189,604 research outputs found

    Semantic Gateway as a Service architecture for IoT Interoperability

    Get PDF
    The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT connects sensors and devices that record physical observations to applications and services of the Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable architecture is required to provide connectivity between these silos, enabling discovery of physical sensors and interpretation of messages between things. This paper proposes a gateway and Semantic Web enabled IoT architecture to provide interoperability between systems using established communication and data standards. The Semantic Gateway as Service (SGS) allows translation between messaging protocols such as XMPP, CoAP and MQTT via a multi-protocol proxy architecture. Utilization of broadly accepted specifications such as W3C's Semantic Sensor Network (SSN) ontology for semantic annotations of sensor data provide semantic interoperability between messages and support semantic reasoning to obtain higher-level actionable knowledge from low-level sensor data.Comment: 16 page

    From the Internet of Things to the web of things-enabling by sensing as-A service

    Get PDF
    © 2016 IEEE. Sensing as a Service (SenaaS) is emerging as a prominent element in the middleware linking together the Internet of Things (IoT) and the Web of Things (WoT) layers of future ubiquitous systems. An architecture framework is discussed in this paper whereby things are abstracted into services via embedded sensors which expose a thing as a service. The architecture acts as a blueprint to guide software architects realizing WoT applications. Web-enabled things are eventually appended into Web platforms such as Social Web platforms to drive data and services that are exposed by these things to interact with both other things and people, in order to materialize further the future social Web of Things. Research directions are discussed to illustrate the integration of SenaaS into the proposed WoT architectural framework

    Development of an Intelligent System for IoT using Web Services and Cyber Physical Approaches

    Full text link
    The Internet of Things (IoT) is changing the way we perceive information. It has inspired solutions for a variety of everyday problems. With the advent of IoT, the internet will house several ldquointelligent ldquoobjects capable of making their own decisions and communicate with each other in an efficient manner. Cyber-Physical Systems (CPSs) represent a new paradigm of future intelligent systems. They consist of loosely coupled subsystems which interact with mechanisms of Service oriented Architecture (SoA). One of the most important goals for many organizations is to satisfy their clientsrsquo service level agreements with respect to the response time and throughput. Web services are one of the popular technologies to achieve SOA solutions.Web service is a very important candidate technology to achieve SOA requirements that allows the service providers to publish their services to many service consumers. nbs

    Service-Oriented Reference Architecture for Smart Cities

    Get PDF
    The trend towards turning existing cities into smart cities is growing. Facilitated by advances in computing such as Cloud services and Internet of Things (IoT), smart cities propose to bring integrated, autonomous systems together to improve quality of life for their inhabitants. Systems such as autonomous vehicles, smart grids and intelligent traffic management are in the initial stages of development. However, as of yet there, is no holistic architecture on which to integrate these systems into a smart city. Additionally, the existing systems and infrastructure of cities is extensive and critical to their operation. We cannot simply replace these systems with smarter versions, instead the system intelligence must augment the existing systems. In this paper we propose a service oriented reference architecture for smart cities which can tackle these problems and identify some related open research questions. The abstract architecture encapsulates the way in which different aspects of the service oriented approach span through the layers of existing city infrastructure. Additionally, the extensible provision of services by individual systems allows for the organic growth of the smart city as required

    MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices

    Get PDF
    The Internet of Things (IoT) is part of Future Internet and will comprise many billions of Internet Connected Objects (ICO) or `things' where things can sense, communicate, compute and potentially actuate as well as have intelligence, multi-modal interfaces, physical/ virtual identities and attributes. Collecting data from these objects is an important task as it allows software systems to understand the environment better. Many different hardware devices may involve in the process of collecting and uploading sensor data to the cloud where complex processing can occur. Further, we cannot expect all these objects to be connected to the computers due to technical and economical reasons. Therefore, we should be able to utilize resource constrained devices to collect data from these ICOs. On the other hand, it is critical to process the collected sensor data before sending them to the cloud to make sure the sustainability of the infrastructure due to energy constraints. This requires to move the sensor data processing tasks towards the resource constrained computational devices (e.g. mobile phones). In this paper, we propose Mobile Sensor Data Processing Engine (MOSDEN), an plug-in-based IoT middleware for mobile devices, that allows to collect and process sensor data without programming efforts. Our architecture also supports sensing as a service model. We present the results of the evaluations that demonstrate its suitability towards real world deployments. Our proposed middleware is built on Android platform

    Real-Time Context-Aware Microservice Architecture for Predictive Analytics and Smart Decision-Making

    Get PDF
    The impressive evolution of the Internet of Things and the great amount of data flowing through the systems provide us with an inspiring scenario for Big Data analytics and advantageous real-time context-aware predictions and smart decision-making. However, this requires a scalable system for constant streaming processing, also provided with the ability of decision-making and action taking based on the performed predictions. This paper aims at proposing a scalable architecture to provide real-time context-aware actions based on predictive streaming processing of data as an evolution of a previously provided event-driven service-oriented architecture which already permitted the context-aware detection and notification of relevant data. For this purpose, we have defined and implemented a microservice-based architecture which provides real-time context-aware actions based on predictive streaming processing of data. As a result, our architecture has been enhanced twofold: on the one hand, the architecture has been supplied with reliable predictions through the use of predictive analytics and complex event processing techniques, which permit the notification of relevant context-aware information ahead of time. On the other, it has been refactored towards a microservice architecture pattern, highly improving its maintenance and evolution. The architecture performance has been evaluated with an air quality case study
    corecore