530 research outputs found

    Interoperable Semantic & Syntactic Service Matching for Ambient Computing Environments

    Get PDF
    International audienceThe inherent heterogeneity of ambient computing environments and their constant evolution requires middleware platforms to manage networked components designed, developed and deployed independently. Such management must also be efficient to cater for resource-constrained devices and highly dynamic situations due to the spontaneous appearance and disappearance of networked resources. For service discovery protocols (SDP), one of the main functions of service-oriented architectures (SOA), the efficiency of the matching of syntactic service descriptions is most often opposed to the fullness of the semantic approach. As part of the PLASTIC middleware for ambient computing environments, we present in this paper an interoperable service matching and ranking platform, which is able to process service descriptions from both semantic and syntactic service description languages. To that end, we define a generic, modular description language able to record service functional properties, potentially extended with semantic annotations. An evaluation of the prototype implementation of our platform demonstrates that multi-protocols service matching supporting various levels of expressiveness can be achieved in ambient computing environments

    A Survey on Service Composition Middleware in Pervasive Environments

    Get PDF
    The development of pervasive computing has put the light on a challenging problem: how to dynamically compose services in heterogeneous and highly changing environments? We propose a survey that defines the service composition as a sequence of four steps: the translation, the generation, the evaluation, and finally the execution. With this powerful and simple model we describe the major service composition middleware. Then, a classification of these service composition middleware according to pervasive requirements - interoperability, discoverability, adaptability, context awareness, QoS management, security, spontaneous management, and autonomous management - is given. The classification highlights what has been done and what remains to do to develop the service composition in pervasive environments

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Interoperability in IoT

    Full text link
    Interoperability refers to the ability of IoT systems and components to communicate and share information among them. This crucial feature is key to unlock all of the IoT paradigm´s potential, including immense technological, economic, and social benefits. Interoperability is currently a major challenge in IoT, mainly due to the lack of a reference standard and the vast heterogeneity of IoT systems. IoT interoperability has also a significant importance in big data analytics because it substantively eases data processing. This chapter analyzes the critical importance of IoT interoperability, its different types, challenges to face, diverse use cases, and prospective interoperability solutions. Given that it is a complex concept that involves multiple aspects and elements of IoT, for a deeper insight, interoperability is studied across different levels of IoT systems. Furthermore, interoperability is also re-examined from a global approach among platforms and systems.González-Usach, R.; Yacchirema-Vargas, DC.; Julián-Seguí, M.; Palau Salvador, CE. (2019). Interoperability in IoT. Handbook of Research on Big Data and the IoT. 149-173. http://hdl.handle.net/10251/150250S14917

    MEDUSA: Middleware for End-User Composition of Ubiquitous Applications

    Get PDF
    International audienceActivity-oriented computing (AOC) is a paradigm promoting the run-time realization of applications by composing ubiquitous services in the user's surroundings according to abstract specifications of user activities. The paradigm is particularly well-suited for enacting ubiquitous applications. However, there is still a need for end-users to create and control the ubiquitous applications because they are better aware of their own needs and activities than any existing context-aware system could ever be. In this chapter, we give an overview of state of the art ubiquitous application composition, present the architecture of the MEDUSA middleware and demonstrate its realization, which is based on existing open-source solutions. On the basis of our discussion on state of the art ubiquitous application composition, we argue that current implementations of the AOC paradigm are lacking in end-user support. Our solution, the MEDUSA middleware, allows end-users to explicitly compose applications from networked services, while building on an activity-oriented computing infrastructure to dynamically realize the composition

    Middleware for Internet of Things: A Survey

    Get PDF

    AIoTES: Setting the principles for semantic interoperable and modern IoT-enabled reference architecture for Active and Healthy Ageing ecosystems

    Full text link
    [EN] The average life expectancy of the world's population is increasing and the healthcare systems sooner than later will be compromised by its reduced capacity and its highly economic cost; in addition, the age distribution of the population is leading towards the older spectrum. This trend will lead to immeasurable and unexpected economic problems and social changes. In order to face up this challenge and complex economic and social problem, it is necessary to rely on the appropriate digital tools and technological infrastructures for ensuring that the elderly are properly cared in their everyday living environments and they can live independently for longer. This article presents ACTIVAGE IoT Ecosystem Suite (AIoTES), a concrete reference architecture and its implementation process that addresses these issues and that was designed within the first European Large Scale Pilot, ACTIVAGE, a H2020 funded project by the European Commission with the objective of creating sustainable ecosystems for Active and Healthy Ageing (AHA) based on Internet of Things and big data technologies. AIoTES offers platform level semantic interoperability, with security and privacy, as well as Big Data and Ecosystem tools. AIoTES enables and promotes the creation, exchange and adoption of crossplatform services and applications for AHA. The number of existing AHA services and solutions are quite large, especially when state-of-the-art technology is introduced, however a concrete architecture such as AIoTES gains more importance and relevance by providing a vision for establishing a complete ecosystem, that looks for supporting a larger variety of AHA services, rather than claiming to be a unique solution for all the AHA domain problems. AIoTES has been successfully validated by testing all of its components, individually, integrated, and in real-world environments with 4345 direct users. Each validation is contextualized in 11 Deployment Sites (DS) with 13 Validation Scenarios covering the heterogeneity of the AHA-IoT needs. These results also show a clear path for improvement, as well as the importance for standardization efforts in the ever-evolving AHA-IoT domain.We thank to all the people who have participated in the development and validation of AIoTES. This work has been developed under the framework of the ACTIVAGE project. The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 732679.Valero-López, CI.; Medrano-Gil, A.; González-Usach, R.; Julián-Seguí, M.; Fico, G.; Arredondo, MT.; Stavropoulos, TG.... (2021). AIoTES: Setting the principles for semantic interoperable and modern IoT-enabled reference architecture for Active and Healthy Ageing ecosystems. Computer Communications. 177:96-111. https://doi.org/10.1016/j.comcom.2021.06.0109611117

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    An interoperability framework for pervasive computing systems

    Full text link
    Communication and interaction between smart devices is the foundation for pervasive computing and the Internet of Things. Pervasive platforms, that support developers in building new services and applications, have been extensively researched in the past. Nowadays, a multitude of heterogeneous pervasive platforms exist. In real-world deployments, this leads to the formation of platform-specific silos. Therefore, the need for interoperability between such platforms arises. This thesis presents a framework which addresses all elaborated issues preventing co-operation between different platforms and allows for extension and customisation of different aspects, including platforms and transformation mechanisms. The framework bases on uniform abstractions that support translations of different features. The transformation model provides an automatic as well as a manual transformation mechanism. For evaluation, a prototype is implemented and assessed, providing support for six distinct platforms. Particularly, the framework’s feasibility is demonstrated with three realistic scenario implementations, an effort evaluation, and a cost evaluation
    • …
    corecore