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Abstract
We study the w eak MSO logic extended by the unbounding quantifier (WMSO+U), expressing
the fact that there exist arbitrarily large finite sets satisfying a given property. We prove that it
is decidable whether the tree generated by a given higher-order recursion scheme satisfies a given
sentence of WMSO+U.
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1 Introduction

Higher-order recursion schemes (schemes in short) are used to faithfully represent the control
flow of programs in languages with higher-order functions [16, 22, 28, 24]. This formalism
is equivalent via direct translations to simply-typed λY -calculus [36]. Collapsible push-
down systems [20] and ordered tree-pushdown systems [13] are other equivalent formalisms.
Schemes cover some other models such as indexed grammars [1] and ordered multi-pushdown
automata [8].

In our setting, a scheme is a finite description of an infinite tree. A useful property of
schemes is that the MSO-model-checking problem for schemes is decidable. This means that
given a scheme G and an MSO sentence ϕ, it can be algorithmically decided whether the tree
generated by G satisfies ϕ. This result has several different proofs [28, 20, 25, 34], and also
some extensions like global model checking [11], logical reflection [9], effective selection [12],
existence of λ-calculus model [35]. When the property of trees is given as an automaton, not
as a formula, the model-checking problem can be solved efficiently, in the sense that there
exist implementations working in a reasonable running time [24, 23, 10, 32, 27] (most tools
cover only a fragment of MSO, though).

Recently, an interest arisen in model-checking trees generated by schemes against prop-
erties not expressible in the MSO logic. These are properties expressing boundedness and
unboundedness of some quantities. More precisely, it was shown that the diagonal problem
for schemes is decidable [19, 14, 31]. This problem asks, given a scheme G and a set of letters
A, whether for every n ∈ N there exists a path in the tree generated by G such that every
letter from A appears on this path at least n times. This result turns out to be interesting,
because it entails other decidability results for recursion schemes, concerning in particular
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53:2 Recursion Schemes and the WMSO+U Logic

computability of the downward closure of recognized languages [38], and the problem of
separability by piecewise testable languages [15].

In this paper we show a result of a more general style. Instead of considering a particular
property, like in the diagonal problem, we consider a logic capable to express properties
talking about boundedness. More precisely, we choose the WMSO+U logic. This logic
extends WMSO (a fragment of MSO in which one can quantify only over finite sets) by the
unbounding quantifier, U [3]. A formula using this quantifier, UX.ϕ, says that ϕ holds for
arbitrarily large finite sets X. The WMSO+U logic was widely considered in the context of
infinite words [4] and infinite trees [18, 7, 5].

The goal of this paper is to prove the following theorem.

I Theorem 1. It is decidable whether the tree generated by a given scheme satisfies a given
WMSO+U sentence.

In our solution, we depend on several earlier results. First, we translate WMSO+U
formulae to an equivalent automata model using the notion of logical types (aka. composition
method) following a long series of previous work (some selection: [17, 37, 26, 2, 18, 30]).
Second, we use the logical-reflection property of schemes [9]. It says that given a scheme
G and an MSO sentence ϕ one can construct a scheme Gϕ generating the same tree as G,
where in every node it is additionally written whether ϕ is satisfied in the subtree starting in
this node. Third, from our previous work on the diagonal problem [29, 31], we deduce an
analogous property for the diagonal problem, which we call diagonal reflection (Theorem 6):
given a scheme G we can construct a scheme Gdiag generating the same tree as G, where every
node is additionally annotated by the solution of the diagonal problem in the subtree starting
in this node. We believe that Theorem 6 is a contribution of independent interest. Finally,
we use the fact that schemes can be composed with finite tree transducers transforming the
generated trees; this follows directly from the equivalence between schemes and collapsible
pushdown systems [20].

We remark that the model-checking problem for the full MSO logic (equipped with
quantification over infinite sets) combined with the U quantifier is undecidable already over
the infinite word without labels [6], so even more over all fancy trees that can be generated by
higher-order recursion schemes. For this reason it is necessary to restrict the quantification
to finite sets.

Our paper is structured as follows. In Section 2 we introduce all necessary definitions. In
Section 3 we show how to translate WMSO+U sentences to automata. In Section 4 we give
a theorem concerning diagonal reflection. Next, in Section 5, we finish the proof of the main
theorem. We conclude in Section 6 by listing some possible extensions of our results.

2 Preliminaries

The powerset of a set X is denoted P(X). For a relation r, we write r∗ for the reflexive
transitive closure of r. When f is a function, by f [x 7→ y] we mean the function that maps x
to y and every other z ∈ dom(f) to f(z).

Infinitary λ-calculus. We consider infinitary, simply-typed λ-calculus. In particular, each
λ-term has an associated sort (aka. simple type). The set of sorts is constructed from a
unique ground sort o using a binary operation →; namely o is a sort, and if α and β are
sorts, so is α→β. By convention, → associates to the right, that is, α→β→γ is understood
as α→(β→γ).
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While defining λ-terms we assume an infinite set of letters Σ (we use unranked letters; this
subsumes the setting of ranked letters), and a set of variables V = {xα, yβ , zγ} containing
infinitely many variables of every sort (sort of a variable is written in superscript). Infinitary
λ-terms (or just λ-terms) are defined by coinduction, according to the following rules:

node constructor—if a ∈ Σ, and Ko
1 , . . . ,K

o
r are λ-terms, then (a〈Ko

1 , . . . ,K
o
r 〉)o is a

λ-term,
variable—every variable xα ∈ V is a λ-term,
application—if Kα→β and Lα are λ-terms, then (Kα→β Lα)β is a λ-term, and
λ-binder—if Kβ is a λ-term and xα is a variable, then (λxα.Kβ)α→β is a λ-term.

We naturally identify λ-terms differing only in names of bound variables. We often omit the
sort annotations of λ-terms, but we keep in mind that every λ-term (and every variable) has
a fixed sort. Free variables and subterms of a λ-term, as well as β-reductions, are defined
as usually. A λ-term K is closed if it has no free variables. We restrict ourselves to those
λ-terms for which the set of sorts of all subterms is finite.

Trees; Böhm Trees. A tree is defined as a λ-term that is built using only node constructors,
that is, not using variables, applications, nor λ-binders. For a tree T = a〈T1, . . . , Tr〉, its set
of nodes is defined as the smallest set such that

ε is a node of T , labeled by a, and
if v is a node of Ti for some i ∈ {1, . . . , r}, labeled by b, then iv is a node of T , also
labeled by b.

A node v is the i-th child of u if v = ui. We say that two trees T, T ′ are of the same shape if
they have the same nodes. By T �v we denote the subtree of T starting in the node v, defined
as one expects. For a (usually finite) subset Σ0 of Σ, and for rmax ∈ N, a (Σ0, rmax)-tree
is a tree in which all node labels belong to Σ0, and in which every node has at most rmax
children.

We consider Böhm trees only for closed λ-terms of sort o. For such a λ-term K, its Böhm
tree is constructed by coinduction, as follows: if there is a sequence of β-reductions fromK to a
λ-term of the form a〈K1, . . . ,Kr〉, and T1, . . . , Tr are Böhm trees of K1, . . . ,Kr, respectively,
then a〈T1, . . . , Tr〉 is a Böhm tree of K; if there is no such sequence of β-reductions from K,
then ω〈〉 is a Böhm tree of K (where ω ∈ Σ is a fixed letter). It is folklore that every closed
λ-term of sort o has exactly one Böhm tree (the order in which β-reductions are performed
does not matter); this tree is denoted by BT (K).

A closed λ-term K of sort o is called fully convergent if every node of BT (K) is explicitly
created by a node constructor from K (e.g., ω〈〉 is fully convergent, while K = (λxo.x)K
is not). More formally: we consider the λ-term K−ω obtained from K by replacing ω with
some other letter ω′, and we say that K is fully convergent if in BT(K−ω) there are no
ω-labeled nodes.

Higher-Order Recursion Schemes. Our definition of schemes is less restrictive than usually,
as we see them only as finite representations of infinite λ-terms. Thus a higher-order recursion
scheme (or just a scheme) is a triple G = (N ,R, No

0 ), where N ⊆ V is a finite set of
nonterminals, R is a function that maps every nonterminal N ∈ N to a finite λ-term whose
all free variables are contained in N and whose sort equals the sort of N , and No

0 ∈ N is a
starting nonterminal, being of sort o. We assume that elements of N are not used as bound
variables, and that R(N) is not a nonterminal for any N ∈ N .

For a scheme G = (N ,R, N0), and for a λ-term K whose free variables are contained in
N , we define the infinitary λ-term generated by G from K, denoted ΛG(K), by coinduction:

STACS 2018



53:4 Recursion Schemes and the WMSO+U Logic

to obtain ΛG(K) we replace in K every nonterminal N ∈ N with ΛG(R(N)). Observe that
ΛG(K) is a closed λ-term of the same sort as K. The infinitary λ-term generated by G,
denoted Λ(G), equals ΛG(N0).

By the tree generated by G we mean BT(Λ(G)). We write ΣG for the finite subset of
Σ containing ω and letters used in node constructors appearing in G, and rmax(G) for the
maximal arity of node constructors appearing in G. Clearly BT (Λ(G)) is a (ΣG , rmax(G))-tree.

In our constructions it is convenient to consider only schemes generating fully-convergent
λ-terms, which is possible due to the following standard result.

I Fact 2 ([33, page 14]). For every scheme G we can construct a scheme G′ generating the
same tree as G, and such that Λ(G′) is fully convergent.

I Example. Consider the scheme G1 = ({Mo,No→o},R,M), where

R(N) = λxo.a〈x,N (b〈x〉)〉 , and R(M) = N (c〈〉) .

We obtain Λ(G1) = K (c〈〉), where K is the unique λ-term such that K = λxo.a〈x,K (b〈x〉)〉.
The tree generated by G1 equals a〈T0, a〈T1, a〈T2, . . .〉〉〉, where T0 = c〈〉 and Ti = b〈Ti−1〉 for
all i ≥ 1.

WMSO+U. For technical convenience, we use a variant of WMSO+U in which there are no
first-order variables. It is easy to translate a formula from any standard syntax of WMSO+U
to ours (at least when the maximal arity of considered trees is fixed). In the syntax of
WMSO+U we have the following constructions:

ϕ ::= a(X) | X 'i Y | X ⊆ Y | ϕ1 ∧ ϕ2 | ¬ϕ′ | ∃finX.ϕ
′ | UX.ϕ′ where a ∈ Σ, i ∈ N+.

We evaluate formulae of WMSO+U in Σ-labeled trees. Set variables are interpreted as finite
sets of nodes, and the semantics of formulae is defined as follows:

a(X) holds when every node in X is labeled by a,
X 'i Y holds when both X and Y are singletons, and the unique node in Y is the i-th
child of the unique node in X,
X ⊆ Y , ϕ1 ∧ ϕ2, and ¬ϕ′ are defined as expected,
∃finX.ϕ

′ holds when ϕ′ holds for some finite set of nodes X, and
UX.ϕ′ holds when for every n ∈ N, ϕ′ holds for some finite set of nodes X of cardinality
at least n.

3 Nested U-Prefix Automata

In this section we give a definition of nested U-prefix automata, a formalism equivalent to
the WMSO+U logic. A U-prefix automaton is a pair A = (Q,Qimp,∆), where Q is a finite
set of states, Qimp ⊆ Q is a set of important states, and ∆ ⊆ Q× Σ× (Q ∪ {>})∗ is a finite
transition relation (we assume > 6∈ Q). A run of A on a tree T is a mapping ρ from the set
of nodes of T to Q ∪ {>} such that

there are only finitely many nodes v such that ρ(v) ∈ Q, and
for every node v of T , with label a and r children, it holds that either ρ(v) = > = ρ(v1) =
· · · = ρ(vr) or (ρ(v), a, ρ(v1), . . . , ρ(vr)) ∈ ∆.

We use U-prefix automata as transducers, relabeling nodes of T : we define A(T ) to be
the tree of the same shape as T , and such that its every node v is labeled by a function
fv : Q→ {0, 1, 2}, which assigns to every state q ∈ Q:
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2, if for every n ∈ N there is a run ρn of A on T �v that assigns q to the root of T �v, and
such that for at least n nodes w it holds that ρn(w) ∈ Qimp;
1, if the above does not hold, but there is a run of A on T �v that assigns q to the root of
T �v;
0, if none of the above holds.

By the output alphabet of A we mean the set of functions Σout(A) = {0, 1, 2}Q; we assume
that {0, 1, 2}Q ⊆ Σ.

A nested U-prefix automaton is a sequence A = A1 ◦ · · · ◦ Ak of U-prefix automata, where
k ≥ 1. We define A(T ) to be Ak(. . . (A1(T )) . . . ). The output alphabet of A, denoted
Σout(A), equals Σout(Ak). The key property is that these automata can check properties
expressed in WMSO+U (actually, they are equivalent to WMSO+U, but we need only the
one direction here).

I Lemma 3. Let Σ0 ⊆ Σ be a finite fragment of the alphabet, and let rmax ∈ N. Then for
every WMSO+U sentence ϕ we can construct a nested U-prefix automaton A, and a subset
ΣF ⊆ Σout(A) such that for every (Σ0, rmax)-tree T , it holds that T satisfies ϕ if and only if
the root of A(T ) is labeled by a letter in ΣF.

We remark that Bojańczyk and Toruńczyk [7] introduce another model of automata
equivalent to WMSO+U: nested limsup automata. A common property of these two models
is that both of them are nested, but the components are of different form.

Recall that our aim is to evaluate ϕ in a tree T generated by a particular recursion scheme
G, so the restriction to (Σ0, rmax)-trees is not harmful: as (Σ0, rmax) we are going to take
(ΣG , rmax(G)).

We now come to the proof of Lemma 3. We notice that due to the nested structure, our
automata are quite close to the logic. Nondeterminism on particular levels of the automaton
may realize the choices done by particular quantifiers of the formula. Moreover, in effect of
applying an automaton we check whether something is unbounded, which corresponds to the
U quantifiers. As states of the automaton we will take phenotypes (aka. logical types), which
are defined next.

Fix some finite set F of variables, such that all variables appearing in WMSO+U formulae
under consideration come from this set. Let ϕ be a formula of WMSO+U, let T be a tree,
and let ν be a valuation assigning finite sets of nodes of T to variables from F . We define the
ϕ-phenotype of T under valuation ν, denoted [T ]νϕ, by induction on the size of ϕ as follows:

if ϕ is of the form a(X) (for some symbol a ∈ Σ) or X ⊆ Y then [T ]νϕ is the logical value
of ϕ in T, ν, that is, tt if T, ν |= ϕ and ff otherwise,
if ϕ is of the form X 'i Y , then [T ]νϕ equals:

tt if T, ν |= ϕ,
empty if ν(X) = ν(Y ) = ∅,
root if ν(X) = ∅ and ν(Y ) = {ε}, and
ff otherwise,

if ϕ = (ψ1 ∧ ψ2), then [T ]νϕ = ([T ]νψ1
, [T ]νψ2

),
if ϕ = (¬ψ), then [T ]νϕ = [T ]νψ, and
if ϕ = ∃finX.ψ or ϕ = UX.ψ, then

[T ]νϕ = ({σ | ∃XT . [T ]ν[X 7→XT ]
ψ = σ}, {σ | ∀n. ∃XT . [T ]ν[X 7→XT ]

ψ = σ ∧ |XT | ≥ n}) ,

where XT ranges over finite sets of nodes of T and n ranges over N.

STACS 2018



53:6 Recursion Schemes and the WMSO+U Logic

For each ϕ, let Phtϕ denote the set of all potential ϕ-phenotypes. Namely, Phtϕ = {tt,ff}
in the first case, Phtϕ = {tt, empty, root,ff} in the second case, Phtϕ = Phtψ1 ×Phtψ2 in the
third case, Phtϕ = Phtψ in the fourth case, and Phtϕ = (P(Phtψ))2 in the last case.

We immediately see two facts. First, Phtϕ is finite for every ϕ. Second, the fact whether ϕ
holds in T, ν is determined by [T ]νϕ. This means that there is a function tvϕ : Phtϕ → {tt,ff}
such that tvϕ([T ]νϕ) = tt if and only if T, ν |= ϕ.

Next, we observe that phenotypes behave in a compositional way, as formalized below.
Here for a valuation ν and a node v, by ν�v we mean the valuation that restricts ν to the
subtree starting at v, that is, maps every variable X ∈ F to {w | vw ∈ ν(X)}.

I Lemma 4 (cf. [18, 30]). For every letter a ∈ Σ, every r ∈ N, and every formula ϕ, one
can compute a function Compa,r,ϕ : P(F)× (Phtϕ)r → Phtϕ such that for every tree T whose
root has label a and r children, and for every valuation ν,

[T ]νϕ = Compa,r,ϕ({X ∈ F | ε ∈ ν(X)}, [T �1]ν�1
ϕ , . . . , [T �r]ν�rϕ ) .

Proof. We proceed by induction on the size of ϕ.
When ϕ is of the form b(X) orX ⊆ Y , then we see that ϕ holds in T, ν if and only if it holds

in every subtree T �i, ν�i and in the root of T . Thus for ϕ = b(X) as Compa,r,ϕ(R, τ1, . . . , τr)
we take tt when τi = tt for all i ∈ {1, . . . , r} and either a = b or X 6∈ R. For ϕ = (X ⊆ Y )
the last part of the condition is replaced by “if X ∈ R then Y ∈ R”.

Next, suppose that ϕ = (X 'k Y ). Then as Compa,r,ϕ(R, τ1, . . . , τr) we take
tt if τj = tt for some j ∈ {1, . . . , r}, and τi = empty for all i ∈ {1, . . . , r}\{j}, and X 6∈ R,
and Y 6∈ R,
tt also if τk = root, and τi = empty for all i ∈ {1, . . . , r} \ {k}, and X ∈ R, and Y 6∈ R,
empty if τi = empty for all i ∈ {1, . . . , r}, and X 6∈ R, and Y 6∈ R,
root if τi = empty for all i ∈ {1, . . . , r}, and X 6∈ R, and Y ∈ R, and
ff otherwise.

By comparing this definition with the definition of the phenotype we immediately see that
the thesis is satisfied.

When ϕ = (¬ψ), we simply take Compa,r,ϕ = Compa,r,ψ, and when ϕ = (ψ1 ∧ ψ2), as
Compa,r,ϕ(R, (τ1

1 , τ
2
1 ), . . . , (τ1

r , τ
2
r )) we take the pair of Compa,r,ψi(R, τ

i
1, . . . , τ

i
r) for i ∈ {1, 2}.

Finally, suppose that ϕ = ∃finX.ψ or ϕ = UX.ψ. Let A be the set of tuples (σ1, . . . , σr) ∈
τ1×· · ·×τr, and let B be the set of tuples (σ1, . . . , σr) such that σj ∈ ρj for some j ∈ {1, . . . , r}
and σi ∈ τi for all i ∈ {1, . . . , r} \ {j}. As Compa,r,ϕ(R, (τ1, ρ1), . . . , (τr, ρr)) we take

({Compa,r,ψ(R ∪ {X}, σ1, . . . , σr),Compa,r,ψ(R \ {X}, σ1, . . . , σr) | (σ1, . . . , σr) ∈ A},
{Compa,r,ψ(R ∪ {X}, σ1, . . . , σr),Compa,r,ψ(R \ {X}, σ1, . . . , σr) | (σ1, . . . , σr) ∈ B}) .

The two possibilities, R ∪ {X} and R \ {X}, correspond to the fact that when quantifying
over X, the root of T may be either taken to X or not. The second coordinate is computed
correctly due to the pigeonhole principle: if for every n we have a set XT

n of cardinality at
least n (satisfying some property), then we can choose an infinite subsequence of these sets
such that either the root belongs to all of them or to none of them, and one can choose some
j ∈ {1, . . . , r} such that the sets contain unboundedly many descendants of j. J

We now concentrate on phenotypes under the valuation ν∅ that maps every variable to
the empty set.

I Lemma 5. Let Σ0 ⊆ Σ be a finite fragment of the alphabet, and let rmax ∈ N. Then for
every WMSO+U formula ϕ we can construct a nested U-prefix automaton A, and a function
f : Σout(A) → Phtϕ such that for every (Σ0, rmax)-tree T the root of A(T ) is labeled by a
letter η such that f(η) = [T ]ν∅ϕ .
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Proof. Induction on the size of ϕ. Since all variables are mapped to the empty set, if ϕ is
of the form a(X) or X ⊆ Y , then the ϕ-phenotype of every tree is tt. Thus every A works
fine, only f has to map whole its output alphabet to tt. Similarly, if ϕ = (X 'i Y ), the
ϕ-phenotype is always empty. For ϕ = (¬ψ) the situation is also trivial: we can directly use
the induction assumption since [T ]ν∅ϕ = [T ]ν∅ψ .

Suppose that ϕ = (ψ1 ∧ ψ2). Then from the induction assumption we have automata B
and C (together with functions g and h) computing ψ1-phenotypes and ψ2-phenotypes. It is
a routine to alter B so that from the label of every node v in the output tree B(T ) one can
read the original label of v from T (this amounts to adding Σ0 to the state set of every layer,
together with appropriate transitions). We also alter C so that it reads the output alphabet
of B instead Σ0; it bases its operation on the original labels from T that can be recovered
from the letters, and it copies the information about ψ1-phenotypes, so that it can be read
at the end. After these modifications, we take A = B ◦ C. Then from the label of the root of
A(T ) one can read both [T ]ν∅ψ1

(copied from the output of B) and [T ]ν∅ψ2
(calculated by C), so

[T ]ν∅ϕ can be determined.
Finally, suppose that ϕ = ∃finX.ψ or ϕ = UX.ψ. By the induction assumption we have

an automaton B and a function g such that for every node v of T , the root of B(T �v) is
labeled by a letter ηv such that g(ηv) = [T �v]ν∅ψ . As before, we can also assume that there is
a function h such that additionally h(ηv) is the original label of v in T . Recall that B(T ) has
the same shape as T , and actually (B(T ))�v = B(T �v) for every node v. We construct a new
layer A′, which calculates ϕ-phenotypes basing on ψ-phenotypes, and we take A = B ◦ A′.
As the state set of A′ we take Q = {0, 1} × Phtψ; states from {1} × Phtψ are considered
as important. Transitions are determined by the Comp predicate from Lemma 4. More
precisely, for every r ≤ rmax, every η ∈ Σout(B), and all ((i1, σ1), . . . , (ir, σr)) ∈ Qr we have
transitions

((0,Comph(η),r,ψ(∅, σ1, . . . , σr)), η, (i1, σ1), . . . , (ir, σr)) , and

((1,Comph(η),r,ψ({X}, σ1, . . . , σr)), η, (i1, σ1), . . . , (ir, σr)) .

Moreover, we have transitions that read the ψ-phenotype from the label:

((0, g(η)), η,>, . . . ,>︸ ︷︷ ︸
r

) for r ≤ rmax.

We notice that there is a direct correspondence between runs of A′ and choices of a set of
nodes XT to which the variable X is mapped. The first coordinate of the state is set to 1
in nodes chosen to the set XT . The second coordinate contains the ψ-phenotype under the
valuation mapping X to XT and every other variable to the empty set. In some nodes below
the chosen set XT we use the transitions of the second kind, reading the ψ-phenotype from
the label; it does not matter in which nodes this is done, as everywhere a correct ψ-phenotype
is written. The fact that we quantify only over finite sets XT corresponds to the fact that the
run of A′ can assign non-> states only to a finite prefix of the tree. Moreover, the cardinality
of XT is reflected by the number of important states assigned by a run. It follows that for
every σ ∈ Phtψ,

there exists a finite set XT of nodes of T such that [T ]ν∅[X 7→X
T ]

ψ = σ if and only if for
some i ∈ {0, 1} there is a run of A′ on B(T ) that assigns (i, σ) to the root, and
for every n ∈ N there exists a finite set XT

n of nodes of T such that [T ]ν∅[X 7→X
T
n ]

ψ = σ and
|XT

n | ≥ n if and only if for some i ∈ {0, 1} and for every n ∈ N there is a run ρn of A′ on
B(T ) that assigns (i, σ) to the root, and such that ρn assigns an important state to at
least n nodes.

Thus looking at the root’s label in A(T ) we can determine [T ]ν∅ϕ . J
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53:8 Recursion Schemes and the WMSO+U Logic

Now the proof of Lemma 3 follows easily. Indeed, when ϕ is a sentence (has no free
variables), [T ]ν∅ϕ determines whether ϕ holds in T . Thus it is enough to take the automaton A
constructed in Lemma 5, and replace the function f by the set ΣF = {η ∈ Σout(A) | tvϕ(f(η))}.

4 Diagonal Reflection

The goal of this section is to justify the property of diagonal reflection (Theorem 6).
By #a(U) we denote the number of a-labeled nodes in a (finite) tree U . For a set of

(finite) trees L and a set of symbols A, we define a predicate DiagA(L), which holds if for
every n ∈ N there is some Un ∈ L such that for all a ∈ A it holds that #a(Un) ≥ n.

Originally, in the diagonal problem we consider nondeterministic higher-order recursion
schemes, which instead of generating a single infinite tree, recognize a set of finite trees. We
use here an equivalent formulation, in which the set of finite trees is encoded in a single
infinite tree. To this end, we use a special letter nd ∈ Σ, denoting a nondeterministic
choice. We write T →nd U if U is obtained from T by choosing some nd-labeled node u not
having any nd-labeled ancestors, and some its child v, and attaching T �v in place of T �u. In
other words, →nd is the smallest relation such that nd〈T1, . . . , Tr〉 →nd Tj for j ∈ {1, . . . , r},
and if Tj →nd T

′
j for some j ∈ {1, . . . , r}, and Ti = T ′i for all i ∈ {1, . . . , r} \ {j}, then

a〈T1, . . . , Tr〉 →nd a〈T ′1, . . . , T ′r〉. For a tree T , L(T ) is the set of all finite trees U such that
#nd(U) = 0 and T →∗nd U .

I Theorem 6 (diagonal reflection). For every scheme G generating a tree T one can construct
a scheme Gdiag that generates a tree of the same shape as T , and such that its every node v is
labeled by a pair (a,D), where a is the label of v in T , and D = {A ⊆ ΣG | DiagA(L(T �v))}.

While proving this theorem, we depend on our previous work on the diagonal problem [31].
We have developed there a type system, in which for a closed λ-term K we derive type
judgments of the form `m,A K : τ̂ . c, where

m is a natural number,
A ⊆ Σ is the set of types for which we want to solve the diagonal problem (originally it
was not written in the type judgment, but anyway the type system depends on this set),
τ̂ comes from a finite set T T αm,A, depending on m, on A, and on the sort α of K,
c is a function from A to N.

We refer to type judgments only for closed λ-term, but we remark that they were defined
also for λ-terms with free variables (and then one writes a type environment to the left of `).
While working with some scheme G, as K we only take λ-terms in which all variables have
the same sort as some variables appearing in Λ(G). Under this assumption, it is enough to
consider as m only one fixed value, denoted mG (equal to the so-called order of G).

Having in mind some scheme G, we define the value of a closed λ-term K, denoted JKK,
as the pair consisting of:

the set of pairs (A, τ̂) such that A ⊆ ΣG and there exists c : A→ N for which `mG ,A K : τ̂ .c
can be derived, and
the set of pairs (A, τ̂) such that A ⊆ ΣG and for every n ∈ N there exists cn : A → N
satisfying cn(a) ≥ n for all a ∈ A, and for which `mG ,A K : τ̂ . cn can be derived.

When K is of sort α, JKK belongs to the finite set Sα = (P(
⋃
A⊆ΣG{A} × T T

α
mG ,A))2.

The considered type system is compositional, in the sense that knowing what can be
derived for closed λ-terms Kα→β and Lα, we can determine what can be derived for K L.
In other words, we can define a composition operation “·” on values, going from Sα→β × Sα
to Sβ and such that JK LK = JKK · JLK for every closed λ-term K L.
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We now extend the definition of the value to λ-terms K that are not closed. To this
end, we need a valuation ν mapping some variables xα to elements of Sα, which is defined
at least for all free variables of K. Then the value of K (with respect to ν), denoted JKKν ,
is defined as Jλx1. · · · .λxk.KK · ν(x1) · . . . · ν(xk), where x1, . . . , xk are free variables of K,
listed according to some fixed order.

Using an algorithm from [31] we can compute Jλx1. · · · .λxk.KK for every subterm K of
Λ(G), where, as above, x1, . . . , xk are free variables of K (recall that Λ(G) has finitely many
subterms).

Having the above properties in hand, it is easy to deduce the following lemma.

I Lemma 7. For every scheme G = (N ,R, N0) generating a tree T one can construct a
scheme G′ that generates a tree of the same shape as T , and such that its every node v is
labeled by a pair (a, JKK), where K is some λ-term (closed, of sort o) such that BT (K) = T �v.

Proof. This lemma is proven by literally repeating the construction of Salvati and Walu-
kiewicz [33, Section 5]. We recall it here for completeness. Without loss of generality we
assume that Λ(G) is fully convergent (cf. Fact 2).

For every sort α, let [α] = o→ . . .→o→︸ ︷︷ ︸
|Sα|

o. When τ1, . . . , τ|Sα| are all elements of Sα, listed

in some fixed order, we let (τi)λ = λxo
1. · · · .λxo

|Sα|.xi for i ∈ {1, . . . , |Sα|}; these λ-terms are
of sort [α]. Given a λ-term K of sort [α], and K1, . . . ,K|Sα| of sort β1→ . . .→βs→o, we
write caseK {τi  Ki}τi∈Sα for

λyβ1
1 . · · · .λyβss .K (K1 y1 . . . ys) . . . (K|Sα| y1 . . . ys) .

We notice that for K = (τj)λ this λ-term β-reduces to λyβ1
1 . · · · .λyβss .Kj y1 . . . ys, which in

turn is η-equivalent to Kj .
We transform every finite λ-term K of sort α to a λ-term LKMν of sort α•, where sorts

α• are defined by induction: (α→β)• = α•→[α]→β• and o• = o. The translation is defined
as follows:

La〈K1, . . . ,Kr〉Mν = (a, JΛG(a〈K1, . . . ,Kr〉)Kν)〈LK1Mν , . . . , LKrMν〉 ,

LxαMν = xα
•
,

LK LMν = LKMν LLMν (JΛG(L)Kν)λ ,

Lλxα.KMν = λxα
•
.λy[α].case y {τ  LKMν[xα 7→τ ]}τ∈Sα .

In the above translation nonterminals are treated as any other variables.
To the resulting scheme G′ we take a nonterminal Nα• for every nonterminal Nα of G,

and we define R′(Nα•) = LR(Nα)M∅, where ∅ is the valuation with empty domain. It is not
difficult to see that such a scheme G′ has the expected properties. We remark that when in
effect of performing β-reductions one obtains a λ-term K = (a, τ)〈K1, . . . ,Kr〉, then τ = JLK
for some λ-term L β-equivalent to K, but not necessarily for L = K (it is not clear from [31]
whether for β-equivalent λ-terms K and L it holds that JKK = JLK). This is enough for us,
as β-equivalent λ-terms have the same Böhm tree. J

It was shown [31, Theorem 3] that, for a closed λ-term K of sort o, the set D = {A ⊆
ΣG | DiagA(L(BT (K)))} can be computed out of the value JKK. We can thus easily convert
the scheme G′ from Lemma 7 to a scheme Gdiag as needed in Theorem 6. Indeed, it is enough
to replace, in every node constructor appearing in G′, the pair (a, τ) by the pair (a,D) for
the set D computed out of the value τ .

STACS 2018
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5 Proof of the Main Theorem

In this section we prove our main theorem—Theorem 1. To this end, we have to recall two
properties of recursion schemes: logical reflection, and closure under composition with finite
tree transducers.

By MSO we mean the logic defined similarly to WMSO+U, but where there are no U
quantifiers, and where existential quantifiers range over infinite sets. The MSO logic over
infinite trees is equivalent to µ-calculus and to nondeterministic parity automata.

I Fact 8 ([9, Theorem 2(ii)]). For every scheme G generating a tree T and every MSO
sentence ϕ one can construct a scheme Gϕ that generates a tree of the same shape as T , and
such that its every node v is labeled by a pair (a, b), where a is the label of v in T , and b is tt
if ϕ is satisfied in T �v and ff otherwise.

A (deterministic, top-down) finite tree transducer is a tuple T = (Q, q0,Σ0, rmax, δ),
where Q is a finite set of states, q0 ∈ Q is an initial state, Σ0 ⊆ Σ is a finite alphabet,
rmax is the maximal arity of considered trees, and δ is a transition function mapping
Q× Σ0 × {0, . . . , rmax} to finite λ-terms. A triple (q, a, r) should be mapped by δ to a term
that uses only node constructors and variables of the form xi,p, where i ∈ {1, . . . , r} and
p ∈ Q (applications and λ-binders are not allowed); at least one node constructor has to be
used (the whole δ(q, a, r) cannot be equal to a variable).

For a (Σ0, rmax)-tree T and a state q ∈ Q, we define Tq(T ) by coinduction, as follows: if
T = a〈T1, . . . , Tr〉, then Tq(T ) is the tree obtained from δ(q, a, r) by substituting Tp(Ti) for
the variable xi,p, for all i ∈ {1, . . . , r} and p ∈ Q. In the root we start from the initial state,
that is, we define T (T ) = Tq0(T ). We have the following fact.

I Fact 9. For every scheme G generating a tree T , and for every finite tree transducer T
one can construct a scheme GT that generates the tree T (T ).

This fact follows from the equivalence between schemes and collapsible pushdown sys-
tems [20], as it is straightforward to compose a collapsible pushdown system with T (where
due to Fact 2 we can assume that Λ(G) is fully convergent, i.e., that every node of T is
explicitly generated by the collapsible pushdown system).

Having Facts 8 and 9, we now come to our main technical lemma.

I Lemma 10. For every scheme G generating a tree T and every U-prefix automaton A one
can construct a scheme GA that generates the tree A(T ).

It is easy to deduce Theorem 1 out of Lemma 10. Indeed, consider a WMSO+U sentence
ϕ and a scheme G0 generating a tree T0. By Lemma 3, ϕ is equivalent to a nested U-prefix
automaton A = A1 ◦ · · · ◦ Ak, together with an accepting set ΣF. By consecutively applying
Lemma 10 for i = 1, . . . , k, we combine Gi−1 with Ai, obtaining a scheme Gi that generates
the tree Ti = Ai(Ti−1). The root of Tk = A(T0) has label in ΣF if and only if ϕ is satisfied
in T0. Surely this label can be read: having Gk, we simply start generating the tree Tk, until
its root is generated (by Fact 2, we can assume that Λ(Gk) is fully convergent).

We now come to the proof of Lemma 10. We are thus given a U-prefix automaton
A = (Q,Qimp,∆), and a scheme G generating a tree T ; our goal is to create a scheme GA that
generates the tree A(T ). As a first step, we create a finite tree transducer T that converts T
into a tree containing all runs of A on all subtrees of T . Let us write Q = {p1, . . . , p|Q|}. As
T we take (Q ∪ {q0,>}, q0,ΣG , rmax(G), δ), where q0 6∈ Q is a fresh state, and δ is defined as
follows. For q ∈ Q, a ∈ ΣG , and r ≤ rmax(G) we take

δ(q, a, r) = nd〈q〈x1,q11 , . . . , xr,q1r 〉, . . . , q〈x1,qk1 , . . . , xr,qkr 〉〉 ,
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where (q, a, q11, . . . , q1r), . . . , (q, a, qk1, . . . , qkr) are all elements of ∆ being of length r + 2
and having q and a on the first two coordinates. Moreover, for a ∈ ΣG and r ≤ rmax(G) we
take

δ(q0, a, r) = a〈x1,q0 , . . . , xr,q0 , δ(p1, a, r), . . . , δ(p|Q|, a, r)〉 and δ(>, a, r) = >〈〉 .

We see that T (T ) contains all nodes of the original tree T . Additionally, below every
node v coming from T we have |Q| new children, such that subtrees starting in these children
describe runs of A on T �v, starting in particular states. More precisely, when v has r children
in T , for every i ∈ {1, . . . , |Q|} there is a bijection between trees U in L(T (T )�v(r+i)) and
runs ρ of A on T �v such that ρ(ε) = pi. The label of every node u in such a tree U contains
the state assigned by ρ to u, where U contains exactly all nodes to which ρ assigns a state
from Q, and all minimal nodes to which ρ assigns > (i.e., such that ρ does not assign > to
their parents). Recall that by definition ρ can assign a state from Q only to a finite prefix of
the tree T �v, which corresponds to the fact that L(T (T )�v(r+i)) contains only finite trees.

Actually, we need to consider a transducer T ′ obtained from T by a slight modification:
we replace the letter q appearing in δ(q, a, r) by 1 if q ∈ Qimp, and by 0 if q 6∈ Qimp. Then, for
a node v of T having r children, and for i ∈ {1, . . . , |Q|}, we have the following equivalence:
Diag{1}(T ′(T )�v(r+i)) holds if and only if for every n ∈ N there is a run ρn of A on T �v that
assigns pi to the root of T �v, and such that for at least n nodes w it holds that ρn(w) ∈ Qimp.

We now apply Fact 9 to G and T ′; we obtain a scheme GT ′ that generates the tree T ′(T ).
Then, we apply Theorem 6 (diagonal reflection) to GT ′ , which gives us a scheme G′. The
tree T ′ generated by G′ has the same shape as T ′(T ), but in the label of every node w there
is additionally written a set D containing these sets A ⊆ Σ for which DiagA(L(T �w)) holds.
Next, using Fact 8 (logical reflection) 2|Q| times, we annotate every node v of T ′, having r′
children, by logical values of the following properties, for i = 1, . . . , |Q|:

whether r′ ≥ |Q| and L(T ′�v(r′−|Q|+i)) is nonempty, and
whether r′ ≥ |Q| and the label (a,D) of node v(r′ − |Q|+ i) in T ′ satisfies {1} ∈ D.

Clearly both these properties can be expressed in MSO. For nodes v coming from T , the
first property holds when there is a run of A on T �v that assigns pi to the root of T �v, and
the second property holds when for every n ∈ N there is a run ρn of A on T �v that assigns
pi to the root of T �v, and such that for at least n nodes w it holds that ρn(w) ∈ Qimp. Let
G′′ be the scheme generating the tree T ′′ containing these annotations.

Finally, we create GA by slightly modifying G′′: we replace every node constructor
(a,D, σ1, τ1, . . . , σ|Q|, τ|Q|)〈P1, . . . , Pr+|Q|〉 with f〈P1, . . . , Pr〉, where f : Q→ {0, 1, 2} is such
that f(pi) = 2 if τi = tt, and f(pi) = 1 if σi = tt but τi = ff, and f(pi) = 2 otherwise, for all
i ∈ {1, . . . , |Q|} (we do not do anything with node constructors of arity smaller than |Q|). In
effect only the nodes coming from T remain, and they are appropriately relabeled.

6 Extensions

In this section we give a few possible extensions of our main theorem, saying that we can
evaluate WMSO+U sentences on trees generated by recursion schemes. First, we notice that
our solution actually proves a stronger result: logical reflection for WMSO+U.

I Theorem 11. For every scheme G generating a tree T and every WMSO+U sentence ϕ
one can construct a scheme Gϕ that generates a tree of the same shape as T , and such that
its every node v is labeled by a pair (a, b), where a is the label of v in T , and b is tt if ϕ is
satisfied in T �v and ff otherwise.

STACS 2018
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Proof. In the proof of Theorem 1 we have constructed a nested U-prefix automaton A
equivalent to ϕ, and then a scheme GA that generates the tree A(T ). In every node v of
A(T ) it is written whether T �v satisfies ϕ. Moreover, by appropriately altering A, we can
assume that labels of A(T ) contain also original labels coming from T . Thus in order to
obtain Gϕ it is enough to appropriately relabel node constructors appearing in GA. J

In Theorem 11, the formula ϕ talks only about the subtree starting in v. One can obtain
a stronger version of logical reflection, where ϕ is allowed to talk about v in the context of
the whole tree. This version can be obtained as a simple corollary of Theorem 11 by using
the same methods as in Broadbent, Carayol, Ong, and Serre [9, Proof of Corollary 2].

I Corollary 12. For every scheme G generating a tree T and every WMSO+U formula ϕ(X)
with one free variable X, one can construct a scheme Gϕ that generates a tree of the same
shape as T , and such that its every node v is labeled by a pair (a, b), where a is the label of v
in T , and b is tt if ϕ is satisfied in T with X valuated to {v}, and ff otherwise.

For MSO it is possible to prove another property, called effective selection [12]. This time
we are given an MSO sentence ϕ of the form ∃X.ψ. Assuming that ϕ is satisfied in the tree T
generated by a scheme G, one wants to compute an example set XT of nodes of T , such that
ψ is true in T with the variable X valuated to this set XT . In particular, it is possible to
create a scheme Gϕ which generates a tree of the same shape as T , in which nodes belonging
to some such example set XT are marked. In WMSO+U we can only quantify over finite
sets, so the analogous property for ϕ = ∃finX.ψ can be trivially obtained (and hence it is not
so interesting). Indeed, there are only countably many finite sets XT , so we may try one
after another, until we find some set for which ψ is satisfied; it is easy to hardcode a given
set XT in the formula (or in the scheme).

We notice that WMSO+U is incomparable to MSO, with respect to the expressive power.
As model-checking of MSO sentences is also decidable on trees generated by schemes, we
can consider a hybrid logic, covering both MSO and WMSO+U. To obtain such a logic, we
introduce to WMSO+U quantifiers ∃X ranging over infinite sets X, but with the requirement
that if UY.ψ is a subformula of ∃X.ϕ then X is not a free variable of UY.ψ. In nested
automata equivalent to sentences of this logic, beside of U-prefix automata (responsible for
U quantifiers) we also have nondeterministic parity automata (responsible for subformulae
using ∃ quantifiers). As we have the reflection property for both kinds of automata, our
results generalize to this logic.

Our algorithm has nonelementary complexity. This is unavoidable, as already model-
checking of WMSO sentences on the infinite word over an unary alphabet is nonelementary.
It would be interesting to find some other formalism for expressing unboundedness properties,
maybe using some model of automata, for which the model-checking problem has better
complexity. We leave this issue for future work.

Finally, we remark that in our solution we do not use the full power of the diagonal
problem, we only use the single-letter case. On the other hand, it seems that WMSO+U (and
full MSO as well) is not capable to express the diagonal problem, only its single-letter case.
Thus another direction for a future work is to extend WMSO+U to a logic that can actually
express the diagonal problem. As a possible candidate we see the qcMSO logic introduced in
Kaiser, Lang, Leßenich, and Löding [21], in which the diagonal problem is expressible.
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