13,351 research outputs found

    Clinical information modeling processes for semantic interoperability of electronic health records: systematic review and inductive analysis

    Full text link
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of the American Medical Informatics Association following peer review. The version of record is available online at: http://dx.doi.org/10.1093/jamia/ocv008[EN] [Objective] This systematic review aims to identify and compare the existing processes and methodologies that have been published in the literature for defining clinical information models (CIMs) that support the semantic interoperability of electronic health record (EHR) systems. [Material and Methods] Following the preferred reporting items for systematic reviews and meta-analyses systematic review methodology, the authors reviewed published papers between 2000 and 2013 that covered that semantic interoperability of EHRs, found by searching the PubMed, IEEE Xplore, and ScienceDirect databases. Additionally, after selection of a final group of articles, an inductive content analysis was done to summarize the steps and methodologies followed in order to build CIMs described in those articles. [Results] Three hundred and seventy-eight articles were screened and thirty six were selected for full review. The articles selected for full review were analyzed to extract relevant information for the analysis and characterized according to the steps the authors had followed for clinical information modeling. [Discussion] Most of the reviewed papers lack a detailed description of the modeling methodologies used to create CIMs. A representative example is the lack of description related to the definition of terminology bindings and the publication of the generated models. However, this systematic review confirms that most clinical information modeling activities follow very similar steps for the definition of CIMs. Having a robust and shared methodology could improve their correctness, reliability, and quality. [Conclusion] Independently of implementation technologies and standards, it is possible to find common patterns in methods for developing CIMs, suggesting the viability of defining a unified good practice methodology to be used by any clinical information modeler.This research has been partially funded by the Instituto de Salud Carlos III (Platform for Innovation in Medical Technologies and Health), grant PT13/0006/0036 and the Spanish Ministry of Economy and Competitiveness, grants TIN2010-21388-C02-01 and PTQ-12-05620.Moreno-Conde, A.; Moner Cano, D.; Da Cruz, WD.; Santos, MR.; Maldonado Segura, JA.; Robles Viejo, M.; Kalra, D. (2015). Clinical information modeling processes for semantic interoperability of electronic health records: systematic review and inductive analysis. Journal of the American Medical Informatics Association. 22(4):925-934. https://doi.org/10.1093/jamia/ocv008S925934224Goossen W Goossen-Baremans A van der Zel M . Detailed clinical models: a review. Healthc Inform Res. 2010;16:201.Beeler, G. W. (1998). HL7 Version 3—An object-oriented methodology for collaborative standards development1Presented at the International Medical Informatics Association Working Group 16 Conference on Standardisation in Medical Informatics—Towards International Consensus and Cooperation, Bermuda, 12 September, 1997.1. International Journal of Medical Informatics, 48(1-3), 151-161. doi:10.1016/s1386-5056(97)00121-4Dolin, R. H., Alschuler, L., Boyer, S., Beebe, C., Behlen, F. M., Biron, P. V., & Shabo (Shvo), A. (2006). HL7 Clinical Document Architecture, Release 2. Journal of the American Medical Informatics Association, 13(1), 30-39. doi:10.1197/jamia.m1888Fast Health Interoperability Resources (FHIR). http://www.hl7.org/fhir/. Accessed July 18, 2014.Beale T . Archetypes: constraint-based domain models for futureproof information systems. OOPSLA 2002 Workshop Behav Semant. 2002.ISO 13606:2008 - Health informatics - Electronic health record communication. 2008. www.iso.org/iso/catalogue_detail.htm?csnumber=40784.OpenEHR. http://www.openehr.org/. Accessed July 18, 2014.Clinical Information Modeling Initiative (CIMI). http://www.opencimi.org/. Accessed July 18, 2014.Goossen WT . Using detailed clinical models to bridge the gap between clinicians and HIT. Stud Health Technol Inf. 2008;141:3–10.Oniki TA Coyle JF Parker CG . Lessons learned in detailed clinical modeling at Intermountain Healthcare. J Am Med Inform Assoc. 2014. Advance access published; doi:10.1136/amiajnl-2014-002875.Jacobson I Booch G Rumbaugh J . The Unified Software Development Process. Massachusetts, USA: Addison-Wesley Reading; 1999.Ahn, S., Huff, S. M., Kim, Y., & Kalra, D. (2013). Quality metrics for detailed clinical models. International Journal of Medical Informatics, 82(5), 408-417. doi:10.1016/j.ijmedinf.2012.09.006Kalra D . Editorial principles for the development of standards for the structure and content of health records. 2012. https://www.rcplondon.ac.uk/sites/default/files/documents/editorial-principles-for-the-development-of-record-standards.pdf. Accessed July 16, 2014.Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 339(jul21 1), b2535-b2535. doi:10.1136/bmj.b2535Transparent reporting of systematic reviews and meta-analyses (PRISMA). http://www.prisma-statement.org/. Accessed July 18, 2014.US National Library of Medicine. http://www.pubmed.gov. Accessed July 18, 2014.IEEE Xplore Digital Library. http://ieeexplore.ieee.org/. Accessed July 18, 2014.ScienceDirect. http://www.sciencedirect.com/. Accessed July 18, 2014.Elo, S., & KyngĂ€s, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107-115. doi:10.1111/j.1365-2648.2007.04569.xRinner C Kohler M HĂŒbner-Bloder G . Creating ISO/EN 13606 archetypes based on clinical information needs. In: Proceedings of EFMI Special Topic Conference, 14–15 April 2011, Lǎsko, Slovenia e-Health Across Borders Without Boundaries. 2011:14–15.Muñoz Carrero A Romero GutiĂ©rrez A Marco Cuenca G . Manual prĂĄctico de interoperabilidad semĂĄntica para entornos sanitarios basada en arquetipos. Unidad de investigaciĂłn en Telemedicina y e-Salud. Instituto de Salud Carlos III - Ministerio de EconomĂ­a y Competitividad. 2013.Kalra D . Editorial principles for the development of standards for the structure and content of health records. 2012. https://www.rcplondon.ac.uk/sites/default/files/documents/editorial-principles-for-the-development-of-record-standards.pdf . Accessed July 18, 2015.Yuksel, M., & Dogac, A. (2011). Interoperability of Medical Device Information and the Clinical Applications: An HL7 RMIM based on the ISO/IEEE 11073 DIM. IEEE Transactions on Information Technology in Biomedicine, 15(4), 557-566. doi:10.1109/titb.2011.2151868Nagy M Hanzlicek P PreckovĂĄ P . Semantic interoperability in Czech healthcare environment supported by HL7 version 3. Methods Inf Med. 2010;49:186.LOPEZ, D., & BLOBEL, B. (2009). A development framework for semantically interoperable health information systems. International Journal of Medical Informatics, 78(2), 83-103. doi:10.1016/j.ijmedinf.2008.05.009Lopez DM Blobel B . Enhanced semantic interoperability by profiling health informatics standards. Methods Inf Med. 2009;48:170–177.Lopez DM Blobel B . Enhanced semantic interpretability by healthcare standards profiling. Stud Health Technol Inform. 2008;136:735.Knaup, P., Garde, S., & Haux, R. (2007). Systematic planning of patient records for cooperative care and multicenter research. International Journal of Medical Informatics, 76(2-3), 109-117. doi:10.1016/j.ijmedinf.2006.08.002Goossen, W. T. F., Ozbolt, J. G., Coenen, A., Park, H.-A., Mead, C., Ehnfors, M., & Marin, H. F. (2004). Development of a Provisional Domain Model for the Nursing Process for Use within the Health Level 7 Reference Information Model. Journal of the American Medical Informatics Association, 11(3), 186-194. doi:10.1197/jamia.m1085Anderson, H. V., Weintraub, W. S., Radford, M. J., Kremers, M. S., Roe, M. T., Shaw, R. E., 
 Tcheng, J. E. (2013). Standardized Cardiovascular Data for Clinical Research, Registries, and Patient Care. Journal of the American College of Cardiology, 61(18), 1835-1846. doi:10.1016/j.jacc.2012.12.047Jian, W.-S., Hsu, C.-Y., Hao, T.-H., Wen, H.-C., Hsu, M.-H., Lee, Y.-L., 
 Chang, P. (2007). Building a portable data and information interoperability infrastructure—framework for a standard Taiwan Electronic Medical Record Template. Computer Methods and Programs in Biomedicine, 88(2), 102-111. doi:10.1016/j.cmpb.2007.07.014Spigolon, D. N., & Moro, C. M. C. (2012). ArquĂ©tipos do conjunto de dados essenciais de enfermagem para atendimento de portadoras de endometriose. Revista GaĂșcha de Enfermagem, 33(4), 22-32. doi:10.1590/s1983-14472012000400003SpĂ€th, M. B., & Grimson, J. (2011). Applying the archetype approach to the database of a biobank information management system. International Journal of Medical Informatics, 80(3), 205-226. doi:10.1016/j.ijmedinf.2010.11.002Smith, K., & Kalra, D. (2008). Electronic health records in complementary and alternative medicine. International Journal of Medical Informatics, 77(9), 576-588. doi:10.1016/j.ijmedinf.2007.11.005Bax, M. P., Kalra, D., & Santos, M. R. (2012). Dealing with the Archetypes Development Process for a Regional EHR System. Applied Clinical Informatics, 03(03), 258-275. doi:10.4338/aci-2011-12-ra-0074Moner D Moreno A Maldonado JA . Using archetypes for defining CDA templates. Stud Health Technol Inform. 2012;180:53–57.Moner D Maldonado JA BoscĂĄ D . CEN EN13606 normalisation framework implementation experiences. In: Seamless Care, Safe Care: The Challenges of Interoperability and Patient Safety in Health Care: Proceedings of the EFMI Special Topic Conference, June 2–4, 2010; Reykjavik, Iceland. IOS Press; 2010: 136.Marcos, M., Maldonado, J. A., MartĂ­nez-Salvador, B., BoscĂĄ, D., & Robles, M. (2013). Interoperability of clinical decision-support systems and electronic health records using archetypes: A case study in clinical trial eligibility. Journal of Biomedical Informatics, 46(4), 676-689. doi:10.1016/j.jbi.2013.05.004Leslie H . International developments in openEHR archetypes and templates. Health Inf Manag J. 2008;37:38.Kohl CD Garde S Knaup P . Facilitating secondary use of medical data by using openEHR archetypes. Stud Health Technol Inform. 2009;160:1117–1121.Garde, S., Hovenga, E., Buck, J., & Knaup, P. (2007). Expressing clinical data sets with openEHR archetypes: A solid basis for ubiquitous computing. International Journal of Medical Informatics, 76, S334-S341. doi:10.1016/j.ijmedinf.2007.02.004Garcia D Moro CM Cicogna PE . Method to integrate clinical guidelines into the electronic health record (EHR) by applying the archetypes approach. Stud Health Technol Inform. 2012;192:871–875.Duftschmid, G., Rinner, C., Kohler, M., Huebner-Bloder, G., Saboor, S., & Ammenwerth, E. (2013). The EHR-ARCHE project: Satisfying clinical information needs in a Shared Electronic Health Record System based on IHE XDS and Archetypes. International Journal of Medical Informatics, 82(12), 1195-1207. doi:10.1016/j.ijmedinf.2013.08.002Dias, R. D., Cook, T. W., & Freire, S. M. (2011). Modeling healthcare authorization and claim submissions using the openEHR dual-model approach. BMC Medical Informatics and Decision Making, 11(1). doi:10.1186/1472-6947-11-60Buck, J., Garde, S., Kohl, C. D., & Knaup-Gregori, P. (2009). Towards a comprehensive electronic patient record to support an innovative individual care concept for premature infants using the openEHR approach. International Journal of Medical Informatics, 78(8), 521-531. doi:10.1016/j.ijmedinf.2009.03.001Puentes, J., Roux, M., Montagner, J., & Lecornu, L. (2012). Development framework for a patient-centered record. Computer Methods and Programs in Biomedicine, 108(3), 1036-1051. doi:10.1016/j.cmpb.2012.06.007Liu, D., Wang, X., Pan, F., Yang, P., Xu, Y., Tang, X., 
 Rao, K. (2010). Harmonization of health data at national level: A pilot study in China. International Journal of Medical Informatics, 79(6), 450-458. doi:10.1016/j.ijmedinf.2010.03.002Liu, D., Wang, X., Pan, F., Xu, Y., Yang, P., & Rao, K. (2008). Web-based infectious disease reporting using XML forms. International Journal of Medical Informatics, 77(9), 630-640. doi:10.1016/j.ijmedinf.2007.10.011Kim, Y., & Park, H.-A. (2011). Development and Validation of Detailed Clinical Models for Nursing Problems in Perinatal care. Applied Clinical Informatics, 02(02), 225-239. doi:10.4338/aci-2011-01-ra-0007Khan, W. A., Hussain, M., Afzal, M., Amin, M. B., Saleem, M. A., & Lee, S. (2013). Personalized-Detailed Clinical Model for Data Interoperability Among Clinical Standards. Telemedicine and e-Health, 19(8), 632-642. doi:10.1089/tmj.2012.0189Jing, X., Kay, S., Marley, T., Hardiker, N. R., & Cimino, J. J. (2012). Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard. Journal of Biomedical Informatics, 45(1), 82-92. doi:10.1016/j.jbi.2011.09.001Hsu, W., Taira, R. K., El-Saden, S., Kangarloo, H., & Bui, A. A. T. (2012). Context-Based Electronic Health Record: Toward Patient Specific Healthcare. IEEE Transactions on Information Technology in Biomedicine, 16(2), 228-234. doi:10.1109/titb.2012.2186149Hoy D Hardiker NR McNicoll IT . Collaborative development of clinical templates as a national resource. Int J Med Inf. 2009;78:S3–S8.Buyl, R., & Nyssen, M. (2009). Structured electronic physiotherapy records. International Journal of Medical Informatics, 78(7), 473-481. doi:10.1016/j.ijmedinf.2009.02.007D’Amore JD Mandel JC Kreda DA . Are Meaningful Use Stage 2 certified EHRs ready for interoperability? Findings from the SMART C-CDA Collaborative. J Am Med Inform Assoc. 2014. Advance access published; doi:10.1136/amiajnl-2014-002883.Kalra D Tapuria A Austin T . Quality requirements for EHR archetypes. In: MIE; 2012: 48–52.Garde S Hovenga EJ GrĂ€nz J . Managing archetypes for sustainable and semantically interoperable electronic health records. Electron J Health Inform. 2007;2:e9.Madsen M Leslie H Hovenga EJS . Sustainable clinical knowledge management: an archetype development life cycle. Stud Health Technol Inform. 2010;151:115–132.Kohl CD Garde S Knaup P . Facilitating the openEHR approach-organizational structures for defining high-quality archetypes. Stud Health Technol Inform. 2008;136:437.Stroetmann VN Kalra D Lewalle P . Semantic interoperability for better health and safer healthcare. European Commission, Directorate-General Information Society and Media; 2009. http://dx.doi.org/10.2759/38514

    Factors that influence public engagement with eHealth: a literature review

    Get PDF
    Purpose: Public engagement with eHealth is generally viewed as beneficial. However, despite the potential benefits, public engagement with eHealth services remains variable. This article explores reasons for this variability through a review of published international literature. Methods: A focused search, conducted in January 2009, of three bibliographic databases, MEDLINE, CINAHL and EMBASE, returned 2622 unique abstracts. Results: Fifty articles met the inclusion criteria for the review. Four main types of eHealth service were identified: health information on the Internet; custom-made online health information; online support; and telehealth. Public engagement with these services appears to depend on a number of factors: characteristics of users; technological issues; characteristics of eHealth services; social aspects of use; and eHealth services in use. Conclusions: Recommendations for policy makers, developers, users and health professionals, include: targeting efforts towards those underserved by eHealth; improving access; tailoring services to meet the needs of a broader range of users; exploiting opportunities for social computing; and clarifying of the role of health professionals in endorsement, promotion and facilitation

    Interpretation of an international terminology standard in the development of a logic-based compositional terminology

    Get PDF
    Purpose: Version 1.0 of the International Classification for Nursing Practice (ICNPÂź) is a logic-based compositional terminology. International Organization for Standardization (ISO) 18104:2003 Health InformaticsÂżIntegration of a reference terminology model for nursing is an international standard to support the development, testing and implementation of nursing terminologies. Methods: This study examines how ISO 18104:2003 has been interpreted in the development of ICNPÂź Version 1.0 by identifying mappings between ICNPÂź and the ISO standard. Representations of diagnostic and interventional statements within ICNPÂź are also analyzed according to the requirements mandated by the ISO standard. Results: All structural components of ISO 18104:2003 i.e. semantic categories, semantic domains, qualifiers and semantic links are represented either directly or in interpreted form within ICNPÂź. The formal representations within ICNPÂź of diagnostic and interventional statements meet the requirement of the ISO standard. Conclusions: The findings of this study demonstrate that ICNPÂź Version 1.0 conforms to ISO 18104:2003. More importantly perhaps, this study provides practical examples of how components of a terminology standard might be interpreted and it examines how such a standard might be used to support the definition of high-level schemata in developing logic-based compositional terminologies

    Workflow Management for Multiple Sclerosis Patients: IT and Organization

    Get PDF
    Patients with Multiple Sclerosis (MS) visit various healthcare providers during the course of their disease. It was suggested that IT might help to\ud orchestrate their care provision. We have applied the USE IT-tool to get insight in the relevant problems, solutions and constraints of the MS-care and the MS care providers both in the organizational and the information technological area. There is hardly a chain of healthcare, but rather, a network in which informal communication plays an important role. This informal network worked reasonably effective, but inefficient and slow. The patient himself plays a keyrole in information exchange between care-providers. Many providers were unaware of the services that other healthcare providers could give in general or did provide to a specific patient. MS patients-count is only small for most care providers. None of the interviewed patients mentioned a lack of contacts between careproviders as a problem. They thought that lack of\ud experience caused their major problems: insufficient and inadequate care. To improve care, we proposed a solution that combines a “short MS-protocol”, the\ud introduction of a central coordinator of care and a Patient Relation Management (PRM) System. This is a simple web-based application that is based on agreement by the caregivers that supports routing, tracking and tracing of a MS patient and supplies the caregivers with professional guidelines, as written down in the protocol. It is likely that we would have suggested a far more complicated ICT solution if we had only analyzed the MS-care process as such, without specific consideration of the USE IT dimensions

    Towards a better understanding of the e-health user: comparing USE IT and Requirements study for an Electronic Patient Record.

    Get PDF
    This paper compares a traditional requirements study with 22 interviews for the design of an electronic patient record (EPR) and a USE IT analysis with 17 interviews trying to understand the end- user of an EPR. Developing, implementing and using information technology in organizations is a complex social activity. It is often characterized by ill-defined problems or vague goals, conflicts and disruptions that result from organizational change. Successfully implementing information systems in healthcare organizations appears to be a difficult task. Information Technology is regarded as an enabler of change in healthcare organizations but (information) technology adoption decisions in healthcare are complex, because of the uncertainty of benefits and the rate of change of technology. (Job) Relevance is recognized as an important determinant for IS success but still does not find its way into a systems design process

    Impact of EHR Usability on Provider Efficiency and Patient Safety in Non-Hospital Settings

    Get PDF
    Healthcare organizations may reap benefits transitioning to electronic health records (EHRs), such as decreased healthcare costs and better care. However, severe unintended consequences from implementation and design of these systems have emerged. Poorly implemented EHR systems may endanger the integrity of clinical or administrative data. That, in turn, can lead to errors jeopardizing patient safety or quality of care. A literature review of 40 sources identified how EHR implementation and design can impact provider centric, patient centric, and outcomes. These categories provided the basis for a comprehensive EHR impact model that was evaluated in non-hospital settings through focus groups interviews

    Published incidents and their proportions of human error

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose - The information security field experiences a continuous stream of information security incidents and breaches, which are publicised by the media, public bodies and regulators. Despite the need for information security practices being recognised and in existence for some time the underlying general information security affecting tasks and causes of these incidents and breaches are not consistently understood, particularly with regard to human error. Methodology - This paper analyses recent published incidents and breaches to establish the proportions of human error, and where possible subsequently utilises the HEART human reliability analysis technique, which is established within the safety field. Findings - This analysis provides an understanding of the proportions of incidents and breaches that relate to human error as well as the common types of tasks that result in these incidents and breaches through adoption of methods applied within the safety field. Originality - This research provides original contribution to knowledge through the analysis of recent public sector information security incidents and breaches in order to understand the proportions that relate to human erro
    • 

    corecore