On the “lambda”-definable tree operations. In Algebraic Logic and Universal
Algebra in Computer Science, Conference, Ames, Iowa, USA, June 1-4, 1988, Proceedings,
volume 425 of Lecture Notes in Computer Science, pages 279–292, 1990.

13 Marek Zaionc. Lambda Representation of Operations Between Different Term Algebras.
In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, 8th International
Workshop, CSL ’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers, volume
933 of Lecture Notes in Computer Science, pages 91–105. Springer, 1994. doi:10.1007/
BFb0022249.

FSTTCS 2018

http://dx.doi.org/10.1016/0304-3975(87)90077-6
http://dx.doi.org/10.1007/BFb0022249
http://dx.doi.org/10.1007/BFb0022249

	Introduction
	Preliminaries
	lambda-terms and higher-order languages
	Some quasi-orderings and their logical relation extension

	Numeric Pumping Lemma for Higher-order Tree Languages
	Numeric Version of Order-3 Kruskal's Tree Theorem
	Main theorem
	Transformation from order-3 terms to order-2 terms
	preceq^numsym on order-2 terms is a wqo

	Conclusion

