964 research outputs found

    Segmentation and Fracture Detection in CT Images for Traumatic Pelvic Injuries

    Get PDF
    In recent decades, more types and quantities of medical data have been collected due to advanced technology. A large number of significant and critical information is contained in these medical data. High efficient and automated computational methods are urgently needed to process and analyze all available medical data in order to provide the physicians with recommendations and predictions on diagnostic decisions and treatment planning. Traumatic pelvic injury is a severe yet common injury in the United States, often caused by motor vehicle accidents or fall. Information contained in the pelvic Computed Tomography (CT) images is very important for assessing the severity and prognosis of traumatic pelvic injuries. Each pelvic CT scan includes a large number of slices. Meanwhile, each slice contains a large quantity of data that may not be thoroughly and accurately analyzed via simple visual inspection with the desired accuracy and speed. Hence, a computer-assisted pelvic trauma decision-making system is needed to assist physicians in making accurate diagnostic decisions and determining treatment planning in a short period of time. Pelvic bone segmentation is a vital step in analyzing pelvic CT images and assisting physicians with diagnostic decisions in traumatic pelvic injuries. In this study, a new hierarchical segmentation algorithm is proposed to automatically extract multiplelevel bone structures using a combination of anatomical knowledge and computational techniques. First, morphological operations, image enhancement, and edge detection are performed for preliminary bone segmentation. The proposed algorithm then uses a template-based best shape matching method that provides an entirely automated segmentation process. This is followed by the proposed Registered Active Shape Model (RASM) algorithm that extracts pelvic bone tissues using more robust training models than the Standard ASM algorithm. In addition, a novel hierarchical initialization process for RASM is proposed in order to address the shortcoming of the Standard ASM, i.e. high sensitivity to initialization. Two suitable measures are defined to evaluate the segmentation results: Mean Distance and Mis-segmented Area to quantify the segmentation accuracy. Successful segmentation results indicate effectiveness and robustness of the proposed algorithm. Comparison of segmentation performance is also conducted using both the proposed method and the Snake method. A cross-validation process is designed to demonstrate the effectiveness of the training models. 3D pelvic bone models are built after pelvic bone structures are segmented from consecutive 2D CT slices. Automatic and accurate detection of the fractures from segmented bones in traumatic pelvic injuries can help physicians detect the severity of injuries in patients. The extraction of fracture features (such as presence and location of fractures) as well as fracture displacement measurement, are vital for assisting physicians in making faster and more accurate decisions. In this project, after bone segmentation, fracture detection is performed using a hierarchical algorithm based on wavelet transformation, adaptive windowing, boundary tracing and masking. Also, a quantitative measure of fracture severity based on pelvic CT scans is defined and explored. The results are promising, demonstrating that the proposed method not only capable of automatically detecting both major and minor fractures, but also has potentials to be used for clinical applications

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    Basic Science to Clinical Research: Segmentation of Ultrasound and Modelling in Clinical Informatics

    Get PDF
    The world of basic science is a world of minutia; it boils down to improving even a fraction of a percent over the baseline standard. It is a domain of peer reviewed fractions of seconds and the world of squeezing every last ounce of efficiency from a processor, a storage medium, or an algorithm. The field of health data is based on extracting knowledge from segments of data that may improve some clinical process or practice guideline to improve the time and quality of care. Clinical informatics and knowledge translation provide this information in order to reveal insights to the world of improving patient treatments, regimens, and overall outcomes. In my world of minutia, or basic science, the movement of blood served an integral role. The novel detection of sound reverberations map out the landscape for my research. I have applied my algorithms to the various anatomical structures of the heart and artery system. This serves as a basis for segmentation, active contouring, and shape priors. The algorithms presented, leverage novel applications in segmentation by using anatomical features of the heart for shape priors and the integration of optical flow models to improve tracking. The presented techniques show improvements over traditional methods in the estimation of left ventricular size and function, along with plaque estimation in the carotid artery. In my clinical world of data understanding, I have endeavoured to decipher trends in Alzheimer’s disease, Sepsis of hospital patients, and the burden of Melanoma using mathematical modelling methods. The use of decision trees, Markov models, and various clustering techniques provide insights into data sets that are otherwise hidden. Finally, I demonstrate how efficient data capture from providers can achieve rapid results and actionable information on patient medical records. This culminated in generating studies on the burden of illness and their associated costs. A selection of published works from my research in the world of basic sciences to clinical informatics has been included in this thesis to detail my transition. This is my journey from one contented realm to a turbulent one

    Estimate of Anemia with New Non-Invasive Systems—A Moment of Reflection

    Get PDF
    Anemia is a global public health problem with major consequences for human health. About a quarter of the world population shows a hemoglobin concentration that is below the recommended thresholds. Non-invasive methods for monitoring and identifying potential risk of anemia and smartphone-based devices to perform this task are promising in addressing this pathology. We have considered some well-known studies carried out on this topic since the main purpose of this work was not to produce a review. The first group of papers describes the approaches for the clinical evaluation of anemia focused on different human exposed tissues, while we used a second group to overview some technologies, basic methods, and principles of operation of some devices and highlight some technical problems. Results extracted from the second group of papers examined were aggregated in two comparison tables. A growing interest in this topic is demonstrated by the increasing number of papers published recently. We believe we have identified several critical issues in the published studies, including those published by us. Just as an example, in many papers the dataset used is not described. With this paper we wish to open a discussion on these issues. Few papers have been sufficient to highlight differences in the experimental conditions and this makes the comparison of the results difficult. Differences are also found in the identification of the regions of interest in the tissue, descriptions of the datasets, and other boundary conditions. These critical issues are discussed together with open problems and common mistakes that probably we are making. We propose the definition of a road-map and a common agenda for research on this topic. In this sense, we want to highlight here some issues that seem worthy of common discussion and the subject of synergistic agreements. This paper, and in particular, the discussion could be the starting point for an open debate about the dissemination of our experiments and pave the way for further updates and improvements of what we have outlined

    Mini Kirsch Edge Detection and Its Sharpening Effect

    Get PDF
    In computer vision, edge detection is a crucial step in identifying the objects’ boundaries in an image. The existing edge detection methods function in either spatial domain or frequency domain, fail to outline the high continuity boundaries of the objects. In this work, we modified four-directional mini Kirsch edge detection kernels which enable full directional edge detection. We also introduced the novel involvement of the proposed method in image sharpening by adding the resulting edge map onto the original input image to enhance the edge details in the image. From the edge detection performance tests, our proposed method acquired the highest true edge pixels and true non-edge pixels detection, yielding the highest accuracy among all the comparing methods. Moreover, the sharpening effect offered by our proposed framework could achieve a more favorable visual appearance with a competitive score of peak signal-to-noise ratio and structural similarity index value compared to the most widely used unsharp masking and Laplacian of Gaussian sharpening methods.  The edges of the sharpened image are further enhanced could potentially contribute to better boundary tracking and higher segmentation accuracy

    Multispectral image analysis in laparoscopy – A machine learning approach to live perfusion monitoring

    Get PDF
    Modern visceral surgery is often performed through small incisions. Compared to open surgery, these minimally invasive interventions result in smaller scars, fewer complications and a quicker recovery. While to the patients benefit, it has the drawback of limiting the physician’s perception largely to that of visual feedback through a camera mounted on a rod lens: the laparoscope. Conventional laparoscopes are limited by “imitating” the human eye. Multispectral cameras remove this arbitrary restriction of recording only red, green and blue colors. Instead, they capture many specific bands of light. Although these could help characterize important indications such as ischemia and early stage adenoma, the lack of powerful digital image processing prevents realizing the technique’s full potential. The primary objective of this thesis was to pioneer fluent functional multispectral imaging (MSI) in laparoscopy. The main technical obstacles were: (1) The lack of image analysis concepts that provide both high accuracy and speed. (2) Multispectral image recording is slow, typically ranging from seconds to minutes. (3) Obtaining a quantitative ground truth for the measurements is hard or even impossible. To overcome these hurdles and enable functional laparoscopy, for the first time in this field physical models are combined with powerful machine learning techniques. The physical model is employed to create highly accurate simulations, which in turn teach the algorithm to rapidly relate multispectral pixels to underlying functional changes. To reduce the domain shift introduced by learning from simulations, a novel transfer learning approach automatically adapts generic simulations to match almost arbitrary recordings of visceral tissue. In combination with the only available video-rate capable multispectral sensor, the method pioneers fluent perfusion monitoring with MSI. This system was carefully tested in a multistage process, involving in silico quantitative evaluations, tissue phantoms and a porcine study. Clinical applicability was ensured through in-patient recordings in the context of partial nephrectomy; in these, the novel system characterized ischemia live during the intervention. Verified against a fluorescence reference, the results indicate that fluent, non-invasive ischemia detection and monitoring is now possible. In conclusion, this thesis presents the first multispectral laparoscope capable of videorate functional analysis. The system was successfully evaluated in in-patient trials, and future work should be directed towards evaluation of the system in a larger study. Due to the broad applicability and the large potential clinical benefit of the presented functional estimation approach, I am confident the descendants of this system are an integral part of the next generation OR

    Liver Biopsy

    Get PDF
    Liver biopsy is recommended as the gold standard method to determine diagnosis, fibrosis staging, prognosis and therapeutic indications in patients with chronic liver disease. However, liver biopsy is an invasive procedure with a risk of complications which can be serious. This book provides the management of the complications in liver biopsy. Additionally, this book provides also the references for the new technology of liver biopsy including the non-invasive elastography, imaging methods and blood panels which could be the alternatives to liver biopsy. The non-invasive methods, especially the elastography, which is the new procedure in hot topics, which were frequently reported in these years. In this book, the professionals of elastography show the mechanism, availability and how to use this technology in a clinical field of elastography. The comprehension of elastography could be a great help for better dealing and for understanding of liver biopsy

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Learning static object segmentation from motion segmentation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 105-110).This thesis describes the SANE (Segmentation According to Natural Examples) algorithm for learning to segment objects in static images from video data. SANE uses background subtraction to find the segmentation of moving objects in videos. This provides object segmentation information for each video frame. The collection of frames and segmentations forms a training set that SANE uses to learn the image and shape properties that correspond to the observed motion boundaries. Then, when presented with new static images, the model infers segmentations similar to the observed motion segmentations. SANE is a general method for learning environment-specific segmentation models. Because it is self-supervised, it can adapt to a new environment and new objects with relative ease. Comparisons of its output to a leading image segmentation algorithm demonstrate that motion-defined object segmentation is a distinct problem from traditional image segmentation. The model outperforms a trained local boundary detector because it leverages the shape information it learned from the training data.by Michael Gregory Ross.Ph.D
    • …
    corecore